Sorting algorithms/Permutation sort

Revision as of 08:15, 4 May 2016 by rosettacode>Purple24 (Added Elixir)

Permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one.

Task
Sorting algorithms/Permutation sort
You are encouraged to solve this task according to the task description, using any language you may know.

Pseudocode:

while not InOrder(list) do
    nextPermutation(list)
done

ActionScript

<lang ActionScript>//recursively builds the permutations of permutable, appended to front, and returns the first sorted permutation it encounters function permutations(front:Array, permutable:Array):Array { //If permutable has length 1, there is only one possible permutation. Check whether it's sorted if (permutable.length==1) return isSorted(front.concat(permutable)); else //There are multiple possible permutations. Generate them. var i:uint=0,tmp:Array=null; do { tmp=permutations(front.concat([permutable[i]]),remove(permutable,i)); i++; }while (i< permutable.length && tmp == null); //If tmp != null, it contains the sorted permutation. If it does not contain the sorted permutation, return null. Either way, return tmp. return tmp; } //returns the array if it's sorted, or null otherwise function isSorted(data:Array):Array { for (var i:uint = 1; i < data.length; i++) if (data[i]<data[i-1]) return null; return data; } //returns a copy of array with the i'th element removed function remove(array:Array, i:uint):Array { return array.filter(function(item,index,array){return(index !=i)}) ; } //wrapper around the permutation function to provide a more logical interface function permutationSort(array:Array):Array { return permutations([],array); }</lang>

AutoHotkey

ahk forum: discussion <lang AutoHotkey>MsgBox % PermSort("") MsgBox % PermSort("xxx") MsgBox % PermSort("3,2,1") MsgBox % PermSort("dog,000000,xx,cat,pile,abcde,1,cat")

PermSort(var) {  ; SORT COMMA SEPARATED LIST

  Local i, sorted
  StringSplit a, var, `,                ; make array, size = a0
  v0 := a0                              ; auxiliary array for permutations
  Loop %v0%
     v%A_Index% := A_Index
  While unSorted("a","v")               ; until sorted
     NextPerm("v")                      ; try new permutations
  Loop % a0                             ; construct string from sorted array
     i := v%A_Index%, sorted .= "," . a%i%
  Return SubStr(sorted,2)               ; drop leading comma

}

unSorted(a,v) {

  Loop % %a%0-1 {
     i := %v%%A_Index%, j := A_Index+1, j := %v%%j%
     If (%a%%i% > %a%%j%)
        Return 1
  }

}

NextPerm(v) { ; the lexicographically next LARGER permutation of v1..v%v0%

  Local i, i1, j, t
  i := %v%0, i1 := i-1
  While %v%%i1% >= %v%%i% {
     --i, --i1
     IfLess i1,1, Return 1 ; Signal the end
  }
  j := %v%0
  While %v%%j% <= %v%%i1%
     --j
  t := %v%%i1%, %v%%i1% := %v%%j%, %v%%j% := t,  j := %v%0
  While i < j
     t := %v%%i%, %v%%i% := %v%%j%, %v%%j% := t, ++i, --j

}</lang>

BBC BASIC

<lang bbcbasic> DIM test(9)

     test() = 4, 65, 2, 31, 0, 99, 2, 83, 782, 1
     
     perms% = 0
     WHILE NOT FNsorted(test())
       perms% += 1
       PROCnextperm(test())
     ENDWHILE
     PRINT ;perms% " permutations required to sort "; DIM(test(),1)+1 " items."
     END
     
     DEF PROCnextperm(a())
     LOCAL last%, maxindex%, p%
     maxindex% = DIM(a(),1)
     IF maxindex% < 1 THEN ENDPROC
     p% = maxindex%-1
     WHILE a(p%) >= a(p%+1)
       p% -= 1
       IF p% < 0 THEN
         PROCreverse(a(), 0, maxindex%)
         ENDPROC
       ENDIF
     ENDWHILE
     last% = maxindex%
     WHILE a(last%) <= a(p%)
       last% -= 1
     ENDWHILE
     SWAP a(p%), a(last%)
     PROCreverse(a(), p%+1, maxindex%)
     ENDPROC
     
     DEF PROCreverse(a(), first%, last%)
     WHILE first% < last%
       SWAP a(first%), a(last%)
       first% += 1
       last% -= 1
     ENDWHILE
     ENDPROC
     
     DEF FNsorted(d())
     LOCAL I%
     FOR I% = 1 TO DIM(d(),1)
       IF d(I%) < d(I%-1) THEN = FALSE
     NEXT
     = TRUE</lang>
Output:
980559 permutations required to sort 10 items.

C

Just keep generating next lexicographic permutation until the last one; it's sorted by definition. <lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <string.h>

typedef int(*cmp_func)(const void*, const void*);

void perm_sort(void *a, int n, size_t msize, cmp_func _cmp) { char *p, *q, *tmp = malloc(msize);

  1. define A(i) ((char *)a + msize * (i))
  2. define swap(a, b) {\

memcpy(tmp, a, msize);\ memcpy(a, b, msize);\ memcpy(b, tmp, msize); } while (1) { /* find largest k such that a[k - 1] < a[k] */ for (p = A(n - 1); (void*)p > a; p = q) if (_cmp(q = p - msize, p) > 0) break;

if ((void*)p <= a) break;

