# Quaternion type

Quaternion type
You are encouraged to solve this task according to the task description, using any language you may know.

Quaternions   are an extension of the idea of   complex numbers.

A complex number has a real and complex part,   sometimes written as    a + bi,
where    a    and    b    stand for real numbers, and    i    stands for the square root of minus 1.

An example of a complex number might be    -3 + 2i,
where the real part,    a    is    -3.0    and the complex part,    b    is    +2.0.

A quaternion has one real part and three imaginary parts,    i,     j,    and    k.

A quaternion might be written as    a + bi + cj + dk.

In the quaternion numbering system:

•    i∙i = j∙j = k∙k = i∙j∙k = -1,        or more simply,
•    ii  = jj  = kk  = ijk   = -1.

The order of multiplication is important, as, in general, for two quaternions:

 q1    and    q2:       q1q2 ≠ q2q1.

An example of a quaternion might be    1 +2i +3j +4k

There is a list form of notation where just the numbers are shown and the imaginary multipliers   i,     j,    and    k    are assumed by position.

So the example above would be written as    (1, 2, 3, 4)

Given the three quaternions and their components:

   q  = (1, 2, 3, 4) = (a,  b,  c,  d)
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)


And a wholly real number    r = 7.

Create functions   (or classes)   to perform simple maths with quaternions including computing:

1. The norm of a quaternion:
${\displaystyle = \sqrt{a^2 + b^2 + c^2 + d^2}}$
2. The negative of a quaternion:
 = (-a, -b, -c, -d)
3. The conjugate of a quaternion:
 = ( a, -b, -c, -d)
4. Addition of a real number    r    and a quaternion    q:
 r + q = q + r = (a+r, b, c, d)
 q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
6. Multiplication of a real number and a quaternion:
 qr = rq = (ar, br, cr, dr)
7. Multiplication of two quaternions    q1    and   q2    is given by:
 ( a1a2 − b1b2 − c1c2 − d1d2,
   a1b2 + b1a2 + c1d2 − d1c2,
   a1c2 − b1d2 + c1a2 + d1b2,
   a1d2 + b1c2 − c1b2 + d1a2 )
8. Show that, for the two quaternions    q1    and    q2: q1q2 ≠ q2q1

If a language has built-in support for quaternions, then use it.

C.f.
•   Vector products
•   On Quaternions;   or on a new System of Imaginaries in Algebra.   By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.

## Action!

INCLUDE "H6:REALMATH.ACT"

DEFINE A_="+0"
DEFINE B_="+6"
DEFINE C_="+12"
DEFINE D_="+18"

TYPE Quaternion=[CARD a1,a2,a3,b1,b2,b3,c1,c2,c3,d1,d2,d3]
REAL neg

PROC Init()
ValR("-1",neg)
RETURN

BYTE FUNC Positive(REAL POINTER x)
BYTE ARRAY tmp

tmp=x
IF (tmp(0)&$80)=$00 THEN
RETURN (1)
FI
RETURN (0)

PROC PrintQuat(Quaternion POINTER q)
PrintR(q A_)
IF Positive(q B_) THEN Put('+) FI
PrintR(q B_) Put('i)
IF Positive(q C_) THEN Put('+) FI
PrintR(q C_) Put('j)
IF Positive(q D_) THEN Put('+) FI
PrintR(q D_) Put('k)
RETURN

PROC PrintQuatE(Quaternion POINTER q)
PrintQuat(q) PutE()
RETURN

PROC QuatIntInit(Quaternion POINTER q INT ia,ib,ic,id)
IntToReal(ia,q A_)
IntToReal(ib,q B_)
IntToReal(ic,q C_)
IntToReal(id,q D_)
RETURN

PROC Sqr(REAL POINTER a,b)
RealMult(a,a,b)
RETURN

PROC QuatNorm(Quaternion POINTER q REAL POINTER res)
REAL r1,r2,r3

Sqr(q A_,r1)      ;r1=q.a^2
Sqr(q B_,r2)      ;r2=q.b^2
Sqr(q C_,r1)      ;r1=q.c^2
Sqr(q D_,r1)      ;r1=q.d^2
Sqrt(r3,res)      ;res=sqrt(q.a^2+q.b^2+q.c^2+q.d^2)
RETURN

PROC QuatNegative(Quaternion POINTER q,res)
RealMult(q A_,neg,res A_) ;res.a=-q.a
RealMult(q B_,neg,res B_) ;res.b=-q.b
RealMult(q C_,neg,res C_) ;res.c=-q.c
RealMult(q D_,neg,res D_) ;res.d=-q.d
RETURN

PROC QuatConjugate(Quaternion POINTER q,res)
RealAssign(q A_,res A_)   ;res.a=q.a
RealMult(q B_,neg,res B_) ;res.b=-q.b
RealMult(q C_,neg,res C_) ;res.c=-q.c
RealMult(q D_,neg,res D_) ;res.d=-q.d
RETURN

PROC QuatAddReal(Quaternion POINTER q REAL POINTER r
Quaternion POINTER res)
RealAssign(q B_,res B_) ;res.b=q.b
RealAssign(q C_,res C_) ;res.c=q.c
RealAssign(q D_,res D_) ;res.d=q.d
RETURN

RETURN

PROC QuatMultReal(Quaternion POINTER q REAL POINTER r
Quaternion POINTER res)
RealMult(q A_,r,res A_) ;res.a=q.a*r
RealMult(q B_,r,res B_) ;res.b=q.b*r
RealMult(q C_,r,res C_) ;res.c=q.c*r
RealMult(q D_,r,res D_) ;res.d=q.d*r
RETURN

PROC QuatMult(Quaternion POINTER q1,q2,res)
REAL r1,r2

RealMult(q1 A_,q2 A_,r1) ;r1=q1.a*q2.a
RealMult(q1 B_,q2 B_,r2) ;r2=q1.b*q2.b
RealSub(r1,r2,r3)        ;r3=q1.a*q2.a-q1.b*q2.b
RealMult(q1 C_,q2 C_,r1) ;r1=q1.c*q2.c
RealSub(r3,r1,r2)        ;r2=q1.a*q2.a-q1.b*q2.b-q1.c*q2.c
RealMult(q1 D_,q2 D_,r1) ;r1=q1.d*q2.d
RealSub(r2,r1,res A_)    ;res.a=q1.a*q2.a-q1.b*q2.b-q1.c*q2.c-q1.d*q2.d

RealMult(q1 A_,q2 B_,r1) ;r1=q1.a*q2.b
RealMult(q1 B_,q2 A_,r2) ;r2=q1.b*q2.a
RealMult(q1 C_,q2 D_,r1) ;r1=q1.c*q2.d
RealMult(q1 D_,q2 C_,r1) ;r1=q1.d*q2.c
RealSub(r2,r1,res B_)    ;res.b=q1.a*q2.b+q1.b*q2.a+q1.c*q2.d-q1.d*q2.c

RealMult(q1 A_,q2 C_,r1) ;r1=q1.a*q2.c
RealMult(q1 B_,q2 D_,r2) ;r2=q1.b*q2.d
RealSub(r1,r2,r3)        ;r3=q1.a*q2.c-q1.b*q2.d
RealMult(q1 C_,q2 A_,r1) ;r1=q1.c*q2.a
RealMult(q1 D_,q2 B_,r1) ;r1=q1.d*q2.b

RealMult(q1 A_,q2 D_,r1) ;r1=q1.a*q2.d
RealMult(q1 B_,q2 C_,r2) ;r2=q1.b*q2.c
RealMult(q1 C_,q2 B_,r1) ;r1=q1.c*q2.b
RealSub(r3,r1,r2)        ;r2=q1.a*q2.d+q1.b*q2.c-q1.c*q2.b
RealMult(q1 D_,q2 A_,r1) ;r1=q1.d*q2.a
RETURN

PROC Main()
Quaternion q,q1,q2,q3
REAL r,r2

Put(125) PutE() ;clear the screen
MathInit()
Init()

QuatIntInit(q,1,2,3,4)
QuatIntInit(q1,2,3,4,5)
QuatIntInit(q2,3,4,5,6)
IntToReal(7,r)

Print(" q = ") PrintQuatE(q)
Print("q1 = ") PrintQuatE(q1)
Print("q2 = ") PrintQuatE(q2)
Print(" r = ") PrintRE(r) PutE()

QuatNorm(q,r2) Print(" Norm(q) = ") PrintRE(r2)
QuatNorm(q1,r2) Print("Norm(q1) = ") PrintRE(r2)
QuatNorm(q2,r2) Print("Norm(q2) = ") PrintRE(r2)
QuatNegative(q,q3) Print("      -q = ") PrintQuatE(q3)
QuatConjugate(q,q3) Print(" Conj(q) = ") PrintQuatE(q3)
QuatAddReal(q,r,q3) Print("     q+r = ") PrintQuatE(q3)
QuatAdd(q1,q2,q3) Print("   q1+q2 = ") PrintQuatE(q3)
QuatAdd(q2,q1,q3) Print("   q2+q1 = ") PrintQuatE(q3)
QuatMultReal(q,r,q3) Print("     q*r = ") PrintQuatE(q3)
QuatMult(q1,q2,q3) Print("   q1*q2 = ") PrintQuatE(q3)
QuatMult(q2,q1,q3) Print("   q2*q1 = ") PrintQuatE(q3)
RETURN
Output:
 q = 1+2i+3j+4k
q1 = 2+3i+4j+5k
q2 = 3+4i+5j+6k
r = 7

Norm(q) = 5.47722543
Norm(q1) = 7.34846906
Norm(q2) = 9.27361833
-q = -1-2i-3j-4k
Conj(q) = 1-2i-3j-4k
q+r = 8+2i+3j+4k
q1+q2 = 5+7i+9j+11k
q2+q1 = 5+7i+9j+11k
q*r = 7+14i+21j+28k
q1*q2 = -56+16i+24j+26k
q2*q1 = -56+18i+20j+28k


The package specification (works with any floating-point type):

generic
type Real is digits <>;
package Quaternions is
type Quaternion is record
A, B, C, D : Real;
end record;
function "abs" (Left : Quaternion) return Real;
function Conj (Left : Quaternion) return Quaternion;
function "-" (Left : Quaternion) return Quaternion;
function "+" (Left, Right : Quaternion) return Quaternion;
function "-" (Left, Right : Quaternion) return Quaternion;
function "*" (Left : Quaternion; Right : Real) return Quaternion;
function "*" (Left : Real; Right : Quaternion) return Quaternion;
function "*" (Left, Right : Quaternion) return Quaternion;
function Image (Left : Quaternion) return String;
end Quaternions;


The package implementation:

with Ada.Numerics.Generic_Elementary_Functions;
package body Quaternions is
package Elementary_Functions is
use Elementary_Functions;
function "abs" (Left : Quaternion) return Real is
begin
return Sqrt (Left.A**2 + Left.B**2 + Left.C**2 + Left.D**2);
end "abs";
function Conj (Left : Quaternion) return Quaternion is
begin
return (A => Left.A, B => -Left.B, C => -Left.C, D => -Left.D);
end Conj;
function "-" (Left : Quaternion) return Quaternion is
begin
return (A => -Left.A, B => -Left.B, C => -Left.C, D => -Left.D);
end "-";
function "+" (Left, Right : Quaternion) return Quaternion is
begin
return
(  A => Left.A + Right.A, B => Left.B + Right.B,
C => Left.C + Right.C, D => Left.D + Right.D
);
end "+";
function "-" (Left, Right : Quaternion) return Quaternion is
begin
return
(  A => Left.A - Right.A, B => Left.B - Right.B,
C => Left.C - Right.C, D => Left.D - Right.D
);
end "-";
function "*" (Left : Quaternion; Right : Real) return Quaternion is
begin
return
(  A => Left.A * Right, B => Left.B * Right,
C => Left.C * Right, D => Left.D * Right
);
end "*";
function "*" (Left : Real; Right : Quaternion) return Quaternion is
begin
return Right * Left;
end "*";
function "*" (Left, Right : Quaternion) return Quaternion is
begin
return
(  A => Left.A * Right.A - Left.B * Right.B - Left.C * Right.C - Left.D * Right.D,
B => Left.A * Right.B + Left.B * Right.A + Left.C * Right.D - Left.D * Right.C,
C => Left.A * Right.C - Left.B * Right.D + Left.C * Right.A + Left.D * Right.B,
D => Left.A * Right.D + Left.B * Right.C - Left.C * Right.B + Left.D * Right.A
);
end "*";
function Image (Left : Quaternion) return String is
begin
return Real'Image (Left.A) & " +"  &
Real'Image (Left.B) & "i +" &
Real'Image (Left.C) & "j +" &
Real'Image (Left.D) & "k";
end Image;
end Quaternions;


Test program:

with Ada.Text_IO;  use Ada.Text_IO;
with Quaternions;
procedure Test_Quaternion is
package Float_Quaternion is new Quaternions (Float);
use Float_Quaternion;
q  : Quaternion := (1.0, 2.0, 3.0, 4.0);
q1 : Quaternion := (2.0, 3.0, 4.0, 5.0);
q2 : Quaternion := (3.0, 4.0, 5.0, 6.0);
r  : Float      := 7.0;
begin
Put_Line ("q = "       & Image (q));
Put_Line ("q1 = "      & Image (q1));
Put_Line ("q2 = "      & Image (q2));
Put_Line ("r ="        & Float'Image (r));
Put_Line ("abs q ="    & Float'Image (abs q));
Put_Line ("abs q1 ="   & Float' Image (abs q1));
Put_Line ("abs q2 ="   & Float' Image (abs q2));
Put_Line ("-q = "      & Image (-q));
Put_Line ("conj q = "  & Image (Conj (q)));
Put_Line ("q1 + q2 = " & Image (q1 + q2));
Put_Line ("q2 + q1 = " & Image (q2 + q1));
Put_Line ("q * r = "   & Image (q * r));
Put_Line ("r * q = "   & Image (r * q));
Put_Line ("q1 * q2 = " & Image (q1 * q2));
Put_Line ("q2 * q1 = " & Image (q2 * q1));
end Test_Quaternion;

Output:
q =  1.00000E+00 + 2.00000E+00i + 3.00000E+00j + 4.00000E+00k
q1 =  2.00000E+00 + 3.00000E+00i + 4.00000E+00j + 5.00000E+00k
q2 =  3.00000E+00 + 4.00000E+00i + 5.00000E+00j + 6.00000E+00k
r = 7.00000E+00
abs q = 5.47723E+00
abs q1 = 7.34847E+00
abs q2 = 9.27362E+00
-q = -1.00000E+00 +-2.00000E+00i +-3.00000E+00j +-4.00000E+00k
conj q =  1.00000E+00 +-2.00000E+00i +-3.00000E+00j +-4.00000E+00k
q1 + q2 =  5.00000E+00 + 7.00000E+00i + 9.00000E+00j + 1.10000E+01k
q2 + q1 =  5.00000E+00 + 7.00000E+00i + 9.00000E+00j + 1.10000E+01k
q * r =  7.00000E+00 + 1.40000E+01i + 2.10000E+01j + 2.80000E+01k
r * q =  7.00000E+00 + 1.40000E+01i + 2.10000E+01j + 2.80000E+01k
q1 * q2 = -5.60000E+01 + 1.60000E+01i + 2.40000E+01j + 2.60000E+01k
q2 * q1 = -5.60000E+01 + 1.80000E+01i + 2.00000E+01j + 2.80000E+01k


## ALGOL 68

Translation of: python
Note: This specimen retains the original python coding style.
Works with: ALGOL 68 version Revision 1 - one minor extension to language used - PRAGMA READ, similar to C's #include directive.
Works with: ALGOL 68G version Any - tested with release algol68g-2.6.
File: prelude/Quaternion.a68
# -*- coding: utf-8 -*- #

COMMENT REQUIRES:
MODE QUATSCAL = REAL; # Scalar #
QUATSCAL quat small scal = small real;
END COMMENT

# PROVIDES: #
FORMAT quat scal fmt := $g(-0, 4)$;
FORMAT signed fmt = $b("+", "")f(quat scal fmt)$;

FORMAT quat fmt = $f(quat scal fmt)"+"f(quat scal fmt)"i+"f(quat scal fmt)"j+"f(quat scal fmt)"k"$;
FORMAT squat fmt = $f(signed fmt)f(signed fmt)"i"f(signed fmt)"j"f(signed fmt)"k"$;

MODE QUAT = STRUCT(QUATSCAL r, i, j, k);
QUAT i=(0, 1, 0, 0),
j=(0, 0, 1, 0),
k=(0, 0, 0, 1);

MODE QUATCOSCAL = UNION(INT, SHORT REAL, SHORT INT);
MODE QUATSUBSCAL = UNION(QUATCOSCAL, QUATSCAL);

MODE COMPLSCAL = STRUCT(QUATSCAL r, im);
# compatable but not the same #
MODE ISOQUAT = UNION([]REAL, []INT, []SHORT REAL, []SHORT INT, []QUATSCAL);
MODE COQUAT  = UNION(COMPLSCAL, QUATCOSCAL, ISOQUAT);
MODE SUBQUAT = UNION(COQUAT, QUAT); # subset is itself #

MODE QUATERNION = QUAT;

PROC quat fix type error = (QUAT quat, []STRING msg)BOOL: (
putf(stand error, ($"Type error:"$,$" "g$, msg, quat fmt, quat, $l$));
stop
);

COMMENT
For a list of coercions expected in A68 c.f.
* http://rosettacode.org/wiki/ALGOL_68#Coercion_.28casting.29 # ...

Pre-Strong context: Deproceduring, dereferencing & uniting. e.g. OP arguments
* soft(deproceduring for assignment),
* weak(dereferencing for slicing and OF selection),
* meek(dereferencing for indexing, enquiries and PROC calls),
* firm(uniting of OPerators),
Strong context only: widening (INT=>REAL=>COMPL), rowing (REAL=>[]REAL) & voiding
* strong(widening,rowing,voiding for identities/initialisations, arguments and casts et al)
Key points:
* arguments to OPerators do not widen or row!
* UNITING is permitted in OP/String ccontext.

There are 4 principle scenerios for most operators:
+---------------+-------------------------------+-------------------------------+
|  OP e.g. *    |  SCALar                       |  QUATernion                   |
+---------------+-------------------------------+-------------------------------+
|  SCALar       |  SCAL * SCAL ... inherit      |  SCAL * QUAT                  |
+---------------+-------------------------------+-------------------------------+
|  QUATernion   |  QUAT * SCAL                  |  QUAT * QUAT                  |
+---------------+-------------------------------+-------------------------------+
However this is compounded with SUBtypes of the SCALar & isomorphs the QUATernion,
e.g.
* SCAL may be a superset of SHORT REAL or INT - a widening coercion is required
* QUAT may be a superset eg of COMPL or [4]INT
* QUAT may be a structural isomorph eg of [4]REAL
+---------------+---------------+---------------+---------------+---------------+
|  OP e.g. *    |  SUBSCAL      |  SCALar       |  COQUAT       |  QUATernion   |
+---------------+---------------+---------------+---------------+---------------+
|  SUBSCAL      |                               |  inherit      |  SUBSCAT*QUAT |
+---------------+           inherit             +---------------+---------------+
|  SCALar       |                               |  inherit      |  SCAL * QUAT  |
+---------------+---------------+---------------+---------------+---------------+
|  COQUAT       |  inherit      |  inherit      |  inherit      |  COQUAT*QUAT  |
+---------------+---------------+---------------+---------------+---------------+
|  QUATernion   | QUAT*SUBSCAL  |  QUAT*SCAL    | QUAT * COQUAT |  QUAT * QUAT  |
+---------------+---------------+---------------+---------------+---------------+
Keypoint: if an EXPLICIT QUAT is not involved, then we can simple inherit, OR QUATINIT!
END COMMENT

MODE CLASSQUAT = STRUCT(
PROC (REF QUAT #new#, QUATSCAL #r#, QUATSCAL #i#, QUATSCAL #j#, QUATSCAL #k#)REF QUAT new,
PROC (REF QUAT #self#)QUAT conjugate,
PROC (REF QUAT #self#)QUATSCAL norm sq,
PROC (REF QUAT #self#)QUATSCAL norm,
PROC (REF QUAT #self#)QUAT reciprocal,
PROC (REF QUAT #self#)STRING repr,
PROC (REF QUAT #self#)QUAT neg,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT add,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT radd,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT sub,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT mul,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT rmul,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT div,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT rdiv,
PROC (REF QUAT #self#)QUAT exp
);

CLASSQUAT class quat = (

# PROC new =#(REF QUAT new, QUATSCAL r, i, j, k)REF QUAT: (
# 'Defaults all parts of quaternion to zero' #
IF new ISNT REF QUAT(NIL) THEN new ELSE HEAP QUAT FI := (r, i, j, k)
),

# PROC conjugate =#(REF QUAT self)QUAT:
(r OF self, -i OF self, -j OF self, -k OF self),

# PROC norm sq =#(REF QUAT self)QUATSCAL:
r OF self**2 + i OF self**2 + j OF self**2 + k OF self**2,

# PROC norm =#(REF QUAT self)QUATSCAL:
sqrt((norm sq OF class quat)(self)),

# PROC reciprocal =#(REF QUAT self)QUAT:(
QUATSCAL n2 = (norm sq OF class quat)(self);
QUAT conj = (conjugate OF class quat)(self);
(r OF conj/n2, i OF conj/n2, j OF conj/n2, k OF conj/n2)
),

# PROC repr =#(REF QUAT self)STRING: (
# 'Shorter form of Quaternion as string' #
FILE f; STRING s; associate(f, s);
putf(f, (squat fmt, r OF self>=0, r OF self,
i OF self>=0, i OF self, j OF self>=0, j OF self, k OF self>=0, k OF self));
close(f);
s
),

# PROC neg =#(REF QUAT self)QUAT:
(-r OF self, -i OF self, -j OF self, -k OF self),

# PROC add =#(REF QUAT self, SUBQUAT other)QUAT:
CASE other IN
(QUAT other): (r OF self + r OF other, i OF self + i OF other, j OF self + j OF other, k OF self + k OF other),
(QUATSUBSCAL other): (r OF self + QUATSCALINIT other, i OF self, j OF self, k OF self)
OUT IF quat fix type error(SKIP,"in add") THEN SKIP ELSE stop FI
ESAC,

# PROC radd =#(REF QUAT self, SUBQUAT other)QUAT:

# PROC sub =#(REF QUAT self, SUBQUAT other)QUAT:
CASE other IN
(QUAT other): (r OF self - r OF other, i OF self - i OF other, j OF self - j OF other, k OF self - k OF other),
(QUATSCAL other): (r OF self - other, i OF self, j OF self, k OF self)
OUT IF quat fix type error(self,"in sub") THEN SKIP ELSE stop FI
ESAC,

# PROC mul =#(REF QUAT self, SUBQUAT other)QUAT:
CASE other IN
(QUAT other):(
r OF self*r OF other - i OF self*i  OF other - j OF self*j  OF other - k OF self*k  OF other,
r OF self*i  OF other + i OF self*r OF other + j OF self*k  OF other - k OF self*j  OF other,
r OF self*j  OF other - i OF self*k  OF other + j OF self*r OF other + k OF self*i  OF other,
r OF self*k  OF other + i OF self*j  OF other - j OF self*i  OF other + k OF self*r OF other
),
(QUATSCAL other): ( r OF self * other, i OF self * other, j OF self * other, k OF self * other)
OUT IF quat fix type error(self,"in mul") THEN SKIP ELSE stop FI
ESAC,

# PROC rmul =#(REF QUAT self, SUBQUAT other)QUAT:
CASE other IN
(QUAT other): (mul OF class quat)(LOC QUAT := other, self),
(QUATSCAL other): (mul OF class quat)(self, other)
OUT IF quat fix type error(self,"in rmul") THEN SKIP ELSE stop FI
ESAC,

# PROC div =#(REF QUAT self, SUBQUAT other)QUAT:
CASE other IN
(QUAT other): (mul OF class quat)(self, (reciprocal OF class quat)(LOC QUAT := other)),
(QUATSCAL other): (mul OF class quat)(self, 1/other)
OUT IF quat fix type error(self,"in div") THEN SKIP ELSE stop FI
ESAC,

# PROC rdiv =#(REF QUAT self, SUBQUAT other)QUAT:
CASE other IN
(QUAT other): (div OF class quat)(LOC QUAT := other, self),
(QUATSCAL other): (div OF class quat)(LOC QUAT := (other, 0, 0, 0), self)
OUT IF quat fix type error(self,"in rdiv") THEN SKIP ELSE stop FI
ESAC,

# PROC exp =#(REF QUAT self)QUAT: (
QUAT fac := self;
QUAT sum := 1.0 + fac;
FOR i FROM 2 TO bits width WHILE ABS(fac + quat small scal) /= quat small scal DO
VOID(sum +:= (fac *:= self / ##QUATSCAL(i)))
OD;
sum
)
);

PRIO INIT = 1;
OP QUATSCALINIT = (QUATSUBSCAL scal)QUATSCAL:
CASE scal IN
(INT scal): scal,
(SHORT INT scal): scal,
(SHORT REAL scal): scal
OUT IF quat fix type error(SKIP,"in QUATSCALINIT") THEN SKIP ELSE stop FI
ESAC;

OP INIT = (REF QUAT new, SUBQUAT from)REF QUAT:
new :=
CASE from IN
(QUATSUBSCAL scal):(QUATSCALINIT scal, 0, 0, 0)
#(COQUAT rijk):(new OF class quat)(LOC QUAT := new, rijk[1], rijk[2], rijk[3], rijk[4]),#
OUT IF quat fix type error(SKIP,"in INIT") THEN SKIP ELSE stop FI
ESAC;

OP QUATINIT = (COQUAT lhs)REF QUAT: (HEAP QUAT)INIT lhs;

OP +    = (QUAT q)QUAT:   q,
-    = (QUAT q)QUAT:   (neg  OF class quat)(LOC QUAT := q),
CONJ = (QUAT q)QUAT:   (conjugate OF class quat)(LOC QUAT := q),
ABS  = (QUAT q)QUATSCAL:   (norm OF class quat)(LOC QUAT := q),
REPR = (QUAT q)STRING: (repr OF class quat)(LOC QUAT := q);
# missing: Diadic: I, J, K END #

OP +:= = (REF QUAT a, QUAT b)QUAT: a:=( add OF class quat)(a, b),
+:= = (REF QUAT a, COQUAT b)QUAT: a:=( add OF class quat)(a, b),
+=: = (QUAT a, REF QUAT b)QUAT: b:=(radd OF class quat)(b, a),
+=: = (COQUAT a, REF QUAT b)QUAT: b:=(radd OF class quat)(b, a);
# missing: Worthy PLUSAB, PLUSTO for SHORT/LONG INT QUATSCAL & COMPL #

OP -:= = (REF QUAT a, QUAT b)QUAT: a:=( sub OF class quat)(a, b),
-:= = (REF QUAT a, COQUAT b)QUAT: a:=( sub OF class quat)(a, b);
# missing: Worthy MINUSAB for SHORT/LONG INT ##COQUAT & COMPL #

PRIO *=: = 1, /=: = 1;
OP *:= = (REF QUAT a, QUAT b)QUAT: a:=( mul OF class quat)(a, b),
*:= = (REF QUAT a, COQUAT b)QUAT: a:=( mul OF class quat)(a, b),
*=: = (QUAT a, REF QUAT b)QUAT: b:=(rmul OF class quat)(b, a),
*=: = (COQUAT a, REF QUAT b)QUAT: b:=(rmul OF class quat)(b, a);
# missing: Worthy TIMESAB, TIMESTO for SHORT/LONG INT ##COQUAT & COMPL #

OP /:= = (REF QUAT a, QUAT b)QUAT: a:=( div OF class quat)(a, b),
/:= = (REF QUAT a, COQUAT b)QUAT: a:=( div OF class quat)(a, b),
/=: = (QUAT a, REF QUAT b)QUAT: b:=(rdiv OF class quat)(b, a),
/=: = (COQUAT a, REF QUAT b)QUAT: b:=(rdiv OF class quat)(b, a);
# missing: Worthy OVERAB, OVERTO for SHORT/LONG INT ##COQUAT & COMPL #

OP + = (QUAT a, b)QUAT:      ( add OF class quat)(LOC QUAT := a, b),
+ = (QUAT a, COQUAT b)QUAT: ( add OF class quat)(LOC QUAT := a, b),
+ = (COQUAT a, QUAT b)QUAT: (radd OF class quat)(LOC QUAT := b, a);

