Jump to content

N-queens problem

From Rosetta Code
Revision as of 17:16, 11 May 2019 by rosettacode>Paddy3118 (add related.)
Task
N-queens problem
You are encouraged to solve this task according to the task description, using any language you may know.

Solve the eight queens puzzle.


You can extend the problem to solve the puzzle with a board of size   NxN.

For the number of solutions for small values of   N,   see   oeis.org sequence A170.


Related tasks




360 Assembly

Translation of: FORTRAN

Translated from the Fortran 77 solution.
For maximum compatibility, this program uses only the basic instruction set (S/360). <lang 360asm>* N-QUEENS PROBLEM 04/09/2015

        MACRO 

&LAB XDECO &REG,&TARGET &LAB B I&SYSNDX branch around work area P&SYSNDX DS 0D,PL8 packed W&SYSNDX DS CL13 char I&SYSNDX CVD &REG,P&SYSNDX convert to decimal

        MVC    W&SYSNDX,=X'40202020202020202020212060'  nice mask
        EDMK   W&SYSNDX,P&SYSNDX+2    edit and mark
        BCTR   R1,0                   locate the right place
        MVC    0(1,R1),W&SYSNDX+12    move the sign
        MVC    &TARGET.(12),W&SYSNDX  move to target
        MEND

NQUEENS CSECT

        SAVE   (14,12)            save registers on entry
        BALR   R12,0              establish addressability
        USING  *,R12              set base register
        ST     R13,SAVEA+4        link mySA->prevSA
        LA     R11,SAVEA          mySA
        ST     R11,8(R13)         link prevSA->mySA
        LR     R13,R11            set mySA pointer
        LA     R7,LL              l
        LA     R6,1               i=1

LOOPI LR R1,R6 do i=1 to l

        SLA    R1,1               i*2
        STH    R6,A-2(R1)         a(i)=i
        LA     R6,1(R6)           i=i+1
        BCT    R7,LOOPI           loop do i

OPENEM OPEN (OUTDCB,OUTPUT) open the printer file

        LA     R9,1               n=1 start of loop

LOOPN CH R9,L do n=1 to l

        BH     ELOOPN             if n>l then exit loop
        SR     R8,R8              m=0
        LA     R10,1              i=1
        LR     R5,R9              n
        SLA    R5,1               n*2
        BCTR   R5,0               r=2*n-1

E40 CR R10,R9 if i>n

        BH     E80                then goto e80
        LR     R11,R10            j=i

E50 LR R1,R10 i

        SLA    R1,1               i*2
        LA     R6,A-2(R1)         r6=@a(i)
        LR     R1,R11             j
        SLA    R1,1               j*2
        LA     R7,A-2(R1)         r7=@a(j)
        MVC    Z,0(R6)            z=a(i)
        MVC    Y,0(R7)            y=a(j)
        LR     R3,R10             i
        SH     R3,Y               -y
        AR     R3,R9              p=i-y+n
        LR     R4,R10             i
        AH     R4,Y               +y
        BCTR   R4,0               q=i+y-1
        MVC    0(2,R6),Y          a(i)=y
        MVC    0(2,R7),Z          a(j)=z
        LR     R1,R3              p
        SLA    R1,1               p*2
        LH     R2,U-2(R1)         u(p)
        LTR    R2,R2              if u(p)<>0
        BNE    E60                then goto e60
        LR     R1,R4              q
        AR     R1,R5              q+r
        SLA    R1,1               (q+r)*2
        LH     R2,U-2(R1)         u(q+r)
        C      R2,=F'0'           if u(q+r)<>0
        BNE    E60                then goto e60
        LR     R1,R10             i
        SLA    R1,1               i*2
        STH    R11,S-2(R1)        s(i)=j
        LA     R0,1               r0=1
        LR     R1,R3              p
        SLA    R1,1               p*2
        STH    R0,U-2(R1)         u(p)=1
        LR     R1,R4              q
        AR     R1,R5              q+r
        SLA    R1,1               (q+r)*2
        STH    R0,U-2(R1)         u(q+r)=1
        LA     R10,1(R10)         i=i+1
        B      E40                goto e40

E60 LA R11,1(R11) j=j+1

        CR     R11,R9             if j<=n
        BNH    E50                then goto e50