/* find largest l such that a[l] > a[k - 1] */ for (p = A(n - 1); p > q; p-= msize) if (_cmp(q, p) > 0) break;

swap(p, q); /* swap a[k - 1], a[l] */ /* flip a[k] through a[end] */ for (q += msize, p = A(n - 1); q < p; q += msize, p -= msize) swap(p, q); } free(tmp); }

int scmp(const void *a, const void *b) { return strcmp(*(const char *const *)a, *(const char *const *)b); }

int main() { int i; const char *strs[] = { "spqr", "abc", "giant squid", "stuff", "def" }; perm_sort(strs, 5, sizeof(*strs), scmp);

for (i = 0; i < 5; i++) printf("%s\n", strs[i]); return 0; }</lang>

C#

<lang C sharp|C#> public static class PermutationSorter {

   public static void Sort<T>(List<T> list) where T : IComparable
   {
       PermutationSort(list, 0);
   }
   public static bool PermutationSort<T>(List<T> list, int i) where T : IComparable
   {
       int j;
       if (issorted(list, i))
       {
           return true;
       }
       for (j = i + 1; j < list.Count; j++)
       {
           T temp = list[i];
           list[i] = list[j];
           list[j] = temp;
           if (PermutationSort(list, i + 1))
           {
               return true;
           }
           temp = list[i];
           list[i] = list[j];
           list[j] = temp;
       }
       return false;
   }
   public static bool issorted<T>(List<T> list, int i) where T : IComparable
   {

for (int j = list.Count-1; j > 0; j--)

       {

if(list[j].CompareTo(list[j-1])<0)

           {

return false; } } return true;

   }

} </lang>

Clojure

<lang lisp> (use '[clojure.contrib.combinatorics :only (permutations)])

(defn permutation-sort [s]

 (first (filter (partial apply <=) (permutations s))))

(permutation-sort [2 3 5 3 5]) </lang>

CoffeeScript

<lang coffeescript># This code takes a ridiculously inefficient algorithm and rather futilely

  1. optimizes one part of it. Permutations are computed lazily.

sorted_copy = (a) ->

 # This returns a sorted copy of an array by lazily generating
 # permutations of indexes and stopping when the indexes yield
 # a sorted array.
 indexes = [0...a.length]
 ans = find_matching_permutation indexes, (permuted_indexes) ->
   new_array = (a[i] for i in permuted_indexes)
   console.log permuted_indexes, new_array
   in_order(new_array)
 (a[i] for i in ans)

in_order = (a) ->

 # return true iff array a is in increasing order.
 return true if a.length <= 1
 for i in [0...a.length-1]
   return false if a[i] > a[i+1]
 true

get_factorials = (n) ->

 # return an array of the first n+1 factorials, starting with 0!
 ans = [1]
 f = 1
 for i in [1..n]
   f *= i
   ans.push f
 ans

permutation = (a, i, factorials) ->

 # Return the i-th permutation of an array by
 # using remainders of factorials to determine
 # elements.
 while a.length > 0
   f = factorials[a.length-1]
   n = Math.floor(i / f)
   i = i % f
   elem = a[n]
   a = a[0...n].concat(a[n+1...])
   elem
 # The above loop gets treated like
 # an array expression, so it returns
 # all the elements.

find_matching_permutation = (a, f_match) ->

 factorials = get_factorials(a.length)
 for i in [0...factorials[a.length]]
   permuted_array = permutation(a, i, factorials)
   if f_match permuted_array
     return permuted_array
 null
 
 

do ->

 a = ['c', 'b', 'a', 'd']
 console.log 'input:', a
 ans = sorted_copy a
 console.log 'DONE!'
 console.log 'sorted copy:', ans

</lang>

Output:

<lang> > coffee permute_sort.coffee input: [ 'c', 'b', 'a', 'd' ] [ 0, 1, 2, 3 ] [ 'c', 'b', 'a', 'd' ] [ 0, 1, 3, 2 ] [ 'c', 'b', 'd', 'a' ] [ 0, 2, 1, 3 ] [ 'c', 'a', 'b', 'd' ] [ 0, 2, 3, 1 ] [ 'c', 'a', 'd', 'b' ] [ 0, 3, 1, 2 ] [ 'c', 'd', 'b', 'a' ] [ 0, 3, 2, 1 ] [ 'c', 'd', 'a', 'b' ] [ 1, 0, 2, 3 ] [ 'b', 'c', 'a', 'd' ] [ 1, 0, 3, 2 ] [ 'b', 'c', 'd', 'a' ] [ 1, 2, 0, 3 ] [ 'b', 'a', 'c', 'd' ] [ 1, 2, 3, 0 ] [ 'b', 'a', 'd', 'c' ] [ 1, 3, 0, 2 ] [ 'b', 'd', 'c', 'a' ] [ 1, 3, 2, 0 ] [ 'b', 'd', 'a', 'c' ] [ 2, 0, 1, 3 ] [ 'a', 'c', 'b', 'd' ] [ 2, 0, 3, 1 ] [ 'a', 'c', 'd', 'b' ] [ 2, 1, 0, 3 ] [ 'a', 'b', 'c', 'd' ] DONE! sorted copy: [ 'a', 'b', 'c', 'd' ] </lang>

Common Lisp

Too bad sorted? vector code has to be copypasta'd. Could use map nil but that would in turn make it into spaghetti code.

The nth-permutation function is some classic algorithm from Wikipedia.

<lang lisp>(defun factorial (n)

 (loop for result = 1 then (* i result)
       for i from 2 to n
       finally (return result)))

(defun nth-permutation (k sequence)

 (if (zerop (length sequence))
     (coerce () (type-of sequence))
     (let ((seq (etypecase sequence
                  (vector (copy-seq sequence))
                  (sequence (coerce sequence 'vector)))))
       (loop for j from 2 to (length seq)
             do (setq k (truncate (/ k (1- j))))
             do (rotatef (aref seq (mod k j))
                         (aref seq (1- j)))
             finally (return (coerce seq (type-of sequence)))))))

(defun sortedp (fn sequence)

 (etypecase sequence
   (list (loop for previous = #1='#:foo then i
               for i in sequence
               always (or (eq previous #1#)
                          (funcall fn i previous))))
   ;; copypasta
   (vector (loop for previous = #1# then i
                 for i across sequence
                 always (or (eq previous #1#)
                            (funcall fn i previous))))))

(defun permutation-sort (fn sequence)

