Function composition

From Rosetta Code
Revision as of 12:23, 25 June 2022 by rosettacode>Roboticist-Tav (→‎{{header|Diego}}: added Diego entry)
Task
Function composition
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Create a function, compose,   whose two arguments   f   and   g,   are both functions with one argument.


The result of compose is to be a function of one argument, (lets call the argument   x),   which works like applying function   f   to the result of applying function   g   to   x.


Example
 compose(f, g) (x) = f(g(x))


Reference: Function composition

Hint: In some languages, implementing compose correctly requires creating a closure.

11l

Translation of: Python

<lang 11l>V compose = (f, g) -> (x -> @f(@g(x))) V sin_asin = compose(x -> sin(x), x -> asin(x)) print(sin_asin(0.5))</lang>

Output:
0.5

ActionScript

ActionScript supports closures, making function composition very straightforward. <lang ActionScript>function compose(f:Function, g:Function):Function { return function(x:Object) {return f(g(x));}; } function test() { trace(compose(Math.atan, Math.tan)(0.5)); }</lang>

Ada

The interface of a generic functions package. The package can be instantiated with any type that has value semantics. Functions are composed using the operation '*'. The same operation applied to an argument evaluates it there: f * x. Functions can be composed with pointers to Ada functions. (In Ada functions are not first-class): <lang ada>generic

  type Argument is private;      

package Functions is

  type Primitive_Operation is not null
     access function (Value : Argument) return Argument;
  type Func (<>) is private;
  function "*" (Left : Func; Right : Argument) return Argument;
  function "*" (Left : Func; Right : Primitive_Operation) return Func;
  function "*" (Left, Right : Primitive_Operation) return Func;
  function "*" (Left, Right : Func) return Func;

private

  type Func is array (Positive range <>) of Primitive_Operation;

end Functions;</lang> Here is an implementation; <lang ada>package body Functions is

  function "*" (Left : Func; Right : Argument) return Argument is
  Result : Argument := Right;
  begin
     for I in reverse Left'Range loop
        Result := Left (I) (Result);
     end loop;
     return Result;
  end "*";
  function "*" (Left, Right : Func) return Func is
  begin
     return Left & Right;
  end "*";
  function "*" (Left : Func; Right : Primitive_Operation) return Func is
  begin
     return Left & (1 => Right);
  end "*";
  
  function "*" (Left, Right : Primitive_Operation) return Func is
  begin
     return (Left, Right);
  end "*";

end Functions;</lang> The following is an example of use: <lang ada>with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions; with Ada.Text_IO; use Ada.Text_IO; with Functions;

procedure Test_Compose is

  package Float_Functions is new Functions (Float);
  use Float_Functions;
  Sin_Arcsin : Func := Sin'Access * Arcsin'Access;

begin

  Put_Line (Float'Image (Sin_Arcsin * 0.5));

end Test_Compose;</lang>

Output:
 5.00000E-01

Agda

<lang Agda>compose : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}

       → (B → C)
       → (A → B)
       → A → C

compose f g x = f (g x)</lang>

Aikido

<lang aikido> import math

function compose (f, g) {

   return function (x) { return f(g(x)) }

}

var func = compose(Math.sin, Math.asin) println (func(0.5)) // 0.5

</lang>

Aime

<lang aime>compose_i(,,) {

   ($0)(($1)($2));

}

compose(,) {

   compose_i.apply($0, $1);

}

double(real a) {

   2 * a;

}

square(real a) {

   a * a;

}

main(void) {

   o_(compose(square, double)(40), "\n");
   0;

}</lang>

Output:
6400

ALGOL 68

Translation of: Python
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386

Note: Returning PROC (REAL x)REAL: f1(f2(x)) from a function apparently violates standard ALGOL 68's scoping rules. ALGOL 68G warns about this during parsing, and then rejects during runtime. <lang algol68>MODE F = PROC(REAL)REAL; # ALGOL 68 is strong typed #

  1. As a procedure for real to real functions #

PROC compose = (F f, g)F: (REAL x)REAL: f(g(x));

OP (F,F)F O = compose; # or an OPerator that can be overloaded #

  1. Example use: #

F sin arc sin = compose(sin, arc sin); print((sin arc sin(0.5), (sin O arc sin)(0.5), new line))</lang>

Output:
+.500000000000000e +0 +.500000000000000e +0

ALGOL 68 is a stack based language, and the following apparently does not violate it's scoping rules.

Works with: ALGOL 68 version Standard - Jan 1975 Boston SC allowed Partial Parametrization.
Works with: ALGOL 68G version Any - tested with release mk15-0.8b.fc9.i386

<lang algol68>MODE F = PROC(REAL)REAL; # ALGOL 68 is strong typed #

  1. As a procedure for real to real functions #

PROC compose = (F f, g)F: ((F f2, g2, REAL x)REAL: f2(g2(x)))(f, g, ); # Curry #

PRIO O = 7; OP (F,F)F O = compose; # or an OPerator that can be overloaded #

  1. Example use: #

F sin arc sin = compose(sin, arc sin); print((sin arc sin(0.5), (sin O arc sin)(0.5), new line))</lang>

AntLang

<lang AntLang>/Apply g to exactly one argument compose1: {f: x; g: y; {f[g[x]]}} /Extra: apply to multiple arguments compose: {f: x; g: y; {f[g apply args]}}</lang>

AppleScript

<lang applescript>-- Compose two functions where each function is -- a script object with a call(x) handler. on compose(f, g)

   script
       on call(x)
           f's call(g's call(x))
       end call
   end script

end compose

script sqrt

   on call(x)
       x ^ 0.5
   end call

end script

script twice

   on call(x)
       2 * x
   end call

end script

compose(sqrt, twice)'s call(32) -- Result: 8.0</lang>

A limitation of AppleScript's handlers (functions), which can be seen in the example above, is that they are not in themselves composable first class objects, and have to be lifted into script objects before they can be composed or passed as arguments.

We can generalise this lifting with an mReturn or mInject function, which injects a handler into a script for us. This allows use to write higher-order composition and pipelining functions which take a pair (or sequence of) ordinary handlers as arguments, and return a first class script object. (We can also use mReturn to equip AppleScript with map and fold functions which take a list and an ordinary handler as arguments).

<lang applescript>------------ COMPOSITION OF A LIST OF FUNCTIONS ----------

-- compose :: [(a -> a)] -> (a -> a) on compose(fs)

   script
       on |λ|(x)
           script go
               on |λ|(a, f)
                   mReturn(f)'s |λ|(a)
               end |λ|
           end script
           
           foldr(go, x, fs)
       end |λ|
   end script

end compose



TEST -------------------------

on root(x)

   x ^ 0.5

end root

on succ(x)

   x + 1

end succ

on half(x)

   x / 2

end half

on run

   tell compose({half, succ, root})
       
       |λ|(5)
       
   end tell
   --> 1.61803398875

end run



GENERIC FUNCTIONS -------------------

-- foldr :: (a -> b -> a) -> a -> [b] -> a on foldr(f, startValue, xs)

   tell mReturn(f)
       set v to startValue
       set lng to length of xs
       repeat with i from lng to 1 by -1
           set v to |λ|(v, item i of xs, i, xs)
       end repeat
       return v
   end tell

end foldr

-- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Script on mReturn(f)

   if class of f is script then
       f
   else
       script
           property |λ| : f
       end script
   end if

end mReturn</lang>

Output:
1.61803398875

Applesoft BASIC

<lang ApplesoftBasic>10 F$ = "SIN" 20 DEF FN A(P) = ATN(P/SQR(-P*P+1)) 30 G$ = "FN A" 40 GOSUB 100"COMPOSE 50 SA$ = E$

60 X = .5 : E$ = SA$ 70 GOSUB 200"EXEC 80 PRINT R 90 END

100 E$ = F$ + "(" + G$ + "(X))" : RETURN : REMCOMPOSE F$ G$

200 D$ = CHR$(4) : FI$ = "TEMPORARY.EX" : M$ = CHR$(13) 210 PRINT D$"OPEN"FI$M$D$"CLOSE"FI$M$D$"DELETE"FI$ 220 PRINT D$"OPEN"FI$M$D$"WRITE"FI$ 230 PRINT "CALL-998:CALL-958:R="E$":CONT" 240 PRINT D$"CLOSE"FI$M$D$"EXEC"FI$:CALL-998:END:RETURN</lang>

Argile

Only works for functions taking real and returning real (double precision, 64 bits)

Works with: Argile version 1.0.0

<lang Argile>use std, math

let my_asin = new Function (.:<any,real x>:. -> real {asin x}) let my__sin = new Function (.:<any,real x>:. -> real { sin x}) let sinasin = my__sin o my_asin print sin asin 0.5 print *my__sin 0.0 print *sinasin 0.5 ~my_asin ~my__sin ~sinasin

=: <Function f> o <Function g> := -> Function {compose f g}

.:compose <Function f, Function g>:. -> Function

 use array
 let d = (new array of 2 Function)
 (d[0]) = f ; (d[1]) = g
 let c = new Function (.:<array of Function fg, real x>:. -> real {
   *fg[0]( *fg[1](x) )
 }) (d)
 c.del = .:<any>:.{free any}
 c

class Function

 function(any)(real)->(real)	func
 any				data
 function(any)			del

=: * <Function f> <real x> := -> real

  Cgen "(*("(f.func)"))("(f.data)", "(x)")"

.: del Function <Function f> :.

  unless f.del is nil
    call f.del with f.data
  free f

=: ~ <Function f> := {del Function f}

.: new Function <function(any)(real)-\>real func> (<any data>):. -> Function

  let f = new Function
  f.func = func
  f.data = data
  f</lang>

Arturo

<lang rebol>compose: function [f,g] ->

   return function [x].import:[f,g][
       call f @[call g @[x]]
   ]

splitupper: compose 'split 'upper

print call 'splitupper ["done"]</lang>

Output:
D O N E

ATS

If I may state in greater detail what the task requires, it is this:

That compose should return a new function, which will exist independently of compose once created. A person should never have to call compose merely to get the result of the composed computation.

Thus it is probably impossible, for instance, to really satisfy the requirement in standard C, if the result of composition is to be called like an ordinary function. However, the C solution shows it is possible, if the notion of a function is expanded to include structures requiring more than just a plain C function call. Also, there is at least one platform-dependent library for creating a "true" closure in C.

In ATS we have closures, but of more than one kind.

