Two sum

From Rosetta Code
Two sum is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
This task has been clarified. Its programming examples are in need of review to ensure that they still fit the requirements of the task.


Task

Given a sorted array of integers (with possibly duplicates), is it possible to find a pair of integers from that array that sum up to a given sum? If so, return indices of the two integers or an empty array if not. The solution is not necessarily unique.


Example

Given numbers = [0, 2, 11, 19, 90], sum = 21,
Because numbers[1] + numbers[3] = 2 + 19 = 21,
return [1, 3].


Source

Stack Overflow: Find pair of numbers in array that add to given sum

11l

Translation of: Python
F two_sum(arr, num)
   V i = 0
   V j = arr.len - 1
   L i < j
      I arr[i] + arr[j] == num
         R [i, j]
      I arr[i] + arr[j] < num
         i++
      E
         j--
   R [Int]()

V numbers = [0, 2, 11, 19, 90]
print(two_sum(numbers, 21))
print(two_sum(numbers, 25))
Output:
[1, 3]
[]

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
or android 64 bits with application Termux
/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program twosum64.s   */

/************************************/
/* Constantes                       */
/************************************/
.include "../includeConstantesARM64.inc" 

/*********************************/
/* Initialized data              */
/*********************************/
.data
szMessResult:         .asciz "Result : ["
szMessResult1:        .asciz ","
szMessResult2:        .asciz "]\n"
szMessStart:          .asciz "Program 64 bits start.\n"
szCarriageReturn:     .asciz "\n"
szMessErreur:         .asciz "No soluce ! \n"

tabArray:       .quad 0, 2, 11, 19, 90
.equ TABARRAYSIZE,    (. - tabArray) / 8
/*********************************/
/* UnInitialized data            */
/*********************************/
.bss
sZoneConv:             .skip 24
sZoneConv1:            .skip 24
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:                            // entry of program 
    ldr x0,qAdrszMessStart
    bl affichageMess
    ldr x0,qAdrtabArray
    mov x1,#21
    bl rechTwoNumbers
    cmp x0,#-1                   // no soluce
    beq 100f
    mov x2,x1
    ldr x1,qAdrsZoneConv
    bl conversion10              // decimal conversion
    strb wzr,[x1,x0]
    mov x0,x2
    ldr x1,qAdrsZoneConv1
    bl conversion10              // decimal conversion
    strb wzr,[x1,x0]
    mov x0,#5                   // number string to display
    ldr x1,qAdrszMessResult
    ldr x2,qAdrsZoneConv         // insert conversion in message
    ldr x3,qAdrszMessResult1
    ldr x4,qAdrsZoneConv1
    ldr x5,qAdrszMessResult2
    stp x5,x4,[sp,-16]!         // save  registers 
    bl displayStrings            // display message
    add sp,sp,#16
100:                              // standard end of the program 
    mov x0, #0                    // return code
    mov x8,EXIT 
    svc #0                        // perform the system call
qAdrszCarriageReturn:        .quad szCarriageReturn
qAdrsZoneConv:               .quad sZoneConv
qAdrsZoneConv1:               .quad sZoneConv1
qAdrszMessResult:            .quad szMessResult
qAdrszMessResult1:           .quad szMessResult1
qAdrszMessResult2:           .quad szMessResult2
qAdrszMessErreur:            .quad szMessErreur
qAdrszMessStart:             .quad szMessStart
qAdrtabArray:                .quad tabArray
/******************************************************************/
/*     search two numbers to sum                                  */ 
/******************************************************************/
/*  x0  array addressr */
/*  x1  sum  */
/*  x0 return first index  */
/*  x1 return second index  */
rechTwoNumbers:
    stp x2,lr,[sp,-16]!        // save  registers 
    stp x3,x4,[sp,-16]!        // save  registers 
    stp x5,x6,[sp,-16]!        // save  registers 
    stp x7,x8,[sp,-16]!        // save  registers 
    mov x3,#0                  // init result
 1:                            // loop
    ldr x4,[x0,x3,lsl #3]      // load first number
    mov x5,x3                  // indice2
 2:
    ldr x6,[x0,x5,lsl #3]      // load 2th number
    add x7,x6,x4               // add the two numbers 
    cmp x7,x1                  // equal to origin
    beq 3f                     // yes -> ok
    add x5,x5,#1               // increment indice2
    cmp x5,#TABARRAYSIZE       // end ?
    blt 2b                     // no -> loop
    add x3,x3,#1               // increment indice1
    cmp x3,#TABARRAYSIZE - 1   // end ?
    blt 1b                     // no loop 
                               // not found
    ldr x0,qAdrszMessErreur
    bl affichageMess
    mov x0,#-1
    mov x1,#-1
    b 100f                     // end
 3:
    mov x0,x3                  // return results
    mov x1,x5
 100:
    ldp x7,x8,[sp],16        // restaur  registers 
    ldp x5,x6,[sp],16        // restaur  registers 
    ldp x3,x4,[sp],16        // restaur  registers 
    ldp x2,lr,[sp],16        // restaur  registers
    ret 
/***************************************************/
/*   display multi strings                    */
/***************************************************/
/* x0  contains number strings address */
/* x1 address string1 */
/* x2 address string2 */
/* x3 address string3 */
/* other address on the stack */
/* thinck to add  number other address * 4 to add to the stack */
displayStrings:            // INFO:  displayStrings
    stp x1,lr,[sp,-16]!    // save  registers 
    stp x2,x3,[sp,-16]!    // save  registers 
    stp x4,x5,[sp,-16]!    // save  registers 
    add fp,sp,#48          // save paraméters address (6 registers saved * 8 bytes)
    mov x4,x0              // save strings number
    cmp x4,#0              // 0 string -> end
    ble 100f
    mov x0,x1              // string 1
    bl affichageMess
    cmp x4,#1              // number > 1
    ble 100f
    mov x0,x2
    bl affichageMess
    cmp x4,#2
    ble 100f
    mov x0,x3
    bl affichageMess
    cmp x4,#3
    ble 100f
    mov x3,#3
    sub x2,x4,#4
1:                         // loop extract address string on stack
    ldr x0,[fp,x2,lsl #3]
    bl affichageMess
    subs x2,x2,#1
    bge 1b
100:
    ldp x4,x5,[sp],16        // restaur  registers 
    ldp x2,x3,[sp],16        // restaur  registers 
    ldp x1,lr,[sp],16        // restaur  registers
    ret 

/***************************************************/
/*      ROUTINES INCLUDE                           */
/***************************************************/
.include "../includeARM64.inc"
Output:
Program 64 bits start.
Result : [1,3]

Action!

PROC PrintArray(INT ARRAY a INT len)
  INT i

  Put('[)
  FOR i=0 TO len-1
  DO
    PrintI(a(i))
    IF i<len-1 THEN
      Put(' )
    FI
  OD
  Put(']) PutE()
RETURN

PROC PrintPairs(INT ARRAY a INT len,sum)
  INT i,j,p1,p2,s,count

  count=0
  FOR i=0 TO len-2
  DO
    p1=a(i)
    FOR j=i+1 TO len-1
    DO
      p2=a(j)
      s=p1+p2
      IF s=sum THEN
        PrintF("(%I,%I) ",i,j)
        count==+1
      ELSEIF s>sum THEN
        EXIT
      FI
    OD
  OD
  IF count=0 THEN
    Print("none")
  FI
  PutE()
RETURN

PROC Test(INT ARRAY a INT len,sum)
  Print("Array: ") PrintArray(a,len)
  Print("Sum:   ") PrintIE(sum)
  Print("Pairs: ") PrintPairs(a,len,sum)
  PutE()
RETURN

PROC Main()
  INT ARRAY a=[0 2 11 19 90]
  INT ARRAY b=[0 2 3 3 4 11 17 17 18 19 90]

  Test(a,5,21)
  Test(a,5,22)
  Test(b,11,21)
RETURN
Output:

Screenshot from Atari 8-bit computer

Array: [0 2 11 19 90]
Sum:   21
Pairs: (1,3)

Array: [0 2 11 19 90]
Sum:   22
Pairs: none

Array: [0 2 3 3 4 11 17 17 18 19 90]
Sum:   21
Pairs: (1,9) (2,8) (3,8) (4,6) (4,7)

Aime

integer i, u, v;
index x;
list l;

l_bill(l, 0, 0, 2, 11, 19, 90);

for (i, u in l) {
    x[u] = i;
    if (i_jack(v, x, 21 - u)) {
        o_(v, " ", i, "\n");
        break;
    }
}
Output:
1 3

ALGOL 68

Translation of: Lua
# returns the subscripts of a pair of numbers in a that sum to sum, a is assumed to be sorted #
# if there isn't a pair of numbers that summs to sum, an empty array is returned              #
PRIO TWOSUM = 9;
OP   TWOSUM = ( []INT a, INT sum )[]INT:
     BEGIN
        BOOL found := FALSE;
        INT i := LWB a;
        INT j := UPB a;
        WHILE i < j AND NOT found DO
            INT s = a[ i ] + a[ j ];
            IF s = sum THEN
                found  := TRUE
            ELIF s < sum THEN
                i +:= 1
            ELSE
                j -:= 1
            FI
        OD;
        IF found THEN ( i, j ) ELSE () FI
     END # TWOSUM # ;

# test the TWOSUM operator #
PROC print twosum = ( []INT a, INT sum )VOID:
     BEGIN
         []INT pair = a[ AT 0 ] TWOSUM sum;
         IF LWB pair > UPB pair THEN
             # no pair with the required sum #
             print( ( "[]", newline ) )
         ELSE
             # have a pair #
             print( ( "[", whole( pair[ LWB pair ], 0 ), ", ", whole( pair[ UPB pair ], 0 ), "]", newline ) )
         FI
     END # print twosum # ; 
print twosum( (  0, 2, 11, 19, 90 ),         21 ); # should be [1, 3]             #
print twosum( ( -8, -2,  0,  1,  5, 8, 11 ),  3 ); # should be [0, 6] (or [1, 4]) #
print twosum( ( -3, -2,  0,  1,  5, 8, 11 ), 17 ); # should be []                 #
print twosum( ( -8, -2, -1,  1,  5, 9, 11 ),  0 )  # should be [2, 3]             #
Output:
[1, 3]
[0, 6]
[]
[2, 3]

APL

Works with Dyalog APL.

∘.+⍨ ⍺ makes a table that is the outer sum of the left argument (the numbers).

We want to remove the diagonal, to avoid edge cases. We can achieve this by setting all these numbers to an arbitrary decimal value, since two integers can't sum to a decimal.

≢⍺ is the length of the numbers. ⍳≢⍺ creates an array from 0 to the length of the numbers. ∘.=⍳≢⍺ returns an identity matrix of size ≢⍺ (using the outer product with the equality function). ⍸ returns the indices of these numbers. 0.1@ sets that list to 0.1.

Then, we just need to find where the right argument (the target) is equal to the matrix, get the indices, and return the first one (⊃).

⎕io  0                               ⍝ sets index origin to 0
ts   {⊃⍸ = 0.1@(∘.=⍳≢) ∘.+ }
    0 2 11 19 90 ts 21              ⍝ should be 1 3
Output:
1 3

AppleScript

Functional

Translation of: JavaScript
Translation of: Haskell


Nesting concatMap or (>>=) (flip concatMap) yields the cartesian product of the list with itself. Skipping products where the y index is lower than the x index (see the use of 'drop' below) ignores the 'lower triangle' of the cartesian grid, excluding mirror-image and duplicate number pairs.