 (loop for i below (factorial (length sequence))
       for permutation = (nth-permutation i sequence)
       when (sortedp fn permutation)
         do (return permutation)))</lang>

<lang lisp>CL-USER> (time (permutation-sort #'> '(8 3 10 6 1 9 7 2 5 4))) Evaluation took:

 5.292 seconds of real time
 5.204325 seconds of total run time (5.176323 user, 0.028002 system)
 [ Run times consist of 0.160 seconds GC time, and 5.045 seconds non-GC time. ]
 98.34% CPU
 12,337,938,025 processor cycles
 611,094,240 bytes consed
 

(1 2 3 4 5 6 7 8 9 10)</lang>

C++

Since next_permutation already returns whether the resulting sequence is sorted, the code is quite simple:

<lang cpp>#include <algorithm>

template<typename ForwardIterator>

void permutation_sort(ForwardIterator begin, ForwardIterator end)

{

 while (std::next_permutation(begin, end))
 {
   // -- this block intentionally left empty --
 }

}</lang>

D

Basic Version

This uses the second (lazy) permutations from the Permutations Task. <lang d>import std.stdio, std.algorithm, permutations2;

void permutationSort(T)(T[] items) pure nothrow @safe @nogc {

   foreach (const perm; items.permutations!false)
       if (perm.isSorted)
           break;

}

void main() {

   auto data = [2, 7, 4, 3, 5, 1, 0, 9, 8, 6, -1];
   data.permutationSort;
   data.writeln;

}</lang>

Output:
[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The run-time is about 0.52 seconds with ldc2.

Alternative Version

Translation of: C++

<lang d>import std.stdio, std.algorithm;

void permutationSort(T)(T[] items) pure nothrow @safe @nogc {

   while (items.nextPermutation) {}

}

void main() {

   auto data = [2, 7, 4, 3, 5, 1, 0, 9, 8, 6, -1];
   data.permutationSort;
   data.writeln;

}</lang> The output is the same. Run-time about 1.04 seconds with ldc2 (the C++ entry with G++ takes about 0.4 seconds).

E

Translation of: C++

<lang e>def swap(container, ixA, ixB) {

   def temp := container[ixA]
   container[ixA] := container[ixB]
   container[ixB] := temp

}

/** Reverse order of elements of 'sequence' whose indexes are in the interval [ixLow, ixHigh] */ def reverseRange(sequence, var ixLow, var ixHigh) {

   while (ixLow < ixHigh) {
       swap(sequence, ixLow, ixHigh)
       ixLow += 1
       ixHigh -= 1
   }

}

/** Algorithm from <http://marknelson.us/2002/03/01/next-permutation>, allegedly from a version of the C++ STL */ def nextPermutation(sequence) {

   def last := sequence.size() - 1
   var i := last
   while (true) {
       var ii := i
       i -= 1
       if (sequence[i] < sequence[ii]) {
           var j := last + 1
           while (!(sequence[i] < sequence[j -= 1])) {} # buried side effect
           swap(sequence, i, j)
           reverseRange(sequence, ii, last)
           return true
       }
       if (i == 0) {
           reverseRange(sequence, 0, last)
           return false
       }
   }

}

/** Note: Worst case on sorted list */ def permutationSort(flexList) {

   while (nextPermutation(flexList)) {}

}</lang>

EchoLisp

<lang scheme>

This efficient sort method uses the list library for permutations

(lib 'list) (define (in-order L) (cond

   ((empty? L) #t)
   ((empty? (rest L)) #t)
   (else (and ( < (first L) (second  L)) (in-order (rest L))))))

(define L (shuffle (iota 6)))

   → (1 5 4 2 0 3)

(for ((p (in-permutations (length L ))))

   #:when (in-order (list-permute L p)) 
      (writeln (list-permute L p)) #:break #t)
   → (0 1 2 3 4 5)  

</lang>

Elixir

<lang elixir>defmodule Sort do

 def permutation_sort([]), do: []
 def permutation_sort(list) do
   Enum.find(permutation(list), fn [h|t] -> in_order?(t, h) end)
 end
 
 defp permutation([]), do: [[]]
 defp permutation(list) do
   for x <- list, y <- permutation(list -- [x]), do: [x|y]
 end
 
 defp in_order?([], _), do: true
 defp in_order?([h|_], pre) when h<pre, do: false
 defp in_order?([h|t], _), do: in_order?(t, h)

end

IO.inspect list = for _ <- 1..9, do: :rand.uniform(20) IO.inspect Sort.permutation_sort(list)</lang>

Output:
[18, 2, 19, 10, 17, 10, 14, 8, 3]
[2, 3, 8, 10, 10, 14, 17, 18, 19]

Go

Not following the pseudocode, it seemed simpler to just test sorted at the bottom of a recursive permutation generator. <lang go>package main

import "fmt"

var a = []int{170, 45, 75, -90, -802, 24, 2, 66}

// in place permutation sort of slice a func main() {

   fmt.Println("before:", a)
   if len(a) > 1 && !recurse(len(a) - 1) {
       // recurse should never return false from the top level.
       // if it does, it means some code somewhere is busted,
       // either the the permutation generation code or the
       // sortedness testing code.
       panic("sorted permutation not found!")
   }
   fmt.Println("after: ", a)

}

// recursive permutation generator func recurse(last int) bool {

   if last <= 0 {
       // bottom of recursion.  test if sorted.
       for i := len(a) - 1; a[i] >= a[i-1]; i-- {
           if i == 1 {
               return true
           }
       }
       return false
   }
   for i := 0; i <= last; i++ {
       a[i], a[last] = a[last], a[i]
       if recurse(last - 1) {
           return true
       }
       a[i], a[last] = a[last], a[i]
   }
   return false

}</lang>

Groovy

Permutation sort is an astonishingly inefficient sort algorithm. To even begin to make it tractable, we need to be able to create enumerated permutations on the fly, rather than relying on Groovy's List.permutations() method. For a list of length N there are N! permutations. In this solution, makePermutation creates the Ith permutation to order based on a recursive construction of a unique indexed permutation. The sort method then checks to see if that permutation is sorted, and stops when it is.

