Sorting algorithms/Sleep sort

Sorting algorithms/Sleep sort
You are encouraged to solve this task according to the task description, using any language you may know.

Sorting Algorithm
This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or:

O(n logn) sorts

O(n log2n) sorts
Shell Sort

In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time.

Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required.

Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.

```  task type PrintTask (num : Integer);
delay Duration (num) / 100.0;
```

begin

```  for i in TaskList'Range loop
end loop;
```

end SleepSort;</lang>

Output:
```./sleepsort 35 21 11 1 2 27 32 7 42 20 50 42 25 41 43 14 46 20 30 8
1 2 7 8 11 14 20 20 21 25 27 30 32 35 41 42 42 43 46 50```

APL

<lang APL> sleepsort←{{r}⎕TSYNC{r,←⊃⍵,⎕DL ⍵}&¨⍵,r←⍬} </lang>

Bash

<lang bash> function sleep_and_echo {

``` sleep "\$1"
echo "\$1"
```

}

for val in "\$@"; do

``` sleep_and_echo "\$val" &
```

done

wait </lang>

Output:
```\$ ./sleep_sort.sh 35 21 11 1 2 27 32 7 42 20 50 42 25 41 43 14 46 20 30 8
1
2
7
8
11
14
20
20
21
25
27
30
32
35
41
42
42
43
46
50
```

BBC BASIC

This does not explicitly 'sleep', but uses timers to implement the different delays. <lang bbcbasic> INSTALL @lib\$+"TIMERLIB"

```     DIM test%(9)
test%() = 4, 65, 2, 31, 0, 99, 2, 83, 782, 1

FOR i% = 0 TO DIM(test%(),1)
tid% = FN_ontimer(100 + test%(i%), p%, 0)
NEXT

REPEAT
WAIT 0
UNTIL FALSE

DEF PROCtask0 : PRINT test%(0) : ENDPROC
DEF PROCtask1 : PRINT test%(1) : ENDPROC
DEF PROCtask2 : PRINT test%(2) : ENDPROC
DEF PROCtask3 : PRINT test%(3) : ENDPROC
DEF PROCtask4 : PRINT test%(4) : ENDPROC
DEF PROCtask5 : PRINT test%(5) : ENDPROC
DEF PROCtask6 : PRINT test%(6) : ENDPROC
DEF PROCtask7 : PRINT test%(7) : ENDPROC
DEF PROCtask8 : PRINT test%(8) : ENDPROC
DEF PROCtask9 : PRINT test%(9) : ENDPROC</lang>
```

Output:

```         0
1
2
2
4
31
65
83
99
782
```

Brainf***

<lang C> >>>>>,----------[++++++++ ++[->+>+<<]>+>[-<<+>>]+++ +++++[-<------>]>>+>,----

<<+[->>>>>+<<<<<]>>

]>>>[<<<<[<<<[->>+<<[->+> [-]<<]]>[-<+>]>[-<<<.>>>> ->>>>>[>>>>>]<-<<<<[<<<<< ]+<]<<<<]>>>>>[>>>>>]<] </lang> Not exactly 'sleep' sort but it is similar: it inputs an array of digits and in each iteration reduces elements by 1. When an element becomes 0 – it prints the original digit.

Input: 1539\n

Output: 1359

C

<lang C>#include <stdlib.h>

1. include <unistd.h>
2. include <sys/types.h>
3. include <sys/wait.h>

int main(int c, char **v) {

```       while (--c > 1 && !fork());
sleep(c = atoi(v[c]));
printf("%d\n", c);
wait(0);
return 0;
```

}</lang> Running it:<lang>% ./a.out 5 1 3 2 11 6 4 1 2 3 4 5 6 11</lang> If you worry about time efficiency of this sorting algorithm (ha!), you can make it a 100 times faster by replacing the `sleep(...` with `usleep(10000 * (c = atoi(v[c])))`. The smaller the coefficient, the faster it is, but make sure it's not comparable to your kernel clock ticks or the wake up sequence will be wrong.

C#

<lang csharp>using System; using System.Collections.Generic; using System.Linq; using System.Threading;

class Program {

```   static void ThreadStart(object item)
{
Console.WriteLine(item);
}
```
```   static void SleepSort(IEnumerable<int> items)
{
foreach (var item in items)
{
}
}
```
```   static void Main(string[] arguments)
{
SleepSort(arguments.Select(int.Parse));
}
```

}</lang>

<lang csharp>var input = new[] { 1, 9, 2, 1, 3 };

foreach (var n in input) Task.Run(() => { Thread.Sleep(n * 1000); Console.WriteLine(n); }); </lang>

```1
1
2
3
9```

C++

<lang cpp>

1. include <chrono>
2. include <iostream>
4. include <vector>

int main(int argc, char* argv[]) {

``` std::vector<std::thread> threads;
```
``` for (int i = 1; i < argc; ++i) {
int arg = std::stoi(argv[i]);
std::cout << argv[i] << std::endl;
});
}
```
``` for (auto& thread : threads) {
}
```

} </lang>

Output:
```./a.out 8 15 14 9 17 20 16 24 6 24 21 23 19 23 19
6
8
9
14
15
16
17
19
19
20
21
23
23
24
24
```

Clojure

Using core.async <lang clojure>(ns sleepsort.core

``` (require [clojure.core.async :as async :refer [chan go <! <!! >! timeout]]))
```

(defn sleep-sort [l]

``` (let [c (chan (count l))]
(doseq [i l]
(go (<! (timeout (* 1000 i)))
(>! c i)))
(<!! (async/into [] (async/take (count l) c)))))</lang>
```

<lang clojure>(sleep-sort [4 5 3 1 2 7 6])

=> [1 2 3 4 5 6 7]</lang>

CoffeeScript

Works with: node.js

<lang coffeescript> after = (s, f) -> setTimeout f, s*1000

1. Setting Computer Science back at least a century, maybe more,
2. this algorithm sorts integers using a highly parallelized algorithm.

