Gray code

Gray code
You are encouraged to solve this task according to the task description, using any language you may know.

Gray code is a form of binary encoding where transitions between consecutive numbers differ by only one bit. This is a useful encoding for reducing hardware data hazards with values that change rapidly and/or connect to slower hardware as inputs. It is also useful for generating inputs for Karnaugh maps in order from left to right or top to bottom.

Create functions to encode a number to and decode a number from Gray code.

Display the normal binary representations, Gray code representations, and decoded Gray code values for all 5-bit binary numbers (0-31 inclusive, leading 0's not necessary).

There are many possible Gray codes. The following encodes what is called "binary reflected Gray code."

Encoding (MSB is bit 0, b is binary, g is Gray code):

```if b[i-1] = 1
g[i] = not b[i]
else
g[i] = b[i]```

Or:

`g = b xor (b logically right shifted 1 time)`

Decoding (MSB is bit 0, b is binary, g is Gray code):

```b[0] = g[0]

for other bits:
b[i] = g[i] xor b[i-1]```
Reference

11l

Translation of: Python: on integers
```F gray_encode(n)
R n (+) n >> 1

F gray_decode(=n)
V m = n >> 1
L m != 0
n (+)= m
m >>= 1
R n

print(‘DEC,   BIN =>  GRAY => DEC’)
L(i) 32
V gray = gray_encode(i)
V dec = gray_decode(gray)
print(‘ #2, #. => #. => #2’.format(i, bin(i).zfill(5), bin(gray).zfill(5), dec))```
Output:
```DEC,   BIN =>  GRAY => DEC
0, 00000 => 00000 =>  0
1, 00001 => 00001 =>  1
2, 00010 => 00011 =>  2
3, 00011 => 00010 =>  3
4, 00100 => 00110 =>  4
5, 00101 => 00111 =>  5
6, 00110 => 00101 =>  6
7, 00111 => 00100 =>  7
8, 01000 => 01100 =>  8
9, 01001 => 01101 =>  9
10, 01010 => 01111 => 10
11, 01011 => 01110 => 11
12, 01100 => 01010 => 12
13, 01101 => 01011 => 13
14, 01110 => 01001 => 14
15, 01111 => 01000 => 15
16, 10000 => 11000 => 16
17, 10001 => 11001 => 17
18, 10010 => 11011 => 18
19, 10011 => 11010 => 19
20, 10100 => 11110 => 20
21, 10101 => 11111 => 21
22, 10110 => 11101 => 22
23, 10111 => 11100 => 23
24, 11000 => 10100 => 24
25, 11001 => 10101 => 25
26, 11010 => 10111 => 26
27, 11011 => 10110 => 27
28, 11100 => 10010 => 28
29, 11101 => 10011 => 29
30, 11110 => 10001 => 30
31, 11111 => 10000 => 31
```

8080 Assembly

```		org	100h
xra	a	; set A=0
loop:		push	psw	; print number as decimal
call	decout
pop	psw
push	psw
call	binout	; print number as binary
pop	psw
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov	b,a	; gray encode
ana	a	; clear carry
rar		; shift right
xra	b	; xor the original
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
push	psw
call	binout	; print gray number as binary
pop	psw
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov	b,a	; gray decode
decode:		ana	a	; clear carry
jz	done	; when no more bits are left, stop
rar		; shift right
mov	c,a	; keep that value
xra	b	; xor into output value
mov	b,a	; that is the output value
mov	a,c	; restore intermediate
jmp	decode	; do next bit
done:		mov	a,b	; give output value
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
push	psw
call	binout	; print decoded number as binary
pop	psw
push	psw
call	decout	; print decoded number as decimal
lxi	d,nl
call	strout
pop	psw
inr	a	; next number
ani	1fh	; are we there yet?
jnz	loop	; if not, do next number
ret
;; Print A as two-digit number
decout:		mvi	c,10
call	dgtout
mvi	c,1
dgtout:		mvi	e,'0' - 1
dgtloop:	inr	e
sub	c
jnc	dgtloop
push	psw
mvi	c,2
call	5
pop	psw
ret
;; Print A as five-bit binary number
binout:		ani	1fh
ral
ral
ral
mvi	c,5
binloop:	ral
push	psw
push	b
mvi	c,2
mvi	a,0
aci	'0'
mov	e,a
call	5
pop	b
pop	psw
dcr	c
jnz	binloop
ret
strout:		mvi	c,9
jmp	5
arrow:		db	' ==> \$'
nl:		db	13,10,'\$'```
Output:
```00 ==> 00000 ==> 00000 ==> 00000 ==> 00
01 ==> 00001 ==> 00001 ==> 00001 ==> 01
02 ==> 00010 ==> 00011 ==> 00010 ==> 02
03 ==> 00011 ==> 00010 ==> 00011 ==> 03
04 ==> 00100 ==> 00110 ==> 00100 ==> 04
05 ==> 00101 ==> 00111 ==> 00101 ==> 05
06 ==> 00110 ==> 00101 ==> 00110 ==> 06
07 ==> 00111 ==> 00100 ==> 00111 ==> 07
08 ==> 01000 ==> 01100 ==> 01000 ==> 08
09 ==> 01001 ==> 01101 ==> 01001 ==> 09
10 ==> 01010 ==> 01111 ==> 01010 ==> 10
11 ==> 01011 ==> 01110 ==> 01011 ==> 11
12 ==> 01100 ==> 01010 ==> 01100 ==> 12
13 ==> 01101 ==> 01011 ==> 01101 ==> 13
14 ==> 01110 ==> 01001 ==> 01110 ==> 14
15 ==> 01111 ==> 01000 ==> 01111 ==> 15
16 ==> 10000 ==> 11000 ==> 10000 ==> 16
17 ==> 10001 ==> 11001 ==> 10001 ==> 17
18 ==> 10010 ==> 11011 ==> 10010 ==> 18
19 ==> 10011 ==> 11010 ==> 10011 ==> 19
20 ==> 10100 ==> 11110 ==> 10100 ==> 20
21 ==> 10101 ==> 11111 ==> 10101 ==> 21
22 ==> 10110 ==> 11101 ==> 10110 ==> 22
23 ==> 10111 ==> 11100 ==> 10111 ==> 23
24 ==> 11000 ==> 10100 ==> 11000 ==> 24
25 ==> 11001 ==> 10101 ==> 11001 ==> 25
26 ==> 11010 ==> 10111 ==> 11010 ==> 26
27 ==> 11011 ==> 10110 ==> 11011 ==> 27
28 ==> 11100 ==> 10010 ==> 11100 ==> 28
29 ==> 11101 ==> 10011 ==> 11101 ==> 29
30 ==> 11110 ==> 10001 ==> 11110 ==> 30
31 ==> 11111 ==> 10000 ==> 11111 ==> 31
```

8051 Assembly

```.equ	cin, 0x0032
.equ	cout, 0x0030
.equ	phex, 0x0034
.equ	phex16, 0x0036
.equ	nl, 0x0048

.org	0x2000

main:
mov	r7, #0

next:
mov	a, r7
lcall	phex

mov	a, #' '
lcall	cout

mov	a, r7
acall	genc
lcall	phex

mov	r6, a

mov	a, #' '
lcall	cout

mov	a, r6
acall	gdec
lcall	phex

lcall	nl

inc	r7
cjne	r7, #0, next

lcall	cin

ljmp	0x0000

;--------
genc:
mov	r0, a
clr	c
rrc	a
xrl	a, r0
ret
;--------

;--------
gdec:
mov	r0, a
gdec_shift_xor:
clr	c
rrc	a
jz	gdec_out
xch	a, r0
xrl	a, r0
xch	a, r0
sjmp	gdec_shift_xor
gdec_out:
xch	a, r0
ret
;--------```
Output:
```00 00 00
01 01 01
02 03 02
03 02 03
04 06 04
05 07 05
06 05 06
07 04 07
08 0C 08
09 0D 09
0A 0F 0A
0B 0E 0B
0C 0A 0C
0D 0B 0D
0E 09 0E
0F 08 0F
10 18 10
11 19 11
12 1B 12
13 1A 13
14 1E 14
15 1F 15
16 1D 16
17 1C 17
18 14 18
19 15 19
1A 17 1A
1B 16 1B
1C 12 1C
1D 13 1D
1E 11 1E
1F 10 1F
20 30 20
21 31 21
22 33 22
23 32 23
24 36 24
25 37 25
26 35 26
27 34 27
28 3C 28
29 3D 29
2A 3F 2A
2B 3E 2B
2C 3A 2C
2D 3B 2D
2E 39 2E
2F 38 2F
30 28 30
31 29 31
32 2B 32
33 2A 33
34 2E 34
35 2F 35
36 2D 36
37 2C 37
38 24 38
39 25 39
3A 27 3A
3B 26 3B
3C 22 3C
3D 23 3D
3E 21 3E
3F 20 3F
40 60 40
41 61 41
42 63 42
43 62 43
44 66 44
45 67 45
46 65 46
47 64 47
48 6C 48
49 6D 49
4A 6F 4A
4B 6E 4B
4C 6A 4C
4D 6B 4D
4E 69 4E
4F 68 4F
50 78 50
51 79 51
52 7B 52
53 7A 53
54 7E 54
55 7F 55
56 7D 56
57 7C 57
58 74 58
59 75 59
5A 77 5A
5B 76 5B
5C 72 5C
5D 73 5D
5E 71 5E
5F 70 5F
60 50 60
61 51 61
62 53 62
63 52 63
64 56 64
65 57 65
66 55 66
67 54 67
68 5C 68
69 5D 69
6A 5F 6A
6B 5E 6B
6C 5A 6C
6D 5B 6D
6E 59 6E
6F 58 6F
70 48 70
71 49 71
72 4B 72
73 4A 73
74 4E 74
75 4F 75
76 4D 76
77 4C 77
78 44 78
79 45 79
7A 47 7A
7B 46 7B
7C 42 7C
7D 43 7D
7E 41 7E
7F 40 7F
80 C0 80
81 C1 81
82 C3 82
83 C2 83
84 C6 84
85 C7 85
86 C5 86
87 C4 87
88 CC 88
89 CD 89
8A CF 8A
8B CE 8B
8C CA 8C
8D CB 8D
8E C9 8E
8F C8 8F
90 D8 90
91 D9 91
92 DB 92
93 DA 93
94 DE 94
95 DF 95
96 DD 96
97 DC 97
98 D4 98
99 D5 99
9A D7 9A
9B D6 9B
9C D2 9C
9D D3 9D
9E D1 9E
9F D0 9F
A0 F0 A0
A1 F1 A1
A2 F3 A2
A3 F2 A3
A4 F6 A4
A5 F7 A5
A6 F5 A6
A7 F4 A7
A8 FC A8
A9 FD A9
AA FF AA
AB FE AB
AC FA AC
AE F9 AE
AF F8 AF
B0 E8 B0
B1 E9 B1
B2 EB B2
B3 EA B3
B4 EE B4
B5 EF B5
B6 ED B6
B7 EC B7
B8 E4 B8
B9 E5 B9
BA E7 BA
BB E6 BB
BC E2 BC
BD E3 BD
BE E1 BE
BF E0 BF
C0 A0 C0
C1 A1 C1
C2 A3 C2
C3 A2 C3
C4 A6 C4
C5 A7 C5
C6 A5 C6
C7 A4 C7
C8 AC C8
CA AF CA
CB AE CB
CC AA CC
CD AB CD
CE A9 CE
CF A8 CF
D0 B8 D0
D1 B9 D1
D2 BB D2
D3 BA D3
D4 BE D4
D5 BF D5
D6 BD D6
D7 BC D7
D8 B4 D8
D9 B5 D9
DA B7 DA
DB B6 DB
DC B2 DC
DD B3 DD
DE B1 DE
DF B0 DF
E0 90 E0
E1 91 E1
E2 93 E2
E3 92 E3
E4 96 E4
E5 97 E5
E6 95 E6
E7 94 E7
E8 9C E8
E9 9D E9
EA 9F EA
EB 9E EB
EC 9A EC
ED 9B ED
EE 99 EE
EF 98 EF
F0 88 F0
F1 89 F1
F2 8B F2
F3 8A F3
F4 8E F4
F5 8F F5
F6 8D F6
F7 8C F7
F8 84 F8
F9 85 F9
FA 87 FA
FB 86 FB
FC 82 FC
FD 83 FD
FE 81 FE
FF 80 FF
```

Action!

```PROC ToBinaryStr(BYTE n CHAR ARRAY s)
BYTE i

s(0)=8 i=8
SetBlock(s+1,8,'0)
WHILE n
DO
s(i)=(n&1)+'0
n==RSH 1
i==-1
OD
RETURN

PROC PrintB2(BYTE n)
IF n<10 THEN Put(32) FI
PrintB(n)
RETURN

PROC PrintBin5(BYTE n)
CHAR ARRAY s(9),sub(6)

ToBinaryStr(n,s)
SCopyS(sub,s,4,s(0))
Print(sub)
RETURN

BYTE FUNC Encode(BYTE n)
RETURN (n XOR (n RSH 1))

BYTE FUNC Decode(BYTE n)
BYTE res

res=n
DO
n==RSH 1
IF n THEN
res==XOR n
ELSE
EXIT
FI
OD
RETURN (res)

PROC Main()
BYTE i,g,b
CHAR ARRAY sep=" -> "

FOR i=0 TO 31
DO
PrintB2(i) Print(sep)
PrintBin5(i) Print(sep)
g=Encode(i)
PrintBin5(g) Print(sep)
b=Decode(g)
PrintBin5(b) Print(sep)
PrintB2(b) PutE()
OD
RETURN```
Output:
```0 -> 00000 -> 00000 -> 00000 ->  0
1 -> 00001 -> 00001 -> 00001 ->  1
2 -> 00010 -> 00011 -> 00010 ->  2
3 -> 00011 -> 00010 -> 00011 ->  3
4 -> 00100 -> 00110 -> 00100 ->  4
5 -> 00101 -> 00111 -> 00101 ->  5
6 -> 00110 -> 00101 -> 00110 ->  6
7 -> 00111 -> 00100 -> 00111 ->  7
8 -> 01000 -> 01100 -> 01000 ->  8
9 -> 01001 -> 01101 -> 01001 ->  9
10 -> 01010 -> 01111 -> 01010 -> 10
11 -> 01011 -> 01110 -> 01011 -> 11
12 -> 01100 -> 01010 -> 01100 -> 12
13 -> 01101 -> 01011 -> 01101 -> 13
14 -> 01110 -> 01001 -> 01110 -> 14
15 -> 01111 -> 01000 -> 01111 -> 15
16 -> 10000 -> 11000 -> 10000 -> 16
17 -> 10001 -> 11001 -> 10001 -> 17
18 -> 10010 -> 11011 -> 10010 -> 18
19 -> 10011 -> 11010 -> 10011 -> 19
20 -> 10100 -> 11110 -> 10100 -> 20
21 -> 10101 -> 11111 -> 10101 -> 21
22 -> 10110 -> 11101 -> 10110 -> 22
23 -> 10111 -> 11100 -> 10111 -> 23
24 -> 11000 -> 10100 -> 11000 -> 24
25 -> 11001 -> 10101 -> 11001 -> 25
26 -> 11010 -> 10111 -> 11010 -> 26
27 -> 11011 -> 10110 -> 11011 -> 27
28 -> 11100 -> 10010 -> 11100 -> 28
29 -> 11101 -> 10011 -> 11101 -> 29
30 -> 11110 -> 10001 -> 11110 -> 30
31 -> 11111 -> 10000 -> 11111 -> 31
```

Demonstrates the use of shift operators. Code scalable to 6, 7 or 8 bits. Values are implemented with 8 bits according to representation clause of Unsigned_8 (check package Interfaces).

```with Ada.Text_IO, Interfaces;

procedure Gray is

Bits : constant := 5; -- Change only this line for 6 or 7-bit encodings
subtype Values is Unsigned_8 range 0 .. 2 ** Bits - 1;
package Values_Io is new Ada.Text_IO.Modular_IO (Values);

function Encode (Binary : Values) return Values is
begin
return Binary xor Shift_Right (Binary, 1);
end Encode;
pragma Inline (Encode);

function Decode (Gray : Values) return Values is
Binary, Bit : Values;
Mask        : Values := 2 ** (Bits - 1);
begin
Binary := Bit;
for I in 2 .. Bits loop
Bit    := Shift_Right (Bit, 1);
Bit    := (Gray and Mask) xor Bit;
Binary := Binary + Bit;
end loop;
return Binary;
end Decode;
pragma Inline (Decode);

HT : constant Character := Character'Val (9);
J  : Values;
begin
Put_Line ("Num" & HT & "Binary" & HT & HT & "Gray" & HT & HT & "decoded");
for I in Values'Range loop
J := Encode (I);
Values_Io.Put (I, 4);
Put (": " & HT);
Values_Io.Put (I, Bits + 2, 2);
Put (" =>" & HT);
Values_Io.Put (J, Bits + 2, 2);
Put (" => " & HT);
Values_Io.Put (Decode (J), 4);
New_Line;
end loop;
end Gray;
```

Check compactness of assembly code generated by GNAT :http://pastebin.com/qtNjeQk9

Output:
```Num	Binary		Gray		decoded
0: 	   2#0# =>	   2#0# => 	   0
1: 	   2#1# =>	   2#1# => 	   1
2: 	  2#10# =>	  2#11# => 	   2
3: 	  2#11# =>	  2#10# => 	   3
4: 	 2#100# =>	 2#110# => 	   4
5: 	 2#101# =>	 2#111# => 	   5
6: 	 2#110# =>	 2#101# => 	   6
7: 	 2#111# =>	 2#100# => 	   7
8: 	2#1000# =>	2#1100# => 	   8
9: 	2#1001# =>	2#1101# => 	   9
10: 	2#1010# =>	2#1111# => 	  10
11: 	2#1011# =>	2#1110# => 	  11
12: 	2#1100# =>	2#1010# => 	  12
13: 	2#1101# =>	2#1011# => 	  13
14: 	2#1110# =>	2#1001# => 	  14
15: 	2#1111# =>	2#1000# => 	  15
16: 	2#10000# =>	2#11000# => 	  16
17: 	2#10001# =>	2#11001# => 	  17
18: 	2#10010# =>	2#11011# => 	  18
19: 	2#10011# =>	2#11010# => 	  19
20: 	2#10100# =>	2#11110# => 	  20
21: 	2#10101# =>	2#11111# => 	  21
22: 	2#10110# =>	2#11101# => 	  22
23: 	2#10111# =>	2#11100# => 	  23
24: 	2#11000# =>	2#10100# => 	  24
25: 	2#11001# =>	2#10101# => 	  25
26: 	2#11010# =>	2#10111# => 	  26
27: 	2#11011# =>	2#10110# => 	  27
28: 	2#11100# =>	2#10010# => 	  28
29: 	2#11101# =>	2#10011# => 	  29
30: 	2#11110# =>	2#10001# => 	  30
31: 	2#11111# =>	2#10000# => 	  31```

Aime

Translation of: C
```integer
gray_encode(integer n)
{
n ^ (n >> 1);
}

integer
gray_decode(integer n)
{
integer p;

p = n;
while (n >>= 1) {
p ^= n;
}

p;
}```

Demonstration code:

```integer
main(void)
{
integer i, g, b;

i = 0;
while (i < 32) {
g = gray_encode(i);
b = gray_decode(g);
o_winteger(2, i);
o_text(": ");
o_fxinteger(5, 2, i);
o_text(" => ");
o_fxinteger(5, 2, g);
o_text(" => ");
o_fxinteger(5, 2, b);
o_text(": ");
o_winteger(2, b);
o_byte('\n');
i += 1;
}

return 0;
}```
Output:
``` 0: 00000 => 00000 => 00000:  0
1: 00001 => 00001 => 00001:  1
2: 00010 => 00011 => 00010:  2
3: 00011 => 00010 => 00011:  3
4: 00100 => 00110 => 00100:  4
5: 00101 => 00111 => 00101:  5
6: 00110 => 00101 => 00110:  6
7: 00111 => 00100 => 00111:  7
8: 01000 => 01100 => 01000:  8
9: 01001 => 01101 => 01001:  9
10: 01010 => 01111 => 01010: 10
11: 01011 => 01110 => 01011: 11
12: 01100 => 01010 => 01100: 12
13: 01101 => 01011 => 01101: 13
14: 01110 => 01001 => 01110: 14
15: 01111 => 01000 => 01111: 15
16: 10000 => 11000 => 10000: 16
17: 10001 => 11001 => 10001: 17
18: 10010 => 11011 => 10010: 18
19: 10011 => 11010 => 10011: 19
20: 10100 => 11110 => 10100: 20
21: 10101 => 11111 => 10101: 21
22: 10110 => 11101 => 10110: 22
23: 10111 => 11100 => 10111: 23
24: 11000 => 10100 => 11000: 24
25: 11001 => 10101 => 11001: 25
26: 11010 => 10111 => 11010: 26
27: 11011 => 10110 => 11011: 27
28: 11100 => 10010 => 11100: 28
29: 11101 => 10011 => 11101: 29
30: 11110 => 10001 => 11110: 30
31: 11111 => 10000 => 11111: 31```

ALGOL 68

In Algol 68 the BITS mode is specifically designed for manipulating machine words as a row of bits so it is natural to treat Gray encoded integers as values of MODE BITS. The standard operator BIN (INT) : BITS converts an INT value to a BITS value. The ABS (BITS) : INT operator performs the reverse conversion, though it has not been needed for this task. It is also natural in the language for simple operations on values to be implemented as operators, rather than as functions, as in the program below.

```BEGIN
OP GRAY = (BITS b) BITS : b XOR (b SHR 1);	CO Convert to Gray code CO
OP YARG = (BITS g) BITS :			CO Convert from Gray code CO
BEGIN
BITS b := g, mask := g SHR 1;
b
END;
FOR i FROM 0 TO 31 DO
printf ((\$zd, ": ", 2(2r5d, " >= "), 2r5dl\$, i, BIN i, GRAY BIN i, YARG GRAY BIN i))
OD
END```
Output:
``` 0: 00000 >= 00000 >= 00000
1: 00001 >= 00001 >= 00001
2: 00010 >= 00011 >= 00010
3: 00011 >= 00010 >= 00011
4: 00100 >= 00110 >= 00100
5: 00101 >= 00111 >= 00101
6: 00110 >= 00101 >= 00110
7: 00111 >= 00100 >= 00111
8: 01000 >= 01100 >= 01000
9: 01001 >= 01101 >= 01001
10: 01010 >= 01111 >= 01010
11: 01011 >= 01110 >= 01011
12: 01100 >= 01010 >= 01100
13: 01101 >= 01011 >= 01101
14: 01110 >= 01001 >= 01110
15: 01111 >= 01000 >= 01111
16: 10000 >= 11000 >= 10000
17: 10001 >= 11001 >= 10001
18: 10010 >= 11011 >= 10010
19: 10011 >= 11010 >= 10011
20: 10100 >= 11110 >= 10100
21: 10101 >= 11111 >= 10101
22: 10110 >= 11101 >= 10110
23: 10111 >= 11100 >= 10111
24: 11000 >= 10100 >= 11000
25: 11001 >= 10101 >= 11001
26: 11010 >= 10111 >= 11010
27: 11011 >= 10110 >= 11011
28: 11100 >= 10010 >= 11100
29: 11101 >= 10011 >= 11101
30: 11110 >= 10001 >= 11110
31: 11111 >= 10000 >= 11111
```

Amazing Hopper

Translation of: C

Version: Hopper-BASIC.