I believe that this method of constructing permutations results in a stable sort, but I have not actually proven that assertion. <lang groovy>def factorial = { (it > 1) ? (2..it).inject(1) { i, j -> i*j } : 1 }

def makePermutation; makePermutation = { list, i ->

   def n = list.size()
   if (n < 2) return list
   def fact = factorial(n-1)
   assert i < fact*n
   
   def index = i.intdiv(fact)
   [list[index]] + makePermutation(list[0..<index] + list[(index+1)..<n], i % fact)

}

def sorted = { a -> (1..<(a.size())).every { a[it-1] <= a[it] } }

def permutationSort = { a ->

   def n = a.size()
   def fact = factorial(n)
   def permuteA = makePermutation.curry(a)
   def pIndex = (0..<fact).find { print "."; sorted(permuteA(it)) }
   permuteA(pIndex)

}</lang>

Test: <lang groovy>println permutationSort([7,0,12,-45,-1]) println () println permutationSort([10, 10.0, 10.00, 1]) println permutationSort([10, 10.00, 10.0, 1]) println permutationSort([10.0, 10, 10.00, 1]) println permutationSort([10.0, 10.00, 10, 1]) println permutationSort([10.00, 10, 10.0, 1]) println permutationSort([10.00, 10.0, 10, 1])</lang> The examples with distinct integer and decimal values that compare as equal are there to demonstrate, but not to prove, that the sort is stable.

Output:
.............................................................................................[-45, -1, 0, 7, 12]

...................[1, 10, 10.0, 10.00]
...................[1, 10, 10.00, 10.0]
...................[1, 10.0, 10, 10.00]
...................[1, 10.0, 10.00, 10]
...................[1, 10.00, 10, 10.0]
...................[1, 10.00, 10.0, 10]

Haskell

<lang Haskell>import Control.Monad

permutationSort l = head [p | p <- permute l, sorted p]

sorted (e1 : e2 : r) = e1 <= e2 && sorted (e2 : r) sorted _ = True

permute = foldM (flip insert) []

insert e [] = return [e] insert e l@(h : t) = return (e : l) `mplus`

                      do { t' <- insert e t ; return (h : t') }</lang>
Works with: GHC version 6.10

<lang haskell>import Data.List (permutations)

permutationSort l = head [p | p <- permutations l, sorted p]

sorted (e1 : e2 : r) = e1 <= e2 && sorted (e2 : r) sorted _ = True</lang>

Icon and Unicon

Partly from here <lang icon>procedure do_permute(l, i, n)

   if i >= n then
       return l
   else
       suspend l[i to n] <-> l[i] & do_permute(l, i+1, n)
end

procedure permute(l)
   suspend do_permute(l, 1, *l)
end

procedure sorted(l)
   local i
   if (i := 2 to *l & l[i] >= l[i-1]) then return &fail else return 1
end

procedure main()
   local l
   l := [6,3,4,5,1]
   |( l := permute(l) & sorted(l)) \1 & every writes(" ",!l)
end</lang>

NetRexx

Uses the permutation iterator RPermutationIterator at Permutations to generate the permutations. <lang NetRexx>/* NetRexx */ options replace format comments java crossref symbols nobinary

import java.util.List import java.util.ArrayList

numeric digits 20

class RSortingPermutationsort public

 properties private static
   iterations
   maxIterations
 -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 method permutationSort(vlist = List) public static returns List
   perm = RPermutationIterator(vlist)
   iterations = 0
   maxIterations = RPermutationIterator.factorial(vlist.size())
   loop while perm.hasNext()
     iterations = iterations + 1
     pl = List perm.next()
     if isSorted(pl) then leave
     else pl = null
     end
   return pl
 -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 method isSorted(ss = List) private static returns boolean
   status = isTrue
   loop ix = 1 while ix < ss.size()
     vleft  = Rexx ss.get(ix - 1)
     vright = Rexx ss.get(ix)      
     if vleft.datatype('N') & vright.datatype('N')
     then vtest = vleft > vright  -- For numeric types we must use regular comparison.
     else vtest = vleft >> vright -- For non-numeric/mixed types we must do strict comparison.
     if vtest then do
       status = isFalse
       leave ix
       end
     end ix
   return status
 -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 method runSample(arg) private static
   placesList = -
       "UK  London,     US  New York,   US  Boston,     US  Washington" -
       "UK  Washington, US  Birmingham, UK  Birmingham, UK  Boston"
   anotherList = 'Alpha, Beta, Gamma, Beta'
   reversed = '7, 6, 5, 4, 3, 2, 1'
   unsorted = '734, 3, 1, 24, 324, -1024, -666, -1, 0, 324, 99999999'
   lists = [makeList(placesList), makeList(anotherList), makeList(reversed), makeList(unsorted)]
   loop il = 0 while il < lists.length
     vlist = lists[il]
     say vlist
     runtime = System.nanoTime()
     rlist = permutationSort(vlist)
     runtime = System.nanoTime() - runtime
     if rlist \= null then say rlist
     else say 'sort failed'
     say 'This permutation sort of' vlist.size() 'elements took' iterations 'passes (of' maxIterations') to complete. \-'
     say 'Elapsed time:' (runtime / 10 ** 9)'s.'
     say
     end il
   return
 -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 method makeList(in) public static returns List
   lst = ArrayList()
   loop while in > 
     parse in val ',' in
     lst.add(val.strip())
     end
   return lst
 -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 method main(args = String[]) public static
   runSample(Rexx(args))
   return
 -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 method isTrue() public static returns boolean
   return (1 == 1)
 -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 method isFalse() public static returns boolean
   return (1 == 0)

</lang>

Output:
[UK  London, US  New York, US  Boston, US  Washington UK  Washington, US  Birmingham, UK  Birmingham, UK  Boston]
[UK  Birmingham, UK  Boston, UK  London, US  Birmingham, US  Boston, US  New York, US  Washington UK  Washington]
This permutation sort of 7 elements took 4221 passes (of 5040) to complete. Elapsed time: 0.361959s.