sleep_sort = (arr) ->

``` for n in arr
do (n) -> after n, -> console.log n

```

do ->

``` input = (parseInt(arg) for arg in process.argv[2...])
sleep_sort input
```

</lang> output <lang> > time coffee sleep_sort.coffee 5, 1, 3, 4, 2 1 2 3 4 5

real 0m5.184s user 0m0.147s sys 0m0.024s </lang>

Common Lisp

Works with: SBCL

<lang lisp>(defun sleeprint(n)

```   (sleep (/ n 10))
(format t "~a~%" n))
```

(loop for arg in (cdr sb-ext:*posix-argv*) doing

```     (sb-thread:make-thread (lambda() (sleeprint (parse-integer arg)))))
```

Output:
```\$ sbcl --script ss.cl 3 1 4 1 5
1
1
3
4
5
```

D

<lang d>void main(string[] args) {

```   import core.thread, std;
args.drop(1).map!(a => a.to!uint).parallel.each!((a)
{
write(a, " ");
});
```

}</lang>

Output:
```\$ ./sorting_algorithms_sleep_sort 200 20 50 10 80
10 20 50 80 200```

Dart

<lang dart> void main() async {

``` Future<void> sleepsort(Iterable<int> input) => Future.wait(input
.map((i) => Future.delayed(Duration(milliseconds: i), () => print(i))));
```
``` await sleepsort([3, 10, 2, 120, 122, 121, 54]);
```

} </lang>

Output:
```2
3
10
54
120
121
122
```

Delphi

<lang Delphi>program SleepSortDemo;

{\$APPTYPE CONSOLE}

uses

``` Windows, SysUtils, Classes;
```

type

``` TSleepThread = class(TThread)
private
FValue: Integer;
FLock: PRTLCriticalSection;
protected
constructor Create(AValue: Integer; ALock: PRTLCriticalSection);
procedure Execute; override;
end;
```

constructor TSleepThread.Create(AValue: Integer; ALock: PRTLCriticalSection); begin

``` FValue:= AValue;
FLock:= ALock;
inherited Create(False);
```

end;

``` Sleep(1000 * FValue);
EnterCriticalSection(FLock^);
Write(FValue:3);
LeaveCriticalSection(FLock^);
```

end;

var

``` A: array[0..15] of Integer;
Handles: array[0..15] of THandle;
Lock: TRTLCriticalSection;
I: Integer;
```

begin

``` for I:= Low(A) to High(A) do
A[I]:= Random(15);
for I:= Low(A) to High(A) do
Write(A[I]:3);
Writeln;
```
``` InitializeCriticalSection(Lock);
for I:= Low(A) to High(A) do begin
end;
WaitForMultipleObjects(Length(A), @Handles, True, INFINITE);
for I:= Low(A) to High(A) do
DeleteCriticalSection(Lock);
```
``` Writeln;
```

end.</lang> Output:

```  0  0 12  3  4 10  4  2  5  6  1  7  1 12  0  4
0  0  0  1  1  2  3  4  4  4  5  6  7 10 12 12
```

Elena

ELENA 5.0 : <lang elena>import extensions; import system'routines; import extensions'threading; import system'threading;

static sync = new object();

extension op {

```   sleepSort()
{
self.forEach:(n)
{
{

lock(sync)
{
console.printLine(n)
}
})
}
}
```

}

public program() {

```   program_arguments.skipping:1.selectBy(mssgconst toInt<convertorOp>[1]).toArray().sleepSort();

```

}</lang>

Elixir

Translation of: Erlang

<lang elixir>defmodule Sort do

``` def sleep_sort(args) do
Enum.each(args, fn(arg) -> Process.send_after(self, arg, 5 * arg) end)
loop(length(args))
end

defp loop(0), do: :ok
defp loop(n) do
num -> IO.puts num
loop(n - 1)
end
end
```

end

Sort.sleep_sort [2, 4, 8, 12, 35, 2, 12, 1]</lang>

Output:
```1
2
2
4
8
12
12
35
```

Emacs Lisp

GNU Emacs supports threads, but it's more straightforward to do this by just using timers. Evaluate in the *scratch* buffer by typing `C-M-x` on the expression: <lang Lisp>(dolist (i '(3 1 4 1 5 92 65 3 5 89 79 3))

``` (run-with-timer (* i 0.001) nil 'message "%d" i))</lang>
```

The output printed in the *Messages* buffer is:

```1 [2 times]
3 [3 times]
4
5 [2 times]
65
79
89
92
```

Erlang

<lang erlang>#!/usr/bin/env escript %% -*- erlang -*- %%! -smp enable -sname sleepsort

main(Args) ->

```   lists:foreach(fun(Arg) ->
timer:send_after(5 * list_to_integer(Arg), self(), Arg)
end, Args),
loop(length(Args)).
```

loop(0) ->

```   ok;
```

loop(N) ->

```   receive
Num ->
io:format("~s~n", [Num]),
loop(N - 1)
end.</lang>
```
Output:
```./sleepsort 2 4 8 12 35 2 12 1
1
2
2
4
8
12
12
35```

Euphoria

<lang euphoria>include get.e

integer count

procedure sleeper(integer key)

```   ? key
count -= 1
```

end procedure

s = command_line() s = s[3..\$] if length(s)=0 then

```   puts(1,"Nothing to sort.\n")
```

else

```   count = 0
for i = 1 to length(s) do
val = value(s[i])
if val[1] = GET_SUCCESS then
count += 1
end if
end for

while count do
end while
```

end if</lang>

F#

<lang fsharp> let sleepSort (values: seq<int>) =

```   values
|> Seq.map (fun x -> async {
do! Async.Sleep x
Console.WriteLine x
})
|> Async.Parallel
|> Async.Ignore
|> Async.RunSynchronously
```

</lang>

Usage: <lang fsharp> sleepSort [10; 33; 80; 32] 10 32 33 80 </lang>

Factor

<lang Factor> USING: threads calendar concurrency.combinators ;

sleep-sort ( seq -- ) [ dup seconds sleep . ] parallel-each ;