```#proto GrayEncode(_X_)
#synon _GrayEncode    *getGrayEncode
#proto GrayDecode(_X_)
#synon _GrayDecode    *getGrayDecode

#include <hbasic.h>

Begin
Gray=0
SizeBin(4)   // size 5 bits: 0->4
Take (" #    BINARY   GRAY     DECODE\n")
Take ("------------------------------\n"), and Print It
For Up( i := 0, 31, 1)
Print( LPad\$(" ",2,Str\$(i))," => ", Bin\$(i)," => ")
get Gray Encode(i) and Copy to (Gray), get Binary; then Take(" => ")
now get Gray Decode( Gray ), get Binary, and Print It with a Newl
Next
End

Subrutines

Gray Encode(n)
Return (XorBit( RShift(1,n), n ))

Gray Decode(n)
p = n
While ( n )
n >>= 1
p != n
Wend
Return (p)```
Output:
``` #    BINARY   GRAY     DECODE
------------------------------
0 => 00000 => 00000 => 00000
1 => 00001 => 00001 => 00001
2 => 00010 => 00011 => 00010
3 => 00011 => 00010 => 00011
4 => 00100 => 00110 => 00100
5 => 00101 => 00111 => 00101
6 => 00110 => 00101 => 00110
7 => 00111 => 00100 => 00111
8 => 01000 => 01100 => 01000
9 => 01001 => 01101 => 01001
10 => 01010 => 01111 => 01010
11 => 01011 => 01110 => 01011
12 => 01100 => 01010 => 01100
13 => 01101 => 01011 => 01101
14 => 01110 => 01001 => 01110
15 => 01111 => 01000 => 01111
16 => 10000 => 11000 => 10000
17 => 10001 => 11001 => 10001
18 => 10010 => 11011 => 10010
19 => 10011 => 11010 => 10011
20 => 10100 => 11110 => 10100
21 => 10101 => 11111 => 10101
22 => 10110 => 11101 => 10110
23 => 10111 => 11100 => 10111
24 => 11000 => 10100 => 11000
25 => 11001 => 10101 => 11001
26 => 11010 => 10111 => 11010
27 => 11011 => 10110 => 11011
28 => 11100 => 10010 => 11100
29 => 11101 => 10011 => 11101
30 => 11110 => 10001 => 11110
31 => 11111 => 10000 => 11111
```

APL

Generate the complete N-bit Gray sequence as a matrix:run

```N←5
({(0,⍵)⍪1,⊖⍵}⍣N)(1 0⍴⍬)
```
Output:
```0 0 0 0 0
0 0 0 0 1
0 0 0 1 1
0 0 0 1 0
0 0 1 1 0
0 0 1 1 1
0 0 1 0 1
0 0 1 0 0
0 1 1 0 0
0 1 1 0 1
0 1 1 1 1
0 1 1 1 0
0 1 0 1 0
0 1 0 1 1
0 1 0 0 1
0 1 0 0 0
1 1 0 0 0
1 1 0 0 1
1 1 0 1 1
1 1 0 1 0
1 1 1 1 0
1 1 1 1 1
1 1 1 0 1
1 1 1 0 0
1 0 1 0 0
1 0 1 0 1
1 0 1 1 1
1 0 1 1 0
1 0 0 1 0
1 0 0 1 1
1 0 0 0 1
1 0 0 0 0```

Encode and decode an individual integer:run

```N←5
grayEncode←{a≠N↑(0,a←(N⍴2)⊤⍵)}
grayDecode←{2⊥≠⌿N N↑N(2×N)⍴⍵,0,N⍴0}

grayEncode 19
```
Output:
`1 1 0 1 0`

Arturo

```toGray: function [n]-> xor n shr n 1
fromGray: function [n][
p: n
while [n > 0][
n: shr n 1
p: xor p n
]
return p
]

loop 0..31 'num [
encoded: toGray num
decoded: fromGray encoded

print [
pad to :string num 2 ":"
]
]
```
Output:
``` 0 :     0 =>     0 =>     0 :  0
1 :     1 =>     1 =>     1 :  1
2 :    10 =>    11 =>    10 :  2
3 :    11 =>    10 =>    11 :  3
4 :   100 =>   110 =>   100 :  4
5 :   101 =>   111 =>   101 :  5
6 :   110 =>   101 =>   110 :  6
7 :   111 =>   100 =>   111 :  7
8 :  1000 =>  1100 =>  1000 :  8
9 :  1001 =>  1101 =>  1001 :  9
10 :  1010 =>  1111 =>  1010 : 10
11 :  1011 =>  1110 =>  1011 : 11
12 :  1100 =>  1010 =>  1100 : 12
13 :  1101 =>  1011 =>  1101 : 13
14 :  1110 =>  1001 =>  1110 : 14
15 :  1111 =>  1000 =>  1111 : 15
16 : 10000 => 11000 => 10000 : 16
17 : 10001 => 11001 => 10001 : 17
18 : 10010 => 11011 => 10010 : 18
19 : 10011 => 11010 => 10011 : 19
20 : 10100 => 11110 => 10100 : 20
21 : 10101 => 11111 => 10101 : 21
22 : 10110 => 11101 => 10110 : 22
23 : 10111 => 11100 => 10111 : 23
24 : 11000 => 10100 => 11000 : 24
25 : 11001 => 10101 => 11001 : 25
26 : 11010 => 10111 => 11010 : 26
27 : 11011 => 10110 => 11011 : 27
28 : 11100 => 10010 => 11100 : 28
29 : 11101 => 10011 => 11101 : 29
30 : 11110 => 10001 => 11110 : 30
31 : 11111 => 10000 => 11111 : 31 ```

AutoHotkey

```gray_encode(n){
return n ^ (n >> 1)
}

gray_decode(n){
p := n
while (n >>= 1)
p ^= n
return p
}

BinString(n){
Loop 5
If ( n & ( 1 << (A_Index-1) ) )
o := "1" . o
else	o := "0" . o
return o
}

Loop 32
n:=A_Index-1, out .= n " : " BinString(n) " => " BinString(e:=gray_encode(n))
. " => " BinString(gray_decode(e)) " => " BinString(n) "`n"
MsgBox % clipboard := out
```
Output:
```0 : 00000 => 00000 => 00000 => 00000
1 : 00001 => 00001 => 00001 => 00001
2 : 00010 => 00011 => 00010 => 00010
3 : 00011 => 00010 => 00011 => 00011
4 : 00100 => 00110 => 00100 => 00100
5 : 00101 => 00111 => 00101 => 00101
6 : 00110 => 00101 => 00110 => 00110
7 : 00111 => 00100 => 00111 => 00111
8 : 01000 => 01100 => 01000 => 01000
9 : 01001 => 01101 => 01001 => 01001
10 : 01010 => 01111 => 01010 => 01010
11 : 01011 => 01110 => 01011 => 01011
12 : 01100 => 01010 => 01100 => 01100
13 : 01101 => 01011 => 01101 => 01101
14 : 01110 => 01001 => 01110 => 01110
15 : 01111 => 01000 => 01111 => 01111
16 : 10000 => 11000 => 10000 => 10000
17 : 10001 => 11001 => 10001 => 10001
18 : 10010 => 11011 => 10010 => 10010
19 : 10011 => 11010 => 10011 => 10011
20 : 10100 => 11110 => 10100 => 10100
21 : 10101 => 11111 => 10101 => 10101
22 : 10110 => 11101 => 10110 => 10110
23 : 10111 => 11100 => 10111 => 10111
24 : 11000 => 10100 => 11000 => 11000
25 : 11001 => 10101 => 11001 => 11001
26 : 11010 => 10111 => 11010 => 11010
27 : 11011 => 10110 => 11011 => 11011
28 : 11100 => 10010 => 11100 => 11100
29 : 11101 => 10011 => 11101 => 11101
30 : 11110 => 10001 => 11110 => 11110
31 : 11111 => 10000 => 11111 => 11111```

AWK

```# Tested using GAWK

{
# Source: https://www.gnu.org/software/gawk/manual/html_node/Bitwise-Functions.html
if (bits == 0)
return "0"

for (; bits != 0; bits = rshift(bits, 1))
data = (and(bits, mask) ? "1" : "0") data

while ((length(data) % 8) != 0)
data = "0" data

return data
}

function gray_encode(n){
# Source: https://en.wikipedia.org/wiki/Gray_code#Converting_to_and_from_Gray_code
return xor(n,rshift(n,1))
}

function gray_decode(n){
# Source: https://en.wikipedia.org/wiki/Gray_code#Converting_to_and_from_Gray_code
}
return n
}

BEGIN{
for (i=0; i < 32; i++)
printf "%-3s => %05d => %05d => %05d\n",i, bits2str(i),bits2str(gray_encode(i)), bits2str(gray_decode(gray_encode(i)))
}
```
Output:
```0   => 00000 => 00000 => 00000
1   => 00001 => 00001 => 00001
2   => 00010 => 00011 => 00010
3   => 00011 => 00010 => 00011
4   => 00100 => 00110 => 00100
5   => 00101 => 00111 => 00101
6   => 00110 => 00101 => 00110
7   => 00111 => 00100 => 00111
8   => 01000 => 01100 => 01000
9   => 01001 => 01101 => 01001
10  => 01010 => 01111 => 01010
11  => 01011 => 01110 => 01011
12  => 01100 => 01010 => 01100
13  => 01101 => 01011 => 01101
14  => 01110 => 01001 => 01110
15  => 01111 => 01000 => 01111
16  => 10000 => 11000 => 10000
17  => 10001 => 11001 => 10001
18  => 10010 => 11011 => 10010
19  => 10011 => 11010 => 10011
20  => 10100 => 11110 => 10100
21  => 10101 => 11111 => 10101
22  => 10110 => 11101 => 10110
23  => 10111 => 11100 => 10111
24  => 11000 => 10100 => 11000
25  => 11001 => 10101 => 11001
26  => 11010 => 10111 => 11010
27  => 11011 => 10110 => 11011
28  => 11100 => 10010 => 11100
29  => 11101 => 10011 => 11101
30  => 11110 => 10001 => 11110
31  => 11111 => 10000 => 11111```

BASIC

BBC BASIC

```      INSTALL @lib\$+"STRINGLIB"

PRINT "   Decimal    Binary      Gray   Decoded"
FOR number% = 0 TO 31
gray% = FNgrayencode(number%)
PRINT number% "     " FN_tobase(number%, 2, 5) ;
PRINT "     " FN_tobase(gray%, 2, 5) FNgraydecode(gray%)
NEXT
END

DEF FNgrayencode(B%) = B% EOR (B% >>> 1)

DEF FNgraydecode(G%) : LOCAL B%
REPEAT B% EOR= G% : G% = G% >>> 1 : UNTIL G% = 0
= B%
```

FreeBASIC

```' version 18-01-2017
' compile with: fbc -s console

Function gray2bin(g As UInteger) As UInteger
Dim As UInteger b = g
While g
g Shr= 1
b Xor= g
Wend
Return b
End Function

Function bin2gray(b As UInteger) As UInteger
Return b Xor (b Shr 1)
End Function

' ------=< MAIN >=------

Dim As UInteger i
Print " i     binary     gray   gra2bin"
Print String(32,"=")
For i = 0 To 31
Print Using "## --> "; i;
print Bin(i,5); " --> ";
Print Bin(bin2gray(i),5); " --> ";
Print Bin(gray2bin(bin2gray(i)),5)
Next

' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End```
Output:
``` i     binary     gray   gra2bin
================================
0 --> 00000 --> 00000 --> 00000
1 --> 00001 --> 00001 --> 00001
2 --> 00010 --> 00011 --> 00010
3 --> 00011 --> 00010 --> 00011
4 --> 00100 --> 00110 --> 00100
5 --> 00101 --> 00111 --> 00101
6 --> 00110 --> 00101 --> 00110
7 --> 00111 --> 00100 --> 00111
8 --> 01000 --> 01100 --> 01000
9 --> 01001 --> 01101 --> 01001
10 --> 01010 --> 01111 --> 01010
11 --> 01011 --> 01110 --> 01011
12 --> 01100 --> 01010 --> 01100
13 --> 01101 --> 01011 --> 01101
14 --> 01110 --> 01001 --> 01110
15 --> 01111 --> 01000 --> 01111
16 --> 10000 --> 11000 --> 10000
17 --> 10001 --> 11001 --> 10001
18 --> 10010 --> 11011 --> 10010
19 --> 10011 --> 11010 --> 10011
20 --> 10100 --> 11110 --> 10100
21 --> 10101 --> 11111 --> 10101
22 --> 10110 --> 11101 --> 10110
23 --> 10111 --> 11100 --> 10111
24 --> 11000 --> 10100 --> 11000
25 --> 11001 --> 10101 --> 11001
26 --> 11010 --> 10111 --> 11010
27 --> 11011 --> 10110 --> 11011
28 --> 11100 --> 10010 --> 11100
29 --> 11101 --> 10011 --> 11101
30 --> 11110 --> 10001 --> 11110
31 --> 11111 --> 10000 --> 11111```

GW-BASIC

Works with: BASICA
```10 DEFINT A-Z
20 FOR I=0 TO 31
30 N=I:GOSUB 200:E=R:REM Encode
40 N=E:GOSUB 300:D=R:REM Decode
50 N=I:GOSUB 400:I\$=R\$:REM Binary format of input
60 N=E:GOSUB 400:E\$=R\$:REM Binary format of encoded value
70 N=D:GOSUB 400:D\$=R\$:REM Binary format of decoded value
80 PRINT USING "##: \   \ => \   \ => \   \ => ##";I;I\$;E\$;D\$;D
90 NEXT
100 END
200 REM Gray encode
210 R = N XOR N\2
220 RETURN
300 REM Gray decode
310 R = N
320 N = N\2
330 IF N=0 THEN RETURN
340 R = R XOR N
350 GOTO 320
400 REM Binary format
410 R\$ = ""
420 R\$ = CHR\$(48+(N AND 1))+R\$
430 N = N\2
440 IF N=0 THEN RETURN ELSE 420
```
Output:
``` 0: 0     => 0     => 0     =>  0
1: 1     => 1     => 1     =>  1
2: 10    => 11    => 10    =>  2
3: 11    => 10    => 11    =>  3
4: 100   => 110   => 100   =>  4
5: 101   => 111   => 101   =>  5
6: 110   => 101   => 110   =>  6
7: 111   => 100   => 111   =>  7
8: 1000  => 1100  => 1000  =>  8
9: 1001  => 1101  => 1001  =>  9
10: 1010  => 1111  => 1010  => 10
11: 1011  => 1110  => 1011  => 11
12: 1100  => 1010  => 1100  => 12
13: 1101  => 1011  => 1101  => 13
14: 1110  => 1001  => 1110  => 14
15: 1111  => 1000  => 1111  => 15
16: 10000 => 11000 => 10000 => 16
17: 10001 => 11001 => 10001 => 17
18: 10010 => 11011 => 10010 => 18
19: 10011 => 11010 => 10011 => 19
20: 10100 => 11110 => 10100 => 20
21: 10101 => 11111 => 10101 => 21
22: 10110 => 11101 => 10110 => 22
23: 10111 => 11100 => 10111 => 23
24: 11000 => 10100 => 11000 => 24
25: 11001 => 10101 => 11001 => 25
26: 11010 => 10111 => 11010 => 26
27: 11011 => 10110 => 11011 => 27
28: 11100 => 10010 => 11100 => 28
29: 11101 => 10011 => 11101 => 29
30: 11110 => 10001 => 11110 => 30
31: 11111 => 10000 => 11111 => 31```

Liberty BASIC

Works with: Just BASIC
```    for r =0 to 31
print " Decimal "; using( "###", r); " is ";
B\$ =dec2Bin\$( r)
print " binary "; B\$; ". Binary "; B\$;
G\$ =Bin2Gray\$( dec2Bin\$( r))
print " is "; G\$; " in Gray code, or ";
B\$ =Gray2Bin\$( G\$)
print B\$; " in pure binary."
next r
end

function Bin2Gray\$( bin\$)   '   Given a binary number as a string, returns Gray code as a string.
g\$ =left\$( bin\$, 1)
for i =2 to len( bin\$)
bitA    =val( mid\$( bin\$, i -1, 1))
bitB    =val( mid\$( bin\$, i,    1))
AXorB   =bitA xor bitB
g\$      =g\$ +str\$( AXorB)
next i
Bin2Gray\$ =g\$
end function

function Gray2Bin\$( g\$)     '   Given a Gray code as a string, returns equivalent binary num.
'      as a string
gl =len(   g\$)
b\$ =left\$( g\$, 1)
for i =2 to len( g\$)
bitA    =val( mid\$( b\$, i -1, 1))
bitB    =val( mid\$( g\$, i,    1))
AXorB   =bitA xor bitB
b\$      =b\$ +str\$( AXorB)
next i
Gray2Bin\$ =right\$( b\$, gl)
end function

function dec2Bin\$( num) '   Given an integer decimal, returns binary equivalent as a string
n =num
dec2Bin\$ =""
while ( num >0)
dec2Bin\$    =str\$( num mod 2) +dec2Bin\$
num         =int( num /2)
wend
if ( n >255) then nBits =16 else nBits =8
dec2Bin\$ =right\$( "0000000000000000" +dec2Bin\$, nBits)  '   Pad to 8 bit or 16 bit
end function

function bin2Dec( b\$)   '   Given a binary number as a string, returns decimal equivalent num.
t =0
d =len( b\$)
for k =d to 1 step -1
t   =t +val( mid\$( b\$, k, 1)) *2^( d -k)
next k
bin2Dec =t
end function```
Output:
``` Decimal   0 is  binary 00000000. Binary 00000000 is 00000000 in Gray code, or 00000000 in pure binary.
Decimal   1 is  binary 00000001. Binary 00000001 is 00000001 in Gray code, or 00000001 in pure binary.
Decimal   2 is  binary 00000010. Binary 00000010 is 00000011 in Gray code, or 00000010 in pure binary.
Decimal   3 is  binary 00000011. Binary 00000011 is 00000010 in Gray code, or 00000011 in pure binary.
Decimal   4 is  binary 00000100. Binary 00000100 is 00000110 in Gray code, or 00000100 in pure binary.
Decimal   5 is  binary 00000101. Binary 00000101 is 00000111 in Gray code, or 00000101 in pure binary.
Decimal   6 is  binary 00000110. Binary 00000110 is 00000101 in Gray code, or 00000110 in pure binary.
Decimal   7 is  binary 00000111. Binary 00000111 is 00000100 in Gray code, or 00000111 in pure binary.
Decimal   8 is  binary 00001000. Binary 00001000 is 00001100 in Gray code, or 00001000 in pure binary.
Decimal   9 is  binary 00001001. Binary 00001001 is 00001101 in Gray code, or 00001001 in pure binary.
Decimal  10 is  binary 00001010. Binary 00001010 is 00001111 in Gray code, or 00001010 in pure binary.
Decimal  11 is  binary 00001011. Binary 00001011 is 00001110 in Gray code, or 00001011 in pure binary.
Decimal  12 is  binary 00001100. Binary 00001100 is 00001010 in Gray code, or 00001100 in pure binary.
Decimal  13 is  binary 00001101. Binary 00001101 is 00001011 in Gray code, or 00001101 in pure binary.
Decimal  14 is  binary 00001110. Binary 00001110 is 00001001 in Gray code, or 00001110 in pure binary.
Decimal  15 is  binary 00001111. Binary 00001111 is 00001000 in Gray code, or 00001111 in pure binary.
Decimal  16 is  binary 00010000. Binary 00010000 is 00011000 in Gray code, or 00010000 in pure binary.
Decimal  17 is  binary 00010001. Binary 00010001 is 00011001 in Gray code, or 00010001 in pure binary.
Decimal  18 is  binary 00010010. Binary 00010010 is 00011011 in Gray code, or 00010010 in pure binary.
Decimal  19 is  binary 00010011. Binary 00010011 is 00011010 in Gray code, or 00010011 in pure binary.
Decimal  20 is  binary 00010100. Binary 00010100 is 00011110 in Gray code, or 00010100 in pure binary.
Decimal  21 is  binary 00010101. Binary 00010101 is 00011111 in Gray code, or 00010101 in pure binary.
Decimal  22 is  binary 00010110. Binary 00010110 is 00011101 in Gray code, or 00010110 in pure binary.
Decimal  23 is  binary 00010111. Binary 00010111 is 00011100 in Gray code, or 00010111 in pure binary.
Decimal  24 is  binary 00011000. Binary 00011000 is 00010100 in Gray code, or 00011000 in pure binary.
Decimal  25 is  binary 00011001. Binary 00011001 is 00010101 in Gray code, or 00011001 in pure binary.
Decimal  26 is  binary 00011010. Binary 00011010 is 00010111 in Gray code, or 00011010 in pure binary.
Decimal  27 is  binary 00011011. Binary 00011011 is 00010110 in Gray code, or 00011011 in pure binary.
Decimal  28 is  binary 00011100. Binary 00011100 is 00010010 in Gray code, or 00011100 in pure binary.
Decimal  29 is  binary 00011101. Binary 00011101 is 00010011 in Gray code, or 00011101 in pure binary.
Decimal  30 is  binary 00011110. Binary 00011110 is 00010001 in Gray code, or 00011110 in pure binary.
Decimal  31 is  binary 00011111. Binary 00011111 is 00010000 in Gray code, or 00011111 in pure binary.
```

PowerBASIC

```function gray%(byval n%)
gray%=n% xor (n%\2)
end function

function igray%(byval n%)
r%=0
while n%>0
r%=r% xor n%
shift right n%,1
wend
igray%=r%
end function

print "   N  GRAY   INV"
for n%=0 to 31
g%=gray%(n%)
print bin\$(n%);" ";bin\$(g%);" ";bin\$(igray%(g%))
next```

PureBasic

```Procedure.i gray_encode(n)
ProcedureReturn n ! (n >> 1)
EndProcedure

Procedure.i gray_decode(g)
Protected bit = 1 << (8 * SizeOf(Integer) - 2)
Protected b = g & bit, p = b >> 1

While bit > 1
bit >> 1
b | (p ! (g & bit))
p = (b & bit) >> 1
Wend
ProcedureReturn b
EndProcedure

If OpenConsole()
PrintN("Number Gray   Binary  Decoded")
Define i, n
For i = 0 To 31
g = gray_encode(i)
Print(RSet(Str(i), 2, "0") + Space(5))
Print(RSet(Bin(g, #PB_Byte), 5, "0") + Space(2))
n = gray_decode(g)
Print(RSet(Bin(n, #PB_Byte), 5, "0") + Space(3))
PrintN(RSet(Str(n), 2, "0"))
Next

Print(#CRLF\$ + #CRLF\$ + "Press ENTER to exit"): Input()
CloseConsole()
EndIf```
Output:
```Number Gray   Binary  Decoded
00     00000  00000   00
01     00001  00001   01
02     00011  00010   02
03     00010  00011   03
04     00110  00100   04
05     00111  00101   05
06     00101  00110   06
07     00100  00111   07
08     01100  01000   08
09     01101  01001   09
10     01111  01010   10
11     01110  01011   11
12     01010  01100   12
13     01011  01101   13
14     01001  01110   14
15     01000  01111   15
16     11000  10000   16
17     11001  10001   17
18     11011  10010   18
19     11010  10011   19
20     11110  10100   20
21     11111  10101   21
22     11101  10110   22
23     11100  10111   23
24     10100  11000   24
25     10101  11001   25
26     10111  11010   26
27     10110  11011   27
28     10010  11100   28
29     10011  11101   29
30     10001  11110   30
31     10000  11111   31```

VBScript

```Function Encoder(ByVal n)
Encoder = n Xor (n \ 2)
End Function

Function Decoder(ByVal n)
Dim g : g = 0
Do While n > 0
g = g Xor n
n = n \ 2
Loop
Decoder = g
End Function

' Decimal to Binary
Function Dec2bin(ByVal n, ByVal length)
Dim i, strbin : strbin = ""
For i = 1 to 5
strbin = (n Mod 2) & strbin
n = n \ 2
Next
Dec2Bin = strbin
End Function

WScript.StdOut.WriteLine("Binary -> Gray Code -> Binary")
For i = 0 to 31
encoded = Encoder(i)
decoded = Decoder(encoded)
WScript.StdOut.WriteLine(Dec2Bin(i, 5) & " -> " & Dec2Bin(encoded, 5) & " -> " & Dec2Bin(decoded, 5))
Next```
Output:
```Binary -> Gray Code -> Binary
00000 -> 00000 -> 00000
00001 -> 00001 -> 00001
00010 -> 00011 -> 00010
00011 -> 00010 -> 00011
00100 -> 00110 -> 00100
00101 -> 00111 -> 00101
00110 -> 00101 -> 00110
00111 -> 00100 -> 00111
01000 -> 01100 -> 01000
01001 -> 01101 -> 01001
01010 -> 01111 -> 01010
01011 -> 01110 -> 01011
01100 -> 01010 -> 01100
01101 -> 01011 -> 01101
01110 -> 01001 -> 01110
01111 -> 01000 -> 01111
10000 -> 11000 -> 10000
10001 -> 11001 -> 10001
10010 -> 11011 -> 10010
10011 -> 11010 -> 10011
10100 -> 11110 -> 10100
10101 -> 11111 -> 10101
10110 -> 11101 -> 10110
10111 -> 11100 -> 10111
11000 -> 10100 -> 11000
11001 -> 10101 -> 11001
11010 -> 10111 -> 11010
11011 -> 10110 -> 11011
11100 -> 10010 -> 11100
11101 -> 10011 -> 11101
11110 -> 10001 -> 11110
11111 -> 10000 -> 11111```

XBasic

Translation of: DWScript

Intrinsic function `BIN\$` has been used.

Works with: Windows XBasic
```' Gray code
PROGRAM "graycode"
VERSION "0.0001"

DECLARE FUNCTION Entry()
INTERNAL FUNCTION Encode(v&)
INTERNAL FUNCTION Decode(v&)

FUNCTION Entry()
PRINT "decimal  binary   gray    decoded"
FOR i& = 0 TO 31
g& = Encode(i&)
d& = Decode(g&)
PRINT FORMAT\$("  ##", i&); "     "; BIN\$(i&, 5); "   "; BIN\$(g&, 5);
PRINT "   "; BIN\$(d&, 5); FORMAT\$("  ##", d&)
NEXT i&
END FUNCTION

FUNCTION Encode(v&)
END FUNCTION v& ^ (v& >> 1)

FUNCTION Decode(v&)
result& = 0
DO WHILE v& > 0
result& = result& ^ v&
v& = v& >> 1
LOOP
END FUNCTION result&

END PROGRAM```
Output:
```decimal  binary   gray    decoded
0     00000   00000   00000   0
1     00001   00001   00001   1
2     00010   00011   00010   2
3     00011   00010   00011   3
4     00100   00110   00100   4
5     00101   00111   00101   5
6     00110   00101   00110   6
7     00111   00100   00111   7
8     01000   01100   01000   8
9     01001   01101   01001   9
10     01010   01111   01010  10
11     01011   01110   01011  11
12     01100   01010   01100  12
13     01101   01011   01101  13
14     01110   01001   01110  14
15     01111   01000   01111  15
16     10000   11000   10000  16
17     10001   11001   10001  17
18     10010   11011   10010  18
19     10011   11010   10011  19
20     10100   11110   10100  20
21     10101   11111   10101  21
22     10110   11101   10110  22
23     10111   11100   10111  23
24     11000   10100   11000  24
25     11001   10101   11001  25
26     11010   10111   11010  26
27     11011   10110   11011  27
28     11100   10010   11100  28
29     11101   10011   11101  29
30     11110   10001   11110  30
31     11111   10000   11111  31
```

Batch File

```:: Gray Code Task from Rosetta Code
:: Batch File Implementation

@echo off
rem -------------- define batch file macros with parameters appended
setlocal disabledelayedexpansion	% == required for macro ==%
(set \n=^^^
%== this creates escaped line feed for macro ==%
)

rem convert to binary (unsigned)
rem argument: natnum bitlength outputvar
rem note: if natnum is negative, then !outputvar! is empty
set tobinary=for %%# in (1 2) do if %%#==2 (  %\n%
for /f "tokens=1,2,3" %%a in ("!args!") do (  %\n%
set "natnum=%%a"^&set "bitlength=%%b"^&set "outputvar=%%c")  %\n%
set "!outputvar!="  %\n%
if !natnum! geq 0 (  %\n%
set "currnum=!natnum!"  %\n%
for /l %%m in (1,1,!bitlength!) do (  %\n%
set /a "bit=!currnum!%%2"  %\n%
for %%v in (!outputvar!) do set "!outputvar!=!bit!!%%v!"  %\n%
set /a "currnum/=2"  %\n%
)  %\n%
)  %\n%
) else set args=

rem -------------- usual "call" sections
rem the sad disadvantage of using these is that they are slow (TnT)

rem gray code encoder
rem argument: natnum outputvar
:encoder
set /a "%~2=%~1^(%~1>>1)"
goto :eof

rem gray code decoder
rem argument: natnum outputvar
:decoder
set "inp=%~1" & set "%~2=0"
:while-loop-1
if %inp% gtr 0 (
set /a "%~2^=%inp%, inp>>=1"
goto while-loop-1
)
goto :eof

rem -------------- main thing
:main-thing
setlocal enabledelayedexpansion
echo(# -^> bin -^> enc -^> dec
for /l %%n in (0,1,31) do (
%tobinary% %%n 5 bin
call :encoder "%%n" "enc"
%tobinary% !enc! 5 gray
call :decoder "!enc!" "dec"
%tobinary% !dec! 5 rebin
echo(%%n -^> !bin! -^> !gray! -^> !rebin!
)
exit /b 0```
Output:
```# -> bin -> enc -> dec
0 -> 00000 -> 00000 -> 00000
1 -> 00001 -> 00001 -> 00001
2 -> 00010 -> 00011 -> 00010
3 -> 00011 -> 00010 -> 00011
4 -> 00100 -> 00110 -> 00100
5 -> 00101 -> 00111 -> 00101
6 -> 00110 -> 00101 -> 00110
7 -> 00111 -> 00100 -> 00111
8 -> 01000 -> 01100 -> 01000
9 -> 01001 -> 01101 -> 01001
10 -> 01010 -> 01111 -> 01010
11 -> 01011 -> 01110 -> 01011
12 -> 01100 -> 01010 -> 01100
13 -> 01101 -> 01011 -> 01101
14 -> 01110 -> 01001 -> 01110
15 -> 01111 -> 01000 -> 01111
16 -> 10000 -> 11000 -> 10000
17 -> 10001 -> 11001 -> 10001
18 -> 10010 -> 11011 -> 10010
19 -> 10011 -> 11010 -> 10011
20 -> 10100 -> 11110 -> 10100
21 -> 10101 -> 11111 -> 10101
22 -> 10110 -> 11101 -> 10110
23 -> 10111 -> 11100 -> 10111
24 -> 11000 -> 10100 -> 11000
25 -> 11001 -> 10101 -> 11001
26 -> 11010 -> 10111 -> 11010
27 -> 11011 -> 10110 -> 11011
28 -> 11100 -> 10010 -> 11100
29 -> 11101 -> 10011 -> 11101
30 -> 11110 -> 10001 -> 11110
31 -> 11111 -> 10000 -> 11111```

bc

This language has no bitwise logic. We must repeat, with each bit, the exclusive-or calculation. This solution uses h % 2 and i % 2 to grab the low bits, and repeats if (h % 2 != i % 2) to check if the exclusive-or is one. Our encoding and decoding functions are identical except that h always comes from the decoded integer.

```scale = 0  /* to use integer division */

/* encode Gray code */
define e(i) {
auto h, r

if (i <= 0) return 0
h = i / 2
r = e(h) * 2                /* recurse */
if (h % 2 != i % 2) r += 1  /* xor low bits of h, i */
return r
}

/* decode Gray code */
define d(i) {
auto h, r

if (i <= 0) return 0
h = d(i / 2)                /* recurse */
r = h * 2
if (h % 2 != i % 2) r += 1  /* xor low bits of h, i */
return r
}

/* print i as 5 binary digits */
define p(i) {
auto d, d[]

for (d = 0; d <= 4; d++) {
d[d] = i % 2
i /= 2
}
for (d = 4; d >= 0; d--) {
if(d[d] == 0) "0"
if(d[d] == 1) "1"
}
}

for (i = 0; i < 32; i++) {
/* original */ t = p(i); " => "
/* encoded */ e = e(i); t = p(e); " => "
/* decoded */ d = d(e); t = p(d); "
"
}
quit
```
Output:
```00000 => 00000 => 00000
00001 => 00001 => 00001
00010 => 00011 => 00010
00011 => 00010 => 00011
00100 => 00110 => 00100
00101 => 00111 => 00101
00110 => 00101 => 00110
00111 => 00100 => 00111
01000 => 01100 => 01000
01001 => 01101 => 01001
01010 => 01111 => 01010
01011 => 01110 => 01011
01100 => 01010 => 01100
01101 => 01011 => 01101
01110 => 01001 => 01110
01111 => 01000 => 01111
10000 => 11000 => 10000
10001 => 11001 => 10001
10010 => 11011 => 10010
10011 => 11010 => 10011
10100 => 11110 => 10100
10101 => 11111 => 10101
10110 => 11101 => 10110
10111 => 11100 => 10111
11000 => 10100 => 11000
11001 => 10101 => 11001
11010 => 10111 => 11010
11011 => 10110 => 11011
11100 => 10010 => 11100
11101 => 10011 => 11101
11110 => 10001 => 11110
11111 => 10000 => 11111```

BCPL