E70 BCTR R11,0 j=j-1

        CR     R11,R10            if j=i
        BE     E90                goto e90
        LR     R1,R10             i
        SLA    R1,1               i*2
        LA     R6,A-2(R1)         r6=@a(i)
        LR     R1,R11             j
        SLA    R1,1               j*2
        LA     R7,A-2(R1)         r7=@a(j)
        MVC    Z,0(R6)            z=a(i)
        MVC    0(2,R6),0(R7)      a(i)=a(j)
        MVC    0(2,R7),Z          a(j)=z;
        B      E70                goto e70

E80 LA R8,1(R8) m=m+1 E90 BCTR R10,0 i=i-1

        LTR    R10,R10            if i=0
        BZ     ZERO               then goto zero
        LR     R1,R10             i
        SLA    R1,1               i*2
        LH     R2,A-2(R1)         r2=a(i)
        LR     R3,R10             i
        SR     R3,R2              -a(i)
        AR     R3,R9              p=i-a(i)+n
        LR     R4,R10             i
        AR     R4,R2              +a(i)
        BCTR   R4,0               q=i+a(i)-1
        LR     R1,R10             i
        SLA    R1,1               i*2
        LH     R11,S-2(R1)        j=s(i)
        LA     R0,0               r0=0
        LR     R1,R3              p
        SLA    R1,1               p*2
        STH    R0,U-2(R1)         u(p)=0
        LR     R1,R4              q
        AR     R1,R5              q+r
        SLA    R1,1               (q+r)*2
        STH    R0,U-2(R1)         u(q+r)=0
        B      E60                goto e60

ZERO XDECO R9,PG+0 edit N

        XDECO  R8,PG+12           edit M
        PUT    OUTDCB,PG          print buffer
        LA     R9,1(R9)           n=n+1
        B      LOOPN              loop do n

ELOOPN CLOSE (OUTDCB) close output

        L      R13,SAVEA+4        previous save area addrs
        RETURN (14,12),RC=0       return to caller with rc=0
        LTORG

SAVEA DS 18F save area for chaining OUTDCB DCB DSORG=PS,MACRF=PM,DDNAME=OUTDD use OUTDD in jcl LL EQU 14 ll<=16 L DC AL2(LL) input value A DS (LL)H S DS (LL)H Z DS H Y DS H PG DS CL24 buffer U DC (4*LL-2)H'0' stack

        REGS                      make sure to include copybook jcl 
        END    NQUEENS</lang>
Output:
           1           1
           2           0
           3           0
           4           2
           5          10
           6           4
           7          40
           8          92
           9         352
          10         724
          11        2680
          12       14200
          13       47600
          14      365596

PDP-11 Assembly

<lang PDP-11 Assembly>

"eight queens problem" benchmark test
        .radix    16
        .loc 0
         nop            ;
         mov  #scr,@#E800
         mov  #88C6,@#E802
clear the display RAM
         mov  #scr,r0
         mov  #1E0,r1

cls: clr (r0)+

         sob  r1,cls
display the initial counter value
         clr  r3
         mov  #scr,r0
         jsr  pc,number
perform the test
         jsr  pc,queens
display the counter
         mov  #scr,r0
         jsr  pc,number

finish: br finish

display the character R1 at the screen address R0,
advance the pointer R0 to the next column

putc: mov r2,-(sp)

R1 <- 6 * R1
        asl  r1        ;* 2
        mov  r1,-(sp)
        asl  r1        ;* 4
        add  (sp)+,r1  ;* 6
        add  #chars,r1
        mov  #6,r2

putc1: movb (r1)+,(r0)

        add  #1E,r0
        sob  r2,putc1
        sub  #B2,r0         ;6 * 1E - 2 = B2
        mov  (sp)+,r2
        rts  pc

print1: jsr pc,putc

print a string pointed to by R2 at the screen address R0,
advance the pointer R0 to the next column,
the string should be terminated by a negative byte

print: movb (r2)+,r1

         bpl  print1
         rts  pc
display the word R3 decimal at the screen address R0

number: mov sp,r1

         mov  #A0A,-(sp)
         mov  (sp),-(sp)
         mov  (sp),-(sp)
         movb #80,-(r1)

numb1: clr r2

         div  #A,r2
         movb r3,-(r1)
         mov  r2,r3
         bne  numb1
         mov  sp,r2
         jsr  pc,print
         add  #6,sp
         rts  pc