</lang>

Usage:

<lang Factor> { 1 9 2 6 3 4 5 8 7 0 } sleep-sort </lang>

Fortran

<lang Fortran> program sleepSort

```   use omp_lib
implicit none
integer::nArgs,myid,i,stat
integer,allocatable::intArg(:)
character(len=5)::arg
```
```   !\$omp master
nArgs=command_argument_count()
if(nArgs==0)stop ' : No argument is given !'
allocate(intArg(nArgs))
do i=1,nArgs
call get_command_argument(i, arg)
```

```       &' :Only 0 or positive integer allowed !'
end do
!\$omp end master

```
```   !\$omp parallel private(myid)
call sleepNprint(intArg(myid+1))
!\$omp end parallel
```
``` contains
```

subroutine sleepNprint(nSeconds) integer::nSeconds

```           call sleep(nSeconds)
```

print*,nSeconds end subroutine sleepNprint end program sleepSort </lang> Compile and Output:

```gfortran -fopenmp sleepSort.f90 -o sleepSort
./sleepSort 0 3 1 4 1 5 9
0
1
1
3
4
5
9
```

FreeBASIC

Can't use FreeBASIC sleep since it halts the program. Instead it uses a second array filled with times based on the value of number, this array is check against the timer. If the timer is past the stored time the value is printed. <lang freebasic>' version 21-10-2016 ' compile with: fbc -s console ' compile with: fbc -s console -exx (for bondry check on the array's) ' not very well suited for large numbers and large array's ' positive numbers only

Sub sandman(sleepy() As ULong)

```   Dim As Long lb = LBound(sleepy)
Dim As Long ub = UBound(sleepy)
Dim As Long i, count = ub
Dim As Double wakeup(lb To ub)
Dim As Double t = Timer
```
```   For i = lb To ub
wakeup(i) = sleepy(i) +1 + t
Next
```
```   Do
t = Timer
For i = lb To ub
If wakeup(i) <= t Then
Print Using "####";sleepy(i);
wakeup(i) = 1e9 ' mark it as used
count = count -1
End If
Next
Sleep (1 - (Timer - t)) * 300, 1 ' reduce CPU load
Loop Until count < lb
```

End Sub

' ------=< MAIN >=------

Dim As ULong i, arr(10) Dim As ULong lb = LBound(arr) Dim As ULong ub = UBound(arr)

Randomize Timer For i = lb To ub -1 ' leave last one zero

```   arr(i) = Int(Rnd * 10) +1
```

Next

Print "unsorted "; For i = lb To ub

```   Print Using "####";arr(i);
```

Next Print : Print

Print " sorted "; sandman(arr())

Print : Print

' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
```unsorted     5   2   5   6   4   6   9   5   1   2   0

sorted     0   1   2   2   4   5   5   5   6   6   9```

Go

<lang go>package main

import ( "fmt" "log" "os" "strconv" "time" )

func main() { out := make(chan uint64) for _, a := range os.Args[1:] { i, err := strconv.ParseUint(a, 10, 64) if err != nil { log.Fatal(err) } go func(n uint64) { time.Sleep(time.Duration(n) * time.Millisecond) out <- n }(i) } for _ = range os.Args[1:] { fmt.Println(<-out) } }</lang> Usage and output:

```./sleepsort 3 1 4 1 5 9
1
1
3
4
5
9
```

Using sync.WaitGroup

<lang go>package main

import (

```       "fmt"
"log"
"os"
"strconv"
"sync"
"time"
```

)

func main() {

```       var wg sync.WaitGroup
for _,i := range os.Args[1:] {
x, err := strconv.ParseUint(i, 10, 64)
if err != nil {
log.Println(err)
}
go func(i uint64, wg *sync.WaitGroup) {
defer wg.Done()
time.Sleep(time.Duration(i) * time.Second)
fmt.Println(i)
}(x, &wg)
}
wg.Wait()
```

}</lang>

Usage and output are the same as the version using channels. Note that the original version would sleep for increments of 1 full second, so I made my code do the same.

Groovy

<lang groovy> @Grab(group = 'org.codehaus.gpars', module = 'gpars', version = '1.2.1') import groovyx.gpars.GParsPool

GParsPool.withPool args.size(), {

```   args.eachParallel {
sleep(it.toInteger() * 10)
println it
}
```

} </lang>

Sample Run:

```> groovy sleepsort.groovy 42 23 16 15 8 4
4
8
15
16
23
42```

sleepSort :: [Int] -> IO () sleepSort values = do

```       chan <- newChan
forM_ values (\time -> forkIO (threadDelay (50000 * time) >> writeChan chan time))
forM_ values (\_ -> readChan chan >>= print)
```

main :: IO () main = getArgs >>= sleepSort . map read</lang>

Using mapConcurrently

<lang haskell>import System.Environment import Control.Concurrent import Control.Concurrent.Async

sleepSort :: [Int] -> IO () sleepSort = (() <\$) . mapConcurrently (\x -> threadDelay (x*10^4) >> print x)

main :: IO () main = getArgs >>= sleepSort . map read</lang>

This is problematic for inputs with multiple duplicates like `[1,2,3,1,4,1,5,1]` because simultaneous `print`s are done concurrently and the 1s and newlines get output in jumbled up order. The channels-based version above doesn't have this problem.

Icon and Unicon

The following solution only works in Unicon.