<lang ats>(*

  The task:
     Create a function, compose, whose two arguments f and g, are
     both functions with one argument.
     The result of compose is to be a function of one argument,
     (let's call the argument x), which works like applying function
     f to the result of applying function g to x.
  In ATS, we have to choose whether to use non-linear closures
  (cloref) or linear closures (cloptr). In the latter case, we also
  have to choose between closures allocated with malloc (or similar)
  and closures allocated on the stack.
  For simplicity, we will use non-linear closures and assume there is
  a garbage collector, or that the memory allocated for the closures
  can be allowed to leak. (This is often the case in a program that
  does not run continuously.)
  • )
  1. include "share/atspre_staload.hats"

(* The following is actually a *template function*, rather than a

  function proper. It is expanded during template processing. *)

fn {t1, t2, t3 : t@ype} compose (f : t2 -<cloref1> t3,

        g : t1 -<cloref1> t2) : t1 -<cloref1> t3 =
 lam x => f (g (x))


implement main0 () =

 let
   val one_hundred = 100.0
   val char_zero = '0'
   val f = (lam y =<cloref1> add_double_int (one_hundred, y))
   val g = (lam x =<cloref1> char2i x - char2i char_zero)
   val z = compose (f, g) ('5')
   val fg = compose (f, g)
   val w = fg ('7')
 in
   println! (z : double);
   println! (w : double)
 end</lang>
Output:
$ patscc -O2 -DATS_MEMALLOC_GCBDW function_composition.dats -lgc && ./a.out
105.000000
107.000000

Incidentally, it is possible to instantiate the template function and obtain a true function that does the composition. What the template does for us is give us compile-time type polymorphism. In the following, the template is instantiated as a true function for specific types:

<lang ats>#include "share/atspre_staload.hats"

fn {t1, t2, t3 : t@ype} compose (f : t2 -<cloref1> t3,

        g : t1 -<cloref1> t2) : t1 -<cloref1> t3 =
 lam x => f (g (x))

fn compose_char2int2double

         (f : int -<cloref1> double,
          g : char -<cloref1> int) :
   char -<cloref1> double =
 compose<char, int, double> (f, g)

implement main0 () =

 let
   val one_hundred = 100.0
   val char_zero = '0'
   val f = (lam y =<cloref1> add_double_int (one_hundred, y))
   val g = (lam x =<cloref1> char2i x - char2i char_zero)
   val z = compose_char2int2double (f, g) ('5')
   val fg = compose_char2int2double (f, g)
   val w = fg ('7')
 in
   println! (z : double);
   println! (w : double)
 end</lang>
Output:
$ patscc -O2 -DATS_MEMALLOC_GCBDW function_composition_2.dats -lgc && ./a.out
105.000000
107.000000

One could even make the composition procedures themselves be closures:

<lang ats>#include "share/atspre_staload.hats"

fn {t1, t2, t3 : t@ype} compose (f : t2 -<cloref1> t3,

        g : t1 -<cloref1> t2) :<cloref1>
   t1 -<cloref1> t3 =
 lam x => f (g (x))

fn compose_char2int2double

         (f : int -<cloref1> double,
          g : char -<cloref1> int) :<cloref1>
   char -<cloref1> double =
 compose<char, int, double> (f, g)

implement main0 () =

 let
   val one_hundred = 100.0
   val char_zero = '0'
   val f = (lam y =<cloref1> add_double_int (one_hundred, y))
   val g = (lam x =<cloref1> char2i x - char2i char_zero)
   val z = compose_char2int2double (f, g) ('5')
   val fg = compose_char2int2double (f, g)
   val w = fg ('7')
 in
   println! (z : double);
   println! (w : double)
 end</lang>
Output:
$ patscc -O2 -DATS_MEMALLOC_GCBDW function_composition_3.dats -lgc && ./a.out
105.000000
107.000000

AutoHotkey

contributed by Laszlo on the ahk forum <lang AutoHotkey>MsgBox % compose("sin","cos",1.5)

compose(f,g,x) { ; function composition

  Return %f%(%g%(x))

}</lang>

BBC BASIC

<lang bbcbasic> REM Create some functions for testing:

     DEF FNsqr(a) = SQR(a)
     DEF FNabs(a) = ABS(a)
     
     REM Create the function composition:
     SqrAbs = FNcompose(FNsqr(), FNabs())
     
     REM Test calling the composition:
     x = -2 : PRINT ; x, FN(SqrAbs)(x)
     END
     
     DEF FNcompose(RETURN f%, RETURN g%)
     LOCAL f$, p% : DIM p% 7 : p%!0 = f% : p%!4 = g%
     f$ = "(x)=" + CHR$&A4 + "(&" + STR$~p% + ")(" + \
     \             CHR$&A4 + "(&" + STR$~(p%+4) + ")(x))"
     DIM p% LEN(f$) + 4 : $(p%+4) = f$ : !p% = p%+4
     = p%</lang>
Output:
-2        1.41421356

Bori

<lang bori>double sin (double v) { return Math.sin(v); } double asin (double v) { return Math.asin(v); } Var compose (Func f, Func g, double d) { return f(g(d)); }

void button1_onClick (Widget widget) { double d = compose(sin, asin, 0.5); label1.setText(d.toString(9)); }</lang>

Output:

on Android phone

<lang bori>0.500000000</lang>

BQN

As a 2-modifier:

<lang bqn>_compose_ ← ∘</lang>

Or:

<lang bqn>_compose_ ← {𝔽𝔾𝕩}</lang>

As a dyadic function:

<lang bqn>Compose ← {𝕏∘𝕎}</lang>

This is how you can use it:

   (Compose´ ⟨-,÷⟩) {𝕎𝕩} 2
¯0.5

Bracmat

This solution uses a macro in the body of the compose function.

Function composition is illustrated with a conversion from Fahrenheit to Celsius in two steps, followed by a conversion of the resulting rational number to a floating point expression. This shows that the returned value from the compose function indeed is a function and can be used as an argument to another call to compose.

<lang Bracmat>( ( compose

 =   f g
   . !arg:(?f.?g)&'(.($f)$(($g)$!arg))
 )

& compose

   $ ( (=.flt$(!arg,2))
     . compose$((=.!arg*5/9).(=.!arg+-32))
     )
 : (=?FahrenheitToCelsius)

& ( FahrenheitToCelsiusExample

 =   deg
   .   chu$(x2d$b0):?deg
     &   out
       $ ( str
         $ (!arg " " !deg "F in " !deg "C = " FahrenheitToCelsius$!arg)
         )
 )

& FahrenheitToCelsiusExample$0 & FahrenheitToCelsiusExample$100 )</lang>

0 °F in °C = -1,78*10E1
100 °F in °C = 3,78*10E1

Brat

<lang brat>compose = { f, g | { x | f g x } }

  1. Test

add1 = { x | x + 1 } double = { x | x * 2 } b = compose(->double ->add1) p b 1 #should print 4</lang>

C

Only works for functions taking a double and returning a double: <lang c>#include <stdlib.h>

/* generic interface for functors from double to double */ typedef struct double_to_double {

 double (*fn)(struct double_to_double *, double);

} double_to_double;

  1. define CALL(f, x) f->fn(f, x)


/* functor returned by compose */ typedef struct compose_functor {

 double (*fn)(struct compose_functor *, double);
 double_to_double *f;
 double_to_double *g;

} compose_functor; /* function to be used in "fn" in preceding functor */ double compose_call(compose_functor *this, double x) {

 return CALL(this->f, CALL(this->g, x));

} /* returns functor that is the composition of functors

  f & g. caller is responsible for deallocating memory */

double_to_double *compose(double_to_double *f,

                         double_to_double *g) {
 compose_functor *result = malloc(sizeof(compose_functor));
 result->fn = &compose_call;
 result->f = f;
 result->g = g;
 return (double_to_double *)result;

}


  1. include <math.h>

/* we can make functors for sin and asin by using

  the following as "fn" in a functor */

double sin_call(double_to_double *this, double x) {

 return sin(x);

} double asin_call(double_to_double *this, double x) {

 return asin(x);

}


  1. include <stdio.h>

int main() {

 double_to_double *my_sin = malloc(sizeof(double_to_double));
 my_sin->fn = &sin_call;
 double_to_double *my_asin = malloc(sizeof(double_to_double));
 my_asin->fn = &asin_call;
 double_to_double *sin_asin = compose(my_sin, my_asin);
 printf("%f\n", CALL(sin_asin, 0.5)); /* prints "0.500000" */
 free(sin_asin);
 free(my_sin);
 free(my_asin);
 return 0;

}</lang>

C#

<lang csharp>using System; class Program {

   static void Main(string[] args)
   {
       Func<int, int> outfunc = Composer<int, int, int>.Compose(functA, functB);
       Console.WriteLine(outfunc(5)); //Prints 100
   }
   static int functA(int i) { return i * 10; }
   static int functB(int i) { return i + 5; }
   class Composer<A, B, C>
   {
       public static Func<C, A> Compose(Func<B, A> a, Func<C, B> b)
       {
           return delegate(C i) { return a(b(i)); };
       }
   }

}</lang>

C++

<lang cpp>#include <functional>

  1. include <cmath>
  2. include <iostream>

// functor class to be returned by compose function template <class Fun1, class Fun2> class compose_functor :

 public std::unary_function<typename Fun2::argument_type,
                            typename Fun1::result_type>

{ protected:

 Fun1 f;
 Fun2 g;

public:

 compose_functor(const Fun1& _f, const Fun2& _g)
   : f(_f), g(_g) { }
 typename Fun1::result_type
 operator()(const typename Fun2::argument_type& x) const
 { return f(g(x)); }

};

// we wrap it in a function so the compiler infers the template arguments // whereas if we used the class directly we would have to specify them explicitly template <class Fun1, class Fun2> inline compose_functor<Fun1, Fun2> compose(const Fun1& f, const Fun2& g) { return compose_functor<Fun1,Fun2>(f, g); }

int main() {

 std::cout << compose(std::ptr_fun(::sin), std::ptr_fun(::asin))(0.5) << std::endl;
 return 0;

}</lang>

Works with: C++11

composing std::function

<lang cpp>#include <iostream>

  1. include <functional>
  2. include <cmath>

template <typename A, typename B, typename C> std::function<C(A)> compose(std::function<C(B)> f, std::function<B(A)> g) {

 return [f,g](A x) { return f(g(x)); };

}

int main() {

 std::function<double(double)> f = sin;
 std::function<double(double)> g = asin;
 std::cout << compose(f, g)(0.5) << std::endl;
 return 0;

}</lang>

Works with: C++14

This much simpler version uses decltype(auto). <lang cpp>#include <iostream>

  1. include <cmath>

template <class F, class G> decltype(auto) compose(F&& f, G&& g) {

   return [=](auto x) { return f(g(x)); };

}

int main() {

 std::cout << compose(sin, asin)(0.5) << "\n";
 return 0;

}</lang>

This example is untested. Please check that it's correct, debug it as necessary, and remove this message.


Works with: GCC

GCC's C++ library has a built-in compose function

<lang cpp>#include <iostream>

  1. include <cmath>
  2. include <ext/functional>

int main() {

 std::cout << __gnu_cxx::compose1(std::ptr_fun(::sin), std::ptr_fun(::asin))(0.5) << std::endl;
 return 0;

}</lang>

Clojure

Function composition is built in to Clojure. Simply call the comp function.

A manual implementation could look like this: <lang clojure>(defn compose [f g]

 (fn [x]
   (f (g x))))
Example

(def inc2 (compose inc inc)) (println (inc2 5)) ; prints 7</lang>

CoffeeScript

<lang coffeescript> compose = ( f, g ) -> ( x ) -> f g x

  1. Example

add2 = ( x ) -> x + 2 mul2 = ( x ) -> x * 2

mulFirst = compose add2, mul2 addFirst = compose mul2, add2 multiple = compose mul2, compose add2, mul2

console.log "add2 2 #=> #{ add2 2 }" console.log "mul2 2 #=> #{ mul2 2 }" console.log "mulFirst 2 #=> #{ mulFirst 2 }" console.log "addFirst 2 #=> #{ addFirst 2 }" console.log "multiple 2 #=> #{ multiple 2 }" </lang>

Output:
add2 2 #=> 4
mul2 2 #=> 4
mulFirst 2 #=> 6
addFirst 2 #=> 8
multiple 2 #=> 12

Or, extending the Function prototype.