OP - = (QUAT a, b)QUAT:      ( sub OF class quat)(LOC QUAT := a, b),
- = (QUAT a, COQUAT b)QUAT: ( sub OF class quat)(LOC QUAT := a, b),
- = (COQUAT a, QUAT b)QUAT:-( sub OF class quat)(LOC QUAT := b, a);

OP * = (QUAT a, b)QUAT:      ( mul OF class quat)(LOC QUAT := a, b),
* = (QUAT a, COQUAT b)QUAT: ( mul OF class quat)(LOC QUAT := a, b),
* = (COQUAT a, QUAT b)QUAT: (rmul OF class quat)(LOC QUAT := b, a);

OP / = (QUAT a, b)QUAT:      ( div OF class quat)(LOC QUAT := a, b),
/ = (QUAT a, COQUAT b)QUAT: ( div OF class quat)(LOC QUAT := a, b),
/ = (COQUAT a, QUAT b)QUAT:
( div OF class quat)(LOC QUAT := QUATINIT 1, a);

PROC quat exp = (QUAT q)QUAT:   (exp OF class quat)(LOC QUAT := q);

SKIP # missing: quat arc{sin, cos, tan}h, log, exp, ln etc END #
File: test/Quaternion.a68
#!/usr/bin/a68g --script #
# -*- coding: utf-8 -*- #

# REQUIRES: #
MODE QUATSCAL = REAL; # Scalar #
QUATSCAL quat small scal = small real;

test:(
REAL r = 7;
QUAT q  = (1, 2, 3, 4),
q1 = (2, 3, 4, 5),
q2 = (3, 4, 5, 6);

printf((
$"r = " f(quat scal fmt)l$, r,
$"q = " f(quat fmt)l$, q,
$"q1 = " f(quat fmt)l$, q1,
$"q2 = " f(quat fmt)l$, q2,
$"ABS q = " f(quat scal fmt)", "$, ABS q,
$"ABS q1 = " f(quat scal fmt)", "$, ABS q1,
$"ABS q2 = " f(quat scal fmt)l$, ABS q2,
$"-q = " f(quat fmt)l$, -q,
$"CONJ q = " f(quat fmt)l$, CONJ q,
$"r + q = " f(quat fmt)l$, r + q,
$"q + r = " f(quat fmt)l$, q + r,
$"q1 + q2 = "f(quat fmt)l$, q1 + q2,
$"q2 + q1 = "f(quat fmt)l$, q2 + q1,
$"q * r = " f(quat fmt)l$, q * r,
$"r * q = " f(quat fmt)l$, r * q,
$"q1 * q2 = "f(quat fmt)l$, q1 * q2,
$"q2 * q1 = "f(quat fmt)l$, q2 * q1
));

CO
$"ASSERT q1 * q2 != q2 * q1 = "f(quat fmt)l$, ASSERT q1 * q2 != q2 * q1, $l$;
END CO

printf((
$"i*i = " f(quat fmt)l$, i*i,
$"j*j = " f(quat fmt)l$, j*j,
$"k*k = " f(quat fmt)l$, k*k,
$"i*j*k = " f(quat fmt)l$, i*j*k,
$"q1 / q2 = " f(quat fmt)l$, q1 / q2,
$"q1 / q2 * q2 = "f(quat fmt)l$, q1 / q2 * q2,
$"q2 * q1 / q2 = "f(quat fmt)l$, q2 * q1 / q2,
$"1/q1 * q1 = " f(quat fmt)l$, 1.0/q1 * q1,
$"q1 / q1 = " f(quat fmt)l$, q1 / q1,
$"quat exp(pi * i) = " f(quat fmt)l$, quat exp(pi * i),
$"quat exp(pi * j) = " f(quat fmt)l$, quat exp(pi * j),
$"quat exp(pi * k) = " f(quat fmt)l$, quat exp(pi * k)
));
print((REPR(-q1*q2), ", ", REPR(-q2*q1), new line))
)
Output:
r = 7.0000
q = 1.0000+2.0000i+3.0000j+4.0000k
q1 = 2.0000+3.0000i+4.0000j+5.0000k
q2 = 3.0000+4.0000i+5.0000j+6.0000k
ABS q = 5.4772, ABS q1 = 7.3485, ABS q2 = 9.2736
-q = -1.0000+-2.0000i+-3.0000j+-4.0000k
CONJ q = 1.0000+-2.0000i+-3.0000j+-4.0000k
r + q = 8.0000+2.0000i+3.0000j+4.0000k
q + r = 8.0000+2.0000i+3.0000j+4.0000k
q1 + q2 = 5.0000+7.0000i+9.0000j+11.0000k
q2 + q1 = 5.0000+7.0000i+9.0000j+11.0000k
q * r = 7.0000+14.0000i+21.0000j+28.0000k
r * q = 7.0000+14.0000i+21.0000j+28.0000k
q1 * q2 = -56.0000+16.0000i+24.0000j+26.0000k
q2 * q1 = -56.0000+18.0000i+20.0000j+28.0000k
i*i = -1.0000+.0000i+.0000j+.0000k
j*j = -1.0000+.0000i+.0000j+.0000k
k*k = -1.0000+.0000i+.0000j+.0000k
i*j*k = -1.0000+.0000i+.0000j+.0000k
q1 / q2 = .7907+.0233i+-.0000j+.0465k
q1 / q2 * q2 = 2.0000+3.0000i+4.0000j+5.0000k
q2 * q1 / q2 = 2.0000+3.4651i+3.9070j+4.7674k
1/q1 * q1 = 2.0000+3.0000i+4.0000j+5.0000k
q1 / q1 = 1.0000+.0000i+.0000j+.0000k
quat exp(pi * i) = -1.0000+.0000i+.0000j+.0000k
quat exp(pi * j) = -1.0000+.0000i+.0000j+.0000k
quat exp(pi * k) = -1.0000+.0000i+.0000j+.0000k
+56.0000-16.0000i-24.0000j-26.0000k, +56.0000-18.0000i-20.0000j-28.0000k


## ALGOL W

begin
% Quaternion record type                                                 %
record Quaternion ( real a, b, c, d );

% returns the norm of the specified quaternion                           %
real procedure normQ ( reference(Quaternion) value q ) ;
sqrt( (a(q) * a(q)) + (b(q) * b(q)) + (c(q) * c(q)) + (d(q) * d(q)) );

% returns the negative of the specified quaternion                       %
reference(Quaternion) procedure negQ ( reference(Quaternion) value q ) ;
Quaternion( - a(q), - b(q), - c(q), - d(q) );

% returns the conjugate of the specified quaternion                      %
reference(Quaternion) procedure conjQ ( reference(Quaternion) value q ) ;
Quaternion(   a(q), - b(q), - c(q), - d(q) );

% returns the sum of a real and a quaternion                             %
reference(Quaternion) procedure addRQ ( real                  value r
; reference(Quaternion) value q
) ;
Quaternion( r + a(q), b(q), c(q), d(q) );

% returns the sum of a quaternion and a real                             %
reference(Quaternion) procedure addQR ( reference(Quaternion) value q
; real                  value r
) ;
Quaternion( r + a(q), b(q), c(q), d(q) );

% returns the sum of the specified quaternions                           %
reference(Quaternion) procedure addQQ ( reference(Quaternion) value q1
; reference(Quaternion) value q2
) ;
Quaternion( a(q1) + a(q2), b(q1) + b(q2), c(q1) + c(q2), d(q1) + d(q2) );

% returns the specified quaternion multiplied by a real                  %
reference(Quaternion) procedure mulQR ( reference(Quaternion) value q
; real                  value r
) ;
Quaternion( r * a(q), r * b(q), r * c(q), r * d(q) );

% returns a real multiplied by the specified quaternion                  %
reference(Quaternion) procedure mulRQ ( real                  value r
; reference(Quaternion) value q
) ;
mulQR( q, r );

% returns the Quaternion product of the specified quaternions            %
reference(Quaternion) procedure mulQQ( reference(Quaternion) value q1
; reference(Quaternion) value q2
) ;
Quaternion( (a(q1) * a(q2)) - (b(q1) * b(q2)) - (c(q1) * c(q2)) - (d(q1) * d(q2))
, (a(q1) * b(q2)) + (b(q1) * a(q2)) + (c(q1) * d(q2)) - (d(q1) * c(q2))
, (a(q1) * c(q2)) - (b(q1) * d(q2)) + (c(q1) * a(q2)) + (d(q1) * b(q2))
, (a(q1) * d(q2)) + (b(q1) * c(q2)) - (c(q1) * b(q2)) + (d(q1) * a(q2))
);

% returns true if the two quaternions are equal, false otherwise         %
logical procedure equalQ( reference(Quaternion) value q1
; reference(Quaternion) value q2
) ;
a(q1) = a(q2) and b(q1) = b(q2) and c(q1) = c(q2) and d(q1) = d(q2);

% writes a quaternion                                                    %
procedure writeonQ( reference(Quaternion) value q ) ;
writeon( "(", a(q), ", ", b(q), ", ", c(q), ", ", d(q), ")" );

% test q1q2 = q2q1                                                       %
reference(Quaternion) q, q1, q2;

q  := Quaternion( 1, 2, 3, 4 );
q1 := Quaternion( 2, 3, 4, 5 );
q2 := Quaternion( 3, 4, 5, 6 );

% set output format                                                      %
s_w := 0; r_format := "A"; r_w := 5; r_d := 1;

write( "      q:" );writeonQ( q );
write( "     q1:" );writeonQ( q1 );
write( "     q2:" );writeonQ( q2 );
write( "norm  q:" );writeon( normQ( q ) );
write( "norm q1:" );writeon( normQ( q1 ) );
write( "norm q2:" );writeon( normQ( q2 ) );

write( " conj q:" );writeonQ( conjQ( q ) );
write( "    - q:" );writeonQ( negQ( q ) );
write( "  7 + q:" );writeonQ( addRQ( 7, q ) );
write( "  q + 9:" );writeonQ( addQR( q, 9 ) );
write( " q + q1:" );writeonQ( addQQ( q, q1 ) );
write( "  3 * q:" );writeonQ( mulRQ( 3, q ) );
write( "  q * 4:" );writeonQ( mulQR( q, 4 ) );

% check that q1q2 not = q2q1                                             %
if equalQ( mulQQ( q1, q2 ), mulQQ( q2, q1 ) )
then write( "q1q2 = q2q1 ??" )
else write( "q1q2 <> q2q1" );

write( "   q1q2:" );writeonQ( mulQQ( q1, q2 ) );
write( "   q2q1:" );writeonQ( mulQQ( q2, q1 ) );

end.
Output:
      q:(  1.0,   2.0,   3.0,   4.0)
q1:(  2.0,   3.0,   4.0,   5.0)
q2:(  3.0,   4.0,   5.0,   6.0)
norm  q:  5.4
norm q1:  7.3
norm q2:  9.2
conj q:(  1.0,  -2.0,  -3.0,  -4.0)
- q:( -1.0,  -2.0,  -3.0,  -4.0)
7 + q:(  8.0,   2.0,   3.0,   4.0)
q + 9:( 10.0,   2.0,   3.0,   4.0)
q + q1:(  3.0,   5.0,   7.0,   9.0)
3 * q:(  3.0,   6.0,   9.0,  12.0)
q * 4:(  4.0,   8.0,  12.0,  16.0)
q1q2 <> q2q1
q1q2:(-56.0,  16.0,  24.0,  26.0)
q2q1:(-56.0,  18.0,  20.0,  28.0)


## AutoHotkey

Works with: AutoHotkey_L
(AutoHotkey1.1+)
q  := [1, 2, 3, 4]
q1 := [2, 3, 4, 5]
q2 := [3, 4, 5, 6]
r := 7

MsgBox, % "q = " PrintQ(q)
. "nq1 = " PrintQ(q1)
. "nq2 = " PrintQ(q2)
. "nr = " r
. "nNorm(q) = " Norm(q)
. "nNegative(q) = " PrintQ(Negative(q))
. "nConjugate(q) = " PrintQ(Conjugate(q))
. "nq + r = " PrintQ(AddR(q, r))
. "nq1 + q2 = " PrintQ(AddQ(q1, q2))
. "nq2 + q1 = " PrintQ(AddQ(q2, q1))
. "nqr = " PrintQ(MulR(q, r))
. "nq1q2 = " PrintQ(MulQ(q1, q2))
. "nq2q1 = " PrintQ(MulQ(q2, q1))

Norm(q) {
return sqrt(q[1]**2 + q[2]**2 + q[3]**2 + q[4]**2)
}

Negative(q) {
a := []
for k, v in q
a[A_Index] := v * -1
return a
}

Conjugate(q) {
a := []
for k, v in q
a[A_Index] := v * (A_Index = 1 ? 1 : -1)
return a
}

a := []
for k, v in q
a[A_Index] := v + (A_Index = 1 ? r : 0)
return a
}

a := []
for k, v in q1
a[A_Index] := v + q2[A_Index]
return a
}

MulR(q, r) {
a := []
for k, v in q
a[A_Index] := v * r
return a
}

MulQ(q, u) {
a := []
, a[1] := q[1]*u[1] - q[2]*u[2] - q[3]*u[3] - q[4]*u[4]
, a[2] := q[1]*u[2] + q[2]*u[1] + q[3]*u[4] - q[4]*u[3]
, a[3] := q[1]*u[3] - q[2]*u[4] + q[3]*u[1] + q[4]*u[2]
, a[4] := q[1]*u[4] + q[2]*u[3] - q[3]*u[2] + q[4]*u[1]
return a
}

PrintQ(q, b="(") {
for k, v in q
b .= v (A_Index = q.MaxIndex() ? ")" : ", ")
return b
}

Output:
q = (1, 2, 3, 4)
q1 = (2, 3, 4, 5)
q2 = (3, 4, 5, 6)
r = 7
Norm(q) = 5.477226
Negative(q) = (-1, -2, -3, -4)
Conjugate(q) = (1, -2, -3, -4)
q + r = (8, 2, 3, 4)
q1 + q2 = (5, 7, 9, 11)
q2 + q1 = (5, 7, 9, 11)
qr = (7, 14, 21, 28)
q1q2 = (-56, 16, 24, 26)
q2q1 = (-56, 18, 20, 28)

## Axiom

Axiom has built-in support for quaternions.

qi := quatern$Quaternion(Integer); Type: ((Integer,Integer,Integer,Integer) -> Quaternion(Integer)) q := qi(1,2,3,4); Type: Quaternion(Integer) q1 := qi(2,3,4,5); Type: Quaternion(Integer) q2 := qi(3,4,5,6); Type: Quaternion(Integer) r : Integer := 7; Type: Integer sqrt norm q +--+ (6) \|30 Type: AlgebraicNumber -q (7) - 1 - 2i - 3j - 4k Type: Quaternion(Integer) conjugate q (8) 1 - 2i - 3j - 4k Type: Quaternion(Integer) r + q (9) 8 + 2i + 3j + 4k Type: Quaternion(Integer) q1 + q2 (10) 5 + 7i + 9j + 11k Type: Quaternion(Integer) q*r (11) 7 + 14i + 21j + 28k Type: Quaternion(Integer) r*q (12) 7 + 14i + 21j + 28k Type: Quaternion(Integer) q1*q2 ~= q2*q1 (13) true Type: Boolean ## BASIC256 Works with: BASIC256 version 2.0.0.11 dim q(4) dim q1(4) dim q2(4) q[0] = 1: q[1] = 2: q[2] = 3: q[3] = 4 q1[0] = 2: q1[1] = 3: q1[2] = 4: q1[3] = 5 q2[0] = 3: q2[1] = 4: q2[2] = 5: q2[3] = 6 r = 7 function printq(q) return "("+q[0]+", "+q[1]+", "+q[2]+", "+q[3]+")" end function function q_equal(q1, q2) return q1[0]=q2[0] and q1[1]=q2[1] and q1[2]=q2[2] and q1[3]=q2[3] end function function q_norm(q) return sqr(q[0]*q[0]+q[1]*q[1]+q[2]*q[2]+q[3]*q[3]) end function function q_neg(q) dim result[4] result[0] = -q[0] result[1] = -q[1] result[2] = -q[2] result[3] = -q[3] return result end function function q_conj(q) dim result[4] result[0] = q[0] result[1] = -q[1] result[2] = -q[2] result[3] = -q[3] return result end function function q_addreal(q, r) dim result[4] result[0] = q[0]+r result[1] = q[1] result[2] = q[2] result[3] = q[3] return result end function function q_add(q1, q2) dim result[4] result[0] = q1[0]+q2[0] result[1] = q1[1]+q2[1] result[2] = q1[2]+q2[2] result[3] = q1[3]+q2[3] return result end function function q_mulreal(q, r) dim result[4] result[0] = q[0]*r result[1] = q[1]*r result[2] = q[2]*r result[3] = q[3]*r return result end function function q_mul(q1, q2) dim result[4] result[0] = q1[0]*q2[0]-q1[1]*q2[1]-q1[2]*q2[2]-q1[3]*q2[3] result[1] = q1[0]*q2[1]+q1[1]*q2[0]+q1[2]*q2[3]-q1[3]*q2[2] result[2] = q1[0]*q2[2]-q1[1]*q2[3]+q1[2]*q2[0]+q1[3]*q2[1] result[3] = q1[0]*q2[3]+q1[1]*q2[2]-q1[2]*q2[1]+q1[3]*q2[0] return result end function print "q = ";printq(q) print "q1 = ";printq(q1) print "q2 = ";printq(q2) print "r = "; r print "norm(q) = "; q_norm(q) print "neg(q) = ";printq(q_neg(q)) print "conjugate(q) = ";printq(q_conj(q)) print "q+r = ";printq(q_addreal(q,r)) print "q1+q2 = ";printq(q_add(q1,q2)) print "qr = ";printq(q_mulreal(q,r)) print "q1q2 = ";printq(q_mul(q1,q2)) print "q2q1 = ";printq(q_mul(q2,q1)) Output: q = (1, 2, 3, 4) q1 = (2, 3, 4, 5) q2 = (3, 4, 5, 6) r = 7 norm(q) = 5.47722557505 neg(q) = (-1, -2, -3, -4) conjugate(q) = (1, -2, -3, -4) q+r = (8, 2, 3, 4) q1+q2 = (5, 7, 9, 11) qr = (7, 14, 21, 28) q1q2 = (-56, 16, 24, 26) q2q1 = (-56, 18, 20, 28)  ## BBC BASIC Although BBC BASIC doesn't have native support for quaternions its array arithmetic provides all of the required operations either directly or very straightforwardly.  DIM q(3), q1(3), q2(3), t(3) q() = 1, 2, 3, 4 q1() = 2, 3, 4, 5 q2() = 3, 4, 5, 6 r = 7 PRINT "q = " FNq_show(q()) PRINT "q1 = " FNq_show(q1()) PRINT "q2 = " FNq_show(q2()) PRINT "r = "; r PRINT "norm(q) = "; FNq_norm(q()) t() = q() : PROCq_neg(t()) : PRINT "neg(q) = " FNq_show(t()) t() = q() : PROCq_conj(t()) : PRINT "conjugate(q) = " FNq_show(t()) t() = q() : PROCq_addreal(t(),r) : PRINT "q + r = " FNq_show(t()) t() = q1() : PROCq_add(t(),q2()) : PRINT "q1 + q2 = " FNq_show(t()) t() = q2() : PROCq_add(t(),q1()) : PRINT "q2 + q1 = " FNq_show(t()) t() = q() : PROCq_mulreal(t(),r) : PRINT "qr = " FNq_show(t()) t() = q1() : PROCq_mul(t(),q2()) : PRINT "q1q2 = " FNq_show(t()) t() = q2() : PROCq_mul(t(),q1()) : PRINT "q2q1 = " FNq_show(t()) END DEF FNq_norm(q()) = MOD(q()) DEF PROCq_neg(q()) : q() *= -1 : ENDPROC DEF PROCq_conj(q()) : q() *= -1 : q(0) *= -1 : ENDPROC DEF PROCq_addreal(q(), r) : q(0) += r : ENDPROC DEF PROCq_add(q(), r()) : q() += r() : ENDPROC DEF PROCq_mulreal(q(), r) : q() *= r : ENDPROC DEF PROCq_mul(q(), r()) : LOCAL s() : DIM s(3,3) s() = r(0), -r(1), -r(2), -r(3), r(1), r(0), r(3), -r(2), \ \ r(2), -r(3), r(0), r(1), r(3), r(2), -r(1), r(0) q() = s() . q() ENDPROC DEF FNq_show(q()) : LOCAL i%, a$ : a$= "(" FOR i% = 0 TO 3 : a$ += STR$(q(i%)) + ", " : NEXT = LEFT$(LEFT$(a$)) + ")"

Output:
q = (1, 2, 3, 4)
q1 = (2, 3, 4, 5)
q2 = (3, 4, 5, 6)
r = 7
norm(q) = 5.47722558
neg(q) = (-1, -2, -3, -4)
conjugate(q) = (1, -2, -3, -4)
q + r = (8, 2, 3, 4)
q1 + q2 = (5, 7, 9, 11)
q2 + q1 = (5, 7, 9, 11)
qr = (7, 14, 21, 28)
q1q2 = (-56, 16, 24, 26)
q2q1 = (-56, 18, 20, 28)


## C

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>

typedef struct quaternion
{
double q[4];
} quaternion_t;

quaternion_t *quaternion_new(void)
{
return malloc(sizeof(quaternion_t));
}

quaternion_t *quaternion_new_set(double q1,
double q2,
double q3,
double q4)
{
quaternion_t *q = malloc(sizeof(quaternion_t));
if (q != NULL) {
q->q[0] = q1; q->q[1] = q2; q->q[2] = q3; q->q[3] = q4;
}
return q;
}

void quaternion_copy(quaternion_t *r, quaternion_t *q)
{
size_t i;

if (r == NULL || q == NULL) return;
for(i = 0; i < 4; i++) r->q[i] = q->q[i];
}

double quaternion_norm(quaternion_t *q)
{
size_t i;
double r = 0.0;

if (q == NULL) {
fprintf(stderr, "NULL quaternion in norm\n");
return 0.0;
}

for(i = 0; i < 4; i++) r += q->q[i] * q->q[i];
return sqrt(r);
}

void quaternion_neg(quaternion_t *r, quaternion_t *q)
{
size_t i;

if (q == NULL || r == NULL) return;
for(i = 0; i < 4; i++) r->q[i] = -q->q[i];
}

void quaternion_conj(quaternion_t *r, quaternion_t *q)
{
size_t i;

if (q == NULL || r == NULL) return;
r->q[0] = q->q[0];
for(i = 1; i < 4; i++) r->q[i] = -q->q[i];
}

void quaternion_add_d(quaternion_t *r, quaternion_t *q, double d)
{
if (q == NULL || r == NULL) return;
quaternion_copy(r, q);
r->q[0] += d;
}

void quaternion_add(quaternion_t *r, quaternion_t *a, quaternion_t *b)
{
size_t i;

if (r == NULL || a == NULL || b == NULL) return;
for(i = 0; i < 4; i++) r->q[i] = a->q[i] + b->q[i];
}

void quaternion_mul_d(quaternion_t *r, quaternion_t *q, double d)
{
size_t i;

if (r == NULL || q == NULL) return;
for(i = 0; i < 4; i++) r->q[i] = q->q[i] * d;
}

bool quaternion_equal(quaternion_t *a, quaternion_t *b)
{
size_t i;

for(i = 0; i < 4; i++) if (a->q[i] != b->q[i]) return false;
return true;
}

#define A(N) (a->q[(N)])
#define B(N) (b->q[(N)])
#define R(N) (r->q[(N)])
void quaternion_mul(quaternion_t *r, quaternion_t *a, quaternion_t *b)
{
size_t i;
double ri = 0.0;

if (r == NULL || a == NULL || b == NULL) return;
R(0) = A(0)*B(0) - A(1)*B(1) - A(2)*B(2) - A(3)*B(3);
R(1) = A(0)*B(1) + A(1)*B(0) + A(2)*B(3) - A(3)*B(2);
R(2) = A(0)*B(2) - A(1)*B(3) + A(2)*B(0) + A(3)*B(1);
R(3) = A(0)*B(3) + A(1)*B(2) - A(2)*B(1) + A(3)*B(0);
}
#undef A
#undef B
#undef R

void quaternion_print(quaternion_t *q)
{
if (q == NULL) return;
printf("(%lf, %lf, %lf, %lf)\n",
q->q[0], q->q[1], q->q[2], q->q[3]);
}

int main()
{
size_t i;
double d = 7.0;
quaternion_t *q[3];
quaternion_t *r  = quaternion_new();

quaternion_t *qd = quaternion_new_set(7.0, 0.0, 0.0, 0.0);
q[0] = quaternion_new_set(1.0, 2.0, 3.0, 4.0);
q[1] = quaternion_new_set(2.0, 3.0, 4.0, 5.0);
q[2] = quaternion_new_set(3.0, 4.0, 5.0, 6.0);

printf("r = %lf\n", d);

for(i = 0; i < 3; i++) {
printf("q[%u] = ", i);
quaternion_print(q[i]);
printf("abs q[%u] = %lf\n", i, quaternion_norm(q[i]));
}

printf("-q[0] = ");
quaternion_neg(r, q[0]);
quaternion_print(r);

printf("conj q[0] = ");
quaternion_conj(r, q[0]);
quaternion_print(r);

printf("q[1] + q[2] = ");
quaternion_print(r);

printf("q[2] + q[1] = ");
quaternion_print(r);

printf("q[0] * r = ");
quaternion_mul_d(r, q[0], d);
quaternion_print(r);

printf("q[0] * (r, 0, 0, 0) = ");
quaternion_mul(r, q[0], qd);
quaternion_print(r);

printf("q[1] * q[2] = ");
quaternion_mul(r, q[1], q[2]);
quaternion_print(r);

printf("q[2] * q[1] = ");
quaternion_mul(r, q[2], q[1]);
quaternion_print(r);

free(q[0]); free(q[1]); free(q[2]); free(r);
return EXIT_SUCCESS;
}


## C#

using System;

struct Quaternion : IEquatable<Quaternion>
{
public readonly double A, B, C, D;

public Quaternion(double a, double b, double c, double d)
{
this.A = a;
this.B = b;
this.C = c;
this.D = d;
}

public double Norm()
{
return Math.Sqrt(A * A + B * B + C * C + D * D);
}

public static Quaternion operator -(Quaternion q)
{
return new Quaternion(-q.A, -q.B, -q.C, -q.D);
}

public Quaternion Conjugate()
{
return new Quaternion(A, -B, -C, -D);
}

// implicit conversion takes care of real*quaternion and real+quaternion
public static implicit operator Quaternion(double d)
{
return new Quaternion(d, 0, 0, 0);
}

public static Quaternion operator +(Quaternion q1, Quaternion q2)
{
return new Quaternion(q1.A + q2.A, q1.B + q2.B, q1.C + q2.C, q1.D + q2.D);
}

public static Quaternion operator *(Quaternion q1, Quaternion q2)
{
return new Quaternion(
q1.A * q2.A - q1.B * q2.B - q1.C * q2.C - q1.D * q2.D,
q1.A * q2.B + q1.B * q2.A + q1.C * q2.D - q1.D * q2.C,
q1.A * q2.C - q1.B * q2.D + q1.C * q2.A + q1.D * q2.B,
q1.A * q2.D + q1.B * q2.C - q1.C * q2.B + q1.D * q2.A);
}

public static bool operator ==(Quaternion q1, Quaternion q2)
{
return q1.A == q2.A && q1.B == q2.B && q1.C == q2.C && q1.D == q2.D;
}

public static bool operator !=(Quaternion q1, Quaternion q2)
{
return !(q1 == q2);
}

#region Object Members

public override bool Equals(object obj)
{
if (obj is Quaternion)
return Equals((Quaternion)obj);

return false;
}

public override int GetHashCode()
{
return A.GetHashCode() ^ B.GetHashCode() ^ C.GetHashCode() ^ D.GetHashCode();
}

public override string ToString()
{
return string.Format("Q({0}, {1}, {2}, {3})", A, B, C, D);
}

#endregion

#region IEquatable<Quaternion> Members

public bool Equals(Quaternion other)
{
return other == this;
}

#endregion
}


Demonstration:

using System;

static class Program
{
static void Main(string[] args)
{
Quaternion q = new Quaternion(1, 2, 3, 4);
Quaternion q1 = new Quaternion(2, 3, 4, 5);
Quaternion q2 = new Quaternion(3, 4, 5, 6);
double r = 7;

Console.WriteLine("q = {0}", q);
Console.WriteLine("q1 = {0}", q1);
Console.WriteLine("q2 = {0}", q2);
Console.WriteLine("r = {0}", r);

Console.WriteLine("q.Norm() = {0}", q.Norm());
Console.WriteLine("q1.Norm() = {0}", q1.Norm());
Console.WriteLine("q2.Norm() = {0}", q2.Norm());

Console.WriteLine("-q = {0}", -q);
Console.WriteLine("q.Conjugate() = {0}", q.Conjugate());

Console.WriteLine("q + r = {0}", q + r);
Console.WriteLine("q1 + q2 = {0}", q1 + q2);
Console.WriteLine("q2 + q1 = {0}", q2 + q1);

Console.WriteLine("q * r = {0}", q * r);
Console.WriteLine("q1 * q2 = {0}", q1 * q2);
Console.WriteLine("q2 * q1 = {0}", q2 * q1);

Console.WriteLine("q1*q2 {0} q2*q1", (q1 * q2) == (q2 * q1) ? "==" : "!=");
}
}

Output:
q = Q(1, 2, 3, 4)
q1 = Q(2, 3, 4, 5)
q2 = Q(3, 4, 5, 6)
r = 7
q.Norm() = 5.47722557505166
q1.Norm() = 7.34846922834953
q2.Norm() = 9.2736184954957
-q = Q(-1, -2, -3, -4)
q.Conjugate() = Q(1, -2, -3, -4)
q + r = Q(8, 2, 3, 4)
q1 + q2 = Q(5, 7, 9, 11)
q2 + q1 = Q(5, 7, 9, 11)
q * r = Q(7, 14, 21, 28)
q1 * q2 = Q(-56, 16, 24, 26)
q2 * q1 = Q(-56, 18, 20, 28)
q1*q2 != q2*q1

## C++

This example uses templates to provide the underlying data-type, and includes several extra functions and constructors that often come up when using quaternions.

