Jump to content

Sunflower fractal

From Rosetta Code
Sunflower fractal is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
This task has been flagged for clarification. Code on this page in its current state may be flagged incorrect once this task has been clarified. See this page's Talk page for discussion.

Draw a Sunflower fractal


11l

Translation of: Perl
-V
   phi = (1 + sqrt(5)) / 2
   size = 600
   seeds = 5 * size

print(‘<svg xmlns="http://www.w3.org/2000/svg" width="’size‘" height="’size‘" style="stroke:gold">’)
print(‘<rect width="100%" height="100%" fill="black" />’)

L(i) 1..seeds
   V r = 2 * (i ^ phi) / seeds
   V t = 2 * math:pi * phi * i
   print(‘<circle cx="#.2" cy="#.2" r="#.1" />’.format(r * sin(t) + size / 2,
                                                       r * cos(t) + size / 2, sqrt(i) / 13))

print(‘</svg>’)

Action!

Calculations on a real Atari 8-bit computer take quite long time. It is recommended to use an emulator capable with increasing speed of Atari CPU.

INCLUDE "H6:REALMATH.ACT"

INT ARRAY SinTab=[
  0 4 9 13 18 22 27 31 36 40 44 49 53 58 62 66 71 75 79 83
  88 92 96 100 104 108 112 116 120 124 128 132 136 139 143
  147 150 154 158 161 165 168 171 175 178 181 184 187 190
  193 196 199 202 204 207 210 212 215 217 219 222 224 226
  228 230 232 234 236 237 239 241 242 243 245 246 247 248
  249 250 251 252 253 254 254 255 255 255 256 256 256 256]

INT FUNC Sin(INT a)
  WHILE a<0 DO a==+360 OD
  WHILE a>360 DO a==-360 OD
  IF a<=90 THEN
    RETURN (SinTab(a))
  ELSEIF a<=180 THEN
    RETURN (SinTab(180-a))
  ELSEIF a<=270 THEN
    RETURN (-SinTab(a-180))
  ELSE
    RETURN (-SinTab(360-a))
  FI
RETURN (0)

INT FUNC Cos(INT a)
RETURN (Sin(a-90))

PROC Circle(INT x0,y0,d)
  BYTE MaxD=[13]
  BYTE ARRAY Start=[0 1 2 4 6 9 12 16 20 25 30 36 42 49]
  BYTE ARRAY MaxY=[0 0 1 1 2 2 3 3 4 4 5 5 6 6]
  INT ARRAY CircleX=[
    0  0  1 0  1 1  2 1 0  2 2 1  3 2 2 0  3 3 2 1
    4 4 3 2 1  4 4 4 3 2  5 5 4 4 3 1  5 5 5 4 4 2
    6 6 5 5 4 3 1  6 6 6 5 5 4 2]

  INT i,ind,max
  CARD x
  BYTE dx,y

  IF d>MAXD THEN d=MaxD FI
  IF d<0 THEN d=0 FI

  ind=Start(d)
  max=MaxY(d)
  FOR i=0 TO max
  DO
    dx=CircleX(ind)
    y=y0-i
    IF (y>=0) AND (y<=191) THEN
      Plot(x0-dx,y) DrawTo(x0+dx,y)
    FI
    y=y0+i
    IF (y>=0) AND (y<=191) THEN
      Plot(x0-dx,y) DrawTo(x0+dx,y)
    FI
    ind==+1
  OD
RETURN

PROC DrawFractal(CARD seeds INT x0,y0)
  CARD i
  REAL a,c,r,ir,tmp,tmp2,r256,rx,ry,rr,r360,c360,seeds2
  INT ia,sc,x,y

  IntToReal(256,r256)
  ValR("1.618034",c) ;c=(sqrt(5)+1)/2
  IntToReal(seeds/2,seeds2) ;seeds2=seeds/2
  IntToReal(360,r360)
  RealMult(r360,c,c360) ;c360=360*c

  FOR i=0 TO seeds
  DO
    IntToReal(i,ir)
    Power(ir,c,tmp) 
    RealDiv(tmp,seeds2,r) ;r=i^c/(seeds/2)
    RealMult(c360,ir,a) ;a=360*c*i