<lang coffeescript> Function::of = (f) -> (args...) => @ f args...

  1. Example

add2 = (x) -> x + 2 mul2 = (x) -> x * 2

mulFirst = add2.of mul2 addFirst = mul2.of add2 multiple = mul2.of add2.of mul2

console.log "add2 2 #=> #{ add2 2 }" console.log "mul2 2 #=> #{ mul2 2 }" console.log "mulFirst 2 #=> #{ mulFirst 2 }" console.log "addFirst 2 #=> #{ addFirst 2 }" console.log "multiple 2 #=> #{ multiple 2 }" </lang>

Output is identical.

Common Lisp

compose returns a function that closes on the lexical variables f and g. <lang lisp>(defun compose (f g) (lambda (x) (funcall f (funcall g x))))</lang>

Example use: <lang lisp>>(defun compose (f g) (lambda (x) (funcall f (funcall g x)))) COMPOSE >(let ((sin-asin (compose #'sin #'asin)))

  (funcall sin-asin 0.5))

0.5</lang>

This alternate solution, more ugly and more difficult, never closes on any lexical variables. Instead, it uses runtime evaluation to insert the values of f and g into new code. This is just a different way to create a closure.

<lang lisp>(defun compose (f g)

 (eval `(lambda (x) (funcall ',f (funcall ',g x)))))</lang>

In this last example, a macro is used to compose any number of single parameter functions. <lang lisp>CL-USER> (defmacro compose (fn-name &rest args) (labels ((rec1 (args) (if (= (length args) 1) `(funcall ,@args x) `(funcall ,(first args) ,(rec1 (rest args)))))) `(defun ,fn-name (x) ,(rec1 args))))</lang> Because this macro expands into a defun form, the function returned by compose is in the function namespace and the use of funcall is not necessary.

CL-USER> (compose f #'ceiling #'sin #'sqrt)
F
CL-USER> (compose g #'1+ #'abs #'cos)
G
CL-USER> (compose h #'f #'g)
H
CL-USER> (values (f pi) (g pi) (h pi))
1
2.0L0
1
CL-USER> 

Crystal

Crystal requires using closures for function composition. Since the only type the compiler can't infer for compose is the type of x, the type of the first argument to f has to be specified as the generic type T. <lang ruby>require "math"

def compose(f : Proc(T, _), g : Proc(_, _)) forall T

 return ->(x : T) { f.call(g.call(x)) }

end

compose(->Math.sin(Float64), ->Math.asin(Float64)).call(0.5) #=> 0.5</lang> The types for f's output, g's input and output, and the result of compose can all be inferred, but could be specified verbosely with def compose(f : Proc(T, U), g : Proc(U, V)) : Proc(T, V) forall T, U, V

D

<lang d>import std.stdio;

T delegate(S) compose(T, U, S)(in T delegate(U) f,

                              in U delegate(S) g) {
   return s => f(g(s));

}

void main() {

   writeln(compose((int x) => x + 15, (int x) => x ^^ 2)(10));
   writeln(compose((int x) => x ^^ 2, (int x) => x + 15)(10));

}</lang>

Output:
115
625

Delphi

Anonymous methods were introduced in Delphi 2009, so next code works with Delphi 2009 and above:

<lang Delphi>program AnonCompose;

{$APPTYPE CONSOLE}

type

 TFunc = reference to function(Value: Integer): Integer;
 // Alternative: TFunc = TFunc<Integer,Integer>;

function Compose(F, G: TFunc): TFunc; begin

 Result:= function(Value: Integer): Integer
 begin
   Result:= F(G(Value));
 end

end;

var

 Func1, Func2, Func3: TFunc;

begin

 Func1:=
   function(Value: Integer): Integer
   begin
     Result:= Value * 2;
   end;
 Func2:=
   function(Value: Integer): Integer
   begin
     Result:= Value * 3;
   end;
 Func3:= Compose(Func1, Func2);
 Writeln(Func3(6));    // 36 = 6 * 3 * 2
 Readln;

end.</lang>

Diego

Function composition of two simple functions: <lang diego>set_namespace(rosettacode);

begin_funct(compose)_arg(f, g);

   []_ret(x)_calc([f]([g]([x])));

end_funct[];

me_msg()_funct(compose)_arg(f)_sin()_arg(g)_asin()_var(x)_value(0.5); // result: 0.5

reset_namespace[];</lang>

Function composition of two calculated functions: <lang diego>set_namespace(rosettacode);

with_funct(f)_arg({int}, x)_ret()_calc([x] * [x]); with_funct(g)_arg({int}, x)_ret()_calc([x] + 2);

begin_funct(compose)_arg(f, g);

   []_ret(x)_calc([f]([g]([x])));

end_funct[];

me_msg()_funct(compose)_arg(f)_funct(f)_arg(g)_funct(g)_var(x)_v(10); // result: 144 // or me_msg()_funct(compose)_arg({f}, f)_arg({g}, g)_var(x)_v(10);

reset_ns[];</lang>

Dylan

compose[1] is already part of the language standard, with a more complete definition than this.

<lang dylan> define method compose(f,g)

  method(x) f(g(x)) end

end; </lang>

Déjà Vu

It is already defined in the standard library as $.

<lang dejavu>compose f g: labda: f g</lang>

E

<lang e>def compose(f, g) {

 return fn x { return f(g(x)) }

}</lang>

EchoLisp

<lang lisp>

By decreasing order of performance
1) user definition
lambda and closure

(define (ucompose f g ) (lambda (x) ( f ( g x)))) (ucompose sin cos)

  → (🔒 λ (_x) (f (g _x)))
2) built-in compose
lambda

(compose sin cos)

  → (λ (_#:g1002) (#apply-compose (#list #cos #sin) _#:g1002))
3) compiled composition

(define (sincos x) (sin (cos x))) sincos → (λ (_x) (⭕️ #sin (#cos _x))) </lang>

Output:

<lang lisp> ((ucompose sin cos) 3) → -0.8360218615377305 ((compose sin cos) 3) → -0.8360218615377305 (sincos 3) → -0.8360218615377305 </lang>

Ela

It is already defined in standard prelude as (<<) operator.

<lang ela>let compose f g x = f (g x)</lang> ==Ela== It is already defined in standard prelude as (<<) operator.

<lang ela>compose f g x = f (g x)</lang>

Elena

ELENA 4.x : <lang elena>import extensions;

extension op : Func1 {

   compose(Func1 f)
       = (x => self(f(x)));

}

public program() {

   var fg := (x => x + 1).compose:(x => x * x);

   console.printLine(fg(3))

}</lang>

Output:
10

Elixir

Translation of: Erlang

<lang elixir>defmodule RC do

 def compose(f, g), do: fn(x) -> f.(g.(x)) end
 
 def multicompose(fs), do: List.foldl(fs, fn(x) -> x end, &compose/2)

end

sin_asin = RC.compose(&:math.sin/1, &:math.asin/1) IO.puts sin_asin.(0.5)

IO.puts RC.multicompose([&:math.sin/1, &:math.asin/1, fn x->1/x end]).(0.5) IO.puts RC.multicompose([&(&1*&1), &(1/&1), &(&1*&1)]).(0.5)</lang>

Output:
0.5
2.0
16.0

Emacs Lisp

Lexical binding is supported as of Emacs 24.1, allowing the use of a closure for function composition.

<lang Lisp>;; lexical-binding: t (defun compose (f g)

 (lambda (x)
   (funcall f (funcall g x))))

(let ((func (compose '1+ '1+)))

 (funcall func 5)) ;=> 7</lang>

Alternatively, a lambda form can be constructed with the desired f and g inserted. The result is simply a list. A list starting with lambda is a function.

<lang Lisp>(defun compose (f g)

 `(lambda (x) (,f (,g x))))

(let ((func (compose '1+ '1+)))

 (funcall func 5)) ;=> 7</lang>

A similar thing can be done with a macro like the following. It differs in that the arguments should be unquoted symbols, and if they're expressions then they're evaluated on every call to the resulting lambda.

<lang Lisp>(defmacro compose (f g)

 `(lambda (x) (,f (,g x))))

(let ((func (compose 1+ 1+)))

 (funcall func 5)) ;=> 7</lang>

Erlang

<lang erlang>-module(fn). -export([compose/2, multicompose/1]).

compose(F,G) -> fun(X) -> F(G(X)) end.

multicompose(Fs) ->

   lists:foldl(fun compose/2, fun(X) -> X end, Fs).</lang>

Using them: <lang erlang>1> (fn:compose(fun math:sin/1, fun math:asin/1))(0.5). 0.5 2> Sin_asin_plus1 = fn:multicompose([fun math:sin/1, fun math:asin/1, fun(X) -> X + 1 end]).

  1. Fun<tests.0.59446746>

82> Sin_asin_plus1(0.5). 1.5</lang>

F#

The most-used composition operator in F# is >>. It implements forward composition, i.e. f >> g is a function which calls f first and then calls g on the result.

The reverse composition operator <<, on the other hand, exactly fulfills the requirements of the compose function described in this task.

We can implement composition manually like this (F# Interactive session): <lang fsharp>> let compose f g x = f (g x);;

val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b</lang> Usage: <lang fsharp>> let sin_asin = compose sin asin;;

val sin_asin : (float -> float)

> sin_asin 0.5;; val it : float = 0.5</lang>

Factor

Factor is a concatenative language, so function composition is inherent. If the functions f and g are named, their composition is f g. Thanks to stack polymorphism, this holds true even if g consumes more values than f leaves behind. You always get every sort of composition for free. But watch out for stack underflows!

To compose quotations (anonymous functions), compose may be used:

<lang factor>( scratchpad ) [ 2 * ] [ 1 + ] compose . [ 2 * 1 + ] ( scratchpad ) 4 [ 2 * ] [ 1 + ] compose call . 9</lang>

Fantom

<lang fantom> class Compose {

 static |Obj -> Obj| compose (|Obj -> Obj| fn1, |Obj -> Obj| fn2)
 {
   return |Obj x -> Obj| { fn2 (fn1 (x)) }
 }
 public static Void main ()
 {
   double := |Int x -> Int| { 2 * x }
   |Int -> Int| quad := compose(double, double)
   echo ("Double 3 = ${double(3)}")
   echo ("Quadruple 3 = ${quad (3)}")
 }

} </lang>

Forth

<lang forth>: compose ( xt1 xt2 -- xt3 )

 >r >r :noname
    r> compile,
    r> compile,
    postpone ;

' 2* ' 1+ compose ( xt ) 3 swap execute . \ 7</lang>

Fortran

Modern Fortran standard has (limited) kind of higher-order functions (as result, argument, and with one level of nested functions) and optional arguments, and this enables to compose the following function (it is impure because Fortran has no closures). For simple cases function calls may be just nested to achieve the effect of function composition, because in fortran nested calls f(g(d(x))) generate a hierarchic set of function calls and the result of each function is transmitted to its calling function in a standard way for all functions.