```get "libhdr"

let grayEncode(n) = n neqv (n >> 1)

let grayDecode(n) = grayDecodeStep(0, n)
and grayDecodeStep(r, n) =
n = 0 -> r,
grayDecodeStep(r neqv n, n >> 1)

let binfmt(n) =
n = 0 -> 0,
(n & 1) + 10 * binfmt(n >> 1)

let printRow(n) be
\$(  let enc = grayEncode(n)
let dec = grayDecode(enc)
writef("%I2: %I5 => %I5 => %I5 => %I2*N",
n, binfmt(n), binfmt(enc), binfmt(dec), dec)
\$)

let start() be
for i = 0 to 31 do printRow(i)```
Output:
``` 0:     0 =>     0 =>     0 =>  0
1:     1 =>     1 =>     1 =>  1
2:    10 =>    11 =>    10 =>  2
3:    11 =>    10 =>    11 =>  3
4:   100 =>   110 =>   100 =>  4
5:   101 =>   111 =>   101 =>  5
6:   110 =>   101 =>   110 =>  6
7:   111 =>   100 =>   111 =>  7
8:  1000 =>  1100 =>  1000 =>  8
9:  1001 =>  1101 =>  1001 =>  9
10:  1010 =>  1111 =>  1010 => 10
11:  1011 =>  1110 =>  1011 => 11
12:  1100 =>  1010 =>  1100 => 12
13:  1101 =>  1011 =>  1101 => 13
14:  1110 =>  1001 =>  1110 => 14
15:  1111 =>  1000 =>  1111 => 15
16: 10000 => 11000 => 10000 => 16
17: 10001 => 11001 => 10001 => 17
18: 10010 => 11011 => 10010 => 18
19: 10011 => 11010 => 10011 => 19
20: 10100 => 11110 => 10100 => 20
21: 10101 => 11111 => 10101 => 21
22: 10110 => 11101 => 10110 => 22
23: 10111 => 11100 => 10111 => 23
24: 11000 => 10100 => 11000 => 24
25: 11001 => 10101 => 11001 => 25
26: 11010 => 10111 => 11010 => 26
27: 11011 => 10110 => 11011 => 27
28: 11100 => 10010 => 11100 => 28
29: 11101 => 10011 => 11101 => 29
30: 11110 => 10001 => 11110 => 30
31: 11111 => 10000 => 11111 => 31```

C

Translation of: Tcl
```int gray_encode(int n) {
return n ^ (n >> 1);
}

int gray_decode(int n) {
int p = n;
while (n >>= 1) p ^= n;
return p;
}
```

Demonstration code:

```#include <stdio.h>

/* Simple bool formatter, only good on range 0..31 */
void fmtbool(int n, char *buf) {
char *b = buf + 5;
*b=0;
do {
*--b = '0' + (n & 1);
n >>= 1;
} while (b != buf);
}

int main(int argc, char **argv) {
int i,g,b;
char bi[6],bg[6],bb[6];

for (i=0 ; i<32 ; i++) {
g = gray_encode(i);
b = gray_decode(g);
fmtbool(i,bi); fmtbool(g,bg); fmtbool(b,bb);
printf("%2d : %5s => %5s => %5s : %2d\n", i, bi, bg, bb, b);
}
return 0;
}
```
Output:
``` 0 : 00000 => 00000 => 00000 :  0
1 : 00001 => 00001 => 00001 :  1
2 : 00010 => 00011 => 00010 :  2
3 : 00011 => 00010 => 00011 :  3
4 : 00100 => 00110 => 00100 :  4
5 : 00101 => 00111 => 00101 :  5
6 : 00110 => 00101 => 00110 :  6
7 : 00111 => 00100 => 00111 :  7
8 : 01000 => 01100 => 01000 :  8
9 : 01001 => 01101 => 01001 :  9
10 : 01010 => 01111 => 01010 : 10
11 : 01011 => 01110 => 01011 : 11
12 : 01100 => 01010 => 01100 : 12
13 : 01101 => 01011 => 01101 : 13
14 : 01110 => 01001 => 01110 : 14
15 : 01111 => 01000 => 01111 : 15
16 : 10000 => 11000 => 10000 : 16
17 : 10001 => 11001 => 10001 : 17
18 : 10010 => 11011 => 10010 : 18
19 : 10011 => 11010 => 10011 : 19
20 : 10100 => 11110 => 10100 : 20
21 : 10101 => 11111 => 10101 : 21
22 : 10110 => 11101 => 10110 : 22
23 : 10111 => 11100 => 10111 : 23
24 : 11000 => 10100 => 11000 : 24
25 : 11001 => 10101 => 11001 : 25
26 : 11010 => 10111 => 11010 : 26
27 : 11011 => 10110 => 11011 : 27
28 : 11100 => 10010 => 11100 : 28
29 : 11101 => 10011 => 11101 : 29
30 : 11110 => 10001 => 11110 : 30
31 : 11111 => 10000 => 11111 : 31
```

C#

```using System;

public class Gray {
public static ulong grayEncode(ulong n) {
return n^(n>>1);
}

public static ulong grayDecode(ulong n) {
ulong i=1<<8*64-2; //long is 64-bit
ulong p, b=p=n&i;

while((i>>=1)>0)
b|=p=n&i^p>>1;
return b;
}

public static void Main(string[] args) {
Console.WriteLine("Number\tBinary\tGray\tDecoded");
for(ulong i=0;i<32;i++) {
Console.WriteLine(string.Format("{0}\t{1}\t{2}\t{3}", i, Convert.ToString((long)i, 2), Convert.ToString((long)grayEncode(i), 2), grayDecode(grayEncode(i))));
}
}
}```
Output:
```Number	Binary	Gray	Decoded
0	0	0	0
1	1	1	1
2	10	11	2
3	11	10	3
4	100	110	4
5	101	111	5
6	110	101	6
7	111	100	7
8	1000	1100	8
9	1001	1101	9
10	1010	1111	10
11	1011	1110	11
12	1100	1010	12
13	1101	1011	13
14	1110	1001	14
15	1111	1000	15
16	10000	11000	16
17	10001	11001	17
18	10010	11011	18
19	10011	11010	19
20	10100	11110	20
21	10101	11111	21
22	10110	11101	22
23	10111	11100	23
24	11000	10100	24
25	11001	10101	25
26	11010	10111	26
27	11011	10110	27
28	11100	10010	28
29	11101	10011	29
30	11110	10001	30
31	11111	10000	31
```

C++

```#include <bitset>
#include <iostream>
#include <string>
#include <assert.h>

uint32_t gray_encode(uint32_t b)
{
return b ^ (b >> 1);
}

uint32_t gray_decode(uint32_t g)
{
for (uint32_t bit = 1U << 31; bit > 1; bit >>= 1)
{
if (g & bit) g ^= bit >> 1;
}
return g;
}

std::string to_binary(int value) // utility function
{
const std::bitset<32> bs(value);
const std::string str(bs.to_string());
const size_t pos(str.find('1'));
return pos == std::string::npos ? "0" : str.substr(pos);
}

int main()
{
std::cout << "Number\tBinary\tGray\tDecoded\n";
for (uint32_t n = 0; n < 32; ++n)
{
uint32_t g = gray_encode(n);
assert(gray_decode(g) == n);

std::cout << n << "\t" << to_binary(n) << "\t" << to_binary(g) << "\t" << g << "\n";
}
}
```
Output:
```Number	Binary	Gray	Decoded
0	0	0	0
1	1	1	1
2	10	11	3
3	11	10	2
4	100	110	6
5	101	111	7
6	110	101	5
7	111	100	4
8	1000	1100	12
9	1001	1101	13
10	1010	1111	15
11	1011	1110	14
12	1100	1010	10
13	1101	1011	11
14	1110	1001	9
15	1111	1000	8
16	10000	11000	24
17	10001	11001	25
18	10010	11011	27
19	10011	11010	26
20	10100	11110	30
21	10101	11111	31
22	10110	11101	29
23	10111	11100	28
24	11000	10100	20
25	11001	10101	21
26	11010	10111	23
27	11011	10110	22
28	11100	10010	18
29	11101	10011	19
30	11110	10001	17
31	11111	10000	16
```

CoffeeScript

```gray_encode = (n) ->
n ^ (n >> 1)

gray_decode = (g) ->
n = g
n ^= g while g >>= 1
n

for i in [0..32]
console.log gray_decode gray_encode(i)
```

Common Lisp

```(defun gray-encode (n)
(logxor n (ash n -1)))

(defun gray-decode (n)
(do ((p n (logxor p n)))
((zerop n) p)
(setf n (ash n -1))))

(loop for i to 31 do
(let* ((g (gray-encode i)) (b (gray-decode g)))
(format t "~2d:~6b =>~6b =>~6b :~2d~%" i i g b b)))
```
Output:
``` 0:     0 =>     0 =>     0 : 0
1:     1 =>     1 =>     1 : 1
2:    10 =>    11 =>    10 : 2
3:    11 =>    10 =>    11 : 3
4:   100 =>   110 =>   100 : 4
5:   101 =>   111 =>   101 : 5
6:   110 =>   101 =>   110 : 6
7:   111 =>   100 =>   111 : 7
8:  1000 =>  1100 =>  1000 : 8
9:  1001 =>  1101 =>  1001 : 9
10:  1010 =>  1111 =>  1010 :10
11:  1011 =>  1110 =>  1011 :11
12:  1100 =>  1010 =>  1100 :12
13:  1101 =>  1011 =>  1101 :13
14:  1110 =>  1001 =>  1110 :14
15:  1111 =>  1000 =>  1111 :15
16: 10000 => 11000 => 10000 :16
17: 10001 => 11001 => 10001 :17
18: 10010 => 11011 => 10010 :18
19: 10011 => 11010 => 10011 :19
20: 10100 => 11110 => 10100 :20
21: 10101 => 11111 => 10101 :21
22: 10110 => 11101 => 10110 :22
23: 10111 => 11100 => 10111 :23
24: 11000 => 10100 => 11000 :24
25: 11001 => 10101 => 11001 :25
26: 11010 => 10111 => 11010 :26
27: 11011 => 10110 => 11011 :27
28: 11100 => 10010 => 11100 :28
29: 11101 => 10011 => 11101 :29
30: 11110 => 10001 => 11110 :30
31: 11111 => 10000 => 11111 :31
```

Component Pascal

BlackBox Component Builder

```MODULE GrayCodes;
IMPORT StdLog,SYSTEM;

PROCEDURE Encode*(i: INTEGER; OUT x: INTEGER);
VAR
j: INTEGER;
s,r: SET;
BEGIN
s := BITS(i);j := MAX(SET);
WHILE (j >= 0) & ~(j IN s) DO DEC(j) END;
r := {};IF j >= 0 THEN INCL(r,j) END;
WHILE j > 0 DO
IF ((j IN s) & ~(j - 1 IN s)) OR (~(j IN s) & (j - 1 IN s)) THEN INCL(r,j-1) END;
DEC(j)
END;
x := SYSTEM.VAL(INTEGER,r)
END Encode;

PROCEDURE Decode*(x: INTEGER; OUT i: INTEGER);
VAR
j: INTEGER;
s,r: SET;
BEGIN
s := BITS(x);r:={};j := MAX(SET);
WHILE (j >= 0) & ~(j IN s) DO DEC(j) END;
IF j >= 0 THEN INCL(r,j) END;
WHILE j > 0 DO
IF ((j IN r) & ~(j - 1 IN s)) OR (~(j IN r) & (j - 1 IN s)) THEN INCL(r,j-1) END;
DEC(j)
END;
i := SYSTEM.VAL(INTEGER,r);
END Decode;

PROCEDURE Do*;
VAR
grayCode,binCode: INTEGER;
i: INTEGER;
BEGIN
StdLog.String(" i ");StdLog.String("     bin code    ");StdLog.String("   gray code    ");StdLog.Ln;
StdLog.String("---");StdLog.String(" ----------------");StdLog.String(" ---------------");StdLog.Ln;
FOR i := 0 TO 32 DO;
Encode(i,grayCode);Decode(grayCode,binCode);
StdLog.IntForm(i,10,3,' ',FALSE);
StdLog.IntForm(binCode,2,16,' ',TRUE);
StdLog.IntForm(grayCode,2,16,' ',TRUE);
StdLog.Ln;
END
END Do;

END GrayCodes.```

Execute: ^QGrayCodes.Do

Output:
``` i      bin code       gray code
--- ---------------- ---------------
0             0%2             0%2
1             1%2             1%2
2            10%2            11%2
3            11%2            10%2
4           100%2           110%2
5           101%2           111%2
6           110%2           101%2
7           111%2           100%2
8          1000%2          1100%2
9          1001%2          1101%2
10          1010%2          1111%2
11          1011%2          1110%2
12          1100%2          1010%2
13          1101%2          1011%2
14          1110%2          1001%2
15          1111%2          1000%2
16         10000%2         11000%2
17         10001%2         11001%2
18         10010%2         11011%2
19         10011%2         11010%2
20         10100%2         11110%2
21         10101%2         11111%2
22         10110%2         11101%2
23         10111%2         11100%2
24         11000%2         10100%2
25         11001%2         10101%2
26         11010%2         10111%2
27         11011%2         10110%2
28         11100%2         10010%2
29         11101%2         10011%2
30         11110%2         10001%2
31         11111%2         10000%2
32        100000%2        110000%2
```

Cowgol

```include "cowgol.coh";

sub gray_encode(n: uint8): (r: uint8) is
r := n ^ n >> 1;
end sub;

sub gray_decode(n: uint8): (r: uint8) is
r := n;
while n > 0 loop
n := n >> 1;
r := r ^ n;
end loop;
end sub;

sub print_binary(n: uint8) is
var buf: uint8[9];
var ptr := &buf[8];
[ptr] := 0;
loop
ptr := @prev ptr;
[ptr] := (n & 1) + '0';
n := n >> 1;
if n == 0 then break; end if;
end loop;
print(ptr);
end sub;

sub print_row(n: uint8) is
print_i8(n);
print(":\t");
print_binary(n);
print("\t=>\t");
var gray_code := gray_encode(n);
print_binary(gray_code);
print("\t=>\t");
var decoded := gray_decode(gray_code);
print_i8(decoded);
print_nl();
end sub;

var i: uint8 := 0;
while i <= 31 loop
print_row(i);
i := i + 1;
end loop;```
Output:
```0:      0       =>      0       =>      0
1:      1       =>      1       =>      1
2:      10      =>      11      =>      2
3:      11      =>      10      =>      3
4:      100     =>      110     =>      4
5:      101     =>      111     =>      5
6:      110     =>      101     =>      6
7:      111     =>      100     =>      7
8:      1000    =>      1100    =>      8
9:      1001    =>      1101    =>      9
10:     1010    =>      1111    =>      10
11:     1011    =>      1110    =>      11
12:     1100    =>      1010    =>      12
13:     1101    =>      1011    =>      13
14:     1110    =>      1001    =>      14
15:     1111    =>      1000    =>      15
16:     10000   =>      11000   =>      16
17:     10001   =>      11001   =>      17
18:     10010   =>      11011   =>      18
19:     10011   =>      11010   =>      19
20:     10100   =>      11110   =>      20
21:     10101   =>      11111   =>      21
22:     10110   =>      11101   =>      22
23:     10111   =>      11100   =>      23
24:     11000   =>      10100   =>      24
25:     11001   =>      10101   =>      25
26:     11010   =>      10111   =>      26
27:     11011   =>      10110   =>      27
28:     11100   =>      10010   =>      28
29:     11101   =>      10011   =>      29
30:     11110   =>      10001   =>      30
31:     11111   =>      10000   =>      31```

Crystal

Translation of: C
```def gray_encode(bin)
bin ^ (bin >> 1)
end

def gray_decode(gray)
bin = gray
while gray > 0
gray >>= 1
bin ^= gray
end
bin
end
```

Demonstration code:

```(0..31).each do |n|
gr = gray_encode n
bin = gray_decode gr
printf "%2d : %05b => %05b => %05b : %2d\n", n, n, gr, bin, bin
end
```
Output:
``` 0 : 00000 => 00000 => 00000 :  0
1 : 00001 => 00001 => 00001 :  1
2 : 00010 => 00011 => 00010 :  2
3 : 00011 => 00010 => 00011 :  3
4 : 00100 => 00110 => 00100 :  4
5 : 00101 => 00111 => 00101 :  5
6 : 00110 => 00101 => 00110 :  6
7 : 00111 => 00100 => 00111 :  7
8 : 01000 => 01100 => 01000 :  8
9 : 01001 => 01101 => 01001 :  9
10 : 01010 => 01111 => 01010 : 10
11 : 01011 => 01110 => 01011 : 11
12 : 01100 => 01010 => 01100 : 12
13 : 01101 => 01011 => 01101 : 13
14 : 01110 => 01001 => 01110 : 14
15 : 01111 => 01000 => 01111 : 15
16 : 10000 => 11000 => 10000 : 16
17 : 10001 => 11001 => 10001 : 17
18 : 10010 => 11011 => 10010 : 18
19 : 10011 => 11010 => 10011 : 19
20 : 10100 => 11110 => 10100 : 20
21 : 10101 => 11111 => 10101 : 21
22 : 10110 => 11101 => 10110 : 22
23 : 10111 => 11100 => 10111 : 23
24 : 11000 => 10100 => 11000 : 24
25 : 11001 => 10101 => 11001 : 25
26 : 11010 => 10111 => 11010 : 26
27 : 11011 => 10110 => 11011 : 27
28 : 11100 => 10010 => 11100 : 28
29 : 11101 => 10011 => 11101 : 29
30 : 11110 => 10001 => 11110 : 30
31 : 11111 => 10000 => 11111 : 31
```

D

```uint grayEncode(in uint n) pure nothrow @nogc {
return n ^ (n >> 1);
}

uint grayDecode(uint n) pure nothrow @nogc {
auto p = n;
while (n >>= 1)
p ^= n;
return p;
}

void main() {
import std.stdio;

" N     N2      enc     dec2 dec".writeln;
foreach (immutable n; 0 .. 32) {
immutable g = n.grayEncode;
immutable d = g.grayDecode;
writefln("%2d: %5b => %5b => %5b: %2d", n, n, g, d, d);
assert(d == n);
}
}
```
Output:
``` N     N2      enc     dec2 dec
0:     0 =>     0 =>     0:  0
1:     1 =>     1 =>     1:  1
2:    10 =>    11 =>    10:  2
3:    11 =>    10 =>    11:  3
4:   100 =>   110 =>   100:  4
5:   101 =>   111 =>   101:  5
6:   110 =>   101 =>   110:  6
7:   111 =>   100 =>   111:  7
8:  1000 =>  1100 =>  1000:  8
9:  1001 =>  1101 =>  1001:  9
10:  1010 =>  1111 =>  1010: 10
11:  1011 =>  1110 =>  1011: 11
12:  1100 =>  1010 =>  1100: 12
13:  1101 =>  1011 =>  1101: 13
14:  1110 =>  1001 =>  1110: 14
15:  1111 =>  1000 =>  1111: 15
16: 10000 => 11000 => 10000: 16
17: 10001 => 11001 => 10001: 17
18: 10010 => 11011 => 10010: 18
19: 10011 => 11010 => 10011: 19
20: 10100 => 11110 => 10100: 20
21: 10101 => 11111 => 10101: 21
22: 10110 => 11101 => 10110: 22
23: 10111 => 11100 => 10111: 23
24: 11000 => 10100 => 11000: 24
25: 11001 => 10101 => 11001: 25
26: 11010 => 10111 => 11010: 26
27: 11011 => 10110 => 11011: 27
28: 11100 => 10010 => 11100: 28
29: 11101 => 10011 => 11101: 29
30: 11110 => 10001 => 11110: 30
31: 11111 => 10000 => 11111: 31```

Compile-Time version

This version uses a compile time generated translation table, if maximum bit width of the numbers is a constant. The encoding table is generated recursively, then the decode table is calculated and appended. Same output.

```import std.stdio, std.algorithm;

T[] gray(int N : 1, T)() pure nothrow {
return [T(0), 1];
}

/// Recursively generate gray encoding mapping table.
T[] gray(int N, T)() pure nothrow if (N <= T.sizeof * 8) {
enum T M = T(2) ^^ (N - 1);
T[] g = gray!(N - 1, T)();
foreach (immutable i; 0 .. M)
g ~= M + g[M - i - 1];
return g;
}

T[][] grayDict(int N, T)() pure nothrow {
T[][] dict = [gray!(N, T)(), [0]];
// Append inversed gray encoding mapping.
foreach (immutable i; 1 .. dict[0].length)
dict[1] ~= cast(T)countUntil(dict[0], i);
return dict;
}

enum M { Encode = 0, Decode = 1 }

T gray(int N, T)(in T n, in int mode=M.Encode) pure nothrow {
// Generated at compile time.
enum dict = grayDict!(N, T)();
return dict[mode][n];
}

void main() {
foreach (immutable i; 0 .. 32) {
immutable encoded = gray!(5)(i, M.Encode);
immutable decoded = gray!(5)(encoded, M.Decode);
writefln("%2d: %5b => %5b : %2d", i, i, encoded, decoded);
}
}
```

Short Functional-Style Generator

```import std.stdio, std.algorithm, std.range;

string[] g(in uint n) pure nothrow {
return n ? g(n - 1).map!q{'0' ~ a}.array ~
g(n - 1).retro.map!q{'1' ~ a}.array
: [""];
}

void main() {
4.g.writeln;
}
```
Output:
`["0000", "0001", "0011", "0010", "0110", "0111", "0101", "0100", "1100", "1101", "1111", "1110", "1010", "1011", "1001", "1000"]`

Delphi

Translation of: DWScript
```program GrayCode;

{\$APPTYPE CONSOLE}

uses SysUtils;

function Encode(v: Integer): Integer;
begin
Result := v xor (v shr 1);
end;

function Decode(v: Integer): Integer;
begin
Result := 0;
while v > 0 do
begin
Result := Result xor v;
v := v shr 1;
end;
end;

function IntToBin(aValue: LongInt; aDigits: Integer): string;
begin
while aValue > 0 do
begin
if (aValue and 1) = 1 then
aValue := aValue shr 1;
end;
end;

var
i, g, d: Integer;
begin
Writeln('decimal  binary   gray    decoded');

for i := 0 to 31 do
begin
g := Encode(i);
d := Decode(g);
Writeln(Format('  %2d     %s   %s   %s  %2d', [i, IntToBin(i, 5), IntToBin(g, 5), IntToBin(d, 5), d]));
end;
end.
```
Output:
```decimal  binary   gray    decoded
0     00000   00000   00000   0
1     00001   00001   00001   1
2     00010   00011   00010   2
3     00011   00010   00011   3
4     00100   00110   00100   4
5     00101   00111   00101   5
6     00110   00101   00110   6
7     00111   00100   00111   7
8     01000   01100   01000   8
9     01001   01101   01001   9
10     01010   01111   01010  10
11     01011   01110   01011  11
12     01100   01010   01100  12
13     01101   01011   01101  13
14     01110   01001   01110  14
15     01111   01000   01111  15
16     10000   11000   10000  16
17     10001   11001   10001  17
18     10010   11011   10010  18
19     10011   11010   10011  19
20     10100   11110   10100  20
21     10101   11111   10101  21
22     10110   11101   10110  22
23     10111   11100   10111  23
24     11000   10100   11000  24
25     11001   10101   11001  25
26     11010   10111   11010  26
27     11011   10110   11011  27
28     11100   10010   11100  28
29     11101   10011   11101  29
30     11110   10001   11110  30
31     11111   10000   11111  31
```

Draco

```proc gray_encode(word n) word:
n >< (n >> 1)
corp

proc gray_decode(word n) word:
word r;
r := n;
while
n := n >> 1;
n > 0
do
r := r >< n
od;
r
corp

proc main() void:
word i, enc, dec;
for i from 0 upto 31 do
enc := gray_encode(i);
dec := gray_decode(enc);
writeln(i:2,     ": ",
i:b:5,   " => ",
enc:b:5, " => ",
dec:b:5, " => ",
dec:2)
od
corp```
Output:
``` 0:     0 =>     0 =>     0 =>  0
1:     1 =>     1 =>     1 =>  1
2:    10 =>    11 =>    10 =>  2
3:    11 =>    10 =>    11 =>  3
4:   100 =>   110 =>   100 =>  4
5:   101 =>   111 =>   101 =>  5
6:   110 =>   101 =>   110 =>  6
7:   111 =>   100 =>   111 =>  7
8:  1000 =>  1100 =>  1000 =>  8
9:  1001 =>  1101 =>  1001 =>  9
10:  1010 =>  1111 =>  1010 => 10
11:  1011 =>  1110 =>  1011 => 11
12:  1100 =>  1010 =>  1100 => 12
13:  1101 =>  1011 =>  1101 => 13
14:  1110 =>  1001 =>  1110 => 14
15:  1111 =>  1000 =>  1111 => 15
16: 10000 => 11000 => 10000 => 16
17: 10001 => 11001 => 10001 => 17
18: 10010 => 11011 => 10010 => 18
19: 10011 => 11010 => 10011 => 19
20: 10100 => 11110 => 10100 => 20
21: 10101 => 11111 => 10101 => 21
22: 10110 => 11101 => 10110 => 22
23: 10111 => 11100 => 10111 => 23
24: 11000 => 10100 => 11000 => 24
25: 11001 => 10101 => 11001 => 25
26: 11010 => 10111 => 11010 => 26
27: 11011 => 10110 => 11011 => 27
28: 11100 => 10010 => 11100 => 28
29: 11101 => 10011 => 11101 => 29
30: 11110 => 10001 => 11110 => 30
31: 11111 => 10000 => 11111 => 31```

DWScript

```function Encode(v : Integer) : Integer;
begin
Result := v xor (v shr 1);
end;

function Decode(v : Integer) : Integer;
begin
Result := 0;
while v>0 do begin
Result := Result xor v;
v := v shr 1;
end;
end;

PrintLn('decimal  binary   gray    decoded');

var i : Integer;
for i:=0 to 31 do begin
var g := Encode(i);
var d := Decode(g);
PrintLn(Format('  %2d     %s   %s   %s  %2d',
[i, IntToBin(i, 5), IntToBin(g, 5), IntToBin(d, 5), d]));
end;
```

EasyLang

```func\$ bin n .
for i to 5
r\$ = n mod 2 & r\$
n = n div 2
.
return r\$
.
func gray_encode b .
return bitxor b bitshift b -1
.
func gray_decode g .
b = g
while g > 0
g = bitshift g -1
b = bitxor b g
.
return b
.
for n = 0 to 31
g = gray_encode n
b = gray_decode g
print bin n & " -> " & bin g & " -> " & bin b
.```
Output:
```00000 -> 00000 -> 00000
00001 -> 00001 -> 00001
00010 -> 00011 -> 00010
00011 -> 00010 -> 00011
00100 -> 00110 -> 00100
00101 -> 00111 -> 00101
00110 -> 00101 -> 00110
00111 -> 00100 -> 00111
01000 -> 01100 -> 01000
01001 -> 01101 -> 01001
01010 -> 01111 -> 01010
01011 -> 01110 -> 01011
01100 -> 01010 -> 01100
01101 -> 01011 -> 01101
01110 -> 01001 -> 01110
01111 -> 01000 -> 01111
10000 -> 11000 -> 10000
10001 -> 11001 -> 10001
10010 -> 11011 -> 10010
10011 -> 11010 -> 10011
10100 -> 11110 -> 10100
10101 -> 11111 -> 10101
10110 -> 11101 -> 10110
10111 -> 11100 -> 10111
11000 -> 10100 -> 11000
11001 -> 10101 -> 11001
11010 -> 10111 -> 11010
11011 -> 10110 -> 11011
11100 -> 10010 -> 11100
11101 -> 10011 -> 11101
11110 -> 10001 -> 11110
11111 -> 10000 -> 11111
```

EDSAC order code

The only logical operation on EDSAC was AND, or "collate" as it was called, but it's possible to calculate XOR from AND together with arithmetical operations. For converting Gray code to binary on EDSAC, I couldn't think up any shorter method than the one below.