Note that this draft assumes that the task and target output are specified in terms of the prevailing convention of zero-based indices.

AppleScript, unusually, happens to make internal use of one-based indices, rigid adherence to which would, of course, in this case, simply produce the wrong result :-)

-------------------------- TWO SUM -------------------------

-- twoSum :: Int -> [Int] -> [(Int, Int)]
on twoSum(n, xs)
    set ixs to zip(enumFromTo(0, |length|(xs) - 1), xs)
    
    script ijIndices
        on |λ|(ix)
            set {i, x} to ix
            
            script jIndices
                on |λ|(jy)
                    set {j, y} to jy
                    
                    if (x + y) = n then
                        {{i, j}}
                    else
                        {}
                    end if
                end |λ|
            end script
            
            |>>=|(drop(i + 1, ixs), jIndices)
        end |λ|
    end script
    
    |>>=|(ixs, ijIndices)
end twoSum


---------------------------- TEST --------------------------
on run
    twoSum(21, [0, 2, 11, 19, 90])
    
    --> {{1, 3}} Single solution.
end run


--------------------- GENERIC FUNCTIONS --------------------

-- (>>=) :: Monad m => m a -> (a -> m b) -> m b
on |>>=|(xs, f)
    concat(map(f, xs))
end |>>=|

-- concat :: [[a]] -> [a] | [String] -> String
on concat(xs)
    script append
        on |λ|(a, b)
            a & b
        end |λ|
    end script
    
    if length of xs > 0 and class of (item 1 of xs) is string then
        set empty to ""
    else
        set empty to {}
    end if
    foldl(append, empty, xs)
end concat

--  drop :: Int -> a -> a
on drop(n, a)
    if n < length of a then
        if class of a is text then
            text (n + 1) thru -1 of a
        else
            items (n + 1) thru -1 of a
        end if
    else
        {}
    end if
end drop

-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
    if m > n then
        set d to -1
    else
        set d to 1
    end if
    set lst to {}
    repeat with i from m to n by d
        set end of lst to i
    end repeat
    return lst
end enumFromTo

-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
    tell mReturn(f)
        set v to startValue
        set lng to length of xs
        repeat with i from 1 to lng
            set v to |λ|(v, item i of xs, i, xs)
        end repeat
        return v
    end tell
end foldl

-- length :: [a] -> Int
on |length|(xs)
    length of xs
end |length|

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
    tell mReturn(f)
        set lng to length of xs
        set lst to {}
        repeat with i from 1 to lng
            set end of lst to |λ|(item i of xs, i, xs)
        end repeat
        return lst
    end tell
end map

-- min :: Ord a => a -> a -> a
on min(x, y)
    if y < x then
        y
    else
        x
    end if
end min

-- Lift 2nd class handler function into 1st class script wrapper 
-- mReturn :: Handler -> Script
on mReturn(f)
    if class of f is script then
        f
    else
        script
            property |λ| : f
        end script
    end if
end mReturn

-- zip :: [a] -> [b] -> [(a, b)]
on zip(xs, ys)
    set lng to min(length of xs, length of ys)
    set lst to {}
    repeat with i from 1 to lng
        set end of lst to {item i of xs, item i of ys}
    end repeat
    return lst
end zip
Output:
{{1, 3}}

Idiomatic

Like the "Functional" script above, this returns multiple solutions when they're found. However it assumes a sorted list, as per the clarified task description, which allows some optimisation of the search. Also, the indices returned are 1-based, which is the AppleScript norm.

on twoSum(givenNumbers, givenSum)
    script o
        property lst : givenNumbers
        property output : {}
    end script
    
    set listLength to (count o's lst)
    repeat with i from 1 to (listLength - 1)
        set n1 to item i of o's lst
        repeat with j from (i + 1) to listLength
            set thisSum to n1 + (item j of o's lst)
            if (thisSum = givenSum) then
                set end of o's output to {i, j}
            else if (thisSum > givenSum) then
                exit repeat
            end if
        end repeat
    end repeat
    
    return o's output
end twoSum

-- Test code:
twoSum({0, 2, 11, 19, 90}, 21) -- Task-specified list.
twoSum({0, 3, 11, 19, 90}, 21) -- No matches.
twoSum({-44, 0, 0, 2, 10, 11, 19, 21, 21, 21, 65, 90}, 21) -- Multiple solutions.
Output:
{{2, 4}}
{}
{{1, 11}, {2, 8}, {2, 9}, {2, 10}, {3, 8}, {3, 9}, {3, 10}, {4, 7}, {5, 6}}

ARM Assembly

Works with: as version Raspberry Pi
or android 32 bits with application Termux
/* ARM assembly Raspberry PI  */
/*  program twosum.s   */

 /* REMARK 1 : this program use routines in a include file 
   see task Include a file language arm assembly 
   for the routine affichageMess conversion10 
   see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes                       */
/************************************/
.include "../constantes.inc"

/*********************************/
/* Initialized data              */
/*********************************/
.data
szMessResult:         .asciz "Result : ["
szMessResult1:        .asciz ","
szMessResult2:        .asciz "]\n"
szMessStart:          .asciz "Program 32 bits start.\n"
szCarriageReturn:     .asciz "\n"
szMessErreur:         .asciz "No soluce ! \n"

tabArray:       .int 0, 2, 11, 19, 90
.equ TABARRAYSIZE,    (. - tabArray) / 4
/*********************************/
/* UnInitialized data            */
/*********************************/
.bss
sZoneConv:             .skip 24
sZoneConv1:             .skip 24
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:                            @ entry of program 
    ldr r0,iAdrszMessStart
    bl affichageMess
    ldr r0,iAdrtabArray
    mov r1,#21
    bl rechTwoNumbers
    cmp r0,#-1                   @ no soluce
    beq 100f
    mov r2,r1
    ldr r1,iAdrsZoneConv
    bl conversion10              @ decimal conversion
    mov r3,#0
    strb r3,[r1,r0]
    mov r0,r2
    ldr r1,iAdrsZoneConv1
    bl conversion10              @ decimal conversion
    mov r3,#0
    strb r3,[r1,r0]
    mov r0,#5                   @ number string to display
    ldr r1,iAdrszMessResult
    ldr r2,iAdrsZoneConv         @ insert conversion in message
    ldr r3,iAdrszMessResult1
    ldr r4,iAdrsZoneConv1
    push {r4}
    ldr r4,iAdrszMessResult2
    push {r4}
    bl displayStrings            @ display message
    add sp,#8
100:                              @ standard end of the program 
    mov r0, #0                    @ return code
    mov r7, #EXIT                 @ request to exit program
    svc #0                        @ perform the system call
iAdrszCarriageReturn:        .int szCarriageReturn
iAdrsZoneConv:               .int sZoneConv
iAdrsZoneConv1:               .int sZoneConv1
iAdrszMessResult:            .int szMessResult
iAdrszMessResult1:           .int szMessResult1
iAdrszMessResult2:           .int szMessResult2
iAdrszMessErreur:            .int szMessErreur
iAdrszMessStart:             .int szMessStart
iAdrtabArray:                .int tabArray
/******************************************************************/
/*     search two numbers from sum                                */ 
/******************************************************************/
/*  r0  array addressr */
/*  r1  sum  */
/*  r0 return fist index  */
/*  r1 return second index  */
rechTwoNumbers:
    push {r2-r7,lr}            @ save registers
    mov r3,#0                  @ init result
 1:                            @ loop
    ldr r4,[r0,r3,lsl #2]      @ load first number
    mov r5,r3                  @ indice2
 2:
    ldr r6,[r0,r5,lsl #2]      @ load 2th number
    add r7,r6,r4               @ add the two numbers 
    cmp r7,r1                  @ equal to origin
    beq 3f                     @ yes -> ok
    add r5,r5,#1               @ increment indice2
    cmp r5,#TABARRAYSIZE       @ end ?
    blt 2b                     @ no -> loop
    add r3,r3,#1               @ increment indice1
    cmp r3,#TABARRAYSIZE - 1   @ end ?
    blt 1b                     @ no loop 
                               @ not found
    ldr r0,iAdrszMessErreur
    bl affichageMess
    mov r0,#-1
    mov r1,#-1
    b 100f                     @ end
 3:
    mov r0,r3                  @ return results
    mov r1,r5
 100:
    pop {r2-r7,pc}
/***************************************************/
/*   display multi strings                    */
/***************************************************/
/* r0  contains number strings address */
/* r1 address string1 */
/* r2 address string2 */
/* r3 address string3 */
/* other address on the stack */
/* thinck to add  number other address * 4 to add to the stack */
displayStrings:            @ INFO:  displayStrings
    push {r1-r4,fp,lr}     @ save des registres
    add fp,sp,#24          @ save paraméters address (6 registers saved * 4 bytes)
    mov r4,r0              @ save strings number
    cmp r4,#0              @ 0 string -> end
    ble 100f
    mov r0,r1              @ string 1
    bl affichageMess
    cmp r4,#1              @ number > 1
    ble 100f
    mov r0,r2
    bl affichageMess
    cmp r4,#2
    ble 100f
    mov r0,r3
    bl affichageMess
    cmp r4,#3
    ble 100f
    mov r3,#3
    sub r2,r4,#4
1:                         @ loop extract address string on stack
    ldr r0,[fp,r2,lsl #2]
    bl affichageMess
    subs r2,#1
    bge 1b
100:
    pop {r1-r4,fp,pc}


/***************************************************/
/*      ROUTINES INCLUDE                           */
/***************************************************/
.include "../affichage.inc"
Output:
Program 32 bits start.
Result : [1,3]

Arturo

twoSum: function [numbers, s][
    loop.with:'i numbers 'x [
        if not? null? j: <= index numbers s-x ->
            return @[i j]
    ]
    return []
]

nums: [0 2 11 19 90]

print ["twoSum 21:" twoSum nums 21]
print ["twoSum 25:" twoSum nums 25]
Output:
twoSum 21: [1 3] 
twoSum 25: []

AutoHotkey

TwoSum(a, target){
	i := 1,	j := a.MaxIndex()
	while(i < j){
		if  (a[i] + a[j] = target)
			return i ", " j
		else if (a[i] + a[j] <  target)
			i++
		else if (a[i] + a[j] >  target)
			j--
	}
	return "not found"
}

Examples:

MsgBox % TwoSum([0, 2, 11, 19, 90], 21) ; returns 2, 4 (first index is 1 not 0)

Outputs:

2,4

AWK

# syntax: GAWK -f TWO_SUM.AWK
BEGIN {
    numbers = "0,2,11,19,90"
    print(two_sum(numbers,21))
    print(two_sum(numbers,25))
    exit(0)
}
function two_sum(numbers,sum,  arr,i,j,s) {
    i = 1
    j = split(numbers,arr,",")
    while (i < j) {
      s = arr[i] + arr[j]
      if (s == sum) {
        return(sprintf("[%d,%d]",i,j))
      }
      else if (s < sum) {
        i++
      }
      else {
        j--
      }
    }
    return("[]")
}
Output:
[2,4]
[]