#include <iostream>
using namespace std;

template<class T = double>
class Quaternion
{
public:
T w, x, y, z;

// Numerical constructor
Quaternion(const T &w, const T &x, const T &y, const T &z): w(w), x(x), y(y), z(z) {};
Quaternion(const T &x, const T &y, const T &z): w(T()), x(x), y(y), z(z) {}; // For 3-rotations
Quaternion(const T &r): w(r), x(T()), y(T()), z(T()) {};
Quaternion(): w(T()), x(T()), y(T()), z(T()) {};

// Copy constructor and assignment
Quaternion(const Quaternion &q): w(q.w), x(q.x), y(q.y), z(q.z) {};
Quaternion& operator=(const Quaternion &q) { w=q.w; x=q.x; y=q.y; z=q.z; return *this; }

// Unary operators
Quaternion operator-() const { return Quaternion(-w, -x, -y, -z); }
Quaternion operator~() const { return Quaternion(w, -x, -y, -z); } // Conjugate

// Norm-squared. SQRT would have to be made generic to be used here
T normSquared() const { return w*w + x*x + y*y + z*z; }

// In-place operators
Quaternion& operator+=(const T &r)
{ w += r; return *this; }
Quaternion& operator+=(const Quaternion &q)
{ w += q.w; x += q.x; y += q.y; z += q.z; return *this; }

Quaternion& operator-=(const T &r)
{ w -= r; return *this; }
Quaternion& operator-=(const Quaternion &q)
{ w -= q.w; x -= q.x; y -= q.y; z -= q.z; return *this; }

Quaternion& operator*=(const T &r)
{ w *= r; x *= r; y *= r; z *= r; return *this; }
Quaternion& operator*=(const Quaternion &q)
{
T oldW(w), oldX(x), oldY(y), oldZ(z);
w = oldW*q.w - oldX*q.x - oldY*q.y - oldZ*q.z;
x = oldW*q.x + oldX*q.w + oldY*q.z - oldZ*q.y;
y = oldW*q.y + oldY*q.w + oldZ*q.x - oldX*q.z;
z = oldW*q.z + oldZ*q.w + oldX*q.y - oldY*q.x;
return *this;
}

Quaternion& operator/=(const T &r)
{ w /= r; x /= r; y /= r; z /= r; return *this; }
Quaternion& operator/=(const Quaternion &q)
{
T oldW(w), oldX(x), oldY(y), oldZ(z), n(q.normSquared());
w = (oldW*q.w + oldX*q.x + oldY*q.y + oldZ*q.z) / n;
x = (oldX*q.w - oldW*q.x + oldY*q.z - oldZ*q.y) / n;
y = (oldY*q.w - oldW*q.y + oldZ*q.x - oldX*q.z) / n;
z = (oldZ*q.w - oldW*q.z + oldX*q.y - oldY*q.x) / n;
return *this;
}

// Binary operators based on in-place operators
Quaternion operator+(const T &r) const { return Quaternion(*this) += r; }
Quaternion operator+(const Quaternion &q) const { return Quaternion(*this) += q; }
Quaternion operator-(const T &r) const { return Quaternion(*this) -= r; }
Quaternion operator-(const Quaternion &q) const { return Quaternion(*this) -= q; }
Quaternion operator*(const T &r) const { return Quaternion(*this) *= r; }
Quaternion operator*(const Quaternion &q) const { return Quaternion(*this) *= q; }
Quaternion operator/(const T &r) const { return Quaternion(*this) /= r; }
Quaternion operator/(const Quaternion &q) const { return Quaternion(*this) /= q; }

// Comparison operators, as much as they make sense
bool operator==(const Quaternion &q) const
{ return (w == q.w) && (x == q.x) && (y == q.y) && (z == q.z); }
bool operator!=(const Quaternion &q) const { return !operator==(q); }

// The operators above allow quaternion op real. These allow real op quaternion.
// Uses the above where appropriate.
template<class T> friend Quaternion<T> operator+(const T &r, const Quaternion<T> &q);
template<class T> friend Quaternion<T> operator-(const T &r, const Quaternion<T> &q);
template<class T> friend Quaternion<T> operator*(const T &r, const Quaternion<T> &q);
template<class T> friend Quaternion<T> operator/(const T &r, const Quaternion<T> &q);

// Allows cout << q
template<class T> friend ostream& operator<<(ostream &io, const Quaternion<T> &q);
};

// Friend functions need to be outside the actual class definition
template<class T>
Quaternion<T> operator+(const T &r, const Quaternion<T> &q)
{ return q+r; }

template<class T>
Quaternion<T> operator-(const T &r, const Quaternion<T> &q)
{ return Quaternion<T>(r-q.w, q.x, q.y, q.z); }

template<class T>
Quaternion<T> operator*(const T &r, const Quaternion<T> &q)
{ return q*r; }

template<class T>
Quaternion<T> operator/(const T &r, const Quaternion<T> &q)
{
T n(q.normSquared());
return Quaternion(r*q.w/n, -r*q.x/n, -r*q.y/n, -r*q.z/n);
}

template<class T>
ostream& operator<<(ostream &io, const Quaternion<T> &q)
{
io << q.w;
(q.x < T()) ? (io << " - " << (-q.x) << "i") : (io << " + " << q.x << "i");
(q.y < T()) ? (io << " - " << (-q.y) << "j") : (io << " + " << q.y << "j");
(q.z < T()) ? (io << " - " << (-q.z) << "k") : (io << " + " << q.z << "k");
return io;
}


Test program:

int main()
{
Quaternion<> q0(1, 2, 3, 4);
Quaternion<> q1(2, 3, 4, 5);
Quaternion<> q2(3, 4, 5, 6);
double r = 7;

cout << "q0:      " << q0 << endl;
cout << "q1:      " << q1 << endl;
cout << "q2:      " << q2 << endl;
cout << "r:       " << r << endl;
cout << endl;
cout << "-q0:     " << -q0 << endl;
cout << "~q0:     " << ~q0 << endl;
cout << endl;
cout << "r * q0:  " << r*q0 << endl;
cout << "r + q0:  " << r+q0 << endl;
cout << "q0 / r:  " << q0/r << endl;
cout << "q0 - r:  " << q0-r << endl;
cout << endl;
cout << "q0 + q1: " << q0+q1 << endl;
cout << "q0 - q1: " << q0-q1 << endl;
cout << "q0 * q1: " << q0*q1 << endl;
cout << "q0 / q1: " << q0/q1 << endl;
cout << endl;
cout << "q0 * ~q0:     " << q0*~q0 << endl;
cout << "q0 + q1*q2:   " << q0+q1*q2 << endl;
cout << "(q0 + q1)*q2: " << (q0+q1)*q2 << endl;
cout << "q0*q1*q2:     " << q0*q1*q2 << endl;
cout << "(q0*q1)*q2:   " << (q0*q1)*q2 << endl;
cout << "q0*(q1*q2):   " << q0*(q1*q2) << endl;
cout << endl;
cout << "||q0||:  " << sqrt(q0.normSquared()) << endl;
cout << endl;
cout << "q0*q1 - q1*q0: " << (q0*q1 - q1*q0) << endl;

// Other base types
Quaternion<int> q5(2), q6(3);
cout << endl << q5*q6 << endl;
}

Output:
q0:      1 + 2i + 3j + 4k
q1:      2 + 3i + 4j + 5k
q2:      3 + 4i + 5j + 6k
r:       7

-q0:     -1 - 2i - 3j - 4k
~q0:     1 - 2i - 3j - 4k

r * q0:  7 + 14i + 21j + 28k
r + q0:  8 + 2i + 3j + 4k
q0 / r:  0.142857 + 0.285714i + 0.428571j + 0.571429k
q0 - r:  -6 + 2i + 3j + 4k

q0 + q1: 3 + 5i + 7j + 9k
q0 - q1: -1 - 1i - 1j - 1k
q0 * q1: -36 + 6i + 12j + 12k
q0 / q1: 0.740741 + 0i + 0.0740741j + 0.037037k

q0 * ~q0:     30 + 0i + 0j + 0k
q0 + q1*q2:   -55 + 18i + 27j + 30k
(q0 + q1)*q2: -100 + 24i + 42j + 42k
q0*q1*q2:     -264 - 114i - 132j - 198k
(q0*q1)*q2:   -264 - 114i - 132j - 198k
q0*(q1*q2):   -264 - 114i - 132j - 198k

||q0||:  5.47723

q0*q1 - q1*q0: 0 - 2i + 4j - 2k

6 + 0i + 0j + 0k


## CLU

quat = cluster is make, minus, norm, conj, add, addr, mul, mulr,
equal, get_a, get_b, get_c, get_d, q_form
rep = struct[a,b,c,d: real]

make = proc (a,b,c,d: real) returns (cvt)
return (rep${a:a, b:b, c:c, d:d}) end make minus = proc (q: cvt) returns (cvt) return (down(make(-q.a, -q.b, -q.c, -q.d))) end minus norm = proc (q: cvt) returns (real) return ((q.a**2.0 + q.b**2.0 + q.c**2.0 + q.d**2.0) ** 0.5) end norm conj = proc (q: cvt) returns (cvt) return (down(make(q.a, -q.b, -q.c, q.d))) end conj add = proc (q1, q2: cvt) returns (cvt) return (down(make(q1.a+q2.a, q1.b+q2.b, q1.c+q2.c, q1.d+q2.d))) end add addr = proc (q: cvt, r: real) returns (cvt) return (down(make(q.a+r, q.b+r, q.c+r, q.d+r))) end addr mul = proc (q1, q2: cvt) returns (cvt) a: real := q1.a*q2.a - q1.b*q2.b - q1.c*q2.c - q1.d*q2.d b: real := q1.a*q2.b + q1.b*q2.a + q1.c*q2.d - q1.d*q2.c c: real := q1.a*q2.c - q1.b*q2.d + q1.c*q2.a + q1.d*q2.b d: real := q1.a*q2.d + q1.b*q2.c - q1.c*q2.b + q1.d*q2.a return (down(make(a,b,c,d))) end mul mulr = proc (q: cvt, r: real) returns (cvt) return (down(make(q.a*r, q.b*r, q.c*r, q.d*r))) end mulr equal = proc (q1, q2: cvt) returns (bool) return (q1.a = q2.a & q1.b = q2.b & q1.c = q2.c & q1.d = q2.d) end equal get_a = proc (q: cvt) returns (real) return (q.a) end get_a get_b = proc (q: cvt) returns (real) return (q.b) end get_b get_c = proc (q: cvt) returns (real) return (q.c) end get_c get_d = proc (q: cvt) returns (real) return (q.d) end get_d q_form = proc (q: cvt, a, b: int) returns (string) return ( f_form(q.a, a, b) || " + " || f_form(q.b, a, b) || "i + " || f_form(q.c, a, b) || "j + " || f_form(q.d, a, b) || "k" ) end q_form end quat start_up = proc () po: stream := stream$primary_output()

q0: quat := quat$make(1.0, 2.0, 3.0, 4.0) q1: quat := quat$make(2.0, 3.0, 4.0, 5.0)
q2: quat := quat$make(3.0, 4.0, 5.0, 6.0) r: real := 7.0 stream$putl(po, "      q0 = " || quat$q_form(q0, 3, 3)) stream$putl(po, "      q1 = " || quat$q_form(q1, 3, 3)) stream$putl(po, "      q2 = " || quat$q_form(q2, 3, 3)) stream$putl(po, "       r = " || f_form(r, 3, 3))
stream$putl(po, "") stream$putl(po, "norm(q0) = " || f_form(quat$norm(q0), 3, 3)) stream$putl(po, "     -q0 = " || quat$q_form(-q0, 3, 3)) stream$putl(po, "conj(q0) = " || quat$q_form(quat$conj(q0), 3, 3))
stream$putl(po, " q0 + r = " || quat$q_form(quat$addr(q0, r), 3, 3)) stream$putl(po, " q1 + q2 = " || quat$q_form(q1 + q2, 3, 3)) stream$putl(po, "  q0 * r = " || quat$q_form(quat$mulr(q0, r), 3, 3))
stream$putl(po, " q1 * q2 = " || quat$q_form(q1 * q2, 3, 3))
stream$putl(po, " q2 * q1 = " || quat$q_form(q2 * q1, 3, 3))

if q1*q2 ~= q2*q1 then stream$putl(po, "q1 * q2 ~= q2 * q1") end end start_up Output:  q0 = 1.000 + 2.000i + 3.000j + 4.000k q1 = 2.000 + 3.000i + 4.000j + 5.000k q2 = 3.000 + 4.000i + 5.000j + 6.000k r = 7.000 norm(q0) = 5.477 -q0 = -1.000 + -2.000i + -3.000j + -4.000k conj(q0) = 1.000 + -2.000i + -3.000j + 4.000k q0 + r = 8.000 + 9.000i + 10.000j + 11.000k q1 + q2 = 5.000 + 7.000i + 9.000j + 11.000k q0 * r = 7.000 + 14.000i + 21.000j + 28.000k q1 * q2 = -56.000 + 16.000i + 24.000j + 26.000k q2 * q1 = -56.000 + 18.000i + 20.000j + 28.000k q1 * q2 ~= q2 * q1 ## Common Lisp (defclass quaternion () ((a :accessor q-a :initarg :a :type real) (b :accessor q-b :initarg :b :type real) (c :accessor q-c :initarg :c :type real) (d :accessor q-d :initarg :d :type real)) (:default-initargs :a 0 :b 0 :c 0 :d 0)) (defun make-q (&optional (a 0) (b 0) (c 0) (d 0)) (make-instance 'quaternion :a a :b b :c c :d d)) (defgeneric sum (x y)) (defmethod sum ((x quaternion) (y quaternion)) (make-q (+ (q-a x) (q-a y)) (+ (q-b x) (q-b y)) (+ (q-c x) (q-c y)) (+ (q-d x) (q-d y)))) (defmethod sum ((x quaternion) (y real)) (make-q (+ (q-a x) y) (q-b x) (q-c x) (q-d x))) (defmethod sum ((x real) (y quaternion)) (make-q (+ (q-a y) x) (q-b y) (q-c y) (q-d y))) (defgeneric sub (x y)) (defmethod sub ((x quaternion) (y quaternion)) (make-q (- (q-a x) (q-a y)) (- (q-b x) (q-b y)) (- (q-c x) (q-c y)) (- (q-d x) (q-d y)))) (defmethod sub ((x quaternion) (y real)) (make-q (- (q-a x) y) (q-b x) (q-c x) (q-d x))) (defmethod sub ((x real) (y quaternion)) (make-q (- (q-a y) x) (q-b y) (q-c y) (q-d y))) (defgeneric mul (x y)) (defmethod mul ((x quaternion) (y real)) (make-q (* (q-a x) y) (* (q-b x) y) (* (q-c x) y) (* (q-d x) y))) (defmethod mul ((x real) (y quaternion)) (make-q (* (q-a y) x) (* (q-b y) x) (* (q-c y) x) (* (q-d y) x))) (defmethod mul ((x quaternion) (y quaternion)) (make-q (- (* (q-a x) (q-a y)) (* (q-b x) (q-b y)) (* (q-c x) (q-c y)) (* (q-d x) (q-d y))) (- (+ (* (q-a x) (q-b y)) (* (q-b x) (q-a y)) (* (q-c x) (q-d y))) (* (q-d x) (q-c y))) (- (+ (* (q-a x) (q-c y)) (* (q-c x) (q-a y)) (* (q-d x) (q-b y))) (* (q-b x) (q-d y))) (- (+ (* (q-a x) (q-d y)) (* (q-b x) (q-c y)) (* (q-d x) (q-a y))) (* (q-c x) (q-b y))))) (defmethod norm ((x quaternion)) (+ (sqrt (q-a x)) (sqrt (q-b x)) (sqrt (q-c x)) (sqrt (q-d x)))) (defmethod print-object ((x quaternion) stream) (format stream "~@f~@fi~@fj~@fk" (q-a x) (q-b x) (q-c x) (q-d x))) (defvar q (make-q 0 1 0 0)) (defvar q1 (make-q 0 0 1 0)) (defvar q2 (make-q 0 0 0 1)) (defvar r 7) (format t "q+q1+q2 = ~a~&" (reduce #'sum (list q q1 q2))) (format t "r*(q+q1+q2) = ~a~&" (mul r (reduce #'sum (list q q1 q2)))) (format t "q*q1*q2 = ~a~&" (reduce #'mul (list q q1 q2))) (format t "q-q1-q2 = ~a~&" (reduce #'sub (list q q1 q2)))  Output: q+q1+q2 = +0.0+1.0i+1.0j+1.0k r*(q+q1+q2) = +0.0+7.0i+7.0j+7.0k q*q1*q2 = -1.0+0.0i+0.0j+0.0k q-q1-q2 = +0.0+1.0i-1.0j-1.0k  ## Crystal Translation of: Rust and Ruby class Quaternion property a, b, c, d def initialize(@a : Int64, @b : Int64, @c : Int64, @d : Int64) end def norm; Math.sqrt(a**2 + b**2 + c**2 + d**2) end def conj; Quaternion.new(a, -b, -c, -d) end def +(n) Quaternion.new(a + n, b, c, d) end def -(n) Quaternion.new(a - n, b, c, d) end def -() Quaternion.new(-a, -b, -c, -d) end def *(n) Quaternion.new(a * n, b * n, c * n, d * n) end def ==(rhs : Quaternion) self.to_s == rhs.to_s end def +(rhs : Quaternion) Quaternion.new(a + rhs.a, b + rhs.b, c + rhs.c, d + rhs.d) end def -(rhs : Quaternion) Quaternion.new(a - rhs.a, b - rhs.b, c - rhs.c, d - rhs.d) end def *(rhs : Quaternion) Quaternion.new( a * rhs.a - b * rhs.b - c * rhs.c - d * rhs.d, a * rhs.b + b * rhs.a + c * rhs.d - d * rhs.c, a * rhs.c - b * rhs.d + c * rhs.a + d * rhs.b, a * rhs.d + b * rhs.c - c * rhs.b + d * rhs.a) end def to_s(io : IO) io << "(#{a} #{sgn(b)}i #{sgn(c)}j #{sgn(d)}k)\n" end private def sgn(n) n.sign|1 == 1 ? "+ #{n}" : "- #{n.abs}" end end struct Number def +(rhs : Quaternion) Quaternion.new(rhs.a + self, rhs.b, rhs.c, rhs.d) end def -(rhs : Quaternion) Quaternion.new(-rhs.a + self, -rhs.b, -rhs.c, -rhs.d) end def *(rhs : Quaternion) Quaternion.new(rhs.a * self, rhs.b * self, rhs.c * self, rhs.d * self) end end q0 = Quaternion.new(a: 1, b: 2, c: 3, d: 4) q1 = Quaternion.new(2, 3, 4, 5) q2 = Quaternion.new(3, 4, 5, 6) r = 7 puts "q0 = #{q0}" puts "q1 = #{q1}" puts "q2 = #{q2}" puts "r = #{r}" puts puts "normal of q0 = #{q0.norm}" puts "-q0 = #{-q0}" puts "conjugate of q0 = #{q0.conj}" puts "q0 * (conjugate of q0) = #{q0 * q0.conj}" puts "(conjugate of q0) * q0 = #{q0.conj * q0}" puts puts "r + q0 = #{r + q0}" puts "q0 + r = #{q0 + r}" puts puts " q0 - r = #{q0 - r}" puts "-q0 - r = #{-q0 - r}" puts " r - q0 = #{r - q0}" puts "-q0 + r = #{-q0 + r}" puts puts "r * q0 = #{r * q0}" puts "q0 * r = #{q0 * r}" puts puts "q0 + q1 = #{q0 + q1}" puts "q0 - q1 = #{q2 - q1}" puts "q0 * q1 = #{q0 * q1}" puts puts " q0 + q1 * q2 = #{q0 + q1 * q2}" puts "(q0 + q1) * q2 = #{(q0 + q1) * q2}" puts puts " q0 * q1 * q2 = #{q0 * q1 * q2}" puts "(q0 * q1) * q2 = #{(q0 * q1) * q2}" puts " q0 * (q1 * q2) = #{q0 * (q1 * q2)}" puts puts "q1 * q2 = #{q1 * q2}" puts "q2 * q1 = #{q2 * q1}" puts puts "q1 * q2 != q2 * q1 => #{(q1 * q2) != (q2 * q1)}" puts "q1 * q2 == q2 * q1 => #{(q1 * q2) == (q2 * q1)}"  Output: q0 = (1 + 2i + 3j + 4k) q1 = (2 + 3i + 4j + 5k) q2 = (3 + 4i + 5j + 6k) r = 7 normal of q0 = 5.477225575051661 -q0 = (-1 - 2i - 3j - 4k) conjugate of q0 = (1 - 2i - 3j - 4k) q0 * (conjugate of q0) = (30 + 0i + 0j + 0k) (conjugate of q0) * q0 = (30 + 0i + 0j + 0k) r + q0 = (8 + 2i + 3j + 4k) q0 + r = (8 + 2i + 3j + 4k) q0 - r = (-6 + 2i + 3j + 4k) -q0 - r = (-8 - 2i - 3j - 4k) r - q0 = (6 - 2i - 3j - 4k) -q0 + r = (6 - 2i - 3j - 4k) r * q0 = (7 + 14i + 21j + 28k) q0 * r = (7 + 14i + 21j + 28k) q0 + q1 = (3 + 5i + 7j + 9k) q0 - q1 = (1 + 1i + 1j + 1k) q0 * q1 = (-36 + 6i + 12j + 12k) q0 + q1 * q2 = (-55 + 18i + 27j + 30k) (q0 + q1) * q2 = (-100 + 24i + 42j + 42k) q0 * q1 * q2 = (-264 - 114i - 132j - 198k) (q0 * q1) * q2 = (-264 - 114i - 132j - 198k) q0 * (q1 * q2) = (-264 - 114i - 132j - 198k) q1 * q2 = (-56 + 16i + 24j + 26k) q2 * q1 = (-56 + 18i + 20j + 28k) q1 * q2 != q2 * q1 => true q1 * q2 == q2 * q1 => false ## D import std.math, std.numeric, std.traits, std.conv, std.complex; struct Quat(T) if (isFloatingPoint!T) { alias CT = Complex!T; union { struct { T re, i, j, k; } // Default init to NaN. struct { CT x, y; } struct { T[4] vector; } } string toString() const pure /*nothrow*/ @safe { return vector.text; } @property T norm2() const pure nothrow @safe @nogc { /// Norm squared. return re ^^ 2 + i ^^ 2 + j ^^ 2 + k ^^ 2; } @property T abs() const pure nothrow @safe @nogc { /// Norm. return sqrt(norm2); } @property T arg() const pure nothrow @safe @nogc { /// Theta. return acos(re / abs); // this may be incorrect... } @property Quat!T conj() const pure nothrow @safe @nogc { /// Conjugate. return Quat!T(re, -i, -j, -k); } @property Quat!T recip() const pure nothrow @safe @nogc { /// Reciprocal. return Quat!T(re / norm2, -i / norm2, -j / norm2, -k / norm2); } @property Quat!T pureim() const pure nothrow @safe @nogc { /// Pure imagery. return Quat!T(0, i, j, k); } @property Quat!T versor() const pure nothrow @safe @nogc { /// Unit versor. return this / abs; } /// Unit versor of imagery part. @property Quat!T iversor() const pure nothrow @safe @nogc { return pureim / pureim.abs; } /// Assignment. Quat!T opAssign(U : T)(Quat!U z) pure nothrow @safe @nogc { x = z.x; y = z.y; return this; } Quat!T opAssign(U : T)(Complex!U c) pure nothrow @safe @nogc { x = c; y = 0; return this; } Quat!T opAssign(U : T)(U r) pure nothrow @safe @nogc if (isNumeric!U) { re = r; i = 0; y = 0; return this; } /// Test for equal, not ordered so no opCmp. bool opEquals(U : T)(Quat!U z) const pure nothrow @safe @nogc { return re == z.re && i == z.i && j == z.j && k == z.k; } bool opEquals(U : T)(Complex!U c) const pure nothrow @safe @nogc { return re == c.re && i == c.im && j == 0 && k == 0; } bool opEquals(U : T)(U r) const pure nothrow @safe @nogc if (isNumeric!U) { return re == r && i == 0 && j == 0 && k == 0; } /// Unary op. Quat!T opUnary(string op)() const pure nothrow @safe @nogc if (op == "+") { return this; } Quat!T opUnary(string op)() const pure nothrow @safe @nogc if (op == "-") { return Quat!T(-re, -i, -j, -k); } /// Binary op, Quaternion on left of op. Quat!(CommonType!(T,U)) opBinary(string op, U)(Quat!U z) const pure nothrow @safe @nogc { alias typeof(return) C; static if (op == "+" ) { return C(re + z.re, i + z.i, j + z.j, k + z.k); } else static if (op == "-") { return C(re - z.re, i - z.i, j - z.j, k - z.k); } else static if (op == "*") { return C(re * z.re - i * z.i - j * z.j - k * z.k, re * z.i + i * z.re + j * z.k - k * z.j, re * z.j - i * z.k + j * z.re + k * z.i, re * z.k + i * z.j - j * z.i + k * z.re); } else static if (op == "/") { return this * z.recip; } } /// Extend complex to quaternion. Quat!(CommonType!(T,U)) opBinary(string op, U)(Complex!U c) const pure nothrow @safe @nogc { return opBinary!op(typeof(return)(c.re, c.im, 0, 0)); } /// For scalar. Quat!(CommonType!(T,U)) opBinary(string op, U)(U r) const pure nothrow @safe @nogc if (isNumeric!U) { alias typeof(return) C; static if (op == "+" ) { return C(re + r, i, j, k); } else static if (op == "-") { return C(re - r, i, j, k); } else static if (op == "*") { return C(re * r, i * r, j * r, k * r); } else static if (op == "/") { return C(re / r, i / r, j / r, k / r); } else static if (op == "^^") { return pow(r); } } /// Power function. Quat!(CommonType!(T,U)) pow(U)(U r) const pure nothrow @safe @nogc if (isNumeric!U) { return (abs^^r) * exp(r * iversor * arg); } /// Handle binary op if Quaternion on right of op and left is /// not quaternion. Quat!(CommonType!(T,U)) opBinaryRight(string op, U)(Complex!U c) const pure nothrow @safe @nogc { alias typeof(return) C; auto w = C(c.re, c.im, 0, 0); return w.opBinary!(op)(this); } Quat!(CommonType!(T,U)) opBinaryRight(string op, U)(U r) const pure nothrow @safe @nogc if (isNumeric!U) { alias typeof(return) C; static if (op == "+" || op == "*") { return opBinary!op(r); } else static if (op == "-") { return C(r - re , -i, -j, -k); } else static if (op == "/") { auto w = C(re, i, j, k); return w.recip * r; } } } HT exp(HT)(HT z) pure nothrow @safe @nogc if (is(HT T == Quat!T)) { immutable inorm = z.pureim.abs; return std.math.exp(z.re) * (cos(inorm) + z.iversor * sin(inorm)); } HT log(HT)(HT z) pure nothrow @safe @nogc if (is(HT T == Quat!T)) { return std.math.log(z.abs) + z.iversor * acos(z.re / z.abs); } void main() @safe { // Demo code. import std.stdio; alias QR = Quat!real; enum real r = 7.0; immutable QR q = QR(2, 3, 4, 5), q1 = QR(2, 3, 4, 5), q2 = QR(3, 4, 5, 6); writeln("1. q - norm: ", q.abs); writeln("2. q - negative: ", -q); writeln("3. q - conjugate: ", q.conj); writeln("4. r + q: ", r + q); writeln(" q + r: ", q + r); writeln("5. q1 + q2: ", q1 + q2); writeln("6. r * q: ", r * q); writeln(" q * r: ", q * r); writeln("7. q1 * q2: ", q1 * q2); writeln(" q2 * q1: ", q2 * q1); writeln("8. q1 * q2 != q2 * Q1 ? ", q1 * q2 != q2 * q1); immutable QR i = QR(0, 1, 0, 0), j = QR(0, 0, 1, 0), k = QR(0, 0, 0, 1); writeln("9.1 i * i: ", i * i); writeln(" J * j: ", j * j); writeln(" k * k: ", k * k); writeln(" i * j * k: ", i * j * k); writeln("9.2 q1 / q2: ", q1 / q2); writeln("9.3 q1 / q2 * q2: ", q1 / q2 * q2); writeln(" q2 * q1 / q2: ", q2 * q1 / q2); writeln("9.4 exp(pi * i): ", exp(PI * i)); writeln(" exp(pi * j): ", exp(PI * j)); writeln(" exp(pi * k): ", exp(PI * k)); writeln(" exp(q): ", exp(q)); writeln(" log(q): ", log(q)); writeln(" exp(log(q)): ", exp(log(q))); writeln(" log(exp(q)): ", log(exp(q))); immutable s = q.exp.log; writeln("9.5 let s = log(exp(q)): ", s); writeln(" exp(s): ", exp(s)); writeln(" log(s): ", log(s)); writeln(" exp(log(s)): ", exp(log(s))); writeln(" log(exp(s)): ", log(exp(s))); }  Output: 1. q - norm: 7.34847 2. q - negative: [-2, -3, -4, -5] 3. q - conjugate: [2, -3, -4, -5] 4. r + q: [9, 3, 4, 5] q + r: [9, 3, 4, 5] 5. q1 + q2: [5, 7, 9, 11] 6. r * q: [14, 21, 28, 35] q * r: [14, 21, 28, 35] 7. q1 * q2: [-56, 16, 24, 26] q2 * q1: [-56, 18, 20, 28] 8. q1 * q2 != q2 * Q1 ? true 9.1 i * i: [-1, 0, 0, 0] J * j: [-1, 0, 0, 0] k * k: [-1, 0, 0, 0] i * j * k: [-1, 0, 0, 0] 9.2 q1 / q2: [0.790698, 0.0232558, -1.35525e-20, 0.0465116] 9.3 q1 / q2 * q2: [2, 3, 4, 5] q2 * q1 / q2: [2, 3.46512, 3.90698, 4.76744] 9.4 exp(pi * i): [-1, -5.42101e-20, -0, -0] exp(pi * j): [-1, -0, -5.42101e-20, -0] exp(pi * k): [-1, -0, -0, -5.42101e-20] exp(q): [5.21186, 2.22222, 2.96296, 3.7037] log(q): [1.99449, 0.549487, 0.732649, 0.915812] exp(log(q)): [2, 3, 4, 5] log(exp(q)): [2, 0.33427, 0.445694, 0.557117] 9.5 let s = log(exp(q)): [2, 0.33427, 0.445694, 0.557117] exp(s): [5.21186, 2.22222, 2.96296, 3.7037] log(s): [0.765279, 0.159215, 0.212286, 0.265358] exp(log(s)): [2, 0.33427, 0.445694, 0.557117] log(exp(s)): [2, 0.33427, 0.445694, 0.557117] ## Delphi unit Quaternions; interface type TQuaternion = record A, B, C, D: double; function Init (aA, aB, aC, aD : double): TQuaternion; function Norm : double; function Conjugate : TQuaternion; function ToString : string; class operator Negative (Left : TQuaternion): TQuaternion; class operator Positive (Left : TQuaternion): TQuaternion; class operator Add (Left, Right : TQuaternion): TQuaternion; class operator Add (Left : TQuaternion; Right : double): TQuaternion; overload; class operator Add (Left : double; Right : TQuaternion): TQuaternion; overload; class operator Subtract (Left, Right : TQuaternion): TQuaternion; class operator Multiply (Left, Right : TQuaternion): TQuaternion; class operator Multiply (Left : TQuaternion; Right : double): TQuaternion; overload; class operator Multiply (Left : double; Right : TQuaternion): TQuaternion; overload; end; implementation uses SysUtils; { TQuaternion } function TQuaternion.Init(aA, aB, aC, aD: double): TQuaternion; begin A := aA; B := aB; C := aC; D := aD; result := Self; end; function TQuaternion.Norm: double; begin result := sqrt(sqr(A) + sqr(B) + sqr(C) + sqr(D)); end; function TQuaternion.Conjugate: TQuaternion; begin result.B := -B; result.C := -C; result.D := -D; end; class operator TQuaternion.Negative(Left: TQuaternion): TQuaternion; begin result.A := -Left.A; result.B := -Left.B; result.C := -Left.C; result.D := -Left.D; end; class operator TQuaternion.Positive(Left: TQuaternion): TQuaternion; begin result := Left; end; class operator TQuaternion.Add(Left, Right: TQuaternion): TQuaternion; begin result.A := Left.A + Right.A; result.B := Left.B + Right.B; result.C := Left.C + Right.C; result.D := Left.D + Right.D; end; class operator TQuaternion.Add(Left: TQuaternion; Right: double): TQuaternion; begin result.A := Left.A + Right; result.B := Left.B; result.C := Left.C; result.D := Left.D; end; class operator TQuaternion.Add(Left: double; Right: TQuaternion): TQuaternion; begin result.A := Left + Right.A; result.B := Right.B; result.C := Right.C; result.D := Right.D; end; class operator TQuaternion.Subtract(Left, Right: TQuaternion): TQuaternion; begin result.A := Left.A - Right.A; result.B := Left.B - Right.B; result.C := Left.C - Right.C; result.D := Left.D - Right.D; end; class operator TQuaternion.Multiply(Left, Right: TQuaternion): TQuaternion; begin result.A := Left.A * Right.A - Left.B * Right.B - Left.C * Right.C - Left.D * Right.D; result.B := Left.A * Right.B + Left.B * Right.A + Left.C * Right.D - Left.D * Right.C; result.C := Left.A * Right.C - Left.B * Right.D + Left.C * Right.A + Left.D * Right.B; result.D := Left.A * Right.D + Left.B * Right.C - Left.C * Right.B + Left.D * Right.A; end; class operator TQuaternion.Multiply(Left: double; Right: TQuaternion): TQuaternion; begin result.A := Left * Right.A; result.B := Left * Right.B; result.C := Left * Right.C; result.D := Left * Right.D; end; class operator TQuaternion.Multiply(Left: TQuaternion; Right: double): TQuaternion; begin result.A := Left.A * Right; result.B := Left.B * Right; result.C := Left.C * Right; result.D := Left.D * Right; end; function TQuaternion.ToString: string; begin result := Format('%f + %fi + %fj + %fk', [A, B, C, D]); end; end.  Test program program QuaternionTest; {$APPTYPE CONSOLE}