<lang fortran> module functions_module

  implicit none
  private ! all by default
  public :: f,g

contains

  pure function  f(x)
     implicit none
     real, intent(in) :: x
     real :: f
     f = sin(x)
  end function f
  pure function  g(x)
     implicit none
     real, intent(in) :: x
     real :: g
     g = cos(x)
  end function g

end module functions_module

module compose_module

  implicit none
  private ! all by default
  public :: compose
  interface
     pure function  f(x)
        implicit none
        real, intent(in) :: x
        real :: f
     end function f
     pure function  g(x)
        implicit none
        real, intent(in) :: x
        real :: g
     end function g
  end interface

contains

  impure function  compose(x, fi, gi)
     implicit none
     real, intent(in) :: x
     procedure(f), optional :: fi
     procedure(g), optional :: gi
     real :: compose
     procedure (f), pointer, save :: fpi => null()
     procedure (g), pointer, save :: gpi => null()
     if(present(fi) .and. present(gi))then
        fpi => fi
        gpi => gi
        compose = 0
        return
     endif
     if(.not. associated(fpi)) error stop "fpi"
     if(.not. associated(gpi)) error stop "gpi"
     compose = fpi(gpi(x))
  contains
  end function compose

end module compose_module

program test_compose

  use functions_module
  use compose_module
  implicit none
  write(*,*) "prepare compose:", compose(0.0, f,g)
  write(*,*) "run compose:", compose(0.5)

end program test_compose </lang>

Fortress

In Fortress, there are two ways that you can compose functions.

1. You can compose functions manually by writing your own composition function.

In this version, we allow any type of function to be used by defining our own types in the function definition and using those types to define how the composed function should behave. This version operates very similarly to the way that the COMPOSE operator, explained below, operates.

<lang fortress>

 compose[\A, B, C\](f:A->B, g:B->C, i:Any): A->C = do
   f(g(i))
 end
 composed(i:RR64): RR64 = compose(sin, cos, i)

</lang>

Alternatively, you could explicitly define each type for improved type safety.

Due to the fact that alt_compose() is built around the idea that it is being used to compose two trigonometric functions, these will return identical functions. However, if you were to pass alt_composed() any other type of function, the interpreter would throw an error. <lang fortress>

 alt_compose(f:Number->RR64, g:Number->RR64, i:RR64): ()->RR64 = do
   f(g(i))
 end
 alt_composed(i:RR64): RR64 = compose(sin, cos, i)

</lang>

2. You can use the COMPOSE operator (or CIRC or RING). Because COMPOSE returns an anonymous function, it is necessary to wrap it in parentheses if you want to be able to use it in this manner.

<lang fortress>

 opr_composed(i:Number): Number->RR64 = (sin COMPOSE cos)(i)

</lang>

Should you need to, you could also mix both methods by overloading the COMPOSE operator.

FreeBASIC

Illustrating with functions that take and return integers. <lang freebasic>function compose( f as function(as integer) as integer,_

                 g as function(as integer) as integer,_
                 n as integer ) as integer
   return f(g(n))

end function</lang> If you have functions named, say, foo and bar you would call compose with

compose( @foo, @bar, n )

for some integer n.

FunL

<lang funl>import math.{sin, asin}

def compose( f, g ) = x -> f( g(x) )

sin_asin = compose( sin, asin )

println( sin_asin(0.5) )</lang>

Output:
0.5

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website, However they run on execution servers. By default remote servers are used, but they are limited in memory and processing power, since they are intended for demonstration and casual use. A local server can be downloaded and installed, it has no limitations (it runs in your own computer). Because of that, example programs can be fully visualized and edited, but some of them will not run if they require a moderate or heavy computation/memory resources, and no local server is being used.

In this page you can see the program(s) related to this task and their results.

GAP

<lang gap>Composition := function(f, g)

   return x -> f(g(x));

end;

h := Composition(x -> x+1, x -> x*x); h(5);

  1. 26</lang>

Go

<lang go>// Go doesn't have generics, but sometimes a type definition helps // readability and maintainability. This example is written to // the following function type, which uses float64. type ffType func(float64) float64

// compose function requested by task func compose(f, g ffType) ffType {

   return func(x float64) float64 {
       return f(g(x))
   }

}</lang> Example use: <lang go>package main

import "math" import "fmt"

type ffType func(float64) float64

func compose(f, g ffType) ffType {

   return func(x float64) float64 {
       return f(g(x))
   }

}

func main() {

   sin_asin := compose(math.Sin, math.Asin)
   fmt.Println(sin_asin(.5))

}</lang>

Output:
0.5

Groovy

Test program: <lang groovy>final times2 = { it * 2 } final plus1 = { it + 1 }

final plus1_then_times2 = times2 << plus1 final times2_then_plus1 = times2 >> plus1

assert plus1_then_times2(3) == 8 assert times2_then_plus1(3) == 7</lang>

Haskell

This is already defined as the . (dot) operator in Haskell:

<lang haskell>Prelude> let sin_asin = sin . asin Prelude> sin_asin 0.5 0.49999999999999994</lang>

Ways to use directly: <lang haskell>(sin . asin) 0.5</lang> <lang haskell>sin . asin $ 0.5</lang>


Implementing compose function from scratch: <lang haskell>compose f g x = f (g x)</lang> Example use: <lang haskell>Prelude> let compose f g x = f (g x) Prelude> let sin_asin = compose sin asin Prelude> sin_asin 0.5 0.5</lang>


Right to left composition of a list of functions could be defined as flip (foldr id):

<lang haskell>composeList :: [a -> a] -> a -> a composeList = flip (foldr id)

main :: IO () main = print $ composeList [(/ 2), succ, sqrt] 5</lang>

Output:
1.618033988749895

Hy

<lang clojure>(defn compose [f g]

 (fn [x]
   (f (g x))))</lang>

Icon and Unicon

Icon and Unicon don't have a lambda function or native closure; however, they do have co-expressions which are extremely versatile and can be used to achieve the same effect. The list of functions to compose can be a 'procedure', 'co-expression", or an invocable string (i.e. procedure name or unary operator). It will correctly handle compose(compose(...),..).

There are a few limitations to be aware of:

  • type(compose(f,g)) returns a co-expression not a procedure
  • this construction only handles functions of 1 argument (a closure construct is better for the general case)


The solution below can be adapted to work in Icon by reverting to the old syntax for invoking co-expressions. <lang Icon> x @ f # use this syntax in Icon instead of the Unicon f(x) to call co-expressions

  every push(fL := [],!rfL)  # use this instead of reverse(fL) as the Icon reverse applies only to strings</lang>

See Icon and Unicon Introduction:Minor Differences for more information

<lang Unicon>procedure main(arglist)

   h := compose(sqrt,abs)
   k := compose(integer,"sqrt",ord)
   m := compose("-",k)
   every write(i := -2 to 2, " h=(sqrt,abs)-> ", h(i))
   every write(c :=  !"1@Q", " k=(integer,\"sqrt\",ord)-> ", k(c))
   write(c := "1"," m=(\"-\",k) -> ",m(c))

end

invocable all # permit string invocations

procedure compose(fL[]) #: compose(f1,f2,...) returns the functional composition of f1,f2,... as a co-expression

   local x,f,saveSource
   every case type(x := !fL) of { 
      "procedure"|"co-expression": &null                # procedures and co-expressions are fine
      "string" : if not proc(x,1) then runnerr(123,fL)  # as are invocable strings (unary operators, and procedures)
      default: runerr(123,fL)
      }
   fL := reverse(fL)                                    # reverse and isolate from mutable side-effects 
   cf := create {  saveSource := &source                # don't forget where we came from
                   repeat {
                       x := (x@saveSource)[1]           # return result and resume here
                       saveSource := &source            # ...
                       every f := !fL do x := f(x)      # apply the list of 'functions'
                       }
                }
   return (@cf, cf)                                     # 'prime' the co-expr before returning it

end</lang>

Output:
-2 h=(sqrt,abs)-> 1.414213562373095
-1 h=(sqrt,abs)-> 1.0
0 h=(sqrt,abs)-> 0.0
1 h=(sqrt,abs)-> 1.0
2 h=(sqrt,abs)-> 1.414213562373095
1 k=(integer,"sqrt",ord)-> 7
@ k=(integer,"sqrt",ord)-> 8
Q k=(integer,"sqrt",ord)-> 9
1 m=("-",k) -> -7

J

Solution: <lang j>compose =: @</lang>

Example: <lang j>f compose g</lang>

Of course, given that @ is only one character long and is a built-in primitive, there is no need for the cover function compose. And @ is not the only composition primitive; composition is a very important concept in J. For more details, see the talk page.

Tentative new example:

<lang j>f=: >.@(1&o.)@%: g=: 1&+@|@(2&o.) h=: f@g</lang>

Example use: <lang j> (f, g, h) 1p1 1 2 1</lang>

Note: 1&o. is sine (mnemonic: sine is an odd circular function), 2&o. is cosine (cosine is an even circular function), %: is square root, >. is ceiling, | is absolute value and 1&+ adds 1.

Java

<lang java>public class Compose {

   // Java doesn't have function type so we define an interface
   // of function objects instead
   public interface Fun<A,B> {
       B call(A x);
   }
   public static <A,B,C> Fun<A,C> compose(final Fun<B,C> f, final Fun<A,B> g) {
       return new Fun<A,C>() {
           public C call(A x) {
               return f.call(g.call(x));
           }
       };
   }
   public static void main(String[] args) {
       Fun<Double,Double> sin = new Fun<Double,Double>() {
           public Double call(Double x) {
               return Math.sin(x);
           }
       };
       Fun<Double,Double> asin = new Fun<Double,Double>() {
           public Double call(Double x) {
               return Math.asin(x);
           }
       };
       Fun<Double,Double> sin_asin = compose(sin, asin);
       System.out.println(sin_asin.call(0.5)); // prints "0.5"
   }

}</lang>

Java 8

Java 8's Function interface already has a .compose() default method:

Works with: Java version 8+

<lang java>import java.util.function.Function;

public class Compose {

   public static void main(String[] args) {
       Function<Double,Double> sin_asin = ((Function<Double,Double>)Math::sin).compose(Math::asin);
       System.out.println(sin_asin.apply(0.5)); // prints "0.5"
   }

}</lang>

Implementing it yourself as a static method:

Works with: Java version 8+

<lang java>import java.util.function.Function;

public class Compose {

   public static <A,B,C> Function<A,C> compose(Function<B,C> f, Function<A,B> g) {
       return x -> f.apply(g.apply(x));
   }
   public static void main(String[] args) {
       Function<Double,Double> sin_asin = compose(Math::sin, Math::asin);
       System.out.println(sin_asin.apply(0.5)); // prints "0.5"
   }

}</lang>

JavaScript

ES5

Simple composition of two functions

<lang javascript>function compose(f, g) {

 return function(x) {
   return f(g(x));
 };

}</lang> Example: <lang javascript>var id = compose(Math.sin, Math.asin); console.log(id(0.5)); // 0.5</lang>


Multiple composition

Recursion apart, multiple composition can be written in at least two general ways in JS:

  1. Iteratively (faster to run, perhaps more fiddly to write)
  2. With a fold / reduction (see http://rosettacode.org/wiki/Catamorphism). The fold is arguably simpler to write and reason about, though not quite as fast to execute.

