Queue/Usage

From Rosetta Code
Task
Queue/Usage
You are encouraged to solve this task according to the task description, using any language you may know.

Data Structure
This illustrates a data structure, a means of storing data within a program.

You may see other such structures in the Data Structures category.
Illustration of FIFO behavior
Task

Create a queue data structure and demonstrate its operations.

(For implementations of queues, see the FIFO task.)


Operations:

  •   push       (aka enqueue) - add element
  •   pop         (aka dequeue) - pop first element
  •   empty     - return truth value when empty


See also



11l

<lang 11l>Deque[String] my_queue

my_queue.append(‘foo’) my_queue.append(‘bar’) my_queue.append(‘baz’)

print(my_queue.pop_left()) print(my_queue.pop_left()) print(my_queue.pop_left())</lang>

Output:
foo
bar
baz

6502 Assembly

Implementing a queue is very similar to a software stack, except the POP command is a litte more involved. The basic principles are the same: Before the queue can be used, a "queue pointer" must first be loaded into X, which points to the first empty slot in the queue. The queue grows down in memory as new elements join the queue. This software queue uses the zero page as the storage area.


<lang 6502asm> queuePointerStart equ #$FD queuePointerMinus1 equ #$FC ;make this equal whatever "queuePointerStart" is, minus 1. pushQueue: STA 0,x DEX RTS

popQueue: STX temp LDX #queuePointerStart LDA 0,x ;get the item that's first in line PHA

   LDX #queuePointerMinus1

loop_popQueue:

   LDA 0,X  
   STA 1,X  
   DEX
   CPX temp
   BNE loop_popQueue
   LDX temp
   INX

PLA ;return the item that just left the queue RTS

isQueueEmpty: LDA #1 CPX #queuePointerStart BEQ yes ;return 1

SEC SBC #1 ;return 0

yes: RTS</lang>

PUSH

This example uses Easy6502 to test the various modes. The first test pushes three values into the queue. For all examples, the subroutines above are defined below the BRK.

<lang 6502asm>define temp $00 define queueEmpty $FD define queueAlmostEmpty $FC

LDX #queueEmpty ;set up software queue

LDA #$40 jsr pushQueue

LDA #$80 jsr pushQueue

LDA #$C0 jsr pushQueue

brk</lang>

Output of Example 1:

Queue Pointer = $FA

                 
Hexdump of $00fa: 00 c0 80 40
Address of each: (FA FB FC FD)

POP

<lang 6502asm>define temp $00 define queueEmpty $FD define queueAlmostEmpty $FC

LDX #queueEmpty ;set up software queue

LDA #$40 jsr pushQueue

LDA #$80 jsr pushQueue

LDA #$C0 jsr pushQueue

jsr popQueue

brk</lang>

Output of Example 2:

Queue Pointer = $FB
Hexdump of $00FB: c0 c0 80
Address of each: (FB FC FD)

Note that c0 still exists in FB, but its slot is "empty" so it will get overwritten in the 3rd example.

PUSH,POP,PUSH

This example shows that once an item leaves the queue, the "ghost" of the last item in line gets overwritten with the next item to join. <lang 6502asm>define temp $00 define queueEmpty $FD define queueAlmostEmpty $FC


LDX #queueEmpty ;set up software queue

LDA #$40 jsr pushQueue

LDA #$80 jsr pushQueue

LDA #$C0 jsr pushQueue

jsr popQueue

lda #$ff jsr pushQueue

brk</lang>

Output of Example 3:

Queue Pointer = $FA
Hexdump of $00FA: 00 ff c0 80
Address of each: (FA FB FC FD)

8th

<lang forth> 10 q:new \ create a new queue 10 deep 123 q:push 341 q:push \ push 123, 341 onto the queue q:pop . cr \ displays 123 q:len . cr \ displays 1 q:pop . cr \ displays 341 q:len . cr \ displays 0 </lang>

Action!

The user must type in the monitor the following command after compilation and before running the program!

SET EndProg=*

<lang Action!>CARD EndProg ;required for ALLOCATE.ACT

INCLUDE "D2:ALLOCATE.ACT" ;from the Action! Tool Kit. You must type 'SET EndProg=*' from the monitor after compiling, but before running this program!

DEFINE PTR="CARD" DEFINE NODE_SIZE="4" TYPE QueueNode=[PTR data,nxt]

QueueNode POINTER queueFront,queueRear

BYTE FUNC IsEmpty()

 IF queueFront=0 THEN
   RETURN (1)
 FI

RETURN (0)

PROC Push(CHAR ARRAY v)

 QueueNode POINTER node
 node=Alloc(NODE_SIZE)
 node.data=v
 node.nxt=0
 IF IsEmpty() THEN
   queueFront=node
 ELSE
   queueRear.nxt=node
 FI
 queueRear=node

RETURN

PTR FUNC Pop()

 QueueNode POINTER node
 CHAR ARRAY v
 
 IF IsEmpty() THEN
   PrintE("Error: queue is empty!")
   Break()
 FI
 node=queueFront
 v=node.data
 queueFront=node.nxt
 Free(node,NODE_SIZE)

RETURN (v)

PROC TestIsEmpty()

 IF IsEmpty() THEN
   PrintE("Queue is empty")
 ELSE
   PrintE("Queue is not empty")
 FI

RETURN

PROC TestPush(CHAR ARRAY v)

 PrintF("Push: %S%E",v)
 Push(v)

RETURN

PROC TestPop()

 CHAR ARRAY v
 Print("Pop: ")
 v=Pop()
 PrintE(v)

RETURN

PROC Main()

 AllocInit(0)
 queueFront=0
 queueRear=0
 Put(125) PutE() ;clear screen
 TestIsEmpty()
 TestPush("foo")
 TestIsEmpty()
 TestPush("bar")
 TestPop()
 TestIsEmpty()
 TestPush("baz")
 TestPop()
 TestIsEmpty()
 TestPop()
 TestIsEmpty()
 TestPop()

RETURN</lang>

Output:

Error at the end of the program is intentional. Screenshot from Atari 8-bit computer

Queue is empty
Push: foo
Queue is not empty
Push: bar
Pop: foo
Queue is not empty
Push: baz
Pop: bar
Queue is not empty
Pop: baz
Queue is empty
Pop: Error: queue is empty!

RETURN
Error: 128

Ada

<lang ada>with FIFO; with Ada.Text_Io; use Ada.Text_Io;

procedure Queue_Test is

  package Int_FIFO is new FIFO (Integer);
  use Int_FIFO;
  Queue : FIFO_Type;
  Value : Integer;

begin

  Push (Queue, 1);
  Push (Queue, 2);   
  Push (Queue, 3);
  Pop (Queue, Value);
  Pop (Queue, Value);
  Push (Queue, 4);
  Pop (Queue, Value);
  Pop (Queue, Value);
  Push (Queue, 5);
  Pop (Queue, Value);
  Put_Line ("Is_Empty " & Boolean'Image (Is_Empty (Queue)));

end Queue_Test;</lang> Sample output:

Is_Empty TRUE

ALGOL 68

Works with: ALGOL 68 version Revision 1 - one extension to language used - PRAGMA READ - a non standard feature similar to C's #include directive.
Works with: ALGOL 68G version Any - tested with release algol68g-2.7.


File: prelude/link.a68 c.f. Queue/Definition
File: prelude/queue_base.a68 c.f. Queue/Definition
File: test/data_stigler_diet.a68<lang algol68># -*- coding: utf-8 -*- # MODE DIETITEM = STRUCT(

 STRING food, annual quantity, units, REAL cost

);

  1. Stigler's 1939 Diet ... #

FORMAT diet item fmt = $g": "g" "g" = $"zd.dd$; []DIETITEM stigler diet = (

 ("Cabbage",           "111","lb.",  4.11),
 ("Dried Navy Beans",  "285","lb.", 16.80),
 ("Evaporated Milk",    "57","cans", 3.84),
 ("Spinach",            "23","lb.",  1.85),
 ("Wheat Flour",       "370","lb.", 13.33),
 ("Total Annual Cost",    "","",    39.93)

)</lang>File: test/queue.a68<lang algol68>#!/usr/bin/a68g --script #

  1. -*- coding: utf-8 -*- #

MODE OBJVALUE = DIETITEM; PR read "prelude/link.a68" PR;# c.f. rc:Queue/Definition # PR read "prelude/queue_base.a68" PR; # c.f. rc:Queue/Definition #

PR read "test/data_stigler_diet.a68" PR; OBJQUEUE example queue; obj queue init(example queue);

FOR i TO UPB stigler diet DO

  1. obj queue put(example queue, stigler diet[i]) or ... #
 stigler diet[i] +=: example queue

OD;

printf($"Get remaining values from queue:"l$); WHILE NOT obj queue is empty(example queue) DO

  1. OR example queue ISNT obj queue empty #
 printf((diet item fmt, obj queue get(example queue), $l$))

OD</lang>Output:

Get remaining values from queue:
Cabbage: 111 lb. = $ 4.11
Dried Navy Beans: 285 lb. = $16.80
Evaporated Milk: 57 cans = $ 3.84
Spinach: 23 lb. = $ 1.85
Wheat Flour: 370 lb. = $13.33
Total Annual Cost:   = $39.93

See also: Stack

App Inventor

This Rosetta Code Task requires that the queue operations of push (enqueue), pop (dequeue) and empty be demonstrated with App Inventor.
This is easy to do as those operations are basically available in a slightly different form as list operations.
In addition for this example, I added a top function to view the first item in the queue.

The solution is a complete (although greatly simplified) hamburger restaurant where the customers and orders are the queues.