uses
Quaternions in 'Quaternions.pas';

var
r : double;
q, q1, q2 : TQuaternion;
begin
r := 7;
q  := q .Init(1, 2, 3, 4);
q1 := q1.Init(2, 3, 4, 5);
q2 := q2.Init(3, 4, 5, 6);

writeln('q  = ', q.ToString);
writeln('q1 = ', q1.ToString);
writeln('q2 = ', q2.ToString);
writeln('r  = ', r);
writeln('Norm(q ) = ', q.Norm);
writeln('Norm(q1) = ', q1.Norm);
writeln('Norm(q2) = ', q2.Norm);
writeln('-q = ', (-q).ToString);
writeln('Conjugate q = ', q.Conjugate.ToString);
writeln('q1 + q2 = ', (q1 + q2).ToString);
writeln('q2 + q1 = ', (q2 + q1).ToString);
writeln('q * r   = ', (q * r).ToString);
writeln('r * q   = ', (r * q).ToString);
writeln('q1 * q2 = ', (q1 * q2).ToString);
writeln('q2 * q1 = ', (q2 * q1).ToString);
end.

Output:
q  = 1.00 + 2.00i + 3.00j + 4.00k
q1 = 2.00 + 3.00i + 4.00j + 5.00k
q2 = 3.00 + 4.00i + 5.00j + 6.00k
r  =  7.00000000000000E+0000
Norm(q ) =  5.47722557505166E+0000
Norm(q1) =  7.34846922834953E+0000
Norm(q2) =  9.27361849549570E+0000
-q = -1.00 + -2.00i + -3.00j + -4.00k
Conjugate q = -1.00 + -2.00i + -3.00j + -4.00k
q1 + q2 = 5.00 + 7.00i + 9.00j + 11.00k
q2 + q1 = 5.00 + 7.00i + 9.00j + 11.00k
q * r   = 7.00 + 14.00i + 21.00j + 28.00k
r * q   = 7.00 + 14.00i + 21.00j + 28.00k
q1 * q2 = -56.00 + 16.00i + 24.00j + 26.00k
q2 * q1 = -56.00 + 18.00i + 20.00j + 28.00k


--DavidIzadaR 20:33, 7 August 2011 (UTC)

## E

interface Quaternion guards QS {}
def makeQuaternion(a, b, c, d) {
return def quaternion implements QS {

to __printOn(out) {
out.print("(", a, " + ", b, "i + ")
out.print(c, "j + ", d, "k)")
}

to norm() {
return (a**2 + b**2 + c**2 + d**2).sqrt()
}

to negate() {
return makeQuaternion(-a, -b, -c, -d)
}

to conjugate() {
return makeQuaternion(a, -b, -c, -d)
}

# This implements q + r; r + q is deliberately prohibited by E
to add(other :any[Quaternion, int, float64]) {
switch (other) {
match q :Quaternion {
return makeQuaternion(
a+q.a(), b+q.b(), c+q.c(), d+q.d())
}
match real {
return makeQuaternion(a+real, b, c, d)
}
}
}

# This implements q * r; r * q is deliberately prohibited by E
to multiply(other :any[Quaternion, int, float64]) {
switch (other) {
match q :Quaternion {
return makeQuaternion(
a*q.a() - b*q.b() - c*q.c() - d*q.d(),
a*q.b() + b*q.a() + c*q.d() - d*q.c(),
a*q.c() - b*q.d() + c*q.a() + d*q.b(),
a*q.d() + b*q.c() - c*q.b() + d*q.a())
}
match real {
return makeQuaternion(real*a, real*b, real*c, real*d)
}
}
}

to a() { return a }
to b() { return b }
to c() { return c }
to d() { return d }
}
}
? def q1 := makeQuaternion(2,3,4,5)
# value: (2 + 3i + 4j + 5k)

? def q2 := makeQuaternion(3,4,5,6)
# value: (3 + 4i + 5j + 6k)

? q1+q2
# value: (5 + 7i + 9j + 11k)

? q1*q2
# value: (-56 + 16i + 24j + 26k)

? q2*q1
# value: (-56 + 18i + 20j + 28k)

? q1+(-2)
# value: (0 + 3i + 4j + 5k)

## Eero

#import <Foundation/Foundation.h>

interface Quaternion : Number
// Properties -- note that this is an immutable class.
double real, i, j, k {readonly}
end

implementation Quaternion

initWithReal: double, i: double, j: double, k: double, return instancetype
self = super.init
if self
_real = real; _i = i; _j = j; _k = k
return self

+new: double real, ..., return instancetype
va_list args
va_start(args, real)
object := Quaternion.alloc.initWithReal: real,
i: va_arg(args, double),
j: va_arg(args, double),
k: va_arg(args, double)
va_end(args)
return object

descriptionWithLocale: id, return String = String.stringWithFormat:
'(%.1f, %.1f, %.1f, %.1f)', self.real, self.i, self.j, self.k

norm, return double =
sqrt(self.real * self.real +
self.i * self.i + self.j * self.j + self.k * self.k)

negative, return Quaternion =
Quaternion.new: -self.real, -self.i, -self.j, -self.k

conjugate, return Quaternion =
Quaternion.new: self.real, -self.i, -self.j, -self.k

// Overload "+" operator (left operand is Quaternion)
plus: Number operand, return Quaternion
real := self.real, i = self.i, j = self.j, k = self.k
if operand.isKindOfClass: Quaternion.class
q := (Quaternion)operand
real += q.real; i += q.i; j += q.j; k += q.k
else
real += (double)operand
return Quaternion.new: real, i, j, k

// Overload "*" operator (left operand is Quaternion)
multipliedBy: Number operand, return Quaternion
real := self.real, i = self.i, j = self.j, k = self.k
if operand.isKindOfClass: Quaternion.class
q := (Quaternion)operand
real = self.real * q.real - self.i* q.i - self.j * q.j - self.k * q.k
i = self.real * q.i + self.i * q.real + self.j * q.k - self.k * q.j
j = self.real * q.j - self.i * q.k + self.j * q.real + self.k * q.i
k = self.real * q.k + self.i * q.j - self.j * q.i + self.k * q.real
else
real *= (double)operand
i *= (double)operand; j *= (double)operand; k *= (double)operand
return Quaternion.new: real, i, j, k

end

implementation Number (QuaternionOperators)

// Overload "+" operator (left operand is Number)
plus: Quaternion operand, return Quaternion
real := (double)self + operand.real
return Quaternion.new: real, operand.i, operand.j, operand.k

// Overload "*" operator (left operand is Number)
multipliedBy: Quaternion operand, return Quaternion
r := (double)self
return Quaternion.new: r * operand.real, r * operand.i,
r * operand.j, r * operand.k

end

int main()
autoreleasepool

q  := Quaternion.new: 1.0, 2.0, 3.0, 4.0
q1 := Quaternion.new: 2.0, 3.0, 4.0, 5.0
q2 := Quaternion.new: 3.0, 4.0, 5.0, 6.0

Log( 'q  = %@', q )
Log( 'q1 = %@', q1 )
Log( 'q2 = %@\n\n', q2 )

Log( 'q norm = %.3f',  q.norm )
Log( 'q negative = %@',  q.negative )
Log( 'q conjugate = %@',  q.conjugate )
Log( '7 + q = %@', 7.0 + q )
Log( 'q + 7 = %@', q + 7.0 )
Log( 'q1 + q2 = %@',  q1 + q2 )
Log( '7 * q = %@', 7 * q)
Log( 'q * 7 = %@', q * 7.0 )
Log( 'q1 * q2 = %@',  q1 * q2 )
Log( 'q2 * q1 = %@',  q2 * q1 )

return 0

Output:
2013-09-04 16:40:29.818 a.out[2170:507] q  = (1.0, 2.0, 3.0, 4.0)
2013-09-04 16:40:29.819 a.out[2170:507] q1 = (2.0, 3.0, 4.0, 5.0)
2013-09-04 16:40:29.820 a.out[2170:507] q2 = (3.0, 4.0, 5.0, 6.0)

2013-09-04 16:40:29.820 a.out[2170:507] q norm = 5.477
2013-09-04 16:40:29.820 a.out[2170:507] q negative = (-1.0, -2.0, -3.0, -4.0)
2013-09-04 16:40:29.820 a.out[2170:507] q conjugate = (1.0, -2.0, -3.0, -4.0)
2013-09-04 16:40:29.821 a.out[2170:507] 7 + q = (8.0, 2.0, 3.0, 4.0)
2013-09-04 16:40:29.821 a.out[2170:507] q + 7 = (8.0, 2.0, 3.0, 4.0)
2013-09-04 16:40:29.821 a.out[2170:507] q1 + q2 = (5.0, 7.0, 9.0, 11.0)
2013-09-04 16:40:29.821 a.out[2170:507] 7 * q = (7.0, 14.0, 21.0, 28.0)
2013-09-04 16:40:29.821 a.out[2170:507] q * 7 = (7.0, 14.0, 21.0, 28.0)
2013-09-04 16:40:29.822 a.out[2170:507] q1 * q2 = (-56.0, 16.0, 24.0, 26.0)
2013-09-04 16:40:29.822 a.out[2170:507] q2 * q1 = (-56.0, 18.0, 20.0, 28.0)

## Elena

Translation of: C#

ELENA 5.0 :

import system'math;
import extensions;
import extensions'text;

struct Quaternion
{
rprop real A;
rprop real B;
rprop real C;
rprop real D;

constructor new(a, b, c, d)
<= new(cast real(a), cast real(b), cast real(c), cast real(d));

constructor new(real a, real b, real c, real d)
{
A := a;
B := b;
C := c;
D := d
}

constructor(real r)
{
A := r;
B := 0.0r;
C := 0.0r;
D := 0.0r
}

real Norm = (A*A + B*B + C*C + D*D).sqrt();

Quaternion Negative = Quaternion.new(A.Negative,B.Negative,C.Negative,D.Negative);

Quaternion Conjugate = Quaternion.new(A,B.Negative,C.Negative,D.Negative);

= Quaternion.new(A + q.A, B + q.B, C + q.C, D + q.D);

Quaternion multiply(Quaternion q)
= Quaternion.new(
A * q.A - B * q.B - C * q.C - D * q.D,
A * q.B + B * q.A + C * q.D - D * q.C,
A * q.C - B * q.D + C * q.A + D * q.B,
A * q.D + B * q.C - C * q.B + D * q.A);

Quaternion multiply(real r)
<= multiply(Quaternion.new(r,0,0,0));

bool equal(Quaternion q)
= (A == q.A) && (B == q.B) && (C == q.C) && (D == q.D);

string toPrintable()
= new StringWriter().printFormatted("Q({0}, {1}, {2}, {3})",A,B,C,D);
}

public program()
{
auto q := Quaternion.new(1,2,3,4);
auto q1 := Quaternion.new(2,3,4,5);
auto q2 := Quaternion.new(3,4,5,6);
real r := 7;

console.printLine("q = ", q);
console.printLine("q1 = ", q1);
console.printLine("q2 = ", q2);
console.printLine("r = ", r);

console.printLine("q.Norm() = ", q.Norm);
console.printLine("q1.Norm() = ", q1.Norm);
console.printLine("q2.Norm() = ", q2.Norm);

console.printLine("-q = ", q.Negative);
console.printLine("q.Conjugate() = ", q.Conjugate);

console.printLine("q + r = ", q + r);
console.printLine("q1 + q2 = ", q1 + q2);
console.printLine("q2 + q1 = ", q2 + q1);

console.printLine("q * r = ", q * r);
console.printLine("q1 * q2 = ", q1 * q2);
console.printLine("q2 * q1 = ", q2 * q1);

console.printLineFormatted("q1*q2 {0} q2*q1", ((q1 * q2) == (q2 * q1)).iif("==","!="))
}
Output:
q = Q(1.0, 2.0, 3.0, 4.0)
q1 = Q(2.0, 3.0, 4.0, 5.0)
q2 = Q(3.0, 4.0, 5.0, 6.0)
r = 7.0
q.Norm() = 5.477225575052
q1.Norm() = 7.34846922835
q2.Norm() = 9.273618495496
-q = Q(-1.0, -2.0, -3.0, -4.0)
q.Conjugate() = Q(1.0, -2.0, -3.0, -4.0)
q + r = Q(8.0, 2.0, 3.0, 4.0)
q1 + q2 = Q(5.0, 7.0, 9.0, 11.0)
q2 + q1 = Q(5.0, 7.0, 9.0, 11.0)
q * r = Q(7.0, 14.0, 21.0, 28.0)
q1 * q2 = Q(-56.0, 16.0, 24.0, 26.0)
q2 * q1 = Q(-56.0, 18.0, 20.0, 28.0)
q1*q2 != q2*q1