<lang unicon>procedure main(A)

```   every insert(t:=set(),mkThread(t,!A))
every spawn(!t)    # start threads as closely grouped as possible
while (*t > 0) do write(<<@)
```

end

procedure mkThread(t,n) # 10ms delay scale factor

```   return create (delay(n*10),delete(t,&current),n@>&main)
```

end</lang>

Sample run:

```->ss 3 1 4 1 5 9 2 6
1
1
2
3
4
5
6
9
->
```

Java

Works with: Java version 1.5+

<lang java5>import java.util.concurrent.CountDownLatch;

public class SleepSort { public static void sleepSortAndPrint(int[] nums) { final CountDownLatch doneSignal = new CountDownLatch(nums.length); for (final int num : nums) { new Thread(new Runnable() { public void run() { doneSignal.countDown(); try { doneSignal.await();

//using straight milliseconds produces unpredictable //results with small numbers //using 1000 here gives a nifty demonstration Thread.sleep(num * 1000); System.out.println(num); } catch (InterruptedException e) { e.printStackTrace(); } } }).start(); } } public static void main(String[] args) { int[] nums = new int[args.length]; for (int i = 0; i < args.length; i++) nums[i] = Integer.parseInt(args[i]); sleepSortAndPrint(nums); } }</lang> Output (using "3 1 4 5 2 3 1 6 1 3 2 5 4 6" as arguments):

```1
1
1
2
2
3
3
3
4
4
5
5
6
6```

JavaScript

<lang javascript>Array.prototype.timeoutSort = function (f) { this.forEach(function (n) { setTimeout(function () { f(n) }, 5 * n) }); } </lang> Usage and output: <lang javascript>[1, 9, 8, 7, 6, 5, 3, 4, 5, 2, 0].timeoutSort(function(n) { document.write(n + '
'); })</lang>

```0
1
2
3
4
5
6
7
8
9
```

<lang javascript>Array.prototype.sleepSort = function(callback) {

``` const res = [];
for (let n of this)
setTimeout(() => {
res.push(n);
if (this.length === res.length)
callback(res);
}, n + 1);
return res;
```

};

[1, 9, 8, 7, 6, 5, 3, 4, 5, 2, 0].sleepSort(console.log); // [ 1, 0, 2, 3, 4, 5, 5, 6, 7, 8, 9 ] </lang>

jq

Translation of: Brainf***

Doesn't actually sleep. Instead, iterates reducing the values by one until each is zero.

<lang jq>echo '[5, 1, 3, 2, 11, 6, 4]' | jq ' def f:

``` if .unsorted == [] then
.sorted
else
{ unsorted: [.unsorted[] | .t = .t - 1 | select(.t != 0)]
, sorted: (.sorted + [.unsorted[] | .t = .t - 1 | select(.t == 0) | .v]) }
| f
end;
```

{unsorted: [.[] | {v: ., t: .}], sorted: []} | f | .[] '</lang>

Output:
```1
2
3
4
5
6
11```

Julia

Works with: Julia version 0.6

<lang julia>function sleepsort(arr::Vector{<:Real})

```   out = Vector{eltype(arr)}(0)
sizehint!(out, length(arr))
@sync for x in arr
@async begin
sleep(x)
push!(out, x)
end
end
return out
```

end

v = rand(-10:10, 10) println("# unordered: \$v\n -> ordered: ", sleepsort(v))</lang>

Output:
```# unordered: [9, 5, 3, 8, 8, 2, 5, 2, 5, 5]
-> ordered: [2, 2, 3, 5, 5, 5, 5, 8, 8, 9]```

Kotlin

<lang scala>// version 1.1.51

fun sleepSort(list: List<Int>, interval: Long) {

```   print("Sorted  : ")
for (i in list) {
print("\$i ")
}
}
thread { // print a new line after displaying sorted list
Thread.sleep ((1 + list.max()!!) * interval)
println()
}
```

}

fun main(args: Array<String>) {

```  val list = args.map { it.toInt() }.filter { it >= 0 } // ignore negative integers
println("Unsorted: \${list.joinToString(" ")}")
sleepSort(list, 50)
```

}</lang>

Sample output:

```\$ java -jar sleepsort.jar 5 7 -1 2 4 1 8 0 3 9 6
Unsorted: 5 7 2 4 1 8 0 3 9 6
Sorted  : 0 1 2 3 4 5 6 7 8 9
```

Lua

Here's a slow implementation using only stock C Lua:

<lang lua>function sleeprint(n)

``` local t0 = os.time()
while os.time() - t0 <= n do
coroutine.yield(false)
end
print(n)
return true
```

end

coroutines = {} for i=1, #arg do

``` wrapped = coroutine.wrap(sleeprint)
table.insert(coroutines, wrapped)
wrapped(tonumber(arg[i]))
```

end

done = false while not done do

``` done = true
for i=#coroutines,1,-1 do
if coroutines[i]() then
table.remove(coroutines, i)
else
done = false
end
end
```

end</lang>

By installing LuaSocket, you can get better than 1-second precision on the clock, and therefore faster output:

<lang lua>socket = require 'socket'

function sleeprint(n)

``` local t0 = socket.gettime()
while (socket.gettime() - t0)*100 <= n do
coroutine.yield(false)
end
print(n)
return true
```

end

coroutines = {} for i=1, #arg do

``` wrapped = coroutine.wrap(sleeprint)
table.insert(coroutines, wrapped)
wrapped(tonumber(arg[i]))
```

end

done = false while not done do

``` done = true
for i=#coroutines,1,-1 do
if coroutines[i]() then
table.remove(coroutines, i)
else
done = false
end
end
```

end</lang>

Either way, the output is the same:

Output:
```\$ lua sleep_sort.lua 3 1 4 1 5 9 2 6 5 3 5
1
1
2
3
3
4
5
5
5
6
9
```

Mathematica

<lang mathematica>SleepSort = RunScheduledTask[Print@#, {#, 1}] & /@ # &; SleepSort@{1, 9, 8, 7, 6, 5, 3, 4, 5, 2, 0};</lang>

Output:
```0
1
2
3
4
5
6
7
8
9
```

NetRexx

As implemented this sample goes beyond the scope of the task as defined; it will handle negative numbers.

<lang NetRexx>/* NetRexx */ options replace format comments java crossref symbols nobinary import java.util.concurrent.CountDownLatch

-- ============================================================================= class RSortingSleepsort