Customers enter the restaurant at random intervals between 2 and 10 seconds (Customers Clock Timer)
Each customer will request a random item from the menu.
If the item is not available, the customer leaves.
If that item is available (there are only 30 of each item) then the order is placed and payment is accepted (push|enqueue Customer, push|enqueue Order).
Once an order is placed, the customer must wait for the meal to be prepared -- each menu item takes a different number of seconds to prepare (Orders Clock Timer.)
Once the item is prepared, their customer name and the ordered item are removed from the queues (pop|dequeue Customer, pop|dequeue Order).
If there are no pending orders, (empty Orders queue) the cook just waits for one to be placed (the orders clock continues to run to poll for new orders by testing if the Orders queue is not empty.)
Eventually, all items will have been sold, and the store manager will empty the cash register and fly to Tahiti with the waitress.
The eager -- but destined to be frustrated customers -- will continue to request their random items, forever. :)
CLICK HERE TO VIEW THE CODE BLOCKS AND ANDROID APP SCREEN --- END

AppleScript

<lang AppleScript >on push(StackRef, value)

   set StackRef's contents to {value} & StackRef's contents
   return StackRef

end push

on pop(StackRef)

   set R to missing value
   if StackRef's contents ≠ {} then
       set R to StackRef's contents's item 1
       set StackRef's contents to {} & rest of StackRef's contents
   end if
   return R

end pop

on isStackEmpty(StackRef)

   if StackRef's contents = {} then return true
   return false

end isStackEmpty


set theStack to {} repeat with i from 1 to 5

   push(a reference to theStack, i)
   log result

end repeat repeat until isStackEmpty(theStack) = true

   pop(a reference to theStack)
   log result

end repeat</lang>Output (in Script Editor Event Log):

  (*1*)
    (*2, 1*)
    (*3, 2, 1*)
    (*4, 3, 2, 1*)
    (*5, 4, 3, 2, 1*)
    (*5*)
    (*4*)
    (*3*)
    (*2*)
    (*1*)

Astro

<lang python>let my_queue = Queue()

my_queue.push!('foo') my_queue.push!('bar') my_queue.push!('baz')

print my_queue.pop!() # 'foo' print my_queue.pop!() # 'bar' print my_queue.pop!() # 'baz'</lang>

AutoHotkey

<lang autohotkey>push("qu", 2), push("qu", 44), push("qu", "xyz") ; TEST

MsgBox % "Len = " len("qu") ; Number of entries While !empty("qu")  ; Repeat until queue is not empty

   MsgBox % pop("qu")      ; Print popped values (2, 44, xyz)

MsgBox Error = %ErrorLevel% ; ErrorLevel = 0: OK MsgBox % pop("qu")  ; Empty MsgBox Error = %ErrorLevel% ; ErrorLevel = -1: popped too much MsgBox % "Len = " len("qu") ; Number of entries

push(queue,_) {  ; push _ onto queue named "queue" (!=_), _ string not containing |

   Global
   %queue% .= %queue% = "" ? _ : "|" _

}

pop(queue) {  ; pop value from queue named "queue" (!=_,_1,_2)

   Global
   RegExMatch(%queue%, "([^\|]*)\|?(.*)", _)
   Return _1, ErrorLevel := -(%queue%=""), %queue% := _2

}

empty(queue) {  ; check if queue named "queue" is empty

   Global
   Return %queue% = ""

}

len(queue) {  ; number of entries in "queue"

   Global
   StringReplace %queue%, %queue%, |, |, UseErrorLevel
   Return %queue% = "" ? 0 : ErrorLevel+1

}</lang>

AWK

<lang awk>function deque(arr) {

   arr["start"] = 0
   arr["end"] = 0

}

function dequelen(arr) {

   return arr["end"] - arr["start"]

}

function empty(arr) {

   return dequelen(arr) == 0

}

function push(arr, elem) {

   arr[++arr["end"]] = elem

}

function pop(arr) {

   if (empty(arr)) {
       return
   }
   return arr[arr["end"]--]

}

function unshift(arr, elem) {

   arr[arr["start"]--] = elem

}

function shift(arr) {

   if (empty(arr)) {
       return
   }
   return arr[++arr["start"]]

}

function printdeque(arr, i, sep) {

   printf("[")
   for (i = arr["start"] + 1; i <= arr["end"]; i++) {
       printf("%s%s", sep, arr[i])
       sep = ", "
   }
   printf("]\n")

}

BEGIN {

   deque(q)
   for (i = 1; i <= 10; i++) {
       push(q, i)
   }
   printdeque(q)
   for (i = 1; i <= 10; i++) {
       print shift(q)
   }
   printdeque(q)

}</lang>

BBC BASIC

<lang bbcbasic> FIFOSIZE = 1000

     FOR n = 3 TO 5
       PRINT "Push ";n : PROCenqueue(n)
     NEXT
     PRINT "Pop " ; FNdequeue
     PRINT "Push 6" : PROCenqueue(6)
     REPEAT
       PRINT "Pop " ; FNdequeue
     UNTIL FNisempty
     PRINT "Pop " ; FNdequeue
     END
     
     DEF PROCenqueue(n) : LOCAL f%
     DEF FNdequeue : LOCAL f% : f% = 1
     DEF FNisempty : LOCAL f% : f% = 2
     PRIVATE fifo(), rptr%, wptr%
     DIM fifo(FIFOSIZE-1)
     CASE f% OF
       WHEN 0:
         wptr% = (wptr% + 1) MOD FIFOSIZE
         IF rptr% = wptr% ERROR 100, "Error: queue overflowed"
         fifo(wptr%) = n
       WHEN 1:
         IF rptr% = wptr% ERROR 101, "Error: queue empty"
         rptr% = (rptr% + 1) MOD FIFOSIZE
         = fifo(rptr%)
       WHEN 2:
         = (rptr% = wptr%)
     ENDCASE
     ENDPROC</lang>

Output:

Push 3
Push 4
Push 5
Pop 3
Push 6
Pop 4
Pop 5
Pop 6
Pop
Error: queue empty

Bracmat

Below, queue is the name of a class with a data member list and three methods enqueue, dequeue and empty.

No special provision is implemented to "throw and exception" in case you try to dequeue from and empty queue, because, in Bracmat, evaluation of an expression, besides resulting in an evaluated expression, always also either "succeeds" or "fails". (There is, in fact, a third possibility, "ignore", telling Bracmat to close an eye even though an evaluation didn't succeed.) So in the example below, the last dequeue operation fails and the program continues on the right hand side of the bar (|) operator <lang bracmat> ( queue

 =   (list=)
     (enqueue=.(.!arg) !(its.list):?(its.list))
     ( dequeue
     =   x
       .   !(its.list):?(its.list) (.?x)
         & !x
     )
     (empty=.!(its.list):)
 )

& new$queue:?Q & ( (Q..enqueue)$1

   & (Q..enqueue)$2
   & (Q..enqueue)$3
   & out$((Q..dequeue)$)
   & (Q..enqueue)$4
   & out$((Q..dequeue)$)
   & out$((Q..dequeue)$)
   &   out
     $ ( The
         queue
         is
         ((Q..empty)$&|not)
         empty
       )
   & out$((Q..dequeue)$)
   &   out
     $ ( The
         queue
         is
         ((Q..empty)$&|not)
         empty
       )
   & out$((Q..dequeue)$)
   & out$Success!
 | out$"Attempt to dequeue failed"
 )
</lang>

Output:

1
2
3
The queue is not empty
4
The queue is empty
Attempt to dequeue failed

C

See FIFO for the needed code. <lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <stdbool.h>
  1. include <sys/queue.h>

/* #include "fifolist.h" */

int main() {

 int i;
 FIFOList head;
 TAILQ_INIT(&head);
 /* insert 20 integer values */
 for(i=0; i < 20; i++) {
   m_enqueue(i, &head);
 }
 /* dequeue and print */
 while( m_dequeue(&i, &head) )
   printf("%d\n", i);
 fprintf(stderr, "FIFO list %s\n",
     ( m_dequeue(&i, &head) ) ? 
     "had still an element" :
     "is void!");
 exit(0);

}</lang>

C#

In C# we can use the Queue<T> class in the .NET 2.0 framework. <lang csharp>using System; using System.Collections.Generic;

namespace RosettaCode {

   class Program
   {
       static void Main()
       {
           // Create a queue and "push" items into it
           Queue<int> queue  = new Queue<int>();
           queue.Enqueue(1);
           queue.Enqueue(3);
           queue.Enqueue(5);
           // "Pop" items from the queue in FIFO order
           Console.WriteLine(queue.Dequeue()); // 1
           Console.WriteLine(queue.Dequeue()); // 3
           Console.WriteLine(queue.Dequeue()); // 5
           // To tell if the queue is empty, we check the count
           bool empty = queue.Count == 0;
           Console.WriteLine(empty); // "True"
           // If we try to pop from an empty queue, an exception
           // is thrown.
           try
           {
               queue.Dequeue();
           }
           catch (InvalidOperationException exception)
           {
               Console.WriteLine(exception.Message); // "Queue empty."
           }
       }
   }

}</lang>

C++

Note that with C++'s standard queue, accessing the first element of the queue and removing it are two separate operations, front() and pop(). <lang cpp>#include <queue>

  1. include <cassert> // for run time assertions

int main() {

 std::queue<int> q;
 assert( q.empty() );        // initially the queue is empty
 q.push(1);                  // add an element
 assert( !q.empty() );       // now the queue isn't empty any more
 assert( q.front() == 1 );   // the first element is, of course, 1
 q.push(2);                  // add another element
 assert( !q.empty() );       // it's of course not empty again
 assert( q.front() == 1 );   // the first element didn't change
 q.push(3);                  // add yet an other element
 assert( !q.empty() );       // the queue is still not empty
 assert( q.front() == 1 );   // and the first element is still 1
 q.pop();                    // remove the first element
 assert( !q.empty() );       // the queue is not yet empty
 assert( q.front() == 2);    // the first element is now 2 (the 1 is gone)
 q.pop();
 assert( !q.empty() );
 assert( q.front() == 3);
 q.push(4);
 assert( !q.empty() );
 assert( q.front() == 3);
 q.pop();
 assert( !q.empty() );
 assert( q.front() == 4);
 q.pop();
 assert( q.empty() );
 q.push(5);
 assert( !q.empty() );
 assert( q.front() == 5);
 q.pop();
 assert( q.empty() );

}</lang>

Note that the container used to store the queue elements can be specified explicitly; to use a linked linst instead of a deque (the latter is the default), just replace the definition of q to <lang cpp> std::queue<int, std::list<int> ></lang>

(and add #include <list>, of course). Also note that the containers can be used directly; in that case push and pop have to be replaced by push_back and pop_front.

Clojure

Using the implementation from FIFO: <lang lisp>(def q (make-queue))

(enqueue q 1) (enqueue q 2) (enqueue q 3)

(dequeue q) ; 1 (dequeue q) ; 2 (dequeue q) ; 3

(queue-empty? q) ; true</lang> Or use a java implementation: <lang lisp>(def q (java.util.LinkedList.))

(.add q 1) (.add q 2) (.add q 3)

(.remove q) ; 1 (.remove q) ; 2 (.remove q) ; 3

(.isEmpty q) ; true</lang>

CoffeeScript

<lang coffeescript>

  1. We build a Queue on top of an ordinary JS array, which supports push
  2. and shift. For simple queues, it might make sense to just use arrays
  3. directly, but this code shows how to encapsulate the array behind a restricted
  4. API. For very large queues, you might want a more specialized data
  5. structure to implement the queue, in case arr.shift works in O(N) time, which
  6. is common for array implementations. On my laptop I start noticing delay
  7. after about 100,000 elements, using node.js.