## ERRE

PROGRAM QUATERNION

!$DOUBLE TYPE QUATERNION=(A,B,C,D) DIM Q:QUATERNION,Q1:QUATERNION,Q2:QUATERNION DIM R:QUATERNION,S:QUATERNION,T:QUATERNION PROCEDURE NORM(T.->NORM) NORM=SQR(T.A*T.A+T.B*T.B+T.C*T.C+T.D*T.D) END PROCEDURE PROCEDURE NEGATIVE(T.->T.) T.A=-T.A T.B=-T.B T.C=-T.C T.D=-T.D END PROCEDURE PROCEDURE CONJUGATE(T.->T.) T.A=T.A T.B=-T.B T.C=-T.C T.D=-T.D END PROCEDURE PROCEDURE ADD_REAL(T.,REAL->T.) T.A=T.A+REAL T.B=T.B T.C=T.C T.D=T.D END PROCEDURE PROCEDURE ADD(T.,S.->T.) T.A=T.A+S.A T.B=T.B+S.B T.C=T.C+S.C T.D=T.D+S.D END PROCEDURE PROCEDURE MULT_REAL(T.,REAL->T.) T.A=T.A*REAL T.B=T.B*REAL T.C=T.C*REAL T.D=T.D*REAL END PROCEDURE PROCEDURE MULT(T.,S.->R.) R.A=T.A*S.A-T.B*S.B-T.C*S.C-T.D*S.D R.B=T.A*S.B+T.B*S.A+T.C*S.D-T.D*S.C R.C=T.A*S.C-T.B*S.D+T.C*S.A+T.D*S.B R.D=T.A*S.D+T.B*S.C-T.C*S.B+T.D*S.A END PROCEDURE PROCEDURE PRINTQ(T.) PRINT("(";T.A;",";T.B;",";T.C;",";T.D;")") END PROCEDURE BEGIN Q.A=1 Q.B=2 Q.C=3 Q.D=4 Q1.A=2 Q1.B=3 Q1.C=4 Q1.D=5 Q2.A=3 Q2.B=4 Q2.C=5 Q2.D=6 REAL=7 NORM(Q.->NORM) PRINT("Norm(q)=";NORM) NEGATIVE(Q.->T.) PRINT("Negative(q) =";) PRINTQ(T.) CONJUGATE(Q.->T.) PRINT("Conjugate(q) =";) PRINTQ(T.) ADD_REAL(Q.,REAL->T.) PRINT("q + real =";) PRINTQ(T.) ! addition is commutative ADD(Q1.,Q2.->T.) PRINT("q1 + q2 =";) PRINTQ(T.) ADD(Q2.,Q1.->T.) PRINT("q2 + q1 = ";) PRINTQ(T.) MULT_REAL(Q.,REAL->T.) PRINT("q * real =";) PRINTQ(T.) ! multiplication is not commutative MULT(Q1.,Q2.->R.) PRINT("q1 * q2=";) PRINTQ(R.) MULT(Q2.,Q1.->R.) PRINT("q2 * q1=";) PRINTQ(R.) END PROGRAM ## Euphoria function norm(sequence q) return sqrt(power(q[1],2)+power(q[2],2)+power(q[3],2)+power(q[4],2)) end function function conj(sequence q) q[2..4] = -q[2..4] return q end function function add(object q1, object q2) if atom(q1) != atom(q2) then if atom(q1) then q1 = {q1,0,0,0} else q2 = {q2,0,0,0} end if end if return q1+q2 end function function mul(object q1, object q2) if sequence(q1) and sequence(q2) then return { q1[1]*q2[1] - q1[2]*q2[2] - q1[3]*q2[3] - q1[4]*q2[4], q1[1]*q2[2] + q1[2]*q2[1] + q1[3]*q2[4] - q1[4]*q2[3], q1[1]*q2[3] - q1[2]*q2[4] + q1[3]*q2[1] + q1[4]*q2[2], q1[1]*q2[4] + q1[2]*q2[3] - q1[3]*q2[2] + q1[4]*q2[1] } else return q1*q2 end if end function function quats(sequence q) return sprintf("%g + %gi + %gj + %gk",q) end function constant q = {1, 2, 3, 4}, q1 = {2, 3, 4, 5}, q2 = {5, 6, 7, 8}, r = 7 printf(1, "norm(q) = %g\n", norm(q)) printf(1, "-q = %s\n", {quats(-q)}) printf(1, "conj(q) = %s\n", {quats(conj(q))}) printf(1, "q + r = %s\n", {quats(add(q,r))}) printf(1, "q1 + q2 = %s\n", {quats(add(q1,q2))}) printf(1, "q1 * q2 = %s\n", {quats(mul(q1,q2))}) printf(1, "q2 * q1 = %s\n", {quats(mul(q2,q1))}) Output: norm(q) = 5.47723 -q = -1 + -2i + -3j + -4k conj(q) = 1 + -2i + -3j + -4k q + r = 8 + 2i + 3j + 4k q1 + q2 = 7 + 9i + 11j + 13k q1 * q2 = -76 + 24i + 40j + 38k q2 * q1 = -76 + 30i + 28j + 44k ## F# Mainly a Translation of: C# On the minus side we have no way to define a conversion to Quaternion from any suitable (numeric) type. On the plus side we can avoid the stuff to make the equality structual (from the referential equality default) by just declaring it as an attribute to the type and let the compiler handle the details. open System [<Struct; StructuralEquality; NoComparison>] type Quaternion(r : float, i : float, j : float, k : float) = member this.A = r member this.B = i member this.C = j member this.D = k new (f : float) = Quaternion(f, 0., 0., 0.) static member (~-) (q : Quaternion) = Quaternion(-q.A, -q.B, -q.C, -q.D) static member (+) (q1 : Quaternion, q2 : Quaternion) = Quaternion(q1.A + q2.A, q1.B + q2.B, q1.C + q2.C, q1.D + q2.D) static member (+) (q : Quaternion, r : float) = q + Quaternion(r) static member (+) (r : float, q: Quaternion) = Quaternion(r) + q static member (*) (q1 : Quaternion, q2 : Quaternion) = Quaternion( q1.A * q2.A - q1.B * q2.B - q1.C * q2.C - q1.D * q2.D, q1.A * q2.B + q1.B * q2.A + q1.C * q2.D - q1.D * q2.C, q1.A * q2.C - q1.B * q2.D + q1.C * q2.A + q1.D * q2.B, q1.A * q2.D + q1.B * q2.C - q1.C * q2.B + q1.D * q2.A) static member (*) (q : Quaternion, r : float) = q * Quaternion(r) static member (*) (r : float, q: Quaternion) = Quaternion(r) * q member this.Norm = Math.Sqrt(r * r + i * i + j * j + k * k) member this.Conjugate = Quaternion(r, -i, -j, -k) override this.ToString() = sprintf "Q(%f, %f, %f, %f)" r i j k [<EntryPoint>] let main argv = let q = Quaternion(1., 2., 3., 4.) let q1 = Quaternion(2., 3., 4., 5.) let q2 = Quaternion(3., 4., 5., 6.) let r = 7. printfn "q = %A" q printfn "q1 = %A" q1 printfn "q2 = %A" q2 printfn "r = %A" r printfn "q.Norm = %A" q.Norm printfn "q1.Norm = %A" q1.Norm printfn "q2.Norm = %A" q2.Norm printfn "-q = %A" -q printfn "q.Conjugate = %A" q.Conjugate printfn "q + r = %A" (q + (Quaternion r)) printfn "q1 + q2 = %A" (q1 + q2) printfn "q2 + q1 = %A" (q2 + q1) printfn "q * r = %A" (q * r) printfn "q1 * q2 = %A" (q1 * q2) printfn "q2 * q1 = %A" (q2 * q1) printfn "q1*q2 %s q2*q1" (if (q1 * q2) = (q2 * q1) then "=" else "<>") printfn "q %s Q(1.,2.,3.,4.)" (if q = Quaternion(1., 2., 3., 4.) then "=" else "<>") 0  Output: q = Q(1.000000, 2.000000, 3.000000, 4.000000) q1 = Q(2.000000, 3.000000, 4.000000, 5.000000) q2 = Q(3.000000, 4.000000, 5.000000, 6.000000) r = 7.0 q.Norm = 5.477225575 q1.Norm = 7.348469228 q2.Norm = 9.273618495 -q = Q(-1.000000, -2.000000, -3.000000, -4.000000) q.Conjugate = Q(1.000000, -2.000000, -3.000000, -4.000000) q + r = Q(8.000000, 2.000000, 3.000000, 4.000000) q1 + q2 = Q(5.000000, 7.000000, 9.000000, 11.000000) q2 + q1 = Q(5.000000, 7.000000, 9.000000, 11.000000) q * r = Q(7.000000, 14.000000, 21.000000, 28.000000) q1 * q2 = Q(-56.000000, 16.000000, 24.000000, 26.000000) q2 * q1 = Q(-56.000000, 18.000000, 20.000000, 28.000000) q1*q2 <> q2*q1 q = Q(1.,2.,3.,4.) ## Factor The math.quaternions vocabulary provides words for treating sequences like quaternions. norm and vneg come from the math.vectors vocabulary. Oddly, I wasn't able to find a word for adding a real to a quaternion, so I wrote one. USING: generalizations io kernel locals math.quaternions math.vectors prettyprint sequences ; IN: rosetta-code.quaternion-type : show ( quot -- ) [ unparse 2 tail but-last "= " append write ] [ call . ] bi ; inline : 2show ( quots -- ) [ 2curry show ] map-compose [ call ] each ; inline : q+n ( q n -- q+n ) n>q q+ ; [let { 1 2 3 4 } 7 { 2 3 4 5 } { 3 4 5 6 } :> ( q r q1 q2 ) q [ norm ] q [ vneg ] q [ qconjugate ] [ curry show ] 2tri@ { [ q r [ q+n ] ] [ q r [ q*n ] ] [ q1 q2 [ q+ ] ] [ q1 q2 [ q* ] ] [ q2 q1 [ q* ] ] } 2show ]  Output: { 1 2 3 4 } norm = 5.477225575051661 { 1 2 3 4 } vneg = { -1 -2 -3 -4 } { 1 2 3 4 } qconjugate = { 1 -2 -3 -4 } { 1 2 3 4 } 7 q+n = { 8 2 3 4 } { 1 2 3 4 } 7 q*n = { 7 14 21 28 } { 2 3 4 5 } { 3 4 5 6 } q+ = { 5 7 9 11 } { 2 3 4 5 } { 3 4 5 6 } q* = { -56 16 24 26 } { 3 4 5 6 } { 2 3 4 5 } q* = { -56 18 20 28 }  ## Forth : quaternions 4 * floats ; : qvariable create 1 quaternions allot ; : q! ( a b c d q -- ) dup 3 floats + f! dup 2 floats + f! dup float+ f! f! ; : qcopy ( src dest -- ) 1 quaternions move ; : qnorm ( q -- f ) 0e 4 0 do dup f@ fdup f* f+ float+ loop drop fsqrt ; : qf* ( q f -- ) 4 0 do dup f@ fover f* dup f! float+ loop fdrop drop ; : qnegate ( q -- ) -1e qf* ; : qconj ( q -- ) float+ 3 0 do dup f@ fnegate dup f! float+ loop drop ; : qf+ ( q f -- ) dup f@ f+ f! ; : q+ ( q1 q2 -- ) 4 0 do over f@ dup f@ f+ dup f! float+ swap float+ swap loop 2drop ; \ access : q.a f@ ; : q.b float+ f@ ; : q.c 2 floats + f@ ; : q.d 3 floats + f@ ; : q* ( dest q1 q2 -- ) over q.a dup q.d f* over q.b dup q.c f* f+ over q.c dup q.b f* f- over q.d dup q.a f* f+ over q.a dup q.c f* over q.b dup q.d f* f- over q.c dup q.a f* f+ over q.d dup q.b f* f+ over q.a dup q.b f* over q.b dup q.a f* f+ over q.c dup q.d f* f+ over q.d dup q.c f* f- over q.a dup q.a f* over q.b dup q.b f* f- over q.c dup q.c f* f- over q.d dup q.d f* f- 2drop 4 0 do dup f! float+ loop drop ; : q= ( q1 q2 -- ? ) 4 0 do over f@ dup f@ f<> if 2drop false unloop exit then float+ swap float+ loop 2drop true ; \ testing : q. ( q -- ) [char] ( emit space 4 0 do dup f@ f. float+ loop drop [char] ) emit space ; qvariable q 1e 2e 3e 4e q q! qvariable q1 2e 3e 4e 5e q1 q! create q2 3e f, 4e f, 5e f, 6e f, \ by hand qvariable tmp qvariable m1 qvariable m2 q qnorm f. \ 5.47722557505166 q tmp qcopy tmp qnegate tmp q. \ ( -1. -2. -3. -4. ) q tmp qcopy tmp qconj tmp q. \ ( 1. -2. -3. -4. ) q m1 qcopy m1 7e qf+ m1 q. \ ( 8. 2. 3. 4. ) q m2 qcopy 7e m2 qf+ m2 q. \ ( 8. 2. 3. 4. ) m1 m2 q= . \ -1 (true) q2 tmp qcopy q1 tmp q+ tmp q. \ ( 5. 7. 9. 11. ) q m1 qcopy m1 7e qf* m1 q. \ ( 7. 14. 21. 28. ) q m2 qcopy 7e m2 qf* m2 q. \ ( 7. 14. 21. 28. ) m1 m2 q= . \ -1 (true) m1 q1 q2 q* m1 q. \ ( -56. 16. 24. 26. ) m2 q2 q1 q* m2 q. \ ( -56. 18. 20. 28. ) m1 m2 q= . \ 0 (false)  ## Fortran Works with: Fortran version 90 and later module Q_mod implicit none type quaternion real :: a, b, c, d end type public :: norm, neg, conj public :: operator (+) public :: operator (*) private :: q_plus_q, q_plus_r, r_plus_q, & q_mult_q, q_mult_r, r_mult_q, & norm_q, neg_q, conj_q interface norm module procedure norm_q end interface interface neg module procedure neg_q end interface interface conj module procedure conj_q end interface interface operator (+) module procedure q_plus_q, q_plus_r, r_plus_q end interface interface operator (*) module procedure q_mult_q, q_mult_r, r_mult_q end interface contains function norm_q(x) result(res) real :: res type (quaternion), intent (in) :: x res = sqrt(x%a*x%a + x%b*x%b + x%c*x%c + x%d*x%d) end function norm_q function neg_q(x) result(res) type (quaternion) :: res type (quaternion), intent (in) :: x res%a = -x%a res%b = -x%b res%c = -x%c res%d = -x%d end function neg_q function conj_q(x) result(res) type (quaternion) :: res type (quaternion), intent (in) :: x res%a = x%a res%b = -x%b res%c = -x%c res%d = -x%d end function conj_q function q_plus_q(x, y) result (res) type (quaternion) :: res type (quaternion), intent (in) :: x, y res%a = x%a + y%a res%b = x%b + y%b res%c = x%c + y%c res%d = x%d + y%d end function q_plus_q function q_plus_r(x, r) result (res) type (quaternion) :: res type (quaternion), intent (in) :: x real, intent(in) :: r res = x res%a = x%a + r end function q_plus_r function r_plus_q(r, x) result (res) type (quaternion) :: res type (quaternion), intent (in) :: x real, intent(in) :: r res = x res%a = x%a + r end function r_plus_q function q_mult_q(x, y) result (res) type (quaternion) :: res type (quaternion), intent (in) :: x, y res%a = x%a*y%a - x%b*y%b - x%c*y%c - x%d*y%d res%b = x%a*y%b + x%b*y%a + x%c*y%d - x%d*y%c res%c = x%a*y%c - x%b*y%d + x%c*y%a + x%d*y%b res%d = x%a*y%d + x%b*y%c - x%c*y%b + x%d*y%a end function q_mult_q function q_mult_r(x, r) result (res) type (quaternion) :: res type (quaternion), intent (in) :: x real, intent(in) :: r res%a = x%a*r res%b = x%b*r res%c = x%c*r res%d = x%d*r end function q_mult_r function r_mult_q(r, x) result (res) type (quaternion) :: res type (quaternion), intent (in) :: x real, intent(in) :: r res%a = x%a*r res%b = x%b*r res%c = x%c*r res%d = x%d*r end function r_mult_q end module Q_mod program Quaternions use Q_mod implicit none real :: r = 7.0 type(quaternion) :: q, q1, q2 q = quaternion(1, 2, 3, 4) q1 = quaternion(2, 3, 4, 5) q2 = quaternion(3, 4, 5, 6) write(*, "(a, 4f8.3)") " q = ", q write(*, "(a, 4f8.3)") " q1 = ", q1 write(*, "(a, 4f8.3)") " q2 = ", q2 write(*, "(a, f8.3)") " r = ", r write(*, "(a, f8.3)") " Norm of q = ", norm(q) write(*, "(a, 4f8.3)") " Negative of q = ", neg(q) write(*, "(a, 4f8.3)") "Conjugate of q = ", conj(q) write(*, "(a, 4f8.3)") " q + r = ", q + r write(*, "(a, 4f8.3)") " r + q = ", r + q write(*, "(a, 4f8.3)") " q1 + q2 = ", q1 + q2 write(*, "(a, 4f8.3)") " q * r = ", q * r write(*, "(a, 4f8.3)") " r * q = ", r * q write(*, "(a, 4f8.3)") " q1 * q2 = ", q1 * q2 write(*, "(a, 4f8.3)") " q2 * q1 = ", q2 * q1 end program  Output:  q = 1.000 2.000 3.000 4.000 q1 = 2.000 3.000 4.000 5.000 q2 = 3.000 4.000 5.000 6.000 r = 7.000 Norm of q = 5.477 Negative of q = -1.000 -2.000 -3.000 -4.000 Conjugate of q = 1.000 -2.000 -3.000 -4.000 q + r = 8.000 2.000 3.000 4.000 r + q = 8.000 2.000 3.000 4.000 q1 + q2 = 5.000 7.000 9.000 11.000 q * r = 7.000 14.000 21.000 28.000 r * q = 7.000 14.000 21.000 28.000 q1 * q2 = -56.000 16.000 24.000 26.000 q2 * q1 = -56.000 18.000 20.000 28.000 ## FreeBASIC Dim Shared As Integer q(3) = {1, 2, 3, 4} Dim Shared As Integer q1(3) = {2, 3, 4, 5} Dim Shared As Integer q2(3) = {3, 4, 5, 6} Dim Shared As Integer i, r = 7, t(3) Function q_norm(q() As Integer) As Double ' medida o valor absoluto de un cuaternión Dim As Double a = 0 For i = 0 To 3 a += q(i)^2 Next i Return Sqr(a) End Function Sub q_neg(q() As Integer) For i = 0 To 3 q(i) *= -1 Next i End Sub Sub q_conj(q() As Integer) ' conjugado de un cuaternión For i = 1 To 3 q(i) *= -1 Next i End Sub Sub q_addreal(q() As Integer, r As Integer) q(0) += r End Sub Sub q_add(q() As Integer, r() As Integer) ' adición entre cuaternios For i = 0 To 3 q(i) += r(i) Next i End Sub Sub q_mulreal(q() As Integer, r As Integer) For i = 0 To 3 q(i) *= r Next i End Sub Sub q_mul(q() As Integer, r() As Integer) ' producto entre cuaternios Dim As Integer m(3) m(0) = q(0)*r(0) - q(1)*r(1) - q(2)*r(2) - q(3)*r(3) m(1) = q(0)*r(1) + q(1)*r(0) + q(2)*r(3) - q(3)*r(2) m(2) = q(0)*r(2) - q(1)*r(3) + q(2)*r(0) + q(3)*r(1) m(3) = q(0)*r(3) + q(1)*r(2) - q(2)*r(1) + q(3)*r(0) For i = 0 To 3 : q(i) = m(i) : Next i End Sub Function q_show(q() As Integer) As String Dim As String a = "(" For i = 0 To 3 a += Str(q(i)) + ", " Next i Return Mid(a,1,Len(a)-2) + ")" End Function '--- Programa Principal --- Print " q = "; q_show(q()) Print "q1 = "; q_show(q1()) Print "q2 = "; q_show(q2()) Print " r = "; r Print "norm(q) ="; q_norm(q()) For i = 0 To 3 : t(i) = q(i) : Next i : q_neg(t()) : Print " neg(q) = "; q_show(t()) For i = 0 To 3 : t(i) = q(i) : Next i : q_conj(t()) : Print "conj(q) = "; q_show(t()) For i = 0 To 3 : t(i) = q(i) : Next i : q_addreal(t(),r) : Print " r + q = "; q_show(t()) For i = 0 To 3 : t(i) = q1(i) : Next i : q_add(t(),q2()) : Print "q1 + q2 = "; q_show(t()) For i = 0 To 3 : t(i) = q2(i) : Next i : q_add(t(),q1()) : Print "q2 + q1 = "; q_show(t()) For i = 0 To 3 : t(i) = q(i) : Next i : q_mulreal(t(),r) : Print " r * q = "; q_show(t()) For i = 0 To 3 : t(i) = q1(i) : Next i : q_mul(t(),q2()) : Print "q1 * q2 = "; q_show(t()) For i = 0 To 3 : t(i) = q2(i) : Next i : q_mul(t(),q1()) : Print "q2 * q1 = "; q_show(t()) End  Output:  q = (1, 2, 3, 4) q1 = (2, 3, 4, 5) q2 = (3, 4, 5, 6) r = 7 norm(q) = 5.477225575051661 neg(q) = (-1, -2, -3, -4) conj(q) = (1, -2, -3, -4) r + q = (8, 2, 3, 4) q1 + q2 = (5, 7, 9, 11) q2 + q1 = (5, 7, 9, 11) r * q = (7, 14, 21, 28) q1 * q2 = (-56, 16, 24, 26) q2 * q1 = (-56, 18, 20, 28)  ## GAP # GAP has built-in support for quaternions A := QuaternionAlgebra(Rationals); # <algebra-with-one of dimension 4 over Rationals> b := BasisVectors(Basis(A)); # [ e, i, j, k ] q := [1, 2, 3, 4]*b; # e+(2)*i+(3)*j+(4)*k # Conjugate ComplexConjugate(q); # e+(-2)*i+(-3)*j+(-4)*k # Division 1/q; # (1/30)*e+(-1/15)*i+(-1/10)*j+(-2/15)*k # Computing norm may be difficult, since the result would be in a quadratic field. # Sqrt exists in GAP, but it is quite unusual: see ?E in GAP documentation, and the following example Sqrt(5/3); # 1/3*E(60)^7+1/3*E(60)^11-1/3*E(60)^19-1/3*E(60)^23-1/3*E(60)^31+1/3*E(60)^43-1/3*E(60)^47+1/3*E(60)^59 # However, the square of the norm is easy to compute q*ComplexConjugate(q); # (30)*e q1 := [2, 3, 4, 5]*b; # (2)*e+(3)*i+(4)*j+(5)*k q2 := [3, 4, 5, 6]*b; # (3)*e+(4)*i+(5)*j+(6)*k q1*q2 - q2*q1; # (-2)*i+(4)*j+(-2)*k # Can't add directly to a rational, one must make a quaternion of it r := 5/3*b[1]; # (5/3)*e r + q; # (8/3)*e+(2)*i+(3)*j+(4)*k # For multiplication, no problem (we are in an algebra over rationals !) r*q; # (5/3)*e+(10/3)*i+(5)*j+(20/3)*k 5/3*q; # (5/3)*e+(10/3)*i+(5)*j+(20/3)*k # Negative -q; (-1)*e+(-2)*i+(-3)*j+(-4)*k # While quaternions are built-in, you can define an algebra in GAP by specifying it's multiplication table. # See tutorial, p. 60, and reference of the functions used below. # A multiplication table of dimension 4. T := EmptySCTable(4, 0); SetEntrySCTable(T, 1, 1, [1, 1]); SetEntrySCTable(T, 1, 2, [1, 2]); SetEntrySCTable(T, 1, 3, [1, 3]); SetEntrySCTable(T, 1, 4, [1, 4]); SetEntrySCTable(T, 2, 1, [1, 2]); SetEntrySCTable(T, 2, 2, [-1, 1]); SetEntrySCTable(T, 2, 3, [1, 4]); SetEntrySCTable(T, 2, 4, [-1, 3]); SetEntrySCTable(T, 3, 1, [1, 3]); SetEntrySCTable(T, 3, 2, [-1, 4]); SetEntrySCTable(T, 3, 3, [-1, 1]); SetEntrySCTable(T, 3, 4, [1, 2]); SetEntrySCTable(T, 4, 1, [1, 4]); SetEntrySCTable(T, 4, 2, [1, 3]); SetEntrySCTable(T, 4, 3, [-1, 2]); SetEntrySCTable(T, 4, 4, [-1, 1]); A := AlgebraByStructureConstants(Rationals, T, ["e", "i", "j", "k"]); b := GeneratorsOfAlgebra(A); IsAssociative(A); # true IsCommutative(A); # false # Then, like above q := [1, 2, 3, 4]*b; # e+(2)*i+(3)*j+(4)*k # However, as is, GAP does not know division or conjugate on this algebra. # QuaternionAlgebra is useful as well for extensions of rationals, # and this one _has_ conjugate and division, as seen previously. # Try this on Q[z] where z is the square root of 5 (in GAP it's ER(5)) F := FieldByGenerators([ER(5)]); A := QuaternionAlgebra(F); b := GeneratorsOfAlgebra(A); q := [1, 2, 3, 4]*b; # e+(2)*i+(3)*j+(4)*k # Conjugate and division ComplexConjugate(q); # e+(-2)*i+(-3)*j+(-4)*k 1/q; # (1/30)*e+(-1/15)*i+(-1/10)*j+(-2/15)*k  ## Go Conventions for method receiver, parameter, and return values modeled after Go's big number package. It provides flexibility without requiring unnecessary object creation. The test program creates only four quaternion objects, the three inputs and one more for an output. The three inputs are reused repeatedly without being modified. The output is also reused repeatedly, being overwritten for each operation. package main import ( "fmt" "math" ) type qtn struct { r, i, j, k float64 } var ( q = &qtn{1, 2, 3, 4} q1 = &qtn{2, 3, 4, 5} q2 = &qtn{3, 4, 5, 6} r float64 = 7 ) func main() { fmt.Println("Inputs") fmt.Println("q:", q) fmt.Println("q1:", q1) fmt.Println("q2:", q2) fmt.Println("r:", r) var qr qtn fmt.Println("\nFunctions") fmt.Println("q.norm():", q.norm()) fmt.Println("neg(q):", qr.neg(q)) fmt.Println("conj(q):", qr.conj(q)) fmt.Println("addF(q, r):", qr.addF(q, r)) fmt.Println("addQ(q1, q2):", qr.addQ(q1, q2)) fmt.Println("mulF(q, r):", qr.mulF(q, r)) fmt.Println("mulQ(q1, q2):", qr.mulQ(q1, q2)) fmt.Println("mulQ(q2, q1):", qr.mulQ(q2, q1)) } func (q *qtn) String() string { return fmt.Sprintf("(%g, %g, %g, %g)", q.r, q.i, q.j, q.k) } func (q *qtn) norm() float64 { return math.Sqrt(q.r*q.r + q.i*q.i + q.j*q.j + q.k*q.k) } func (z *qtn) neg(q *qtn) *qtn { z.r, z.i, z.j, z.k = -q.r, -q.i, -q.j, -q.k return z } func (z *qtn) conj(q *qtn) *qtn { z.r, z.i, z.j, z.k = q.r, -q.i, -q.j, -q.k return z } func (z *qtn) addF(q *qtn, r float64) *qtn { z.r, z.i, z.j, z.k = q.r+r, q.i, q.j, q.k return z } func (z *qtn) addQ(q1, q2 *qtn) *qtn { z.r, z.i, z.j, z.k = q1.r+q2.r, q1.i+q2.i, q1.j+q2.j, q1.k+q2.k return z } func (z *qtn) mulF(q *qtn, r float64) *qtn { z.r, z.i, z.j, z.k = q.r*r, q.i*r, q.j*r, q.k*r return z } func (z *qtn) mulQ(q1, q2 *qtn) *qtn { z.r, z.i, z.j, z.k = q1.r*q2.r-q1.i*q2.i-q1.j*q2.j-q1.k*q2.k, q1.r*q2.i+q1.i*q2.r+q1.j*q2.k-q1.k*q2.j, q1.r*q2.j-q1.i*q2.k+q1.j*q2.r+q1.k*q2.i, q1.r*q2.k+q1.i*q2.j-q1.j*q2.i+q1.k*q2.r return z }  Output: Inputs q: (1, 2, 3, 4) q1: (2, 3, 4, 5) q2: (3, 4, 5, 6) r: 7 Functions q.norm(): 5.477225575051661 neg(q): (-1, -2, -3, -4) conj(q): (1, -2, -3, -4) addF(q, r): (8, 2, 3, 4) addQ(q1, q2): (5, 7, 9, 11) mulF(q, r): (7, 14, 21, 28) mulQ(q1, q2): (-56, 16, 24, 26) mulQ(q2, q1): (-56, 18, 20, 28)  ## Haskell import Control.Monad (join) data Quaternion a = Q a a a a deriving (Show, Eq) realQ :: Quaternion a -> a realQ (Q r _ _ _) = r imagQ :: Quaternion a -> [a] imagQ (Q _ i j k) = [i, j, k] quaternionFromScalar :: (Num a) => a -> Quaternion a quaternionFromScalar s = Q s 0 0 0 listFromQ :: Quaternion a -> [a] listFromQ (Q a b c d) = [a, b, c, d] quaternionFromList :: [a] -> Quaternion a quaternionFromList [a, b, c, d] = Q a b c d normQ :: (RealFloat a) => Quaternion a -> a normQ = sqrt . sum . join (zipWith (*)) . listFromQ conjQ :: (Num a) => Quaternion a -> Quaternion a conjQ (Q a b c d) = Q a (-b) (-c) (-d) instance (RealFloat a) => Num (Quaternion a) where (Q a b c d) + (Q p q r s) = Q (a + p) (b + q) (c + r) (d + s) (Q a b c d) - (Q p q r s) = Q (a - p) (b - q) (c - r) (d - s) (Q a b c d) * (Q p q r s) = Q (a * p - b * q - c * r - d * s) (a * q + b * p + c * s - d * r) (a * r - b * s + c * p + d * q) (a * s + b * r - c * q + d * p) negate (Q a b c d) = Q (-a) (-b) (-c) (-d) abs q = quaternionFromScalar (normQ q) signum (Q 0 0 0 0) = 0 signum q@(Q a b c d) = Q (a/n) (b/n) (c/n) (d/n) where n = normQ q fromInteger n = quaternionFromScalar (fromInteger n) main :: IO () main = do let q, q1, q2 :: Quaternion Double q = Q 1 2 3 4 q1 = Q 2 3 4 5 q2 = Q 3 4 5 6 print$ (Q 0 1 0 0) * (Q 0 0 1 0) * (Q 0 0 0 1) -- i*j*k; prints "Q (-1.0) 0.0 0.0 0.0"
print $q1 * q2 -- prints "Q (-56.0) 16.0 24.0 26.0" print$ q2 * q1                                 -- prints "Q (-56.0) 18.0 20.0 28.0"
print $q1 * q2 == q2 * q1 -- prints "False" print$ imagQ q                                 -- prints "[2.0,3.0,4.0]"


## Icon and Unicon

Using Unicon's class system.

class Quaternion(a, b, c, d)

method norm ()
return sqrt (a*a + b*b + c*c + d*d)
end

method negative ()
return Quaternion(-a, -b, -c, -d)
end

method conjugate ()
return Quaternion(a, -b, -c, -d)
end

if type(n) == "Quaternion__state"
then return Quaternion(a+n.a, b+n.b, c+n.c, d+n.d)
else return Quaternion(a+n, b, c, d)
end

method multiply (n)
if type(n) == "Quaternion__state"
then return Quaternion(a*n.a - b*n.b - c*n.c - d*n.d,
a*n.b + b*n.a + c*n.d - d*n.c,
a*n.c - b*n.d + c*n.a + d*n.b,
a*n.d + b*n.c - c*n.b + d*n.a)
else return Quaternion(a*n, b*n, c*n, d*n)
end

method sign (n)
return if n >= 0 then "+" else "-"
end

method string ()
return ("" || a || sign(b) || abs(b) || "i" || sign(c) || abs(c) || "j" || sign(d) || abs(d) || "k");
end

initially(a, b, c, d)
self.a := if /a then 0 else a
self.b := if /b then 0 else b
self.c := if /c then 0 else c
self.d := if /d then 0 else d
end


To test the above:

procedure main ()
q := Quaternion (1,2,3,4)
q1 := Quaternion (2,3,4,5)
q2 := Quaternion (3,4,5,6)
r := 7

write ("The norm      of " || q.string() || " is " || q.norm ())
write ("The negative  of " || q.string() || " is " || q.negative().string ())
write ("The conjugate of " || q.string() || " is " || q.conjugate().string ())
write ("Sum of " || q.string() || " and " || r || " is " || q.add(r).string ())
write ("Sum of " || q.string() || " and " || q1.string() || " is " || q.add(q1).string ())
write ("Product of " || q.string() || " and " || r || " is " || q.multiply(r).string ())
write ("Product of " || q.string() || " and " || q1.string() || " is " || q.multiply(q1).string ())
write ("q1*q2 = " || q1.multiply(q2).string ())
write ("q2*q1 = " || q2.multiply(q1).string ())
end

Output:
The norm      of 1+2i+3j+4k is 5.477225575
The negative  of 1+2i+3j+4k is -1-2i-3j-4k
The conjugate of 1+2i+3j+4k is 1-2i-3j-4k
Sum of 1+2i+3j+4k and 7 is 8+2i+3j+4k
Sum of 1+2i+3j+4k and 2+3i+4j+5k is 3+5i+7j+9k
Product of 1+2i+3j+4k and 7 is 7+14i+21j+28k
Product of 1+2i+3j+4k and 2+3i+4j+5k is -36+6i+12j+12k
q1*q2 = -56+16i+24j+26k
q2*q1 = -56+18i+20j+28k


## Idris

With dependent types we can implement the more general Cayley-Dickson construction. Here the dependent type CD n a is implemented. It depends on a natural number n, which is the number of iterations carried out, and the base type a. So the real numbers are just CD 0 Double, the complex numbers CD 1 Double and the quaternions CD 2 Double

module CayleyDickson

data CD : Nat -> Type -> Type where
CDBase : a -> CD 0 a
CDProd : CD n a -> CD n a -> CD (S n) a

pairTy : Nat -> Type -> Type
pairTy Z a = a
pairTy (S n) a = let b = pairTy n a in (b, b)

fromPair : (n : Nat) -> pairTy n a -> CD n a
fromPair Z x = CDBase x
fromPair (S m) (x, y) = CDProd (fromPair m x) $fromPair m y toPair : CD n a -> pairTy n a toPair (CDBase x) = x toPair (CDProd x v) = (toPair x, toPair v) first : CD n a -> a first (CDBase x) = x first (CDProd x v) = first x fromBase : Num a => (n : Nat) -> a -> CD n a fromBase Z x = CDBase x fromBase (S m) x = CDProd (fromBase m x)$ fromBase m 0

multSclr : Num a => CD n a -> a -> CD n a
multSclr (CDBase x) y = CDBase $x * y multSclr (CDProd x v) y = CDProd (multSclr x y)$ multSclr v y

divSclr : Fractional a => CD n a -> a -> CD n a
divSclr (CDBase x) y = CDBase $x / y divSclr (CDProd x v) y = CDProd (divSclr x y)$ divSclr v y

plusCD : Num a => CD n a -> CD n a -> CD n a
plusCD (CDBase x) (CDBase y) = CDBase $x + y plusCD (CDProd x v) (CDProd y w) = CDProd (plusCD x y)$ plusCD v w

negCD : Neg a => CD n a -> CD n a
negCD (CDBase x) = CDBase $negate x negCD (CDProd x v) = CDProd (negCD x)$ negCD v

minusCD : Neg a => CD n a -> CD n a -> CD n a
minusCD (CDBase x) (CDBase y) = CDBase $x - y minusCD (CDProd x v) (CDProd y w) = CDProd (minusCD x y)$ minusCD v w

conjCD : Neg a => CD n a -> CD n a
conjCD (CDBase x) = CDBase x
conjCD (CDProd x v) = CDProd (conjCD x) $negCD v multCD : Neg a => CD n a -> CD n a -> CD n a multCD (CDBase x) (CDBase y) = CDBase$ x * y
multCD (CDProd x v) (CDProd y w) = CDProd (minusCD (multCD x y) (multCD (conjCD w) v)) $plusCD (multCD w x)$ multCD v $conjCD y absSqrCD : Neg a => CD n a -> CD n a absSqrCD x = multCD x$ conjCD x

sqrLnCD : Neg a => CD n a -> a
sqrLnCD = first . absSqrCD

recipCD : Neg a => Fractional a => CD n a -> CD n a
recipCD x = conjCD $divSclr x$ sqrLnCD x

divCD : Neg a => Fractional a => CD n a -> CD n a -> CD n a
divCD x y = multCD x $recipCD y absCD : CD n Double -> Double absCD x = sqrt$ sqrLnCD x

showComps : Show a => CD n a -> String
showComps (CDBase x) = show x
showComps (CDProd x v) = showComps x ++ ", " ++ showComps v

Eq a => Eq (CD n a) where
(CDBase x) == (CDBase y) = x == y
(CDProd x v) == (CDProd y w) = x == y && v == w

Show a => Show (CD n a) where
show x = "(" ++ showComps x ++ ")"

Neg a => Num (CD n a) where
(+) = plusCD
(*) = multCD
fromInteger m {n} = fromBase n $fromInteger m Neg a => Neg (CD n a) where negate = negCD (-) = minusCD (Neg a, Fractional a) => Fractional (CD n a) where (/) = divCD recip = recipCD Abs (CD n Double) where abs {n} = fromBase n . absCD  To test it: import CayleyDickson main : IO () main = do let q = fromPair 2 ((1, 2), (3, 4)) let q1 = fromPair 2 ((2, 3), (4, 5)) let q2 = fromPair 2 ((3, 4), (5, 6)) printLn$ q1 * q2
printLn $q2 * q1 printLn$ q1 * q2 == q2 * q1


## J

Derived from the j wiki:

   NB. utilities
ip=:   +/ .*             NB. inner product
T=. (_1^#:0 10 9 12)*0 7 16 23 A.=i.4
toQ=:  4&{."1 :[:        NB. real scalars -> quaternion

norm=: %:@ip~@toQ        NB. | y
neg=:  -&toQ             NB. - y  and  x - y
conj=: 1 _1 _1 _1 * toQ  NB. + y
add=:  +&toQ             NB. x + y
mul=:  (ip T ip ])&toQ   NB. x * y


T is a rank 3 tensor which allows us to express quaternion product ab as the inner product ATB if A and B are 4 element vectors representing the quaternions a and b. (Note also that once we have defined mul we no longer need to retain the definition of T, so we define T using =. instead of =:). The value of T is probably more interesting than its definition, so:

   T
1  0  0  0
0  1  0  0
0  0  1  0
0  0  0  1

0 _1  0  0
1  0  0  0
0  0  0 _1
0  0  1  0

0  0 _1  0
0  0  0  1
1  0  0  0
0 _1  0  0

0  0  0 _1
0  0 _1  0
0  1  0  0
1  0  0  0


In other words, the last dimension of T corresponds to the structure of the right argument (columns, in the display of T), the first dimension of T corresponds to the structure of the left argument (tables, in the display of T) and the middle dimension of T corresponds to the structure of the result (rows, in the display of T).