```[Gray code task for Rosetta Code.
EDSAC program, Initial Orders 2.]

then M3 and header are overwritten.]
PFGKIFAFRDLFUFOFE@A6FG@E8FEZPF
*BINARY!!GRAY!!!!ROUND!TRIP@&
..PK                   [after header, blank tape and PK (WWG, 1951, p. 91)]

T64K           [load at location 64 (arbitrary choice)]
GK             [set @ (theta) parameter]
[Subroutine to print 5-bit number in binary.
Input: 1F = number (preserved) in low 5 bits.
Workspace: 0F, 4F.]
[0]   A3F T17@       [plant return link as usual]
H19@           [mult reg := mask to remove top 4 bits]
A1F            [acc := code in low 5 bits]
L32F           [shift 7 left]
TF             [store in workspace]
S18@           [initialize negative count of digits]
[7]   T4F            [update negative count]
AF LD TF       [shift workspace 1 left]
CF             [remove top 4 bits]
TF             [store result]
OF             [print character '0' or '1' in top 5 bits]
A4F A2F G7@    [inc count, loop if not yet 0]
[17]   ZF             [{planted} jump back to caller]
[18]   P5F            [addres field = number of bits]
[19]   Q2047D         [00001111111111111 binary]

[Subroutine to convert binary code to Gray code.
Input:  1F = binary code (preserved).
Output: 0F = Gray code.]
[20]   A3F T33@       [plant return link as usual]
A1F RD TF      [0F := binary shifted 1 right]
[One way to get p XOR q on EDSAC: Let r = p AND q.
Then p XOR q = (p - r) + (q - r) = -(2r - p - q).]
HF             [mult reg := 0F]
C1F            [acc := 0F AND 1F]
LD             [times 2]
SF S1F         [subtract 0F and 1F]
TF SF TF       [return result negated]
[33]   ZF             [{planted} jump back to caller]

[Subroutine to convert 5-digit Gray code to binary.
Uses a chain of XORs.
If bits in Gray code are ghijk then bits in binary are
g, g.h, g.h.i, g.h.i.j, g.h.i.j.k where dot means XOR.
Input:  1F = Gray code (preserved).
Output: 0F = binary code.
Workspace: 4F, 5F.]
[34]   A3F T55@       [plant return link as usual]
A1F UF         [initialize result to Gray code]
T5F            [5F = shifted Gray code, shift = 0 initialiy]
S56@           [initialize negative count]
[40]   T4F            [update negative count]
HF             [mult reg := partial result]
A5F RD T5F     [shift Gray code 1 right]
[Form 5F XOR 0F as in the previous subroutine]
C5F LD SF S5F TF SF
TF             [update partial result]
A4F A2F G40@   [inc count, loop back if not yet 0]
[55]   ZF             [{planted} jump back to caller]
[56]   P4F            [address field = 1 less than number of bits]

[Main routine]
[Variable]
[57]   PF             [binary code is in low 5 bits]
[Constants]
[58]   P16F           [exclusive maximum code, 100000 binary]
[59]   PD             [17-bit 1]
[60]   #F             [teleprinter figures mode]
[61]   !F             [space]
[62]   @F             [carriage return]
[63]   &F             [line feed]
[Enter with acc = 0]
[64]   O60@           [set teleprinter to figures]
S58@           [to make acc = 0 after next instruction]
[66]   A58@           [loop: restore acc after test below]
U57@ T1F       [save binary code, and pass it to print soubroutine]
[69]   A69@ G@        [print binary code]
O61@ O61@ O61@ [print 3 spaces]
[74]   A74@ G20@      [convert binary (still in 1F) to Gray]
AF T1F         [pass Gray code to print subroutine]
[78]   A78@ G@        [print Gray code]
O61@ O61@ O61@ [print 3 spaces]
[83]   A83@ G34@      [convert Gray (still in 1F) back to binary]
AF T1F         [pass binary code to print subroutine]
[87]   A87@ G@        [print binary]
O62@ O63@      [print CR, LF]
A57@ A59@      [inc binary]
S58@           [test for all done]
G66@           [loop back if not]
O60@           [dummy character to flush teleprinter buffer]
ZF             [stop]
E64Z           [define entry point]
PF             [acc = 0 on entry]
[end]```
Output:
```BINARY  GRAY    ROUND TRIP
00000   00000   00000
00001   00001   00001
00010   00011   00010
00011   00010   00011
00100   00110   00100
00101   00111   00101
00110   00101   00110
00111   00100   00111
01000   01100   01000
01001   01101   01001
01010   01111   01010
01011   01110   01011
01100   01010   01100
01101   01011   01101
01110   01001   01110
01111   01000   01111
10000   11000   10000
10001   11001   10001
10010   11011   10010
10011   11010   10011
10100   11110   10100
10101   11111   10101
10110   11101   10110
10111   11100   10111
11000   10100   11000
11001   10101   11001
11010   10111   11010
11011   10110   11011
11100   10010   11100
11101   10011   11101
11110   10001   11110
11111   10000   11111
```

Elixir

Translation of: Erlang
```defmodule Gray_code do
use Bitwise
def encode(n), do: bxor(n, bsr(n,1))

def decode(g), do: decode(g,0)

def decode(0,n), do: n
def decode(g,n), do: decode(bsr(g,1), bxor(g,n))
end

Enum.each(0..31, fn(n) ->
g = Gray_code.encode(n)
d = Gray_code.decode(g)
:io.fwrite("~2B : ~5.2.0B : ~5.2.0B : ~5.2.0B : ~2B~n", [n, n, g, d, d])
end)
```

output is the same as "Erlang".

Erlang

Translation of: Euphoria
```-module(gray).
-export([encode/1, decode/1]).

encode(N) -> N bxor (N bsr 1).

decode(G) -> decode(G,0).

decode(0,N) -> N;
decode(G,N) -> decode(G bsr 1, G bxor N).
```

Demonstration code:

```-module(testgray).

test_encode(N) ->
G = gray:encode(N),
D = gray:decode(G),
io:fwrite("~2B : ~5.2.0B : ~5.2.0B : ~5.2.0B : ~2B~n", [N, N, G, D, D]).

test_encode(N, N) -> [];
test_encode(I, N) when I < N -> test_encode(I), test_encode(I+1, N).

main(_) -> test_encode(0,32).
```
Output:
``` 0 : 00000 : 00000 : 00000 :  0
1 : 00001 : 00001 : 00001 :  1
2 : 00010 : 00011 : 00010 :  2
3 : 00011 : 00010 : 00011 :  3
4 : 00100 : 00110 : 00100 :  4
5 : 00101 : 00111 : 00101 :  5
6 : 00110 : 00101 : 00110 :  6
7 : 00111 : 00100 : 00111 :  7
8 : 01000 : 01100 : 01000 :  8
9 : 01001 : 01101 : 01001 :  9
10 : 01010 : 01111 : 01010 : 10
11 : 01011 : 01110 : 01011 : 11
12 : 01100 : 01010 : 01100 : 12
13 : 01101 : 01011 : 01101 : 13
14 : 01110 : 01001 : 01110 : 14
15 : 01111 : 01000 : 01111 : 15
16 : 10000 : 11000 : 10000 : 16
17 : 10001 : 11001 : 10001 : 17
18 : 10010 : 11011 : 10010 : 18
19 : 10011 : 11010 : 10011 : 19
20 : 10100 : 11110 : 10100 : 20
21 : 10101 : 11111 : 10101 : 21
22 : 10110 : 11101 : 10110 : 22
23 : 10111 : 11100 : 10111 : 23
24 : 11000 : 10100 : 11000 : 24
25 : 11001 : 10101 : 11001 : 25
26 : 11010 : 10111 : 11010 : 26
27 : 11011 : 10110 : 11011 : 27
28 : 11100 : 10010 : 11100 : 28
29 : 11101 : 10011 : 11101 : 29
30 : 11110 : 10001 : 11110 : 30
31 : 11111 : 10000 : 11111 : 31
```

Euphoria

```function gray_encode(integer n)
return xor_bits(n,floor(n/2))
end function

function gray_decode(integer n)
integer g
g = 0
while n > 0 do
g = xor_bits(g,n)
n = floor(n/2)
end while
return g
end function

function dcb(integer n)
atom d,m
d = 0
m = 1
while n do
d += remainder(n,2)*m
n = floor(n/2)
m *= 10
end while
return d
end function

integer j
for i = #0 to #1F do
printf(1,"%05d => ",dcb(i))
j = gray_encode(i)
printf(1,"%05d => ",dcb(j))
j = gray_decode(j)
printf(1,"%05d\n",dcb(j))
end for```
Output:
```00000 => 00000 => 00000
00001 => 00001 => 00001
00010 => 00011 => 00010
00011 => 00010 => 00011
00100 => 00110 => 00100
00101 => 00111 => 00101
00110 => 00101 => 00110
00111 => 00100 => 00111
01000 => 01100 => 01000
01001 => 01101 => 01001
01010 => 01111 => 01010
01011 => 01110 => 01011
01100 => 01010 => 01100
01101 => 01011 => 01101
01110 => 01001 => 01110
01111 => 01000 => 01111
10000 => 11000 => 10000
10001 => 11001 => 10001
10010 => 11011 => 10010
10011 => 11010 => 10011
10100 => 11110 => 10100
10101 => 11111 => 10101
10110 => 11101 => 10110
10111 => 11100 => 10111
11000 => 10100 => 11000
11001 => 10101 => 11001
11010 => 10111 => 11010
11011 => 10110 => 11011
11100 => 10010 => 11100
11101 => 10011 => 11101
11110 => 10001 => 11110
11111 => 10000 => 11111```

F#

The Function

```// Functıons to translate bınary to grey code and vv. Nigel Galloway: December 7th., 2018
let grayCode,invGrayCode=let fN g (n:uint8)=n^^^(n>>>g) in ((fN 1),(fN 1>>fN 2>>fN 4))
```

```[0uy..31uy]|>List.iter(fun n->let g=grayCode n in printfn "%2d -> %5s (%2d) -> %2d" n (System.Convert.ToString(g,2)) g (invGrayCode g))
```
Output:
``` 0 ->     0 ( 0) ->  0
1 ->     1 ( 1) ->  1
2 ->    11 ( 3) ->  2
3 ->    10 ( 2) ->  3
4 ->   110 ( 6) ->  4
5 ->   111 ( 7) ->  5
6 ->   101 ( 5) ->  6
7 ->   100 ( 4) ->  7
8 ->  1100 (12) ->  8
9 ->  1101 (13) ->  9
10 ->  1111 (15) -> 10
11 ->  1110 (14) -> 11
12 ->  1010 (10) -> 12
13 ->  1011 (11) -> 13
14 ->  1001 ( 9) -> 14
15 ->  1000 ( 8) -> 15
16 -> 11000 (24) -> 16
17 -> 11001 (25) -> 17
18 -> 11011 (27) -> 18
19 -> 11010 (26) -> 19
20 -> 11110 (30) -> 20
21 -> 11111 (31) -> 21
22 -> 11101 (29) -> 22
23 -> 11100 (28) -> 23
24 -> 10100 (20) -> 24
25 -> 10101 (21) -> 25
26 -> 10111 (23) -> 26
27 -> 10110 (22) -> 27
28 -> 10010 (18) -> 28
29 -> 10011 (19) -> 29
30 -> 10001 (17) -> 30
31 -> 10000 (16) -> 31
```

Factor

Translation of C.

```USING: math.ranges locals ;
IN: rosetta-gray

: gray-encode ( n -- n' ) dup -1 shift bitxor ;

:: gray-decode ( n! -- n' )
n :> p!
[ n -1 shift dup n! 0 = not ] [
p n bitxor p!
] while
p ;

: main ( -- )
-1 32 [a,b] [ dup [ >bin ] [ gray-encode ] bi [ >bin ] [ gray-decode ] bi 4array . ] each ;

MAIN: main
```

Running above code prints:

```{ -1 "-1" "0" 0 }
{ 0 "0" "0" 0 }
{ 1 "1" "1" 1 }
{ 2 "10" "11" 2 }
{ 3 "11" "10" 3 }
{ 4 "100" "110" 4 }
{ 5 "101" "111" 5 }
{ 6 "110" "101" 6 }
{ 7 "111" "100" 7 }
{ 8 "1000" "1100" 8 }
{ 9 "1001" "1101" 9 }
{ 10 "1010" "1111" 10 }
{ 11 "1011" "1110" 11 }
{ 12 "1100" "1010" 12 }
{ 13 "1101" "1011" 13 }
{ 14 "1110" "1001" 14 }
{ 15 "1111" "1000" 15 }
{ 16 "10000" "11000" 16 }
{ 17 "10001" "11001" 17 }
{ 18 "10010" "11011" 18 }
{ 19 "10011" "11010" 19 }
{ 20 "10100" "11110" 20 }
{ 21 "10101" "11111" 21 }
{ 22 "10110" "11101" 22 }
{ 23 "10111" "11100" 23 }
{ 24 "11000" "10100" 24 }
{ 25 "11001" "10101" 25 }
{ 26 "11010" "10111" 26 }
{ 27 "11011" "10110" 27 }
{ 28 "11100" "10010" 28 }
{ 29 "11101" "10011" 29 }
{ 30 "11110" "10001" 30 }
{ 31 "11111" "10000" 31 }
{ 32 "100000" "110000" 32 }
```

Forth

As a low level language Forth provides efficient bit manipulation operators. These functions take input parameters from the stack and return the result on the stack.

```: >gray ( n -- n' ) dup 2/ xor ;   \ n' = n xor (n logically right shifted 1 time)
\ 2/ is Forth divide by 2, ie: shift right 1
: gray> ( n -- n )
0  1 31 lshift  ( -- g b mask )
begin
>r                                        \ save a copy of mask on return stack
2dup 2/ xor
r@ and or
r> 1 rshift
dup 0=
until
drop nip ;                                  \ clean the parameter stack leaving result only

: test
2 base !                                    \ set system number base to 2. ie: Binary
32 0 do
cr I  dup 5 .r ."  ==> "                  \ print numbers (binary) right justified 5 places
>gray dup 5 .r ."  ==> "
gray>     5 .r
loop
decimal ;                                   \ revert to BASE 10
```
Output:
```FORTH> test
0 ==>     0 ==>     0
1 ==>     1 ==>     1
10 ==>    11 ==>    10
11 ==>    10 ==>    11
100 ==>   110 ==>   100
101 ==>   111 ==>   101
110 ==>   101 ==>   110
111 ==>   100 ==>   111
1000 ==>  1100 ==>  1000
1001 ==>  1101 ==>  1001
1010 ==>  1111 ==>  1010
1011 ==>  1110 ==>  1011
1100 ==>  1010 ==>  1100
1101 ==>  1011 ==>  1101
1110 ==>  1001 ==>  1110
1111 ==>  1000 ==>  1111
10000 ==> 11000 ==> 10000
10001 ==> 11001 ==> 10001
10010 ==> 11011 ==> 10010
10011 ==> 11010 ==> 10011
10100 ==> 11110 ==> 10100
10101 ==> 11111 ==> 10101
10110 ==> 11101 ==> 10110
10111 ==> 11100 ==> 10111
11000 ==> 10100 ==> 11000
11001 ==> 10101 ==> 11001
11010 ==> 10111 ==> 11010
11011 ==> 10110 ==> 11011
11100 ==> 10010 ==> 11100
11101 ==> 10011 ==> 11101
11110 ==> 10001 ==> 11110
11111 ==> 10000 ==> 11111 ok```

Fortran

Using MIL-STD-1753 extensions in Fortran 77, and formulas found at OEIS for direct and inverse Gray code :

```      PROGRAM GRAY
IMPLICIT NONE
INTEGER IGRAY,I,J,K
CHARACTER*5 A,B,C
DO 10 I=0,31
J=IGRAY(I,1)
K=IGRAY(J,-1)
CALL BINARY(A,I,5)
CALL BINARY(B,J,5)
CALL BINARY(C,K,5)
PRINT 99,I,A,B,C,K
10 CONTINUE
99 FORMAT(I2,3H : ,A5,4H => ,A5,4H => ,A5,3H : ,I2)
END

FUNCTION IGRAY(N,D)
IMPLICIT NONE
INTEGER D,K,N,IGRAY
IF(D.LT.0) GO TO 10
IGRAY=IEOR(N,ISHFT(N,-1))
RETURN
10 K=N
IGRAY=0
20 IGRAY=IEOR(IGRAY,K)
K=K/2
IF(K.NE.0) GO TO 20
END

SUBROUTINE BINARY(S,N,K)
IMPLICIT NONE
INTEGER I,K,L,N
CHARACTER*(*) S
L=LEN(S)
DO 10 I=0,K-1
C The following line may replace the next block-if,
C on machines using ASCII code :
C     S(L-I:L-I)=CHAR(48+IAND(1,ISHFT(N,-I)))
C On EBCDIC machines, use 240 instead of 48.
IF(BTEST(N,I)) THEN
S(L-I:L-I)='1'
ELSE
S(L-I:L-I)='0'
END IF
10 CONTINUE
S(1:L-K)=''
END
```
``` 0 : 00000 => 00000 => 00000 :  0
1 : 00001 => 00001 => 00001 :  1
2 : 00010 => 00011 => 00010 :  2
3 : 00011 => 00010 => 00011 :  3
4 : 00100 => 00110 => 00100 :  4
5 : 00101 => 00111 => 00101 :  5
6 : 00110 => 00101 => 00110 :  6
7 : 00111 => 00100 => 00111 :  7
8 : 01000 => 01100 => 01000 :  8
9 : 01001 => 01101 => 01001 :  9
10 : 01010 => 01111 => 01010 : 10
11 : 01011 => 01110 => 01011 : 11
12 : 01100 => 01010 => 01100 : 12
13 : 01101 => 01011 => 01101 : 13
14 : 01110 => 01001 => 01110 : 14
15 : 01111 => 01000 => 01111 : 15
16 : 10000 => 11000 => 10000 : 16
17 : 10001 => 11001 => 10001 : 17
18 : 10010 => 11011 => 10010 : 18
19 : 10011 => 11010 => 10011 : 19
20 : 10100 => 11110 => 10100 : 20
21 : 10101 => 11111 => 10101 : 21
22 : 10110 => 11101 => 10110 : 22
23 : 10111 => 11100 => 10111 : 23
24 : 11000 => 10100 => 11000 : 24
25 : 11001 => 10101 => 11001 : 25
26 : 11010 => 10111 => 11010 : 26
27 : 11011 => 10110 => 11011 : 27
28 : 11100 => 10010 => 11100 : 28
29 : 11101 => 10011 => 11101 : 29
30 : 11110 => 10001 => 11110 : 30
31 : 11111 => 10000 => 11111 : 31```

Frink

Frink has built-in functions to convert to and from binary reflected Gray code.

```for i=0 to 31
{
gray = binaryToGray[i]
back = grayToBinary[gray]
println[(i->binary) + "\t" + (gray->binary) + "\t" + (back->binary)]
}```

Go

Translation of: Euphoria

Binary reflected, as described in the task. Reading down through the solutions, the Euphoria decode algorithm caught my eye as being concise and easy to read.

```package main

import "fmt"

func enc(b int) int {
return b ^ b>>1
}

func dec(g int) (b int) {
for ; g != 0; g >>= 1 {
b ^= g
}
return
}

func main() {
fmt.Println("decimal  binary   gray    decoded")
for b := 0; b < 32; b++ {
g := enc(b)
d := dec(g)
fmt.Printf("  %2d     %05b   %05b   %05b  %2d\n", b, b, g, d, d)
}
}
```
Output:
```decimal  binary   gray    decoded
0     00000   00000   00000   0
1     00001   00001   00001   1
2     00010   00011   00010   2
3     00011   00010   00011   3
4     00100   00110   00100   4
5     00101   00111   00101   5
6     00110   00101   00110   6
7     00111   00100   00111   7
8     01000   01100   01000   8
9     01001   01101   01001   9
10     01010   01111   01010  10
11     01011   01110   01011  11
12     01100   01010   01100  12
13     01101   01011   01101  13
14     01110   01001   01110  14
15     01111   01000   01111  15
16     10000   11000   10000  16
17     10001   11001   10001  17
18     10010   11011   10010  18
19     10011   11010   10011  19
20     10100   11110   10100  20
21     10101   11111   10101  21
22     10110   11101   10110  22
23     10111   11100   10111  23
24     11000   10100   11000  24
25     11001   10101   11001  25
26     11010   10111   11010  26
27     11011   10110   11011  27
28     11100   10010   11100  28
29     11101   10011   11101  29
30     11110   10001   11110  30
31     11111   10000   11111  31
```

Groovy

Solution:

```def grayEncode = { i ->
i ^ (i >>> 1)
}

def grayDecode;
grayDecode = { int code ->
if(code <= 0) return 0
def h = grayDecode(code >>> 1)
return (h << 1) + ((code ^ h) & 1)
}
```

Test:

```def binary = { i, minBits = 1 ->
def remainder = i
def bin = []
while (remainder > 0 || bin.size() <= minBits) {
bin << (remainder & 1)
remainder >>>= 1
}
bin
}

println "number   binary   gray code   decode"
println "======   ======   =========   ======"
(0..31).each {
def code = grayEncode(it)
def decode = grayDecode(code)
def iB = binary(it, 5)
def cB = binary(code, 5)
printf("    %2d    %1d%1d%1d%1d%1d       %1d%1d%1d%1d%1d       %2d",
it, iB[4],iB[3],iB[2],iB[1],iB[0], cB[4],cB[3],cB[2],cB[1],cB[0], decode)
println()
}
```

Results:

```number   binary   gray code   decode
======   ======   =========   ======
0    00000       00000        0
1    00001       00001        1
2    00010       00011        2
3    00011       00010        3
4    00100       00110        4
5    00101       00111        5
6    00110       00101        6
7    00111       00100        7
8    01000       01100        8
9    01001       01101        9
10    01010       01111       10
11    01011       01110       11
12    01100       01010       12
13    01101       01011       13
14    01110       01001       14
15    01111       01000       15
16    10000       11000       16
17    10001       11001       17
18    10010       11011       18
19    10011       11010       19
20    10100       11110       20
21    10101       11111       21
22    10110       11101       22
23    10111       11100       23
24    11000       10100       24
25    11001       10101       25
26    11010       10111       26
27    11011       10110       27
28    11100       10010       28
29    11101       10011       29
30    11110       10001       30
31    11111       10000       31```

For zero padding, replace the %5s specifiers in the format string with %05s.

```import Data.Bits
import Data.Char
import Numeric
import Text.Printf

grayToBin :: (Integral t, Bits t) => t -> t
grayToBin 0 = 0
grayToBin g = g `xor` (grayToBin \$ g `shiftR` 1)

binToGray :: (Integral t, Bits t) => t -> t
binToGray b = b `xor` (b `shiftR` 1)

showBinary :: (Integral t, Show t) => t -> String
showBinary n = showIntAtBase 2 intToDigit n ""

showGrayCode :: (Integral t, Bits t, PrintfArg t, Show t) => t -> IO ()
showGrayCode num = do
let bin  = showBinary num
let gray = showBinary (binToGray num)
printf "int: %2d -> bin: %5s -> gray: %5s\n" num bin gray

main = forM_ [0..31::Int] showGrayCode
```

Icon and Unicon

The following works in both languages:

```link bitint

procedure main()
every write(right(i := 0 to 10,4),":",right(int2bit(i),10)," -> ",
right(g := gEncode(i),10)," -> ",
right(b := gDecode(g),10)," -> ",
right(bit2int(b),10))
end

procedure gEncode(b)
return int2bit(ixor(b, ishift(b,-1)))
end

procedure gDecode(g)
b := g[1]
every i := 2 to *g do b ||:= if g[i] == b[i-1] then "0" else "1"
return b
end
```

Sample run:

```->gc
0:         0 ->          0 ->          0 ->          0
1:         1 ->          1 ->          1 ->          1
2:        10 ->         11 ->         10 ->          2
3:        11 ->         10 ->         11 ->          3
4:       100 ->        110 ->        100 ->          4
5:       101 ->        111 ->        101 ->          5
6:       110 ->        101 ->        110 ->          6
7:       111 ->        100 ->        111 ->          7
8:      1000 ->       1100 ->       1000 ->          8
9:      1001 ->       1101 ->       1001 ->          9
10:      1010 ->       1111 ->       1010 ->         10
->
```

J

`G2B` is an invertible function which will translate Gray code to Binary:

```G2B=: ~:/\&.|:
```

Thus `G2B inv` will translate binary to Gray code.