    WHILE RealGreaterOrEqual(a,r360)
    DO
      RealSub(a,r360,tmp)
      RealAssign(tmp,a)
    OD

    ia=RealToInt(a)
    sc=Sin(ia)
    IntToRealForNeg(sc,tmp)
    RealDiv(tmp,r256,tmp2)
    RealMult(r,tmp2,rx)
    x=Round(rx) ;x=r*sin(a)
    
    sc=Cos(ia)
    IntToRealForNeg(sc,tmp)
    RealDiv(tmp,r256,tmp2)
    RealMult(r,tmp2,ry)
    y=Round(ry) ;y=r*cos(a)

    Circle(x+x0,y+y0,10*i/seeds)

    Poke(77,0) ;turn off the attract mode
  OD
RETURN

PROC Main()
  BYTE CH=$02FC,COLOR1=$02C5,COLOR2=$02C6

  Graphics(8+16)
  Color=1
  COLOR1=$12
  COLOR2=$18

  DrawFractal(1000,160,96)

  DO UNTIL CH#$FF OD
  CH=$FF
RETURN
Output:

Screenshot from Atari 8-bit computer

Applesoft BASIC

HGR:A=PEEK(49234):C=(SQR(5)+1)/2:N=900:FORI=0TO1600:R=(I^C)/N:A=8*ATN(1)*C*I:X=R*SIN(A)+139:Y=R*COS(A)+96:F=7-4*((X-INT(X/2)*2)>=.75):X=(X>=0ANDX<280)*X:Y=(Y>=0ANDY<192)*Y:HCOLOR=F*(XANDY):HPLOTX,Y:NEXT

C

The colouring of the "fractal" is determined with every iteration to ensure that the resulting graphic looks similar to a real Sunflower, thus the parameter diskRatio determines the radius of the central disk as the maximum radius of the flower is known from the number of iterations. The scaling factor is currently hardcoded but can also be externalized. Requires the WinBGIm library.

/*Abhishek Ghosh, 14th September 2018*/

#include<graphics.h>
#include<math.h>

#define pi M_PI

void sunflower(int winWidth, int winHeight, double diskRatio, int iter){
	double factor = .5 + sqrt(1.25),r,theta;
	double x = winWidth/2.0, y = winHeight/2.0;
	double maxRad = pow(iter,factor)/iter;
	
	int i;
	
	setbkcolor(LIGHTBLUE);
	
	for(i=0;i<=iter;i++){
		r = pow(i,factor)/iter;
		
		r/maxRad < diskRatio?setcolor(BLACK):setcolor(YELLOW);
		
		theta = 2*pi*factor*i;
		circle(x + r*sin(theta), y + r*cos(theta), 10 * i/(1.0*iter));
	}
}

int main()
{
	initwindow(1000,1000,"Sunflower...");
	
	sunflower(1000,1000,0.5,3000);
	
	getch();
	
	closegraph();
	
	return 0;
}

C++

Translation of: Perl
#include <cmath>
#include <fstream>
#include <iostream>

bool sunflower(const char* filename) {
    std::ofstream out(filename);
    if (!out)
        return false;

    constexpr int size = 600;
    constexpr int seeds = 5 * size;
    constexpr double pi = 3.14159265359;
    constexpr double phi = 1.61803398875;
    
    out << "<svg xmlns='http://www.w3.org/2000/svg\' width='" << size;
    out << "' height='" << size << "' style='stroke:gold'>\n";
    out << "<rect width='100%' height='100%' fill='black'/>\n";
    out << std::setprecision(2) << std::fixed;
    for (int i = 1; i <= seeds; ++i) {
        double r = 2 * std::pow(i, phi)/seeds;
        double theta = 2 * pi * phi * i;
        double x = r * std::sin(theta) + size/2;
        double y = r * std::cos(theta) + size/2;
        double radius = std::sqrt(i)/13;
        out << "<circle cx='" << x << "' cy='" << y << "' r='" << radius << "'/>\n";
    }
    out << "</svg>\n";
    return true;
}

int main(int argc, char *argv[]) {
    if (argc != 2) {
        std::cerr << "usage: " << argv[0] << " filename\n";
        return EXIT_FAILURE;
    }
    if (!sunflower(argv[1])) {
        std::cerr << "image generation failed\n";
        return EXIT_FAILURE;
    }
    return EXIT_SUCCESS;
}
Output:

Media:Sunflower cpp.svg

FreeBASIC

Const PI As Double = 4 * Atn(1)
Const ancho = 400
Const alto =  400

Screenres ancho, alto, 8
Windowtitle" Pulsa una tecla para finalizar"
Cls

Sub Sunflower(semillas As Integer)
    Dim As Double c = (Sqr(5)+1)/2
    
    For i As Integer = 0 To semillas
        Dim As Double r = (i^c) / semillas
        Dim As Double angulo = 2 * Pi * c * i
        Dim As Double x = r * Sin(angulo) + 200
        Dim As Double y = r * Cos(angulo) + 200
        
        Circle (x, y), i/semillas*10, i/semillas*10
    Next i
End Sub

Sunflower(2000)
Bsave "sunflower_fractal.bmp",0
Sleep
End

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website.