<lang JavaScript>(function () {

   'use strict';


   // iterativeComposed :: [f] -> f
   function iterativeComposed(fs) {
       return function (x) {
           var i = fs.length,
               e = x;
           while (i--) e = fs[i](e);
           return e;
       }
   }
   // foldComposed :: [f] -> f
   function foldComposed(fs) {
       return function (x) {
           return fs
               .reduceRight(function (a, f) {
                   return f(a);
               }, x);
       };
   }


   var sqrt = Math.sqrt,
       succ = function (x) {
           return x + 1;
       },
       half = function (x) {
           return x / 2;
       };


   // Testing two different multiple composition ([f] -> f) functions
   return [iterativeComposed, foldComposed]
       .map(function (compose) {
           // both functions compose from right to left
           return compose([half, succ, sqrt])(5);
       });

})(); </lang>

Output:
[1.618033988749895, 1.618033988749895]


ES6

Simple composition of two functions

<lang javascript>function compose(f, g) {

 return x => f(g(x));

}</lang> or <lang javascript>var compose = (f, g) => x => f(g(x));</lang> Example: <lang javascript>var id = compose(Math.sin, Math.asin); console.log(id(0.5)); // 0.5</lang>


Multiple composition

<lang JavaScript>(() => {

   'use strict';
   // compose :: [(a -> a)] -> (a -> a)
   const compose = (...fs) =>
       x => fs.reduceRight(
           (a, f) => f(a),
           x
       );
   // Test a composition of 3 functions (right to left)
   const
       sqrt = Math.sqrt,
       succ = x => x + 1,
       half = x => x / 2;
   return compose(half, succ, sqrt)(5);
   
   // --> 1.618033988749895

})();</lang>

Output:
1.618033988749895

Joy

Composition is the default operation in Joy. The composition of two functions is the concatenation of those functions, in the order in which they are to be applied. <lang joy>g f</lang>

jq

The equivalent in jq of a function with one argument is a 0-arity filter. For example, in jq, exp is the exponential function and can be evaluated like so: 0.5 | exp.

We therefore illustrate here how a function that composes two 0-arity filters can be written: <lang jq>

  1. apply g first and then f

def compose(f; g): g | f; </lang> Example: 0.5 | compose(asin; sin)

In practice, "compose" is rarely used since, given two 0-arity filters, f and g, the expression "g|f" can be passed as an argument to other functions.

Julia

Works with: Julia version 0.6

Built-in: <lang julia>@show (asin ∘ sin)(0.5)</lang>

Alternative: <lang julia>compose(f::Function, g::Function) = (x) -> g(f(x)) @show compose(sin, asin)(0.5)</lang>

K

The K syntax for APL tacit (point free) function composition is the dyadic form of apostrophe ('), here is a cover function <lang k>compose:{'[x;y]}</lang>

An equivalent explicit definition would be <lang k>compose:{x[y[z]]}</lang>

Example: <lang k> sin_asin:compose[sin;asin] // or compose . (sin;asin)

 sin_asin 0.5

0.5</lang>

Klingphix

<lang Klingphix>include ..\Utilitys.tlhy

  • 2 2 * ;
++ 1 + ;
composite swap exec swap exec ;

@++ @*2 3 composite ? { result: 7 }

"End " input</lang>

Kotlin

<lang scala>// version 1.0.6

fun f(x: Int): Int = x * x

fun g(x: Int): Int = x + 2

fun compose(f: (Int) -> Int, g: (Int) -> Int): (Int) -> Int = { f(g(it)) }

fun main(args: Array<String>) {

  val x  = 10
  println(compose(::f, ::g)(x))

}</lang>

Output:
144

Lambdatalk

<lang Scheme> {def compose

{lambda {:f :g :x}
 {:f {:g :x}}}}

-> compose

{def funcA {lambda {:x} {* :x 10}}} -> funcA

{def funcB {lambda {:x} {+ :x 5}}} -> funcB

{def f {compose funcA funcB}} -> f

{{f} 3} -> 80 </lang>

LFE

<lang lisp> (defun compose (f g)

 (lambda (x)
   (funcall f
     (funcall g x))))

(defun compose (funcs)

 (lists:foldl #'compose/2
              (lambda (x) x)
              funcs))

(defun check ()

 (let* ((sin-asin (compose #'math:sin/1 #'math:asin/1))
        (expected (math:sin (math:asin 0.5)))
        (compose-result (funcall sin-asin 0.5)))
   (io:format '"Expected answer: ~p~n" (list expected))
   (io:format '"Answer with compose: ~p~n" (list compose-result))))

</lang>

If you pasted those into the LFE REPL, you can do the following: <lang lisp> > (funcall (compose #'math:sin/1 #'math:asin/1)

          0.5)

0.49999999999999994 > (funcall (compose `(,#'math:sin/1

                     ,#'math:asin/1
                     ,(lambda (x) (+ x 1))))
          0.5)

1.5 > (check) Expected answer: 0.49999999999999994 Answer with compose: 0.49999999999999994 ok > </lang>

Lingo

Lingo does not support functions as first-class objects. However, there is a way to achieve something similar:

In Lingo global functions (i.e. either built-in functions or custom functions defined in movie scripts) are methods of the _movie object. There are 2 ways to call such functions:

  • a) foo (1,2,3)
  • b) call (#foo, _movie, 1, 2, 3)


If we ignore the standard way a) and only concentrate on b), we can define a "call-function" (arbitrary word coining) as:

"Anything that supports the syntax 'call(<func>, _movie [, comma-separated arg list])' and might return a value."

As described above, this "call-function" definition includes all built-in and global user-defined functions.

For such "call-functions", function composition can be implemented using the following global (i.e. movie script) function compose() and the following parent script "Composer":

<lang lingo>-- in some movie script


-- Composes 2 call-functions, returns a new call-function -- @param {symbol|instance} f -- @param {symbol|instance} g -- @return {instance}


on compose (f, g)

 return script("Composer").new(f, g)

end</lang>

<lang lingo>-- parent script "Composer"

property _f property _g


-- @constructor -- @param {symbol|instance} f -- @param {symbol|instance} g


on new (me, f, g)

 me._f = f
 me._g = g
 return me

end

on call (me)

 if ilk(me._g)=#instance then
   cmd = "_movie.call(#call,me._g,VOID"
 else
   cmd = "_movie.call(me._g,_movie"
 end if
 a = [] -- local args list
 repeat with i = 1 to the paramCount-2
   a[i] = param(i+2)
   put ",a["&i&"]" after cmd
 end repeat
 put ")" after cmd
 if ilk(me._f)=#instance then
   return _movie.call(#call, me._f, VOID, value(cmd))
 else
   return _movie.call(me._f, _movie, value(cmd))
 end if

end</lang>

Usage: <lang lingo>-- compose new function based on built-in function 'sin' and user-defined function 'asin' f1 = compose(#asin, #sin) put call(f1, _movie, 0.5) -- 0.5000

-- compose new function based on previously composed function 'f1' and user-defined function 'double' f2 = compose(#double, f1) put call(f2, _movie, 0.5) -- 1.0000

-- compose new function based on 2 composed functions f1 = compose(#asin, #sin) f2 = compose(#double, #triple) f3 = compose(f2, f1) put call(f3, _movie, 0.5) -- 3.0000</lang>

User-defined custom functions used in demo code above: <lang lingo>-- in some movie script on asin (x)

 res = atan(sqrt(x*x/(1-x*x)))
 if x<0 then res = -res
 return res

end

on double (x)

 return x*2

end

on triple (x)

 return x*3

end</lang>

LOLCODE

LOLCODE supports first-class functions only insofar as they may be stored in variables and returned from other functions. Alas, given the current lack of support for either lambdas or closures, function composition can only be reasonably simulated with the help of a few global variables. <lang LOLCODE>HAI 1.3

I HAS A fx, I HAS A gx

HOW IZ I composin YR f AN YR g

   fx R f, gx R g
   HOW IZ I composed YR x
       FOUND YR I IZ fx YR I IZ gx YR x MKAY MKAY
   IF U SAY SO
   FOUND YR composed

IF U SAY SO

HOW IZ I incin YR num

   FOUND YR SUM OF num AN 1

IF U SAY SO

HOW IZ I sqrin YR num

   FOUND YR PRODUKT OF num AN num

IF U SAY SO

I HAS A incsqrin ITZ I IZ composin YR incin AN YR sqrin MKAY VISIBLE I IZ incsqrin YR 10 MKAY BTW, prints 101

I HAS A sqrincin ITZ I IZ composin YR sqrin AN YR incin MKAY VISIBLE I IZ sqrincin YR 10 MKAY BTW, prints 121

KTHXBYE</lang>

Lua

<lang lua>function compose(f, g) return function(...) return f(g(...)) end end</lang>

M2000 Interpreter

Using Lambda functions

<lang M2000 Interpreter> Module CheckIt {

     Compose = lambda (f, g)->{
           =lambda f, g (x)->f(g(x))
     }
     Add5=lambda (x)->x+5
     Division2=lambda (x)->x/2
     Add5Div2=compose(Division2, Add5)
     Print Add5Div2(15)=10  ' True

} CheckIt </lang>

Using EVAL and EVAL$

<lang M2000 Interpreter> class Compose { private: composition$ public: function formula$ { =.composition$ } value (x){ =Eval(.composition$) } Class: module compose(a$, b$) { .composition$<=a$+"("+b$+"(x))" } } function Global Exp(x) { =round(2.7182818284590452**x) } class ComposeStr$ { private: composition$ public: function formula$ { =.composition$ } value (x$){ =Eval$(.composition$.) // NEED A DOT AFTER STRING VARIABLE } Class: module composeStr(a$, b$) { .composition$<=a$+"("+b$+"(x$))" } } ExpLog=Compose("Exp", "Ln") Print ExpLog(3) UcaseLcase$=ComposeStr$("Ucase$", "Lcase$") Print UcaseLcase$("GOOD") </lang>

Mathcad

Mathcad is a non-text-based programming environment. The expressions below are an approximations of the way that they are entered (and) displayed on a Mathcad worksheet. The worksheet is available at xxx_tbd_xxx

This particular version of Function Composition was created in Mathcad Prime Express 7.0, a free version of Mathcad Prime 7.0 with restrictions (such as no programming or symbolics). All Prime Express numbers are complex. There is a recursion depth limit of about 4,500.

compose(f,g,x):=f(g(x))

cube(x):=x3 cuberoot(x):=x1/3

funlist:=[sin cos cube]T invlist:=[asin acos cuberoot]T

invfunlist(x):= {vectorize}compose(invlist,funlist,x){/vectorize}

x:= 0.5

invfunlist(x)= {results of evaluation appears here) invfunlist([x √2 3]T)= {results)

apply(f,x):=f(x) apply(f,x):={vectorize}apply(f,x){/vectorize}

apply(funlist,x)= {results} + ... several more examples


Mathematica / Wolfram Language

Built-in function that takes any amount of function-arguments: <lang Mathematica>Composition[f, g][x] Composition[f, g, h, i][x]</lang> gives back: <lang Mathematica>f[g[x]] f[g[h[i[x]]]]</lang> Custom function: <lang Mathematica>compose[f_, g_][x_] := f[g[x]] compose[Sin, Cos][r]</lang> gives back: <lang Mathematica>Sin[Cos[r]]</lang> Composition can be done in more than 1 way: <lang Mathematica>Composition[f,g,h][x] f@g@h@x x//h//g//f</lang> all give back: <lang Mathematica>f[g[h[x]]]</lang> The built-in function has a couple of automatic simplifications: <lang Mathematica>Composition[f, Identity, g] Composition[f, InverseFunction[f], h][x]</lang> becomes: <lang Mathematica>f[g[x]] h[x]</lang>