``` properties constant private
dflt = '-6 3 1 4 5 2 3 -7 1 6 001 3 -9 2 5 -009 -8 4 6 1 9 8 7 6 5 -7 3 4 5 2 0 -2 -1 -5 -4 -3 -0 000 0'
properties indirect
startLatch = CountDownLatch
doneLatch  = CountDownLatch
floor      = 0
sorted     =
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method main(args = String[]) public static
arg = Rexx(args)
if arg =  then arg = dflt
say ' unsorted:' arg
say '   sorted:' (RSortingSleepsort()).sleepSort(arg)
return
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method sleepSort(iArg) public
setStartLatch(CountDownLatch(1))           -- used to put all threads on hold until we're ready to run
setDoneLatch(CountDownLatch(iArg.words())) -- used to indicate all work is done
loop mn = 1 to iArg.words()
setFloor(getFloor().min(iArg.word(mn)))   -- save smallest -ve number so we can use it as a scale for sleep
end mn
getStartLatch().countDown() -- cry 'Havoc', and let slip the dogs of war.
do
getDoneLatch().await() -- wait for worker threads to complete
catch ix = InterruptedException
ix.printStackTrace()
end
return getSorted()
```

-- ============================================================================= class RSortingSleepsort.SortThread dependent implements Runnable

``` properties indirect
num
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
setNum(nm)
return
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method run() public
do
parent.getStartLatch().await()                 -- wait until all threads are constructed
sleepTime = getNum() + parent.getFloor().abs() -- shifted by value of smallest number (permits numbers < 0)
sleepTime = sleepTime * 250                    -- scale up; milliseconds are not granular enough
Thread.sleep(sleepTime)                        -- wait for this number's turn to run
catch ie = InterruptedException
ie.printStackTrace()
end
do protect parent -- lock the parent to prevent collisions
parent.setSorted((parent.getSorted() num).strip()) -- stow the number in the results List
end
parent.getDoneLatch().countDown() -- this one's done; decrement the latch
return
```

</lang> Output:

``` unsorted: -6 3 1 4 5 2 3 -7 1 6 001 3 -9 2 5 -009 -8 4 6 1 9 8 7 6 5 -7 3 4 5 2 0 -2 -1 -5 -4 -3 -0 000 0
sorted: -9 -009 -8 -7 -7 -6 -5 -4 -3 -2 -1 000 0 0 -0 1 1 001 1 2 2 2 3 3 3 3 4 4 4 5 5 5 5 6 6 6 7 8 9
```

Nim

Compile with `nim --threads:on c sleepsort`: <lang nim>import os, strutils

proc single(n: int) =

``` sleep n
echo n
```

proc main =

``` var thr = newSeq[TThread[int]](paramCount())
for i,c in commandLineParams():
```

main()</lang> Usage:

```\$ ./sleepsort 5 1 3 2 11 6 4
1
2
3
4
5
6
11```

Objeck

<lang objeck> use System.Concurrency; use Collection;

bundle Default {

``` class Item from Thread {
@value : Int;

New(value : Int) {
Parent();
@value := value;
}
```
```   method : public : Run(param : System.Base) ~ Nil {
Sleep(1000 * @value);
@value->PrintLine();
}
}
```
``` class SleepSort {
function : Main(args : String[]) ~ Nil {
items := Vector->New();
each(i : args) {
};

each(i : items) {
items->Get(i)->As(Item)->Execute(Nil);
};
}
}
```

} </lang>

Objective-C

<lang objc>#import <Foundation/Foundation.h>

int main(int argc, char **argv) {

```   NSOperationQueue *queue = [[NSOperationQueue alloc] init];
while (--argc) {
int i = atoi(argv[argc]);
sleep(i);
NSLog(@"%d\n", i);
}];
}
[queue waitUntilAllOperationsAreFinished];
```

}</lang> Rather than having multiple operations that sleep, we could also dispatch the tasks after a delay: <lang objc>#import <Foundation/Foundation.h>

int main(int argc, char **argv) {

```   while (--argc) {
int i = atoi(argv[argc]);
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, i * NSEC_PER_SEC),
dispatch_get_main_queue(),
^{ NSLog(@"%d\n", i); });
}
```

}</lang>

Oforth

Instead of printing numbers, each task sends its integer into a channel (after sleeping 20 * n milliseconds). This allows the main task to create a new sorted list with those integers.

20 milliseconds is used to (try to) handle scheduler tick on Windows systems (around 15 ms). On Linux systems (after kernel 2.6.8), this value can be smaller.

<lang Oforth>import: parallel

sleepSort(l)

| ch n |

```  Channel new ->ch
l forEach: n [ #[ n dup 20 * sleep ch send drop ] & ]
ListBuffer newSize(l size) #[ ch receive over add ] times(l size) ;</lang>
```
Output:
```100 seq 100 seq + sleepSort println
[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14,
14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 2
5, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36,
37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 44, 45, 45, 46, 46, 47, 47, 4
8, 48, 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 54, 54, 55, 55, 56, 56, 57, 57, 58, 58, 59,
59, 60, 60, 61, 61, 62, 62, 63, 63, 64, 64, 65, 65, 66, 66, 67, 67, 68, 68, 69, 69, 70, 7
0, 71, 71, 72, 72, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 80, 80, 81, 81,
82, 82, 83, 83, 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 92, 92, 9
3, 93, 94, 94, 95, 95, 96, 96, 97, 97, 98, 98, 99, 99, 100, 100]
```

Pascal

Works with: Free Pascal

my limit under linux was 4000 threads nearly 2 GB. <lang pascal> program sleepsort; {\$IFDEF FPC}

``` {\$MODE DELPHI} {\$Optimization ON,ALL}
```