In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.

Solution

The method consists in drawing points on a spriral, an archimedean spiral, where two contiguous points are separated (in angle) by the golden angle.

Because the points tend to agglomerate in the center, they are smaller there.

Improvement

Last result is not natural. Florets in a sunflower are all equal size.

H. Vogel proposed to use a Fermat spiral, in such a case, the florets are equally spaced, and we can use now circles with the same size:

FutureBasic

window 1, @"Sunflower Fractal", ( 0, 0, 400, 400 )
WindowSetBackgroundColor( 1, fn ColorBlack )

void local fn SunflowerFractal
  NSUinteger seeds = 4000
  double     c, i, angle, x, y, r
  
  pen 2.0, fn ColorWithRGB( 0.997, 0.838, 0.038, 1.0 )
  
  c = ( sqr(5) + 1 ) / 2
  for i = 0 to seeds
    r = (i ^ c) / seeds
    angle = 2 * pi * c * i
    x = r * sin(angle) + 200
    y = r * cos(angle) + 200
    oval ( x, y, i / seeds * 5, i / seeds * 5 )
  next
end fn

fn SunflowerFractal

HandleEvents

File:Sunflower Fractal.png

Go

Library: Go Graphics
Translation of: Ring


The image produced, when viewed with (for example) EOG, is similar to the Ring entry.

package main

import (
    "github.com/fogleman/gg"
    "math"
)

func main() {
    dc := gg.NewContext(400, 400)
    dc.SetRGB(1, 1, 1)
    dc.Clear()
    dc.SetRGB(0, 0, 1)
    c := (math.Sqrt(5) + 1) / 2
    numberOfSeeds := 3000
    for i := 0; i <= numberOfSeeds; i++ {
        fi := float64(i)
        fn := float64(numberOfSeeds)
        r := math.Pow(fi, c) / fn
        angle := 2 * math.Pi * c * fi
        x := r*math.Sin(angle) + 200
        y := r*math.Cos(angle) + 200
        fi /= fn / 5
        dc.DrawCircle(x, y, fi)
    }
    dc.SetLineWidth(1)
    dc.Stroke()
    dc.SavePNG("sunflower_fractal.png")
}

JavaScript

HTML to test

<!DOCTYPE html>
<html>
    <head>
        <meta charset="utf-8" />
        <meta http-equiv="X-UA-Compatible" content="IE=edge">
        <title>Sunflower</title>
        <meta name="viewport" content="width=device-width, initial-scale=1">
        <style>
            body{background-color:black;text-align:center;margin-top:150px}
        </style>
        <script src="sunflower.js"></script>
    </head>
    <body onload="start()">
        <div id='wnd'></div>
    </body>
</html>
const SIZE = 400, HS = SIZE >> 1, WAIT = .005, SEEDS = 3000, 
      TPI = Math.PI * 2, C = (Math.sqrt(10) + 1) / 2;
class Sunflower {
    constructor() {
        this.wait = WAIT;
        this.colorIndex = 0;
        this.dimension = 0;
        this.lastTime = 0;
        this.accumulator = 0;
        this.deltaTime = 1 / 60;
        this.colors = ["#ff0000", "#ff8000", "#ffff00", "#80ff00", "#00ff00", "#00ff80", 
                       "#00ffff", "#0080ff", "#0000ff", "#8000ff", "#ff00ff", "#ff0080"];
        this.canvas = document.createElement('canvas');
        this.canvas.width = SIZE;
        this.canvas.height = SIZE;
        const d = document.getElementById("wnd");
        d.appendChild(this.canvas);
        this.ctx = this.canvas.getContext('2d');
    }
    draw(clr, d) {
        let r = Math.pow(d, C) / SEEDS;
        let angle = TPI * C * d;
        let x = HS + r * Math.sin(angle), 
            y = HS + r * Math.cos(angle);
        this.ctx.strokeStyle = clr;
        this.ctx.beginPath();
        this.ctx.arc(x, y, d / (SEEDS / 50), 0, TPI);
        this.ctx.closePath();
        this.ctx.stroke();
    }
    update(dt) {
        if((this.wait -= dt) < 0) {
            this.draw(this.colors[this.colorIndex], this.dimension);
            this.wait = WAIT;
            if((this.dimension++) > 600) {
                this.dimension = 0;
                this.colorIndex = (this.colorIndex + 1) % this.colors.length;
            }
        }
    }
    start() {
        this.loop = (time) => {
            this.accumulator += (time - this.lastTime) / 1000;
            while(this.accumulator > this.deltaTime) {
                this.accumulator -= this.deltaTime;
                this.update(Math.min(this.deltaTime));
            }
            this.lastTime = time;
            requestAnimationFrame(this.loop);
        }
        this.loop(0);
    }
}
function start() {
    const sunflower = new Sunflower();
    sunflower.start();
}