Queue = ->

 arr = []
 enqueue: (elem) ->
   arr.push elem
 dequeue: (elem) ->
   throw Error("queue is empty") if arr.length == 0
   arr.shift elem
 is_empty: (elem) ->
   arr.length == 0
  1. test

do ->

 q = Queue()
 for i in [1..100000]
   q.enqueue i
 console.log q.dequeue() # 1
 while !q.is_empty()
   v = q.dequeue()
 console.log v # 1000
 
 try
   q.dequeue() # throws Error
 catch e
   console.log "#{e}"

</lang> output <lang> > coffee queue.coffee 1 100000 Error: queue is empty </lang>

Common Lisp

Using the implementation from FIFO.

<lang lisp>(let ((queue (make-queue)))

 (enqueue 38 queue)
 (assert (not (queue-empty-p queue)))
 (enqueue 23 queue)
 (assert (eql 38 (dequeue queue)))
 (assert (eql 23 (dequeue queue)))
 (assert (queue-empty-p queue)))</lang>

Component Pascal

BlackBox Component Builder <lang oberon2> MODULE UseQueue; IMPORT

 Queue,
 Boxes,
 StdLog;
 

PROCEDURE Do*; VAR

 q: Queue.Instance;
 b: Boxes.Box;

BEGIN

 q := Queue.New(10);
 q.Push(Boxes.NewInteger(1));
 q.Push(Boxes.NewInteger(2));
 q.Push(Boxes.NewInteger(3));
 b := q.Pop();
 b := q.Pop();
 q.Push(Boxes.NewInteger(4));
 b := q.Pop();
 b := q.Pop();
 StdLog.String("Is empty:> ");StdLog.Bool(q.IsEmpty());StdLog.Ln

END Do; END UseQueue. </lang> Execute: ^Q UseQueue.Do
Output:

Is empty:  $TRUE

Cowgol

This code uses the queue code at Queue/Definition, which should be put in a file named queue.coh.

<lang cowgol>include "cowgol.coh";

typedef QueueData is uint8; # the queue will contain bytes include "queue.coh"; # from the Queue/Definition task

var queue := MakeQueue();

  1. enqueue bytes 0 to 20

print("Enqueueing: "); var n: uint8 := 0; while n < 20 loop

   print_i8(n);
   print_char(' ');
   Enqueue(queue, n);
   n := n + 1;

end loop; print_nl();

  1. dequeue and print everything in the queue

print("Dequeueing: "); while QueueEmpty(queue) == 0 loop

   print_i8(Dequeue(queue));
   print_char(' ');

end loop; print_nl();

  1. free the queue

FreeQueue(queue);</lang>

Output:
Enqueueing: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Dequeueing: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

D

<lang d>class LinkedQueue(T) {

   private static struct Node {
       T data;
       Node* next;
   }
   private Node* head, tail;
   bool empty() { return head is null; }
   void push(T item) {
       if (empty())
           head = tail = new Node(item);
       else {
           tail.next = new Node(item);
           tail = tail.next;
       }
   }
   T pop() {
       if (empty())
           throw new Exception("Empty LinkedQueue.");
       auto item = head.data;
       head = head.next;
       if (head is tail) // Is last one?
           // Release tail reference so that GC can collect.
           tail = null;
       return item;
   }
   alias push enqueue;
   alias pop dequeue;

}

void main() {

   auto q = new LinkedQueue!int();
   q.push(10);
   q.push(20);
   q.push(30);
   assert(q.pop() == 10);
   assert(q.pop() == 20);
   assert(q.pop() == 30);
   assert(q.empty());

}</lang>

Faster Version

This versions creates a circular queue able to grow. Define "queue_usage2_main" to run the main and its tests. <lang d>module queue_usage2;

import std.traits: hasIndirections;

struct GrowableCircularQueue(T) {

   public size_t length;
   private size_t first, last;
   private T[] A = [T.init];
   this(T[] items...) pure nothrow @safe {
       foreach (x; items)
           push(x);
   }
   @property bool empty() const pure nothrow @safe @nogc {
       return length == 0;
   }
   @property T front() pure nothrow @safe @nogc {
       assert(length != 0);
       return A[first];
   }
   T opIndex(in size_t i) pure nothrow @safe @nogc {
       assert(i < length);
       return A[(first + i) & (A.length - 1)];
   }
   void push(T item) pure nothrow @safe {
       if (length >= A.length) { // Double the queue.
           immutable oldALen = A.length;
           A.length *= 2;
           if (last < first) {
               A[oldALen .. oldALen + last + 1] = A[0 .. last + 1];
               static if (hasIndirections!T)
                   A[0 .. last + 1] = T.init; // Help for the GC.
               last += oldALen;
           }
       }
       last = (last + 1) & (A.length - 1);
       A[last] = item;
       length++;
   }
   @property T pop() pure nothrow @safe @nogc {
       assert(length != 0);
       auto saved = A[first];
       static if (hasIndirections!T)
           A[first] = T.init; // Help for the GC.
       first = (first + 1) & (A.length - 1);
       length--;
       return saved;
   }

}

version (queue_usage2_main) {

   void main() {
       GrowableCircularQueue!int q;
       q.push(10);
       q.push(20);
       q.push(30);
       assert(q.pop == 10);
       assert(q.pop == 20);
       assert(q.pop == 30);
       assert(q.empty);
       uint count = 0;
       foreach (immutable i; 1 .. 1_000) {
           foreach (immutable j; 0 .. i)
               q.push(count++);
           foreach (immutable j; 0 .. i)
               q.pop;
       }
   }

}</lang>

Delphi

Generics were added in Delphi2009.

<lang Delphi>program QueueUsage;

{$APPTYPE CONSOLE}

uses Generics.Collections;

var

 lStringQueue: TQueue<string>;

begin

 lStringQueue := TQueue<string>.Create;
 try
   lStringQueue.Enqueue('First');
   lStringQueue.Enqueue('Second');
   lStringQueue.Enqueue('Third');
   Writeln(lStringQueue.Dequeue);
   Writeln(lStringQueue.Dequeue);
   Writeln(lStringQueue.Dequeue);
   if lStringQueue.Count = 0 then
     Writeln('Queue is empty.');
 finally
   lStringQueue.Free;
 end

end.</lang>

Output:

First
Second
Third
Queue is empty.

Déjà Vu

This uses the definition from Queue/Definition#Déjà Vu <lang dejavu>local :Q queue !. empty Q enqueue Q "HELLO" enqueue Q 123 enqueue Q "It's a magical place" !. empty Q !. dequeue Q !. dequeue Q !. dequeue Q !. empty Q !. dequeue Q</lang>

Output:
true
false
"HELLO"
123
"It's a magical place"
true
Wrong value: popping from empty queue in Raise:
compiler.deja:857
queue.deja:28
queue.deja:10 in dequeue

Diego

Diego has a queue object and posit: <lang diego>set_ns(rosettacode)_me();

   add_queue({int},q)_values(1..4);    // 1,2,3,4 (1 is first/bottom, 4 is last/top)
   with_queue(q)_pop();                // 2,3,4
   with_queue(q)_dequeue();            // 3,4
   with_queue(q)_enqueue(5);           // 3,4,5
   
   with_queue(q)_push()_v(6,7);        // 3,4,5,6,7
   add_var({int},b)_value(8);
   with_queue(q)_push[b];              // 3,4,5,6,7,8
   with_queue(q)_pluck()_at(2);        // callee will return `with_queue(q)_err(pluck invalid with queue);`
   me_msg()_queue(q)_top();            // "8"    
   me_msg()_queue(q)_last();           // "8"    
   me_msg()_queue(q)_peek();           // "8"  
   me_msg()_queue(q)_bottom();         // "3"    
   me_msg()_queue(q)_first();          // "3"    
   me_msg()_queue(q)_peer();           // "3"  
   me_msg()_queue(q)_isempty();            // "false"
   with_queue(q)_empty();
   with_queue(q)_msg()_isempty()_me();     // "true" (alternative syntax)
   with_queue()_pop();                 // callee will return `with_queue(q)_err(pop invalid with empty queue);`
   me_msg()_queue(q)_history()_all();      // returns the entire history of queue 'q' since its creation    

reset_namespace[];</lang> queue is a derivative of array, so arrays can also be used as queues.

E

Using the implementation from FIFO.

<lang e>def [reader, writer] := makeQueue() require(escape empty { reader.dequeue(empty); false } catch _ { true }) writer.enqueue(1) writer.enqueue(2) require(reader.dequeue(throw) == 1) writer.enqueue(3) require(reader.dequeue(throw) == 2) require(reader.dequeue(throw) == 3) require(escape empty { reader.dequeue(empty); false } catch _ { true })</lang>

E also has queues in the standard library such as <import:org.erights.e.examples.concurrency.makeQueue>, but they are designed for concurrency purposes and do not report emptiness but rather return a promise for the next element.

Elena

ELENA 4.x : <lang elena>import system'collections; import extensions;

public program() {

   // Create a queue and "push" items into it
   var queue := new Queue();

   queue.push:1;
   queue.push:3;
   queue.push:5;

   // "Pop" items from the queue in FIFO order
   console.printLine(queue.pop()); // 1
   console.printLine(queue.pop()); // 3
   console.printLine(queue.pop()); // 5

   // To tell if the queue is empty, we check the count
   console.printLine("queue is ",(queue.Length == 0).iif("empty","nonempty"));

   // If we try to pop from an empty queue, an exception
   // is thrown.
   queue.pop() | on:(e){ console.writeLine:"Queue empty." }

}</lang>

Elisa

A generic component for Queues and its usage are described in Queue/Definition

Elixir

Here a list is used as Queue. <lang Elixir> defmodule Queue do

 def empty?([]), do: true
 def empty?(_), do: false
 def pop([h|t]), do: {h,t}
 def push(q,t), do: q ++ [t]
 def front([h|_]), do: h

end </lang> Example: <lang> iex(2)> q = [1,2,3,4,5] [1, 2, 3, 4, 5] iex(3)> Queue.push(q,10) [1, 2, 3, 4, 5, 10] iex(4)> front=Queue.front(q) 1 iex(5)> Queue.empty?(q) false iex(6)> Queue.pop(q) {1, [2, 3, 4, 5]} iex(7)> l=[] [] iex(8)> Queue.empty?(l) true </lang>

Erlang

All functions, from the shell: <lang Erlang>1> Q = fifo:new(). {fifo,[],[]} 2> fifo:empty(Q). true 3> Q2 = fifo:push(Q,1). {fifo,[1],[]} 4> Q3 = fifo:push(Q2,2). {fifo,[2,1],[]} 5> fifo:empty(Q3). false 6> fifo:pop(Q3). {1,{fifo,[],[2]}} 7> {Popped, Q} = fifo:pop(Q2). {1,{fifo,[],[]}} 8> fifo:pop(fifo:new()).