Befunge

>000pv
     >&:0\`#v_00g:1+00p6p
v           >$&50p110p020p
v>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>+50g-!#v_48*10g8p10g1+:00g1-`v  >
v                                                     >10g20g..@           v_v
"""""""""""""""""""""""""""""""""""""""""""""""v ">"p4\"v"p02:+1p4\">":g02$< :
                                               >  20g8p20g1+:00g1-`#v_0     ^1
"""""""""""""""""""""""""""""""""""""""""""""""                     "        0
>^                                                                  l        p
                                                                    i        "
                                                                    a        ^
                                                                    F        "
                                                                    "        \
                                                                    >:#,_@   8
                                                                             p
                                                                             > ^

There are a couple of caveats due to limitations of the language. The target cannot be above 127, there can be no more than 47 elements in the list and the list must be delimited by a negative number before the target value as follows:

0 2 11 19 90 -1 21
Output:
1 3

C

#include<stdio.h>

int main()
{
	int arr[5] = {0, 2, 11, 19, 90},sum = 21,i,j,check = 0;
	
	for(i=0;i<4;i++){
		for(j=i+1;j<5;j++){
			if(arr[i]+arr[j]==sum){
				printf("[%d,%d]",i,j);
				check = 1;
				break;
			}
		}
	}
	
	if(check==0)
		printf("[]");
	
	return 0;
}

Output :

[1,3]

C#

using System;
using System.Collections.Generic;

public class Program
{
    public static void Main(string[] args)
    {
        int[] arr = { 0, 2, 11, 19, 90 };
        const int sum = 21;

        var ts = TwoSum(arr, sum);
        Console.WriteLine(ts != null ? $"{ts[0]}, {ts[1]}" : "no result");

        Console.ReadLine();
    }

    public static int[] TwoSum(int[] numbers, int sum)
    {
        var map = new Dictionary<int, int>();
        for (int i = 0; i < numbers.Length; i++)
        {
            // see if the complement is stored
            var key = sum - numbers[i];
            if (map.ContainsKey(key))
            {
                return new[] { map[key], i };
            }
            map.Add(numbers[i], i);
        }
        return null;
    }
}
Output:
1, 3

C++

Translation of: C#
#include <iostream>
#include <map>
#include <tuple>
#include <vector>

using namespace std;

pair<int, int> twoSum(vector<int> numbers, int sum) {
	auto m = map<int, int>();
	for (size_t i = 0; i < numbers.size(); ++i) {
		// see if the complement is stored
		auto key = sum - numbers[i];

		if (m.find(key) != m.end()) {
			return make_pair(m[key], i);
		}
		m[numbers[i]] = i;
	}

	return make_pair(-1, -1);
}

int main() {
	auto numbers = vector<int>{ 0, 2, 11, 19, 90 };
	const int sum = 21;

	auto ts = twoSum(numbers, sum);
	if (ts.first != -1) {
		cout << "{" << ts.first << ", " << ts.second << "}" << endl;
	} else {
		cout << "no result" << endl;
	}

	return 0;
}
Output:
{1,3}

D

import std.stdio;

void main() {
    const arr = [0, 2, 11, 19, 90];
    const sum = 21;

    writeln(arr.twoSum(21));
}

/**
 * Searches arr for two indexes whose value adds to sum, and returns those indexes.
 * Returns an empty array if no such indexes exist.
 * The values of arr are assumed to be sorted.
 */
int[] twoSum(const int[] arr, const int sum) in {
    import std.algorithm.sorting : isSorted;
    assert(arr.isSorted);
} out(result) {
    assert(result.length == 0 || arr[result[0]] + arr[result[1]] == sum);
} body {
    int i=0;
    int j=arr.length-1;

    while (i <= j) {
        auto temp = arr[i] + arr[j];
        if (temp == sum) {
            return [i, j];
        }

        if (temp < sum) {
            i++;
        } else {
            j--;
        }
    }

    return [];
}
Output:
[1, 3]

Dart

main() {
  var a = [1,2,3,4,5];
  var s=25,c=0;
  var z=(a.length*(a.length-1))/2;
   for (var x = 0; x < a.length; x++) {
   print(a[x]);
   }
 for (var x = 0; x < a.length; x++) {
    for(var y=x+1;y< a.length; y++)
    {
      if(a[x]+a[y]==s)
      {
        print([a[x],a[y]]);
        break;
      }
      else
      {
       c++; 
      }
    }
 }
if(c==z)
{
 print("such pair doesn't exist");   
}
}

Delphi

Translation of: Python
program Two_Sum;

{$APPTYPE CONSOLE}

uses
  System.SysUtils,
  System.Generics.Collections;

function TwoSum(arr: TArray<Integer>; num: Integer; var i, j: integer): boolean;
begin
  TArray.Sort<Integer>(arr);
  i := 0;
  j := Length(arr) - 1;
  while i < j do
  begin
    if arr[i] + arr[j] = num then
      exit(True);

    if arr[i] + arr[j] < num then
      inc(i)
    else
      Dec(j);
  end;
  Result := false;
end;

var
  i, j: Integer;

begin
  if TwoSum([0, 2, 11, 19, 90], 21, i, j) then
    Writeln('(', i, ',', j, ')');

  if TwoSum([0, 2, 11, 19, 90], 25, i, j) then
    Writeln('(', i, ',', j, ')');
  Readln;
end.
Output:
(1,3)

EasyLang

EasyLang arrays are one-based, so the indices returned are also one-based.

proc twoSum sum . array[] pair[] .
   i = 1
   j = len array[]
   pair[] = [ ]
   repeat
      if array[i] + array[j] = sum
         pair[] = [ i j ]
         return
      elif array[i] + array[j] > sum
         j -= 1
      elif array[i] + array[j] < sum
         i += 1
      .
      until i = j
   .
.
numbers[] = [ 0 2 11 19 90 ]
twoSum 21 numbers[] pair[]
print pair[]
Output:
[ 2 4]

Elixir

defmodule RC do
  def two_sum(numbers, sum) do
    Enum.with_index(numbers) |>
    Enum.reduce_while([], fn {x,i},acc ->
      y = sum - x
      case Enum.find_index(numbers, &(&1 == y)) do
        nil -> {:cont, acc}
        j   -> {:halt, [i,j]}
      end
    end)
  end
end

numbers = [0, 2, 11, 19, 90]
IO.inspect RC.two_sum(numbers, 21)
IO.inspect RC.two_sum(numbers, 25)
Output:
[1, 3]
[]

F#

// Two Sum : Nigel Galloway December 5th., 2017
let fN n i =
  let rec fN n e =
    match n with
    |n::g when n < i -> match List.mapi(fun g i-> (n,i,g)) g |> List.tryFind(fun (n,g,l)->(n+g)=i) with
                        |Some (n,g,l) -> [e;e+l+1]
                        |_            -> fN g (e+1)
    |_               -> []
  fN n 0
printfn "%A" (fN [0; 2; 11; 19; 90] 21)
Output:
[1; 3]

Factor

USING: combinators fry kernel locals math prettyprint sequences ;
IN: rosetta-code.two-sum

:: two-sum ( seq target -- index-pair )
    0 seq length 1 - :> ( x! y! ) [
        x y [ seq nth ] bi@ + :> sum {
            { [ sum target = x y = or ] [ f ] }
            { [ sum target > ] [ y 1 - y! t ] }
            [ x 1 + x! t ]
        } cond
    ] loop
    x y = { } { x y } ? ;
    
{ 21 55 11 } [ '[ { 0 2 11 19 90 } _ two-sum . ] call ] each
Output:
{ 1 3 }
{ }
{ 0 2 }

A version that maintains a point-free style while still iterating over the numbers once:

USING: accessors arrays assocs combinators.extras hashtables
kernel math math.combinatorics sequences ;
IN: rosetta-code.two-sum

DEFER: (two-sum)
TUPLE: helper sum seq index hash ;

: <two-sum-helper> ( sum seq -- helper )
    \ helper new 
        swap [ >>seq ] keep length <hashtable> >>hash
        swap >>sum 0 >>index ;

: no-sum ( helper -- empty ) drop { } ;

: in-bounds? ( helper -- ? )
    [ index>> ] [ seq>> length ] bi < ;

: next-sum ( helper -- pair )
    dup in-bounds? [ (two-sum) ] [ no-sum ] if ;

: next-index ( helper -- helper ) [ 1 + ] change-index ;

: result ( helper index -- helper ) swap index>> 2array ;

: find-compliment-index ( helper -- helper index/f )
    dup [ sum>> ] [ index>> ] [ seq>> nth - ] [ ] quad hash>> at ;

: remember-item ( helper -- helper )
    dup [ hash>> ] [ index>> ] [ seq>> nth ] [ index>> ] 
        quad set-of drop ;

: (two-sum) ( helper -- pair )
    remember-item find-compliment-index 
        [ result ] [ next-index next-sum ] if* ;

: two-sum ( sum seq -- pair ) <two-sum-helper> (two-sum) ;

MAIN: [ { 21 55 11 } [ { 0 2 11 19 90 } two-sum . ] each ]

Forth

Works with: Gforth version 0.7.3
CREATE A CELL ALLOT
: A[] ( n -- A[n]) CELLS A @ + @ ;
:NONAME   1- ;
:NONAME   R> DROP R> DROP TRUE ;
:NONAME   SWAP 1+ SWAP ;
CREATE VTABLE , , ,
: CMP ( n n' -- -1|0|1)  - DUP IF DUP ABS / THEN ;
: (TWOSUM) ( addr n n' -- u1 u2 t | f) 
   >R SWAP A !  0 SWAP 1-  ( lo hi) ( R: n')
   BEGIN OVER OVER < WHILE 
     OVER A[]  OVER A[]  + R@
     CMP  1+ CELLS VTABLE + @ EXECUTE
   REPEAT
   DROP DROP R> DROP FALSE ;
: TWOSUM ( addr n n' --)  [CHAR] [ EMIT 
   (TWOSUM) IF SWAP 0 .R [CHAR] , EMIT SPACE 0 .R THEN
   [CHAR] ] EMIT ;   
CREATE TEST0  0 ,  2 , 11 , 19 , 90 ,            DOES> 5 ;
CREATE TEST1 -8 , -2 ,  0 ,  1 ,  5 ,  8 , 11 ,  DOES> 7 ;
TEST0 21 TWOSUM CR
TEST0 25 TWOSUM CR
TEST1 3  TWOSUM CR
TEST1 8  TWOSUM CR
BYE
Output:
[1, 3]
[]
[0, 6]
[2, 5]

Fortran

program twosum
  implicit none

  integer, parameter, dimension(5) :: list = (/ 0, 2, 11, 19, 90/)
  integer, parameter :: target_val = 21
  integer :: nelem
  integer :: i, j
  logical :: success = .false.

  nelem = size(list)
  outer:do i = 1,nelem
     do j = i+1,nelem
        success = list(i) + list(j) == target_val
        if (success) exit outer
     end do
  end do outer

  if (success) then
     !Just some fancy formatting for nicer output
     print('("(",2(i3.1,1X),")",3(A1,i3.1))'), i,j, ":", list(i), "+", list(j), "=", target_val
  else
     print*, "Failed"
  end if

end program twosum
Output:
(  2   4 ):  2+ 19= 21

FreeBASIC

' FB 1.05.0 Win64

' "a" is the array of sorted non-negative integers
' "b" is the array to contain the result and is assumed to be empty initially
 
Sub twoSum (a() As UInteger, b() As Integer, targetSum As UInteger)
  Dim lb As Integer = LBound(a)
  Dim ub As Integer = UBound(a)
  If ub = -1 Then Return  '' empty array
  Dim sum As UInteger