J

This (currently draft) task really needs an adequate description. Still, it's straightforward to derive code from another implementation on this page.

This implementation assumes a recent J implementation (for example, J903):

require'format/printf'

sunfract=: {{ NB. y: number of "sunflower seeds"
  phi=. 0.5*1+%:5
  XY=. (y%10)+(2*(I^phi)%y) * +.^j.2*1p1*phi*I=.1+i.y
  XY,.(%:I)%13
}}

sunfractsvg=: {{
  fract=. sunfract x
  C=.,'\n<circle cx="%.2f" cy="%.2f" r="%.1f" />' sprintf fract
  ({{)n
    <svg xmlns="http://www.w3.org/2000/svg" width="%d" height="%d" style="stroke:gold">
      <rect width="100%%" height="100%%" fill="black" />
        %s
    </svg>
}} sprintf (;/<.20+}:>./fract),<C) fwrite y}}

Example use:

   3000 sunfractsvg '~/sunfract.html'
129147

(The number displayed is the size of the generated file.)

jq

Adapted from Perl

Works with: jq

Works with gojq, the Go implementation of jq

# SVG headers
def svg(size):
  "<svg xmlns='http://www.w3.org/2000/svg' width='\(size)'",
  "height='\(size)' style='stroke:gold'>",
  "<rect width='100%' height='100%' fill='black'/>";

# emit the "<circle />" elements
def sunflower(size):
  def rnd: 100*.|round/100;

  (5 * size) as $seeds
  | ((1|atan) * 4) as $pi
  | ((1 + (5|sqrt)) / 2) as $phi
  | range(1; 1 + $seeds) as $i
  | {}
  | .r = 2 * pow($i; $phi)/$seeds
  | .theta = 2 * $pi * $phi * $i
  | .x = .r * (.theta|sin) + size/2
  | .y = .r * (.theta|cos) + size/2
  | .radius = ($i|sqrt)/13
  | "<circle cx='\(.x|rnd)' cy='\(.y|rnd)' r='\(.radius|rnd)' />" ;

def end_svg:
  "</svg>";

svg(600),
sunflower(600),
end_svg

Julia

Translation of: R

Run from REPL.

using GLMakie

function sunflowerplot()
    len = 2000
    ϕ = 0.5 + sqrt(5) / 2
    r = LinRange(0.0, 100.0, len)
    θ = zeros(len)
    markersizes = zeros(Int, len)
    for i in 2:length(r)
        θ[i] = θ[i - 1] + 2π * ϕ
        markersizes[i] = div(i, 500) + 9
    end
    x = r .* cos.(θ)
    y = r .* sin.(θ)
    f = Figure()
    ax = Axis(f[1, 1], backgroundcolor = :green)
    scatter!(ax, x, y, color = :gold, markersize = markersizes, strokewidth = 1)
    hidespines!(ax)
    hidedecorations!(ax)
    return f
end

sunflowerplot()
Output:


Liberty BASIC

nomainwin
UpperLeftX=1:UpperLeftY=1
WindowWidth=800:WindowHeight=600
open "Sunflower Fractal" for graphics_nf_nsb as #1
#1 "trapclose [q];down;fill darkred;flush;size 3"

    c=1.618033988749895
    seeds=8000
    rd=gn=bl=int(rnd(1)*255)

    for i=0 to seeds
        rd=rd+5:if rd>254 then rd=1
        gn=gn+3:if gn>254 then gn=1
        bl=bl+1:if bl>254 then bl=1
        #1 "color ";rd;" ";gn;" ";bl
        #1 "backcolor ";rd;" ";gn;" ";bl
        r=(i^c)/seeds
        angle=2*3.14159*c*i
        x=r*sin(angle)+400
        y=r*cos(angle)+280
        #1 "place ";x;" ";y
        #1 "circlefilled ";i/seeds*5
        scan
    next i
    wait

[q]
    close #1
    end

Mathematica / Wolfram Language

numseeds = 3000;
pts = Table[
   i = N[ni];
   r = i^GoldenRatio/numseeds;
   t = 2 Pi GoldenRatio i;
   Circle[AngleVector[{r, t}], i/(numseeds/3)]
   ,
   {ni, numseeds}
   ];
Graphics[pts]

Microsoft Small Basic

Translation of: Ring
' Sunflower fractal - 24/07/2018
  GraphicsWindow.Width=410
  GraphicsWindow.Height=400
  c=(Math.SquareRoot(5)+1)/2
  numberofseeds=3000
  For i=0 To numberofseeds
    r=Math.Power(i,c)/numberofseeds
    angle=2*Math.Pi*c*i
    x=r*Math.Sin(angle)+200
    y=r*Math.Cos(angle)+200
    GraphicsWindow.DrawEllipse(x, y, i/numberofseeds*10, i/numberofseeds*10)
  EndFor
Output:

Sunflower fractal

Nim

Translation of: Go
Library: imageman
import math
import imageman

const
  Size = 600
  Background = ColorRGBU [byte 0, 0, 0]
  Foreground = ColorRGBU [byte 0, 255, 0]
  C = (sqrt(5.0) + 1) / 2
  NumberOfSeeds = 6000
  Fn = float(NumberOfSeeds)

var image = initImage[ColorRGBU](Size, Size)
image.fill(Background)

for i in 0..<NumberOfSeeds:
  let
    fi = float(i)
    r = pow(fi, C) / Fn
    angle = 2 * PI * C * fi
    x = toInt(r * sin(angle) + Size div 2)
    y = toInt(r * cos(angle) + Size div 2)
  image.drawCircle(x, y, toInt(8 * fi / Fn), Foreground)

image.savePNG("sunflower.png", compression = 9)

Objeck

Translation of: C
use Game.SDL2;
use Game.Framework;

class Test {
  @framework : GameFramework;
  @colors : Color[];
  
  function : Main(args : String[]) ~ Nil {
    Test->New()->Run();
  }
  
  New() {
    @framework := GameFramework->New(GameConsts->SCREEN_WIDTH, GameConsts->SCREEN_HEIGHT, "Test");
    @framework->SetClearColor(Color->New(0, 0, 0));
    @colors := Color->New[2];
    @colors[0] := Color->New(255,128,0); 
    @colors[1] := Color->New(255,255,25); 
  }
  
  method : Run() ~ Nil {
    if(@framework->IsOk()) {
      e := @framework->GetEvent();
      
      quit := false;
      while(<>quit) {
        # process input
        while(e->Poll() <> 0) {
          if(e->GetType() = EventType->SDL_QUIT) {
            quit := true;
          };
        };

        @framework->FrameStart();
        Render(525,525,0.50,3000);
        @framework->FrameEnd();
      };
    }
    else {
      "--- Error Initializing Environment ---"->ErrorLine();
      return;
    };

    leaving {
      @framework->Quit();
    };
  }

  method : Render(winWidth : Int, winHeight : Int, diskRatio : Float, iter : Int) ~ Nil {
    renderer := @framework->GetRenderer();

    @framework->Clear();

    factor := 0.5 + 1.25->SquareRoot();
    x := winWidth / 2.0;
    y := winHeight / 2.0;
    maxRad := Float->Power(iter, factor) / iter;

    for(i:=0;i<=iter;i+=1;) {
      r := Float->Power(i,factor)/iter;
      color := r/maxRad < diskRatio ? @colors[0] : @colors[1];
      theta := 2*Float->Pi()*factor*i;
      renderer->CircleColor(x + r*theta->Sin(), y + r*theta->Cos(), 10 * i/(1.0*iter), color);
    };
        