    • exception error: 'empty fifo'
    in function  fifo:pop/1</lang>

Crashing is the normal expected behavior in Erlang: let it crash, a supervisor will take responsibility of restarting processes, or the caller will take care of it. Only program for the successful cases.

Factor

For this task, we'll use Factor's deque vocabulary (short for double-ended queue). The deque class is a mixin, one of whose instances is dlist (double-linked list). Hence, the deque protocol works with double-linked lists. When using a deque as a queue, the convention is to queue elements with push-front and deque them with pop-back. <lang factor>USING: combinators deques dlists kernel prettyprint ; IN: rosetta-code.queue-usage

DL{ } clone {  ! make new queue

   [ [ 1 ] dip push-front ] ! push 1
   [ [ 2 ] dip push-front ] ! push 2
   [ [ 3 ] dip push-front ] ! push 3
   [ .                    ] ! DL{ 3 2 1 }
   [ pop-back drop        ] ! pop 1 (and discard)
   [ pop-back drop        ] ! pop 2 (and discard)
   [ pop-back drop        ] ! pop 3 (and discard)
   [ deque-empty? .       ] ! t

} cleave</lang> Alternatively, batch operations can be used. <lang factor>DL{ } clone {

   [ [ { 1 2 3 } ] dip push-all-front ] ! push all from sequence
   [ .                                ] ! DL{ 3 2 1 }
   [ [ drop ] slurp-deque             ] ! pop and discard all
   [ deque-empty? .                   ] ! t

} cleave</lang>

Fantom

Using definition of Queue in: Queue/Definition task.

<lang fantom> class Main {

 public static Void main ()
 {
   q := Queue()
   q.push (1)
   q.push ("a")
   echo ("Is empty? " + q.isEmpty)
   echo ("Element: " + q.pop)
   echo ("Element: " + q.pop)
   echo ("Is empty? " + q.isEmpty)
   try { q.pop } catch (Err e) { echo (e.msg) }
 }

} </lang>

Output:

Is empty? false
Element: 1
Element: a
Is empty? true
queue is empty

Forth

Forth is a low level language the runs on a virtual machine with 2 stacks. One stack for Parameters and the second is the call/return stack. Coding begins at an almost assembler like level but the work results in a higher level language.
In this demonstration code we show a feature of Forth that is one of the earliest examples of simple object creation using the word CREATE. With this mechanism we create a queue constructor that can build queue data structures of different sizes. Then we create two operators that enqueue a byte and dequeue a byte. The queue's address is passed to these operators on the data stack.
Implementations in other languages or libraries might use a linked list that could potentially consume all memory. Creating a static circular queue is more typical for Forth where it is commonly used in embedded high reliability systems. The code here makes use of the fact that if the queue size is a power of 2, the circular wrap around can be implemented without an IF statement, and uses logical AND with binary mask to wrap around.
NOTE: We also used a more Forth like naming convention QC@ (queue char fetch) and QC! (queue char store) rather than PUSH and POP which as stack users we felt were more appropriate for a Stack than a Queue.

A simpler implementation, where you only need 1 queue can be seen here: http://rosettacode.org/wiki/Queue/Definition#Forth
And a Forth version using some new features of Forth 2012, dynamic memory allocation and a linked list can be seen here:
http://rosettacode.org/wiki/Queue/Definition#Linked_list_version

<lang>: cqueue: ( n -- <text>)

   create                                                 \ compile time: build the data structure in memory
       dup
       dup 1- and abort" queue size must be power of 2"
       0 ,                                                \ write pointer "HEAD"
       0 ,                                                \ read  pointer "TAIL"
       0 ,                                                \ byte counter
       dup 1- ,                                           \ mask value used for wrap around
       allot ;                                            \ run time: returns the address of this data structure

\ calculate offsets into the queue data structure

->head ( q -- adr )  ; \ syntactic sugar
->tail ( q -- adr ) cell+  ;
->cnt ( q -- adr ) 2 cells +  ;
->msk ( q -- adr ) 3 cells +  ;
->data ( q -- adr ) 4 cells +  ;
head++ ( q -- ) \ circular increment head pointer of a queue
        dup >r ->head @ 1+  r@ ->msk @ and r> ->head ! ;
tail++ ( q -- ) \ circular increment tail pointer of a queue
       dup >r  ->tail @ 1+  r@ ->msk @ and r> ->tail ! ;
qempty ( q -- flag)
       dup ->head off   dup ->tail off  dup ->cnt  off    \ reset all fields to "off" (zero)
       ->cnt @ 0=  ;                                      \ per the spec qempty returns a flag
cnt=msk? ( q -- flag) dup >r ->cnt @ r> ->msk @ = ;
?empty ( q -- ) ->cnt @ 0= abort" queue is empty" ;
?full ( q -- ) cnt=msk? abort" queue is full" ;
1+! ( adr -- ) 1 swap +! ; \ increment contents of adr
1-! ( adr -- ) -1 swap +! ; \ decrement contents of adr
qc@ ( queue -- char ) \ fetch next char in queue
      dup >r ?empty                                       \ abort if empty
      r@ ->cnt 1-!                                        \ decr. the counter
      r@ tail++
      r@ ->data  r> ->tail @ + c@ ;                       \ calc. address and fetch the byte


qc! ( char queue -- )
      dup >r ?full                                        \ abort if q full
      r@ ->cnt 1+!                                        \ incr. the counter
      r@ head++
      r@ ->data  r> ->head @ + c! ;                       \ data+head = adr, and store the char</lang>

Create 2 Queues and test the operators at the Forth console interactively

64 cqueue: XQ ok
32 cqueue: YQ ok

char A XQ qc! ok 
char B XQ qc! ok 
char C XQ qc! ok

XQ qc@ emit A ok
XQ qc@ emit B ok
XQ qc@ emit C ok
XQ qc@ emit
   ^^^
Queue is empty

YQ qc@ emit
   ^^^
Queue is empty

Version for the Linked List implementation

<lang forth> make-queue constant q1 make-queue constant q2 q1 empty? . 5 q1 enqueue q1 empty? . 7 q1 enqueue 9 q1 enqueue q2 empty? . 3 q2 enqueue q2 empty? . q1 dequeue . q1 dequeue . q1 dequeue . q1 empty? . q2 dequeue . q2 empty? . </lang>

Fortran

Works with: Fortran version 90 and later

<lang fortran>module fifo_nodes

 type fifo_node
    integer :: datum
    ! the next part is not variable and must be present
    type(fifo_node), pointer :: next
    logical :: valid
 end type fifo_node

end module fifo_nodes

program FIFOTest

 use fifo
 implicit none
 type(fifo_head) :: thehead
 type(fifo_node), dimension(5) :: ex, xe
 integer :: i
 
 call new_fifo(thehead)
 do i = 1, 5
    ex(i)%datum = i
    call fifo_enqueue(thehead, ex(i))
 end do
 i = 1
 do
    call fifo_dequeue(thehead, xe(i))
    print *, xe(i)%datum
    i = i + 1
    if ( fifo_isempty(thehead) ) exit
 end do

end program FIFOTest</lang>

FreeBASIC

As FreeBASIC does not have a built-in Queue type, I am reusing the type I wrote for the Queue/Definition task: <lang freebasic>' FB 1.05.0 Win64

  1. Include "queue_rosetta.bi" include macro-based generic Queue type used in earlier task

Declare_Queue(String) expand Queue type for Strings

Dim stringQueue As Queue(String) With stringQueue push some strings into the Queue

 .push("first")
 .push("second")
 .push("third")
 .push("fourth")
 .push("fifth")

End With Print "Number of Strings in the Queue :" ; stringQueue.count Print "Capacity of string Queue  :" ; stringQueue.capacity Print ' now pop them While Not stringQueue.empty

 Print stringQueue.pop(); " popped"

Wend Print Print "Number of Strings in the Queue :" ; stringQueue.count Print "Capacity of string Queue  :" ; stringQueue.capacity capacity should be unchanged Print "Is Queue empty now  : "; stringQueue.empty Print Print "Press any key to quit" Sleep</lang>

Output:
Number of Strings in the Queue : 5
Capacity of string Queue       : 8

first popped
second popped
third popped
fourth popped
fifth popped

Number of Strings in the Queue : 0
Capacity of string Queue       : 8 
Is Queue empty now             : true

Go

With Queue/Definition code

Solution using package from the Queue/Definition task: <lang go>package main

import (

   "fmt"
   "queue"

)

func main() {

   q := new(queue.Queue)
   fmt.Println("empty?", q.Empty())
   x := "black"
   fmt.Println("push", x)
   q.Push(x)
   fmt.Println("empty?", q.Empty())
   r, ok := q.Pop()
   if ok {
       fmt.Println(r, "popped")
   } else {
       fmt.Println("pop failed")
   }
   var n int
   for _, x := range []string{"blue", "red", "green"} {
       fmt.Println("pushing", x)
       q.Push(x)
       n++
   }
   for i := 0; i < n; i++ {
       r, ok := q.Pop()
       if ok {
           fmt.Println(r, "popped")
       } else {
           fmt.Println("pop failed")
       }
   }

}</lang> Output:

empty? true
push black
empty? false
black popped
pushing blue
pushing red
pushing green
blue popped
red popped
green popped

With channels

Go buffered channels are FIFO, and better, are concurrency-safe (if you have an application for that.) Code below is same as code above only with Go channels rather than the home made queue implementation. Note that you don't have to start concurrent goroutines to use channels, they are useful all on their own. Other differences worth noting: Buffered channels are not dynamically resizable. This is a good thing, as queues that can grow without limit allow ugly bugs that consume memory and grind to a halt. Also blocking operations (as seen here with push) are probably a bad idea with a single goroutine. Much safer to use non-blocking operations that handle success and failure (the way pop is done here.) <lang go>package main

import "fmt"

func main() {

   q := make(chan string, 3)
   fmt.Println("empty?", len(q) == 0)
   x := "black"
   fmt.Println("push", x)
   q <- x
   fmt.Println("empty?", len(q) == 0)
   select {
   case r := <-q:
       fmt.Println(r, "popped")
   default:
       fmt.Println("pop failed")
   }
   var n int
   for _, x := range []string{"blue", "red", "green"} {
       fmt.Println("pushing", x)
       q <- x
       n++
   }
   for i := 0; i < n; i++ {
       select {
       case r := <-q:
           fmt.Println(r, "popped")
       default:
           fmt.Println("pop failed")
       }
   }