Required example:

```   n=:i.32
G2B=: ~:/\&.|:
(,: ,.@".&.>) 'n';'#:n';'G2B inv#:n';'#.G2B G2B inv#:n'
+--+---------+----------+----------------+
|n |#:n      |G2B inv#:n|#.G2B G2B inv#:n|
+--+---------+----------+----------------+
| 0|0 0 0 0 0|0 0 0 0 0 | 0              |
| 1|0 0 0 0 1|0 0 0 0 1 | 1              |
| 2|0 0 0 1 0|0 0 0 1 1 | 2              |
| 3|0 0 0 1 1|0 0 0 1 0 | 3              |
| 4|0 0 1 0 0|0 0 1 1 0 | 4              |
| 5|0 0 1 0 1|0 0 1 1 1 | 5              |
| 6|0 0 1 1 0|0 0 1 0 1 | 6              |
| 7|0 0 1 1 1|0 0 1 0 0 | 7              |
| 8|0 1 0 0 0|0 1 1 0 0 | 8              |
| 9|0 1 0 0 1|0 1 1 0 1 | 9              |
|10|0 1 0 1 0|0 1 1 1 1 |10              |
|11|0 1 0 1 1|0 1 1 1 0 |11              |
|12|0 1 1 0 0|0 1 0 1 0 |12              |
|13|0 1 1 0 1|0 1 0 1 1 |13              |
|14|0 1 1 1 0|0 1 0 0 1 |14              |
|15|0 1 1 1 1|0 1 0 0 0 |15              |
|16|1 0 0 0 0|1 1 0 0 0 |16              |
|17|1 0 0 0 1|1 1 0 0 1 |17              |
|18|1 0 0 1 0|1 1 0 1 1 |18              |
|19|1 0 0 1 1|1 1 0 1 0 |19              |
|20|1 0 1 0 0|1 1 1 1 0 |20              |
|21|1 0 1 0 1|1 1 1 1 1 |21              |
|22|1 0 1 1 0|1 1 1 0 1 |22              |
|23|1 0 1 1 1|1 1 1 0 0 |23              |
|24|1 1 0 0 0|1 0 1 0 0 |24              |
|25|1 1 0 0 1|1 0 1 0 1 |25              |
|26|1 1 0 1 0|1 0 1 1 1 |26              |
|27|1 1 0 1 1|1 0 1 1 0 |27              |
|28|1 1 1 0 0|1 0 0 1 0 |28              |
|29|1 1 1 0 1|1 0 0 1 1 |29              |
|30|1 1 1 1 0|1 0 0 0 1 |30              |
|31|1 1 1 1 1|1 0 0 0 0 |31              |
+--+---------+----------+----------------+
```

Java

Translation of: C
```import java.math.BigInteger;

public class GrayCode {

public static long grayEncode(long n){
return n ^ ( n >>> 1 );
}

public static long grayDecode(long n) {
long p = n;
while ( ( n >>>= 1 ) != 0 ) {
p ^= n;
}
return p;
}

public static BigInteger grayEncode(BigInteger n) {
return n.xor(n.shiftRight(1));
}

public static BigInteger grayDecode(BigInteger n) {
BigInteger p = n;
while ( ( n = n.shiftRight(1) ).signum() != 0 ) {
p = p.xor(n);
}
return p;
}

/**
* An alternative version of grayDecode,
* less efficient, but demonstrates the principal of gray decoding.
*/
public static BigInteger grayDecode2(BigInteger n) {
String nBits = n.toString(2);
String result = nBits.substring(0, 1);
for ( int i = 1; i < nBits.length(); i++ ) {
// bin[i] = gray[i] ^ bin[i-1]
// XOR using characters
result += nBits.charAt(i) != result.charAt(i - 1) ? "1" : "0";
}
return new BigInteger(result, 2);
}

/**
* An alternative version of grayEncode,
* less efficient, but demonstrates the principal of gray encoding.
*/
public static long grayEncode2(long n) {
long result = 0;
for ( int exp = 0; n > 0; n >>= 1, exp++ ) {
long nextHighestBit = ( n >> 1 ) & 1;
if ( nextHighestBit == 1 ) {
result += ( ( n & 1 ) == 0 ) ? ( 1 << exp ) : 0; // flip this bit
} else {
result += ( n & 1 ) * ( 1 << exp ); // don't flip this bit
}
}
return result;
}

public static void main(String[] args){
System.out.println("i\tBinary\tGray\tGray2\tDecoded");
System.out.println("=======================================");
for ( int i = 0; i < 32; i++ ) {
System.out.print(i + "\t");
System.out.print(Integer.toBinaryString(i) + "\t");
System.out.print(Long.toBinaryString(grayEncode(i)) + "\t");
System.out.print(Long.toBinaryString(grayEncode2(i)) + "\t");
System.out.println(grayDecode(grayEncode(i)));
}
System.out.println();

final BigInteger base = BigInteger.TEN.pow(25).add( new BigInteger("12345678901234567890") );
for ( int i = 0; i < 5; i++ ) {
System.out.println("test decimal      = " + test);
System.out.println("gray code decimal = " + grayEncode(test));
System.out.println("gray code binary  = " + grayEncode(test).toString(2));
System.out.println("decoded decimal   = " + grayDecode(grayEncode(test)));
System.out.println("decoded2 decimal  = " + grayDecode2(grayEncode(test)));
System.out.println();
}
}

}
```
Output:
```i	Binary	Gray	Gray2	Decoded
=======================================
0	0	0	0	0
1	1	1	1	1
2	10	11	11	2
3	11	10	10	3
4	100	110	110	4
5	101	111	111	5
6	110	101	101	6
7	111	100	100	7
8	1000	1100	1100	8
9	1001	1101	1101	9
10	1010	1111	1111	10
11	1011	1110	1110	11
12	1100	1010	1010	12
13	1101	1011	1011	13
14	1110	1001	1001	14
15	1111	1000	1000	15
16	10000	11000	11000	16
17	10001	11001	11001	17
18	10010	11011	11011	18
19	10011	11010	11010	19
20	10100	11110	11110	20
21	10101	11111	11111	21
22	10110	11101	11101	22
23	10111	11100	11100	23
24	11000	10100	10100	24
25	11001	10101	10101	25
26	11010	10111	10111	26
27	11011	10110	10110	27
28	11100	10010	10010	28
29	11101	10011	10011	29
30	11110	10001	10001	30
31	11111	10000	10000	31

test decimal      = 10000012345678901234567890
gray code decimal = 14995268463904422838177723
gray code binary  = 110001100111010111110010000111011100111111111011111110101111100100001000111110111011
decoded decimal   = 10000012345678901234567890
decoded2 decimal  = 10000012345678901234567890

test decimal      = 10000012345678901234567891
gray code decimal = 14995268463904422838177722
gray code binary  = 110001100111010111110010000111011100111111111011111110101111100100001000111110111010
decoded decimal   = 10000012345678901234567891
decoded2 decimal  = 10000012345678901234567891

test decimal      = 10000012345678901234567892
gray code decimal = 14995268463904422838177726
gray code binary  = 110001100111010111110010000111011100111111111011111110101111100100001000111110111110
decoded decimal   = 10000012345678901234567892
decoded2 decimal  = 10000012345678901234567892

test decimal      = 10000012345678901234567893
gray code decimal = 14995268463904422838177727
gray code binary  = 110001100111010111110010000111011100111111111011111110101111100100001000111110111111
decoded decimal   = 10000012345678901234567893
decoded2 decimal  = 10000012345678901234567893

test decimal      = 10000012345678901234567894
gray code decimal = 14995268463904422838177725
gray code binary  = 110001100111010111110010000111011100111111111011111110101111100100001000111110111101
decoded decimal   = 10000012345678901234567894
decoded2 decimal  = 10000012345678901234567894
```

JavaScript

The following code is ES2015.

Module `gray-code.js`

```export function encode (number) {
return number ^ (number >> 1)
}

export function decode (encodedNumber) {
let number = encodedNumber

while (encodedNumber >>= 1) {
number ^= encodedNumber
}

return number
}
```

Test

```import printf from 'printf' // Module must be installed with npm first
import * as gray from './gray-code.js'

console.log(
'Number\t' +
'Binary\t' +
'Gray Code\t' +
'Decoded Gray Code'
)

for (let number = 0; number < 32; number++) {
const grayCode = gray.encode(number)
const decodedGrayCode = gray.decode(grayCode)

console.log(printf(
'%2d\t%05d\t%05d\t\t%2d',
number,
number.toString(2),
grayCode.toString(2),
decodedGrayCode
))
}
```
Output:
```Number	Binary	Gray Code	Decoded Gray Code
0	00000	00000		 0
1	00001	00001		 1
2	00010	00011		 2
3	00011	00010		 3
4	00100	00110		 4
5	00101	00111		 5
6	00110	00101		 6
7	00111	00100		 7
8	01000	01100		 8
9	01001	01101		 9
10	01010	01111		10
11	01011	01110		11
12	01100	01010		12
13	01101	01011		13
14	01110	01001		14
15	01111	01000		15
16	10000	11000		16
17	10001	11001		17
18	10010	11011		18
19	10011	11010		19
20	10100	11110		20
21	10101	11111		21
22	10110	11101		22
23	10111	11100		23
24	11000	10100		24
25	11001	10101		25
26	11010	10111		26
27	11011	10110		27
28	11100	10010		28
29	11101	10011		29
30	11110	10001		30
31	11111	10000		31
```

jq

Works with: jq

Works with gojq, the Go implementation of jq

Works with jaq, the Rust implementation of jq

The following is slightly more verbose than it need be but for the sake of jaq.

```def encode:
def flip: if . == 1 then 0 else 1 end;
. as \$b
| reduce range(1; length) as \$i (\$b;
if \$b[\$i-1] == 1 then .[\$i] |= flip
else .
end ) ;

def decode:
def xor(\$a;\$b): (\$a + \$b) % 2;
. as \$g
| reduce range(1; length) as \$i (.[:1];
.[\$i] = xor(\$g[\$i]; .[\$i-1]) ) ;

# input: a non-negative integer
# output: a binary array, least-significant bit first
def to_binary:
if . == 0 then [0]
else [recurse( if . == 0 then empty else ./2 | floor end ) % 2]
| .[:-1] # remove the uninteresting 0
end ;

tostring
| (\$len - length) as \$l
| if \$l <= 0 then .
else (\$fill * \$l)[:\$l] + .
end;

def pp: map(tostring) | join("") | lpad(5; "0");

"decimal   binary    gray  roundtrip",
(range(0; 32) as \$i
| (\$i | to_binary | reverse) as \$b
| (\$b|encode) as \$g
| "  \(\$i|lpad(2;" "))       \(\$b|pp)   \(\$g|pp)   \(\$g|decode == \$b)" )```
Output:
```decimal   binary    gray  roundtrip
0       00000   00000   true
1       00001   00001   true
2       00010   00011   true
3       00011   00010   true
4       00100   00110   true
5       00101   00111   true
6       00110   00101   true
7       00111   00100   true
8       01000   01100   true
9       01001   01101   true
10       01010   01111   true
11       01011   01110   true
12       01100   01010   true
13       01101   01011   true
14       01110   01001   true
15       01111   01000   true
16       10000   11000   true
17       10001   11001   true
18       10010   11011   true
19       10011   11010   true
20       10100   11110   true
21       10101   11111   true
22       10110   11101   true
23       10111   11100   true
24       11000   10100   true
25       11001   10101   true
26       11010   10111   true
27       11011   10110   true
28       11100   10010   true
29       11101   10011   true
30       11110   10001   true
31       11111   10000   true
```

Julia

Works with: Julia version 0.6
Translation of: C
```grayencode(n::Integer) = n ⊻ (n >> 1)
function graydecode(n::Integer)
r = n
while (n >>= 1) != 0
r ⊻= n
end
return r
end
```

Note that these functions work for any integer type, including arbitrary-precision integers (the built-in `BigInt` type).

K

Binary to Gray code

```   xor: {~x=y}
gray:{x[0],xor':x}

/ variant: using shift
gray1:{(x[0],xor[1_ x;-1_ x])}

/ variant: iterative
gray2:{x[0],{:[x[y-1]=1;~x[y];x[y]]}[x]'1+!(#x)-1}
```

Gray code to binary

"Accumulated xor"

```   g2b:xor\
```

An alternative is to find the inverse of the gray code by tracing until fixpoint. Here we find that 1 1 1 1 1 is the inverse of 1 0 0 0 0

```  gray\1 0 0 0 0
(1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 1 1 1 0
1 0 0 0 1
1 1 0 0 1
1 0 1 0 1
1 1 1 1 1)
```

As a function (*| takes the last result)

```   g2b1:*|{gray x}\
```

Iterative version with "do"

```   g2b2:{c:#x;b:c#0;b[0]:x[0];i:1;do[#x;b[i]:xor[x[i];b[i-1]];i+:1];b}
```

Presentation

```   gray:{x[0],xor':x}
g2b:xor\
/ using allcomb instead of 2_vs'!32 for nicer presentation
allcomb:{+(x#y)_vs!_ y^x}
a:(+allcomb . 5 2)
`0:,/{n:2_sv x;gg:gray x;gb:g2b gg;n2:2_sv gb;
,/\$((2\$n)," : ",\$x," -> ",\$gg," -> ",\$gb," : ",(2\$n2),"\n") }'a
```
Output:
``` 0 : 00000 -> 00000 -> 00000 :  0
1 : 00001 -> 00001 -> 00001 :  1
2 : 00010 -> 00011 -> 00010 :  2
3 : 00011 -> 00010 -> 00011 :  3
4 : 00100 -> 00110 -> 00100 :  4
5 : 00101 -> 00111 -> 00101 :  5
6 : 00110 -> 00101 -> 00110 :  6
7 : 00111 -> 00100 -> 00111 :  7
8 : 01000 -> 01100 -> 01000 :  8
9 : 01001 -> 01101 -> 01001 :  9
10 : 01010 -> 01111 -> 01010 : 10
11 : 01011 -> 01110 -> 01011 : 11
12 : 01100 -> 01010 -> 01100 : 12
13 : 01101 -> 01011 -> 01101 : 13
14 : 01110 -> 01001 -> 01110 : 14
15 : 01111 -> 01000 -> 01111 : 15
16 : 10000 -> 11000 -> 10000 : 16
17 : 10001 -> 11001 -> 10001 : 17
18 : 10010 -> 11011 -> 10010 : 18
19 : 10011 -> 11010 -> 10011 : 19
20 : 10100 -> 11110 -> 10100 : 20
21 : 10101 -> 11111 -> 10101 : 21
22 : 10110 -> 11101 -> 10110 : 22
23 : 10111 -> 11100 -> 10111 : 23
24 : 11000 -> 10100 -> 11000 : 24
25 : 11001 -> 10101 -> 11001 : 25
26 : 11010 -> 10111 -> 11010 : 26
27 : 11011 -> 10110 -> 11011 : 27
28 : 11100 -> 10010 -> 11100 : 28
29 : 11101 -> 10011 -> 11101 : 29
30 : 11110 -> 10001 -> 11110 : 30
31 : 11111 -> 10000 -> 11111 : 31```

Kotlin

```// version 1.0.6

object Gray {
fun encode(n: Int) = n xor (n shr 1)

fun decode(n: Int): Int {
var p  = n
var nn = n
while (nn != 0) {
nn = nn shr 1
p = p xor nn
}
return p
}
}

fun main(args: Array<String>) {
println("Number\tBinary\tGray\tDecoded")
for (i in 0..31) {
print("\$i\t\${Integer.toBinaryString(i)}\t")
val g = Gray.encode(i)
println("\${Integer.toBinaryString(g)}\t\${Gray.decode(g)}")
}
}
```
Output:
```Number  Binary  Gray    Decoded
0       0       0       0
1       1       1       1
2       10      11      2
3       11      10      3
4       100     110     4
5       101     111     5
6       110     101     6
7       111     100     7
8       1000    1100    8
9       1001    1101    9
10      1010    1111    10
11      1011    1110    11
12      1100    1010    12
13      1101    1011    13
14      1110    1001    14
15      1111    1000    15
16      10000   11000   16
17      10001   11001   17
18      10010   11011   18
19      10011   11010   19
20      10100   11110   20
21      10101   11111   21
22      10110   11101   22
23      10111   11100   23
24      11000   10100   24
25      11001   10101   25
26      11010   10111   26
27      11011   10110   27
28      11100   10010   28
29      11101   10011   29
30      11110   10001   30
31      11111   10000   31
```

Limbo

Translation of: Go
```implement Gray;

include "sys.m"; sys: Sys;
print: import sys;
include "draw.m";

Gray: module {
init: fn(nil: ref Draw->Context, args: list of string);
# Export gray and grayinv so that this module can be used as either a
# standalone program or as a library:
gray: fn(n: int): int;
grayinv: fn(n: int): int;
};

init(nil: ref Draw->Context, args: list of string)
{
for(i := 0; i < 32; i++) {
g := gray(i);
f := grayinv(g);
print("%2d  %5s  %2d  %5s  %5s  %2d\n", i, binstr(i), g, binstr(g), binstr(f), f);
}
}

gray(n: int): int
{
return n ^ (n >> 1);
}

grayinv(n: int): int
{
r := 0;
while(n) {
r ^= n;
n >>= 1;
}
return r;
}

binstr(n: int): string
{
if(!n)
return "0";
s := "";
while(n) {
s = (string (n&1)) + s;
n >>= 1;
}
return s;
}
```
Output:

``` ```

``` 0 0 0 0 0 0 1 1 1 1 1 1 2 10 3 11 10 2 3 11 2 10 11 3 4 100 6 110 100 4 5 101 7 111 101 5 6 110 5 101 110 6 7 111 4 100 111 7 8 1000 12 1100 1000 8 9 1001 13 1101 1001 9 10 1010 15 1111 1010 10 11 1011 14 1110 1011 11 12 1100 10 1010 1100 12 13 1101 11 1011 1101 13 14 1110 9 1001 1110 14 15 1111 8 1000 1111 15 16 10000 24 11000 10000 16 17 10001 25 11001 10001 17 18 10010 27 11011 10010 18 19 10011 26 11010 10011 19 20 10100 30 11110 10100 20 21 10101 31 11111 10101 21 22 10110 29 11101 10110 22 23 10111 28 11100 10111 23 24 11000 20 10100 11000 24 25 11001 21 10101 11001 25 26 11010 23 10111 11010 26 27 11011 22 10110 11011 27 28 11100 18 10010 11100 28 29 11101 19 10011 11101 29 30 11110 17 10001 11110 30 31 11111 16 10000 11111 31 ```

Lobster

Translation of: C
```def grey_encode(n) -> int:
return n ^ (n >> 1)

def grey_decode(n) -> int:
var p = n
n = n >> 1
while n != 0:
p = p ^ n
n = n >> 1
return p

for(32) i:
let g = grey_encode(i)
let b = grey_decode(g)
print(number_to_string(i, 10, 2) + " : " +
number_to_string(i,  2, 5) + " ⇾ " +
number_to_string(g,  2, 5) + " ⇾ " +
number_to_string(b,  2, 5) + " : " +
number_to_string(b, 10, 2))```
Output:
```00 : 00000 ⇾ 00000 ⇾ 00000 : 00
01 : 00001 ⇾ 00001 ⇾ 00001 : 01
02 : 00010 ⇾ 00011 ⇾ 00010 : 02
03 : 00011 ⇾ 00010 ⇾ 00011 : 03
04 : 00100 ⇾ 00110 ⇾ 00100 : 04
05 : 00101 ⇾ 00111 ⇾ 00101 : 05
06 : 00110 ⇾ 00101 ⇾ 00110 : 06
07 : 00111 ⇾ 00100 ⇾ 00111 : 07
08 : 01000 ⇾ 01100 ⇾ 01000 : 08
09 : 01001 ⇾ 01101 ⇾ 01001 : 09
10 : 01010 ⇾ 01111 ⇾ 01010 : 10
11 : 01011 ⇾ 01110 ⇾ 01011 : 11
12 : 01100 ⇾ 01010 ⇾ 01100 : 12
13 : 01101 ⇾ 01011 ⇾ 01101 : 13
14 : 01110 ⇾ 01001 ⇾ 01110 : 14
15 : 01111 ⇾ 01000 ⇾ 01111 : 15
16 : 10000 ⇾ 11000 ⇾ 10000 : 16
17 : 10001 ⇾ 11001 ⇾ 10001 : 17
18 : 10010 ⇾ 11011 ⇾ 10010 : 18
19 : 10011 ⇾ 11010 ⇾ 10011 : 19
20 : 10100 ⇾ 11110 ⇾ 10100 : 20
21 : 10101 ⇾ 11111 ⇾ 10101 : 21
22 : 10110 ⇾ 11101 ⇾ 10110 : 22
23 : 10111 ⇾ 11100 ⇾ 10111 : 23
24 : 11000 ⇾ 10100 ⇾ 11000 : 24
25 : 11001 ⇾ 10101 ⇾ 11001 : 25
26 : 11010 ⇾ 10111 ⇾ 11010 : 26
27 : 11011 ⇾ 10110 ⇾ 11011 : 27
28 : 11100 ⇾ 10010 ⇾ 11100 : 28
29 : 11101 ⇾ 10011 ⇾ 11101 : 29
30 : 11110 ⇾ 10001 ⇾ 11110 : 30
31 : 11111 ⇾ 10000 ⇾ 11111 : 31
```

Logo

Translation of: Euphoria
```to gray_encode :number
output bitxor :number lshift :number -1
end

to gray_decode :code
local "value
make "value 0
while [:code > 0] [
make "value bitxor :code :value
make "code lshift :code -1
]
output :value
end```

Demonstration code, including formatters:

```to format :str :width [pad (char 32)]
while [(count :str) < :width] [
]
output :str
end

; Output binary representation of a number
to binary :number [:width 1]
local "bits
ifelse [:number = 0] [
make "bits 0
] [
make "bits "
while [:number > 0] [
make "bits word (bitand :number 1) :bits
make "number lshift :number -1
]
]
output (format :bits :width 0)
end

repeat 32 [
make "num repcount - 1
make "gray gray_encode :num
make "decoded gray_decode :gray
print (sentence (format :num 2) ": (binary :num 5) ": (binary :gray 5) ":
(binary :decoded 5) ": (format :decoded 2)) ]
bye```
Output:
``` 0 : 00000 : 00000 : 00000 :  0
1 : 00001 : 00001 : 00001 :  1
2 : 00010 : 00011 : 00010 :  2
3 : 00011 : 00010 : 00011 :  3
4 : 00100 : 00110 : 00100 :  4
5 : 00101 : 00111 : 00101 :  5
6 : 00110 : 00101 : 00110 :  6
7 : 00111 : 00100 : 00111 :  7
8 : 01000 : 01100 : 01000 :  8
9 : 01001 : 01101 : 01001 :  9
10 : 01010 : 01111 : 01010 : 10
11 : 01011 : 01110 : 01011 : 11
12 : 01100 : 01010 : 01100 : 12
13 : 01101 : 01011 : 01101 : 13
14 : 01110 : 01001 : 01110 : 14
15 : 01111 : 01000 : 01111 : 15
16 : 10000 : 11000 : 10000 : 16
17 : 10001 : 11001 : 10001 : 17
18 : 10010 : 11011 : 10010 : 18
19 : 10011 : 11010 : 10011 : 19
20 : 10100 : 11110 : 10100 : 20
21 : 10101 : 11111 : 10101 : 21
22 : 10110 : 11101 : 10110 : 22
23 : 10111 : 11100 : 10111 : 23
24 : 11000 : 10100 : 11000 : 24
25 : 11001 : 10101 : 11001 : 25
26 : 11010 : 10111 : 11010 : 26
27 : 11011 : 10110 : 11011 : 27
28 : 11100 : 10010 : 11100 : 28
29 : 11101 : 10011 : 11101 : 29
30 : 11110 : 10001 : 11110 : 30
31 : 11111 : 10000 : 11111 : 31
```

Lua

Translation of: Euphoria

This code uses the Lua BitOp module. Designed to be a module named gray.lua.