  For i As Integer = lb To ub - 1
    If a(i) <= targetSum Then
      For j As Integer = i + 1 To ub
        sum = a(i) + a(j)
        If sum = targetSum Then
          Redim b(0 To 1)
          b(0) = i : b(1) = j
          Return
        ElseIf sum > targetSum Then
          Exit For
        End If
      Next j
    Else
      Exit For 
    End If
  Next i
End Sub

Dim a(0 To 4) As UInteger = {0, 2, 11, 19, 90}
Dim b() As Integer
Dim targetSum As UInteger = 21
twoSum a(), b(), targetSum
If UBound(b) = -1 Then
  Print "No two numbers were found whose sum is "; targetSum
Else
  Print "The numbers with indices"; b(LBound(b)); " and"; b(UBound(b)); " sum to "; targetSum
End If
Print
Print "Press any number to quit"
Sleep
Output:
The numbers with indices 1 and 3 sum to 21

Go

Translation of: Kotlin
package main

import "fmt"

func twoSum(a []int, targetSum int) (int, int, bool) {
    len := len(a)
    if len < 2 {
        return 0, 0, false
    }
    for i := 0; i < len - 1; i++ {
        if a[i] <= targetSum {
            for j := i + 1; j < len; j++ {
                sum := a[i] + a[j]
                if sum == targetSum {
                    return i, j, true
                }
                if sum > targetSum {
                    break
                }
            }
        } else {
            break
        }
    }
    return 0, 0, false
}

func main() {
    a := []int {0, 2, 11, 19, 90}
    targetSum := 21
    p1, p2, ok := twoSum(a, targetSum)
    if (!ok) {
        fmt.Println("No two numbers were found whose sum is", targetSum)
    } else {
        fmt.Println("The numbers with indices", p1, "and", p2, "sum to", targetSum)
    }
}
Output:
The numbers with indices 1 and 3 sum to 21

Haskell

Returning first match

twoSum::(Num a,Ord a) => a -> [a] -> [Int]
twoSum num list = sol ls (reverse ls)
  where
  ls = zip list [0..]
  sol [] _ = []
  sol _ [] = []
  sol xs@((x,i):us) ys@((y,j):vs) = ans
    where
    s = x + y
    ans | s == num  = [i,j]
        | j <= i    = []
        | s < num   = sol (dropWhile ((<num).(+y).fst) us) ys
        | otherwise = sol xs $ dropWhile ((num <).(+x).fst) vs

main = print $ twoSum 21 [0, 2, 11, 19, 90]
Output:
[1,3]

Returning all matches

Listing multiple solutions (as zero-based indices) where they exist:

sumTo :: Int -> [Int] -> [(Int, Int)]
sumTo n ns =
  let ixs = zip [0 ..] ns
   in ixs
        >>= ( \(i, x) ->
                drop (succ i) ixs
                  >>= \(j, y) ->
                    [ (i, j)
                      | (x + y) == n
                    ]
            )

main :: IO ()
main = mapM_ print $ sumTo 21 [0, 2, 11, 19, 90, 10]

Or, resugaring a little – pulling more into the scope of the list comprehension:

sumTo :: Int -> [Int] -> [(Int, Int)]
sumTo n ns =
  let ixs = zip [0 ..] ns
  in [ (i, j)
     | (i, x) <- ixs 
     , (j, y) <- drop (succ i) ixs
     , (x + y) == n ]
 
main :: IO ()
main = mapM_ print $ sumTo 21 [0, 2, 11, 19, 90, 10]
Output:
(1,3)
(2,5)

Icon and Unicon

Translation of: Lua

Icon and Unicon are ordinal languages, first index is one.

fullimag library used to pretty print lists.

#
# twosum.icn, find two array elements that add up to a given sum
# Dedicated to the public domain
#
link fullimag
procedure main(arglist)
    sum := pop(arglist) | 21
    L := []
    if *arglist > 0 then every put(L, integer(!arglist)) & L := sort(L)
    else L := [0, 2, 11, 19, 90]

    write(sum)
    write(fullimage(L))
    write(fullimage(twosum(sum, L)))
end

# assume sorted list, only interested in zero or one solution
procedure twosum(sum, L)
    i := 1
    j := *L
    while i < j do {
        try := L[i] + L[j]
        if try = sum then return [i,j]
        else
            if try < sum then
                i +:= 1
            else
                j -:= 1
    }
    return []
end
Output:
$ unicon -s twosum.icn -x
21
[0,2,11,19,90]
[2,4]

J

So, first off, our basic approach will be to find the sums:

   =+/~0 2 11 19 90
 0  2  11  19  90
 2  4  13  21  92
11 13  22  30 101
19 21  30  38 109
90 92 101 109 180

And, check if any of them are our desired value:

   21=+/~0 2 11 19 90
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

Except, we want indices here, so let's toss the structure so we can get those:

   ,21=+/~0 2 11 19 90
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
   I.,21=+/~0 2 11 19 90
8 16

Except, we really needed that structure - in this case, since we had a five by five table, we want to interpret this result as a base five pair of numbers:

   $21=+/~0 2 11 19 90
5 5
   5 5#:I.,21=+/~0 2 11 19 90
1 3
3 1

Or, taking advantage of being able to use verbs to represent combining their results, when we use three of them:

   ($ #: I.@,)21=+/~0 2 11 19 90
1 3
3 1

But to be more like the other task implementations here, we don't want all the results, we just want zero or one result. We can't just take the first result, though, because that would fill in a 0 0 result if there were none, and 0 0 could have been a valid result which does not make sense for the failure case. So, instead, let's package things up so we can add an empty to the end and take the first of those:

   ($ <@#: I.@,)21=+/~0 2 11 19 90
┌───┬───┐
1 33 1
└───┴───┘
   a:,~($ <@#: I.@,)21=+/~0 2 11 19 90
┌───┬───┬┐
1 33 1││
└───┴───┴┘
   {.a:,~($ <@#: I.@,)21=+/~0 2 11 19 90
┌───┐
1 3
└───┘
   ;{.a:,~($ <@#: I.@,)21=+/~0 2 11 19 90
1 3

Finally, let's start pulling our arguments out using that three verbs combining form:

   ;{.a:,~($ <@#: I.@,) 21([ = +/~@])0 2 11 19 90
1 3
   ;{.a:,~21 ($ <@#: I.@,)@([ = +/~@])0 2 11 19 90
1 3

a: is not a verb, but we can use a noun as the left verb of three as an implied constant verb whose result is itself:

   ;{. 21 (a:,~ ($ <@#: I.@,)@([ = +/~@]))0 2 11 19 90
1 3

And, let's finish the job, give this a name, and test it out:

   twosum=: ;@{.@(a:,~ ($ <@#: I.@,)@([ = +/~@]))
   21 twosum 0 2 11 19 90
1 3

Except that looks like a bit of a mess. A lot of the reason for this is that ascii is ugly to look at. (Another issue, though, is that a lot of people are not used to architecting control flow as expressions.)

So... let's do this over again, using a more traditional implementation where we name intermediate results. (We're going to stick with our architecture, though, because changing the architecture to the more traditional approach would change the space/time tradeoff to require more time.)

two_sum=:dyad define
  sums=. +/~ y
  matches=.  x = sums
  sum_inds=. I. , matches
  pair_inds=. ($matches) #: sum_inds
  ; {. a: ,~ <"1 pair_inds
)

And, testing:

   21 two_sum 0 2 11 19 90
1 3

Or, we could go slightly more traditional and instead of doing that boxing at the end, use an if/else statement:

two_sum=:dyad define
  sums=. +/~ y
  matches=.  x = sums
  sum_inds=. I. , matches
  pair_inds=. ($matches) #: sum_inds
  if. #pair_inds do.
    {.pair_inds
  else.
    i.0
  end.
)

Then again, most people don't read J anyways, so maybe just stick with the earlier implementation:

twosum=: ;@{.@(a:,~ ($ <@#: I.@,)@([ = +/~@]))

Alternative approach

An alternative method for identifying and returning non-duplicate indicies of the pairs follows.

   21 (= +/~) 0 2 11 19 90
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

The array is symmetrical so we can zero one half to remove duplicate pairs and then retrieve the remaining indicies using sparse array functionality.

zeroLowerTri=: * [: </~ i.@#
getIdx=: 4 $. $.
twosum_alt=: getIdx@zeroLowerTri@(= +/~)

Testing ...

   21 twosum_alt 0 2 11 19 90
1 3

Java

Translation of: Lua
import java.util.Arrays;

public class TwoSum {

    public static void main(String[] args) {
        long sum = 21;
        int[] arr = {0, 2, 11, 19, 90};

        System.out.println(Arrays.toString(twoSum(arr, sum)));
    }

    public static int[] twoSum(int[] a, long target) {
        int i = 0, j = a.length - 1;
        while (i < j) {
            long sum = a[i] + a[j];
            if (sum == target)
                return new int[]{i, j};
            if (sum < target) i++;
            else j--;
        }
        return null;
    }
}
[1, 3]

JavaScript

ES5

Nesting concatMap yields the cartesian product of the list with itself, and functions passed to Array.map() have access to the array index in their second argument. Returning [] where the y index is lower than or equal to the x index ignores the 'lower triangle' of the cartesian grid, skipping mirror-image and duplicate number pairs. Returning [] where a sum condition is not met similarly acts as a filter – all of the empty lists in the map result are eliminated by the concat.

(function () {
    var concatMap = function (f, xs) {
        return [].concat.apply([], xs.map(f))
    };

    return function (n, xs) {
        return concatMap(function (x, ix) {
            return concatMap(function (y, iy) {
                return iy <= ix ? [] : x + y === n ? [
                    [ix, iy]
                ] : []
            }, xs)
        }, xs)
    }(21, [0, 2, 11, 19, 90]);
})();
Output:
[[1,3]]

ES6

Composing a solution from generic functions like zip, bind (>>=, or flip concatMap) etc.

Translation of: Haskell
(() => {
    'use strict';

    // SUMTWO ----------------------------------------------------------------

    // sumTwo :: Int -> [Int] -> [(Int, Int)]
    function sumTwo(n, xs) {
        const ixs = zip(enumFromTo(0, length(xs) - 1), xs);
        return bind(ixs,
            ([i, x]) => bind(drop(i + 1, ixs),
                ([j, y]) => (x + y === n) ? [
                    [i, j]
                ] : []
            )
        );
    };

    // GENERIC FUNCTIONS -----------------------------------------------------

    // bind (>>=) :: [a] -> (a -> [b]) -> [b]
    const bind = (xs, f) => [].concat.apply([], xs.map(f));

    // drop :: Int -> [a] -> [a]
    const drop = (n, xs) => xs.slice(n);

    // enumFromTo :: Int -> Int -> [Int]
    const enumFromTo = (m, n) =>
        Array.from({
            length: Math.floor(n - m) + 1
        }, (_, i) => m + i);

    // length :: [a] -> Int
    const length = xs => xs.length;

    // show :: a -> String
    const show = (...x) =>
        JSON.stringify.apply(
            null, x.length > 1 ? [x[0], null, x[1]] : x
        );

    // zip :: [a] -> [b] -> [(a,b)]
    const zip = (xs, ys) =>
        xs.slice(0, Math.min(xs.length, ys.length))
        .map((x, i) => [x, ys[i]]);


    // TEST ------------------------------------------------------------------
    return show(
        sumTwo(21, [0, 2, 11, 19, 90, 10])
    );
})();
Output:
[[1,3],[2,5]]

Jsish

Based on Javascript entry.