Maxima

<lang maxima>/* built-in */ load(to_poly_solver);

compose_functions([sin, cos]); /* lambda([%g0],sin(cos(%g0)))*/

/* An implementation, to show a use of buildq */ compose(f, g) := buildq([f, g], lambda([x], f(g(x))));</lang>

min

Works with: min version 0.19.3

Since min is both concatenative and homoiconic, function composition is equivalent to list concatenation. Example: <lang min>(1 +) (2 *) concat print</lang>

Output:
(1 + 2 *)

MiniScript

<lang MiniScript>funcA = function(x)

   return x * 10

end function

funcB = function(x)

   return x + 5

end function

compose = function(f, g)

   return function(x)
       return f(g(x))
   end function

end function

f = compose(@funcA, @funcB) print f(3) // should be equal to (3+5)*10</lang>

Output:
80

Nemerle

<lang Nemerle>using System; using System.Console; using System.Math;

module Composition {

   Compose[T](f : T -> T, g : T -> T, x : T) : T
   {
       f(g(x))
   }
   
   Main() : void
   {
       def SinAsin = Compose(Sin, Asin, _);
       WriteLine(SinAsin(0.5));
   }

}</lang>

Never

<lang Never> func compose(f(i : int) -> int, g(i : int) -> int) -> (int) -> int {

   let func (i : int) -> int { f(g(i)) }

}

func dec(i : int) -> int { 10 * i }

func succ(i : int) -> int { i + 1 }

func main() -> int {

   let h = compose(dec, succ);
   print(h(1));
   0

} </lang>

NewLISP

<lang NewLISP>> (define (compose f g) (expand (lambda (x) (f (g x))) 'f 'g)) (lambda (f g) (expand (lambda (x) (f (g x))) 'f 'g)) > ((compose sin asin) 0.5) 0.5 </lang>

Nim

<lang nim>import sugar

proc compose[A,B,C](f: A -> B, g: B -> C): A -> C = (x: A) => f(g(x))

proc plustwo(x: int): int = x + 2 proc minustwo(x: int): int = x - 2

var plusminustwo = compose(plustwo, minustwo) echo plusminustwo(10)</lang>

Objeck

<lang objeck> bundle Default {

 class Test {
   @f : static : (Int) ~ Int;
   @g : static : (Int) ~ Int;
   
   function : Main(args : String[]) ~ Nil {
     compose := Composer(F(Int) ~ Int, G(Int) ~ Int);
     compose(13)->PrintLine();
   }
   
   function : F(a : Int) ~ Int {
     return a + 14;
   }
   function : G(a : Int) ~ Int {
     return a + 15;
   }
   
   function : Compose(x : Int) ~ Int {
     return @f(@g(x));
   }
   
   function : Composer(f : (Int) ~ Int, g : (Int) ~ Int) ~ (Int) ~ Int {
     @f := f;
     @g := g;
     return Compose(Int) ~ Int;
   }
 }

} </lang> prints: 42

ObjectIcon

Translation of: Icon and Unicon


<lang objecticon># -*- ObjectIcon -*-

  1. The Rosetta Code function composition task, in Object Icon.
  2. Composition will result in a co-expression.
  3. Object Icon co-expressions are closures: they share the local
  4. variables of the context in which they are created. In Arizona Icon,
  5. co-expressions obtain only the *values* of those variables. However,
  6. this difference, despite its significance, is not really important
  7. to the notion of composition.
  8. This example is adapted from the Unicon implementation of the
  9. task. To simplify the example, I have removed support for string
  10. invocations.

import io

procedure main (arglist)

 local f, g
 # f gets a co-expression that is a composition of three procedures.
 f := compose(append_exclamation, string_repeat, double_it)
 write(123@f)
 # g gets a co-expression that is a composition of a procedure and f.
 g := compose(string_repeat, f)
 write(123@g)

end

procedure double_it (n)

 return n + n

end

procedure string_repeat (x)

 return string(x) || string(x)

end

procedure append_exclamation (s)

 return s || "!"

end

procedure compose (rfL[])

   local x, f, saveSource, fL, cf

   every push(fL := [], !rfL)
   cf := create {
     saveSource := &source
     repeat {
       x := x@saveSource
       saveSource := &source
       every f := !fL do {
         case type(f) of {
           "co-expression": x := x@f
           default: x := f(x)
         }
       }
     }
   }
   # Co-expressions often need to be "primed" before they can be
   # used.
   @cf
   return cf

end</lang>

Output:
$ oit -s function_composition-OI.icn && ./function_composition-OI
246246!
246246!246246!


Objective-C

Works with: Mac OS X version 10.6+

We restrict ourselves to functions that take and return one object.

<lang objc>#include <Foundation/Foundation.h>

typedef id (^Function)(id);

// a commodity for "encapsulating" double f(double) typedef double (*func_t)(double); Function encapsulate(func_t f) {

 return ^(id x) { return @(f([x doubleValue])); };

}

Function compose(Function a, Function b) {

 return ^(id x) { return a(b(x)); };

}

// functions outside... double my_f(double x) {

 return x+1.0;

}

double my_g(double x) {

 return x*x;

}


int main() {

 @autoreleasepool {
   Function f = encapsulate(my_f);
   Function g = encapsulate(my_g);
 
   Function composed = compose(f, g);
 
   printf("g(2.0) = %lf\n", [g(@2.0) doubleValue]);
   printf("f(2.0) = %lf\n", [f(@2.0) doubleValue]);
   printf("f(g(2.0)) = %lf\n", [composed(@2.0) doubleValue]);
 }
 return 0;

}</lang>

OCaml

<lang ocaml>let compose f g x = f (g x)</lang> Example use: <lang ocaml># let compose f g x = f (g x);; val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>

  1. let sin_asin = compose sin asin;;

val sin_asin : float -> float = <fun>

  1. sin_asin 0.5;;

- : float = 0.5</lang>

Octave

<lang octave>function r = compose(f, g)

 r = @(x) f(g(x));

endfunction

r = compose(@exp, @sin); r(pi/3)</lang>

Oforth

Oforth uses RPN notation. Function composition of f and g is just calling : <lang Oforth>g f</lang> If a block is needed, a compose function can be implemented : <lang Oforth>: compose(f, g) #[ g perform f perform ] ;</lang> Usage : <lang Oforth>1.2 compose(#asin, #sin) perform [ 1, 2, 3, 4, 5 ] compose(#[ map(#sqrt) ], #[ filter(#isEven) ]) perform</lang> The last line returns : [1.4142135623731, 2]

Ol

<lang scheme> (define (compose f g)

  (lambda (x) (f (g x))))
or

(define ((compose f g) x) (f (g x))) </lang>

Order

Order supplies the built-in function 8compose for this purpose. However, a manual implementation might be: <lang c>#include <order/interpreter.h>

  1. define ORDER_PP_DEF_8comp ORDER_PP_FN( \

8fn(8F, 8G, 8fn(8X, 8ap(8F, 8ap(8G, 8X)))) )</lang> Interpreter limitations mean that local variables containing functions must be called with the 8ap operator, but the functions themselves are still first-class values.

Oz

<lang oz>declare

 fun {Compose F G}
    fun {$ X}
       {F {G X}}
    end
 end
 SinAsin = {Compose Float.sin Float.asin}

in

 {Show {SinAsin 0.5}}</lang>

PARI/GP

Works with: PARI/GP version 2.4.2 and above

<lang parigp>compose(f, g)={

 x -> f(g(x))

};

compose(x->sin(x),x->cos(x)(1)</lang>

Usage note: In Pari/GP 2.4.3, this can be expressed more succinctly: <lang parigp>compose(sin,cos)(1)</lang>

Pascal

See Delphi

Perl

<lang perl>sub compose {

   my ($f, $g) = @_;
   sub {
       $f -> ($g -> (@_))
   };

}

use Math::Trig; print compose(sub {sin $_[0]}, \&asin)->(0.5), "\n";</lang>

Phix

There is not really any direct support for this sort of thing in Phix, but it is all pretty trivial to manage explicitly.
In the following, as it stands, you cannot use constant m in the same way as a routine_id, or pass a standard routine_id to call_composite(), but tagging the ctable entries so that you know precisely what to do with each entry does not sound the least bit difficult to me.

sequence ctable = {}
 
function compose(integer f, integer g)
    ctable = append(ctable,{f,g})
    return length(ctable)   
end function
 
function call_composite(integer f, atom x)
integer g
    {f,g} = ctable[f]
    return call_func(f,{call_func(g,{x})})
end function
 
function plus1(atom x)
    return x+1
end function
 
function halve(atom x)
    return x/2
end function
 
constant m = compose(routine_id("halve"),routine_id("plus1"))
 
?call_composite(m,1)    -- displays 1
?call_composite(m,4)    -- displays 2.5

Phixmonti

<lang Phixmonti>def *2 2 * enddef def ++ 1 + enddef def composite swap exec swap exec enddef

getid ++ getid *2 3 composite print /# result: 7 #/</lang>

PHP

Works with: PHP version 5.3+

<lang php><?php function compose($f, $g) {

 return function($x) use ($f, $g) { return $f($g($x)); };

}

$trim_strlen = compose('strlen', 'trim'); echo $result = $trim_strlen(' Test '), "\n"; // prints 4 ?></lang>

Works with: PHP version pre-5.3 and 5.3+

works with regular functions as well as functions created by create_function() <lang php><?php function compose($f, $g) {

 return create_function('$x', 'return '.var_export($f,true).'('.var_export($g,true).'($x));');

}

$trim_strlen = compose('strlen', 'trim'); echo $result = $trim_strlen(' Test '), "\n"; // prints 4 ?></lang>

PicoLisp

<lang PicoLisp>(de compose (F G)

  (curry (F G) (X)
     (F (G X)) ) )</lang>

<lang PicoLisp>(def 'a (compose inc dec)) (def 'b (compose 'inc 'dec)) (def 'c (compose '((A) (inc A)) '((B) (dec B))))</lang> <lang PicoLisp>: (a 7) -> 7

(b 7)

-> 7

(c 7)

-> 7</lang>

PostScript

<lang PostScript> /compose { % f g -> { g f }

 [ 3 1 roll exch
 % procedures are not executed when encountered directly
 % insert an 'exec' after procedures, but not after operators
 1 index type /operatortype ne { /exec cvx exch } if
 dup type /operatortype ne { /exec cvx } if
 ] cvx

} def

/square { dup mul } def /plus1 { 1 add } def /sqPlus1 /square load /plus1 load compose def </lang>

PowerShell

You can simply call g inside f like this: <lang PowerShell> function g ($x) {

   $x + $x

} function f ($x) {

   $x*$x*$x

} f (g 1) </lang>

Or g and f can become paramaters of a new function fg

<lang PowerShell> function fg (${function:f}, ${function:g}, $x) {

   f (g $x)

} fg f g 1 </lang>

In both cases the answer is:

 8 

Prolog

Works with SWI-Prolog and module lambda, written by Ulrich Neumerkel found there http://www.complang.tuwien.ac.at/ulrich/Prolog-inedit/lambda.pl <lang Prolog>:- use_module(lambda).

compose(F,G, FG) :- FG = \X^Z^(call(G,X,Y), call(F,Y,Z)). </lang>

Output:
 ?- compose(sin, asin, F), call(F, 0.5, Y).
F = \_G4586^_G4589^ (call(asin,_G4586,_G4597),call(sin,_G4597,_G4589)),
Y = 0.5.