```local _M = {}

local bit  = require('bit')
local math = require('math')

_M.encode = function(number)
return bit.bxor(number, bit.rshift(number, 1));
end

_M.decode = function(gray_code)
local value = 0
while gray_code > 0 do
gray_code, value = bit.rshift(gray_code, 1), bit.bxor(gray_code, value)
end
return value
end

return _M
```

Demonstration code:

```local bit = require 'bit'
local gray = require 'gray'

-- simple binary string formatter
local function to_bit_string(n, width)
width = width or 1
local output = ""
while n > 0 do
output = bit.band(n,1) .. output
n = bit.rshift(n,1)
end
while #output < width do
output = '0' .. output
end
return output
end

for i = 0,31 do
g = gray.encode(i);
gd = gray.decode(g);
print(string.format("%2d : %s => %s => %s : %2d", i,
to_bit_string(i,5), to_bit_string(g, 5),
to_bit_string(gd,5), gd))
end
```
Output:
```
0 : 00000 => 00000 => 00000 :  0
1 : 00001 => 00001 => 00001 :  1
2 : 00010 => 00011 => 00010 :  2
3 : 00011 => 00010 => 00011 :  3
4 : 00100 => 00110 => 00100 :  4
5 : 00101 => 00111 => 00101 :  5
6 : 00110 => 00101 => 00110 :  6
7 : 00111 => 00100 => 00111 :  7
8 : 01000 => 01100 => 01000 :  8
9 : 01001 => 01101 => 01001 :  9
10 : 01010 => 01111 => 01010 : 10
11 : 01011 => 01110 => 01011 : 11
12 : 01100 => 01010 => 01100 : 12
13 : 01101 => 01011 => 01101 : 13
14 : 01110 => 01001 => 01110 : 14
15 : 01111 => 01000 => 01111 : 15
16 : 10000 => 11000 => 10000 : 16
17 : 10001 => 11001 => 10001 : 17
18 : 10010 => 11011 => 10010 : 18
19 : 10011 => 11010 => 10011 : 19
20 : 10100 => 11110 => 10100 : 20
21 : 10101 => 11111 => 10101 : 21
22 : 10110 => 11101 => 10110 : 22
23 : 10111 => 11100 => 10111 : 23
24 : 11000 => 10100 => 11000 : 24
25 : 11001 => 10101 => 11001 : 25
26 : 11010 => 10111 => 11010 : 26
27 : 11011 => 10110 => 11011 : 27
28 : 11100 => 10010 => 11100 : 28
29 : 11101 => 10011 => 11101 : 29
30 : 11110 => 10001 => 11110 : 30
31 : 11111 => 10000 => 11111 : 31
```

M2000 Interpreter

Translation of: C

Additions to showing the modules/functions replacement mechanism of M2000

```Module Code32  (&code(), &decode()){
Const d\$="{0::-2} {1:-6} {2:-6} {3:-6} {4::-2}"
For i=0 to 32
g=code(i)
b=decode(g)
Print format\$(d\$, i, @bin\$(i), @bin\$(g), @bin\$(b), b)
Next
// static function
Function bin\$(a)
a\$=""
Do n= a mod 2 : a\$=if\$(n=1->"1", "0")+a\$ : a|div 2 : Until a==0
=a\$
End Function
}
Module GrayCode {
Module doit (&a(), &b()) { }
Function GrayEncode(a) {
=binary.xor(a, binary.shift(a,-1))
}
Function GrayDecode(a) {
b=0
Do b=binary.xor(a, b) : a=binary.shift(a,-1) : Until a==0
=b
}
// pass 2 functions to Code32
doit &GrayEncode(), &GrayDecode()
}
// pass Code32 to GrayCode in place of doit
GrayCode ; doit as  Code32```
Output:
``` 0      0      0      0  0
1      1      1      1  1
2     10     11     10  2
3     11     10     11  3
4    100    110    100  4
5    101    111    101  5
6    110    101    110  6
7    111    100    111  7
8   1000   1100   1000  8
9   1001   1101   1001  9
10   1010   1111   1010 10
11   1011   1110   1011 11
12   1100   1010   1100 12
13   1101   1011   1101 13
14   1110   1001   1110 14
15   1111   1000   1111 15
16  10000  11000  10000 16
17  10001  11001  10001 17
18  10010  11011  10010 18
19  10011  11010  10011 19
20  10100  11110  10100 20
21  10101  11111  10101 21
22  10110  11101  10110 22
23  10111  11100  10111 23
24  11000  10100  11000 24
25  11001  10101  11001 25
26  11010  10111  11010 26
27  11011  10110  11011 27
28  11100  10010  11100 28
29  11101  10011  11101 29
30  11110  10001  11110 30
31  11111  10000  11111 31
32 100000 110000 100000 32
```

Mathematica / Wolfram Language

```graycode[n_]:=BitXor[n,BitShiftRight[n]]
graydecode[n_]:=Fold[BitXor,0,FixedPointList[BitShiftRight,n]]
```
Output:
```Required example:
Grid[{# ,IntegerDigits[#,2],IntegerDigits[graycode@#,2], IntegerDigits[graydecode@graycode@#,2]}&/@Range[32]]
1	{1}	{1}	{1}
2	{1,0}	{1,1}	{1,0}
3	{1,1}	{1,0}	{1,1}
...
15	{1,1,1,1}	{1,0,0,0}	{1,1,1,1}
...
30	{1,1,1,1,0}	{1,0,0,0,1}	{1,1,1,1,0}
31	{1,1,1,1,1}	{1,0,0,0,0}	{1,1,1,1,1}
32	{1,0,0,0,0,0}	{1,1,0,0,0,0}	{1,0,0,0,0,0}```

MATLAB

```%% Gray Code Generator
% this script generates gray codes of n bits
% total 2^n -1 continuous gray codes will be generated.
% this code follows a recursive approach. therefore,
% it can be slow for large n

clear all;
clc;

bits = input('Enter the number of bits: ');
if (bits<1)
disp('Sorry, number of bits should be positive');
elseif (mod(bits,1)~=0)
disp('Sorry, number of bits can only be positive integers');
else
initial_container = [0;1];
if bits == 1
result = initial_container;
else
previous_container = initial_container;
for i=2:bits
new_gray_container = zeros(2^i,i);
new_gray_container(1:(2^i)/2,1) = 0;
new_gray_container(((2^i)/2)+1:end,1) = 1;

for j = 1:(2^i)/2
new_gray_container(j,2:end) = previous_container(j,:);
end

for j = ((2^i)/2)+1:2^i
new_gray_container(j,2:end) = previous_container((2^i)+1-j,:);
end

previous_container = new_gray_container;
end
result = previous_container;
end
fprintf('Gray code of %d bits',bits);
disp(' ');
disp(result);
end
```
Output:
```Enter the number of bits: 5
Gray code of 5 bits
0     0     0     0     0
0     0     0     0     1
0     0     0     1     1
0     0     0     1     0
0     0     1     1     0
0     0     1     1     1
0     0     1     0     1
0     0     1     0     0
0     1     1     0     0
0     1     1     0     1
0     1     1     1     1
0     1     1     1     0
0     1     0     1     0
0     1     0     1     1
0     1     0     0     1
0     1     0     0     0
1     1     0     0     0
1     1     0     0     1
1     1     0     1     1
1     1     0     1     0
1     1     1     1     0
1     1     1     1     1
1     1     1     0     1
1     1     1     0     0
1     0     1     0     0
1     0     1     0     1
1     0     1     1     1
1     0     1     1     0
1     0     0     1     0
1     0     0     1     1
1     0     0     0     1
1     0     0     0     0
```

Mercury

The following is a full implementation of Gray encoding and decoding. It publicly exposes the gray type along with the following value conversion functions:

• gray.from_int/1
• gray.to_int/1

The from_int/1 and to_int/1 functions are value conversion functions. from_int/1 converts an int value into the enclosing gray type. to_int/1 converts a gray value back into a regular int type.

The additional gray.coerce/2 predicate converts the representation underlying a gray value into an int value or vice versa (it is moded in both directions). For type safety reasons we do not wish to generally expose the underlying representation, but for some purposes, most notably I/O or storage or their ilk we have to break the type safety. The coerce/2 predicate is used for this purpose.

```:- module gray.

:- interface.
:- import_module int.

:- type gray.

% VALUE conversion functions
:- func gray.from_int(int) = gray.
:- func gray.to_int(gray) = int.

% REPRESENTATION conversion predicate
:- pred gray.coerce(gray, int).
:- mode gray.coerce(in,   out) is det.
:- mode gray.coerce(out,  in)  is det.

:- implementation.

:- import_module list.

:- type gray
---> gray(int).

gray.from_int(X) = gray(X `xor` (X >> 1)).

gray.to_int(gray(G)) = (G > 0 -> G `xor` gray.to_int(gray(G >> 1))
;        G).
gray.coerce(gray(I), I).

:- end_module gray.```

The following program tests the above code:

```:- module gray_test.

:- interface.

:- import_module io.

:- pred main(io::di, io::uo) is det.

:- implementation.

:- import_module gray.
:- import_module int, list, string.

:- pred check_conversion(list(int)::in, list(gray)::out) is semidet.
:- pred display_lists(list(int)::in, list(gray)::in, io::di, io::uo) is det.
:- pred display_record(int::in, gray::in, io::di, io::uo) is det.

main(!IO) :-
Numbers = 0..31,
( check_conversion(Numbers, Grays) ->
io.format("%8s %8s %8s\n", [s("Number"), s("Binary"), s("Gray")], !IO),
io.format("%8s %8s %8s\n", [s("------"), s("------"), s("----")], !IO),
display_lists(Numbers, Grays, !IO)

;   io.write("Either conversion or back-conversion failed.\n", !IO)).

check_conversion(Numbers, Grays) :-
Grays = list.map(gray.from_int, Numbers),
Numbers = list.map(gray.to_int, Grays).

display_lists(Numbers, Grays, !IO) :-
list.foldl_corresponding(display_record, Numbers, Grays, !IO).

display_record(Number, Gray, !IO) :-
gray.coerce(Gray, GrayRep),
NumBin = string.int_to_base_string(Number, 2),
GrayBin = string.int_to_base_string(GrayRep, 2),
io.format("%8d %8s %8s\n", [i(Number), s(NumBin), s(GrayBin)], !IO).

:- end_module gray_test.```

The main/2 predicate generates a list of numbers from 0 to 31 inclusive and then checks that conversion is working properly. It does so by calling the check_conversion/2 predicate with the list of numbers as an input and the list of Gray-encoded numbers as an output. Note the absence of the usual kinds of testing you'd see in most programming languages. gray.from_int/1 is mapped over the Numbers (input) list and placed into the Grays (output) list. Then gray.to_int is mapped over the Grays list and placed into the Numbers (input) list. Or so it would seem to those used to imperative or functional languages.

In reality what's happening is unification. Since the Grays list is not yet populated, unification is very similar notionally to assignment in other languages. Numbers, however, is instantiated and thus unification is more like testing for equality.

If the conversions check out, main/2 prints off some headers and then displays the lists. Here we're cluttering up the namespace of the gray_test module a little by providing a one-line predicate. While it is true that we could just take the contents of that predicate and place it inline, we've chosen not to do that because the name display_lists communicates more effectively what we intend. The compiler is smart enough to automatically inline that predicate call so there's no efficiency reason not to do it.

However we choose to do that, the result is the same: repeated calls to display_record/4. In that predicate the aforementioned coerce/2 predicate extracts, in this case, the Gray value's representation. This value and the corresponding int value are then converted into a string showing the base-2 representation of their values. io.format/4 then prints them off in a nice format.

The output of the program looks like this:

``` Number   Binary     Gray
------   ------     ----
0        0        0
1        1        1
2       10       11
3       11       10
4      100      110
5      101      111
6      110      101
7      111      100
8     1000     1100
9     1001     1101
10     1010     1111
11     1011     1110
12     1100     1010
13     1101     1011
14     1110     1001
15     1111     1000
16    10000    11000
17    10001    11001
18    10010    11011
19    10011    11010
20    10100    11110
21    10101    11111
22    10110    11101
23    10111    11100
24    11000    10100
25    11001    10101
26    11010    10111
27    11011    10110
28    11100    10010
29    11101    10011
30    11110    10001
31    11111    10000
```

Modula-2

Translation of: DWScript – `CARDINAL` (unsigned integer) used instead of integer.
Works with: ADW Modula-2 version any (Compile with the linker option Console Application).
```MODULE GrayCode;

FROM STextIO IMPORT
WriteString, WriteLn;
FROM SWholeIO IMPORT
WriteInt;
FROM Conversions IMPORT
LongBaseToStr;
FROM FormatString IMPORT
FormatString; (* for justifying *)

VAR
I, G, D: CARDINAL;
Ok: BOOLEAN;
BinS, OutBinS: ARRAY[0 .. 5] OF CHAR;

PROCEDURE Encode(V: CARDINAL): CARDINAL;
BEGIN
RETURN V BXOR (V SHR 1)
END Encode;

PROCEDURE Decode(V: CARDINAL): CARDINAL;
VAR
Result: CARDINAL;
BEGIN
Result := 0;
WHILE V > 0 DO
Result := Result BXOR V;
V := V SHR 1
END;
RETURN Result
END Decode;

BEGIN
WriteString("decimal  binary   gray    decoded");
WriteLn;
FOR I := 0 TO 31 DO
G := Encode(I);
D := Decode(G);
WriteInt(I, 4);
WriteString("     ");
Ok := LongBaseToStr(I, 2, BinS);
Ok := FormatString("%'05s", OutBinS, BinS);
(* Padded with 0; width: 5; type: string *)
WriteString(OutBinS);
WriteString("   ");
Ok := LongBaseToStr(G, 2, BinS);
Ok := FormatString("%'05s", OutBinS, BinS);
WriteString(OutBinS);
WriteString("   ");
Ok := LongBaseToStr(D, 2, BinS);
Ok := FormatString("%'05s", OutBinS, BinS);
WriteString(OutBinS);
WriteInt(D, 4);
WriteLn;
END
END GrayCode.
```
Output:
```decimal  binary   gray    decoded
0     00000   00000   00000   0
1     00001   00001   00001   1
2     00010   00011   00010   2
3     00011   00010   00011   3
4     00100   00110   00100   4
5     00101   00111   00101   5
6     00110   00101   00110   6
7     00111   00100   00111   7
8     01000   01100   01000   8
9     01001   01101   01001   9
10     01010   01111   01010  10
11     01011   01110   01011  11
12     01100   01010   01100  12
13     01101   01011   01101  13
14     01110   01001   01110  14
15     01111   01000   01111  15
16     10000   11000   10000  16
17     10001   11001   10001  17
18     10010   11011   10010  18
19     10011   11010   10011  19
20     10100   11110   10100  20
21     10101   11111   10101  21
22     10110   11101   10110  22
23     10111   11100   10111  23
24     11000   10100   11000  24
25     11001   10101   11001  25
26     11010   10111   11010  26
27     11011   10110   11011  27
28     11100   10010   11100  28
29     11101   10011   11101  29
30     11110   10001   11110  30
31     11111   10000   11111  31
```

Nim

Translation of: C
```proc grayEncode(n: int): int =
n xor (n shr 1)

proc grayDecode(n: int): int =
result = n
var t = n
while t > 0:
t = t shr 1
result = result xor t
```

Demonstration code:

```import strutils, strformat

for i in 0 .. 32:
echo &"{i:>2} => {toBin(grayEncode(i), 6)} => {grayDecode(grayEncode(i)):>2}"
```
Output:
``` 0 => 000000 =>  0
1 => 000001 =>  1
2 => 000011 =>  2
3 => 000010 =>  3
4 => 000110 =>  4
5 => 000111 =>  5
6 => 000101 =>  6
7 => 000100 =>  7
8 => 001100 =>  8
9 => 001101 =>  9
10 => 001111 => 10
11 => 001110 => 11
12 => 001010 => 12
13 => 001011 => 13
14 => 001001 => 14
15 => 001000 => 15
16 => 011000 => 16
17 => 011001 => 17
18 => 011011 => 18
19 => 011010 => 19
20 => 011110 => 20
21 => 011111 => 21
22 => 011101 => 22
23 => 011100 => 23
24 => 010100 => 24
25 => 010101 => 25
26 => 010111 => 26
27 => 010110 => 27
28 => 010010 => 28
29 => 010011 => 29
30 => 010001 => 30
31 => 010000 => 31
32 => 110000 => 32```

NOWUT

```; link with PIOxxx.OBJ

sectiondata

output:         db " : "
inbinary:       db "00000 => "
graybinary:     db "00000 => "
outbinary:      db "00000"
db 13,10,0        ; carriage return and null terminator

sectioncode

start!
gosub initplatform

beginfunc
localvar i.d,g.d,b.d

i=0
whileless i,32
callex g,gray_encode,i
callex b,gray_decode,g

callex ,bin2string,i,inbinary,5              ; 5 = number of binary digits
callex ,bin2string,g,graybinary,5
callex ,bin2string,b,outbinary,5

callex ,printhex8,i                  ; display hex value
; because there is no PIO routine for decimals...
callex ,printnt,output.a

i=_+1
wend

endfunc
end

gray_encode:
beginfunc n.d
n=_ xor (n shr 1)
endfunc n
returnex 4                           ; clean off 1 parameter from the stack

gray_decode:
beginfunc n.d
localvar p.d
p=n
whilegreater n,1
n=_ shr 1 > p=_ xor n
wend
endfunc p
returnex 4                           ; clean off 1 parameter from the stack

bin2string:

whilegreater digits,0
digits=_-1
[straddr].b=value shr digits and 1+\$30        ; write an ASCII '0' or '1'
wend

endfunc
returnex \$0C                         ; clean off 3 parameters from the stack```
Output:
```00 : 00000 => 00000 => 00000
01 : 00001 => 00001 => 00001
02 : 00010 => 00011 => 00010
03 : 00011 => 00010 => 00011
04 : 00100 => 00110 => 00100
05 : 00101 => 00111 => 00101
06 : 00110 => 00101 => 00110
07 : 00111 => 00100 => 00111
08 : 01000 => 01100 => 01000
09 : 01001 => 01101 => 01001
0A : 01010 => 01111 => 01010
0B : 01011 => 01110 => 01011
0C : 01100 => 01010 => 01100
0D : 01101 => 01011 => 01101
0E : 01110 => 01001 => 01110
0F : 01111 => 01000 => 01111
10 : 10000 => 11000 => 10000
11 : 10001 => 11001 => 10001
12 : 10010 => 11011 => 10010
13 : 10011 => 11010 => 10011
14 : 10100 => 11110 => 10100
15 : 10101 => 11111 => 10101
16 : 10110 => 11101 => 10110
17 : 10111 => 11100 => 10111
18 : 11000 => 10100 => 11000
19 : 11001 => 10101 => 11001
1A : 11010 => 10111 => 11010
1B : 11011 => 10110 => 11011
1C : 11100 => 10010 => 11100
1D : 11101 => 10011 => 11101
1E : 11110 => 10001 => 11110
1F : 11111 => 10000 => 11111```

OCaml

```let gray_encode b =
b lxor (b lsr 1)

let gray_decode n =
let rec aux p n =
if n = 0 then p
else aux (p lxor n) (n lsr 1)
in
aux n (n lsr 1)

let bool_string len n =
let s = Bytes.make len '0' in
let rec aux i n =
if n land 1 = 1 then Bytes.set s i '1';
if i <= 0 then (Bytes.to_string s)
else aux (pred i) (n lsr 1)
in
aux (pred len) n

let () =
let s = bool_string 5 in
for i = 0 to pred 32 do
let g = gray_encode i in
let b = gray_decode g in
Printf.printf "%2d : %s => %s => %s : %2d\n" i (s i) (s g) (s b) b
done
```

PARI/GP

This code may have exposed a bug in PARI 2.4.4: `apply(Str, 1)` fails. As a workaround I used a closure: `apply(k->Str(k), 1)`.

```toGray(n)=bitxor(n,n>>1);
fromGray(n)=my(k=1,m=n);while(m>>k,n=bitxor(n,n>>k);k+=k);n;
bin(n)=concat(apply(k->Str(k),binary(n)))

for(n=0,31,print(n"\t"bin(n)"\t"bin(g=toGray(n))"\t"fromGray(g)))```
Output:
```0	0	0	0
1	1	1	1
2	10	11	2
3	11	10	3
4	100	110	4
5	101	111	5
6	110	101	6
7	111	100	7
8	1000	1100	8
9	1001	1101	9
10	1010	1111	10
11	1011	1110	11
12	1100	1010	12
13	1101	1011	13
14	1110	1001	14
15	1111	1000	15
16	10000	11000	16
17	10001	11001	17
18	10010	11011	18
19	10011	11010	19
20	10100	11110	20
21	10101	11111	21
22	10110	11101	22
23	10111	11100	23
24	11000	10100	24
25	11001	10101	25
26	11010	10111	26
27	11011	10110	27
28	11100	10010	28
29	11101	10011	29
30	11110	10001	30
31	11111	10000	31```

See Delphi

Perl

```sub bin2gray
{
return \$_[0] ^ (\$_[0] >> 1);
}

sub gray2bin
{
my (\$num)= @_;
my \$bin= \$num;
while( \$num >>= 1 ) {
# a bit ends up flipped iff an odd number of bits to its left is set.
\$bin ^= \$num;   # different from the suggested algorithm;
}                   # avoids using bit mask and explicit bittery
return \$bin;
}

for (0..31) {
my \$gr= bin2gray(\$_);
printf "%d\t%b\t%b\t%b\n", \$_, \$_, \$gr, gray2bin(\$gr);
}
```

Phix

Translation of: Delphi

(turned out to be almost the same as Euphoria)

```with javascript_semantics
function gray_encode(integer n)
return xor_bits(n,floor(n/2))
end function

function gray_decode(integer n)
integer r = 0
while n>0 do
r = xor_bits(r,n)
n = floor(n/2)
end while
return r
end function

integer e,d
puts(1," N  Binary Gray   Decoded\n"&
"==  =====  =====  =======\n")
for i=0 to 31 do
e = gray_encode(i)
d = gray_decode(e)
printf(1,"%2d  %05b  %05b  %2d\n",{i,i,e,d})
end for
```
Output:
``` N  Binary Gray   Decoded
==  =====  =====  =======
0  00000  00000   0
1  00001  00001   1
2  00010  00011   2
3  00011  00010   3
4  00100  00110   4
5  00101  00111   5
6  00110  00101   6
7  00111  00100   7
8  01000  01100   8
9  01001  01101   9
10  01010  01111  10
11  01011  01110  11
12  01100  01010  12
13  01101  01011  13
14  01110  01001  14
15  01111  01000  15
16  10000  11000  16
17  10001  11001  17
18  10010  11011  18
19  10011  11010  19
20  10100  11110  20
21  10101  11111  21
22  10110  11101  22
23  10111  11100  23
24  11000  10100  24
25  11001  10101  25
26  11010  10111  26
27  11011  10110  27
28  11100  10010  28
29  11101  10011  29
30  11110  10001  30
31  11111  10000  31
```

PHP

```<?php

/**
*/

/**
* @param int \$binary
* @return int
*/
function gray_encode(\$binary){
return \$binary ^ (\$binary >> 1);
}

/**
* @param int \$gray
* @return int
*/
function gray_decode(\$gray){
\$binary = \$gray;
while(\$gray >>= 1) \$binary ^= \$gray;
return \$binary;
}

for(\$i=0;\$i<32;\$i++){
\$gray_encoded = gray_encode(\$i);
printf("%2d : %05b => %05b => %05b : %2d \n",\$i, \$i, \$gray_encoded, \$gray_encoded, gray_decode(\$gray_encoded));
}
```
Output:
``` 0 : 00000 => 00000 => 00000 :  0
1 : 00001 => 00001 => 00001 :  1
2 : 00010 => 00011 => 00011 :  2
3 : 00011 => 00010 => 00010 :  3
4 : 00100 => 00110 => 00110 :  4
5 : 00101 => 00111 => 00111 :  5
6 : 00110 => 00101 => 00101 :  6
7 : 00111 => 00100 => 00100 :  7
8 : 01000 => 01100 => 01100 :  8
9 : 01001 => 01101 => 01101 :  9
10 : 01010 => 01111 => 01111 : 10
11 : 01011 => 01110 => 01110 : 11
12 : 01100 => 01010 => 01010 : 12
13 : 01101 => 01011 => 01011 : 13
14 : 01110 => 01001 => 01001 : 14
15 : 01111 => 01000 => 01000 : 15
16 : 10000 => 11000 => 11000 : 16
17 : 10001 => 11001 => 11001 : 17
18 : 10010 => 11011 => 11011 : 18
19 : 10011 => 11010 => 11010 : 19
20 : 10100 => 11110 => 11110 : 20
21 : 10101 => 11111 => 11111 : 21
22 : 10110 => 11101 => 11101 : 22
23 : 10111 => 11100 => 11100 : 23
24 : 11000 => 10100 => 10100 : 24
25 : 11001 => 10101 => 10101 : 25
26 : 11010 => 10111 => 10111 : 26
27 : 11011 => 10110 => 10110 : 27
28 : 11100 => 10010 => 10010 : 28
29 : 11101 => 10011 => 10011 : 29
30 : 11110 => 10001 => 10001 : 30
31 : 11111 => 10000 => 10000 : 31
```

Picat

```go =>
foreach(I in 0..2**5-1)
G = gray_encode1(I),
E = gray_decode1(G),
printf("%2d %6w %2d %6w %6w %2d\n",I,I.to_binary_string,
G, G.to_binary_string,
E.to_binary_string, E)
end,
nl,
println("Checking 2**1300:"),
N2=2**1300,
G2=gray_encode1(N2),
E2=gray_decode1(G2),
% println(g2=G2),
% println(e2=E2),
println(check=cond(N2==E2,same,not_same)),
nl.

gray_encode1(N) = N ^ (N >> 1).
gray_decode1(N) = P =>
P = N,
N := N >> 1,
while (N != 0)
P := P ^ N,
N := N >> 1
end.```
Output:
``` 0      0  0      0      0  0
1      1  1      1      1  1
2     10  3     11     10  2
3     11  2     10     11  3
4    100  6    110    100  4
5    101  7    111    101  5
6    110  5    101    110  6
7    111  4    100    111  7
8   1000 12   1100   1000  8
9   1001 13   1101   1001  9
10   1010 15   1111   1010 10
11   1011 14   1110   1011 11
12   1100 10   1010   1100 12
13   1101 11   1011   1101 13
14   1110  9   1001   1110 14
15   1111  8   1000   1111 15
16  10000 24  11000  10000 16
17  10001 25  11001  10001 17
18  10010 27  11011  10010 18
19  10011 26  11010  10011 19
20  10100 30  11110  10100 20
21  10101 31  11111  10101 21
22  10110 29  11101  10110 22
23  10111 28  11100  10111 23
24  11000 20  10100  11000 24
25  11001 21  10101  11001 25
26  11010 23  10111  11010 26
27  11011 22  10110  11011 27
28  11100 18  10010  11100 28
29  11101 19  10011  11101 29
30  11110 17  10001  11110 30
31  11111 16  10000  11111 31

Checking 2**1300
check = same```

PicoLisp

```(de grayEncode (N)
(bin (x| N (>> 1 N))) )

(de grayDecode (G)
(bin
(pack
(let X 0
(mapcar
'((C) (setq X (x| X (format C))))
(chop G) ) ) ) ) )```

Test:

```(prinl "       Binary     Gray  Decoded")
(for I (range 0 31)
(let G (grayEncode I)
(tab (4 9 9 9) I (bin I) G (grayDecode G)) ) )```
Output:
```       Binary     Gray  Decoded
0        0        0        0
1        1        1        1
2       10       11        2
3       11       10        3
4      100      110        4
5      101      111        5
6      110      101        6
7      111      100        7
8     1000     1100        8
9     1001     1101        9
10     1010     1111       10
11     1011     1110       11
12     1100     1010       12
13     1101     1011       13
14     1110     1001       14
15     1111     1000       15
16    10000    11000       16
17    10001    11001       17
18    10010    11011       18
19    10011    11010       19
20    10100    11110       20
21    10101    11111       21
22    10110    11101       22
23    10111    11100       23
24    11000    10100       24
25    11001    10101       25
26    11010    10111       26
27    11011    10110       27
28    11100    10010       28
29    11101    10011       29
30    11110    10001       30
31    11111    10000       31```

PL/I

```(stringrange, stringsize):
Gray_code: procedure options (main);  /* 15 November 2013 */
declare (bin(0:31), g(0:31), b2(0:31)) bit (5);
declare (c, carry) bit (1);
declare (i, j) fixed binary (7);

bin(0) = '00000'b;
do i = 0 to 31;
if i > 0 then
do;
carry = '1'b;
bin(i) = bin(i-1);
do j = 5 to 1 by -1;
c = substr(bin(i), j, 1) & carry;
substr(bin(i), j, 1) = substr(bin(i), j, 1) ^ carry;
carry = c;
end;
end;
g(i) = bin(i) ^ '0'b || substr(bin(i), 1, 4);
end;
do i = 0 to 31;
substr(b2(i), 1, 1) = substr(g(i), 1, 1);
do j = 2 to 5;
substr(b2(i), j, 1) = substr(g(i), j, 1) ^ substr(bin(i), j-1, 1);
end;
end;

do i = 0 to 31;
put skip edit (i, bin(i), g(i), b2(i)) (f(2), 3(x(1), b));
end;
end Gray_code;```
``` 0 00000 00000 00000
1 00001 00001 00001
2 00010 00011 00010
3 00011 00010 00011
4 00100 00110 00100
5 00101 00111 00101
6 00110 00101 00110
7 00111 00100 00111
8 01000 01100 01000
9 01001 01101 01001
10 01010 01111 01010
11 01011 01110 01011
12 01100 01010 01100
13 01101 01011 01101
14 01110 01001 01110
15 01111 01000 01111
16 10000 11000 10000
17 10001 11001 10001
18 10010 11011 10010
19 10011 11010 10011
20 10100 11110 10100
21 10101 11111 10101
22 10110 11101 10110
23 10111 11100 10111
24 11000 10100 11000
25 11001 10101 11001
26 11010 10111 11010
27 11011 10110 11011
28 11100 10010 11100
29 11101 10011 11101
30 11110 10001 11110
31 11111 10000 11111
```

PL/M

```100H:

BDOS: PROCEDURE (FN, ARG); DECLARE FN BYTE, ARG ADDRESS; GO TO 5; END BDOS;
EXIT: PROCEDURE; GO TO 0; END EXIT;
PRINT: PROCEDURE (S); DECLARE S ADDRESS; CALL BDOS(9,S); END PRINT;

PRINT\$NUM: PROCEDURE (N, BASE);
DECLARE S (17) BYTE INITIAL ('................\$');
DECLARE (N, P) ADDRESS, (DGT BASED P, BASE) BYTE;
P = .S(16);
DIGIT:
P = P - 1;
DGT = N MOD BASE + '0';
N = N / BASE;
IF N > 0 THEN GO TO DIGIT;
CALL PRINT(P);
END PRINT\$NUM;

GRAY\$ENCODE: PROCEDURE (N) BYTE;
DECLARE N BYTE;
RETURN N XOR SHR(N, 1);
END GRAY\$ENCODE;

GRAY\$DECODE: PROCEDURE (N) BYTE;
DECLARE (N, R, I) BYTE;
R = N;
DO WHILE (N := SHR(N,1)) > 0;
R = R XOR N;
END;
RETURN R;
END GRAY\$DECODE;

DECLARE (I, G) BYTE;
DO I = 0 TO 31;
CALL PRINT\$NUM(I, 10);
CALL PRINT(.(':',9,'\$'));
CALL PRINT\$NUM(I, 2);
CALL PRINT(.(9,'=>',9,'\$'));
CALL PRINT\$NUM(G := GRAY\$ENCODE(I), 2);
CALL PRINT(.(9,'=>',9,'\$'));
CALL PRINT\$NUM(GRAY\$DECODE(G), 10);
CALL PRINT(.(10,13,'\$'));
END;
CALL EXIT;
EOF```
Output:
```0:      0       =>      0       =>      0
1:      1       =>      1       =>      1
2:      10      =>      11      =>      2
3:      11      =>      10      =>      3
4:      100     =>      110     =>      4
5:      101     =>      111     =>      5
6:      110     =>      101     =>      6
7:      111     =>      100     =>      7
8:      1000    =>      1100    =>      8
9:      1001    =>      1101    =>      9
10:     1010    =>      1111    =>      10
11:     1011    =>      1110    =>      11
12:     1100    =>      1010    =>      12
13:     1101    =>      1011    =>      13
14:     1110    =>      1001    =>      14
15:     1111    =>      1000    =>      15
16:     10000   =>      11000   =>      16
17:     10001   =>      11001   =>      17
18:     10010   =>      11011   =>      18
19:     10011   =>      11010   =>      19
20:     10100   =>      11110   =>      20
21:     10101   =>      11111   =>      21
22:     10110   =>      11101   =>      22
23:     10111   =>      11100   =>      23
24:     11000   =>      10100   =>      24
25:     11001   =>      10101   =>      25
26:     11010   =>      10111   =>      26
27:     11011   =>      10110   =>      27
28:     11100   =>      10010   =>      28
29:     11101   =>      10011   =>      29
30:     11110   =>      10001   =>      30
31:     11111   =>      10000   =>      31```

Prolog

Codecs

The encoding and decoding predicates are simple and will work with any Prolog that supports bitwise integer operations.