/* Two Sum, in Jsish */
function twoSum(target, list) {
    var concatMap = function (f, xs) {
        return [].concat.apply([], xs.map(f));
    };

    return function (n, xs) {
        return concatMap(function (x, ix) {
            return concatMap(function (y, iy) {
                return iy <= ix ? [] : x + y === n ? [
                    [ix, iy]
                ] : [];
            }, xs);
        }, xs);
    }(target, list);
}

var list = [0, 2, 11, 19, 90];
;list;
;twoSum(21, list);
;list[twoSum(21, list)[0][0]];
;list[twoSum(21, list)[0][1]];
Output:
prompt$ jsish --U twoSum.jsi
list ==> [ 0, 2, 11, 19, 90 ]
twoSum(21, list) ==> [ [ 1, 3 ] ]
list[twoSum(21, list)[0][0]] ==> 2
list[twoSum(21, list)[0][1]] ==> 19

jq

Works with: jq

Works with gojq, the Go implementation of jq.

Translation of: Julia
def twosum($s):
  . as $v
  | {i: 0, j: ($v|length - 1) }
  | until( .i >= .j  or  $v[.i] + $v[.j] == $s;
      if $v[.i] + $v[.j] < $s then .i += 1
      else .j -= 1
      end)
  | if .i >= .j then [] else [.[]] end ;  # as required

[0, 2, 11, 19, 90]
| (twosum(21), twosum(25))
Output:
[1,3]
[]

Julia

Works with: Julia version 0.6
Translation of: Python
function twosum(v::Vector, s)
    i = 1
    j = length(v)
    while i < j
        if v[i] + v[j] == s
            return [i, j]
        elseif v[i] + v[j] < s
            i += 1
        else
            j -= 1
        end
    end
    return similar(v, 0)
end

@show twosum([0, 2, 11, 19, 90], 21)
Output:
twosum([0, 2, 11, 19, 90], 21) = [2, 4]

Kotlin

// version 1.1

fun twoSum(a: IntArray, targetSum: Int): Pair<Int, Int>? {
    if (a.size < 2) return null
    var sum: Int
    for (i in 0..a.size - 2) {
        if (a[i] <= targetSum) {
            for (j in i + 1..a.size - 1) {
                sum = a[i] + a[j]
                if (sum == targetSum) return Pair(i, j)
                if (sum > targetSum) break
            }
        } else {
            break
        }
    }
    return null
}

fun main(args: Array<String>) {
    val a = intArrayOf(0, 2, 11, 19, 90)
    val targetSum = 21
    val p = twoSum(a, targetSum)
    if (p == null) {
        println("No two numbers were found whose sum is $targetSum")
    } else {
        println("The numbers with indices ${p.first} and ${p.second} sum to $targetSum")
    }
}
Output:
The numbers with indices 1 and 3 sum to 21

Liberty BASIC

myArray(0) = 0
myArray(1) = 2
myArray(2) = 11
myArray(3) = 19
myArray(4) = 90

sum = 21

Print twoToSum$("myArray", sum, 0, 4)
End

Function twoToSum$(arrayName$, targetSum, minElement, maxElement)
    i = minElement : j = maxElement
    While (i < j)
        Select Case
            Case (Eval(arrayName$;"(";i;")") + Eval(arrayName$;"(";j;")")) < targetSum
                i = (i + 1)
            Case (Eval(arrayName$;"(";i;")") + Eval(arrayName$;"(";j;")")) > targetSum
                j = (j - 1)
            Case Else
                twoToSum$ = "[";i;",";j;"]"
                Exit Function
        End Select
    Wend
        twoToSum$ = "[]"
End Function
Output:
[1,3]

Lua

Lua uses one-based indexing.

function twoSum (numbers, sum)
    local i, j, s = 1, #numbers
    while i < j do
        s = numbers[i] + numbers[j]
        if s == sum then
            return {i, j}
        elseif s < sum then
            i = i + 1
        else
            j = j - 1
        end
    end
    return {}
end

print(table.concat(twoSum({0,2,11,19,90}, 21), ","))
Output:
2,4

Maple

two_sum := proc(arr, sum)
	local i,j,temp:
	i,j := 1,numelems(arr):
	while (i < j) do
		temp := arr[i] + arr[j]:
		if temp = sum then
			return [i,j]:
		elif temp < sum then
			i := i + 1:
		else
			j := j-1:
		end if:
	end do:
	return []:
end proc:
L := Array([0,2,2,11,19,19,90]);
two_sum(L, 21);
Output:

Note that Maple does 1 based indexing.

[2,5]

Mathematica / Wolfram Language

twoSum[data_List, sum_] :=
 Block[{indices = Subsets[Range@Length@data, {2}]},
  Cases[indices, _?(Total@data[[#]] == sum &)]]

twoSum[{0, 2, 11, 19, 90}, 21] // TableForm
Output:

2 4 Note, indexing in Mathematica starts at 1

MiniScript

twoSum = function(numbers, sum)
    // Make a map of values to their indices in the numbers array
    // as we go, so we will know when we've found a match.
    map = {}
    for i in numbers.indexes
        key = sum - numbers[i]
        if map.hasIndex(key) then return [map[key], i]
        map[numbers[i]] = i
    end for
end function

print twoSum([0, 2, 11, 19, 90], 21)

Output:

[1, 3]

Modula-2

MODULE TwoSum;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,ReadChar;

TYPE
    Pair = RECORD
        f,s : INTEGER;
    END;

PROCEDURE TwoSum(CONST arr : ARRAY OF INTEGER; CONST sum : INTEGER) : Pair;
VAR i,j,temp : INTEGER;
BEGIN
    i := 0;
    j := HIGH(arr)-1;

    WHILE i<=j DO
        temp := arr[i] + arr[j];
        IF temp=sum THEN
            RETURN Pair{i,j};
        END;
        IF temp<sum THEN
            INC(i);
        ELSE
            DEC(j);
        END;
    END;

    RETURN Pair{-1,-1};
END TwoSum;

VAR
    buf : ARRAY[0..63] OF CHAR;
    arr : ARRAY[0..4] OF INTEGER;
    res : Pair;
BEGIN
    arr[0]:=0;
    arr[1]:=2;
    arr[2]:=11;
    arr[3]:=19;
    arr[4]:=90;

    res := TwoSum(arr, 21);
    FormatString("[%i, %i]\n", buf, res.f, res.s);
    WriteString(buf);
    ReadChar;
END TwoSum.

Nim

proc twoSum(src: openarray[int], target: int): array[2, int] =
  if src.len < 2: 
    return

  for base in 0 .. (src.len - 2):
    for ext in (base + 1) ..< src.len:
      if src[base] + src[ext] == target:
        result[0] = base
        result[1] = ext


proc main =
  var data0 = [0, 2, 11, 19, 90]
  var res = twoSum(data0, 21)
  assert(res == [1, 3])

  var data1 = [0, 2, 11, 19, 90]
  res = twoSum(data1, 22)
  assert(res == [0, 0])

  var data2 = [1]
  res = twoSum(data2, 22)
  assert(res == [0, 0])

  var data3 = [1, 99]
  res = twoSum(data3, 100)
  assert(res == [0, 1])

  var data4 = [1, 99]
  res = twoSum(data4, 101)
  assert(res == [0, 0])


main()

Objeck

Translation of: Java
class TwoSum {
  function : Main(args : String[]) ~ Nil {
    sum := 21;
    arr := [0, 2, 11, 19, 90];
    Print(TwoSum(arr, sum));
  }

  function : TwoSum(a : Int[], target : Int) ~ Int[] {
    i := 0;
    j := a->Size() - 1;

    while (i < j) {
      sum := a[i] + a[j];
      if(sum = target) {
        r := Int->New[2];
        r[0] := i;
        r[1] := j;
        return r;
      };

      if (sum < target) {
        i++;
      }
      else {
        j--;
      };
    };
    
    return Nil;
  }

  function : Print(r : Int[]) ~ Nil {
    '['->Print();
    each(i : r) {
      r[i]->Print();
      if(i + 1 < r->Size()) {
        ','->Print();
      };
    };
    ']'->PrintLine();
  }
}

Output:

[1,3]

OCaml

Translation of: C
let get_sums ~numbers ~sum =
  let n = Array.length numbers in
  let res = ref [] in
  for i = 0 to n - 2 do
    for j = i + 1 to n - 1 do
      if numbers.(i) + numbers.(j) = sum then
        res := (i, j) :: !res
    done
  done;
  !res


let () =
  let numbers = [| 0; 2; 11; 19; 90 |]
  and sum = 21
  in
  let res = get_sums ~numbers ~sum in

  List.iter (fun (i, j) ->
    Printf.printf "# Found: %d %d\n" i j
  ) res

Will return all possible sums, not just the first one found.

Output:
$ ocaml two_sum.ml
# Found: 1 3

ooRexx

a=.array~of( -5, 26, 0, 2, 11, 19, 90)
x=21
n=0
do i=1 To a~items
  Do j=i+1 To a~items
    If a[i]+a[j]=x Then Do
      Say '['||i-1||','||j-1||']'
      n=n+1
      End
    End
  End
If n=0 Then
  Say '[] - no items found'
Output:
[0,1]
[3,5]

Pascal

A little bit lengthy. Implemented an unsorted Version with quadratic runtime too and an extra test case with 83667 elements that needs 83667*86666/2 ~ 3.5 billion checks ( ~1 cpu-cycles/check, only if data in cache ).

program twosum;
{$IFDEF FPC}{$MODE DELPHI}{$ELSE}{$APPTYPE CONSOLE}{$ENDIF}
uses
  sysutils;
type
  tSolRec = record
              SolRecI,
              SolRecJ : NativeInt;
            end;  
  tMyArray = array of NativeInt;
const
// just a gag using unusual index limits
  ConstArray :array[-17..-13] of NativeInt = (0, 2, 11, 19, 90);

function Check2SumUnSorted(const A  :tMyArray;
                                 sum:NativeInt;
                           var   Sol:tSolRec):boolean;
//Check every possible sum A[max] + A[max-1..0]
//than A[max-1] + A[max-2..0] etc pp.
//quadratic runtime: maximal  (max-1)*max/ 2 checks
//High(A) always checked for dynamic array, even const 
//therefore run High(A) to low(A), which is always 0 for dynamic array
label
  SolFound;
var
  i,j,tmpSum: NativeInt;
Begin
  Sol.SolRecI:=0;
  Sol.SolRecJ:=0;
  i := High(A);
  while i > low(A) do
  Begin
    tmpSum := sum-A[i]; 
    j := i-1;
    while j >= low(A) do
    begin
      //Goto is bad, but fast...
      if tmpSum = a[j] Then  
        GOTO SolFound;
      dec(j);
    end;  
    dec(i);
  end;
  result := false;
  exit;
SolFound:
  Sol.SolRecI:=j;Sol.SolRecJ:=i;
  result := true;      
end;
  
function Check2SumSorted(const  A  :tMyArray;
                                sum:NativeInt;
                         var    Sol:tSolRec):boolean;
var
  i,j,tmpSum: NativeInt;
Begin
  Sol.SolRecI:=0;
  Sol.SolRecJ:=0;
  i := low(A);
  j := High(A);
  while(i < j) do
  Begin
    tmpSum := a[i] + a[j];
    if tmpSum = sum then  
    Begin
      Sol.SolRecI:=i;Sol.SolRecJ:=j;
      result := true;      
      EXIT;
    end;   
    if tmpSum < sum then 
    begin
      inc(i);
      continue;
    end;
    //if tmpSum > sum then     
    dec(j);
  end;
  writeln(i:10,j:10);  
  result := false;
end;

var
  Sol :tSolRec;
  CheckArr : tMyArray;
  MySum,i : NativeInt;
  