PureBasic

<lang PureBasic>;Declare how our function looks like Prototype.i Func(Arg.i)

Make a procedure that composes any functions of type "Func"

Procedure Compose(*a.Func,*b.Func, x)

 ProcedureReturn *a(*b(x))

EndProcedure

Just a procedure fitting "Func"

Procedure f(n)

 ProcedureReturn 2*n

EndProcedure

Yet another procedure fitting "Func"

Procedure g(n)

 ProcedureReturn n+1

EndProcedure

- Test it

X=Random(100) Title$="With x="+Str(x) Body$="Compose(f(),g(), x) ="+Str(Compose(@f(),@g(),X)) MessageRequester(Title$,Body$)</lang>

Purity

<lang Purity> data compose = f => g => $f . $g </lang>

Python

Simple composition of two functions

<lang python>compose = lambda f, g: lambda x: f( g(x) )</lang> Example use: <lang python>>>> compose = lambda f, g: lambda x: f( g(x) ) >>> from math import sin, asin >>> sin_asin = compose(sin, asin) >>> sin_asin(0.5) 0.5 >>></lang>


Or, expanding slightly:

Works with: Python version 3

<lang python>from math import (acos, cos, asin, sin)


  1. compose (<<<) :: (b -> c) -> (a -> b) -> a -> c

def compose(g, f):

   Right to left function composition.
   return lambda x: g(f(x))


  1. main :: IO ()

def main():

   Test
   print(list(map(
       lambda f: f(0.5),
       zipWith(compose)(
           [sin, cos, lambda x: x ** 3.0]
       )([asin, acos, lambda x: x ** (1 / 3.0)])
   )))


  1. GENERIC FUNCTIONS ---------------------------------------


  1. zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

def zipWith(f):

   A list constructed by zipping with a
      custom function, rather than with the
      default tuple constructor.
   return lambda xs: lambda ys: (
       map(f, xs, ys)
   )


if __name__ == '__main__':

   main()</lang>
Output:
[0.49999999999999994, 0.5000000000000001, 0.5000000000000001]

Multiple composition

Nested composition of several functions can be streamlined by using functools.reduce.

Works with: Python version 3

<lang python>from functools import reduce from numbers import Number import math


def main():

   Test
   f = composeList([
       lambda x: x / 2,
       succ,
       math.sqrt
   ])
   print(
       f(5)
   )


  1. GENERIC FUNCTIONS ---------------------------------------


  1. composeList :: [(a -> a)] -> (a -> a)

def composeList(fs):

   Composition, from right to left,
      of a series of functions.
   return lambda x: reduce(
       lambda a, f: f(a),
       fs[::-1],
       x
   )


  1. succ :: Enum a => a -> a

def succ(x):

   The successor of a value. For numeric types, (1 +).
   return 1 + x if isinstance(x, Number) else (
       chr(1 + ord(x))
   )


if __name__ == '__main__':

   main()</lang>
Output:
1.618033988749895


composition via operator overloading

Here need composition of several functions is reduced with classes.

Works with: Python version 3

<lang python>

  1. Contents of `pip install compositions'

class Compose(object):

   def __init__(self, func):
       self.func = func
   def __call__(self, x):
       return self.func(x)
   def __mul__(self, neighbour):
       return Compose(lambda x: self.func(neighbour.func(x)))
  1. from composition.composition import Compose

if __name__ == "__main__":

   # Syntax 1
   @Compose
   def f(x):
       return x
   # Syntax 2
   g = Compose(lambda x: x)
   print((f * g)(2))</lang>

Qi

Qi supports partial applications, but only when calling a function with one argument. <lang qi> (define compose

 F G -> (/. X
            (F (G X))))

((compose (+ 1) (+ 2)) 3) \ (Outputs 6) \ </lang>

Alternatively, it can be done like this:

<lang qi> (define compose F G X -> (F (G X)))

(((compose (+ 1)) (+ 2)) 3) \ (Outputs 6) \ </lang>

Quackery

<lang Quackery> [ nested swap

   nested swap join ]  is compose ( g f --> [ )
 ( ----- demonstration ----- )
( create a named nest -- equivalent to a function )
 [ 2 * ]               is double  (   n --> n )
 ( "[ 4 + ]" is an unnamed nest 
              -- equivalent to a lambda function. ) 
 ( "quoting" a nest with ' puts it on the stack 
   rather than it being evaluated. "do" evaluates 
   the top of stack.                              )
 19   ' double   ' [ 4 + ]   compose do echo

</lang>

Output:
42

R

<lang R>compose <- function(f,g) function(x) { f(g(x)) } r <- compose(sin, cos) print(r(.5))</lang>

Racket

<lang racket> (define (compose f g)

 (lambda (x) (f (g x))))

</lang>

Also available as a compose1 builtin, and a more general compose where one function can produce multiple arguments that are sent the the next function in the chain. (Note however that this is rarely desired.)

Raku

(formerly Perl 6)

Works with: rakudo version 2018.03

The function composition operator is , U+2218 RING OPERATOR (with a "Texas" version o for the Unicode challenged). Here we compose a routine, an operator, and a lambda: <lang perl6>sub triple($n) { 3 * $n } my &f = &triple ∘ &prefix:<-> ∘ { $^n + 2 }; say &f(5); # prints "-21".</lang>

REBOL

<lang REBOL>REBOL [ Title: "Functional Composition" URL: http://rosettacode.org/wiki/Functional_Composition ]

"compose" means something else in REBOL, therefore I use a 'compose-functions name.

compose-functions: func [

   {compose the given functions F and G}
   f [any-function!]
   g [any-function!]

] [

   func [x] compose [(:f) (:g) x]

]</lang>

Functions "foo" and "bar" are used to prove that composition actually took place by attaching their signatures to the result.

<lang REBOL>foo: func [x] [reform ["foo:" x]] bar: func [x] [reform ["bar:" x]]

foo-bar: compose-functions :foo :bar print ["Composition of foo and bar:" mold foo-bar "test"]

sin-asin: compose-functions :sine :arcsine print [crlf "Composition of sine and arcsine:" sin-asin 0.5]</lang>

Output:
Composition of foo and bar: "foo: bar: test"

Composition of sine and arcsine: 0.5

REXX

<lang rexx>compose: procedure; parse arg f,g,x; interpret 'return' f"(" g'(' x "))"

exit /*control should never gets here, but this was added just in case.*/</lang>

Ring

<lang ring>

  1. Project : Function composition

sumprod = func1(:func2,2,3) see sumprod + nl

func func1(func2,x,y)

       temp = call func2(x,y)
       res = temp + x + y
       return res

func func2(x,y)

       res = x * y
       return res

</lang> Output:

11

Ruby

This compose method gets passed two Method objects or Proc objects <lang ruby>def compose(f,g)

 lambda {|x| f[g[x]]}

end s = compose(Math.method(:sin), Math.method(:cos)) p s[0.5] # => 0.769196354841008

  1. verify

p Math.sin(Math.cos(0.5)) # => 0.769196354841008</lang>

Rust

In order to return a closure (anonymous function) in Stable Rust, it must be wrapped in a layer of indirection via a heap allocation. However, there is a feature coming down the pipeline (currently available in Nightly) which makes this possible. Both of the versions below are in the most general form i.e. their arguments may be functions or closures with the only restriction being that the output of g is the same type as the input of f.

Stable

Function is allocated on the heap and is called via dynamic dispatch <lang rust>fn compose<'a,F,G,T,U,V>(f: F, g: G) -> Box<Fn(T) -> V + 'a>

   where F: Fn(U) -> V + 'a,
         G: Fn(T) -> U + 'a,

{

  Box::new(move |x| f(g(x)))

}</lang>

Nightly

Function is returned on the stack and is called via static dispatch (monomorphized) <lang rust>#![feature(conservative_impl_trait)] fn compose<'a,F,G,T,U,V>(f: F, g: G) -> impl Fn(T) -> V + 'a

   where F: Fn(U) -> V + 'a,
         G: Fn(T) -> U + 'a,

{

  move |x| f(g(x))

}</lang>

Scala

<lang scala>def compose[A](f: A => A, g: A => A) = { x: A => f(g(x)) }

def add1(x: Int) = x+1 val add2 = compose(add1, add1)</lang>

We can achieve a more natural style by creating a container class for composable functions, which provides the compose method 'o':

<lang scala>class Composable[A](f: A => A) {

 def o (g: A => A) = compose(f, g)

}

implicit def toComposable[A](f: A => A) = new Composable(f)

val add3 = (add1 _) o add2</lang>

> (add2 o add3)(37)
res0: Int = 42

Scheme

<lang scheme>(define (compose f g) (lambda (x) (f (g x))))

or

(define ((compose f g) x) (f (g x)))

or to compose an arbitrary list of 1 argument functions

(define-syntax compose

 (lambda (x)
   (syntax-case x ()
     ((_) #'(lambda (y) y))
     ((_ f) #'f)
     ((_ f g h ...)  #'(lambda (y) (f ((compose g h ...) y)))))))

</lang> Example: <lang scheme> (display ((compose sin asin) 0.5)) (newline)</lang>

Output:

<lang>0.5</lang>

Sidef

<lang ruby>func compose(f, g) {

   func(x) { f(g(x)) }

}

var fg = compose(func(x){ sin(x) }, func(x){ cos(x) }) say fg(0.5) # => 0.76919635484100842185251475805107</lang>

Slate

Function (method) composition is standard: <lang slate>[| :x | x + 1] ** [| :x | x squared] applyTo: {3}</lang>

Smalltalk

<lang smalltalk>| composer fg | composer := [ :f :g | [ :x | f value: (g value: x) ] ]. fg := composer value: [ :x | x + 1 ]

              value: [ :x | x * x ].