[Alpha, Beta, Gamma, Beta]
[Alpha, Beta, Beta, Gamma]
This permutation sort of 4 elements took 2 passes (of 24) to complete. Elapsed time: 0.000113s.

[7, 6, 5, 4, 3, 2, 1]
[1, 2, 3, 4, 5, 6, 7]
This permutation sort of 7 elements took 5040 passes (of 5040) to complete. Elapsed time: 0.267956s.

[734, 3, 1, 24, 324, -1024, -666, -1, 0, 324, 99999999]
[-1024, -666, -1, 0, 1, 3, 24, 324, 324, 734, 99999999]
This permutation sort of 11 elements took 20186793 passes (of 39916800) to complete. Elapsed time: 141.461863s.

OCaml

Like the Haskell version, except not evaluated lazily. So it always computes all the permutations, before searching through them for a sorted one; which is more expensive than necessary; unlike the Haskell version, which stops generating at the first sorted permutation. <lang ocaml>let rec sorted = function

| e1 :: e2 :: r -> e1 <= e2 && sorted (e2 :: r)
| _             -> true

let rec insert e = function

| []          -> e
| h :: t as l -> (e :: l) :: List.map (fun t' -> h :: t') (insert e t)

let permute xs = List.fold_right (fun h z -> List.concat (List.map (insert h) z))

                                xs [[]]

let permutation_sort l = List.find sorted (permute l)</lang>

J

Generally, this task should be accomplished in J using /:~. Here we take an approach that's more comparable with the other examples on this page.

A function to locate the permuation index, in the naive manner prescribed by the task: <lang j>ps =:(1+])^:((-.@-:/:~)@A.~)^:_ 0:</lang> Of course, this can be calculated much more directly (and efficiently): <lang j>ps =: A.@:/:</lang> Either way: <lang j> list =: 2 7 4 3 5 1 0 9 8 6

  ps list 

2380483

  2380483 A. list

0 1 2 3 4 5 6 7 8 9

  (A.~ps) list

0 1 2 3 4 5 6 7 8 9</lang>

Java

<lang java5>import java.util.List; import java.util.ArrayList; import java.util.Arrays;

public class PermutationSort { public static void main(String[] args) { int[] a={3,2,1,8,9,4,6}; System.out.println("Unsorted: " + Arrays.toString(a)); a=pSort(a); System.out.println("Sorted: " + Arrays.toString(a)); } public static int[] pSort(int[] a) { List<int[]> list=new ArrayList<int[]>(); permute(a,a.length,list); for(int[] x : list) if(isSorted(x)) return x; return a; } private static void permute(int[] a, int n, List<int[]> list) { if (n == 1) { int[] b=new int[a.length]; System.arraycopy(a, 0, b, 0, a.length); list.add(b); return; } for (int i = 0; i < n; i++) { swap(a, i, n-1); permute(a, n-1, list); swap(a, i, n-1); } } private static boolean isSorted(int[] a) { for(int i=1;i<a.length;i++) if(a[i-1]>a[i]) return false; return true; } private static void swap(int[] arr,int i, int j) { int temp=arr[i]; arr[i]=arr[j]; arr[j]=temp; } }</lang>

Output:
Unsorted: [3, 2, 1, 8, 9, 4, 6]
Sorted: [1, 2, 3, 4, 6, 8, 9]

jq

Infrastructure: The following function generates a stream of permutations of an arbitrary JSON array: <lang jq>def permutations:

 if length == 0 then []
 else
   . as $in | range(0;length) | . as $i
   | ($in|del(.[$i])|permutations) 
   | [$in[$i]] + .
 end ;</lang>

Next is a generic function for checking whether the input array is non-decreasing. If your jq has until/2 then its definition here can be removed. <lang jq>def sorted:

 def until(cond; next):
    def _until: if cond then . else (next|_until) end;
    _until;
 length as $length
 | if $length <= 1 then true
   else . as $in
   | 1 | until( . == $length or $in[.-1] > $in[.] ; .+1) == $length
 end;</lang>

Permutation-sort:

The first permutation-sort solution presented here works with jq 1.4 but is slower than the subsequent solution, which uses the "foreach" construct introduced after the release of jq 1.4. "foreach" allows a stream generator to be interrupted.

Works with: jq version 1.4

<lang jq>def permutation_sort_slow:

 reduce permutations as $p (null; if . then . elif ($p | sorted) then $p else . end);</lang>
Works with: jq version with foreach

<lang jq>def permutation_sort:

 # emit the first item in stream that satisfies the condition
 def first(stream; cond):
    label $out
    | foreach stream as $item
        ( [false, null];
          if .[0] then break $out else [($item | cond), $item] end;
          if .[0] then .[1] else empty end );
 first(permutations; sorted);</lang>

Example: <lang jq>["too", true, 1, 0, {"a":1}, {"a":0} ] | permutation_sort</lang>

Output:

<lang sh>$ jq -c -n -f Permutation_sort.jq [true,0,1,"too",{"a":0},{"a":1}]</lang>

Mathematica

Here is a one-line solution. A custom order relation can be defined for the OrderedQ[] function.