Begin
  randomize;
  setlength(CheckArr,High(ConstArray)-Low(ConstArray)+1);
  For i := High(CheckArr) downto low(CheckArr) do
    CheckArr[i] := ConstArray[i+low(ConstArray)];  

  MySum  := 21;  
  IF Check2SumSorted(CheckArr,MySum,Sol) then
    writeln('[',Sol.SolRecI,',',Sol.SolRecJ,'] sum to ',MySum)
  else
    writeln('No solution found'); 
     
  //now test a bigger sorted array..
  setlength(CheckArr,83667);
  For i := High(CheckArr) downto 0 do
    CheckArr[i] := i;  
  MySum := CheckArr[Low(CheckArr)]+CheckArr[Low(CheckArr)+1];
  writeln(#13#10,'Now checking array of ',length(CheckArr),
          ' elements',#13#10);
  //runtime about 1 second
  IF Check2SumUnSorted(CheckArr,MySum,Sol) then
    writeln('[',Sol.SolRecI,',',Sol.SolRecJ,'] sum to ',MySum)
  else
    writeln('No solution found');  
  //runtime not measurable
  IF Check2SumSorted(CheckArr,MySum,Sol) then
    writeln('[',Sol.SolRecI,',',Sol.SolRecJ,'] sum to ',MySum)
  else
    writeln('No solution found');    
end.
Output:
[1,3] sum to 21

Now checking array of 83667 elements

[0,1] sum to 1
[0,1] sum to 1

real    0m1.013s

Perl

Translation of: Python
use strict;
use warnings;
use feature 'say';

sub two_sum{
  my($sum,@numbers) = @_;
  my $i = 0;
  my $j = $#numbers - 1;
  my @indices;
  while ($i < $j) {
    if    ($numbers[$i] + $numbers[$j] == $sum) { push @indices, ($i, $j); $i++; }
    elsif ($numbers[$i] + $numbers[$j]  < $sum) { $i++ }
    else                                        { $j-- }
  }
  return @indices
}

my @numbers = <0 2 11 19 90>;
my @indices = two_sum(21, @numbers);
say join(', ', @indices) || 'No match';

@indices = two_sum(25, @numbers);
say join(', ', @indices) || 'No match';
Output:
1, 3
No match

Phix

function twosum(sequence s, integer t)
    for i=1 to length(s) do
        for j=i+1 to length(s) do
            if s[i]+s[j]=t then
                return {i,j}
            end if
        end for
    end for
    return {}
end function
?twosum({0, 2, 11, 19, 90},21)
Translation of: Raku
function twosum(sequence numbers, integer total)
integer i=1, j=length(numbers)
    while i<j do
        switch compare(numbers[i]+numbers[j],total) do
            case -1: i += 1
            case  0: return {i, j}
            case +1: j -= 1
        end switch
    end while
    return {}
end function
Output:

Phix uses 1-based indexes

{2,4}

Phixmonti

include ..\Utilitys.pmt

def two_sum /# arr num -- n #/
    var num
    1 var i
    len var j
    true
    while
        i get swap j get rot + >ps
        tps num == if
            ps> drop j get swap i get rot 2 tolist false
        else
            ps> num < if i 1 + var i else j 1 - var j endif true
        endif 
        i j < and
    endwhile
    len 2 > if drop ( ) endif
enddef

( 0 2 11 19 90 )
21 two_sum ?
25 two_sum ?
Output:
[2, 19]
[]

=== Press any key to exit ===

PicoLisp

(de twosum (Lst N)
   (for  ((I . A) Lst  A  (cdr A))
      (T
         (for ((J . B) (cdr Lst)  B  (cdr B))
            (T (= N (+ (car A) (car B)))
               (cons I (inc J)) ) )
         @ ) ) )
(println
   (twosum (0 2 11 19 90) 21)
   (twosum (-3 -2 0 1 5 8 11) 17)
   (twosum (-8 -2 -1 1 5 9 11) 0) )
Output:
(2 . 4) NIL (3 . 4)

PowerShell

Lazy, very lazy.

$numbers = @(0, 2, 11, 19, 90)
$sum = 21

$totals = for ($i = 0; $i -lt $numbers.Count; $i++)
{ 
    for ($j = $numbers.Count-1; $j -ge 0; $j--)
    { 
        [PSCustomObject]@{
            FirstIndex  = $i
            SecondIndex = $j
            TargetSum   = $numbers[$i] + $numbers[$j]
        }
    }
}

$totals | Where-Object TargetSum -EQ $sum |
          Select-Object -First 1 `
                        -Property @{
                                        Name       = "Sum"
                                        Expression = { $_.TargetSum }
                                  },
                                  @{
                                        Name       = "Indices"
                                        Expression = { @($_.FirstIndex, $_.SecondIndex) }
                                  }
Output:
Sum Indices
--- -------
 21 {1, 3} 

Python

Translation of: Raku
def two_sum(arr, num):
    i = 0
    j = len(arr) - 1
    while i < j:
        if arr[i] + arr[j] == num:
            return (i, j)
        if arr[i] + arr[j] < num:
            i += 1
        else:
            j -= 1
    return None


numbers = [0, 2, 11, 19, 90]
print(two_sum(numbers, 21))
print(two_sum(numbers, 25))

or, in terms of itertools.product:

Works with: Python version 3.7
'''Finding two integers that sum to a target value.'''

from itertools import (product)


# sumTwo :: [Int] -> Int -> [(Int, Int)]
def sumTwo(xs):
    '''All the pairs of integers in xs which
       sum to n.
    '''
    def go(n):
        ixs = list(enumerate(xs))
        return [
            (fst(x), fst(y)) for (x, y) in (
                product(ixs, ixs[1:])
            ) if fst(x) < fst(y) and n == snd(x) + snd(y)
        ]
    return lambda n: go(n)


# TEST ----------------------------------------------------

# main :: IO ()
def main():
    '''Tests'''

    xs = [0, 2, 11, 19, 90, 10]

    print(
        fTable(
            'The indices of any two integers drawn from ' + repr(xs) +
            '\nthat sum to a given value:\n'
        )(str)(
            lambda x: str(x) + ' = ' + ', '.join(
                ['(' + str(xs[a]) + ' + ' + str(xs[b]) + ')' for a, b in x]
            ) if x else '(none)'
        )(
            sumTwo(xs)
        )(enumFromTo(10)(25))
    )


# GENERIC -------------------------------------------------

# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
    '''Integer enumeration from m to n.'''
    return lambda n: list(range(m, 1 + n))


# fst :: (a, b) -> a
def fst(tpl):
    '''First member of a pair.'''
    return tpl[0]


# snd :: (a, b) -> b
def snd(tpl):
    '''Second member of a pair.'''
    return tpl[1]


# DISPLAY -------------------------------------------------

# fTable :: String -> (a -> String) ->
#                     (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
    '''Heading -> x display function -> fx display function ->
                     f -> xs -> tabular string.
    '''
    def go(xShow, fxShow, f, xs):
        ys = [xShow(x) for x in xs]
        w = max(map(len, ys))
        return s + '\n' + '\n'.join(map(
            lambda x, y: y.rjust(w, ' ') + ' -> ' + fxShow(f(x)),
            xs, ys
        ))
    return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
        xShow, fxShow, f, xs
    )


# MAIN ---
if __name__ == '__main__':
    main()
Output:
The indices of any two integers drawn from [0, 2, 11, 19, 90, 10]
that sum to a given value:

10 -> [(0, 5)] = (0 + 10)
11 -> [(0, 2)] = (0 + 11)
12 -> [(1, 5)] = (2 + 10)
13 -> [(1, 2)] = (2 + 11)
14 -> (none)
15 -> (none)
16 -> (none)
17 -> (none)
18 -> (none)
19 -> [(0, 3)] = (0 + 19)
20 -> (none)
21 -> [(1, 3), (2, 5)] = (2 + 19), (11 + 10)
22 -> (none)
23 -> (none)
24 -> (none)
25 -> (none)


or, a little more parsimoniously (not generating the entire cartesian product), in terms of concatMap:

Works with: Python version 3.7
'''Finding two integers that sum to a target value.'''

from itertools import chain


# sumTwo :: Int -> [Int] -> [(Int, Int)]
def sumTwo(n, xs):
    '''All the pairs of integers in xs which
       sum to n.
    '''
    def go(vs):
        return [vs[0]] if n == sum(vs[1]) else []
    ixs = list(enumerate(xs))
    return list(
        bind(ixs)(
            lambda ix: bind(ixs[ix[0]:])(
                lambda jy: go(tuple(zip(*(ix, jy))))
            )
        )
    )


# TEST ----------------------------------------------------

# main :: IO ()
def main():
    '''Tests'''

    for n in [21, 25]:
        print(
            sumTwo(n, [0, 2, 11, 19, 90, 10])
        )


# GENERIC -------------------------------------------------

# bind (>>=) :: [a] -> (a -> [b]) -> [b]
def bind(xs):
    '''List monad injection operator.
       Two computations sequentially composed,
       with any value produced by the first
       passed as an argument to the second.
    '''
    return lambda f: list(
        chain.from_iterable(
            map(f, xs)
        )
    )


if __name__ == '__main__':
    main()
Output:
[(1, 3), (2, 5)]
[]

Quackery

So… I initially misread the task as "return the two integers" and then realised it was "…the indices of…", but that's OK — it just meant writing an extra word to find the indices, given the numbers.

The last three lines of task are in case the two integers found by twosum are equal - in which case, as find finds the first instance in the array and the array is sorted, we can safely take the index plus one as the second index.