{\$ElSE}

``` {\$APPTYPE CONSOLE}
```

{\$ENDIF} uses

``` {\$IFDEF UNIX}
{\$ENDIF}
SysUtils;
```

const

``` HiLimit = 40;
```

type

``` tCombineForOneThread = record
cft_count : Uint64;
end;
```

var

``` SortIdx : array of INteger;
Finished: Uint32;
```
``` procedure PrepareThreads(thdCount:NativeInt);
var
i : NativeInt;
Begin
For i := 0 to thdCount-1 do
end;
```
``` procedure TestRunThd(parameter: pointer);
var
fi: NativeInt;
begin
with pThdBlk^ do
begin
sleep(40*cft_count+1);
fi := Finished-1;
//write(fi:5,cft_count:8,#13);
InterLockedDecrement(Finished);
SortIdx[fi]:= NativeUint(parameter);
end;
end;
```
``` procedure Test;
var
begin
randomize;
j := 0;
begin
begin
If cft_ThreadHandle = 0 then break;
end;
Inc(j);
end;
writeln(j);
repeat
sleep(1);
until finished = 0;
For j := 0 to  UsedThreads-1 do
```
```   //output of sleep-sorted data
For j := UsedThreads-1 downto 1 do
end;
```

begin

``` randomize;
Test;
```
``` setlength(ThreadBlocks, 0);
{\$IFDEF WINDOWS}
{\$ENDIF}
```

end.</lang>

Output:
```time ./sleepsort
40
1,8,9,10,11,12,12,13,14,18,24,24,24,26,28,35,35,37,42,49,50,52,54,54,56,57,59,60,61,62,64,69,69,71,72,73,76,77,78,79

real	0m3,164s```

Perl

Basically the C code. <lang Perl>1 while (\$_ = shift and @ARGV and !fork); sleep \$_; print "\$_\n"; wait;</lang>

A more optimal solution makes use of Coro, a cooperative threading library. It has the added effect of being much faster, fully deterministic (sleep is not exact), and it allows you to easily collect the return value: <lang Perl>use Coro; \$ret = Coro::Channel->new; @nums = qw(1 32 2 59 2 39 43 15 8 9 12 9 11);

for my \$n (@nums){ async { Coro::cede for 1..\$n; \$ret->put(\$n); } }

print \$ret->get,"\n" for 1..@nums;</lang>

Phix

Copy of Euphoria <lang Phix>integer count

procedure sleeper(integer key)

```   ? key
count -= 1
```

end procedure

s = command_line() s = s[3..\$] if length(s)=0 then

```   puts(1,"Nothing to sort.\n")
```

else

```   count = 0
for i = 1 to length(s) do
val = value(s[i])
if val[1] = GET_SUCCESS then
count += 1
end if
end for

while count do
end while
```

end if</lang>

PicoLisp

Sleeping in main process

<lang PicoLisp>(de sleepSort (Lst)

```  (make
(for (I . N) Lst
(task (- I) (* N 100)  N N  I I
(pop 'Lst)
(wait NIL (not Lst)) ) )</lang>
```

Sleeping in child processes

<lang PicoLisp>(de sleepSort (Lst)

```  (make
(for N Lst
(task (pipe (wait (* N 100))) N N
(pop 'Lst)
(wait NIL (not Lst)) ) )</lang>
```

Output in both cases:

```: (sleepSort (3 1 4 1 5 9 2 6 5))
-> (1 1 2 3 4 5 5 6 9)```

Just printing (no sorted result list)

Basically the C code. <lang PicoLisp>(for N (3 1 4 1 5 9 2 6 5)

```  (unless (fork)
(call 'sleep N)
(msg N)
(bye) ) )</lang>
```

Output:

```1
1
2
3
4
5
5
6
9```

Pike

<lang Pike>

1. !/usr/bin/env pike

int main(int argc, array(string) argv) {

```       foreach(argv[1..], string value)
{
int v = (int)value;
if(v<0)
continue;
call_out(print, v, value);
}
return -1;
```

}

void print(string value) {

```       write("%s\n", value);
if(find_call_out(print)==-1)
exit(0);
return;
```

} </lang> Output :

```\$ ./sleep-sort.pike 4 5 -3 1 2 7 6
1
2
4
5
6
7
```

Prolog

Works with SWI-Prolog. <lang Prolog>sleep_sort(L) :- thread_pool_create(rosetta, 1024, []) , maplist(initsort, L, LID), maplist(thread_join, LID, _LStatus), thread_pool_destroy(rosetta).

initsort(V, Id) :- thread_create_in_pool(rosetta, (sleep(V), writeln(V)), Id, []).

</lang> Output :

``` sleep_sort([5, 1, 3, 2, 11, 6, 3, 4]).
1
2
3
3
4
5
6
11
true.

```

PureBasic

Procedure Foo(n)

``` Delay(n)
PrintN(Str(n))
```

EndProcedure

If OpenConsole()

``` For i=1 To CountProgramParameters()
Next

Next
Print("Press ENTER to exit"): Input()
```

EndIf</lang>

```Sleep_sort.exe 3 1 4 1 5 9
1
1
3
4
5
9
Press ENTER to exit```

Python

<lang python>from time import sleep from threading import Timer

def sleepsort(values):

```   sleepsort.result = []
sleepsort.result.append(x)
mx = values[0]
for v in values:
if mx < v: mx = v
sleep(mx+1)
return sleepsort.result
```

if __name__ == '__main__':

```   x = [3,2,4,7,3,6,9,1]
if sleepsort(x) == sorted(x):
print('sleep sort worked for:',x)
else:
print('sleep sort FAILED for:',x)</lang>
```
Sample output
`sleep sort worked for: [3, 2, 4, 7, 3, 6, 9, 1]`

Python v3.5+: Using asyncio

Since the introduction of async/await syntax, the implementation could be a sole translation from the original version in Bash:

Works with: Python 3.5+

<lang python>#!/usr/bin/env python3 from asyncio import run, sleep, wait from sys import argv

async def f(n):

```   await sleep(n)
print(n)
```

if __name__ == '__main__':

```   run(wait(list(map(f, map(int, argv[1:])))))</lang>
```

Example usage:

```\$ ./sleepsort.py 5 3 6 3 6 3 1 4 7
1
3
3
3
4
5
6
6
7
```

Racket

<lang racket>

1. lang racket
accepts a list to sort

(define (sleep-sort lst)

``` (define done (make-channel))
(for ([elem lst])
(λ ()
(sleep elem)
(channel-put done elem))))
(for/list ([_ (length lst)])
(channel-get done)))
```
outputs '(2 5 5 7 8 9 10)