    @framework->Show();
  }
}

consts GameConsts {
  SCREEN_WIDTH := 640,
  SCREEN_HEIGHT := 480
}

Perl

Translation of: Sidef
use utf8;
use constant π => 3.14159265;
use constant φ => (1 + sqrt(5)) / 2;

my $scale = 600;
my $seeds = 5*$scale;

print qq{<svg xmlns="http://www.w3.org/2000/svg" width="$scale" height="$scale" style="stroke:gold">
           <rect width="100%" height="100%" fill="black" />\n};

for $i (1..$seeds) {
    $r = 2 * ($i**φ) / $seeds;
    $t = 2 * π * φ * $i;
    $x = $r * sin($t) + $scale/2;
    $y = $r * cos($t) + $scale/2;
    printf qq{<circle cx="%.2f" cy="%.2f" r="%.1f" />\n}, $x, $y, sqrt($i)/13;
}

print "</svg>\n";

See Phi-packing image (SVG image)

Phix

Library: Phix/pGUI
Library: Phix/online

You can run this online here.

with javascript_semantics
constant numberofseeds = 3000
 
include pGUI.e
 
Ihandle dlg, canvas
cdCanvas cddbuffer, cdcanvas
 
function redraw_cb(Ihandle /*ih*/, integer /*posx*/, integer /*posy*/)
 
    integer {hw, hh} = sq_floor_div(IupGetIntInt(canvas, "DRAWSIZE"),2)
    atom s = min(hw,hh)/150,
         f = min(hw,hh)*8/125
    cdCanvasActivate(cddbuffer)
    cdCanvasClear(cddbuffer)
    atom c = (sqrt(5)+1)/2
    for i=0 to numberofseeds do
        atom r = power(i,c)/numberofseeds,
             angle = 2*PI*c*i,
             x = s*r*sin(angle)+hw,
             y = s*r*cos(angle)+hh
        cdCanvasCircle(cddbuffer,x,y,i/numberofseeds*f)
    end for 
    cdCanvasFlush(cddbuffer)
    return IUP_DEFAULT
end function
 
function map_cb(Ihandle ih)
    cdcanvas = cdCreateCanvas(CD_IUP, ih)
    cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
    cdCanvasSetBackground(cddbuffer, CD_WHITE)
    cdCanvasSetForeground(cddbuffer, CD_BLACK)
    return IUP_DEFAULT
end function
 
procedure main()
    IupOpen()
 
    canvas = IupCanvas(NULL)
    IupSetAttribute(canvas, "RASTERSIZE", "602x502") -- initial size
    IupSetCallback(canvas, "MAP_CB", Icallback("map_cb"))
 
    dlg = IupDialog(canvas)
    IupSetAttribute(dlg, "TITLE", "Sunflower")
    IupSetCallback(canvas, "ACTION", Icallback("redraw_cb"))
 
    IupShow(dlg)
    IupSetAttribute(canvas, "RASTERSIZE", NULL) -- release the minimum limitation
    if platform()!=JS then
        IupMainLoop()
        IupClose()
    end if
end procedure
main()

Processing

Translation of: C
//Abhishek Ghosh, 26th June 2022

size(1000,1000);
surface.setTitle("Sunflower...");

int iter = 3000;
float factor = .5 + sqrt(1.25),r,theta,diskRatio=0.5;
float x = width/2.0, y = height/2.0;
double maxRad = pow(iter,factor)/iter;
int i;
 
background(#add8e6); //Lightblue background
 
for(i=0;i<=iter;i++){
  r = pow(i,factor)/iter;

  if(r/maxRad < diskRatio){
    stroke(#000000);        // Black central disk
  }
  else
    stroke(#ffff00);       // Yellow Petals

  theta = 2*PI*factor*i;
  ellipse(x + r*sin(theta), y + r*cos(theta), 10 * i/(1.0*iter),10 * i/(1.0*iter));
}

Python

from turtle import *
from math import *

# Based on C implementation

iter = 3000
diskRatio = .5

factor = .5 + sqrt(1.25)

screen = getscreen()

(winWidth, winHeight) = screen.screensize()