<lang Mathematica>PermutationSort[x_List] := NestWhile[RandomSample, x, Not[OrderedQ[#]] &]</lang>

MATLAB / Octave

<lang MATLAB>function list = permutationSort(list)

   permutations = perms(1:numel(list)); %Generate all permutations of the item indicies 
   
   %Test every permutation of the indicies of the original list
   for i = (1:size(permutations,1))
       if issorted( list(permutations(i,:)) )
           list = list(permutations(i,:));
           return %Once the correct permutation of the original list is found break out of the program
       end
   end

end</lang>

Sample Usage: <lang MATLAB>>> permutationSort([4 3 1 5 6 2])

ans =

    1     2     3     4     5     6</lang>

MAXScript

<lang MAXScript>fn inOrder arr = ( if arr.count < 2 then return true else ( local i = 1 while i < arr.count do ( if arr[i+1] < arr[i] do return false i += 1 ) return true ) )

fn permutations arr = ( if arr.count <= 1 then return arr else ( for i = 1 to arr.count do ( local rest = for r in 1 to arr.count where r != i collect arr[r] local permRest = permutations rest local new = join #(arr[i]) permRest if inOrder new do return new ) ) )</lang> Output: <lang MAXScript> a = for i in 1 to 9 collect random 1 20

  1. (10, 20, 17, 15, 17, 15, 3, 11, 15)

permutations a

  1. (3, 10, 11, 15, 15, 15, 17, 17, 20)

</lang> Warning: This algorithm is very inefficient and Max will crash very quickly with bigger arrays.

Nim

<lang nim>iterator permutations[T](ys: openarray[T]): seq[T] =

 var
   d = 1
   c = newSeq[int](ys.len)
   xs = newSeq[T](ys.len)
 for i, y in ys: xs[i] = y
 yield xs
 block outter:
   while true:
     while d > 1:
       dec d
       c[d] = 0
     while c[d] >= d:
       inc d
       if d >= ys.len: break outter
     let i = if (d and 1) == 1: c[d] else: 0
     swap xs[i], xs[d]
     yield xs
     inc c[d]

proc isSorted[T](s: openarray[T]): bool =

 var last = low(T)
 for c in s:
   if c < last:
     return false
   last = c
 return true

proc permSort[T](a: openarray[T]): seq[T] =

 for p in a.permutations:
   if p.isSorted:
     return p

var a = @[4, 65, 2, -31, 0, 99, 2, 83, 782] echo a.permSort</lang>

Output:
@[-31, 0, 2, 2, 4, 65, 83, 99, 782]

PARI/GP

<lang parigp>permutationSort(v)={

 my(u);
 for(k=1,(#v)!,
   u=vecextract(v, numtoperm(#v,k));
   for(i=2,#u,
     if(u[i]<u[i-1], next(2))
   );
   return(u)
 )

};</lang>

Perl

Pass a list in by reference, and sort in situ. <lang perl>sub psort {

       my ($x, $d) = @_;
       unless ($d //= $#$x) {
               $x->[$_] < $x->[$_ - 1] and return for 1 .. $#$x;
               return 1
       }
       
       for (0 .. $d) {
               unshift @$x, splice @$x, $d, 1;
               next if $x->[$d] < $x->[$d - 1];
               return 1 if psort($x, $d - 1);
       }

}

my @a = map+(int rand 100), 0 .. 10; print "Before:\t@a\n"; psort(\@a); print "After:\t@a\n"</lang>

Output:
Before: 94 15 42 35 55 24 96 14 61 94 43
After:  14 15 24 35 42 43 55 61 94 94 96

Perl 6

<lang perl6># Lexicographic permuter from "Permutations" task. sub next_perm ( @a ) {

   my $j = @a.end - 1;
   $j-- while $j >= 1 and [>] @a[ $j, $j+1 ];
   my $aj = @a[$j];
   my $k  = @a.end;
   $k-- while [>] $aj, @a[$k];
   @a[ $j, $k ] .= reverse;
   my Int $r = @a.end;
   my Int $s = $j + 1;
   while $r > $s {
       @a[ $r, $s ] .= reverse;
       $r--;
       $s++;
   }

}

sub permutation_sort ( @a ) {

   my @n = @a.keys;
   my $perm_count = [*] 1 .. +@n; # Factorial
   for ^$perm_count {
       my @permuted_a = @a[ @n ];
       return @permuted_a if [le] @permuted_a;
       next_perm(@n);
   }

}

my @data = < c b e d a >; # Halfway between abcde and edcba say 'Input = ' ~ @data; say 'Output = ' ~ @data.&permutation_sort; </lang>

Output:
Input  = c b e d a
Output = a b c d e

PHP

<lang php>function inOrder($arr){ for($i=0;$i<count($arr);$i++){ if(isset($arr[$i+1])){ if($arr[$i] > $arr[$i+1]){ return false; } } } return true; }

function permute($items, $perms = array( )) {

   if (empty($items)) {

if(inOrder($perms)){ return $perms; }

   }  else {
       for ($i = count($items) - 1; $i >= 0; --$i) {
            $newitems = $items;
            $newperms = $perms;
            list($foo) = array_splice($newitems, $i, 1);
            array_unshift($newperms, $foo);
            $res = permute($newitems, $newperms);

if($res){ return $res; }

        }
   }

}

$arr = array( 8, 3, 10, 6, 1, 9, 7, 2, 5, 4); $arr = permute($arr); echo implode(',',$arr);</lang>

1,2,3,4,5,6,7,8,9,10

PicoLisp

<lang PicoLisp>(de permutationSort (Lst)

  (let L Lst
     (recur (L)  # Permute
        (if (cdr L)
           (do (length L)
              (T (recurse (cdr L)) Lst)
              (rot L)
              NIL )
           (apply <= Lst) ) ) ) )</lang>
Output:
: (permutationSort (make (do 9 (link (rand 1 999)))))
-> (82 120 160 168 205 226 408 708 719)

: (permutationSort (make (do 9 (link (rand 1 999)))))
-> (108 212 330 471 667 716 739 769 938)

: (permutationSort (make (do 9 (link (rand 1 999)))))
-> (118 253 355 395 429 548 890 900 983)