queens: mov #64,r5 ;100 l06: clr r3

        clr  r0

l00: cmp #8,r0

        beq  l05
        inc  r0
        movb #8,ary(r0)

l01: inc r3

        mov  r0,r1

l02: dec r1

        beq  l00
        movb ary(r0),r2
        movb ary(r1),r4
        sub  r2,r4
        beq  l04
        bcc  l03
        neg  r4

l03: add r1,r4

        sub  r0,r4
        bne  l02

l04: decb ary(r0)

        bne  l01
        sob  r0,l04

l05: sob r5,l06

        mov  r3,cnt
        rts  pc
characters, width = 8 pixels, height = 6 pixels

chars: .byte 3C, 46, 4A, 52, 62, 3C ;digit '0'

       .byte     18, 28, 8,  8,  8,  3E   ;digit '1'
       .byte     3C, 42, 2,  3C, 40, 7E   ;digit '2'
       .byte     3C, 42, C,  2,  42, 3C   ;digit '3'
       .byte     8,  18, 28, 48, 7E, 8    ;digit '4'
       .byte     7E, 40, 7C, 2,  42, 3C   ;digit '5'
       .byte     3C, 40, 7C, 42, 42, 3C   ;digit '6'
       .byte     7E, 2,  4,  8,  10, 10   ;digit '7'
       .byte     3C, 42, 3C, 42, 42, 3C   ;digit '8'
       .byte     3C, 42, 42, 3E, 2,  3C   ;digit '9'
       .byte     0,  0,  0,  0,  0,  0    ;space
       .even

cnt: .blkw 1 ary: .blkb 9

       .loc 200

scr: ;display RAM </lang>

ABAP

<lang ABAP> TYPES: BEGIN OF gty_matrix,

        1  TYPE c,
        2  TYPE c,
        3  TYPE c,
        4  TYPE c,
        5  TYPE c,
        6  TYPE c,
        7  TYPE c,
        8  TYPE c,
        9  TYPE c,
        10 TYPE c,
      END OF gty_matrix,
      gty_t_matrix TYPE STANDARD TABLE OF gty_matrix INITIAL SIZE 8.

DATA: gt_matrix TYPE gty_t_matrix,

     gs_matrix TYPE gty_matrix,
     gv_count  TYPE i VALUE 0,
     gv_solut  TYPE i VALUE 0.


SELECTION-SCREEN BEGIN OF BLOCK b01 WITH FRAME TITLE text-b01. PARAMETERS: p_number TYPE i OBLIGATORY DEFAULT 8. SELECTION-SCREEN END OF BLOCK b01.

" Filling empty table START-OF-SELECTION.

 DO p_number TIMES.
   APPEND gs_matrix TO gt_matrix.
 ENDDO.

" Recursive Function

 PERFORM fill_matrix USING gv_count 1 1 CHANGING gt_matrix.
 BREAK-POINT.
  • &---------------------------------------------------------------------*
  • & Form FILL_MATRIX
  • ----------------------------------------------------------------------*

FORM fill_matrix USING p_count TYPE i

                          p_i     TYPE i
                          p_j     TYPE i
                 CHANGING p_matrix TYPE gty_t_matrix.
 DATA: lv_i      TYPE i,
       lv_j      TYPE i,
       lv_result TYPE c LENGTH 1,
       lt_matrix TYPE gty_t_matrix,
       lv_count  TYPE i,
       lv_value  TYPE c.
 lt_matrix[] = p_matrix[].
 lv_count = p_count.
 lv_i = p_i.
 lv_j = p_j.
 WHILE lv_i LE p_number.
   WHILE lv_j LE p_number.
     CLEAR lv_result.
     PERFORM check_position USING lv_i lv_j CHANGING lv_result lt_matrix.
     IF lv_result NE 'X'.
       MOVE 'X' TO lv_value.
       PERFORM get_position USING lv_i lv_j 'U' CHANGING lv_value lt_matrix.
       ADD 1 TO lv_count.
       IF lv_count EQ p_number.
         PERFORM show_matrix USING lt_matrix.
       ELSE.
         PERFORM fill_matrix USING lv_count lv_i lv_j CHANGING lt_matrix.
       ENDIF.
       lv_value = space.
       PERFORM get_position USING lv_i lv_j 'U' CHANGING lv_value lt_matrix.
       SUBTRACT 1 FROM lv_count.
     ENDIF.
     ADD 1 TO lv_j.
   ENDWHILE.
   ADD 1 TO lv_i.
   lv_j = 1.
 ENDWHILE.