Works with: SWI Prolog
Works with: YAP
```to_gray(N, G) :-
N0 is N >> 1,
G is N xor N0.

from_gray(G, N) :-
( G > 0
->  S is G >> 1,
from_gray(S, N0),
N is G xor N0
;   N is G ).
```

Test Code

A quick driver around this to test it will prove the point. (This test script uses features not available in every Prolog implementation.)

Works with: SWI Prolog
Works with: YAP
```:- use_module(library(apply)).

to_gray(N, G) :-
N0 is N >> 1,
G is N xor N0.

from_gray(G, N) :-
( G > 0
->  S is G >> 1,
from_gray(S, N0),
N is G xor N0
;   N is G ).

make_num(In, Out) :-
atom_to_term(In, Out, _),
integer(Out).

write_record(Number, Gray, Decoded) :-
format('~w~10|~2r~10+~2r~10+~2r~10+~w~n',
[Number, Number, Gray, Decoded, Decoded]).

go :-
setof(N, between(0, 31, N), Numbers),
maplist(to_gray, Numbers, Grays),
maplist(from_gray, Grays, Decodeds),
format('~w~10|~w~10+~w~10+~w~10+~w~n',
['Number', 'Binary', 'Gray', 'Decoded', 'Number']),
format('~w~10|~w~10+~w~10+~w~10+~w~n',
['------', '------', '----', '-------', '------']),
maplist(write_record, Numbers, Grays, Decodeds).
go :- halt(1).
```
Output:

Putting all of this in a file, we execute it, getting the following results:

```% swipl -q -t go -f gray.pl                    # OR: yap -q -z go,halt -f gray.pl
Number    Binary    Gray      Decoded   Number
------    ------    ----      -------   ------
0         0         0         0         0
1         1         1         1         1
2         10        11        10        2
3         11        10        11        3
4         100       110       100       4
5         101       111       101       5
6         110       101       110       6
7         111       100       111       7
8         1000      1100      1000      8
9         1001      1101      1001      9
10        1010      1111      1010      10
11        1011      1110      1011      11
12        1100      1010      1100      12
13        1101      1011      1101      13
14        1110      1001      1110      14
15        1111      1000      1111      15
16        10000     11000     10000     16
17        10001     11001     10001     17
18        10010     11011     10010     18
19        10011     11010     10011     19
20        10100     11110     10100     20
21        10101     11111     10101     21
22        10110     11101     10110     22
23        10111     11100     10111     23
24        11000     10100     11000     24
25        11001     10101     11001     25
26        11010     10111     11010     26
27        11011     10110     11011     27
28        11100     10010     11100     28
29        11101     10011     11101     29
30        11110     10001     11110     30
31        11111     10000     11111     31```

Python

Python: on integers

Works with python integers

```def gray_encode(n):
return n ^ n >> 1

def gray_decode(n):
m = n >> 1
while m:
n ^= m
m >>= 1
return n

if __name__ == '__main__':
print("DEC,   BIN =>  GRAY => DEC")
for i in range(32):
gray = gray_encode(i)
dec = gray_decode(gray)
print(f" {i:>2d}, {i:>05b} => {gray:>05b} => {dec:>2d}")
```
Output:
```DEC,   BIN =>  GRAY => DEC
0, 00000 => 00000 =>  0
1, 00001 => 00001 =>  1
2, 00010 => 00011 =>  2
3, 00011 => 00010 =>  3
4, 00100 => 00110 =>  4
5, 00101 => 00111 =>  5
6, 00110 => 00101 =>  6
7, 00111 => 00100 =>  7
8, 01000 => 01100 =>  8
9, 01001 => 01101 =>  9
10, 01010 => 01111 => 10
11, 01011 => 01110 => 11
12, 01100 => 01010 => 12
13, 01101 => 01011 => 13
14, 01110 => 01001 => 14
15, 01111 => 01000 => 15
16, 10000 => 11000 => 16
17, 10001 => 11001 => 17
18, 10010 => 11011 => 18
19, 10011 => 11010 => 19
20, 10100 => 11110 => 20
21, 10101 => 11111 => 21
22, 10110 => 11101 => 22
23, 10111 => 11100 => 23
24, 11000 => 10100 => 24
25, 11001 => 10101 => 25
26, 11010 => 10111 => 26
27, 11011 => 10110 => 27
28, 11100 => 10010 => 28
29, 11101 => 10011 => 29
30, 11110 => 10001 => 30
31, 11111 => 10000 => 31```

Python: on lists of bits

This example works with lists of discrete binary digits.

First some int<>bin conversion routines
```>>> def int2bin(n):
'From positive integer to list of binary bits, msb at index 0'
if n:
bits = []
while n:
n,remainder = divmod(n, 2)
bits.insert(0, remainder)
return bits
else: return [0]

>>> def bin2int(bits):
'From binary bits, msb at index 0 to integer'
i = 0
for bit in bits:
i = i * 2 + bit
return i
```
Now the bin<>gray converters.

These follow closely the methods in the animation seen here: Converting Between Gray and Binary Codes.

```>>> def bin2gray(bits):
return bits[:1] + [i ^ ishift for i, ishift in zip(bits[:-1], bits[1:])]

>>> def gray2bin(bits):
b = [bits[0]]
for nextb in bits[1:]: b.append(b[-1] ^ nextb)
return b
```
Sample output
```>>> for i in range(16):
print('int:%2i -> bin:%12r -> gray:%12r -> bin:%12r -> int:%2i' %
( i,
int2bin(i),
bin2gray(int2bin(i)),
gray2bin(bin2gray(int2bin(i))),
bin2int(gray2bin(bin2gray(int2bin(i))))
))

int: 0 -> bin:         [0] -> gray:         [0] -> bin:         [0] -> int: 0
int: 1 -> bin:         [1] -> gray:         [1] -> bin:         [1] -> int: 1
int: 2 -> bin:      [1, 0] -> gray:      [1, 1] -> bin:      [1, 0] -> int: 2
int: 3 -> bin:      [1, 1] -> gray:      [1, 0] -> bin:      [1, 1] -> int: 3
int: 4 -> bin:   [1, 0, 0] -> gray:   [1, 1, 0] -> bin:   [1, 0, 0] -> int: 4
int: 5 -> bin:   [1, 0, 1] -> gray:   [1, 1, 1] -> bin:   [1, 0, 1] -> int: 5
int: 6 -> bin:   [1, 1, 0] -> gray:   [1, 0, 1] -> bin:   [1, 1, 0] -> int: 6
int: 7 -> bin:   [1, 1, 1] -> gray:   [1, 0, 0] -> bin:   [1, 1, 1] -> int: 7
int: 8 -> bin:[1, 0, 0, 0] -> gray:[1, 1, 0, 0] -> bin:[1, 0, 0, 0] -> int: 8
int: 9 -> bin:[1, 0, 0, 1] -> gray:[1, 1, 0, 1] -> bin:[1, 0, 0, 1] -> int: 9
int:10 -> bin:[1, 0, 1, 0] -> gray:[1, 1, 1, 1] -> bin:[1, 0, 1, 0] -> int:10
int:11 -> bin:[1, 0, 1, 1] -> gray:[1, 1, 1, 0] -> bin:[1, 0, 1, 1] -> int:11
int:12 -> bin:[1, 1, 0, 0] -> gray:[1, 0, 1, 0] -> bin:[1, 1, 0, 0] -> int:12
int:13 -> bin:[1, 1, 0, 1] -> gray:[1, 0, 1, 1] -> bin:[1, 1, 0, 1] -> int:13
int:14 -> bin:[1, 1, 1, 0] -> gray:[1, 0, 0, 1] -> bin:[1, 1, 1, 0] -> int:14
int:15 -> bin:[1, 1, 1, 1] -> gray:[1, 0, 0, 0] -> bin:[1, 1, 1, 1] -> int:15
>>>
```

Quackery

```  [ dup 1 >> ^ ]        is encodegray (   n --> n )

[ dup
[ dip [ 1 >> ]
over ^
over 0 = until ]
nip ]               is decodegray (   n --> n )

[ [] unrot times
[ 2 /mod char 0 +
rot join swap ]
drop echo\$ ]        is echobin    ( n n -->   )

say "number  encoded  decoded" cr
say "------  -------  -------" cr
32 times
[ sp i^ 5 echobin
say " -> "
i^ encodegray dup 5 echobin
say " -> "
decodegray 5 echobin cr ]```
Output:
```number  encoded  decoded
------  -------  -------
00000 -> 00000 -> 00000
00001 -> 00001 -> 00001
00010 -> 00011 -> 00010
00011 -> 00010 -> 00011
00100 -> 00110 -> 00100
00101 -> 00111 -> 00101
00110 -> 00101 -> 00110
00111 -> 00100 -> 00111
01000 -> 01100 -> 01000
01001 -> 01101 -> 01001
01010 -> 01111 -> 01010
01011 -> 01110 -> 01011
01100 -> 01010 -> 01100
01101 -> 01011 -> 01101
01110 -> 01001 -> 01110
01111 -> 01000 -> 01111
10000 -> 11000 -> 10000
10001 -> 11001 -> 10001
10010 -> 11011 -> 10010
10011 -> 11010 -> 10011
10100 -> 11110 -> 10100
10101 -> 11111 -> 10101
10110 -> 11101 -> 10110
10111 -> 11100 -> 10111
11000 -> 10100 -> 11000
11001 -> 10101 -> 11001
11010 -> 10111 -> 11010
11011 -> 10110 -> 11011
11100 -> 10010 -> 11100
11101 -> 10011 -> 11101
11110 -> 10001 -> 11110
11111 -> 10000 -> 11111```

R

```GrayEncode <- function(binary) {
gray <- substr(binary,1,1)
repeat {
if  (substr(binary,1,1) != substr(binary,2,2)) gray <- paste(gray,"1",sep="")
else gray <- paste(gray,"0",sep="")
binary <- substr(binary,2,nchar(binary))
if (nchar(binary) <=1) {
break
}
}
return (gray)
}
GrayDecode <- function(gray) {
binary <- substr(gray,1,1)
repeat {
if  (substr(binary,nchar(binary),nchar(binary)) != substr(gray,2,2)) binary <- paste(binary ,"1",sep="")
else binary <- paste(binary ,"0",sep="")
gray <- substr(gray,2,nchar(gray))

if (nchar(gray) <=1) {
break
}
}
return (binary)
}
```

Racket

```#lang racket

(define (gray-encode n) (bitwise-xor n (arithmetic-shift n -1)))

(define (gray-decode n)
(letrec ([loop (lambda(g bits)
(if (> bits 0)
(loop (bitwise-xor g bits) (arithmetic-shift bits -1))
g))])
(loop 0 n)))

(define (to-bin n) (format "~b" n))
(define (show-table)
(for ([i (in-range 1 32)])
(printf "~a | ~a | ~a ~n"
(~r i #:min-width 2 #:pad-string "0")
(~a (to-bin(gray-encode i)) #:width 5 #:align 'right #:pad-string "0")
(~a (to-bin (gray-decode(gray-encode i))) #:width 5 #:align 'right #:pad-string "0"))))
```
Output:
```> (show-table)
01 | 00001 | 00001
02 | 00011 | 00010
03 | 00010 | 00011
04 | 00110 | 00100
05 | 00111 | 00101
06 | 00101 | 00110
07 | 00100 | 00111
08 | 01100 | 01000
09 | 01101 | 01001
10 | 01111 | 01010
11 | 01110 | 01011
12 | 01010 | 01100
13 | 01011 | 01101
14 | 01001 | 01110
15 | 01000 | 01111
16 | 11000 | 10000
17 | 11001 | 10001
18 | 11011 | 10010
19 | 11010 | 10011
20 | 11110 | 10100
21 | 11111 | 10101
22 | 11101 | 10110
23 | 11100 | 10111
24 | 10100 | 11000
25 | 10101 | 11001
26 | 10111 | 11010
27 | 10110 | 11011
28 | 10010 | 11100
29 | 10011 | 11101
30 | 10001 | 11110
31 | 10000 | 11111
```

Raku

(formerly Perl 6)

```sub gray_encode ( Int \$n --> Int ) {
return \$n +^ ( \$n +> 1 );
}

sub gray_decode ( Int \$n is copy --> Int ) {
my \$mask = 1 +< (32-2);
return \$n;
}

for ^32 -> \$n {
my \$g = gray_encode(\$n);
my \$d = gray_decode(\$g);
printf "%2d: %5b => %5b => %5b: %2d\n", \$n, \$n, \$g, \$d, \$d;
die if \$d != \$n;
}
```
Output:
``` 0:     0 =>     0 =>     0:  0
1:     1 =>     1 =>     1:  1
2:    10 =>    11 =>    10:  2
3:    11 =>    10 =>    11:  3
4:   100 =>   110 =>   100:  4
5:   101 =>   111 =>   101:  5
6:   110 =>   101 =>   110:  6
7:   111 =>   100 =>   111:  7
8:  1000 =>  1100 =>  1000:  8
9:  1001 =>  1101 =>  1001:  9
10:  1010 =>  1111 =>  1010: 10
11:  1011 =>  1110 =>  1011: 11
12:  1100 =>  1010 =>  1100: 12
13:  1101 =>  1011 =>  1101: 13
14:  1110 =>  1001 =>  1110: 14
15:  1111 =>  1000 =>  1111: 15
16: 10000 => 11000 => 10000: 16
17: 10001 => 11001 => 10001: 17
18: 10010 => 11011 => 10010: 18
19: 10011 => 11010 => 10011: 19
20: 10100 => 11110 => 10100: 20
21: 10101 => 11111 => 10101: 21
22: 10110 => 11101 => 10110: 22
23: 10111 => 11100 => 10111: 23
24: 11000 => 10100 => 11000: 24
25: 11001 => 10101 => 11001: 25
26: 11010 => 10111 => 11010: 26
27: 11011 => 10110 => 11011: 27
28: 11100 => 10010 => 11100: 28
29: 11101 => 10011 => 11101: 29
30: 11110 => 10001 => 11110: 30
31: 11111 => 10000 => 11111: 31
```

Raku distinguishes numeric bitwise operators with a leading + sign, so +< and +> are left and right shift, while +& is a bitwise AND, while +^ is bitwise XOR (here used as part of an assignment metaoperator).

REXX

The leading zeroes for the binary numbers and the gray code could've easily been elided.

```/*REXX program converts decimal number ───► binary ───► gray code ───► binary.*/
parse arg N .                          /*get the optional argument from the CL*/
if N==''  | N==","   then N=31         /*Not specified?  Then use the default.*/
L=max(1,length(strip(x2b(d2x(N)),'L',0)))   /*find the max binary length of N.*/
w=14                                   /*used for the formatting of cell width*/
_=center('binary',w,'─')               /*the  2nd and 4th  part of the header.*/
say center('decimal', w, "─")'►'     _"►"    center('gray code', w, '─')"►"    _
do j=0  to N;     b=right(x2b(d2x(j)),L,0)      /*process   0  ──►  N.   */
g=b2gray(b)                       /*convert binary number to gray code.  */
a=gray2b(g)                       /*convert the gray code to binary.     */
say center(j,w+1)   center(b,w+1)   center(g,w+1)   center(a,w+1)
end   /*j*/
exit                                   /*stick a fork in it,  we're all done. */
/*────────────────────────────────────────────────────────────────────────────*/
b2gray: procedure; parse arg x 1 \$ 2;    do b=2  to length(x)
\$=\$||(substr(x,b-1,1) && substr(x,b,1))
end   /*b*/
return \$
/*────────────────────────────────────────────────────────────────────────────*/
gray2b: procedure; parse arg x 1 \$ 2;    do g=2  to length(x)
\$=\$ || (right(\$,1)    && substr(x,g,1))
end   /*g*/        /*  ↑  */
/*  │  */
return \$           /*this is an eXclusive OR  ►─────────┘  */
```

output   when using the default input:

```───decimal────► ────binary────► ──gray code───► ────binary────
0             00000           00000           00000
1             00001           00001           00001
2             00010           00011           00010
3             00011           00010           00011
4             00100           00110           00100
5             00101           00111           00101
6             00110           00101           00110
7             00111           00100           00111
8             01000           01100           01000
9             01001           01101           01001
10             01010           01111           01010
11             01011           01110           01011
12             01100           01010           01100
13             01101           01011           01101
14             01110           01001           01110
15             01111           01000           01111
16             10000           11000           10000
17             10001           11001           10001
18             10010           11011           10010
19             10011           11010           10011
20             10100           11110           10100
21             10101           11111           10101
22             10110           11101           10110
23             10111           11100           10111
24             11000           10100           11000
25             11001           10101           11001
26             11010           10111           11010
27             11011           10110           11011
28             11100           10010           11100
29             11101           10011           11101
30             11110           10001           11110
31             11111           10000           11111
```

Ring

```# Project : Gray code

pos = 5
see "0 : 00000 => 00000 => 00000" + nl
for n = 1 to 31
res1 = tobase(n, 2, pos)
res2 = tobase(grayencode(n), 2, pos)
res3 = tobase(graydecode(n), 2, pos)
see "" + n + " : " + res1 + " => " + res2 +  " => " + res3 + nl
next

func grayencode(n)
return n ^ (n >> 1)

func graydecode(n)
p = n
while (n = n >> 1)
p = p ^ n
end
return p

func tobase(nr, base, pos)
binary = 0
i = 1
while(nr != 0)
remainder = nr % base
nr = floor(nr/base)
binary= binary + (remainder*i)
i = i*10
end
result = ""
for nr = 1 to  pos - len(string(binary))
result = result + "0"
next
result = result + string(binary)
return result```

Output:

```0 : 00000 => 00000 => 00000
1 : 00001 => 00001 => 00001
2 : 00010 => 00011 => 00010
3 : 00011 => 00010 => 00011
4 : 00100 => 00110 => 00100
5 : 00101 => 00111 => 00101
6 : 00110 => 00101 => 00110
7 : 00111 => 00100 => 00111
8 : 01000 => 01100 => 01000
9 : 01001 => 01101 => 01001
10 : 01010 => 01111 => 01010
11 : 01011 => 01110 => 01011
12 : 01100 => 01010 => 01100
13 : 01101 => 01011 => 01101
14 : 01110 => 01001 => 01110
15 : 01111 => 01000 => 01111
16 : 10000 => 11000 => 10000
17 : 10001 => 11001 => 10001
18 : 10010 => 11011 => 10010
19 : 10011 => 11010 => 10011
20 : 10100 => 11110 => 10100
21 : 10101 => 11111 => 10101
22 : 10110 => 11101 => 10110
23 : 10111 => 11100 => 10111
24 : 11000 => 10100 => 11000
25 : 11001 => 10101 => 11001
26 : 11010 => 10111 => 11010
27 : 11011 => 10110 => 11011
28 : 11100 => 10010 => 11100
29 : 11101 => 10011 => 11101
30 : 11110 => 10001 => 11110
31 : 11111 => 10000 => 11111
```

RPL

Works with: Halcyon Calc version 4.2.7
RPL code Comment
```≪ #1 RR 0 ROT START RL NEXT AND #0 ≠
≫ ´BIT?´ STO

≪ # 1b 0 ROT START RR NEXT OR
≫ ‘STBIT’ STO

≪ DUP SR XOR
≫ ‘→GRAY’ STO

≪ → gray
≪ #0 IF gray 0 BIT? THEN 0 STBIT END
1 RCWS 1 - FOR b
IF gray b BIT? OVER b 1 - BIT? XOR THEN b STBIT END
NEXT
≫  ≫ ‘GRAY→’ STO

≪ { } 0 31 FOR n n R→B →GRAY + NEXT
{ } 1 3 PICK SIZE FOR g OVER g GET GRAY→ + NEXT
≫ 'SHOWG’ STO
```
```( #b n -- boolean )

( #b n -- #b )

( #b -- #g )

( #g -- #b )
b(0) = g(0)
Loop on all other bits
b[i] = g[i] xor b[i-1]

```
Input:
```SHOWG
```
Output:
```2: { # 0b # 1b # 11b # 10b # 110b # 111b # 101b # 100b # 1100b # 1101b # 1111b # 1110b # 1010b # 1011b # 1001b # 1000b # 11000b # 11001b # 11011b # 11010b # 11110b # 11111b # 11101b # 11100b # 10100b # 10101b # 10111b # 10110b # 10010b # 10011b # 10001b # 10000b }
1: { # 0b # 1b # 10b # 11b # 100b # 101b # 110b # 111b # 1000b # 1001b # 1010b # 1011b # 1100b # 1101b # 1110b # 1111b # 10000b # 10001b # 10010b # 10011b # 10100b # 10101b # 10110b # 10111b # 11000b # 11001b # 11010b # 11011b # 11100b # 11101b # 11110b # 11111b }
```

Ruby

Integer#from_gray has recursion so it can use each bit of the answer to compute the next bit.

```class Integer
# Converts a normal integer to a Gray code.
def to_gray
raise Math::DomainError, "integer is negative" if self < 0
self ^ (self >> 1)
end

# Converts a Gray code to a normal integer.
def from_gray
raise Math::DomainError, "integer is negative" if self < 0
recurse = proc do |i|
next 0 if i == 0
o = recurse[i >> 1] << 1
o | (i[0] ^ o[1])
end
recurse[self]
end
end

(0..31).each do |number|
encoded = number.to_gray
decoded = encoded.from_gray
printf "%2d : %5b => %5b => %5b : %2d\n",
number, number, encoded, decoded, decoded
end
```
Output:
``` 0 :     0 =>     0 =>     0 :  0
1 :     1 =>     1 =>     1 :  1
2 :    10 =>    11 =>    10 :  2
3 :    11 =>    10 =>    11 :  3
4 :   100 =>   110 =>   100 :  4
5 :   101 =>   111 =>   101 :  5
6 :   110 =>   101 =>   110 :  6
7 :   111 =>   100 =>   111 :  7
8 :  1000 =>  1100 =>  1000 :  8
9 :  1001 =>  1101 =>  1001 :  9
10 :  1010 =>  1111 =>  1010 : 10
11 :  1011 =>  1110 =>  1011 : 11
12 :  1100 =>  1010 =>  1100 : 12
13 :  1101 =>  1011 =>  1101 : 13
14 :  1110 =>  1001 =>  1110 : 14
15 :  1111 =>  1000 =>  1111 : 15
16 : 10000 => 11000 => 10000 : 16
17 : 10001 => 11001 => 10001 : 17
18 : 10010 => 11011 => 10010 : 18
19 : 10011 => 11010 => 10011 : 19
20 : 10100 => 11110 => 10100 : 20
21 : 10101 => 11111 => 10101 : 21
22 : 10110 => 11101 => 10110 : 22
23 : 10111 => 11100 => 10111 : 23
24 : 11000 => 10100 => 11000 : 24
25 : 11001 => 10101 => 11001 : 25
26 : 11010 => 10111 => 11010 : 26
27 : 11011 => 10110 => 11011 : 27
28 : 11100 => 10010 => 11100 : 28
29 : 11101 => 10011 => 11101 : 29
30 : 11110 => 10001 => 11110 : 30
31 : 11111 => 10000 => 11111 : 31
```

Rust

Works with: Rust version 1.1
```fn gray_encode(integer: u64) -> u64 {
(integer >> 1) ^ integer
}

fn gray_decode(integer: u64) -> u64 {
match integer {
0 => 0,
_ => integer ^ gray_decode(integer >> 1)
}
}

fn main() {
for i in 0..32 {
println!("{:2} {:0>5b} {:0>5b} {:2}", i, i, gray_encode(i),
gray_decode(i));
}

}
```

Scala

Functional style: the Gray code is encoded to, and decoded from a String. The `scanLeft` function takes a sequence (here, of characters) and produces a collection containing cumulative results of applying an operator going left to right. Here the operator is exclusive-or, "^", and we can use "_" placeholders to represent the arguments to the left and right. `tail` removes the "0" we added as the initial accumulator value, and `mkString` turns the collection back into a String, that we can parse into an integer (Integer.parseInt is directly from the java.lang package).