PowerShell

<lang PowerShell>Function PermutationSort( [Object[]] $indata, $index = 0, $k = 0 ) { $data = $indata.Clone() $datal = $data.length - 1 if( $datal -gt 0 ) { for( $j = $index; $j -lt $datal; $j++ ) { $sorted = ( PermutationSort $data ( $index + 1 ) $j )[0] if( -not $sorted ) { $temp = $data[ $index ] $data[ $index ] = $data[ $j + 1 ] $data[ $j + 1 ] = $temp } } if( $index -lt ( $datal - 1 ) ) { PermutationSort $data ( $index + 1 ) $j } else { $sorted = $true for( $i = 0; ( $i -lt $datal ) -and $sorted; $i++ ) { $sorted = ( $data[ $i ] -le $data[ $i + 1 ] ) } $sorted $data } } }

0..4 | ForEach-Object { $a = $_; 0..4 | Where-Object { -not ( $_ -match "$a" ) } | ForEach-Object { $b = $_; 0..4 | Where-Object { -not ( $_ -match "$a|$b" ) } | ForEach-Object { $c = $_; 0..4 | Where-Object { -not ( $_ -match "$a|$b|$c" ) } | ForEach-Object { $d = $_; 0..4 | Where-Object { -not ( $_ -match "$a|$b|$c|$d" ) } | ForEach-Object { $e=$_; "$( PermutationSort ( $a, $b, $c, $d, $e ) )" } } } } } $l = 8; PermutationSort ( 1..$l | ForEach-Object { $Rand = New-Object Random }{ $Rand.Next( 0, $l - 1 ) } )</lang>

Prolog

<lang prolog>permutation_sort(L,S) :- permutation(L,S), sorted(S).

sorted([]). sorted([_]). sorted([X,Y|ZS]) :- X =< Y, sorted([Y|ZS]).

permutation([],[]). permutation([X|XS],YS) :- permutation(XS,ZS), select(X,YS,ZS).</lang>

PureBasic

<lang PureBasic>Macro reverse(firstIndex, lastIndex)

 first = firstIndex
 last = lastIndex
 While first < last
   Swap cur(first), cur(last)
   first + 1
   last - 1
 Wend 

EndMacro

Procedure nextPermutation(Array cur(1))

 Protected first, last, elementCount = ArraySize(cur())
 If elementCount < 2
   ProcedureReturn #False ;nothing to permute
 EndIf 
 
 ;Find the lowest position pos such that [pos] < [pos+1]
 Protected pos = elementCount - 1
 While cur(pos) >= cur(pos + 1)
   pos - 1
   If pos < 0
     reverse(0, elementCount)
     ProcedureReturn #False ;no higher lexicographic permutations left, return lowest one instead
   EndIf 
 Wend
 ;Swap [pos] with the highest positional value that is larger than [pos]
 last = elementCount
 While cur(last) <= cur(pos)
   last - 1
 Wend
 Swap cur(pos), cur(last)
 ;Reverse the order of the elements in the higher positions
 reverse(pos + 1, elementCount)
 ProcedureReturn #True ;next lexicographic permutation found

EndProcedure

Procedure display(Array a(1))

 Protected i, fin = ArraySize(a())
 For i = 0 To fin
   Print(Str(a(i)))
   If i = fin: Continue: EndIf
   Print(", ")
 Next
 PrintN("")

EndProcedure

If OpenConsole()

 Dim a(9)
 a(0) = 8: a(1) = 3: a(2) =  10: a(3) =  6: a(4) =  1: a(5) =  9: a(6) =  7: a(7) =  -4: a(8) =  5: a(9) =  3
 display(a())
 While nextPermutation(a()): Wend
 display(a())
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
 CloseConsole()

EndIf</lang>

Output:
8, 3, 10, 6, 1, 9, 7, -4, 5, 3
-4, 1, 3, 3, 5, 6, 7, 8, 9, 10

Python

Works with: Python version 2.6

<lang python>from itertools import permutations

in_order = lambda s: all(x <= s[i+1] for i,x in enumerate(s[:-1])) perm_sort = lambda s: (p for p in permutations(s) if in_order(p)).next()</lang>

R

Library: e1071

Warning: This function keeps all the possible permutations in memory at once, which becomes silly when x has 10 or more elements. <lang r>permutationsort <- function(x) {

  if(!require(e1071) stop("the package e1071 is required")
  is.sorted <- function(x) all(diff(x) >= 0)
  perms <- permutations(length(x))
  i <- 1
  while(!is.sorted(x)) 
  {
     x <- x[perms[i,]]
     i <- i + 1
  }
  x

} permutationsort(c(1, 10, 9, 7, 3, 0))</lang>

Racket

<lang Racket>

  1. lang racket

(define (sort l)

 (for/first ([p (in-permutations l)] #:when (apply <= p)) p))

(sort '(6 1 5 2 4 3)) ; => '(1 2 3 4 5 6) </lang>

REXX

<lang rexx>/*REXX program sorts an array using the permutation-sort method. */ call gen@ /*generate the array elements. */ call show@ 'before sort' /*show the before array elements.*/ call permsets L /*generate items! permutations.*/ call permSort L /*invoke the permutation sort. */ call show@ ' after sort' /*show the after array elements.*/ say; say 'Permutation sort took' ? "permutations to find the sorted list." exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────GEN@ subroutine─────────────────────*/ gen@: @. = /*assign default value. */

     @.1 = '---Four_horsemen_of_the_Apocalypse---'
     @.2 = '====================================='
     @.3 = 'Famine───black_horse'
     @.4 = 'Death───pale_horse'
     @.5 = 'Pestilence_[Slaughter]───red_horse'
     @.6 = 'Conquest_[War]───white_horse'
                                      /*[↓] find # of entries in array.*/
      do L=1  while @.L\==;  @@.L=@.L;  end   /*L*/