(sleep-sort '(5 8 2 7 9 10 5)) </lang>

Raku

(formerly Perl 6)

<lang perl6>await map -> \$delay { start { sleep \$delay ; say \$delay } },

```   <6 8 1 12 2 14 5 2 1 0>;</lang>
```
Output:
```0
1
1
2
2
5
6
8
12
14```

This can also be written using reactive programming:

<lang perl6>#!/usr/bin/env raku use v6; react whenever Supply.from-list(@*ARGS).start({ .&sleep // +\$_ }).flat { .say }</lang>

Output:
```\$ ./sleep-sort 1 3 5 6 2 4
1
2
3
4
5
6```

REXX

This sort will accept any manner of numbers,   or for that matter,   any character string as well.
REXX isn't particular what is being sorted. <lang rexx>/*REXX program implements a sleep sort (with numbers entered from the command line (CL).*/ numeric digits 300 /*over the top, but what the hey! */

```                                                /*  (above)  ··· from vaudeville.      */
```

@.= /*placeholder for the array of numbers.*/ stuff= 1e9 50 5 40 4 1 100 30 3 12 2 8 9 7 6 6 10 20 0 /*alphabetically ··· so far.*/ parse arg numbers /*obtain optional arguments from the CL*/ if numbers= then numbers= stuff /*Not specified? Then use the default.*/ N= words(numbers) /*N is the number of numbers in list. */ w= length(N) /*width of N (used for nice output). */ parse upper version !ver . /*obtain which REXX we're running under*/ !regina= ('REXX-REGINA'==left(!ver, 11) ) /*indicate (or not) if this is Regina. */ say N 'numbers to be sorted:' numbers /*informative informational information*/

```                                                /*from department of redundancy depart.*/
do j=1  for N                                /*let's start to boogie─woogie da sort.*/
@.j= word(numbers, j)                        /*plug in a single number at a time.   */
if datatype(@.j, 'N')  then @.j= @.j / 1     /*normalize it if it's a numeric number*/
if !regina  then call fork                   /*only REGINA REXX supports  FORK  BIF.*/
call sortItem j                              /*start a sort for an array number.    */
end   /*j*/
```
```     do forever  while \inOrder(N)              /*wait for the sorts to complete.      */
call delay 1                               /*one second is minimum effective time.*/
end    /*forever while*/                   /*well heck,  other than zero seconds. */
```

m= max(length(@.1), length(@.N) ) /*width of smallest or largest number. */ say; say 'after sort:' /*display a blank line and a title. */

```     do k=1  for N                              /*list the  (sorted)  array's elements.*/
say left(, 20)     'array element'      right(k, w)      '───►'      right(@.k, m)
end   /*k*/
```

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ sortItem: procedure expose @.; parse arg ? /*sorts a single (numeric) item. */

```             do Asort=1  until \switched        /*sort unsorted array until it's sorted*/
switched= 0                        /*it's all hunky─dorey, happy─dappy ···*/
do i=1   while   @.i\==  &  \switched
if @.? >= @.i then iterate     /*item is in order. */
parse value   @.?  @.i     with     @.i  @.?
switched= 1                    /* [↑]  swapped one.*/
end   /*i*/
if Asort//?==0  then call delay switched              /*sleep if last item*/
end   /*Asort*/
return               /*Sleeping Beauty awakes.  Not to worry:  (c)=circa 1697.*/
```

/*──────────────────────────────────────────────────────────────────────────────────────*/ inOrder: procedure expose @.; parse arg howMany /*is the array in numerical order? */

```          do m=1  for howMany-1;  next= m+1;  if @.m>@.next  then return 0 /*¬ in order*/
end   /*m*/                           /*keep looking for fountain of youth.  */
return 1                                /*yes, indicate with an indicator.     */</lang>
```

Programming note:   this REXX program makes use of   DELAY   BIF which delays (sleeps) for a specified amount of seconds.
Some REXXes don't have a   DELAY   BIF,   so one is included here   ──►   DELAY.REX.

output   when using the internal default input:
```19 numbers to be sorted: 1E9 50 5 40 4 1 100 30 3 12 2 8 9 7 6 6 10 20 0

after sort:
array element  1 ───►          0
array element  2 ───►          1
array element  3 ───►          2
array element  4 ───►          3
array element  5 ───►          4
array element  6 ───►          5
array element  7 ───►          6
array element  8 ───►          6
array element  9 ───►          7
array element 10 ───►          8
array element 11 ───►          9
array element 12 ───►         10
array element 13 ───►         12
array element 14 ───►         20
array element 15 ───►         30
array element 16 ───►         40
array element 17 ───►         50
array element 18 ───►        100
array element 19 ───► 1000000000
```

Ruby

nums = ARGV.collect(&:to_i) sorted = [] mutex = Mutex.new

``` Thread.new do
sleep 0.01 * n
mutex.synchronize {sorted << n}
end
```

p sorted</lang>

Example

```\$ ruby sleepsort.rb 3 1 4 5 2 3 1 6 1 3 2 5 4 6
[1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6]```

Rust

fn sleepsort<I: Iterator<Item=u32>>(nums: I) {

```   let threads: Vec<_> = nums.map(|n|
println!("{}", n); })).collect();
for t in threads { t.join(); }
```

}

fn main() {

```   sleepsort(std::env::args().skip(1).map(|s| s.parse().unwrap()));
```

}</lang> Output:

```\$ ./sleepsort 50 34 43 3 2
2
3
34
43
50
```

Scala

<lang scala>object SleepSort {