}</lang>

With linked lists

<lang go>package main

import (

   "fmt"
   "container/list"

)

func main() {

   q := list.New()
   fmt.Println("empty?", q.Len() == 0)
   x := "black"
   fmt.Println("push", x)
   q.PushBack(x)
   fmt.Println("empty?", q.Len() == 0)
   if e := q.Front(); e != nil {
       r := q.Remove(e)
       fmt.Println(r, "popped")
   } else {
       fmt.Println("pop failed")
   }
   var n int
   for _, x := range []string{"blue", "red", "green"} {
       fmt.Println("pushing", x)
       q.PushBack(x)
       n++
   }
   for i := 0; i < n; i++ {
       if e := q.Front(); e != nil {
           r := q.Remove(e)
           fmt.Println(r, "popped")
       } else {
           fmt.Println("pop failed")
       }
   }

}</lang>

Groovy

Solution: <lang groovy>def q = new LinkedList()</lang>

Test: <lang groovy>assert q.empty println q // "push" adds to end of "queue" list q.push('Stuart') println q assert !q.empty // "add" adds to end of "queue" list q.add('Pete') println q assert !q.empty // left shift operator ("<<") adds to end of "queue" list q << 'John' println q assert !q.empty // add assignment ("+=") adds the list elements // to the end of the "queue" list in list order q += ['Paul', 'George'] println q assert !q.empty // "poll" removes and returns the first element in the // "queue" list ("pop" exists for Groovy lists, but it // removes and returns the LAST element for "Stack" // semantics). "poll" only exists in objects that // implement java.util.Queue, like java.util.LinkedList assert q.poll() == 'Stuart' println q assert !q.empty assert q.poll() == 'Pete' println q assert !q.empty q << 'Ringo' println q assert !q.empty assert q.poll() == 'John' println q assert !q.empty assert q.poll() == 'Paul' println q assert !q.empty assert q.poll() == 'George' println q assert !q.empty assert q.poll() == 'Ringo' println q assert q.empty assert q.poll() == null</lang>

Output:

[]
[Stuart]
[Stuart, Pete]
[Stuart, Pete, John]
[Stuart, Pete, John, Paul, George]
[Pete, John, Paul, George]
[John, Paul, George]
[John, Paul, George, Ringo]
[Paul, George, Ringo]
[George, Ringo]
[Ringo]
[]

Haskell

Running the code from Queue/Definition#Haskell through GHC's interpreter.

<lang Haskell> Prelude> :l fifo.hs [1 of 1] Compiling Main ( fifo.hs, interpreted ) Ok, modules loaded: Main.

  • Main> let q = emptyFifo
  • Main> isEmpty q

True

  • Main> let q' = push q 1
  • Main> isEmpty q'

False

  • Main> let q = foldl push q' [2..4]
  • Main> let (v,q') = pop q
  • Main> v

Just 1

  • Main> let (v',q') = pop q
  • Main> v'

Just 2

  • Main> let (v,q) = pop q'
  • Main> v

Just 3

  • Main> let (v,q') = pop q
  • Main> v

Just 4

  • Main> let (v',q'') = pop q'
  • Main> v'

Nothing </lang>

Icon and Unicon

Icon and Unicon provide built-in queue and stack functions. <lang Icon>procedure main(arglist) queue := [] write("Usage:\nqueue x x x - x - - - - -\n\t- pops elements\n\teverything else pushes") write("Queue is:") every x := !arglist do {

  case x of {
     "-"     : pop(queue)  | write("pop(empty) failed.")    # pop if the next arglist[i] is a -
     default : put(queue,x)                                 # push arglist[i]
     }
  if empty(queue) then writes("empty")
  else every writes(!queue," ")
  write()
  }

end

procedure empty(X) #: fail if X is not empty if *X = 0 then return end</lang>

Sample output:

queue - 1 3 4 5 6 - - - - - - - -
Usage:
queue x x x - x - - - - -
        - pops elements
        everything else pushes
Queue is:
pop(empty) failed.
empty
1 
1 3 
1 3 4 
1 3 4 5 
1 3 4 5 6 
3 4 5 6 
4 5 6 
5 6 
6 
empty
pop(empty) failed.
empty
pop(empty) failed.
empty
pop(empty) failed.
empty

J

Using object-oriented FIFO queue implementation from FIFO

This is an interactive J session:

<lang j> queue=: conew 'fifo'

  isEmpty__queue 

1

  push__queue 9

9

  push__queue 8

8

  push__queue 7

7

  isEmpty__queue 

0

  pop__queue 

9

  pop__queue 

8

  pop__queue 

7

  isEmpty__queue 

1</lang>

Using function-level FIFO queue implementation from FIFO

This is an interactive J session: <lang j> is_empty make_empty _ 1

  first_named_state =: push 9 onto make_empty _
  newer_state =: push 8 onto first_named_state
  this_state =: push 7 onto newer_state
  is_empty this_state

0

  tell_queue this_state

9 8 7

  tell_atom pop this_state

9

  tell_atom pop pop this_state

8

  tell_atom pop pop pop this_state

7

  is_empty pop pop pop this_state

1</lang>

Java

Works with: Java version 1.5+

LinkedList can always be used as a queue or stack, but not in conjunction with the Stack object provided by Java. To use a LinkedList as a stack, use the push and pop methods. A LinkedList can also be used as a double-ended queue (deque); LinkedList has implemented the Deque interface since Java 1.6+. <lang java>import java.util.LinkedList; import java.util.Queue; ... Queue<Integer> queue = new LinkedList<Integer>(); System.out.println(queue.isEmpty()); // empty test - true // queue.remove(); // would throw NoSuchElementException queue.add(1); queue.add(2); queue.add(3); System.out.println(queue); // [1, 2, 3] System.out.println(queue.remove()); // 1 System.out.println(queue); // [2, 3] System.out.println(queue.isEmpty()); // false</lang>

You can also use "offer" and "poll" methods instead of "add" and "remove", respectively. They indicate errors with the return value instead of throwing an exception.

Works with: Java version 1.4

<lang java>import java.util.LinkedList; ... LinkedList queue = new LinkedList(); System.out.println(queue.isEmpty()); // empty test - true queue.add(new Integer(1)); queue.add(new Integer(2)); queue.add(new Integer(3)); System.out.println(queue); // [1, 2, 3] System.out.println(queue.removeFirst()); // 1 System.out.println(queue); // [2, 3] System.out.println(queue.isEmpty()); // false</lang>

JavaScript

JavaScript arrays can be used as FIFOs. <lang javascript>var f = new Array(); print(f.length); f.push(1,2); // can take multiple arguments f.push(3); f.shift(); f.shift(); print(f.length); print(f.shift()) print(f.length == 0); print(f.shift());</lang>

outputs:

0
1
3
true
undefined

Julia

Works with: Julia version 0.6

<lang julia>using DataStructures

queue = Queue(String) @show enqueue!(queue, "foo") @show enqueue!(queue, "bar") @show dequeue!(queue) # -> foo @show dequeue!(queue) # -> bar</lang>

Kotlin

The related Queue/Definition task, where we wrote our own Queue class, intimated that we should use the language's built-in queue for this task so that's what I'm going to do here, using Java collection types as Kotlin doesn't have a Queue type in its standard library: <lang scala>// version 1.1.2

import java.util.*

fun main(args: Array<String>) {

   val q: Queue<Int> = ArrayDeque<Int>()
   (1..5).forEach { q.add(it) }
   println(q)
   println("Size of queue = ${q.size}")
   print("Removing: ")
   (1..3).forEach { print("${q.remove()} ") }
   println("\nRemaining in queue: $q")
   println("Head element is now ${q.element()}")
   q.clear()
   println("After clearing, queue is ${if(q.isEmpty()) "empty" else "not empty"}")
   try {
       q.remove()
   }
   catch (e: NoSuchElementException) {
       println("Can't remove elements from an empty queue")
   }

}</lang>

Output:
[1, 2, 3, 4, 5]
Size of queue = 5
Removing: 1 2 3
Remaining in queue: [4, 5]
Head element is now 4
After clearing, queue is empty
Can't remove elements from an empty queue

Lasso

Lasso has a queue type that uses the following for the operators:

 push: queue->insert
  pop: queue->get
empty: queue->size == 0

Example: <lang lasso> local(queue) = queue

  1. queue->size

// => 0

  1. queue->insert('a')
  2. queue->insert('b')
  3. queue->insert('c')
  4. queue->size

// => 3

loop(#queue->size) => {

 stdoutnl(#queue->get)

} // => // a // b // c

  1. queue->size == 0

// => true </lang>

Works with: UCB Logo

UCB Logo comes with a protocol for treating lists as queues.

<lang logo>make "fifo [] print empty? :fifo  ; true queue "fifo 1 queue "fifo 2 queue "fifo 3 show :fifo  ; [1 2 3] print dequeue "fifo  ; 1 show :fifo  ; [2 3] print empty? :fifo  ; false</lang>

Lua

Uses the queue-definition given at Queue/Definition#Lua <lang lua>q = Queue.new() Queue.push( q, 5 ) Queue.push( q, "abc" )

while not Queue.empty( q ) do

   print( Queue.pop( q ) )

end</lang>

One can also just use a regular Lua table (shown here in interactive mode):

<lang lua>> -- create queue: > q = {} > -- push: > q[#q+1] = "first" > q[#q+1] = "second" > q[#q+1] = "third" > -- pop: > =table.remove(q, 1) first > =table.remove(q, 1) second > =table.remove(q, 1) third > -- empty? > =#q == 0 true</lang>

M2000 Interpreter

M2000 has always a current stack object. We can define a new one using a pointer to a stack object (here the variable a). We can swap the currernt one with that on a, so Push, number, letter$ and Empty can be used on that object. Also we can use functions using the stack object as first parameter like stackitem(), stackitem$() and stacktype$().