(fg value:3) displayNl.</lang>

Standard ML

This is already defined as the o operator in Standard ML. <lang sml>fun compose (f, g) x = f (g x)</lang> Example use: <lang sml>- fun compose (f, g) x = f (g x); val compose = fn : ('a -> 'b) * ('c -> 'a) -> 'c -> 'b - val sin_asin = compose (Math.sin, Math.asin); val sin_asin = fn : real -> real - sin_asin 0.5; val it = 0.5 : real</lang>

SuperCollider

has a function composition operator (the message `<>`): <lang SuperCollider> f = { |x| x + 1 }; g = { |x| x * 2 }; h = g <> f; h.(8); // returns 18 </lang>

Swift

<lang swift>func compose<A,B,C>(f: (B) -> C, g: (A) -> B) -> (A) -> C {

 return { f(g($0)) }

}

let sin_asin = compose(sin, asin) println(sin_asin(0.5))</lang>

Output:
0.5

Tcl

Works with: Tcl version 8.5

This creates a compose procedure that returns an anonymous function term that should be expanded as part of application to its argument. <lang tcl>package require Tcl 8.5 namespace path {::tcl::mathfunc}

proc compose {f g} {

   list apply [list {f g x} {{*}$f [{*}$g $x]}] $f $g]

}

set sin_asin [compose sin asin] {*}$sin_asin 0.5 ;# ==> 0.5 {*}[compose abs int] -3.14 ;# ==> 3</lang>

TypeScript

<lang TypeScript> function compose<T, U, V> (fn1: (input: T) => U, fn2: (input: U) => V){

   return function(value: T) {
       return fn2(fn1(value))
   } 

}

function size (s: string): number { return s.length; }

function isEven(x: number): boolean { return x % 2 === 0; }

const evenSize = compose(size, isEven);

console.log(evenSize("ABCD")) // true console.log(evenSize("ABC")) // false </lang>

uBasic/4tH

<lang>Print FUNC(_Compose (_f, _g, 3)) End

_Compose Param (3) : Return (FUNC(a@(FUNC(b@(c@))))) _f Param (1) : Return (a@ + 1) _g Param (1) : Return (a@ * 2)</lang>

UNIX Shell

Each function takes its argument from standard input, and puts its result to standard output. Then the composition of f and g is a shell pipeline, c() { g | f; }.

Works with: Bourne Shell

<lang bash>compose() { eval "$1() { $3 | $2; }" }

downvowel() { tr AEIOU aeiou; } upcase() { tr a-z A-Z; } compose c downvowel upcase echo 'Cozy lummox gives smart squid who asks for job pen.' | c

  1. => CoZY LuMMoX GiVeS SMaRT SQuiD WHo aSKS FoR JoB PeN.</lang>
Works with: Bourne Again SHell

This solution uses no external tools, just Bash itself.

<lang bash>

  1. compose a new function consisting of the application of 2 unary functions
            compose () { f="$1"; g="$2"; x="$3"; "$f" "$("$g" "$x")";} 


chartolowervowel()

  1. Usage: chartolowervowel "A" --> "a"
  1. Based on a to_upper script in Chris F. A. Johnson's book Pro Bash Programming Ch7. String Manipulation
  2. (with minor tweaks to use local variables and return the value of the converted character
  3. http://cfajohnson.com/books/cfajohnson/pbp/
  4. highly recommended I have a copy and have bought another for a friend

{

  local LWR="";
    

case $1 in

                         A*) _LWR=a ;;
  1. B*) _LWR=b ;;
  2. C*) _LWR=c ;;
  3. D*) _LWR=d ;;

E*) _LWR=e ;;

  1. F*) _LWR=f ;;
  2. G*) _LWR=g ;;
  3. H*) _LWR=h ;;

I*) _LWR=i ;;

  1. J*) _LWR=j ;;
  2. K*) _LWR=k ;;
  3. L*) _LWR=L ;;
  4. M*) _LWR=m ;;
  5. N*) _LWR=n ;;

O*) _LWR=o ;;

  1. P*) _LWR=p ;;
  2. Q*) _LWR=q ;;
  3. R*) _LWR=r ;;
  4. S*) _LWR=s ;;
  5. T*) _LWR=t ;;

U*) _LWR=u ;;

  1. V*) _LWR=v ;;
  2. W*) _LWR=w ;;
  3. X*) _LWR=x ;;
  4. Y*) _LWR=y ;;
  5. Z*) _LWR=z ;;

*) _LWR=${1%${1#?}} ;; esac; echo "$_LWR";

                              }   

strdownvowel()

  1. Usage: strdownvowel "STRING" --> "STRiNG"
  1. Based on an upword script in Chris F. A. Johnson's book Pro Bash Programming Ch7. String Manipulation
  2. (with minor tweaks to use local variables and return the value of the converted string
  3. http://cfajohnson.com/books/cfajohnson/pbp/
  4. highly recommended I have a copy and have bought another for a friend

{

 local _DWNWORD=""
 local word="$1"
 while [ -n "$word" ] ## loop until nothing is left in $word
 do
    chartolowervowel "$word" >> /dev/null
    _DWNWORD=$_DWNWORD$_LWR
    word=${word#?}  ## remove the first character from $word
 done
 Echo "$_DWNWORD"

}



chartoupper()

  1. Usage: chartoupper "s" --> "S"
  1. From Chris F. A. Johnson's book Pro Bash Programming Ch7. String Manipulation
  2. (with minor tweaks to use local variables and return the value of the converted character
  3. http://cfajohnson.com/books/cfajohnson/pbp/
  4. highly recommended I have a copy and have bought another for a friend
{ 
    local UPR="";
      case $1  in
                         a*) _UPR=A ;;
                         b*) _UPR=B ;;

c*) _UPR=C ;; d*) _UPR=D ;; e*) _UPR=E ;; f*) _UPR=F ;; g*) _UPR=G ;; h*) _UPR=H ;; i*) _UPR=I ;; j*) _UPR=J ;; k*) _UPR=K ;; l*) _UPR=L ;; m*) _UPR=M ;; n*) _UPR=N ;; o*) _UPR=O ;; p*) _UPR=P ;; q*) _UPR=Q ;; r*) _UPR=R ;; s*) _UPR=S ;; t*) _UPR=T ;; u*) _UPR=U ;; v*) _UPR=V ;; w*) _UPR=W ;; x*) _UPR=X ;; y*) _UPR=Y ;; z*) _UPR=Z ;; *) _UPR=${1%${1#?}} ;; esac; echo "$_UPR"; }

strupcase()

  1. Usage: strupcase "string" --> "STRING"
  1. Based on an upword script in Chris F. A. Johnson's book Pro Bash Programming Ch7. String Manipulation
  2. (with minor tweaks to use local variables and return the value of the converted string
  3. http://cfajohnson.com/books/cfajohnson/pbp/
  4. highly recommended I have a copy and have bought another for a friend

{

 local _UPWORD=""
 local word="$1"
 while [ -n "$word" ] ## loop until nothing is left in $word
 do
    chartoupper "$word" >> /dev/null
    _UPWORD=$_UPWORD$_UPR
    word=${word#?}  ## remove the first character from $word
 done
 Echo "$_UPWORD"

}

compose strdownvowel strupcase "Cozy lummox gives smart squid who asks for job pen."

  1. --> CoZY LuMMoX GiVeS SMaRT SQuiD WHo aSKS FoR JoB PeN.</lang>


es

With shell pipelines:

<lang es>fn compose f g { result @ {$g | $f} }

fn downvowel {tr AEIOU aeiou} fn upcase {tr a-z A-Z} fn-c = <={compose $fn-downvowel $fn-upcase} echo 'Cozy lummox gives smart squid who asks for job pen.' | c

  1. => CoZY LuMMoX GiVeS SMaRT SQuiD WHo aSKS FoR JoB PeN.</lang>

With function arguments:

<lang es>fn compose f g { result @ x {result <={$f <={$g $x}}} }

fn downvowel x {result `` {tr AEIOU aeiou <<< $x}} fn upcase x {result `` {tr a-z A-Z <<< $x}} fn-c = <={compose $fn-downvowel $fn-upcase} echo <={c 'Cozy lummox gives smart squid who asks for job pen.'}

  1. => CoZY LuMMoX GiVeS SMaRT SQuiD WHo aSKS FoR JoB PeN.</lang>

Unlambda

``s`ksk

Ursala

Functional composition is a built in operation expressible as f+g for functions f and g, hence hardly worth defining. However, it could be defined without using the operator like this. <lang Ursala>compose("f","g") "x" = "f" "g" "x"</lang> test program: <lang Ursala>#import nat

  1. cast %n

test = compose(successor,double) 3</lang>

Output:
7

VBScript

I'm not convinced that this is really a 'closure'. It looks to me more like a cute trick with Eval().

Implementation <lang vb> option explicit class closure

private composition

sub compose( f1, f2 ) composition = f2 & "(" & f1 & "(p1))" end sub

public default function apply( p1 ) apply = eval( composition ) end function

public property get formula formula = composition end property

end class </lang>

Invocation <lang vb> dim c set c = new closure

c.compose "ucase", "lcase" wscript.echo c.formula wscript.echo c("dog")

c.compose "log", "exp" wscript.echo c.formula wscript.echo c(12.3)

function inc( n ) inc = n + 1 end function

c.compose "inc", "inc" wscript.echo c.formula wscript.echo c(12.3)

function twice( n ) twice = n * 2 end function

c.compose "twice", "inc" wscript.echo c.formula wscript.echo c(12.3) </lang>

Output:
lcase(ucase(p1))
dog
exp(log(p1))
12.3
inc(inc(p1))
14.3
inc(twice(p1))
25.6

WDTE

The simplest way is with a lambda:

<lang WDTE>let compose f g => (@ c x => g x -> f);</lang>

Alternatively, you can take advantage of partial function calls:

<lang WDTE>let compose f g x => g x -> f;</lang>

Both can be used as follows:

<lang WDTE>(compose (io.writeln io.stdout) !) true;</lang>

Output:

<lang WDTE>false</lang>

Wortel

The @ operator applied to a array literal will compose the functions in the array and ^ with a group literal will do the same, but also quotes operators. <lang wortel>! @[f g] x ; f(g(x))</lang> <lang wortel>! ^(f g) x ; f(g(x))</lang> Defining the compose function <lang wortel>@var compose &[f g] &x !f!g x</lang>

Wren

<lang ecmascript>var compose = Fn.new { |f, g| Fn.new { |x| f.call(g.call(x)) } }

var double = Fn.new { |x| 2 * x }

var addOne = Fn.new { |x| x + 1 }

System.print(compose.call(double, addOne).call(3))</lang>

Output:
8

zkl

<lang zkl>Utils.Helpers.fcomp('+(1),'*(2))(5) //-->11</lang> Which is implemented with a closure (.fp1), which fixes the second paramter <lang zkl>fcn fcomp(f,g,h,etc){

  { fcn(x,hgf){ T(x).pump(Void,hgf.xplode()) }.fp1(vm.arglist.reverse()); }</lang>

ZX Spectrum Basic

DEF FN commands can be nested, making this appear trivial: <lang zxbasic>10 DEF FN f(x)=SQR x 20 DEF FN g(x)=ABS x 30 DEF FN c(x)=FN f(FN g(x)) 40 PRINT FN c(-4)</lang> Which gets you f(g(x)), for sure. But if you want g(f(x)) you need to DEF a whole new FN. Instead we can pass the function names as strings to a new function and numerically evaluate the string: <lang zxbasic>10 DEF FN f(x)=SQR x 20 DEF FN g(x)=ABS x 30 DEF FN c(a$,b$,x)=VAL ("FN "+a$+"(FN "+b$+"(x))") 40 PRINT FN c("f","g",-4) 50 PRINT FN c("g","f",-4)</lang>

Output:
2

A Invalid argument, 50:1