Example use:

   q=: 1 2 3 4
q1=: 2 3 4 5
q2=: 3 4 5 6
r=: 7

norm q
5.47723
neg q
_1 _2 _3 _4
conj q
1 _2 _3 _4
8 2 3 4
5 7 9 11
r mul q
7 14 21 28
q1 mul q2
_56 16 24 26
q2 mul q1
_56 18 20 28


Finally, note that when quaternions are used to represent orientation or rotation, we are typically only interested in unit length quaternions. As this is the typical application for quaternions, you will sometimes see quaternion multiplication expressed using "simplifications" which are only valid for unit length quaternions. But note also that in many of those contexts you also need to normalize the quaternion length after multiplication.

(An exception to this need to normalize unit length quaternions after multiplication might be when quaternions are represented as an index into a geodesic grid. For example, a grid with 16x20 faces would have a total of 15 vertices for each face (5+4+3+2+1), 3 of those vertices would be from the original 20 vertices of the icosahedron, and 9 of those vertices (5+4+3-3) would be on the edge of the original face (and, thus, used for two faces), the remaining 3 vertices would be interior. This means we would have 170 vertices (20+(20*9%2)+20*3, which would allow a quaternion to be represented in a single byte index into a list of 170 quaternions, and would allow quaternion multiplication to be represented as a 29kbyte lookup table. In some contexts - where quaternion multiplication is needed in high volume for secondary or tertiary issues (where precision isn't vital), such low accuracy quaternions might be adequate or even an advantage...)

## Java

public class Quaternion {
private final double a, b, c, d;

public Quaternion(double a, double b, double c, double d) {
this.a = a;
this.b = b;
this.c = c;
this.d = d;
}
public Quaternion(double r) {
this(r, 0.0, 0.0, 0.0);
}

public double norm() {
return Math.sqrt(a * a + b * b + c * c + d * d);
}

public Quaternion negative() {
return new Quaternion(-a, -b, -c, -d);
}

public Quaternion conjugate() {
return new Quaternion(a, -b, -c, -d);
}

return new Quaternion(a + r, b, c, d);
}
public static Quaternion add(Quaternion q, double r) {
}
public static Quaternion add(double r, Quaternion q) {
}
return new Quaternion(a + q.a, b + q.b, c + q.c, d + q.d);
}
public static Quaternion add(Quaternion q1, Quaternion q2) {
}

public Quaternion times(double r) {
return new Quaternion(a * r, b * r, c * r, d * r);
}
public static Quaternion times(Quaternion q, double r) {
return q.times(r);
}
public static Quaternion times(double r, Quaternion q) {
return q.times(r);
}
public Quaternion times(Quaternion q) {
return new Quaternion(
a * q.a - b * q.b - c * q.c - d * q.d,
a * q.b + b * q.a + c * q.d - d * q.c,
a * q.c - b * q.d + c * q.a + d * q.b,
a * q.d + b * q.c - c * q.b + d * q.a
);
}
public static Quaternion times(Quaternion q1, Quaternion q2) {
return q1.times(q2);
}

@Override
public boolean equals(Object obj) {
if (!(obj instanceof Quaternion)) return false;
final Quaternion other = (Quaternion) obj;
if (Double.doubleToLongBits(this.a) != Double.doubleToLongBits(other.a)) return false;
if (Double.doubleToLongBits(this.b) != Double.doubleToLongBits(other.b)) return false;
if (Double.doubleToLongBits(this.c) != Double.doubleToLongBits(other.c)) return false;
if (Double.doubleToLongBits(this.d) != Double.doubleToLongBits(other.d)) return false;
return true;
}
@Override
public String toString() {
return String.format("%.2f + %.2fi + %.2fj + %.2fk", a, b, c, d).replaceAll("\\+ -", "- ");
}

return String.format("(%.2f, %.2f, %.2f, %.2f)", a, b, c, d);
}

public static void main(String[] args) {
Quaternion q = new Quaternion(1.0, 2.0, 3.0, 4.0);
Quaternion q1 = new Quaternion(2.0, 3.0, 4.0, 5.0);
Quaternion q2 = new Quaternion(3.0, 4.0, 5.0, 6.0);
double r = 7.0;
System.out.format("q       = %s%n", q);
System.out.format("q1      = %s%n", q1);
System.out.format("q2      = %s%n", q2);
System.out.format("r       = %.2f%n%n", r);
System.out.format("\u2016q\u2016     = %.2f%n", q.norm());
System.out.format("-q      = %s%n", q.negative());
System.out.format("q*      = %s%n", q.conjugate());
System.out.format("q + r   = %s%n", q.add(r));
System.out.format("q1 + q2 = %s%n", q1.add(q2));
System.out.format("q \u00d7 r   = %s%n", q.times(r));
Quaternion q1q2 = q1.times(q2);
Quaternion q2q1 = q2.times(q1);
System.out.format("q1 \u00d7 q2 = %s%n", q1q2);
System.out.format("q2 \u00d7 q1 = %s%n", q2q1);
System.out.format("q1 \u00d7 q2 %s q2 \u00d7 q1%n", (q1q2.equals(q2q1) ? "=" : "\u2260"));
}
}

Output:
q       = 1.00 + 2.00i + 3.00j + 4.00k
q1      = 2.00 + 3.00i + 4.00j + 5.00k
q2      = 3.00 + 4.00i + 5.00j + 6.00k
r       = 7.00

‖q‖     = 5.48
-q      = -1.00 - 2.00i - 3.00j - 4.00k
q*      = 1.00 - 2.00i - 3.00j - 4.00k
q + r   = 8.00 + 2.00i + 3.00j + 4.00k
q1 + q2 = 5.00 + 7.00i + 9.00j + 11.00k
q × r   = 7.00 + 14.00i + 21.00j + 28.00k
q1 × q2 = -56.00 + 16.00i + 24.00j + 26.00k
q2 × q1 = -56.00 + 18.00i + 20.00j + 28.00k
q1 × q2 ≠ q2 × q1

## JavaScript

Runs on Firefox 3+, limited support in other JS engines. More compatible JavaScript deserves its own entry.

var Quaternion = (function() {
// The Q() function takes an array argument and changes it
// prototype so that it becomes a Quaternion instance.  This is
// scoped only for prototype member access.
function Q(a) {
a.__proto__ = proto;
return a;
}

// Actual constructor.  This constructor converts its arguments to
// an array, then that array to a Quaternion instance, then
// returns that instance.  (using "new" with this constructor is
// optional)
function Quaternion() {
return Q(Array.prototype.slice.call(arguments, 0, 4));
}

// Prototype for all Quaternions
const proto = {
// Inherits from a 4-element Array
__proto__ : [0,0,0,0],

// Properties -- In addition to Array[0..3] access, we
// also define matching a, b, c, and d properties
get a() this[0],
get b() this[1],
get c() this[2],
get d() this[3],

// Methods
norm : function() Math.sqrt(this.map(function(x) x*x).reduce(function(x,y) x+y)),
negate : function() Q(this.map(function(x) -x)),
conjugate : function() Q([ this[0] ].concat(this.slice(1).map(function(x) -x))),
if ("number" === typeof x) {
return Q([ this[0] + x ].concat(this.slice(1)));
} else {
return Q(this.map(function(v,i) v+x[i]));
}
},
mul : function(r) {
var q = this;
if ("number" === typeof r) {
return Q(q.map(function(e) e*r));
} else {
return Q([ q[0] * r[0] - q[1] * r[1] - q[2] * r[2] - q[3] * r[3],
q[0] * r[1] + q[1] * r[0] + q[2] * r[3] - q[3] * r[2],
q[0] * r[2] - q[1] * r[3] + q[2] * r[0] + q[3] * r[1],
q[0] * r[3] + q[1] * r[2] - q[2] * r[1] + q[3] * r[0] ]);
}
},
equals : function(q) this.every(function(v,i) v === q[i]),
toString : function() (this[0] + " + " + this[1] + "i + "+this[2] + "j + " + this[3] + "k").replace(/\+ -/g, '- ')
};

Quaternion.prototype = proto;
return Quaternion;
})();


var q = Quaternion(1,2,3,4);
var q1 = Quaternion(2,3,4,5);
var q2 = Quaternion(3,4,5,6);
var r = 7;

console.log("q = "+q);
console.log("q1 = "+q1);
console.log("q2 = "+q2);
console.log("r = "+r);
console.log("1. q.norm() = "+q.norm());
console.log("2. q.negate() = "+q.negate());
console.log("3. q.conjugate() = "+q.conjugate());
console.log("6. q.mul(r) = "+q.mul(r));
console.log("7.a. q1.mul(q2) = "+q1.mul(q2));
console.log("7.b. q2.mul(q1) = "+q2.mul(q1));
console.log("8. q1.mul(q2) " + (q1.mul(q2).equals(q2.mul(q1)) ? "==" : "!=") + " q2.mul(q1)");

Output:
q = 1 + 2i + 3j + 4k
q1 = 2 + 3i + 4j + 5k
q2 = 3 + 4i + 5j + 6k
r = 7
1. q.norm() = 5.477225575051661
2. q.negate() = -1 - 2i - 3j - 4k
3. q.conjugate() = 1 - 2i - 3j - 4k
4. q.add(r) = 8 + 2i + 3j + 4k
5. q1.add(q2) = 5 + 7i + 9j + 11k
6. q.mul(r) = 7 + 14i + 21j + 28k
7.a. q1.mul(q2) = -56 + 16i + 24j + 26k
7.b. q2.mul(q1) = -56 + 18i + 20j + 28k
8. q1.mul(q2) != q2.mul(q1)

## jq

Program file: quaternion.jq
def Quaternion(q0;q1;q2;q3): { "q0": q0, "q1": q1, "q2": q2, "q3": q3, "type": "Quaternion" };

# promotion of a real number to a quaternion
def Quaternion(r): if (r|type) == "number" then Quaternion(r;0;0;0) else r end;

# thoroughly recursive pretty-print
def pp:

def signage: if . >= 0 then "+ \(.)" else  "- \(-.)" end;

if type == "object" then
if .type == "Quaternion" then
"\(.q0) \(.q1|signage)i \(.q2|signage)j \(.q3|signage)k"
else with_entries( {key, "value" : (.value|pp)} )
end
elif type == "array" then map(pp)
else .
end ;

def real(z): Quaternion(z).q0;

# Note: imag(z) returns the "i" component only,
# reflecting the embedding of the complex numbers within the quaternions:
def imag(z): Quaternion(z).q1;

def conj(z): Quaternion(z) | Quaternion(.q0; -(.q1); -(.q2); -(.q3));

def abs2(z): Quaternion(z) | .q0 * .q0 + .q1*.q1 + .q2*.q2 + .q3*.q3;

def abs(z): abs2(z) | sqrt;

def negate(z): Quaternion(z) | Quaternion(-.q0; -.q1; -.q2; -.q3);

# z + w
def plus(z; w):
def plusq(z;w): Quaternion(z.q0 + w.q0; z.q1 + w.q1;
z.q2 + w.q2; z.q3 + w.q3);
plusq( Quaternion(z); Quaternion(w) );

# z - w
def minus(z; w):
def minusq(z;w): Quaternion(z.q0 - w.q0; z.q1 - w.q1;
z.q2 - w.q2; z.q3 - w.q3);
minusq( Quaternion(z); Quaternion(w) );

# *
def times(z; w):
def timesq(z; w):
Quaternion(z.q0*w.q0 - z.q1*w.q1 - z.q2*w.q2 - z.q3*w.q3;
z.q0*w.q1 + z.q1*w.q0 + z.q2*w.q3 - z.q3*w.q2;
z.q0*w.q2 - z.q1*w.q3 + z.q2*w.q0 + z.q3*w.q1;
z.q0*w.q3 + z.q1*w.q2 - z.q2*w.q1 + z.q3*w.q0);
timesq( Quaternion(z); Quaternion(w) );

# (z/w)
def div(z; w):
if (w|type) == "number" then Quaternion(z.q0/w; z.q1/w; z.q2/w; z.q3/w)
else times(z; inv(w))
end;

def inv(z): div(conj(z); abs2(z));

# Example usage and output:

def say(msg; e): "\(msg) => \(e|pp)";

def demo:
say( "Quaternion(1;0;0;0)"; Quaternion(1;0;0;0)),
(Quaternion (1; 2; 3; 4) as $q | Quaternion(2; 3; 4; 5) as$q1
| Quaternion(3; 4; 5; 6) as $q2 | 7 as$r
| say( "abs($q)"; abs($q) ),   # norm
say( "negate($q)"; negate($q) ),
say( "conj($q)"; conj($q) ),
"",
say( "plus($r;$q)";   plus($r;$q)),
say( "plus($q;$r)";   plus($q;$r)),
"",
say( "plus($q1;$q2 )"; plus($q1;$q2)),
"",
say( "times($r;$q)";    times($r;$q)),
say( "times($q;$r)";    times($q;$r)),
"",
say( "times($q1;$q2)";  times($q1;$q2)),
say( "times($q2;$q1)"; times($q2;$q1)),
say( "times($q1;$q2) != times($q2;$q1)";
times($q1;$q2) != times($q2;$q1) )
) ;

demo

Example usage and output:

# jq -c -n -R -f quaternion.jq
Quaternion(1;0;0;0) => 1 + 0i + 0j + 0k
abs($q) => 5.477225575051661 negate($q) => -1 - 2i - 3j + -4k
conj($q) => 1 - 2i - 3j - 4k plus($r; $q) => 8 + 2i + 3j + 4k plus($q; $r) => 8 + 2i + 3j + 4k plus($q1; $q2 ) => 5 + 7i + 9j + 11k times($r;$q) => 7 + 14i + 21j + 28k times($q;$r) => 7 + 14i + 21j + 28k times($q1;$q2) => -56 + 16i + 24j + 26k times($q2; $q1) => -56 + 18i + 20j + 28k times($q1; $q2) != times($q2; $q1) => true  ## Julia https://github.com/andrioni/Quaternions.jl/blob/master/src/Quaternions.jl has a more complete implementation. This is derived from the quaternion example file included with Julia 0.2, which implements a quaternion type complete with arithmetic, type conversions / promotion rules, polymorphism over arbitrary real numeric types, and pretty-printing. import Base: convert, promote_rule, show, conj, abs, +, -, * immutable Quaternion{T<:Real} <: Number q0::T q1::T q2::T q3::T end Quaternion(q0::Real,q1::Real,q2::Real,q3::Real) = Quaternion(promote(q0,q1,q2,q3)...) convert{T}(::Type{Quaternion{T}}, x::Real) = Quaternion(convert(T,x), zero(T), zero(T), zero(T)) convert{T}(::Type{Quaternion{T}}, z::Complex) = Quaternion(convert(T,real(z)), convert(T,imag(z)), zero(T), zero(T)) convert{T}(::Type{Quaternion{T}}, z::Quaternion) = Quaternion(convert(T,z.q0), convert(T,z.q1), convert(T,z.q2), convert(T,z.q3)) promote_rule{T,S}(::Type{Complex{T}}, ::Type{Quaternion{S}}) = Quaternion{promote_type(T,S)} promote_rule{T<:Real,S}(::Type{T}, ::Type{Quaternion{S}}) = Quaternion{promote_type(T,S)} promote_rule{T,S}(::Type{Quaternion{T}}, ::Type{Quaternion{S}}) = Quaternion{promote_type(T,S)} function show(io::IO, z::Quaternion) pm(x) = x < 0 ? " -$(-x)" : " + $x" print(io, z.q0, pm(z.q1), "i", pm(z.q2), "j", pm(z.q3), "k") end conj(z::Quaternion) = Quaternion(z.q0, -z.q1, -z.q2, -z.q3) abs(z::Quaternion) = sqrt(z.q0*z.q0 + z.q1*z.q1 + z.q2*z.q2 + z.q3*z.q3) (-)(z::Quaternion) = Quaternion(-z.q0, -z.q1, -z.q2, -z.q3) (+)(z::Quaternion, w::Quaternion) = Quaternion(z.q0 + w.q0, z.q1 + w.q1, z.q2 + w.q2, z.q3 + w.q3) (-)(z::Quaternion, w::Quaternion) = Quaternion(z.q0 - w.q0, z.q1 - w.q1, z.q2 - w.q2, z.q3 - w.q3) (*)(z::Quaternion, w::Quaternion) = Quaternion(z.q0*w.q0 - z.q1*w.q1 - z.q2*w.q2 - z.q3*w.q3, z.q0*w.q1 + z.q1*w.q0 + z.q2*w.q3 - z.q3*w.q2, z.q0*w.q2 - z.q1*w.q3 + z.q2*w.q0 + z.q3*w.q1, z.q0*w.q3 + z.q1*w.q2 - z.q2*w.q1 + z.q3*w.q0)  Example usage and output: julia> q = Quaternion(1,0,0,0) julia> q = Quaternion (1, 2, 3, 4) q1 = Quaternion(2, 3, 4, 5) q2 = Quaternion(3, 4, 5, 6) r = 7. julia> norm(q) 5.477225575051661 julia> -q -1 - 2i - 3j - 4k julia> conj(q) 1 - 2i - 3j - 4k julia> r + q, q + r (8.0 + 2.0i + 3.0j + 4.0k,8.0 + 2.0i + 3.0j + 4.0k) julia> q1 + q2 5 + 7i + 9j + 11k julia> r*q, q*r (7.0 + 14.0i + 21.0j + 28.0k,7.0 + 14.0i + 21.0j + 28.0k) julia> q1*q2, q2*q1, q1*q2 != q2*q1 (-56 + 16i + 24j + 26k,-56 + 18i + 20j + 28k,true)  ## Kotlin // version 1.1.2 data class Quaternion(val a: Double, val b: Double, val c: Double, val d: Double) { operator fun plus(other: Quaternion): Quaternion { return Quaternion (this.a + other.a, this.b + other.b, this.c + other.c, this.d + other.d) } operator fun plus(r: Double) = Quaternion(a + r, b, c, d) operator fun times(other: Quaternion): Quaternion { return Quaternion( this.a * other.a - this.b * other.b - this.c * other.c - this.d * other.d, this.a * other.b + this.b * other.a + this.c * other.d - this.d * other.c, this.a * other.c - this.b * other.d + this.c * other.a + this.d * other.b, this.a * other.d + this.b * other.c - this.c * other.b + this.d * other.a ) } operator fun times(r: Double) = Quaternion(a * r, b * r, c * r, d * r) operator fun unaryMinus() = Quaternion(-a, -b, -c, -d) fun conj() = Quaternion(a, -b, -c, -d) fun norm() = Math.sqrt(a * a + b * b + c * c + d * d) override fun toString() = "($a, $b,$c, $d)" } // extension functions for Double type operator fun Double.plus(q: Quaternion) = q + this operator fun Double.times(q: Quaternion) = q * this fun main(args: Array<String>) { val q = Quaternion(1.0, 2.0, 3.0, 4.0) val q1 = Quaternion(2.0, 3.0, 4.0, 5.0) val q2 = Quaternion(3.0, 4.0, 5.0, 6.0) val r = 7.0 println("q =$q")
println("q1 = $q1") println("q2 =$q2")
println("r  = $r\n") println("norm(q) =${"%f".format(q.norm())}")
println("-q      = ${-q}") println("conj(q) =${q.conj()}\n")
println("r  + q  = ${r + q}") println("q + r =${q + r}")
println("q1 + q2 = ${q1 + q2}\n") println("r * q =${r * q}")
println("q  * r  = ${q * r}") val q3 = q1 * q2 val q4 = q2 * q1 println("q1 * q2 =$q3")
println("q2 * q1 = $q4\n") println("q1 * q2 != q2 * q1 =${q3 != q4}")
}

Output:
q  = (1.0, 2.0, 3.0, 4.0)
q1 = (2.0, 3.0, 4.0, 5.0)
q2 = (3.0, 4.0, 5.0, 6.0)
r  = 7.0

norm(q) = 5.477226
-q      = (-1.0, -2.0, -3.0, -4.0)
conj(q) = (1.0, -2.0, -3.0, -4.0)

r  + q  = (8.0, 2.0, 3.0, 4.0)
q  + r  = (8.0, 2.0, 3.0, 4.0)
q1 + q2 = (5.0, 7.0, 9.0, 11.0)

r  * q  = (7.0, 14.0, 21.0, 28.0)
q  * r  = (7.0, 14.0, 21.0, 28.0)
q1 * q2 = (-56.0, 16.0, 24.0, 26.0)
q2 * q1 = (-56.0, 18.0, 20.0, 28.0)

q1 * q2 != q2 * q1 = true


## Liberty BASIC

Quaternions saved as a space-separated string of four numbers.

 q$= q$( 1 , 2 , 3 , 4 )
q1$= q$( 2 , 3 , 4 , 5 )
q2$= q$( 3 , 4 , 5 , 6 )

real = 7

print "q = "  ;  q$print "q1 = " ; q1$
print "q2 = " ; q2$print "real = " ; real print "length /norm q = " ; length( q$ )               '   =norm                        norm of q
print "negative (-q1)  = " ; negative$( q1$ )           '   =negative                    negated q1
print "conjugate q     = " ; conjugate$( q$ )           '   conjugate                    conjugate q
print "real + q        = " ; add1$( q$ , real )         '   real +quaternion             real +q
print "q + q2          = " ; add2$( q$ , q2$) ' sum two quaternions q +q2 print "real * q = " ; multiply1$( q$, real ) ' real *quaternion real *q print "q1 * q2 = " ; multiply2$( q1$, q2$ )    '   product of two quaternions   q1 & q2
print "q2 * q1         = " ; multiply2$( q2$ , q1$) ' show q1 *q2 <> q2 *q1 end function q$( r , i , j , k )
q$= str$( r); " "; str$( i); " "; str$( j); " "; str$( k) end function function length( q$ )
r = val( word$( q$ , 1 ) )
i = val( word$( q$ , 2 ) )
j = val( word$( q$ , 3 ) )
k = val( word$( q$ , 4 ) )
length =sqr( r^2 +i^2 +j^2 +k^2)
end function

function multiply1$( q$ , d )
r = val( word$( q$ , 1 ) )
i = val( word$( q$ , 2 ) )
j = val( word$( q$ , 3 ) )
k = val( word$( q$ , 4 ) )
multiply1$=q$( r*d, i*d, j*d, k*d)
end function

function multiply2$( q$ , b$) ar = val( word$( q$, 1 ) ) 'a1 ai = val( word$( q$, 2 ) ) 'b1 aj = val( word$( q$, 3 ) ) 'c1 ak = val( word$( q$, 4 ) ) 'd1 br = val( word$( b$, 1 ) ) 'a2 bi = val( word$( b$, 2 ) ) 'b2 bj = val( word$( b$, 3 ) ) 'c2 bk = val( word$( b$, 4 ) ) 'd2 multiply2$ =q$( _ ar *br_ +( 0 -ai) *bi_ +( 0 -aj) *bj_ +( 0 -ak) *bk _ ,_ ar *bi_ +ai *br_ +aj *bk_ +( 0 -ak) *bj_ ,_ ar *bj_ +( 0 -ai) *bk_ +aj *br_ +ak *bi_ ,_ ar *bk_ +ai *bj_ +( 0 -aj) *bi_ +ak *br ) end function function negative$( q$) r = val( word$( q$, 1 ) ) i = val( word$( q$, 2 ) ) j = val( word$( q$, 3 ) ) k = val( word$( q$, 4 ) ) negative$ =q$( 0-r, 0-i, 0-j, 0-k) end function function conjugate$( q$) r = val( word$( q$, 1 ) ) i = val( word$( q$, 2 ) ) j = val( word$( q$, 3 ) ) k = val( word$( q$, 4 ) ) conjugate$ =q$( r, 0-i, 0-j, 0-k) end function function add1$( q$, real ) r = val( word$( q$, 1 ) ) i = val( word$( q$, 2 ) ) j = val( word$( q$, 3 ) ) k = val( word$( q$, 4 ) ) add1$ =q$( r +real, i, j, k) end function function add2$( q$, b$ )
ar = val( word$( q$ , 1 ) )
ai = val( word$( q$ , 2 ) )
aj = val( word$( q$ , 3 ) )
ak = val( word$( q$ , 4 ) )
br = val( word$( b$ , 1 ) )
bi = val( word$( b$ , 2 ) )
bj = val( word$( b$ , 3 ) )
bk = val( word$( b$ , 4 ) )
add2$=q$( ar +br, ai +bi, aj +bj, ak +bk)
end function