L=L-1 /*adjust number of items by one. */ return /*──────────────────────────────────INORDER subroutine──────────────────*/ inOrder: parse arg q /*see if list Q is in order. */ _=word(q,1); do j=2 to words(q); x=word(q,j)

             if x<_  then return 0    /*Out of order?  Then not sorted.*/
             _=x
             end   /*j*/
 do k=1  for #;  _=word(#.?,k);  @.k=@@._;  end  /*k*/     /*here it is*/

return 1 /*they're all in order finally. */ /*──────────────────────────────────PERMSETS subroutine─────────────────*/ permsets: procedure expose !. # #.; parse arg n,#.; #=0

                do f=1  for n;  !.f=f;  end                     /*f*/

call .permAdd /*populate 1st perm*/

                do while .permNext(n,0);   call .permAdd;  end  /*while*/

return # .permNext: procedure expose !.; parse arg n,i; nm=n-1

 do k=nm  by -1  for nm;   kp=k+1
 if !.k<!.kp   then  do;   i=k;   leave;   end
 end   /*k*/
     do j=i+1  while j<n;  parse value !.j !.n with !.n !.j;  n=n-1;  end

if i==0 then return 0; do j=i+1 while !.j<!.i; end /*j*/ parse value  !.j  !.i with  !.i  !.j return 1 .permAdd: #=#+1; do j=1 for N; #.#=#.# !.j; end /*j*/; return /*──────────────────────────────────PERMSORT subroutine─────────────────*/ permSort: do ?=1 until inOrder($); $= /*look for the sorted permutation*/

             do m=1  for #;        _=word(#.?,m);    $=$ @._;   end /*m*/
         end   /*?*/

return /*──────────────────────────────────SHOW@ subroutine────────────────────*/ show@: do j=1 for L /* [↓] display elements in array*/

                     say '      element' right(j,length(L)) arg(1)":" @.j
                     end /*j*/

say copies('■', 70) /*show a nice separator line. */ return</lang> output   using the default input:

      element 1 before sort: ---Four_horsemen_of_the_Apocalypse---
      element 2 before sort: =====================================
      element 3 before sort: Famine───black_horse
      element 4 before sort: Death───pale_horse
      element 5 before sort: Pestilence_[Slaughter]───red_horse
      element 6 before sort: Conquest_[War]───white_horse
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
      element 1  after sort: ---Four_horsemen_of_the_Apocalypse---
      element 2  after sort: =====================================
      element 3  after sort: Conquest_[War]───white_horse
      element 4  after sort: Death───pale_horse
      element 5  after sort: Famine───black_horse
      element 6  after sort: Pestilence_[Slaughter]───red_horse
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

Permutation sort took 21 permutations to find the sorted list.

Ruby

Works with: Ruby version 1.8.7+

The Array class has a permutation method that, with no arguments, returns an enumerable object. <lang ruby>class Array

 def permutationsort
   permutation.each{|perm| return perm if perm.sorted?}
 end
 
 def sorted?
   each_cons(2).all? {|a, b| a <= b}
 end

end</lang>

Scheme

<lang scheme>(define (insertions e list)

 (if (null? list)
     (cons (cons e list) list)
     (cons (cons e list)
           (map (lambda (tail) (cons (car list) tail))
                (insertions e (cdr list))))))

(define (permutations list)

 (if (null? list)
     (cons list list)
     (apply append (map (lambda (permutation)
                          (insertions (car list) permutation))
                        (permutations (cdr list))))))

(define (sorted? list)

 (cond ((null? list) #t)
       ((null? (cdr list)) #t)
       ((<= (car list) (cadr list)) (sorted? (cdr list)))
       (else #f)))

(define (permutation-sort list)

 (let loop ((permutations (permutations list)))
   (if (sorted? (car permutations))
       (car permutations)
       (loop (cdr permutations)))))</lang>

Sidef

Translation of: Perl

<lang ruby>func psort(x, d=x.end) {

   d.is_zero && (
       range(1, x.end).each { |i|
           x[i] < x[i-1] && return false
       }
       return true;
   );
   (d+1).times {
       x.prepend(x.splice(d, 1)...);
       x[d] < x[d-1] && next;
       psort(x, d-1) && return true;
   }
   return false;

}

var a = 10.of { 100.rand.int }; say "Before:\t#{a}"; psort(a); say "After:\t#{a}";</lang>

Output:
Before:	60 98 85 85 37 0 62 96 95 2
After:	0 2 37 60 62 85 85 95 96 98

Tcl

Library: Tcllib (Package: struct::list)

The firstperm procedure actually returns the lexicographically first permutation of the input list. However, to meet the letter of the problem, let's loop: <lang tcl>package require Tcl 8.5 package require struct::list

proc inorder {list} {::tcl::mathop::<= {*}$list}

proc permutationsort {list} {

   while { ! [inorder $list]} {
       set list [struct::list nextperm $list]
   }
   return $list

}</lang>

Ursala

Standard library functions to generate permutations and test for ordering by a given predicate are used. <lang Ursala>#import std

permsort "p" = ~&ihB+ ordered"p"*~+ permutations

  1. cast %sL

example = permsort(lleq) <'pmf','oao','ejw','hhp','oqh','ock','dwj'></lang>

Output:
<'dwj','ejw','hhp','oao','ock','oqh','pmf'>

zkl

Performance is horrid <lang zkl>rns:=T(4, 65, 2, 31, 0, 99, 2, 83, 782, 1); fcn psort(list){ len:=list.len(); cnt:=Ref(0);

  foreach ns in (Utils.Helpers.permuteW(list)){ // lasy permutations
     cnt.set(1);
     ns.reduce('wrap(p,n){ if(p>n)return(Void.Stop); cnt.inc(); n });
     if(cnt.value==len) return(ns);
  }

}(rns).println();</lang>

Output:
L(0,1,2,2,4,31,65,83,99,782)