  [ 0 peek ]                    is first  (   [ --> n )

  [ -1 peek ]                   is last   (   [ --> n )

  [ 1 split nip ]               is top    (   [ --> [ )

  [ -1 split drop ]             is tail   (   [ --> [ )

  [ temp put
    [ dup size 2 < iff
        [ drop [] ] done 
      dup first over last +
      temp share - 
      dup 0 = iff
        [ drop dup first
          swap last join ] done
      0 < iff top else tail
      again ]
    temp release ]              is twosum ( [ n --> [ )

  [ over temp put
    twosum 
    [] swap
    witheach
      [ temp share find join ]
    temp release 
    dup [] != if
      [ dup unpack = if 
        [ behead 1+ join ] ] ]  is task   ( [ n --> [ )

  ' [ 0 2 11 19 20 ] 21 task echo cr
  ' [ 0 2 11 19 20 ] 25 task echo cr
  ' [ 0 2 12 12 20 ] 24 task echo cr
Output:
[ 1 3 ]
[ ]
[ 2 3 ]

R

numbers<- c(0,2,11,19,28,90)

two_sum<- function(numbers,s){
  all_sums <- outer(numbers,numbers,"+")==s
  all_sums[lower.tri(all_sums)] <- NA
  which(all_sums,arr.ind = T) #first index is in the "row" column, and second index is in the "col" column
}

#In R, index begins from 0
print(two_sum(numbers,21)) #should return 2 4
cat("\n")
print(two_sum(numbers,24)) #should return nothing
cat("\n")
print(two_sum(numbers,30)) #should return 3 4 and 2 5

Output

     row col
[1,]   2   4

     row col

     row col
[1,]   3   4
[2,]   2   5


Racket

#lang racket/base
(define (two-sum v m)
  (let inr ((l 0) (r (sub1 (vector-length v))))
    (and
     (not (= l r))
     (let ((s (+ (vector-ref v l) (vector-ref v r))))
       (cond [(= s m) (list l r)] [(> s m) (inr l (sub1 r))] [else (inr (add1 l) r)])))))

(module+ test
  (require rackunit)
  ;; test cases
  ;; no output indicates returns are as expected
  (check-equal? (two-sum #( 0  2 11 19 90)      21) '(1 3))
  (check-equal? (two-sum #(-8 -2  0  1  5 8 11)  3) '(0 6))
  (check-equal? (two-sum #(-3 -2  0  1  5 8 11) 17) #f)
  (check-equal? (two-sum #(-8 -2 -1  1  5 9 11)  0) '(2 3)))

Raku

(formerly Perl 6)

Procedural

Translation of: zkl
sub two_sum ( @numbers, $sum ) {
    die '@numbers is not sorted' unless [<=] @numbers;

    my ( $i, $j ) = 0, @numbers.end;
    while $i < $j {
        given $sum <=> @numbers[$i,$j].sum {
            when Order::More { $i += 1 }
            when Order::Less { $j -= 1 }
            when Order::Same { return $i, $j }
        }
    }
    return;
}

say two_sum ( 0, 2, 11, 19, 90 ), 21;
say two_sum ( 0, 2, 11, 19, 90 ), 25;
Output:
(1 3)
Nil

Functional

The two versions differ only in how one 'reads' the notional flow of processing: left-to-right versus right-to-left. Both return all pairs that sum to the target value, not just the first (e.g. for input of 0 2 10 11 19 90 would get indices 1/4 and 2/3).

sub two-sum-lr (@a, $sum) {
  # (((^@a X ^@a) Z=> (@a X+ @a)).grep($sum == *.value)>>.keys.map:{ .split(' ').sort.join(' ')}).unique
    (
     (
      (^@a X ^@a) Z=> (@a X+ @a)
     ).grep($sum == *.value)>>.keys
     .map:{ .split(' ').sort.join(' ')}
    ).unique
}

sub two-sum-rl (@a, $sum) {
  # unique map {.split(' ').sort.join(' ')}, keys %(grep {.value == $sum}, ((^@a X ^@a) Z=> (@a X+ @a)))
    unique
    map {.split(' ').sort.join(' ')},
    keys %(
     grep {.value == $sum}, (
      (^@a X ^@a) Z=> (@a X+ @a)
     )
    )
}

my @a = <0 2 11 19 90>;
for 21, 25 {
    say two-sum-rl(@a, $_);
    say two-sum-lr(@a, $_);
}
Output:
(1 3)
(1 3)
()
()

REXX

version 1

/* REXX */
list='-5 26 0 2 11 19 90'
Do i=0 By 1 Until list=''
  Parse Var list a.i list
  End
n=i
x=21
z=0
do i=0 To n
  Do j=i+1 To n
    s=a.i+a.j
    If s=x Then Do
      z=z+1
      Say '['i','j']' a.i a.j s
      End
    End
  End
If z=0 Then
  Say '[] - no items found'
Else
  Say z 'solutions found'
Output:
[0,1] -5 26 21
[3,5] 2 19 21
2 solutions found

version 2

All solutions are listed (if any),   along with a count of the number of solutions.

Also, it's mentioned that the indices are zero─based,   and formatted solutions are shown.

The list of numbers can be in any format,   not just integers.   Also, they need not be unique.

The list of integers   needn't   be sorted.

A   numeric digits 500   statement was added just in case some humongous numbers were entered.

No verification was performed to ensure that all items in the list were numeric.

A little extra code was added to have the output columns aligned.

/*REXX program finds two numbers in a list of numbers that  sum  to a particular target.*/
numeric digits 500                               /*be able to handle some larger numbers*/
parse arg targ list                              /*obtain optional arguments from the CL*/
if targ='' | targ=","  then targ= 21             /*Not specified?  Then use the defaults*/
if list='' | list=","  then list= 0 2 11 19 90   /* "      "         "   "   "     "    */
say 'the list:       '   list                    /*echo the     list     to the terminal*/
say 'the target sum: '   targ                    /*  "   "   target sum   "  "     "    */
w= 0;                    sol= 0                  /*width;  # of solutions found (so far)*/
      do #=0  for words(list); _=word(list, #+1) /*examine the list, construct an array.*/
      @.#= _;            w= max(w, length(_) )   /*assign a number to an indexed array. */
      end  /*#*/                                 /*W:  the maximum width of any number. */
L= length(#)                                     /*L:   "     "      "    "  "  index.  */
@solution= 'a solution:  zero─based indices   '  /*a SAY literal for space conservation.*/
say                                              /* [↓] look for sum of 2 numbers=target*/
      do    a=0    for #                         /*scan up to the last number in array. */
         do b=a+1  to  #-1;  if @.a + @.b\=targ  then iterate   /*Sum not correct? Skip.*/
         sol= sol + 1                            /*bump count of the number of solutions*/
         say @solution       center( "["right(a, L)','       right(b, L)"]",     L+L+5) ,
             right(@.a, w*4)     " + "       right(@.b, w)       ' = '           targ
         end   /*b*/                             /*show the 2 indices and the summation.*/
      end      /*a*/
say
if sol==0  then sol= 'None'                      /*prettify the number of solutions if 0*/
say 'number of solutions found: '   sol          /*stick a fork in it,  we're all done. */
output   when using the default inputs:
the list:        0 2 11 19 90
the target sum:  21

a solution:  zero─based indices    [1, 3]         2  +  19  =  21

number of solutions found:  1
output   when using the input of:     21     -78 -5 1 0 -1 -4 11 14 23.5 5 +3 2. 18 -2.50 +2 16 19 018 23 24 25 26 199 2 3 17 +18 19 03 3 .18e2
the list:        -78 -5 1 0 -1 -4 11 14 23.5 5 +3 2. 18 -2.50 +2 16 19 018 23 24 25 26 199 2 3 17 +18 19 03 3 .18e2
the target sum:  21

a solution:  zero─based indices    [ 1, 21]                    -5  +     26  =  21
a solution:  zero─based indices    [ 5, 20]                    -4  +     25  =  21
a solution:  zero─based indices    [ 8, 13]                  23.5  +  -2.50  =  21
a solution:  zero─based indices    [ 9, 15]                     5  +     16  =  21
a solution:  zero─based indices    [10, 12]                    +3  +     18  =  21
a solution:  zero─based indices    [10, 17]                    +3  +    018  =  21
a solution:  zero─based indices    [10, 26]                    +3  +    +18  =  21
a solution:  zero─based indices    [10, 30]                    +3  +  .18e2  =  21
a solution:  zero─based indices    [11, 16]                    2.  +     19  =  21
a solution:  zero─based indices    [11, 27]                    2.  +     19  =  21
a solution:  zero─based indices    [12, 24]                    18  +      3  =  21
a solution:  zero─based indices    [12, 28]                    18  +     03  =  21
a solution:  zero─based indices    [12, 29]                    18  +      3  =  21
a solution:  zero─based indices    [14, 16]                    +2  +     19  =  21
a solution:  zero─based indices    [14, 27]                    +2  +     19  =  21
a solution:  zero─based indices    [16, 23]                    19  +      2  =  21
a solution:  zero─based indices    [17, 24]                   018  +      3  =  21
a solution:  zero─based indices    [17, 28]                   018  +     03  =  21
a solution:  zero─based indices    [17, 29]                   018  +      3  =  21
a solution:  zero─based indices    [23, 27]                     2  +     19  =  21
a solution:  zero─based indices    [24, 26]                     3  +    +18  =  21
a solution:  zero─based indices    [24, 30]                     3  +  .18e2  =  21
a solution:  zero─based indices    [26, 28]                   +18  +     03  =  21
a solution:  zero─based indices    [26, 29]                   +18  +      3  =  21
a solution:  zero─based indices    [28, 30]                    03  +  .18e2  =  21
a solution:  zero─based indices    [29, 30]                     3  +  .18e2  =  21

number of solutions found:  26

Ring

# Project : Two Sum

numbers = [0, 2, 11, 19, 90]
sum = 21

see "order list: "          
for n=1 to len(numbers)
    see " " + numbers[n] 
next
see " (using a zero index.)" + nl
for n=1 to len(numbers)
    for m=n to len(numbers)
        if numbers[n] + numbers[m] = sum
           see "target sum:  " + sum + nl
           see "a solution: ["
           see  "" + (n-1) + " " + (m-1) + "]" + nl
        ok
    next
next

Output:

order list:  0 2 11 19 90 (using a zero index.)
target sum:  21
a solution: [1 3]

RPL

≪ → array sum 
  ≪ { } 
     1 array SIZE FOR j 
        array j 0 PUT 
        sum array j GET - 
        IF POS THEN 
          j LAST 
          IF DUP2 > THEN SWAP END 
          R→C 
          IF DUP2 POS THEN DROP ELSE + END 
     END NEXT 
≫ ≫ ‘TWOSUM’ STO 
{0 2 11 19 90} 21 TWOSUM
{0 2 11 19 90} 22 TWOSUM
{0 2 3 3 4 11 17 17 18 19 90} 21 TWOSUM
Output:
3: { (2,4) }
2: { }
1: { (2,10) (3,9) (4,9) (5,7) (5,8) }

Ruby

def two_sum(numbers, sum)
  numbers.each_with_index do |x,i|
    if j = numbers.index(sum - x) then return [i,j] end
  end
  []
end

numbers = [0, 2, 11, 19, 90]
p two_sum(numbers, 21)
p two_sum(numbers, 25)
Output:
[1, 3]
[]

When the size of the Array is bigger, the following is more suitable.

def two_sum(numbers, sum)
  numbers.each_with_index do |x,i|
    key = sum - x
    if j = numbers.bsearch_index{|y| key<=>y}
      return [i,j]
    end
  end
  []
end

Rust

use std::cmp::Ordering;
use std::ops::Add;

fn two_sum<T>(arr: &[T], sum: T) -> Option<(usize, usize)>
where
    T: Add<Output = T> + Ord + Copy,
{
    if arr.len() == 0 {
        return None;
    }

    let mut i = 0;
    let mut j = arr.len() - 1;

    while i < j {
        match (arr[i] + arr[j]).cmp(&sum) {
            Ordering::Equal => return Some((i, j)),
            Ordering::Less => i += 1,
            Ordering::Greater => j -= 1,
        }
    }

    None
}

fn main() {
    let arr = [0, 2, 11, 19, 90];
    let sum = 21;

    println!("{:?}", two_sum(&arr, sum));
}
Output:
Some((1, 3))

Scala

import java.util

object TwoSum extends App {
  val (sum, arr)= (21, Array(0, 2, 11, 19, 90))
  println(util.Arrays.toString(twoSum(arr, sum)))

  private def twoSum(a: Array[Int], target: Long): Array[Int] = {
    var (i, j) = (0, a.length - 1)
    while (i < j) {
      val sum = a(i) + a(j)
      if (sum == target) return Array[Int](i, j)
      if (sum < target) i += 1 else j -= 1
    }
    null
  }

}
Output:

See it running in your browser by ScalaFiddle (JavaScript, non JVM) or by Scastie (JVM).