#x = winWidth/2.0

#y = winHeight/2.0

x = 0.0
y = 0.0

maxRad = pow(iter,factor)/iter;

bgcolor("light blue")

hideturtle()

tracer(0, 0)

for i in range(iter+1):
    r = pow(i,factor)/iter;
    
    if r/maxRad < diskRatio:
        pencolor("black")
    else:
        pencolor("yellow")
 
    theta = 2*pi*factor*i;
        
    up()
    
    setposition(x + r*sin(theta), y + r*cos(theta))
    
    down()
       
    circle(10.0 * i/(1.0*iter))
    
update()

done()

R

phi=1/2+sqrt(5)/2
r=seq(0,1,length.out=2000)
theta=numeric(length(r))
theta[1]=0
for(i in 2:length(r)){
  theta[i]=theta[i-1]+phi*2*pi
}
x=r*cos(theta)
y=r*sin(theta)
par(bg="black")
plot(x,y)
size=seq(.5,2,length.out = length(x))
thick=seq(.1,2,length.out = length(x))
for(i in 1:length(x)){
  points(x[i],y[i],cex=size[i],lwd=thick[i],col="goldenrod1")
}
Output:

Sunflower

Racket

Translation of: C
#lang racket

(require 2htdp/image)

(define N 3000)
(define DISK-RATIO 0.5)
(define factor (+ 0.5 (sqrt 1.25)))
(define WIDTH 500)
(define HEIGHT 500)
(define max-rad (/ (expt N factor) N))

(for/fold ([image (empty-scene WIDTH HEIGHT)]) ([i (in-range N)])
  (define r (/ (expt i factor) N))
  (define color (if (< (/ r max-rad) DISK-RATIO) 'brown 'darkyellow))
  (define theta (* 2 pi factor i))
  (place-image (circle (* 10 i (/ 1 N)) 'outline color)
               (+ (/ WIDTH 2) (* r (sin theta)))
               (+ (/ HEIGHT 2) (* r (cos theta)))
               image))

Raku

(formerly Perl 6)

Works with: Rakudo version 2018.06

This is not really a fractal. It is more accurately an example of a Fibonacci spiral or Phi-packing.

Or, to be completely accurate: It is a variation of a generative Fermat's spiral using the Vogel model to implement phi-packing. See: https://thatsmaths.com/2014/06/05/sunflowers-and-fibonacci-models-of-efficiency

use SVG;

my $seeds  = 3000;
my @center = 300, 300;
my $scale  = 5;

constant \φ = (3 - 5.sqrt) / 2;

my @c = map {
    my ($x, $y) = ($scale * .sqrt) «*« |cis($_ * φ * τ).reals »+« @center;
    [ $x.round(.01), $y.round(.01), (.sqrt * $scale / 100).round(.1) ]
}, 1 .. $seeds;

say SVG.serialize(
    svg => [
        :600width, :600height, :style<stroke:yellow>,
        :rect[:width<100%>, :height<100%>, :fill<black>],
        |@c.map( { :circle[:cx(.[0]), :cy(.[1]), :r(.[2])] } ),
    ],
);

See: Phi packing (SVG image)

Ring

# Project : Sunflower fractal

load "guilib.ring"

paint = null

new qapp 
        {
        win1 = new qwidget() {
                  setwindowtitle("Sunflower fractal")
                  setgeometry(100,100,320,500)
                  label1 = new qlabel(win1) {
                              setgeometry(10,10,400,400)
                              settext("")
                  }
                  new qpushbutton(win1) {
                          setgeometry(100,400,100,30)
                          settext("draw")
                          setclickevent("draw()")
                  }
                  show()
        }
        exec()
        }

func draw
        p1 = new qpicture()
               color = new qcolor() {
               setrgb(0,0,255,255)
        }
        pen = new qpen() {
                 setcolor(color)
                 setwidth(1)
        }
        paint = new qpainter() {
                  begin(p1)
                  setpen(pen)

        c = (sqrt(5) + 1) / 2
        numberofseeds = 3000
        for i = 0 to numberofseeds
              r = pow(i, c ) / (numberofseeds)
              angle = 2 * 3.14 * c * i
              x = r * sin(angle) + 100
              y = r * cos(angle) + 100
             drawellipse(x, y, i / (numberofseeds / 10), i / (numberofseeds / 10))
        next

        endpaint()
        }
        label1 { setpicture(p1) show() }

Output:

Sunflower fractal

Sidef

Translation of: Go
require('Imager')

func draw_sunflower(seeds=3000) {
    var img = %O<Imager>.new(
        xsize => 400,
        ysize => 400,
    )

    var c = (sqrt(1.25) + 0.5)
    { |i|
        var r = (i**c / seeds)
        var θ = (2 * Num.pi * c * i)
        var x = (r * sin(θ) + 200)
        var y = (r * cos(θ) + 200)
        img.circle(x => x, y => y, r => i/(5*seeds))
    } * seeds

    return img
}

var img = draw_sunflower()
img.write(file => "sunflower.png")

Output image: Sunflower fractal

V (Vlang)

import gg
import gx
import math

fn main() {
    mut context := gg.new_context(
        bg_color: gx.rgb(255, 255, 255)
        width: 400
        height: 400
        frame_fn: frame
    )
    context.run()
}

fn frame(mut ctx gg.Context) {
    ctx.begin()
    c := (math.sqrt(5) + 1) / 2
    num_of_seeds := 3000
    for i := 0; i <= num_of_seeds; i++ {
        mut fi := f64(i)
        n := f64(num_of_seeds)
        r := math.pow(fi, c) / n
        angle := 2 * math.pi * c * fi
        x := r*math.sin(angle) + 200
        y := r*math.cos(angle) + 200
        fi /= n / 5
        ctx.draw_circle_filled(f32(x), f32(y), f32(fi), gx.black)
    }
    ctx.end()
}

Wren

Translation of: Go
Library: DOME
import "graphics" for Canvas, Color
import "dome" for Window

class Game {
    static init() {
        Window.title = "Sunflower fractal"
        var width = 400
        var height = 400
        Window.resize(width, height)
        Canvas.resize(width, height)
        Canvas.cls(Color.black)
        var col = Color.green
        var seeds = 3000
        sunflower(seeds, col)
    }

    static update() {}

    static draw(alpha) {}

    static sunflower(seeds, col) {
        var c = (5.sqrt + 1) / 2
        for (i in 0..seeds) {
            var r = i.pow(c) / seeds
            var angle = 2 * Num.pi * c * i
            var x = r*angle.sin + 200
            var y = r*angle.cos + 200
            Canvas.circle(x, y, i/seeds*5, col)
        }
    }
}

XPL0

proc DrawCircle(X0, Y0, R, Color);
int  X0, Y0, R, Color;
int  X, Y, R2;
[R2:= R*R;
for Y:= -R to +R do
    for X:= -R to +R do
        if X*X + Y*Y <= R2 then
            Point(X+X0, Y+Y0, Color);
];

def  Seeds = 3000, Color = $0E; \yellow
def  ScrW = 800, ScrH = 600;
def  Phi = (sqrt(5.)+1.) / 2.;  \golden ratio (1.618...)
def  Pi = 3.14159265358979323846;
real R, Angle, X, Y;
int  I;
[SetVid($103);
for I:= 0 to Seeds-1 do
    [R:= Pow(float(I), Phi) / float(Seeds/2);
    Angle:= 2. * Pi * Phi * float(I);
    X:= R*Sin(Angle);
    Y:= R*Cos(Angle);
    DrawCircle(ScrW/2+fix(X), ScrH/2-fix(Y), I*7/Seeds, Color);
    ];
]

Yabasic

Translation of: Wren
// Rosetta Code problem: http://rosettacode.org/wiki/Sunflower_fractal
// Adapted from Wren to Yabasic by Galileo, 01/2022

width = 400
height = 400

open window width, height
backcolor 0,0,0
clear window

color 0,255,0
seeds = 3000

c = (sqrt(5) + 1) / 2
for i = 0 to seeds
    r = (i ** c) / seeds
    angle = 2 * pi * c * i
    x = r * sin(angle) + 200
    y = r * cos(angle) + 200
    circle x, y, i / seeds * 5
next

zkl

Translation of: Go

Uses Image Magick and the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl

fcn sunflower(seeds=3000){
   img,color := PPM(400,400), 0x00ff00;		// green
   c:=((5.0).sqrt() + 1)/2;
   foreach n in ([0.0 .. seeds]){  // floats
      r:=n.pow(c)/seeds;
      x,y := r.toRectangular(r.pi*c*n*2);
      r=(n/seeds*5).toInt();
      img.circle(200 + x, 200 + y, r,color);
   }
   img.writeJPGFile("sunflower.zkl.jpg");
}();
Output:

Image at sunflower fractal

Cookies help us deliver our services. By using our services, you agree to our use of cookies.