``` def main(args: Array[String]): Unit = {
val nums = args.map(_.toInt)
sort(nums)
Thread.sleep(nums.max * 21) // Keep the JVM alive for the example
}
```
``` def sort(nums: Seq[Int]): Unit =
override def run() {
Thread.sleep(i * 20) // just `i` is unpredictable with small numbers
print(s"\$i ")
}
}.start())
```

}</lang>

Output:

<lang bash>\$ scala SleepSort 1 3 6 0 9 7 4 2 5 8 0 1 2 3 4 5 5 6 7 8 9 </lang>

Sidef

<lang ruby>ARGV.map{.to_i}.map{ |i|

```   {Sys.sleep(i); say i}.fork;
```

}.each{.wait};</lang>

Output:
```% sidef test.sf 5 1 3 2 11 6 4
1
2
3
4
5
6
11```

Simula

<lang simula>SIMULATION BEGIN

```   PROCESS CLASS SORTITEM(N); INTEGER N;
BEGIN
HOLD(N);
OUTINT(N, 3);
END;
```
```   INTEGER I;
FOR I := 3, 2, 4, 7, 3, 6, 9, 1 DO
BEGIN
REF(SORTITEM) SI;
SI :- NEW SORTITEM(I);
ACTIVATE SI;
END;
HOLD(100000);
OUTIMAGE;
```

END;</lang>

Output:
```  1  2  3  3  4  6  7  9
```

SNUSP

Bloated SNUSP is ideally suited to this task, since this the variant adds multithreading and an additional dimension of data space. Sleep time is simulated by the loop delay required to copy each cell value, thereby ensuring that smaller values are printed earlier than larger values. This program requires a Bloated SNUSP interpreter which returns zero on input end-of-file. <lang SNUSP>

```     /\$>\  input until eof
#/?<\?,/  foreach: fork
\ &/:+   copy and\
/:\?-;    delay /
```

</lang>

Legend:

• & - SPLIT creates a new thread. Like @ ENTER, it skips one cell of code space to start its continuation.
• : ; - UP and DOWN are equivalent to < > LEFT and RIGHT, but moves the data pointer in the second dimension.
• # - in Bloated SNUSP, LEAVE only terminates the current thread. The overall program only exits when all threads have quit.

Swift

<lang Swift>import Foundation

for i in [5, 2, 4, 6, 1, 7, 20, 14] {

```   let time = dispatch_time(DISPATCH_TIME_NOW,
Int64(i * Int(NSEC_PER_SEC)))

dispatch_after(time, dispatch_get_main_queue()) {
print(i)
}
```

}

CFRunLoopRun()</lang>

Output:
```1
2
4
5
6
7
14
20
```

Tcl

Tcl 8.5

<lang tcl>#!/bin/env tclsh set count 0 proc process val {

```   puts \$val
incr ::count
```

}

1. Schedule the output of the values

foreach val \$argv {

```   after [expr {\$val * 10}] [list process \$val]
```

}

1. Run event loop until all values output...

while {\$count < \$argc} {

```   vwait count
```

}</lang> Demo:

```bash\$ sleepsort.tcl 3 1 4 5 2 3 1 6 1 3 2 5 4 6
1
1
1
2
2
3
3
3
4
4
5
5
6
6
```

Tcl 8.6: coroutine

<lang tcl>#! /usr/bin/env tclsh

package require Tcl 8.6

1. By aspect (https://wiki.tcl-lang.org/page/aspect). Modified slightly.
2. 1. Schedule N delayed calls to our own coroutine.
3. 2. Yield N times to grab the scheduled values. Print each.
4. 3. Store the sorted list in \$varName.

proc sleep-sort {ls varName} {

```   foreach x \$ls {
after \$x [info coroutine] \$x
}

set \$varName [lmap x \$ls {
set newX [yield]
puts \$newX
lindex \$newX
}]
```

}

1. Ensure the list is suitable for use with [sleep-sort].

proc validate ls {

```   if {[llength \$ls] == 0} {
error {list is empty}
}

foreach x \$ls {
if {![string is integer -strict \$x] || \$x < 0} {
error [list invalid value: \$x]
}
}

return \$ls
```

}

coroutine c sleep-sort [validate \$argv] ::sorted vwait sorted</lang> Demo:

```\$ ./sleepsort.tcl 1 2 100 40 76 0 0 0 200 199
0
0
0
1
2
40
76
100
199
200
```

UNIX Shell

Works with: Bourne Shell

<lang bash>f() {

```   sleep "\$1"
echo "\$1"
```

} while [ -n "\$1" ] do

```   f "\$1" &
shift
```

done wait</lang> Usage and output:

```sh sleepsort.sh 3 1 4 1 5 9
1
1
3
4
5
9
```

Wren

More of a simulation than a 'true' sleep sort. <lang ecmascript>import "timer" for Timer import "io" for Stdout import "os" for Process

var args = Process.arguments var n = args.count if (n < 2) Fiber.abort("There must be at least two arguments passed.") var list = args.map{ |a| Num.fromString(a) }.toList if (list.any { |i| i == null || !i.isInteger || i < 0 } ) {

```   Fiber.abort("All arguments must be non-negative integers.")
```

} var max = list.reduce { |acc, i| acc = (i > acc) ? i : acc } var fibers = List.filled(max+1, null) System.print("Before: %(list.join(" "))") for (i in list) {

```   var sleepSort = Fiber.new { |i|
Timer.sleep(1000)
Fiber.yield(i)
}
fibers[i] = sleepSort
```

} System.write("After : ") for (i in 0..max) {

```   var fib = fibers[i]
if (fib) {
System.write("%(fib.call(i)) ")
Stdout.flush()
}
```

} System.print()</lang>

Output:

Sample run:

```\$ wren sleepsort.wren  1 8 3 7 4 6
Before: 1 8 3 7 4 6
After : 1 3 4 6 7 8
```

zkl

<lang zkl>vm.arglist.apply(fcn(n){ Atomic.sleep(n); print(n) }.launch); Atomic.waitFor(fcn{ vm.numThreads == 1 }); Atomic.sleep(2); println();</lang>

Output:
```\$ zkl bbb 7 6 9 2 4 8 1 3 5
123456789
\$
```