Sidef

Translation of: Raku
func two_sum(numbers, sum) {
    var (i, j) = (0, numbers.end)
    while (i < j) {
        given (sum <=> numbers[i]+numbers[j]) {
            when (-1) { --j }
            when (+1) { ++i }
            default { return [i, j] }
        }
    }
    return []
}

say two_sum([0, 2, 11, 19, 90], 21)
say two_sum([0, 2, 11, 19, 90], 25)
Output:
[1, 3]
[]

Stata

Notice that array indexes start at 1 in Stata.

function find(a, x) {
	i = 1
	j = length(a)
	while (i<j) {
		s = a[i]+a[j]
		if (s<x) i++
		else if (s>x) j--
		else return((i,j))
	}
}

find((0,2,11,19,90),21)
       1   2
    +---------+
  1 |  2   4  |
    +---------+

Uiua

Works by using ⊞f. to form a cross product (similar to APL's ∘.f⍨). The resulting additions are multiplied with a mask of the upper right half (⊞>.⇡⧻) to remove extraneous answers.

f ← ⊚=×⊞>.⇡⧻.⊞+.
f 0_2_11_19_90 21
Output:
╭─
╷ 1 3
      ╯

Vala

void main() {
  int arr[] = { 0, 2, 11, 19, 90 }, sum = 21, i, j, check = 0;
  
  for (i = 0; i < 4; i++) { 
    for ( j = i+1; j < 5; j++) { 
      if (arr[i] + arr[j] == sum) { 
        print("[%d,%d]",i,j); 
        check = 1;
        break; 
      }
    }
  }
  if (check == 0) 
    print("[]");
}
Output:
[1,3]

VBA

Option Explicit
Function two_sum(a As Variant, t As Integer) As Variant
    Dim i, j As Integer
    i = 0
    j = UBound(a)
    Do While (i < j)
        If (a(i) + a(j) = t) Then
            two_sum = Array(i, j)
            Exit Function
        ElseIf (a(i) + a(j) < t) Then i = i + 1
        ElseIf (a(i) + a(j) > t) Then j = j - 1
        End If
    Loop
    two_sum = Array()
End Function
Sub prnt(a As Variant)
    If UBound(a) = 1 Then
        Selection.TypeText Text:="(" & a(0) & ", " & a(1) & ")" & vbCrLf
    Else
        Selection.TypeText Text:="()" & vbCrLf
    End If
End Sub
Sub main()
    Call prnt(two_sum(Array(0, 2, 11, 19, 90), 21))
    Call prnt(two_sum(Array(-8, -2, 0, 1, 5, 8, 11), 3))
    Call prnt(two_sum(Array(-3, -2, 0, 1, 5, 8, 11), 17))
    Call prnt(two_sum(Array(-8, -2, -1, 1, 5, 9, 11), 0))
End Sub
Output:
(1, 3)
(0, 6)
()
(2, 3)

Visual Basic .NET

Translation of: C#
Module Module1

    Function TwoSum(numbers As Integer(), sum As Integer) As Integer()
        Dim map As New Dictionary(Of Integer, Integer)
        For index = 1 To numbers.Length
            Dim i = index - 1
            ' see if the complement is stored
            Dim key = sum - numbers(i)
            If map.ContainsKey(key) Then
                Return {map(key), i}
            End If
            map.Add(numbers(i), i)
        Next
        Return Nothing
    End Function

    Sub Main()
        Dim arr = {0, 2, 1, 19, 90}
        Const sum = 21

        Dim ts = TwoSum(arr, sum)
        Console.WriteLine(If(IsNothing(ts), "no result", $"{ts(0)}, {ts(1)}"))
    End Sub

End Module
Output:
1, 3

V (Vlang)

Translation of: Go
fn two_sum(a []int, target_sum int) (int, int, bool) {
    len := a.len
    if len < 2 {return 0, 0, false}
    for i in 0..len - 1 {
        if a[i] <= target_sum {
            for j in i + 1..len {
                sum := a[i] + a[j]
                if sum == target_sum {return i, j, true}
                if sum > target_sum {break}
            }
        } 
		else {break}
    }
    return 0, 0, false
}
 
fn main() {
    a := [0, 2, 11, 19, 90]
    target_sum := 21
    p1, p2, ok := two_sum(a, target_sum)
    if !ok {println("No two numbers were found whose sum is $target_sum")} 
	else {println("The numbers with indices $p1 and $p2 sum to $target_sum")}
}
Output:
The numbers with indices 1 and 3 sum to 21

X86 Assembly

Translation of: Python
Works with: nasm
section .data
    outputArr dd 0,0,0
    inputArr dd 5,0,2,11,19,90
    
section .text
global _main
_main:
    mov ebp, esp
    mov eax, 21 ;num we search for
    push inputArr
    call func
    add esp, 4
    ret

func:
    mov esi, [ebp - 4];get arr address from stack
    add esi, 4 ;esi now points to the first element instead of the length
    mov edx, 0 ;i
    mov ecx, [esi - 4] ;j
    dec ecx ;counting starts from 0
    looping:
        cmp edx, ecx ;while i < j
        jge return        
        mov ebx, [esi + edx * 4]
        add ebx, [esi + ecx * 4] ;inputArr[i] + inputArr[j]
        cmp ebx, eax ;inputArr[i] + inputArr[j] (==|<|else) eax 
        je end ;==
        jl i ;<
        dec ecx ;else j--
        jmp looping
    i:
        inc edx ;i++
        jmp looping
    end:
        mov eax, 2 ;if we find a combination our array has a length of 2
        mov [outputArr], eax ;length is in the first 4 byte cell
        mov [outputArr + 4], edx ;i
        mov [outputArr + 8], ecx ;j
    return:
    mov eax, outputArr ;address of outputArr is returned in eax
    ret

Wren

var twosum = Fn.new { |a, n|
    var c = a.count
    if (c < 2) return []
    for (i in 0...c-1) {
        for (j in i+1...c) {
            var s = a[i] + a[j] 
            if (s == n) return [i, j]
            if (s > n) break
        }
    }
    return []
}

var a = [0, 2, 11, 19, 90]
System.print("Numbers: %(a)\n")
for (n in [21, 25, 90]) {
    var pair = twosum.call(a, n)
    if (pair.count == 2) {
        System.print("Indices: %(pair) sum to %(n) (%(a[pair[0]]) + %(a[pair[1]]) = %(n))")
    } else {
        System.print("No pairs of the above numbers sum to %(n).")
    }
    System.print()
}
Output:
Numbers: [0, 2, 11, 19, 90]

Indices: [1, 3] sum to 21 (2 + 19 = 21)

No pairs of the above numbers sum to 25.

Indices: [0, 4] sum to 90 (0 + 90 = 90)

XPL0

Test cases from Algol 68.

proc TwoSum(Size, Array, Sum);
int Size, Array, Sum, I, J;
[Text(0, "[");
for I:= 0 to Size-1 do
    for J:= I+1 to Size-1 do
        if Array(I) + Array(J) = Sum then
            [IntOut(0, I);  Text(0, ", ");  IntOut(0, J);
            J:= Size;  I:= Size;
            ];
Text(0, "]^m^j");
];

[TwoSum(5, [ 0,  2, 11, 19, 90],        21);    \ should be [1, 3]
 TwoSum(7, [-8, -2,  0,  1,  5, 8, 11],  3);    \ should be [0, 6] (or [1, 4])
 TwoSum(7, [-3, -2,  0,  1,  5, 8, 11], 17);    \ should be []
 TwoSum(7, [-8, -2, -1,  1,  5, 9, 11],  0);    \ should be [2, 3]
]
Output:
[1, 3]
[0, 6]
[]
[2, 3]

Yabasic

Translation of: FreeBASIC
// Rosetta Code problem: http://rosettacode.org/wiki/Two_sum
// by Galileo, 04/2022
 
Sub twoSum (a(), b(), targetSum)
  local ub, sum, i, j
  
  ub = arraysize(a(), 1)
   
  For i = 1 To ub - 1
    If a(i) <= targetSum Then
      For j = i + 1 To ub
        sum = a(i) + a(j)
        If sum = targetSum Then
          Redim b(2)
          b(1) = i : b(2) = j
          Return
        ElsIf sum > targetSum Then
          break
        EndIf
      Next j
    Else
      break 
    EndIf
  Next i
End Sub
 
Dim a(5)
Dim b(1)
data 0, 2, 11, 19, 90
for n = 1 to 5 : read a(n) : next  
targetSum = 21
twoSum(a(), b(), targetSum)
If arraysize(b(), 1) = 1 Then
  Print "No two numbers were found whose sum is ", targetSum
Else
  Print "The numbers with indices ", b(1), " and ", b(2), " sum to ", targetSum
End If
Output:
The numbers with indices 2 and 4 sum to 21
---Program done, press RETURN---

Zig

Works with: 0.11.x, 0.12.0-dev.1389+42d4d07ef

pub fn sumsUpTo(comptime T: type, input: []const T, target_sum: T) ?struct { usize, usize } {
    if (input.len <= 1) return null;

    return result: for (input[0 .. input.len - 1], 0..) |left, left_i| {
        if (left > target_sum) break :result null;

        const offset = left_i + 1;
        for (input[offset..], offset..) |right, right_i| {
            const current_sum = left + right;
            if (current_sum < target_sum) continue;
            if (current_sum == target_sum) break :result .{ left_i, right_i };
            if (current_sum > target_sum) break;
        }
    } else null;
}
const std = @import("std");

pub fn main() std.fs.File.WriteError!void {
    const stdout = std.io.getStdOut();
    const stdout_w = stdout.writer();

    const stderr = std.io.getStdErr();
    const stderr_w = stderr.writer();

    const a = [_]u32{ 0, 2, 11, 19, 90 };
    const target_sum: u32 = 21;

    const optional_indexes = sumsUpTo(u32, &a, target_sum);
    if (optional_indexes) |indexes| {
        try stdout_w.print("Result: [{d}, {d}].\n", .{ indexes[0], indexes[1] });
    } else {
        try stderr_w.print("Numbers with sum {d} were not found!\n", .{target_sum});
    }
}
Output:
Result: [1, 3].

zkl

The sorted O(n) no external storage solution:

fcn twoSum(sum,ns){
   i,j:=0,ns.len()-1;
   while(i<j){
      if((s:=ns[i] + ns[j]) == sum) return(i,j);
      else if(s<sum) i+=1;
      else if(s>sum) j-=1;
   }
}
twoSum2(21,T(0,2,11,19,90)).println();
twoSum2(25,T(0,2,11,19,90)).println();
Output:
L(1,3)
False

The unsorted O(n!) all solutions solution:

fcn twoSum2(sum,ns){
   Utils.Helpers.combosKW(2,ns).filter('wrap([(a,b)]){ a+b==sum })  // lazy combos
   .apply('wrap([(a,b)]){ return(ns.index(a),ns.index(b)) })
}
twoSum2(21,T(0,2,11,19,90,21)).println();
twoSum2(25,T(0,2,11,19,90,21)).println();
Output:
L(L(0,5),L(1,3))
L()