<lang M2000 Interpreter> Module CheckStackAsLIFO { a=stack Stack a { Push 1, 2, 3 Print number=3 Print number=2 Print number=1 Print Empty=True Push "A", "B", "C" Print letter$="C" Print letter$="B" Print letter$="A" Print Empty=True Push 1,"OK" } Print Len(a)=2, StackItem(a, 2)=1, StackItem$(a, 1)="OK" Print StackType$(a, 1)="String", StackType$(a,2)="Number" } CheckStackAsLIFO Module CheckStackAsFIFO { a=stack Stack a { Data 1, 2, 3 Print number=1 Print number=2 Print number=3 Print Empty=True Data "A", "B", "C" Print letter$="A" Print letter$="B" Print letter$="C" Print Empty=True Push 1,"OK" } Print Len(a)=2, StackItem(a, 2)=1, StackItem$(a, 1)="OK" Print StackType$(a, 1)="String", StackType$(a,2)="Number" } CheckStackAsFIFO </lang>

Maple

There are more builtin operations like reverse(), length(),etc. <lang Maple>q := queue[new](); queue[enqueue](q,1); queue[enqueue](q,2); queue[enqueue](q,3); queue[empty](q); >>>false queue[dequeue](q); >>>1 queue[dequeue](q); >>>2 queue[dequeue](q); >>>3 queue[empty](q); >>>true</lang>

Mathematica/Wolfram Language

<lang Mathematica>Empty[a_] := If[Length[a] == 0, True, False] SetAttributes[Push, HoldAll]; Push[a_, elem_] := AppendTo[a, elem] SetAttributes[Pop, HoldAllComplete]; Pop[a_] := If[EmptyQ[a], False, b = First[a]; Set[a, Most[a]]; b]

Queue = {} -> {} Empty[Queue] -> True Push[Queue, "1"] -> {"1"} EmptyQ[Queue] ->False Pop[Queue] ->1 Pop[Queue] ->False</lang>

Nemerle

The Nemerle.Collections namespace contains an implementation of a Queue. <lang Nemerle>mutable q = Queue(); // or use immutable version as per Haskell example def empty = q.IsEmpty(); // true at this point q.Push(empty); // or Enqueue(), or Add() def a = q.Pop(); // or Dequeue() or Take()</lang>

NetRexx

This example demonstrates the push, pop and empty operations from an implementation of a queue as specified for the task.

The demonstration employs an in-line deployment of a queue object having as it's underlying implementation a java.util.Deque interface instanciated as a java.util.ArrayDeque. Typically this queue implementation would reside outside of the demonstration program and be imported at run-time rather than within the body of this source. <lang NetRexx>/* NetRexx */ options replace format comments java crossref savelog symbols nobinary

-- Queue Usage Demonstration Program ------------------------------------------- method main(args = String[]) public constant

 kew = RCQueueImpl()
 do
   say kew.pop()
 catch ex = IndexOutOfBoundsException
   say ex.getMessage
   say
 end
 melancholyDane = 
 melancholyDane[0] = 4
 melancholyDane[1] = 'To be'
 melancholyDane[2] = 'or'
 melancholyDane[3] = 'not to be?'
 melancholyDane[4] = 'That is the question.'
 loop p_ = melancholyDane[0] to 1 by -1
   kew.push(melancholyDane[p_])
   end p_
 loop while \kew.empty
   popped = kew.pop
   say popped '\-'
   end
 say; say
 -- demonstrate stowing something other than a text string in the queue
 kew.push(melancholyDane)
 md = kew.pop
 loop l_ = 1 to md[0]
   say md[l_] '\-'
   end l_
 say
 return

-- Queue implementation -------------------------------------------------------- class RCQueueImpl

 properties private
   qqq = Deque
 

method RCQueueImpl() public

 qqq = ArrayDeque()
 return

method push(stuff) public

 qqq.push(stuff)
 return

method pop() public returns Rexx signals IndexOutOfBoundsException

 if qqq.isEmpty then signal IndexOutOfBoundsException('The queue is empty')
 return Rexx qqq.pop()

method empty() public binary returns boolean

 return qqq.isEmpty

method isTrue public constant binary returns boolean

 return 1 == 1

method isFalse public constant binary returns boolean

 return \isTrue

</lang>

Output
The queue is empty

To be or not to be? That is the question. 

To be or not to be? That is the question.

Nim

Nim standard library no longer provides a “queues” module, but it provides the more powerful module “deques” which allows to manage FIFO and stacks. Internally, this module uses a sequence and, thus, is more efficient than a linked list implementation.

When popping from an empty list, the module raises an IndexDefect which, as defect, is considered to be non catchable. In fact, by default, with version 1.4 of Nim the defects are still catchable but this may (will) change in some next version. The option --panics:on|off allows to control this behavior. Here, we have chosen to not try to catch the exception and the program terminates in error when trying to pop a fourth element from the queue.

<lang nim>import deques

var queue = initDeque[int]()

queue.addLast(26) queue.addLast(99) queue.addLast(2) echo "Queue size: ", queue.len() echo "Popping: ", queue.popFirst() echo "Popping: ", queue.popFirst() echo "Popping: ", queue.popFirst() echo "Popping: ", queue.popFirst()</lang>

Output:
Queue size: 3
Popping: 26
Popping: 99
Popping: 2
/home/lse/Documents/nim/Rosetta/queue_usage.nim(13) queue_usage
/home/lse/.choosenim/toolchains/nim-1.4.4/lib/pure/collections/deques.nim(113) popFirst
Error: unhandled exception: Empty deque. [IndexDefect]

Objeck

<lang objeck> class Test {

 function : Main(args : String[]) ~ Nil {
   q := Struct.IntQueue->New();
   q->Add(1);
   q->Add(2);
   q->Add(3);
   q->Remove()->PrintLine();
   q->Remove()->PrintLine();
   q->Remove()->PrintLine();
   q->IsEmpty()->PrintLine();
 }

} </lang>

OCaml

<lang ocaml># let q = Queue.create ();; val q : '_a Queue.t = <abstr>

  1. Queue.is_empty q;;

- : bool = true

  1. Queue.add 1 q;;

- : unit = ()

  1. Queue.is_empty q;;

- : bool = false

  1. Queue.add 2 q;;

- : unit = ()

  1. Queue.add 3 q;;

- : unit = ()

  1. Queue.peek q;;

- : int = 1

  1. Queue.length q;;

- : int = 3

  1. Queue.iter (Printf.printf "%d, ") q; print_newline ();;

1, 2, 3, - : unit = ()

  1. Queue.take q;;

- : int = 1

  1. Queue.take q;;

- : int = 2

  1. Queue.peek q;;

- : int = 3

  1. Queue.length q;;

- : int = 1

  1. Queue.add 4 q;;

- : unit = ()

  1. Queue.take q;;

- : int = 3

  1. Queue.peek q;;

- : int = 4

  1. Queue.take q;;

- : int = 4

  1. Queue.is_empty q;;

- : bool = true</lang>

Oforth

Using FIFO implementation :

<lang oforth>: testQueue | q i |

  Queue new ->q
  20 loop: i [ i q push ]
  while ( q empty not ) [ q pop . ] ;</lang>

ooRexx

ooRexx includes a built-in queue class. <lang ooRexx> q = .queue~new -- create an instance q~queue(3) -- adds to the end, but this is at the front q~push(1) -- push on the front q~queue(2) -- add to the end say q~pull q~pull q~pull q~isempty -- should display all and be empty </lang> Output:

1 3 2 1       

Oz

<lang oz>declare

 [Queue] = {Link ['x-oz://system/adt/Queue.ozf']}
 MyQueue = {Queue.new}

in

 {MyQueue.isEmpty} = true
 {MyQueue.put foo}
 {MyQueue.put bar}
 {MyQueue.put baz}
 {MyQueue.isEmpty} = false
 {Show {MyQueue.get}}  %% foo
 {Show {MyQueue.get}}  %% bar
 {Show {MyQueue.get}}  %% baz</lang>

Perl

Perl has built-in support to these operations: <lang perl>@queue = (); # we will simulate a queue in a array

push @queue, (1..5); # enqueue numbers from 1 to 5

print shift @queue,"\n"; # dequeue

print "array is empty\n" unless @queue; # is empty ?

print $n while($n = shift @queue); # dequeue all print "\n"; print "array is empty\n" unless @queue; # is empty ?</lang> Output: <lang>1 2345 array is empty</lang>

Phix

Using the implementation from Queue/Definition

with javascript_semantics
printf(1,"empty:%t\n",empty())          -- true
push_item(5)
printf(1,"empty:%t\n",empty())          -- false
push_item(6)
printf(1,"pop_item:%v\n",pop_item())    -- 5
printf(1,"pop_item:%v\n",pop_item())    -- 6
printf(1,"empty:%t\n",empty())          -- true

Using the builtins (same output):

with javascript_semantics
constant queue = new_queue()
printf(1,"empty:%t\n",queue_empty(queue))
push(queue,5)
printf(1,"empty:%t\n",queue_empty(queue))
push(queue,6)
printf(1,"pop:%v\n",pop(queue))
printf(1,"pop:%v\n",pop(queue))
printf(1,"empty:%t\n",queue_empty(queue))

PHP

Works with: PHP version 5.3+

<lang php><?php $queue = new SplQueue; echo $queue->isEmpty() ? 'true' : 'false', "\n"; // empty test - returns true // $queue->dequeue(); // would raise RuntimeException $queue->enqueue(1); $queue->enqueue(2); $queue->enqueue(3); echo $queue->dequeue(), "\n"; // returns 1 echo $queue->isEmpty() ? 'true' : 'false', "\n"; // returns false ?></lang>

PicoLisp

Using the implementation from FIFO: <lang PicoLisp>(println (fifo 'Queue)) # Retrieve the number '1' (println (fifo 'Queue)) # Retrieve an internal symbol 'abc' (println (fifo 'Queue)) # Retrieve a transient symbol "abc" (println (fifo 'Queue)) # and a list (abc) (println (fifo 'Queue)) # Queue is empty -> NIL</lang> Output:

1
abc
"abc"
(a b c)
NIL

PL/I

<lang PL/I> test: proc options (main);


  /* To implement a queue. */
  define structure
     1 node,
        2 value fixed,
        2 link handle(node);
  declare (head, tail, t) handle (node);
  declare null builtin;
  declare i fixed binary;
  head, tail = bind(:node, null:);
  do i = 1 to 10; /* Add ten items to the tail of the queue. */
     if head = bind(:node, null:) then
        do;
           head,tail = new(:node:);
           get list (head => value);
           put skip list (head => value);
           head => link = bind(:node, null:); /* A NULL link */
        end;
     else
        do;
           t = new(:node:);
           tail => link = t; /* Point the tail to the new node. */
           tail = t;
           tail => link = bind(:node, null:); /* Set the tail link to NULL */
           get list (tail => value) copy;
           put skip list (tail => value);
        end;
  end;
  /* Pop all the items in the queue. */
  put skip list ('The queue has:');
  do while (head ^= bind(:node, null:));
     put skip list (head => value);
     head = head => link;
  end;

end test; </lang> The output: <lang>

      1 
      3 
      5 
      7 
      9 
     11 
     13 
     15 
     17 
     19 