```def encode(n: Int)    = (n ^ (n >>> 1)).toBinaryString
def decode(s: String) = Integer.parseInt( s.scanLeft(0)(_ ^ _.asDigit).tail.mkString , 2)

println("decimal  binary   gray  decoded")
for (i <- 0 to 31; g = encode(i))
println("%7d  %6s  %5s  %7s".format(i, i.toBinaryString, g, decode(g)))
```
Output:
```decimal  binary   gray  decoded
0       0      0        0
1       1      1        1
2      10     11        2
3      11     10        3
4     100    110        4
5     101    111        5
6     110    101        6
7     111    100        7
8    1000   1100        8
9    1001   1101        9
10    1010   1111       10
11    1011   1110       11
12    1100   1010       12
13    1101   1011       13
14    1110   1001       14
15    1111   1000       15
16   10000  11000       16
17   10001  11001       17
18   10010  11011       18
19   10011  11010       19
20   10100  11110       20
21   10101  11111       21
22   10110  11101       22
23   10111  11100       23
24   11000  10100       24
25   11001  10101       25
26   11010  10111       26
27   11011  10110       27
28   11100  10010       28
29   11101  10011       29
30   11110  10001       30
31   11111  10000       31
```

Alternatively, more imperative style:

```def encode(n: Long) = n ^ (n >>> 1)

def decode(n: Long) = {
var g = 0L
var bits = n
while (bits > 0) {
g ^= bits
bits >>= 1
}
g
}

def toBin(n: Long) = ("0000" + n.toBinaryString) takeRight 5

println("decimal  binary   gray  decoded")
for (i <- 0 until 32) {
val g = encode(i)
println("%7d  %6s  %5s  %7s".format(i, toBin(i), toBin(g), decode(g)))
}
```

Improved version of decode using functional style (recursion+local method). No vars and mutations.

```def decode(n:Long)={
def calc(g:Long,bits:Long):Long=if (bits>0) calc(g^bits, bits>>1) else g
calc(0, n)
}
```
Output:
```decimal  binary   gray  decoded
0   00000  00000        0
1   00001  00001        1
2   00010  00011        2
3   00011  00010        3
4   00100  00110        4
5   00101  00111        5
6   00110  00101        6
7   00111  00100        7
8   01000  01100        8
9   01001  01101        9
10   01010  01111       10
11   01011  01110       11
12   01100  01010       12
13   01101  01011       13
14   01110  01001       14
15   01111  01000       15
16   10000  11000       16
17   10001  11001       17
18   10010  11011       18
19   10011  11010       19
20   10100  11110       20
21   10101  11111       21
22   10110  11101       22
23   10111  11100       23
24   11000  10100       24
25   11001  10101       25
26   11010  10111       26
27   11011  10110       27
28   11100  10010       28
29   11101  10011       29
30   11110  10001       30
31   11111  10000       31
```

Seed7

The type bin32 is intended for bit operations that are not defined for integer values. Bin32 is used for the exclusive or (><) operation.

```\$ include "seed7_05.s7i";
include "bin32.s7i";

const func integer: grayEncode (in integer: n) is
return ord(bin32(n) >< bin32(n >> 1));

const func integer: grayDecode (in var integer: n) is func
result
var integer: decoded is 0;
begin
decoded := n;
while n > 1 do
n >>:= 1;
decoded := ord(bin32(decoded) >< bin32(n));
end while;
end func;

const proc: main is func
local
var integer: i is 0;
begin
for i range 0 to 32 do
writeln(i <& " => " <& grayEncode(i) radix 2 lpad0 6 <& " => " <& grayDecode(grayEncode(i)));
end for;
end func;```
Output:
```0 => 000000 => 0
1 => 000001 => 1
2 => 000011 => 2
3 => 000010 => 3
4 => 000110 => 4
5 => 000111 => 5
6 => 000101 => 6
7 => 000100 => 7
8 => 001100 => 8
9 => 001101 => 9
10 => 001111 => 10
11 => 001110 => 11
12 => 001010 => 12
13 => 001011 => 13
14 => 001001 => 14
15 => 001000 => 15
16 => 011000 => 16
17 => 011001 => 17
18 => 011011 => 18
19 => 011010 => 19
20 => 011110 => 20
21 => 011111 => 21
22 => 011101 => 22
23 => 011100 => 23
24 => 010100 => 24
25 => 010101 => 25
26 => 010111 => 26
27 => 010110 => 27
28 => 010010 => 28
29 => 010011 => 29
30 => 010001 => 30
31 => 010000 => 31
32 => 110000 => 32
```

SenseTalk

Note: Inputs and outputs as strings

```function BinaryToGray param1
set theResult to ""
repeat for each character in param1
if the counter is equal to 1
put it after theResult
else
if it is equal to previousCharacter
put "0" after theResult
else
put "1" after theResult
end if
end if
set previousCharacter to it
end repeat
return theResult
end BinaryToGray

function GrayToBinary param1
set theResult to param1
repeat for each character in param1
if the counter is equal to 1
next repeat
end if
set currentChar to it
set lastCharInd to the counter - 1
repeat for lastCharInd down to 1
if currentChar is equal to character it of param1
set currentChar to "0"
else
set currentChar to "1"
end if
end repeat
set character the counter of theResult to currentChar
end repeat

return theResult
end GrayToBinary```
Output:
```binary => gray => decoded
00000 => 00000 => 00000
00001 => 00001 => 00001
00010 => 00011 => 00010
00011 => 00010 => 00011
00100 => 00110 => 00100
00101 => 00111 => 00101
00110 => 00101 => 00110
00111 => 00100 => 00111
01000 => 01100 => 01000
01001 => 01101 => 01001
01010 => 01111 => 01010
01011 => 01110 => 01011
01100 => 01010 => 01100
01101 => 01011 => 01101
01110 => 01001 => 01110
01111 => 01000 => 01111
10000 => 11000 => 10000
10001 => 11001 => 10001
10010 => 11011 => 10010
10011 => 11010 => 10011
10100 => 11110 => 10100
10101 => 11111 => 10101
10110 => 11101 => 10110
10111 => 11100 => 10111
11000 => 10100 => 11000
11001 => 10101 => 11001
11010 => 10111 => 11010
11011 => 10110 => 11011
11100 => 10010 => 11100
11101 => 10011 => 11101
11110 => 10001 => 11110
11111 => 10000 => 11111
101001110101111 => 111101001111000 => 101001110101111
101001110110000 => 111101001101000 => 101001110110000
101001110110001 => 111101001101001 => 101001110110001
101001110110010 => 111101001101011 => 101001110110010
```

Sidef

Translation of: Perl
```func bin2gray(n) {
n ^ (n >> 1)
}

func gray2bin(num) {
var bin = num
while (num >>= 1) { bin ^= num }
return bin
}

{ |i|
var gr = bin2gray(i)
printf("%d\t%b\t%b\t%b\n", i, i, gr, gray2bin(gr))
} << ^32
```
Output:
```0	0	0	0
1	1	1	1
2	10	11	10
3	11	10	11
4	100	110	100
5	101	111	101
6	110	101	110
7	111	100	111
8	1000	1100	1000
9	1001	1101	1001
10	1010	1111	1010
11	1011	1110	1011
12	1100	1010	1100
13	1101	1011	1101
14	1110	1001	1110
15	1111	1000	1111
16	10000	11000	10000
17	10001	11001	10001
18	10010	11011	10010
19	10011	11010	10011
20	10100	11110	10100
21	10101	11111	10101
22	10110	11101	10110
23	10111	11100	10111
24	11000	10100	11000
25	11001	10101	11001
26	11010	10111	11010
27	11011	10110	11011
28	11100	10010	11100
29	11101	10011	11101
30	11110	10001	11110
31	11111	10000	11111
```

SparForte

As a structured script.

```#!/usr/local/bin/spar
pragma annotate( summary, "gray" );
pragma annotate( description, "Gray code is a form of binary encoding where " );
pragma annotate( description, "transitions between consecutive numbers differ by" );
pragma annotate( description, "only one bit. Create functions to encode a number" );
pragma annotate( description, "to and decode a number from Gray code. Display the" );
pragma annotate( description, "normal binary representations, Gray code" );
pragma annotate( description, "representations, and decoded Gray code values for all" );
pragma annotate( description, "5-bit binary numbers (0-31 inclusive, leading 0's not" );
pragma annotate( description, "necessary).  There are many possible Gray codes. The" );
pragma annotate( description, "following encodes what is called 'binary reflected" );
pragma annotate( description, "Gray code.'"  );
pragma annotate( see_also, "http://rosettacode.org/wiki/Gray_code" );
pragma annotate( author, "Ken O. Burtch" );

pragma restriction( no_external_commands );

procedure gray is

bits : constant natural := 5;
subtype nat_values is natural;

function encode (binary : nat_values) return nat_values is
begin
return binary xor numerics.shift_right (binary, 1);
end encode;

-- SparForte 1.3 cannot print to numbers to different bases but we
-- we can write a function

function intToBin( nat_value : nat_values ) return string is
result : string;
v      : nat_values := nat_value;
begin
if v = 0 then
result := '0';
else
while v > 0 loop
if (v and 1) = 1 then
result := '1' & @;
else
result := '0' & @;
end if;
v := numerics.shift_right( @, 1 );
end loop;
end if;
return "2#" & result & "#";
end intToBin;

function decode (gray : nat_values) return nat_values is
binary : nat_values;
bit    : nat_values;
mask   : nat_values := 2 ** (bits - 1);
begin
binary := bit;
for i in 2 .. bits loop
bit    := numerics.shift_right (@, 1);
bit    := (gray and mask) xor @;
binary := @ + bit;
end loop;
return binary;
end decode;

j       : nat_values;
ibinstr : string;
jbinstr : string;

begin
put_line ("Number   Binary     Gray Decoded");
for i in 0..31 loop
j := encode (i);
-- convert i and j to base 2 representation
ibinstr := intToBin(i);
jbinstr := intToBin(j);
-- for binary strings, right-justify
put (i, "ZZZZZ9" ) @
(' ' & strings.insert( ibinstr, 1, (8-strings.length(ibinstr)) * ' ' ) ) @
(' ' & strings.insert( jbinstr, 1, (8-strings.length(jbinstr)) * ' ' ) ) @
( "  " ) @ (decode (j), "ZZZZZ9" );
new_line;
end loop;
end gray;
```

SQL

```DECLARE @binary AS NVARCHAR(MAX) = '001010111'
DECLARE @gray AS NVARCHAR(MAX) = ''

--Encoder
SET @gray = LEFT(@binary, 1)

WHILE LEN(@binary) > 1
BEGIN
IF LEFT(@binary, 1) != SUBSTRING(@binary, 2, 1)
SET @gray = @gray + '1'
ELSE
SET @gray = @gray + '0'

SET @binary = RIGHT(@binary, LEN(@binary) - 1)
END

SELECT @gray

--Decoder
SET @binary = LEFT(@gray, 1)

WHILE LEN(@gray) > 1
BEGIN
IF RIGHT(@binary, 1) != SUBSTRING(@gray, 2, 1)
SET @binary = @binary + '1'
ELSE
SET @binary = @binary + '0'

SET @gray = RIGHT(@gray, LEN(@gray) - 1)
END

SELECT @binary
```

Standard ML

```fun gray_encode b =
Word.xorb (b, Word.>> (b, 0w1))

fun gray_decode n =
let
fun aux (p, n) =
if n = 0w0 then p
else aux (Word.xorb (p, n), Word.>> (n, 0w1))
in
aux (n, Word.>> (n, 0w1))
end;

val s = Word.fmt StringCvt.BIN;
fun aux i =
if i = 0w32 then
()
else
let
val g = gray_encode i
val b = gray_decode g
in
print (Word.toString i ^ " :\t" ^ s i ^ " => " ^ s g ^ " => " ^ s b ^ "\t: " ^ Word.toString b ^ "\n");
aux (i + 0w1)
end;
aux 0w0
```

Swift

```func grayEncode(_ i: Int) -> Int {
return (i >> 1) ^ i
}

func grayDecode(_ i: Int) -> Int {
switch i {
case 0:
return 0
case _:
return i ^ grayDecode(i >> 1)
}
}

for i in 0..<32 {
let iStr = String(i, radix: 2)
let encode = grayEncode(i)
let encodeStr = String(encode, radix: 2)
let decode = grayDecode(encode)
let decodeStr = String(decode, radix: 2)

print("\(i) (\(iStr)) => \(encode) (\(encodeStr)) => \(decode) (\(decodeStr))")
}
```
Output:
```0 (0) => 0 (0) => 0 (0)
1 (1) => 1 (1) => 1 (1)
2 (10) => 3 (11) => 2 (10)
3 (11) => 2 (10) => 3 (11)
4 (100) => 6 (110) => 4 (100)
5 (101) => 7 (111) => 5 (101)
6 (110) => 5 (101) => 6 (110)
7 (111) => 4 (100) => 7 (111)
8 (1000) => 12 (1100) => 8 (1000)
9 (1001) => 13 (1101) => 9 (1001)
10 (1010) => 15 (1111) => 10 (1010)
11 (1011) => 14 (1110) => 11 (1011)
12 (1100) => 10 (1010) => 12 (1100)
13 (1101) => 11 (1011) => 13 (1101)
14 (1110) => 9 (1001) => 14 (1110)
15 (1111) => 8 (1000) => 15 (1111)
16 (10000) => 24 (11000) => 16 (10000)
17 (10001) => 25 (11001) => 17 (10001)
18 (10010) => 27 (11011) => 18 (10010)
19 (10011) => 26 (11010) => 19 (10011)
20 (10100) => 30 (11110) => 20 (10100)
21 (10101) => 31 (11111) => 21 (10101)
22 (10110) => 29 (11101) => 22 (10110)
23 (10111) => 28 (11100) => 23 (10111)
24 (11000) => 20 (10100) => 24 (11000)
25 (11001) => 21 (10101) => 25 (11001)
26 (11010) => 23 (10111) => 26 (11010)
27 (11011) => 22 (10110) => 27 (11011)
28 (11100) => 18 (10010) => 28 (11100)
29 (11101) => 19 (10011) => 29 (11101)
30 (11110) => 17 (10001) => 30 (11110)
31 (11111) => 16 (10000) => 31 (11111)```

Tcl

```namespace eval gray {
proc encode n {
expr {\$n ^ \$n >> 1}
}
proc decode n {
# Compute some bit at least as large as MSB
set i [expr {2**int(ceil(log(\$n+1)/log(2)))}]
set b [set bprev [expr {\$n & \$i}]]
while {[set i [expr {\$i >> 1}]]} {
set b [expr {\$b | [set bprev [expr {\$n & \$i ^ \$bprev >> 1}]]}]
}
return \$b
}
}
```

Demonstrating:

```package require Tcl 8.6; # Just for %b format specifier
for {set i 0} {\$i < 32} {incr i} {
set g [gray::encode \$i]
set b [gray::decode \$g]
puts [format "%2d: %05b => %05b => %05b : %2d" \$i \$i \$g \$b \$b]
}
```
Output:
``` 0: 00000 => 00000 => 00000 :  0
1: 00001 => 00001 => 00001 :  1
2: 00010 => 00011 => 00010 :  2
3: 00011 => 00010 => 00011 :  3
4: 00100 => 00110 => 00100 :  4
5: 00101 => 00111 => 00101 :  5
6: 00110 => 00101 => 00110 :  6
7: 00111 => 00100 => 00111 :  7
8: 01000 => 01100 => 01000 :  8
9: 01001 => 01101 => 01001 :  9
10: 01010 => 01111 => 01010 : 10
11: 01011 => 01110 => 01011 : 11
12: 01100 => 01010 => 01100 : 12
13: 01101 => 01011 => 01101 : 13
14: 01110 => 01001 => 01110 : 14
15: 01111 => 01000 => 01111 : 15
16: 10000 => 11000 => 10000 : 16
17: 10001 => 11001 => 10001 : 17
18: 10010 => 11011 => 10010 : 18
19: 10011 => 11010 => 10011 : 19
20: 10100 => 11110 => 10100 : 20
21: 10101 => 11111 => 10101 : 21
22: 10110 => 11101 => 10110 : 22
23: 10111 => 11100 => 10111 : 23
24: 11000 => 10100 => 11000 : 24
25: 11001 => 10101 => 11001 : 25
26: 11010 => 10111 => 11010 : 26
27: 11011 => 10110 => 11011 : 27
28: 11100 => 10010 => 11100 : 28
29: 11101 => 10011 => 11101 : 29
30: 11110 => 10001 => 11110 : 30
31: 11111 => 10000 => 11111 : 31
```

TypeScript

Translation of: DWScript
```// Gray code

function encode(v: number): number {
return v ^ (v >> 1);
}

function decode(v: number): number {
var result = 0;
while (v > 0) {
result ^= v;
v >>= 1;
}
return result;
}

console.log("decimal  binary   gray    decoded");
for (var i = 0; i <= 31; i++) {
var g = encode(i);
var d = decode(g);
process.stdout.write(
"  " + i.toString().padStart(2, " ") +
"     " + i.toString(2).padStart(5, "0") +
"   " + g.toString(2).padStart(5, "0") +
"   " + d.toString(2).padStart(5, "0") +
"  " + d.toString().padStart(2, " "));
console.log();
}
```
Output:
```decimal  binary   gray    decoded
0     00000   00000   00000   0
1     00001   00001   00001   1
2     00010   00011   00010   2
3     00011   00010   00011   3
4     00100   00110   00100   4
5     00101   00111   00101   5
6     00110   00101   00110   6
7     00111   00100   00111   7
8     01000   01100   01000   8
9     01001   01101   01001   9
10     01010   01111   01010  10
11     01011   01110   01011  11
12     01100   01010   01100  12
13     01101   01011   01101  13
14     01110   01001   01110  14
15     01111   01000   01111  15
16     10000   11000   10000  16
17     10001   11001   10001  17
18     10010   11011   10010  18
19     10011   11010   10011  19
20     10100   11110   10100  20
21     10101   11111   10101  21
22     10110   11101   10110  22
23     10111   11100   10111  23
24     11000   10100   11000  24
25     11001   10101   11001  25
26     11010   10111   11010  26
27     11011   10110   11011  27
28     11100   10010   11100  28
29     11101   10011   11101  29
30     11110   10001   11110  30
31     11111   10000   11111  31
```

Ursala

```#import std
#import nat

xor = ~&Y&& not ~&B                  # either and not both

btog = xor*+ zipp0@iitBX             # map xor over the argument zipped with its shift

gtob = ~&y+ =><0> ^C/xor@lrhPX ~&r   # fold xor over the next input with previous output

#show+

test = mat` * 2-\$'01'***K7xSS pad0*K7 <.~&,btog,gtob+ btog>* iota32```
Output:
```00000 00000 00000
00001 00001 00001
00010 00011 00010
00011 00010 00011
00100 00110 00100
00101 00111 00101
00110 00101 00110
00111 00100 00111
01000 01100 01000
01001 01101 01001
01010 01111 01010
01011 01110 01011
01100 01010 01100
01101 01011 01101
01110 01001 01110
01111 01000 01111
10000 11000 10000
10001 11001 10001
10010 11011 10010
10011 11010 10011
10100 11110 10100
10101 11111 10101
10110 11101 10110
10111 11100 10111
11000 10100 11000
11001 10101 11001
11010 10111 11010
11011 10110 11011
11100 10010 11100
11101 10011 11101
11110 10001 11110
11111 10000 11111
```

Verilog

Function Based Approach:

````timescale 1ns/10ps
`default_nettype wire

module graytestbench;

localparam aw = 8;

function [aw:0] binn_to_gray;
input  [aw:0] binn;
begin :b2g
binn_to_gray = binn ^ (binn >> 1);
end
endfunction

function [aw:0] gray_to_binn;
input [aw:0] gray;
begin :g2b
reg   [aw:0] binn;
integer      i;

for(i=0; i <= aw; i = i+1) begin
binn[i] = ^(gray >> i);
end
gray_to_binn = binn;
end
endfunction

initial begin :test_graycode
integer   ii;
reg[aw:0] gray;
reg[aw:0] binn;

for(ii=0; ii < 10; ii=ii+1) begin
gray = binn_to_gray(ii[aw:0]);
binn = gray_to_binn(gray);

\$display("test_graycode: i:%x gray:%x:%b binn:%x", ii[aw:0], gray, gray, binn);
end

\$stop;
end

endmodule

`default_nettype none
```

Module Based Approach:

````timescale 1ns/10ps
`default_nettype none

module gray_counter #(
parameter SIZE=4
) (
input  wire            i_clk,
input  wire            i_rst_n,

input  wire            i_inc,

output wire [SIZE-1:0] o_count_gray,
output wire [SIZE-1:0] o_count_binn
);

reg [SIZE-1:0] state_gray;
reg [SIZE-1:0] state_binn;
reg [SIZE-1:0] logic_gray;
reg [SIZE-1:0] logic_binn;

always @(posedge i_clk or negedge i_rst_n) begin
if (!i_rst_n) begin
state_gray <= 0;
state_binn <= 0;
end
else begin
state_gray <= logic_gray;
state_binn <= logic_binn;
end
end

always @* begin
logic_binn = state_binn + i_inc;
logic_gray = (logic_binn>>1) ^ logic_binn;
end

assign o_count_gray = state_gray;
assign o_count_binn = state_binn;

endmodule

`default_nettype none
```

VHDL

Combinatorial encoder:

```LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity b2g is
port(  bin  : in  std_logic_vector (4 downto 0);
gray : out std_logic_vector (4 downto 0)
);
end b2g ;

architecture rtl of b2g is
constant N : integer := bin'high;
begin
gray <= bin(n) & ( bin(N-1 downto 0) xor bin(N downto 1));
end architecture rtl;
```

Combinatorial decoder:

```LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity g2b is
port(  gray : in     std_logic_vector (4 downto 0);
bin  : buffer std_logic_vector (4 downto 0)
);
end g2b ;

architecture rtl of g2b is
constant N : integer := bin'high;
begin
bin(N) <= gray(N);
gen_xor: for i in N-1 downto 0 generate
bin(i) <= gray(i) xor bin(i+1);
end generate;
end architecture rtl;
```

V (Vlang)

Translation of: Go

Binary reflected, as described in the task. Reading down through the solutions, the Euphoria decode algorithm caught my eye as being concise and easy to read.

```fn enc(b int) int {
return b ^ b>>1
}

fn dec(gg int) int {
mut b := 0
mut g := gg
for ; g != 0; g >>= 1 {
b ^= g
}
return b
}

fn main() {
println("decimal  binary   gray    decoded")
for b := 0; b < 32; b++ {
g := enc(b)
d := dec(g)
println("  \${b:2}     \${b:05b}   \${g:05b}   \${d:05b}  \${d:2}")
}
}
```
Output:
`Same as Go.`

Wren

Library: Wren-fmt
```import "./fmt" for Fmt

var toGray = Fn.new { |n| n ^ (n>>1) }

var fromGray = Fn.new { |g|
var b = 0
while (g != 0) {
b = b ^ g
g = g >> 1
}
return b
}

System.print("decimal  binary  gray    decoded")
for (b in 0..31) {
System.write("  %(Fmt.d(2, b))     %(Fmt.bz(5, b))")
var g = toGray.call(b)
System.write("   %(Fmt.bz(5, g))")
System.print("   %(Fmt.bz(5, fromGray.call(g)))")
}
```
Output:
```decimal  binary  gray    decoded
0     00000   00000   00000
1     00001   00001   00001
2     00010   00011   00010
3     00011   00010   00011
4     00100   00110   00100
5     00101   00111   00101
6     00110   00101   00110
7     00111   00100   00111
8     01000   01100   01000
9     01001   01101   01001
10     01010   01111   01010
11     01011   01110   01011
12     01100   01010   01100
13     01101   01011   01101
14     01110   01001   01110
15     01111   01000   01111
16     10000   11000   10000
17     10001   11001   10001
18     10010   11011   10010
19     10011   11010   10011
20     10100   11110   10100
21     10101   11111   10101
22     10110   11101   10110
23     10111   11100   10111
24     11000   10100   11000
25     11001   10101   11001
26     11010   10111   11010
27     11011   10110   11011
28     11100   10010   11100
29     11101   10011   11101
30     11110   10001   11110
31     11111   10000   11111
```

XPL0

```include c:\cxpl\codes;          \intrinsic 'code' declarations

func Gray2Bin(N);               \Convert N from Gray code to binary
int N;
int S;
[S:= 1;
repeat  N:= N>>S | N;
S:= S<<1;
until   S=32;
return N;
]; \Gray2Bin

func Bin2Gray(N);               \Convert N from binary to Gray code
int N;
return N>>1 | N;

proc BinOut(N);                 \Output N in binary
int N;
int R;
[R:= N&1;
N:= N>>1;
if N then BinOut(N);
ChOut(0, R+^0);
]; \BinOut

int N, G;
[for N:= 0 to 31 do
[BinOut(N); ChOut(0, 9\tab\);
G:= Bin2Gray(N);
BinOut(G);  ChOut(0, 9\tab\);
BinOut(Gray2Bin(G));  CrLf(0);
];
]```
Output:
```0       0       0
1       1       1
10      11      10
11      10      11
100     110     100
101     111     101
110     101     110
111     100     111
1000    1100    1000
1001    1101    1001
1010    1111    1010
1011    1110    1011
1100    1010    1100
1101    1011    1101
1110    1001    1110
1111    1000    1111
10000   11000   10000
10001   11001   10001
10010   11011   10010
10011   11010   10011
10100   11110   10100
10101   11111   10101
10110   11101   10110
10111   11100   10111
11000   10100   11000
11001   10101   11001
11010   10111   11010
11011   10110   11011
11100   10010   11100
11101   10011   11101
11110   10001   11110
11111   10000   11111
```

zkl

```fcn grayEncode(n){ n.bitXor(n.shiftRight(1)) }
fcn grayDecode(g){ b:=g; while(g/=2){ b=b.bitXor(g) } b }```
```foreach n in ([0..31]){
g:=grayEncode(n); b:=grayDecode(g);
println("%2d(%05.2B) --> %2d(%05.2B) --> %2d(%05.2B)".fmt(n,n,g,g,b,b));
}```
Output:
``` 0(00000) -->  0(00000) -->  0(00000)
1(00001) -->  1(00001) -->  1(00001)
2(00010) -->  3(00011) -->  2(00010)
3(00011) -->  2(00010) -->  3(00011)
4(00100) -->  6(00110) -->  4(00100)
5(00101) -->  7(00111) -->  5(00101)
6(00110) -->  5(00101) -->  6(00110)
7(00111) -->  4(00100) -->  7(00111)
8(01000) --> 12(01100) -->  8(01000)
9(01001) --> 13(01101) -->  9(01001)
10(01010) --> 15(01111) --> 10(01010)
11(01011) --> 14(01110) --> 11(01011)
12(01100) --> 10(01010) --> 12(01100)
13(01101) --> 11(01011) --> 13(01101)
14(01110) -->  9(01001) --> 14(01110)
15(01111) -->  8(01000) --> 15(01111)
16(10000) --> 24(11000) --> 16(10000)
17(10001) --> 25(11001) --> 17(10001)
18(10010) --> 27(11011) --> 18(10010)
19(10011) --> 26(11010) --> 19(10011)
20(10100) --> 30(11110) --> 20(10100)
21(10101) --> 31(11111) --> 21(10101)
22(10110) --> 29(11101) --> 22(10110)
23(10111) --> 28(11100) --> 23(10111)
24(11000) --> 20(10100) --> 24(11000)
25(11001) --> 21(10101) --> 25(11001)
26(11010) --> 23(10111) --> 26(11010)
27(11011) --> 22(10110) --> 27(11011)
28(11100) --> 18(10010) --> 28(11100)
29(11101) --> 19(10011) --> 29(11101)
30(11110) --> 17(10001) --> 30(11110)
31(11111) --> 16(10000) --> 31(11111)
```