## Lua

Quaternion = {}

function Quaternion.new( a, b, c, d )
local q = { a = a or 1, b = b or 0, c = c or 0, d = d or 0 }

local metatab = {}
setmetatable( q, metatab )
metatab.__sub = Quaternion.sub
metatab.__unm = Quaternion.unm
metatab.__mul = Quaternion.mul

return q
end

if type( p ) == "number" then
return Quaternion.new( p+q.a, q.b, q.c, q.d )
elseif type( q ) == "number" then
return Quaternion.new( p.a+q, p.b, p.c, p.d )
else
return Quaternion.new( p.a+q.a, p.b+q.b, p.c+q.c, p.d+q.d )
end
end

function Quaternion.sub( p, q )
if type( p ) == "number" then
return Quaternion.new( p-q.a, q.b, q.c, q.d )
elseif type( q ) == "number" then
return Quaternion.new( p.a-q, p.b, p.c, p.d )
else
return Quaternion.new( p.a-q.a, p.b-q.b, p.c-q.c, p.d-q.d )
end
end

function Quaternion.unm( p )
return Quaternion.new( -p.a, -p.b, -p.c, -p.d )
end

function Quaternion.mul( p, q )
if type( p ) == "number" then
return Quaternion.new( p*q.a, p*q.b, p*q.c, p*q.d )
elseif type( q ) == "number" then
return Quaternion.new( p.a*q, p.b*q, p.c*q, p.d*q )
else
return Quaternion.new( p.a*q.a - p.b*q.b - p.c*q.c - p.d*q.d,
p.a*q.b + p.b*q.a + p.c*q.d - p.d*q.c,
p.a*q.c - p.b*q.d + p.c*q.a + p.d*q.b,
p.a*q.d + p.b*q.c - p.c*q.b + p.d*q.a )
end
end

function Quaternion.conj( p )
return Quaternion.new( p.a, -p.b, -p.c, -p.d )
end

function Quaternion.norm( p )
return math.sqrt( p.a^2 + p.b^2 + p.c^2 + p.d^2 )
end

function Quaternion.print( p )
print( string.format( "%f + %fi + %fj + %fk\n", p.a, p.b, p.c, p.d ) )
end


Examples:

q1 = Quaternion.new( 1, 2, 3, 4 )
q2 = Quaternion.new( 5, 6, 7, 8 )
r  = 12

print( "norm(q1) = ", Quaternion.norm( q1 ) )
io.write( "-q1 = " ); Quaternion.print( -q1 )
io.write( "conj(q1) = " ); Quaternion.print( Quaternion.conj( q1 ) )
io.write( "r+q1 = " ); Quaternion.print( r+q1 )
io.write( "q1+r = " ); Quaternion.print( q1+r )
io.write( "r*q1 = " ); Quaternion.print( r*q1 )
io.write( "q1*r = " ); Quaternion.print( q1*r )
io.write( "q1*q2 = " ); Quaternion.print( q1*q2 )
io.write( "q2*q1 = " ); Quaternion.print( q2*q1 )

Output:
norm(q1) = 5.4772255750517
-q1 = -1.000000 -2.000000i -3.000000j -4.000000k
conj(q1) = 1.000000 -2.000000i -3.000000j -4.000000k
r+q1 = 13.000000 + 2.000000i + 3.000000j + 4.000000k
q1+r = 13.000000 + 2.000000i + 3.000000j + 4.000000k
r*q1 = 12.000000 + 24.000000i + 36.000000j + 48.000000k
q1*r = 12.000000 + 24.000000i + 36.000000j + 48.000000k
q1*q2 = -60.000000 + 12.000000i + 30.000000j + 24.000000k
q2*q1 = -60.000000 + 20.000000i + 14.000000j + 32.000000k

## M2000 Interpreter

We can define Quaternions using a class, using operators for specific tasks, as negate, add, multiplication and equality with rounding to 13 decimal place (thats what doing "==" operator for doubles)

Module CheckIt {
class Quaternion {
\\ by default are double
a,b,c,d
Property ToString${ Value { link parent a,b,c, d to a,b,c,d value$=format$("{0} + {1}i + {2}j + {3}k",a,b,c,d) } } Property Norm { Value} Operator "==" { read n push .a==n.a and .b==n.b and .c==n.c and .d==n.d } Module CalcNorm { .[Norm]<=sqrt(.a**2+.b**2+.c**2+.d**2) } Operator Unary { .a-! : .b-! : .c-! :.d-! } Function Conj { q=this for q { .b-! : .c-! :.d-! } =q } Function Add { q=this for q { .a+=Number : .CalcNorm } =q } Operator "+" { Read q2 For this, q2 { .a+=..a :.b+=..b:.c+=..c:.d+=..d .CalcNorm } } Function Mul(r) { q=this for q { .a*=r:.b*=r:.c*=r:.d*=r:.CalcNorm } =q } Operator "*" { Read q2 For This, q2 { Push .a*..a-.b*..b-.c*..c-.d*..d Push .a*..b+.b*..a+.c*..d-.d*..c Push .a*..c-.b*..d+.c*..a+.d*..b .d<=.a*..d+.b*..c-.c*..b+.d*..a Read .c, .b, .a .CalcNorm } } class: module Quaternion { if match("NNNN") then { Read .a,.b,.c,.d .CalcNorm } } } \\ variables r=7 q=Quaternion(1,2,3,4) q1=Quaternion(2,3,4,5) q2=Quaternion(3,4,5,6) \\ perform negate, conjugate, multiply by real, add a real, multiply quanterions, multiply in reverse order qneg=-q qconj=q.conj() qmul=q.Mul(r) qadd=q.Add(r) q1q2=q1*q2 q2q1=q2*q1 Print "q = ";q.ToString$
Print "Normal q = ";q.Norm
Print "Neg q = ";qneg.ToString$Print "Conj q = ";qconj.ToString$
Print "Mul q 7 = ";qmul.ToString$Print "Add q 7 = ";qadd.ToString$
Print "q1 = ";q1.ToString$Print "q2 = ";q2.ToString$
Print "q1 * q2 = ";q1q2.ToString$Print "q2 * q1 = ";q2q1.ToString$
Print q1==q1   ' true
Print q1q2==q2q1 ' false
\\ multiplication and equality in one expression
Print (q1 * q2 == q2 * q1)=false
Print (q1 * q2 == q1 * q2)=True
}
CheckIt
Output:
q = 1 + 2i + 3j + 4k
Normal q = 5.47722557505166
Neg q = -1 + -2i + -3j + -4k
Conj q = 1 + -2i + -3j + -4k
Mul q 7 = 7 + 14i + 21j + 28k
Add q 7 = 8 + 2i + 3j + 4k
q1 = 2 + 3i + 4j + 5k
q2 = 3 + 4i + 5j + 6k
q1 * q2 = -56 + 16i + 24j + 26k
q2 * q1 = -56 + 18i + 20j + 28k
True
False
True
True

## Maple

with(ArrayTools);

module Quaternion()
option object;
local real := 0;
local i := 0;
local j := 0;
local k := 0;

export getReal::static := proc(self::Quaternion, $) return self:-real; end proc; export getI::static := proc(self::Quaternion,$)
return self:-i;
end proc;

export getJ::static := proc(self::Quaternion, $) return self:-j; end proc; export getK::static := proc(self::Quaternion,$)
return self:-k;
end proc;

export Norm::static := proc(self::Quaternion, $) return sqrt(self:-real^2 + self:-i^2 + self:-j^2 + self:-k^2); end proc; # NegativeQuaternion returns the additive inverse of the quaternion export NegativeQuaternion::static := proc(self::Quaternion,$)
return Quaternion(- self:-real, - self:-i, - self:-j, - self:-k);
end proc;

export Conjugate::static := proc(self::Quaternion, $) return Quaternion(self:-real, - self:-i, - self:-j, - self:-k); end proc; # quaternion addition export +::static := overload ([ proc(self::Quaternion, x::Quaternion) option overload; return Quaternion(self:-real + getReal(x), self:-i + getI(x), self:-j + getJ(x), self:-k + getK(x)); end proc, proc(self::Quaternion, x::algebraic) option overload; return Quaternion(self:-real + x, self:-i, self:-j, self:-k); end proc, proc(x::algebraic, self::Quaternion) option overload; return Quaternion(x + self:-real, self:-i, self:-j, self:-k); end ]); # convert quaternion to additive inverse export -::static := overload([ proc(self::Quaternion) option overload; return Quaternion(-self:-real, -self:-i, -self:-j, -self:-k); end ]); # quaternion multiplication is non-abelian so the . operator needs to be used export .::static := overload([ proc(self::Quaternion, x::Quaternion) option overload; return Quaternion(self:-real * getReal(x) - self:-i * getI(x) - self:-j * getJ(x) - self:-k * getK(x), self:-real * getI(x) + self:-i * getReal(x) + self:-j * getK(x) - self:-k * getJ(x), self:-real * getJ(x) + self:-j * getReal(x) - self:-i * getK(x) + self:-k * getI(x), self:-real * getK(x) + self:-k * getReal(x) + self:-i * getJ(x) - self:-j * getI(x)); end proc, proc(self::Quaternion, x::algebraic) option overload; return Quaternion(self:-real * x, self:-i * x, self:-j * x, self:-k * x); end proc, proc(x::algebraic, self::Quaternion) option overload; return Quaternion(self:-real * x, self:-i * x, self:-j * x, self:-k * x); end ]); # redirect division to . operator export *::static := overload([ proc(self::Quaternion, x::Quaternion) option overload; use * = . in return self * x; end use end proc, proc(self::Quaternion, x::algebraic) option overload; use * = . in return x * self; end use end proc, proc(x::algebraic, self::Quaternion) option overload; use * = . in return x * self; end use end ]); # convert quaternion to multiplicative inverse export /::static := overload([ proc(self::Quaternion) option overload; return Conjugate(self) . (1/(Norm(self)^2)); end proc ]); # QuaternionCommutator computes the commutator of self and x export QuaternionCommutator::static := proc(x::Quaternion, y::Quaternion,$)
return (x . y) - (y . x);
end proc;

# display quaternion
export ModulePrint::static := proc(self::Quaternion, $); return cat(self:-real, " + ", self:-i, "i + ", self:-j, "j + ", self:-k, "k"): end proc; export ModuleApply::static := proc() Object(Quaternion, _passed); end proc; export ModuleCopy::static := proc(new::Quaternion, proto::Quaternion, R::algebraic, imag::algebraic, J::algebraic, K::algebraic,$)
new:-real := R;
new:-i := imag;
new:-j := J;
new:-k := K;
end proc;
end module:

q := Quaternion(1, 2, 3, 4):
q1 := Quaternion(2, 3, 4, 5):
q2 := Quaternion(3, 4, 5, 6):
r := 7:

quats := Array([q, q1, q2]):
print("q, q1, q2"):
seq(quats[i], i = 1..3);
print("norms"):
seq(Norm(quats[i]), i = 1..3);
print("negative"):
seq(NegativeQuaternion(quats[i]), i = 1..3);
print("conjugate"):
seq(Conjugate(quats[i]), i = 1..3);
seq(quats[i] + r, i = 1..3);
print("multiplication by real number 7"):
seq(quats[i] . r, i = 1..3);
print("division by real number 7"):
seq(quats[i] / 7, i = 1..3);
q1 + q2;
print("multiply quaternions q1 and q2");
q1 . q2;
print("multiply quaternions q2 and q1"):
q2 . q1;
print("quaternion commutator of q1 and q2"):
QuaternionCommutator(q1,q2);
print("divide q1 by q2"):
q1 / q2;
Output:

"q, q1, q2"

1 + 2i + 3j + 4k, 2 + 3i + 4j + 5k, 3 + 4i + 5j + 6k

"norms"

1/2     1/2    1/2
30   , 3 6   , 86

"negative"

-1 + -2i + -3j + -4k, -2 + -3i + -4j + -5k, -3 + -4i + -5j + -6k

"conjugate"

1 + -2i + -3j + -4k, 2 + -3i + -4j + -5k, 3 + -4i + -5j + -6k

8 + 2i + 3j + 4k, 9 + 3i + 4j + 5k, 10 + 4i + 5j + 6k

"multiplication by real number 7"

7 + 14i + 21j + 28k, 14 + 21i + 28j + 35k, 21 + 28i + 35j + 42k

"division by real number 7"

1/7 + 2/7i + 3/7j + 4/7k, 2/7 + 3/7i + 4/7j + 5/7k, 3/7 + 4/7i + 5/7j + 6/7k

5 + 7i + 9j + 11k

"multiply quaternions q1 and q2"

-56 + 16i + 24j + 26k

"multiply quaternions q2 and q1"

-56 + 18i + 20j + 28k

"quaternion commutator of q1 and q2"

0 + -2i + 4j + -2k

"divide q1 by q2"

34/43 + 1/43i + 0j + 2/43k



## Mathematica/Wolfram Language

<<Quaternions
q=Quaternion[1,2,3,4]
q1=Quaternion[2,3,4,5]
q2=Quaternion[3,4,5,6]
r=7
->Quaternion[1,2,3,4]
->Quaternion[2,3,4,5]
->Quaternion[3,4,5,6]
->7

Abs[q]
->√30
-q
->Quaternion[-1,-2,-3,-4]
Conjugate[q]
->Quaternion[1,-2,-3,-4]
r+q
->Quaternion[8,2,3,4]
q+r
->Quaternion[8,2,3,4]
q1+q2
->Quaternion[5,7,9,11]
q*r
->Quaternion[7,14,21,28]
r*q
->Quaternion[7,14,21,28]
q1**q2
->Quaternion[-56,16,24,26]
q2**q1
->Quaternion[-56,18,20,28]


## Mercury

A possible implementation of quaternions in Mercury (the simplest representation) would look like this. Note that this is a full module implementation, complete with boilerplate, and that it works by giving an explicit conversion function for floats, converting a float into a quaternion representation of that float. Thus the float value 7.0 gets turned into the quaternion representation q(7.0, 0.0, 0.0, 0.0) through the function call r(7.0).

:- module quaternion.

:- interface.

:- import_module float.

:- type quaternion
--->    q(  w   :: float,
i   :: float,
j   :: float,
k   :: float    ).

% conversion
:- func r(float) = quaternion is det.

% operations
:- func norm(quaternion) = float is det.
:- func -quaternion = quaternion is det.
:- func conjugate(quaternion) = quaternion is det.
:- func quaternion + quaternion = quaternion is det.
:- func quaternion * quaternion = quaternion is det.

:- implementation.

:- import_module math.

% conversion
r(W) = q(W, 0.0, 0.0, 0.0).

% operations
norm(q(W, I, J, K)) = math.sqrt(W*W + I*I + J*J + K*K).
-q(W, I, J, K) = q(-W, -I, -J, -K).
conjugate(q(W, I, J, K)) = q(W, -I, -J, -K).
q(W0, I0, J0, K0) + q(W1, I1, J1, K1) = q(W0+W1, I0+I1, J0+J1, K0+K1).
q(W0, I0, J0, K0) * q(W1, I1, J1, K1) = q(W0*W1 - I0*I1 - J0*J1 - K0*K1,
W0*I1 + I0*W1 + J0*K1 - K0*J1,
W0*J1 - I0*K1 + J0*W1 + K0*I1,
W0*K1 + I0*J1 - J0*I1 + K0*W1 ).

The following test module puts the module through its paces.

:- module test_quaternion.

:- interface.

:- import_module io.

:- pred main(io::di, io::uo) is det.

:- implementation.

:- import_module quaternion.

:- import_module exception.
:- import_module float.
:- import_module list.
:- import_module string.

:- func to_string(quaternion) = string is det.

main(!IO) :-
Q  = q(1.0, 2.0, 3.0, 4.0),
Q1 = q(2.0, 3.0, 4.0, 5.0),
Q2 = q(3.0, 4.0, 5.0, 6.0),
R = 7.0,
QR = r(R),

io.print("Q = ", !IO), io.print(to_string(Q), !IO), io.nl(!IO),
io.print("Q1 = ", !IO), io.print(to_string(Q1), !IO), io.nl(!IO),
io.print("Q2 = ", !IO), io.print(to_string(Q2), !IO), io.nl(!IO),
io.print("R = ", !IO), io.print(R, !IO), io.nl(!IO),
io.nl(!IO),

io.print("1. The norm of a quaternion.\n", !IO),
io.print("norm(Q) = ", !IO), io.print(norm(Q), !IO), io.nl(!IO),
io.nl(!IO),

io.print("2. The negative of a quaternion.\n", !IO),
io.print("-Q = ", !IO), io.print(to_string(-Q), !IO), io.nl(!IO),
io.nl(!IO),

io.print("3. The conjugate of a quaternion.\n", !IO),
io.print("conjugate(Q) = ", !IO), io.print(to_string(conjugate(Q)), !IO),
io.nl(!IO),
io.nl(!IO),

io.print("4. Addition of a real number and a quaternion.\n", !IO),
( Q + QR = QR + Q ->    io.print("Addition is commutative.\n", !IO)
;                       io.print("Addition is not commutative.\n", !IO) ),
io.print("Q + R = ", !IO), io.print(to_string(Q + QR), !IO), io.nl(!IO),
io.print("R + Q = ", !IO), io.print(to_string(QR + Q), !IO), io.nl(!IO),
io.nl(!IO),

io.print("5. Addition of two quaternions.\n", !IO),
( Q1 + Q2 = Q2 + Q1 ->  io.print("Addition is commutative.\n", !IO)
;                       io.print("Addition is not commutative.\n", !IO) ),
io.print("Q1 + Q2 = ", !IO), io.print(to_string(Q1 + Q2), !IO), io.nl(!IO),
io.print("Q2 + Q1 = ", !IO), io.print(to_string(Q2 + Q1), !IO), io.nl(!IO),
io.nl(!IO),

io.print("6. Multiplication of a real number and a quaternion.\n", !IO),
( Q * QR = QR * Q ->    io.print("Multiplication is commutative.\n", !IO)
;                       io.print("Multiplication is not commutative.\n", !IO) ),
io.print("Q * R = ", !IO), io.print(to_string(Q * QR), !IO), io.nl(!IO),
io.print("R * Q = ", !IO), io.print(to_string(QR * Q), !IO), io.nl(!IO),
io.nl(!IO),

io.print("7. Multiplication of two quaternions.\n", !IO),
( Q1 * Q2 = Q2 * Q1 ->  io.print("Multiplication is commutative.\n", !IO)
;                       io.print("Multiplication is not commutative.\n", !IO) ),
io.print("Q1 * Q2 = ", !IO), io.print(to_string(Q1 * Q2), !IO), io.nl(!IO),
io.print("Q2 * Q1 = ", !IO), io.print(to_string(Q2 * Q1), !IO), io.nl(!IO),
io.nl(!IO).

to_string(q(I, J, K, W)) = string.format("q(%f, %f, %f, %f)",
[f(I), f(J), f(K), f(W)]).
:- end_module test_quaternion.

The output of the above code follows:

% ./test_quaternion
Q = q(1.000000, 2.000000, 3.000000, 4.000000)
Q1 = q(2.000000, 3.000000, 4.000000, 5.000000)
Q2 = q(3.000000, 4.000000, 5.000000, 6.000000)
R = 7.0

1. The norm of a quaternion.
norm(Q) = 5.477225575051661

2. The negative of a quaternion.
-Q = q(-1.000000, -2.000000, -3.000000, -4.000000)

3. The conjugate of a quaternion.
conjugate(Q) = q(1.000000, -2.000000, -3.000000, -4.000000)

4. Addition of a real number and a quaternion.
Q + R = q(8.000000, 2.000000, 3.000000, 4.000000)
R + Q = q(8.000000, 2.000000, 3.000000, 4.000000)

Q1 + Q2 = q(5.000000, 7.000000, 9.000000, 11.000000)
Q2 + Q1 = q(5.000000, 7.000000, 9.000000, 11.000000)

6. Multiplication of a real number and a quaternion.
Multiplication is commutative.
Q * R = q(7.000000, 14.000000, 21.000000, 28.000000)
R * Q = q(7.000000, 14.000000, 21.000000, 28.000000)

7. Multiplication of two quaternions.
Multiplication is not commutative.
Q1 * Q2 = q(-56.000000, 16.000000, 24.000000, 26.000000)
Q2 * Q1 = q(-56.000000, 18.000000, 20.000000, 28.000000)


## Nim

For simplicity, we have limited the type of quaternion fields to floats (i.e. float64). An implementation could use a generic type in order to allow other field types such as float32.

import math, tables

type Quaternion* = object
a, b, c, d: float

func initQuaternion*(a, b, c, d = 0.0): Quaternion =
Quaternion(a: a, b: b, c: c, d: d)

func -*(q: Quaternion): Quaternion =
initQuaternion(-q.a, -q.b, -q.c, -q.d)

func +*(q: Quaternion; r: float): Quaternion =
initQuaternion(q.a + r, q.b, q.c, q.d)

func +*(r: float; q: Quaternion): Quaternion =
initQuaternion(q.a + r, q.b, q.c, q.d)

func +*(q1, q2: Quaternion): Quaternion =
initQuaternion(q1.a + q2.a, q1.b + q2.b, q1.c + q2.c, q1.d + q2.d)

func **(q: Quaternion; r: float): Quaternion =
initQuaternion(q.a * r, q.b * r, q.c * r, q.d * r)

func **(r: float; q: Quaternion): Quaternion =
initQuaternion(q.a * r, q.b * r, q.c * r, q.d * r)

func **(q1, q2: Quaternion): Quaternion =
initQuaternion(q1.a * q2.a - q1.b * q2.b - q1.c * q2.c - q1.d * q2.d,
q1.a * q2.b + q1.b * q2.a + q1.c * q2.d - q1.d * q2.c,
q1.a * q2.c - q1.b * q2.d + q1.c * q2.a + q1.d * q2.b,
q1.a * q2.d + q1.b * q2.c - q1.c * q2.b + q1.d * q2.a)

func conjugate*(q: Quaternion): Quaternion =
initQuaternion(q.a, -q.b, -q.c, -q.d)

func norm*(q: Quaternion): float =
sqrt(q.a * q.a + q.b * q.b + q.c * q.c + q.d * q.d)

func ==*(q: Quaternion; r: float): bool =
if q.b != 0 or q.c != 0 or q.d != 0: false
else: q.a == r

func $(q: Quaternion): string = ## Return the representation of a quaternion. const Letter = {"a": "", "b": "i", "c": "j", "d": "k"}.toTable if q == 0: return "0" for name, value in q.fieldPairs: if value != 0: var val = value if result.len != 0: result.add if value >= 0: '+' else: '-' val = abs(val) result.add$val & Letter[name]

when isMainModule:
let
q = initQuaternion(1, 2, 3, 4)
q1 = initQuaternion(2, 3, 4, 5)
q2 = initQuaternion(3, 4, 5, 6)
r = 7.0

echo "∥q∥ = ", norm(q)
echo "-q = ", -q
echo "q* = ", conjugate(q)
echo "q + r = ", q + r
echo "r + q = ", r + q
echo "q1 + q2 = ", q1 + q2
echo "qr = ", q * r
echo "rq = ", r * q
echo "q1 * q2 = ", q1 * q2
echo "q2 * q1 = ", q2 * q1

Output:
∥q∥ = 5.477225575051661
-q = -1.0-2.0i-3.0j-4.0k
q* = 1.0-2.0i-3.0j-4.0k
q + r = 8.0+2.0i+3.0j+4.0k
r + q = 8.0+2.0i+3.0j+4.0k
q1 + q2 = 5.0+7.0i+9.0j+11.0k
qr = 7.0+14.0i+21.0j+28.0k
rq = 7.0+14.0i+21.0j+28.0k
q1 * q2 = -56.0+16.0i+24.0j+26.0k
q2 * q1 = -56.0+18.0i+20.0j+28.0k

As can be seen, q1 * q2 != q2 * q1.

## OCaml

This implementation was build strictly to the specs without looking (too much) at other implementations. The implementation as a record type with only floats is said (on the ocaml mailing list) to be especially efficient. Put this into a file quaternion.ml:

type quaternion = {a: float; b: float; c: float; d: float}

let norm q = sqrt (q.a**2.0 +.
q.b**2.0 +.
q.c**2.0 +.
q.d**2.0 )

let floatneg r = ~-. r  (* readability *)

let negative q =
{a = floatneg q.a;
b = floatneg q.b;
c = floatneg q.c;
d = floatneg q.d }

let conjugate q =
{a = q.a;
b = floatneg q.b;
c = floatneg q.c;
d = floatneg q.d }

let addrq r q = {q with a = q.a +. r}

{a = q1.a +. q2.a;
b = q1.b +. q2.b;
c = q1.c +. q2.c;
d = q1.d +. q2.d  }

let multrq r q =
{a = q.a *. r;
b = q.b *. r;
c = q.c *. r;
d = q.d *. r  }

let multq q1 q2 =
{a = q1.a*.q2.a -. q1.b*.q2.b -. q1.c*.q2.c -. q1.d*.q2.d;
b = q1.a*.q2.b +. q1.b*.q2.a +. q1.c*.q2.d -. q1.d*.q2.c;
c = q1.a*.q2.c -. q1.b*.q2.d +. q1.c*.q2.a +. q1.d*.q2.b;
d = q1.a*.q2.d +. q1.b*.q2.c -. q1.c*.q2.b +. q1.d*.q2.a  }

let qmake a b c d = {a;b;c;d} (* readability omitting a= b=... *)

let qstring q =
Printf.sprintf "(%g, %g, %g, %g)" q.a q.b q.c q.d ;;

(* test data *)
let q  = qmake 1.0  2.0  3.0  4.0
let q1 = qmake 2.0  3.0  4.0  5.0
let q2 = qmake 3.0  4.0  5.0  6.0
let r  = 7.0

let () = (* written strictly to spec *)
let pf = Printf.printf in
pf "starting with data q=%s, q1=%s,  q2=%s, r=%g\n" (qstring q) (qstring q1) (qstring q2) r;
pf "1. norm of      q     = %g \n" (norm q) ;
pf "2. negative of  q     = %s \n" (qstring (negative q));
pf "3. conjugate of q     = %s \n" (qstring (conjugate q));
pf "4. adding r to q      = %s \n" (qstring (addrq r q));
pf "5. adding q1 and q2   = %s \n" (qstring (addq q1 q2));
pf "6. multiply r and q   = %s \n" (qstring (multrq r q));
pf "7. multiply q1 and q2 = %s \n" (qstring (multq q1 q2));
pf "8. instead q2 * q1    = %s \n" (qstring (multq q2 q1));
pf "\n";


using this file on the command line will produce:

$ocaml quaternion.ml starting with data q=(1, 2, 3, 4), q1=(2, 3, 4, 5), q2=(3, 4, 5, 6), r=7 1. norm of q = 5.47723 2. negative of q = (-1, -2, -3, -4) 3. conjugate of q = (1, -2, -3, -4) 4. adding r to q = (8, 2, 3, 4) 5. adding q1 and q2 = (5, 7, 9, 11) 6. multiply r and q = (7, 14, 21, 28) 7. multiply q1 and q2 = (-56, 16, 24, 26) 8. instead q2 * q1 = (-56, 18, 20, 28)  For completeness, and since data types are of utmost importance in OCaml, here the types produced by pasting the code into the toplevel (ocaml is the toplevel): type quaternion = { a : float; b : float; c : float; d : float; } val norm : quaternion -> float = <fun> val floatneg : float -> float = <fun> val negative : quaternion -> quaternion = <fun> val conjugate : quaternion -> quaternion = <fun> val addrq : float -> quaternion -> quaternion = <fun> val addq : quaternion -> quaternion -> quaternion = <fun> val multrq : float -> quaternion -> quaternion = <fun> val multq : quaternion -> quaternion -> quaternion = <fun> val qmake : float -> float -> float -> float -> quaternion = <fun> val qstring : quaternion -> string = <fun>  ## Octave There is an add-on package (toolbox) to Octave available from http://octave.sourceforge.net/quaternion/ Such a package can be install with the command: pkg install -forge quaternion  Here is a sample interactive session solving the task: > q = quaternion (1, 2, 3, 4) q = 1 + 2i + 3j + 4k > q1 = quaternion (2, 3, 4, 5) q1 = 2 + 3i + 4j + 5k > q2 = quaternion (3, 4, 5, 6) q2 = 3 + 4i + 5j + 6k > r = 7 r = 7 > norm(q) ans = 5.4772 > -q ans = -1 - 2i - 3j - 4k > conj(q) ans = 1 - 2i - 3j - 4k > q + r ans = 8 + 2i + 3j + 4k > q1 + q2 ans = 5 + 7i + 9j + 11k > q * r ans = 7 + 14i + 21j + 28k > q1 * q2 ans = -56 + 16i + 24j + 26k > q1 == q2 ans = 0  ## Oforth Setting a priority (here 160) to Quaternion class and defining #asQuaternion, integers and floats can be fully mixed with quaternions. neg is defined as "0 self -" into Number class, so no need to define it (if #- is defined). 160 Number Class newPriority: Quaternion(a, b, c, d) Quaternion method: _a @a ; Quaternion method: _b @b ; Quaternion method: _c @c ; Quaternion method: _d @d ; Quaternion method: initialize := d := c := b := a ; Quaternion method: << '(' <<c @a << ',' <<c @b << ',' <<c @c << ',' <<c @d << ')' <<c ; Integer method: asQuaternion self 0 0 0 Quaternion new ; Float method: asQuaternion self 0 0 0 Quaternion new ; Quaternion method: ==(q) q _a @a == q _b @b == and q _c @c == and q _d @d == and ; Quaternion method: norm @a sq @b sq + @c sq + @d sq + sqrt ; Quaternion method: conj @a @b neg @c neg @d neg Quaternion new ; Quaternion method: +(q) Quaternion new(q _a @a +, q _b @b +, q _c @c +, q _d @d +) ; Quaternion method: -(q) Quaternion new(q _a @a -, q _b @b -, q _c @c -, q _d @d -) ; Quaternion method: *(q) Quaternion new(q _a @a * q _b @b * - q _c @c * - q _d @d * -, q _a @b * q _b @a * + q _c @d * + q _d @c * -, q _a @c * q _b @d * - q _c @a * + q _d @b * +, q _a @d * q _b @c * + q _c @b * - q _d @a * + ) ; Usage : : test | q q1 q2 r | Quaternion new(1, 2, 3, 4) ->q Quaternion new(2, 3, 4, 5) ->q1 Quaternion new(3, 4, 5, 6) ->q2 7.0 -> r System.Out "q = " << q << cr System.Out "q1 = " << q1 << cr System.Out "q2 = " << q2 << cr System.Out "norm q = " << q norm << cr System.Out "neg q = " << q neg << cr System.Out "conj q = " << q conj << cr System.Out "q +r = " << q r + << cr System.Out "q1 + q2 = " << q1 q2 + << cr System.Out "q * r = " << q r * << cr System.Out "q1 * q2 = " << q1 q2 * << cr q1 q2 * q2 q1 * == ifFalse: [ "q1q2 and q2q1 are different quaternions" println ] ; Output: q = (1,2,3,4) q1 = (2,3,4,5) q2 = (3,4,5,6) norm q = 5.47722557505166 neg q = (-1,-2,-3,-4) conj q = (1,-2,-3,-4) q +r = (8,2,3,4) q1 + q2 = (5,7,9,11) q * r = (7,14,21,28) q1 * q2 = (-56,16,24,26) q1q2 and q2q1 are different quaternions  ## ooRexx Note, this example uses operator overloads to perform the math operation. The operator overloads only work if the left-hand-side of the operation is a quaterion instance. Thus something like "7 + q1" would not work because this would get passed to the "+" of the string class. For those situations, the best solution would be an addition method on the .Quaternion class itself that took the appropriate action. I've chosen not to implement those to keep the example shorter.  q = .quaternion~new(1, 2, 3, 4) q1 = .quaternion~new(2, 3, 4, 5) q2 = .quaternion~new(3, 4, 5, 6) r = 7 say "q =" q say "q1 =" q1 say "q2 =" q2 say "r =" r say "norm(q) =" q~norm say "-q =" (-q) say "q* =" q~conjugate say "q + r =" q + r say "q1 + q2 =" q1 + q2 say "q * r =" q * r q1q2 = q1 * q2 q2q1 = q2 * q1 say "q1 * q2 =" q1q2 say "q2 * q1 =" q2q1 say "q1 == q1 =" (q1 == q1) say "q1q2 == q2q1 =" (q1q2 == q2q1) ::class quaternion ::method init expose r i j k use strict arg r, i = 0, j = 0, k = 0 -- quaternion instances are immutable, so these are -- read only attributes ::attribute r GET ::attribute i GET ::attribute j GET ::attribute k GET ::method norm expose r i j k return rxcalcsqrt(r * r + i * i + j * j + k * k) ::method invert expose r i j k norm = self~norm return self~class~new(r / norm, i / norm, j / norm, k / norm) ::method negative expose r i j k return self~class~new(-r, -i, -j, -k) ::method conjugate expose r i j k return self~class~new(r, -i, -j, -k) ::method add expose r i j k use strict arg other if other~isa(.quaternion) then return self~class~new(r + other~r, i + other~i, j + other~j, k + other~k) else return self~class~new(r + other, i, j, k) ::method subtract expose r i j k use strict arg other if other~isa(.quaternion) then return self~class~new(r - other~r, i - other~i, j - other~j, k - other~k) else return self~class~new(r - other, i, j, k) ::method times expose r i j k use strict arg other if other~isa(.quaternion) then return self~class~new(r * other~r - i * other~i - j * other~j - k * other~k, - r * other~i + i * other~r + j * other~k - k * other~j, - r * other~j - i * other~k + j * other~r + k * other~i, - r * other~k + i * other~j - j * other~i + k * other~r) else return self~class~new(r * other, i * other, j * other, k * other) ::method divide use strict arg other -- this is easier if everything is a quaternion if \other~isA(.quaternion) then other = .quaternion~new(other) -- division is multiplication with the inversion return self * other~invert ::method "==" expose r i j k use strict arg other if \other~isa(.quaternion) then return .false -- Note: these are numeric comparisons, so we're using the "=" -- method so those are handled correctly return r = other~r & i = other~i & j = other~j & k = other~k ::method "\==" use strict arg other return \self~"\=="(other) ::method "=" -- this is equivalent of "==" forward message("==") ::method "\=" -- this is equivalent of "\==" forward message("\==") ::method "<>" -- this is equivalent of "\==" forward message("\==") ::method "><" -- this is equivalent of "\==" forward message("\==") -- some operator overrides -- these only work if the left-hand-side of the -- subexpression is a quaternion ::method "*" forward message("TIMES") ::method "/" forward message("DIVIDE") ::method "-" -- need to check if this is a prefix minus or a subtract if arg() == 0 then forward message("NEGATIVE") else forward message("SUBTRACT") ::method "+" -- need to check if this is a prefix plus or an addition if arg() == 0 then return self -- we can return this copy since it is immutable else forward message("ADD") ::method string expose r i j k return r self~formatnumber(i)"i" self~formatnumber(j)"j" self~formatnumber(k)"k" ::method formatnumber private use arg value if value > 0 then return "+" value else return "-" value~abs -- override hashcode for collection class hash uses ::method hashCode expose r i j k return r~hashcode~bitxor(i~hashcode)~bitxor(j~hashcode)~bitxor(k~hashcode) ::requires rxmath LIBRARY  Output: q = 1 + 2i + 3j + 4k q1 = 2 + 3i + 4j + 5k q2 = 3 + 4i + 5j + 6k r = 7 norm(q) = 5.47722558 -q = -1 - 2i - 3j - 4k q* = 1 - 2i - 3j - 4k q + r = 8 + 2i + 3j + 4k q1 + q2 = 5 + 7i + 9j + 11k q * r = 7 + 14i + 21j + 28k q1 * q2 = -56 + 16i + 24j + 26k q2 * q1 = -56 + 18i + 20j + 28k q1 == q1 = 1 q1q2 == q2q1 = 0  ## PARI/GP Works with: PARI/GP version version 2.4.2 and above Here is a simple solution in GP. I think it's possible to implement this type directly in Pari by abusing t_COMPLEX, but I haven't attempted this. q.norm={ if(type(q) != "t_VEC" || #q != 4, error("incorrect type")); sqrt(q[1]^2+q[2]^2+q[3]^2+q[4]^2) }; q.conj={ if(type(q) != "t_VEC" || #q != 4, error("incorrect type")); -[-q[1],q[2],q[3],q[4]] }; q.add={ if(type(q) != "t_VEC" || #q != 4, error("incorrect type")); x->if(type(x) == "t_INT" || type(x) == t_REAL, [q[1]+x,q[2],q[3],q[4]] , if(type(x) == "t_VEC" && #x == 4, q+x , error("incorrect type") ) ) }; q.mult={ if(type(q) != "t_VEC" || #q != 4, error("incorrect type")); x->if(type(x) == "t_INT" || type(x) == t_REAL, x*q , if(type(x) == "t_VEC" && #x == 4, [q[1]*x[1] - q[2]*x[2] - q[3]*x[3] - q[4]*x[4], q[1]*x[2] + q[2]*x[1] + q[3]*x[4] - q[4]*x[3], q[1]*x[3] - q[2]*x[4] + q[3]*x[1] + q[4]*x[2], q[1]*x[4] + q[2]*x[3] - q[3]*x[2] + q[4]*x[1]] , error("incorrect type") ) ) }; Usage: r=7;q=[1,2,3,4];q1=[2,3,4,5];q2=[3,4,5,6]; q.norm -q q.conj q.add(r) q1.add(q2) q1.add(q2) \\ or q1+q2 q.mult(r) \\ or r*q or q*r q1.mult(q2) q1.mult(q2) != q2.mult(q1) ## Pascal The Delphi example also works with FreePascal. ## Perl package Quaternion; use List::Util 'reduce'; use List::MoreUtils 'pairwise'; sub make { my$cls = shift;
if (@_ == 1)    { return bless [ @_, 0, 0, 0 ] }
elsif (@_ == 4) { return bless [ @_ ] }
else            { die "Bad number of components: @_" }
}

sub _abs { sqrt reduce { $a +$b * $b } @{ +shift } } sub _neg { bless [ map(-$_, @{+shift}) ] }
sub _str { "(@{+shift})" }

my ($x,$y) = @_;
$y = [$y, 0, 0, 0 ] unless ref $y; bless [ pairwise {$a + $b } @$x, @$y ] } sub _sub { my ($x, $y,$swap) = @_;
$y = [$y, 0, 0, 0 ] unless ref $y; my @x = pairwise {$a - $b } @$x, @$y; if ($swap) { $_ = -$_ for @x }
bless \@x;
}

sub _mul {
my ($x,$y) = @_;
if (!ref $y) { return bless [ map($_ * $y, @$x) ] }
my ($a1,$b1, $c1,$d1) = @$x; my ($a2, $b2,$c2, $d2) = @$y;
bless [ $a1 *$a2 - $b1 *$b2 - $c1 *$c2 - $d1 *$d2,
$a1 *$b2 + $b1 *$a2 + $c1 *$d2 - $d1 *$c2,
$a1 *$c2 - $b1 *$d2 + $c1 *$a2 + $d1 *$b2,
$a1 *$d2 + $b1 *$c2 - $c1 *$b2 + $d1 *$a2]
}

sub conjugate {
my @a = map { -$_ } @{$_[0]};
$a[0] =$_[0][0];
bless \@a
}

'""'    => \&_str,
'-'     => \&_sub,
'*'     => \&_mul,
'neg'   => \&_neg,
'abs'   => \&_abs,
);

package main;

my $a = Quaternion->make(1, 2, 3, 4); my$b = Quaternion->make(1, 1, 1, 1);

print "a = $a\n"; print "b =$b\n";
print "|a| = ", abs($a), "\n"; print "-a = ", -$a, "\n";
print "a + 1 = ", $a + 1, "\n"; print "a + b = ",$a + $b, "\n"; print "a - b = ",$a - $b, "\n"; print "a conjugate is ",$a->conjugate, "\n";
print "a * b = ", $a *$b, "\n";
print "b * a = ", $b *$a, "\n";


## Phix

with javascript_semantics
function norm(sequence q)
return sqrt(sum(sq_power(q,2)))
end function

function conjugate(sequence q)
q = deep_copy(q)
q[2..4] = sq_uminus(q[2..4])
return q
end function

function negative(sequence q)
return sq_uminus(q)
end function

if atom(q1)!=atom(q2) then
if atom(q1) then
q1 = {q1,0,0,0}
else
q2 = {q2,0,0,0}
end if
end if
end function

function mul(object q1, object q2)
if sequence(q1) and sequence(q2) then
atom {r1,i1,j1,k1} = q1,
{r2,i2,j2,k2} = q2
return { r1*r2 - i1*i2 - j1*j2 - k1*k2,
r1*i2 + i1*r2 + j1*k2 - k1*j2,
r1*j2 - i1*k2 + j1*r2 + k1*i2,
r1*k2 + i1*j2 - j1*i2 + k1*r2 }
else
return sq_mul(q1,q2)
end if
end function

function quats(sequence q)
return sprintf("%g%+gi%+gj%+gk",q)
end function

constant
q  = {1, 2, 3, 4},
q1 = {2, 3, 4, 5},
q2 = {3, 4, 5, 6}

printf(1, "  q = %s\n", {quats(q)})
printf(1, " q1 = %s\n", {quats(q1)})
printf(1, " q2 = %s\n", {quats(q2)})
printf(1, "\n")
printf(1, "1.  norm(q) = %g\n", norm(q))
printf(1, "2.  negative(q) = %s\n", {quats(negative(q))})
printf(1, "3.  conjugate(q) = %s\n", {quats(conjugate(q))})
printf(1, "\n")
printf(1, "4.a   q + 7  = %s\n", {quats(add(q,7))})
printf(1, " .b   7 + q  = %s\n", {quats(add(7,q))})
printf(1, "\n")
printf(1, "5.a  q1 + q2 = %s\n", {quats(add(q1,q2))})
printf(1, " .b  q2 + q1 = %s\n", {quats(add(q2,q1))})
printf(1, "\n")
printf(1, "6.a   q * 49 = %s\n", {quats(mul(q,49))})
printf(1, " .b  49 * q  = %s\n", {quats(mul(49,q))})
printf(1, "\n")
printf(1, "7.a  q1 * q2 = %s\n", {quats(mul(q1,q2))})
printf(1, " .b  q2 * q1 = %s\n", {quats(mul(q2,q1))})
printf(1, "\n")
printf(1, " .c  6.a === 6.b: %t\n", {equal(mul(q,49),mul(49,q))})
printf(1, " .d  7.a === 7.b: %t\n", {equal(mul(q1,q2),mul(q2,q1))})

Output:
  q = 1+2i+3j+4k
q1 = 2+3i+4j+5k
q2 = 3+4i+5j+6k

1.  norm(q) = 5.47723
2.  negative(q) = -1-2i-3j-4k
3.  conjugate(q) = 1-2i-3j-4k

4.a   q + 7  = 8+2i+3j+4k
.b   7 + q  = 8+2i+3j+4k

5.a  q1 + q2 = 5+7i+9j+11k
.b  q2 + q1 = 5+7i+9j+11k

6.a   q * 49 = 49+98i+147j+196k
.b  49 * q  = 49+98i+147j+196k

7.a  q1 * q2 = -56+16i+24j+26k
.b  q2 * q1 = -56+18i+20j+28k

8.a  4.a === 4.b: true
.b  5.a === 5.b: true
.c  6.a === 6.b: true
.d  7.a === 7.b: false


## Picat

Translation of: Prolog

A quaternion is represented as a complex term qx/4.

go =>
test,
nl.

!, R is R0+R1, I is I0+I1, J is J0+J1, K is K0+K1.
number(F), !, R is R0 + F.
add($qx(R0,I,J,K), F, Qx). mul(qx(R0,I0,J0,K0), qx(R1,I1,J1,K1), qx(R,I,J,K)) :- !, R is R0*R1 - I0*I1 - J0*J1 - K0*K1, I is R0*I1 + I0*R1 + J0*K1 - K0*J1, J is R0*J1 - I0*K1 + J0*R1 + K0*I1, K is R0*K1 + I0*J1 - J0*I1 + K0*R1. mul(qx(R0,I0,J0,K0), F, qx(R,I,J,K)) :- number(F), !, R is R0*F, I is I0*F, J is J0*F, K is K0*F. mul(F, qx(R0,I0,J0,K0), Qx) :- mul($qx(R0,I0,J0,K0),F,Qx).
abs(qx(R,I,J,K), Norm) :-
Norm is sqrt(R*R+I*I+J*J+K*K).
negate(qx(Ri,Ii,Ji,Ki),qx(R,I,J,K)) :-
R is -Ri, I is -Ii, J is -Ji, K is -Ki.
conjugate(qx(R,Ii,Ji,Ki),qx(R,I,J,K)) :-
I is -Ii, J is -Ji, K is -Ki.

data(q,  qx(1,2,3,4)).
data(q1, qx(2,3,4,5)).
data(q2, qx(3,4,5,6)).
data(r, 7).

test :-	data(Name, $qx(A,B,C,D)), abs($qx(A,B,C,D), Norm),
printf("abs(%w) is %w\n", Name, Norm), fail.
test :- data(q, Qx), negate(Qx, Nqx),
printf("negate(%w) is %w\n", q, Nqx), fail.
test :- data(q, Qx), conjugate(Qx, Nqx),
printf("conjugate(%w) is %w\n", q, Nqx), fail.
test :- data(q1, Q1), data(q2, Q2), add(Q1, Q2, Qx),
printf("q1+q2 is %w\n", Qx), fail.
test :- data(q1, Q1), data(q2, Q2), add(Q2, Q1, Qx),
printf("q2+q1 is %w\n", Qx), fail.
test :- data(q, Qx), data(r, R), mul(Qx, R, Nqx),
printf("q*r is %w\n", Nqx), fail.
test :- data(q, Qx), data(r, R), mul(R, Qx, Nqx),
printf("r*q is %w\n", Nqx), fail.
test :- data(q1, Q1), data(q2, Q2), mul(Q1, Q2, Qx),
printf("q1*q2 is %w\n", Qx), fail.
test :- data(q1, Q1), data(q2, Q2), mul(Q2, Q1, Qx),
printf("q2*q1 is %w\n", Qx), fail.
test.
Output:
abs(q) is 5.477225575051661
abs(q1) is 7.348469228349535
abs(q2) is 9.273618495495704
negate(q) is qx(-1,-2,-3,-4)
conjugate(q) is qx(1,-2,-3,-4)
q1+q2 is qx(5,7,9,11)
q2+q1 is qx(5,7,9,11)
q*r is qx(7,14,21,28)
r*q is qx(7,14,21,28)
q1*q2 is qx(-56,16,24,26)
q2*q1 is qx(-56,18,20,28)

## PicoLisp

(scl 6)

(def 'quatCopy copy)

(de quatNorm (Q)
(sqrt (sum * Q Q)) )

(de quatNeg (Q)
(mapcar - Q) )

(de quatConj (Q)
(cons (car Q) (mapcar - (cdr Q))) )

(cons (+ R (car Q)) (cdr Q)) )

(mapcar + Q1 Q2) )

(de quatMulR (Q R)
(mapcar */ (mapcar * Q (circ R)) (1.0 .)) )

(de quatMul (Q1 Q2)
(mapcar
'((Ops I)
(sum '((Op R I) (Op (*/ R (get Q2 I) 1.0))) Ops Q1 I) )
'((+ - - -) (+ + + -) (+ - + +) (+ + - +))
'((1 2 3 4) (2 1 4 3) (3 4 1 2) (4 3 2 1)) ) )

(de quatFmt (Q)
(mapcar '((R S) (pack (format R *Scl) S))
Q
'(" + " "i + " "j + " "k") ) )

Test:

(setq
Q (1.0 2.0 3.0 4.0)
Q1 (2.0 3.0 4.0 5.0)
Q2 (3.0 4.0 5.0 6.0)
R 7.0 )

(prinl "R  = " (format R *Scl))
(prinl "Q  = " (quatFmt Q))
(prinl "Q1 = " (quatFmt Q1))
(prinl "Q2 = " (quatFmt Q2))
(prinl)
(prinl "norm(Q)  = " (format (quatNorm Q) *Scl))
(prinl "norm(Q1) = " (format (quatNorm Q1) *Scl))
(prinl "norm(Q2) = " (format (quatNorm Q2) *Scl))
(prinl "neg(Q)   = " (quatFmt (quatNeg Q)))
(prinl "conj(Q)  = " (quatFmt (quatConj Q)))
(prinl "Q + R    = " (quatFmt (quatAddR Q R)))
(prinl "Q1 + Q2  = " (quatFmt (quatAdd Q1 Q2)))
(prinl "Q * R    = " (quatFmt (quatMulR Q R)))
(prinl "Q1 * Q2  = " (quatFmt (quatMul Q1 Q2)))
(prinl "Q2 * Q1  = " (quatFmt (quatMul Q2 Q1)))
(prinl (if (= (quatMul Q1 Q2) (quatMul Q2 Q1)) "Equal" "Not equal"))
Output:
R  = 7.000000
Q  = 1.000000 + 2.000000i + 3.000000j + 4.000000k
Q1 = 2.000000 + 3.000000i + 4.000000j + 5.000000k
Q2 = 3.000000 + 4.000000i + 5.000000j + 6.000000k

norm(Q)  = 5.477225
norm(Q1) = 7.348469
norm(Q2) = 9.273618
neg(Q)   = -1.000000 + -2.000000i + -3.000000j + -4.000000k
conj(Q)  = 1.000000 + -2.000000i + -3.000000j + -4.000000k
Q + R    = 8.000000 + 2.000000i + 3.000000j + 4.000000k
Q1 + Q2  = 5.000000 + 7.000000i + 9.000000j + 11.000000k
Q * R    = 7.000000 + 14.000000i + 21.000000j + 28.000000k
Q1 * Q2  = -56.000000 + 16.000000i + 24.000000j + 26.000000k
Q2 * Q1  = -56.000000 + 18.000000i + 20.000000j + 28.000000k
Not equal

## PL/I

*process source attributes xref or(!);
qu: Proc Options(main);
/**********************************************************************
* 06.09.2013 Walter Pachl translated from REXX
**********************************************************************/
dcl v(4) Char(1) Var Init('','i','j','k');
define structure 1 quat, 2 x(4) Dec Float(15);
Dcl q  type quat; Call quat_init(q, 1,2,3,4);
Dcl q1 type quat; Call quat_init(q1,2,3,4,5);
Dcl q2 type quat; Call quat_init(q2,3,4,5,6);
Dcl q3 type quat; Call quat_init(q3,-2,3,-4,-5);
Dcl r  Dec Float(15)Init(7);

call showq('       ','q'                    ,q);
call showq('       ','q1'                   ,q1);
call showq('       ','q2'                   ,q2);
call showq('       ','q3'                   ,q3);
call shows('       ','r'                    ,r);
quatMul(q2,q1)));

quatNeg: procedure(qp) Returns(type quat);
Dcl (qp,qr) type quat;
qr.x(*)=-qp.x(*);
Return (qr);
End;

Dcl (qp,qq,qr) type quat;
qr.x(*)=qp.x(*)+qq.x(*);
Return (qr);
End;

Dcl v Dec Float(15);
Dcl (qp,qr) type quat;
qr.x(*)=qp.x(*);
qr.x(1)=qp.x(1)+v;
Return (qr);
End;

quatConj: procedure(qp) Returns(type quat);
Dcl (qp,qr) type quat;
qr.x(*)=-qp.x(*);
qr.x(1)= qp.x(1);
Return (qr);
End;

quatMul: procedure(qp,qq) Returns(type quat);
Dcl (qp,qq,qr) type quat;
qr.x(1)=
qp.x(1)*qq.x(1)-qp.x(2)*qq.x(2)-qp.x(3)*qq.x(3)-qp.x(4)*qq.x(4);
qr.x(2)=
qp.x(1)*qq.x(2)+qp.x(2)*qq.x(1)+qp.x(3)*qq.x(4)-qp.x(4)*qq.x(3);
qr.x(3)=
qp.x(1)*qq.x(3)-qp.x(2)*qq.x(4)+qp.x(3)*qq.x(1)+qp.x(4)*qq.x(2);
qr.x(4)=
qp.x(1)*qq.x(4)+qp.x(2)*qq.x(3)-qp.x(3)*qq.x(2)+qp.x(4)*qq.x(1);
Return (qr);
End;

quatMulqs: procedure(qp,v) Returns(type quat);
Dcl (qp,qr) type quat;
Dcl v Dec Float(15);
qr.x(*)=qp.x(*)*v;
Return (qr);
End;

shows: Procedure(t1,t2,v);
Dcl (t1,t2) Char(*);
Dcl v Dec Float(15);
Put Edit(t1,right(t2,24),'  --> ',v)(Skip,a,a,a,f(15,13));
End;

showt: Procedure(t1,t2,v);
Dcl (t1,t2) Char(*);
Dcl v Char(*) Var);
Put Edit(t1,right(t2,24),'  --> ',v)(Skip,a,a,a,a);
End;

showq: Procedure(t1,t2,qp);
Dcl qp type quat;
Dcl (t1,t2) Char(*);
Dcl (s,s2,p) Char(100) Var Init('');
Dcl i Bin Fixed(31);
Put String(s) Edit(t1,right(t2,24),'  --> ')(a,a,a);
Do i=1 To 4;
Put String(p) Edit(abs(qp.x(i)))(p'ZZZ9');
p=trim(p);
Select;
When(qp.x(i)<0) p='-'!!p!!v(i);
When(p=0) p='';
Otherwise Do
If s2^='' Then p='+'!!p;
If i>1 Then p=p!!v(i);
End;
End;
s2=s2!!p
End;
If s2='' Then
s2='0';
Put Edit(s!!s2)(Skip,a);
End;

norm: Procedure(qp) Returns(Dec Float(15));
Dcl qp type quat;
Dcl r  Dec Float(15) Init(0);
Dcl i  Bin Fixed(31);
Do i=1 To 4;
r=r+qp.x(i)**2;
End;
Return (sqrt(r));
End;

quat_init: Proc(qp,x,y,z,u);
Dcl qp type quat;
Dcl (x,y,z,u) Dec Float(15);
qp.x(1)=x;
qp.x(2)=y;
qp.x(3)=z;
qp.x(4)=u;
End;

quatEqual: procedure(qp,qq) Returns(Char(12) Var);
Dcl (qp,qq) type quat;
Dcl i Bin Fixed(15);
Do i=1 To 4;
If qp.x(i)^=qq.x(i) Then
Return('not equal');
End;
Return('equal');
End;

End;
Output:
                              q  --> 1+2i+3j+4k
q1  --> 2+3i+4j+5k
q2  --> 3+4i+5j+6k
q3  --> -2+3i-4j-5k
r  --> 7.0000000000000
task 1:                  norm q  --> 5.4772255750517
task 2:               quatneg q  --> -1-2i-3j-4k
task 3:             conjugate q  --> 1-2i-3j-4k
task 6:      multiplication q*r  --> 7+14i+21j+28k
task 7:    multiplication q1*q2  --> -56+16i+24j+26k
task 8:    multiplication q2*q1  --> -56+18i+20j+28k
task 9:           quatsub q1-q1  --> 0
task B:                   equal  --> not equal


## PowerShell

### Implementation

class Quaternion {
[Double]$w [Double]$x
[Double]$y [Double]$z
Quaternion() {
$this.w = 0$this.x = 0
$this.y = 0$this.z = 0
}
Quaternion([Double]$a, [Double]$b, [Double]$c, [Double]$d) {
$this.w =$a
$this.x =$b
$this.y =$c
$this.z =$d
}
[Double]abs2() {return $this.w*$this.w + $this.x*$this.x + $this.y*$this.y + $this.z*$this.z}
[Double]abs() {return [math]::sqrt($this.wbs2())} static [Quaternion]real([Double]$r) {return [Quaternion]::new($r, 0, 0, 0)} static [Quaternion]add([Quaternion]$m,[Quaternion]$n) {return [Quaternion]::new($m.w+$n.w,$m.x+$n.x,$m.y+$n.y,$m.z+$n.z)} [Quaternion]addreal([Double]$r) {return [Quaternion]::add($this,[Quaternion]::real($r))}
static [Quaternion]mul([Quaternion]$m,[Quaternion]$n) {
return [Quaternion]::new(
($m.w*$n.w) - ($m.x*$n.x) - ($m.y*$n.y) - ($m.z*$n.z),
($m.w*$n.x) + ($m.x*$n.w) + ($m.y*$n.z) - ($m.z*$n.y),
($m.w*$n.y) - ($m.x*$n.z) + ($m.y*$n.w) + ($m.z*$n.x),
($m.w*$n.z) + ($m.x*$n.y) - ($m.y*$n.x) + ($m.z*$n.w))
}

[Quaternion]mul([Double]$r) {return [Quaternion]::new($r*$this.w,$r*$this.x,$r*$this.y,$r*$this.z)} [Quaternion]negate() {return$this.mul(-1)}
[Quaternion]conjugate() {return [Quaternion]::new($this.w, -$this.x, -$this.y, -$this.z)}
static [String]st([Double]$r) { if(0 -le$r) {return "+$r"} else {return "$r"}
}
[String]show() {return "$($this.w)$([Quaternion]::st($this.x))i$([Quaternion]::st($this.y))j$([Quaternion]::st($this.z))k"}
static [String]show([Quaternion]$other) {return$other.show()}
}

$q = [Quaternion]::new(1, 2, 3, 4)$q1 = [Quaternion]::new(2, 3, 4, 5)
$q2 = [Quaternion]::new(3, 4, 5, 6)$r = 7
"\$