The queue has:

      1 
      3 
      5 
      7 
      9 
     11 
     13 
     15 
     17 
     19 

</lang>

PostScript

Library: initlib

<lang postscript>

[1 2 3 4 5] 6 exch tadd
= [1 2 3 4 5 6]
uncons
= 1 [2 3 4 5 6]
[] empty?
=true

</lang>

PowerShell

Works with: PowerShell version 4.0

<lang PowerShell> [System.Collections.ArrayList]$queue = @()

  1. isEmpty?

if ($queue.Count -eq 0) {

   "isEmpty? result : the queue is empty"

} else {

   "isEmpty? result : the queue is not empty"

} "the queue contains : $queue" $queue += 1 # push "push result : $queue" $queue += 2 # push $queue += 3 # push "push result : $queue"

$queue.RemoveAt(0) # pop "pop result : $queue"

$queue.RemoveAt(0) # pop "pop result : $queue"

if ($queue.Count -eq 0) {

   "isEmpty? result : the queue is empty"

} else {

   "isEmpty? result : the queue is not empty"

} "the queue contains : $queue" </lang> Output:

isEmpty? result : the queue is empty
the queue contains : 
push result : 1
push result : 1 2 3
pop result : 2 3
pop result : 3
isEmpty? result : the queue is not empty
the queue contains : 3


PowerShell using the .NET Queue Class

Declare a new queue: <lang PowerShell> $queue = New-Object -TypeName System.Collections.Queue

  1. or

$queue = [System.Collections.Queue] @() </lang> Show the methods and properties of the queue object: <lang PowerShell> Get-Member -InputObject $queue </lang>

Output:
   TypeName: System.Collections.Queue

Name           MemberType Definition                                                                                                
----           ---------- ----------                                                                                                
Clear          Method     void Clear()                                                                                              
Clone          Method     System.Object Clone(), System.Object ICloneable.Clone()                                                   
Contains       Method     bool Contains(System.Object obj)                                                                          
CopyTo         Method     void CopyTo(array array, int index), void ICollection.CopyTo(array array, int index)                      
Dequeue        Method     System.Object Dequeue()                                                                                   
Enqueue        Method     void Enqueue(System.Object obj)                                                                           
Equals         Method     bool Equals(System.Object obj)                                                                            
GetEnumerator  Method     System.Collections.IEnumerator GetEnumerator(), System.Collections.IEnumerator IEnumerable.GetEnumerator()
GetHashCode    Method     int GetHashCode()                                                                                         
GetType        Method     type GetType()                                                                                            
Peek           Method     System.Object Peek()                                                                                      
ToArray        Method     System.Object[] ToArray()                                                                                 
ToString       Method     string ToString()                                                                                         
TrimToSize     Method     void TrimToSize()                                                                                         
Count          Property   int Count {get;}                                                                                          
IsSynchronized Property   bool IsSynchronized {get;}                                                                                
SyncRoot       Property   System.Object SyncRoot {get;}                                                                             

Put some stuff in the queue: <lang PowerShell> 1,2,3 | ForEach-Object {$queue.Enqueue($_)} </lang> Take a peek at the head of the queue: <lang PowerShell> $queue.Peek() </lang>

Output:
1

Pop the head of the queue: <lang PowerShell> $queue.Dequeue() </lang>

Output:
1

Clear the queue: <lang PowerShell> $queue.Clear() </lang> Test if queue is empty: <lang PowerShell> if (-not $queue.Count) {"Queue is empty"} </lang>

Output:
Queue is empty

Prolog

Works with SWI-Prolog.

<lang Prolog>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% definitions of queue empty(U-V) :-

   unify_with_occurs_check(U, V).

push(Queue, Value, NewQueue) :-

   append_dl(Queue, [Value|X]-X, NewQueue).


pop([X|V]-U, X, V-U) :-

   \+empty([X|V]-U).


append_dl(X-Y, Y-Z, X-Z).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% use of queue queue :-

   % create an empty queue
   empty(Q),
   format('Create queue ~w~n~n', [Q]),
   % add numbers 1 and 2
   write('Add numbers 1 and 2 : '),
   push(Q, 1, Q1),
   push(Q1, 2, Q2),
   % display queue
   format('~w~n~n', [Q2]),
   % pop element
   pop(Q2, V, Q3),
   % display results
   format('Pop : Value ~w Queue : ~w~n~n', [V, Q3]),
   % test the queue
   write('Test of the queue : '),
   (   empty(Q3) -> writeln('Queue empy'); writeln('Queue not empty')), nl,
   % pop the elements
   write('Pop the queue : '),
   pop(Q3, V1, Q4),
   format('Value ~w Queue : ~w~n~n', [V1, Q4]),
   write('Pop the queue : '),
   pop(Q4, _V, _Q5).

</lang> Output :

?- queue.
Create queue _G132-_G132

Add numbers 1 and 2 : [1,2|_G148]-_G148

Pop : Value 1 Queue : [2|_G148]-_G148

Test of the queue : Queue not empty

Pop the queue : Value 2 Queue : _G148-_G148

Pop the queue : 
false.

PureBasic

<lang PureBasic>NewList MyStack()

Procedure Push(n)

 Shared MyStack()
 LastElement(MyStack())
 AddElement(MyStack())
 MyStack()=n

EndProcedure

Procedure Pop()

 Shared MyStack()
 Protected n
 If FirstElement(MyStack())  ; e.g. Stack not empty
   n=MyStack()
   DeleteElement(MyStack(),1)
 EndIf
 ProcedureReturn n

EndProcedure

Procedure Empty()

 Shared MyStack()
 If  ListSize(MyStack())=0
   ProcedureReturn #True
 EndIf
 ProcedureReturn #False

EndProcedure

---- Example of implementation ----

Push(3) Push(1) Push(4) Push(1) Push(5) While Not Empty()

 Debug Pop()

Wend </lang>

Outputs

3
1
4
1
5

Python

<lang python>import Queue my_queue = Queue.Queue() my_queue.put("foo") my_queue.put("bar") my_queue.put("baz") print my_queue.get() # foo print my_queue.get() # bar print my_queue.get() # baz</lang>

Quackery

<lang Quackery>[ [] ] is queue ( --> q )

[ nested join ] is push ( q x --> q )

[ behead ] is pop ( q --> q x )

[ [] = ] is empty? ( q --> b )</lang> Demonstrating operations in Quackery shell:

/O> queue
... 1 push
... $ "two" push
... ' [ 1 2 + echo say "rd" ] push
... say "The queue is " dup empty? not if [ say "not " ] say "empty." cr
... pop echo cr
... pop echo$ cr
... pop do cr
... say "The queue is " empty? not if [ say "not " ] say "empty." cr
... 
The queue is not empty.
1
two
3rd
The queue is empty.

Stack empty.


Racket

<lang Racket>#lang racket

(require data/queue)

(define queue (make-queue))

(enqueue! queue 'black) (queue-empty? queue) ; #f

(enqueue! queue 'red) (enqueue! queue 'green)

(dequeue! queue) ; 'black (dequeue! queue) ; 'red (dequeue! queue) ; 'green

(queue-empty? queue) ; #t</lang>

Raku

(formerly Perl 6)

Raku maintains the same list operators of Perl 5, for this task, the operations are: <lang>push (aka enqueue) -- @list.push pop (aka dequeue) -- @list.shift empty -- !@list.elems</lang> but there's also @list.pop which removes a item from the end, and @list.unshift which add a item on the start of the list.
Example: <lang perl6>my @queue = < a >;

@queue.push('b', 'c'); # [ a, b, c ]

say @queue.shift; # a say @queue.pop; # c

say @queue; # [ b ] say @queue.elems; # 1

@queue.unshift('A'); # [ A, b ] @queue.push('C'); # [ A, b, C ]</lang>

REBOL

See FIFO#REBOL for implementation. Example repeated here for completeness.

<lang REBOL>; Create and populate a FIFO:

q: make fifo [] q/push 'a q/push 2 q/push USD$12.34  ; Did I mention that REBOL has 'money!' datatype? q/push [Athos Porthos Aramis] ; List elements pushed on one by one. q/push Huey Dewey Lewey  ; This list is preserved as a list.

Dump it out, with narrative

print rejoin ["Queue is " either q/empty [""]["not "] "empty."] while [not q/empty][print [" " q/pop]] print rejoin ["Queue is " either q/empty [""]["not "] "empty."] print ["Trying to pop an empty queue yields:" q/pop]</lang>

Output:

Queue is not empty.
   a
   2
   USD$12.34
   Athos
   Porthos
   Aramis
   Huey Dewey Lewey
Queue is empty.
Trying to pop an empty queue yields: none

REXX

The REXX language was developed under IBM VM/CMS operating system, and CMS had a stack mechanism built-into the
operating system, so REXX utilized that resource.

The   queue   instruction adds an entry to the bottom of the stack (FIFO),
the   push   instruction adds an entry to the top of the stack (LIFO).

The   queued   function returns the number of entries in the stack.

The   pull   or   parse pull   removes an entry from the top of the stack.

There are other instructions to manipulate the stack by "creating" multiple (named) stacks.

The entries in the stack may be anything, including "nulls". <lang rexx>/*REXX program demonstrates four queueing operations: push, pop, empty, query. */ say '══════════════════════════════════ Pushing five values to the stack.'

       do j=1  for 4                            /*a  DO  loop to  PUSH  four values.   */
       call push  j * 10                        /*PUSH   (aka:   enqueue to the stack).*/
       say 'pushed value:'    j * 10            /*echo the pushed value.               */
       if j\==3  then iterate                   /*Not equal 3?   Then use a new number.*/
       call push                                /*PUSH   (aka:   enqueue to the stack).*/
       say 'pushed a "null" value.'             /*echo what was  pushed  to the stack. */
       end   /*j*/

say '══════════════════════════════════ Quering the stack (number of entries).'

       say  queued()  ' entries in the stack.'

say '══════════════════════════════════ Popping all values from the stack.'

       do k=1  while  \empty()                  /*EMPTY (returns  TRUE  [1]  if empty).*/
       call pop                                 /*POP   (aka:  dequeue from the stack).*/
       say k': popped value='  result           /*echo the popped value.               */
       end   /*k*/

say '══════════════════════════════════ The stack is now empty.' exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ push: queue arg(1); return /*(The REXX QUEUE is FIFO.) */ pop: procedure; parse pull x; return x /*REXX PULL removes a stack item. */ empty: return queued()==0 /*returns the status of the stack. */</lang>

output :
══════════════════════════════════ Pushing five values to the stack.
pushed value: 10
pushed value: 20
pushed value: 30
pushed a "null" value.
pushed value: 40
══════════════════════════════════ Quering the stack  (number of entries).
5  entries in the stack.
══════════════════════════════════ Popping all values from the stack.
1: popped value= 10
2: popped value= 20
3: popped value= 30
4: popped value=
5: popped value= 40
══════════════════════════════════ The stack is now empty.

Ruby

Sample usage at FIFO#Ruby

Rust

<lang rust>use std::collections::VecDeque;

fn main() {

   let mut queue = VecDeque::new();
   queue.push_back("Hello");
   queue.push_back("World");
   while let Some(item) = queue.pop_front() {
       println!("{}", item);
   }
   if queue.is_empty() {
       println!("Yes, it is empty!");
   }

} </lang>

Scala

<lang scala>val q=scala.collection.mutable.Queue[Int]() println("isEmpty = " + q.isEmpty) try{q dequeue} catch{case _:java.util.NoSuchElementException => println("dequeue(empty) failed.")} q enqueue 1 q enqueue 2 q enqueue 3 println("queue = " + q) println("front = " + q.front) println("dequeue = " + q.dequeue) println("dequeue = " + q.dequeue) println("isEmpty = " + q.isEmpty)</lang> Output:

isEmpty = true
dequeue(empty) failed.
queue   = Queue(1, 2, 3)
front   = 1
dequeue = 1
dequeue = 2
isEmpty = false

Sidef

Using the class defined at FIFO#Sidef <lang ruby>var f = FIFO(); say f.empty; # true f.push('foo'); f.push('bar', 'baz'); say f.pop; # foo say f.empty; # false

var g = FIFO('xxx', 'yyy'); say g.pop; # xxx say f.pop; # bar</lang>

Standard ML

Works with: SML/NJ
Functional interface

<lang sml>- open Fifo; opening Fifo

 datatype 'a fifo = ...
 exception Dequeue
 val empty : 'a fifo
 val isEmpty : 'a fifo -> bool
 val enqueue : 'a fifo * 'a -> 'a fifo
 val dequeue : 'a fifo -> 'a fifo * 'a
 val next : 'a fifo -> ('a * 'a fifo) option
 val delete : 'a fifo * ('a -> bool) -> 'a fifo
 val head : 'a fifo -> 'a
 val peek : 'a fifo -> 'a option
 val length : 'a fifo -> int
 val contents : 'a fifo -> 'a list
 val app : ('a -> unit) -> 'a fifo -> unit
 val map : ('a -> 'b) -> 'a fifo -> 'b fifo
 val foldl : ('a * 'b -> 'b) -> 'b -> 'a fifo -> 'b
 val foldr : ('a * 'b -> 'b) -> 'b -> 'a fifo -> 'b

- val q = empty; val q = Q {front=[],rear=[]} : 'a fifo - isEmpty q; val it = true : bool - val q' = enqueue (q, 1); val q' = Q {front=[],rear=[1]} : int fifo - isEmpty q'; val it = false : bool - val q = List.foldl (fn (x, q) => enqueue (q, x)) q' [2, 3, 4]; val q = Q {front=[],rear=[4,3,2,1]} : int fifo - peek q; val it = SOME 1 : int option - length q; val it = 4 : int - contents q; val it = [1,2,3,4] : int list - val (q', v) = dequeue q; val q = Q {front=[2,3,4],rear=[]} : int fifo val v = 1 : int - val (q', v') = dequeue q; val q' = Q {front=[3,4],rear=[]} : int fifo val v' = 2 : int - val (q, v) = dequeue q'; val q = Q {front=[4],rear=[]} : int fifo val v = 3 : int - val (q', v) = dequeue q; val q' = Q {front=[],rear=[]} : int fifo val v = 4 : int - isEmpty q'; val it = true : bool</lang>

Works with: SML/NJ
Imperative interface

<lang sml>- open Queue; opening Queue

 type 'a queue
 exception Dequeue
 val mkQueue : unit -> 'a queue
 val clear : 'a queue -> unit
 val isEmpty : 'a queue -> bool
 val enqueue : 'a queue * 'a -> unit
 val dequeue : 'a queue -> 'a
 val next : 'a queue -> 'a option
 val delete : 'a queue * ('a -> bool) -> unit
 val head : 'a queue -> 'a
 val peek : 'a queue -> 'a option
 val length : 'a queue -> int
 val contents : 'a queue -> 'a list
 val app : ('a -> unit) -> 'a queue -> unit
 val map : ('a -> 'b) -> 'a queue -> 'b queue
 val foldl : ('a * 'b -> 'b) -> 'b -> 'a queue -> 'b
 val foldr : ('a * 'b -> 'b) -> 'b -> 'a queue -> 'b

- val q : int queue = mkQueue (); val q = - : int queue - isEmpty q; val it = true : bool - enqueue (q, 1); val it = () : unit - isEmpty q; val it = false : bool - enqueue (q, 2); val it = () : unit - enqueue (q, 3); val it = () : unit - peek q; val it = SOME 1 : int option - length q; val it = 3 : int - contents q; val it = [1,2,3] : int list - dequeue q; val it = 1 : int - dequeue q; val it = 2 : int - peek q; val it = SOME 3 : int option - length q; val it = 1 : int - enqueue (q, 4); val it = () : unit - dequeue q; val it = 3 : int - peek q; val it = SOME 4 : int option - dequeue q; val it = 4 : int - isEmpty q; val it = true : bool</lang>

Stata

See Singly-linked list/Element definition#Stata.

Tcl

See FIFO for operation implementations: <lang tcl>set Q [list] empty Q  ;# ==> 1 (true) push Q foo empty Q  ;# ==> 0 (false) push Q bar peek Q  ;# ==> foo pop Q  ;# ==> foo peek Q  ;# ==> bar</lang>

UNIX Shell

Works with: ksh93

See Queue/Definition for implementation: <lang bash># any valid variable name can be used as a queue without initialization

queue_empty foo && echo foo is empty || echo foo is not empty

queue_push foo bar queue_push foo baz queue_push foo "element with spaces"

queue_empty foo && echo foo is empty || echo foo is not empty

print "peek: $(queue_peek foo)"; queue_pop foo print "peek: $(queue_peek foo)"; queue_pop foo print "peek: $(queue_peek foo)"; queue_pop foo print "peek: $(queue_peek foo)"; queue_pop foo</lang>

Output:

foo is empty
foo is not empty
peek: bar
peek: baz
peek: element with spaces
peek: 
queue foo is empty

VBA

See Queue/Definition#VBA for implementation. The FiFo queue has been implemented with Collection. queue.count will return number of items in the queue. queue(i) will return the i-th item in the queue. <lang vb>Public Sub fifo()

   push "One"
   push "Two"
   push "Three"
   Debug.Print pop, pop, pop, empty_

End Sub</lang>

Output:
One           Two           Three         True

Wart

See FIFO for implementation.

q <- (queue)
empty? q
=> 1
enq 1 q
empty? q
=> nil
enq 2 q
len q
=> 2
deq q
len q
=> 1

Wren

Library: Wren-queue

<lang ecmascript>import "/queue" for Queue

var q = Queue.new() q.push(1) q.push(2) System.print("Queue contains %(q)") System.print("Number of elements in queue = %(q.count)") var item = q.pop() System.print("'%(item)' popped from the queue") System.print("First element is now %(q.peek())") q.clear() System.print("Queue cleared") System.print("Is queue now empty? %((q.isEmpty) ? "yes" : "no")")</lang>

Output:
Queue contains [1, 2]
Number of elements in queue = 2
'1' popped from the queue
First element is now 2
Queue cleared
Is queue now empty? yes

XPL0

<lang XPL0>include c:\cxpl\codes; def Size=8; int Fifo(Size); int In, Out; \fill and empty indexes into Fifo

proc Push(A); \Add integer A to queue int A; \(overflow not detected) [Fifo(In):= A; In:= In+1; if In >= Size then In:= 0; ];

func Pop; \Return first integer in queue int A; [if Out=In then \if popping empty queue

   [Text(0, "Error");  exit 1];  \ then exit program with error code 1

A:= Fifo(Out); Out:= Out+1; if Out >= Size then Out:= 0; return A; ];

func Empty; \Return 'true' if queue is empty return In = Out;

[In:= 0; Out:= 0; Push(0); Text(0, if Empty then "true" else "false"); CrLf(0); IntOut(0, Pop); CrLf(0); Push(1); Push(2); Push(3); IntOut(0, Pop); CrLf(0); IntOut(0, Pop); CrLf(0); IntOut(0, Pop); CrLf(0); Text(0, if Empty then "true" else "false"); CrLf(0);

\A 256-byte queue is built in as device 8: OpenI(8); OpenO(8); ChOut(8, ^0); \push ChOut(0, ChIn(8)); CrLf(0); \pop ChOut(8, ^1); \push ChOut(8, ^2); \push ChOut(8, ^3); \push ChOut(0, ChIn(8)); CrLf(0); \pop ChOut(0, ChIn(8)); CrLf(0); \pop ChOut(0, ChIn(8)); CrLf(0); \pop ]</lang>

Output:

false
0
1
2
3
true
0
1
2
3

Yabasic

<lang Yabasic>sub push(x$)

   queue$ = queue$ + x$ + "#"

end sub

sub pop$()

   local i, r$
   
   if queue$ <> "" then
       i = instr(queue$, "#")
       if i then
           r$ = left$(queue$, i-1)
           stack$ = right$(queue$, len(queue$) - i)
       else
           r$ = queue$
           queue$ = ""
       end if
       return r$
   else
       print "--Queue is empty--"
   end if

end sub

sub empty()

   return queue$ = ""

end sub

// ======== test ========

for n = 3 to 5

   print "Push ", n : push(str$(n))

next

print "Pop ", pop$()

print "Push ", 6 : push(str$(6))

while(not empty())

   print "Pop ", pop$()

wend

print "Pop ", pop$()</lang>

Output:
Push 3
Push 4
Push 5
Pop 3
Push 6
Pop 4
Pop 5
Pop 6
Pop --Queue is empty--

zkl

See FIFO for implementation.

q:=Queue();
q.empty();   //-->True
q.push(1,2,3);
q.pop();     //-->1
q.empty();   //-->False
q.pop();q.pop();q.pop(); //-->IndexError thrown

Lists support these semantics, so if you don't want the overhead of a Queue class:

q:=List();
q.len();    //-->0
q.append(1,2,3);
q.pop(0);   //-->1
q.len();    //-->2
q;          //-->L(2,3)
q.pop(0);q.pop(0);q.pop(0); //-->IndexError thrown
q;          //-->L()