ENDFORM. " FILL_MATRIX

  • &---------------------------------------------------------------------*
  • & Form CHECK_POSITION
  • &---------------------------------------------------------------------*

FORM check_position USING value(p_i) TYPE i

                          value(p_j)  TYPE i
                    CHANGING p_result TYPE c
                             p_matrix TYPE gty_t_matrix.
 PERFORM get_position USING p_i p_j 'R' CHANGING p_result p_matrix.
 CHECK p_result NE 'X'.
 PERFORM check_horizontal USING p_i p_j CHANGING p_result p_matrix.
 CHECK p_result NE 'X'.
 PERFORM check_vertical USING p_i p_j CHANGING p_result p_matrix.
 CHECK p_result NE 'X'.
 PERFORM check_diagonals USING p_i p_j CHANGING p_result p_matrix.

ENDFORM. " CHECK_POSITION

  • &---------------------------------------------------------------------*
  • & Form GET_POSITION
  • &---------------------------------------------------------------------*

FORM get_position USING value(p_i) TYPE i

                        value(p_j)      TYPE i
                        value(p_action) TYPE c
                     CHANGING p_result  TYPE c
                              p_matrix  TYPE gty_t_matrix.
 FIELD-SYMBOLS: <fs_lmatrix> TYPE gty_matrix,
                <fs_lfield> TYPE any.
 READ TABLE p_matrix ASSIGNING <fs_lmatrix> INDEX p_i.
 ASSIGN COMPONENT p_j OF STRUCTURE <fs_lmatrix> TO <fs_lfield>.
 CASE p_action.
   WHEN 'U'.
     <fs_lfield> = p_result.
   WHEN 'R'.
     p_result = <fs_lfield>.
   WHEN OTHERS.
 ENDCASE.

ENDFORM. " GET_POSITION

  • &---------------------------------------------------------------------*
  • & Form CHECK_HORIZONTAL
  • &---------------------------------------------------------------------*

FORM check_horizontal USING value(p_i) TYPE i

                            value(p_j)      TYPE i
                         CHANGING p_result  TYPE c
                                  p_matrix  TYPE gty_t_matrix.
 DATA: lv_j TYPE i,
       ls_matrix TYPE gty_matrix.
 FIELD-SYMBOLS <fs> TYPE c.
 lv_j = 1.
 READ TABLE p_matrix INTO ls_matrix INDEX p_i.
 WHILE lv_j LE p_number.
   ASSIGN COMPONENT lv_j OF STRUCTURE ls_matrix TO <fs>.
   IF <fs> EQ 'X'.
     p_result = 'X'.
     RETURN.
   ENDIF.
   ADD 1 TO lv_j.
 ENDWHILE.

ENDFORM. " CHECK_HORIZONTAL

  • &---------------------------------------------------------------------*
  • & Form CHECK_VERTICAL
  • &---------------------------------------------------------------------*

FORM check_vertical USING value(p_i) TYPE i

                          value(p_j)      TYPE i
                       CHANGING p_result  TYPE c
                                p_matrix  TYPE gty_t_matrix.
 DATA: lv_i TYPE i,
       ls_matrix TYPE gty_matrix.
 FIELD-SYMBOLS <fs> TYPE c.
 lv_i = 1.
 WHILE lv_i LE p_number.
   READ TABLE p_matrix INTO ls_matrix INDEX lv_i.
   ASSIGN COMPONENT p_j OF STRUCTURE ls_matrix TO <fs>.
   IF <fs> EQ 'X'.
     p_result = 'X'.
     RETURN.
   ENDIF.
   ADD 1 TO lv_i.
 ENDWHILE.

ENDFORM. " CHECK_VERTICAL

  • &---------------------------------------------------------------------*
  • & Form CHECK_DIAGONALS
  • &---------------------------------------------------------------------*

FORM check_diagonals USING value(p_i) TYPE i

                           value(p_j)      TYPE i
                        CHANGING p_result  TYPE c
                                 p_matrix  TYPE gty_t_matrix.
 DATA: lv_dx TYPE i,
       lv_dy TYPE i.
  • I++ J++ (Up Right)
 lv_dx = 1.
 lv_dy = 1.
 PERFORM check_diagonal USING p_i p_j lv_dx lv_dy CHANGING p_result p_matrix.
 CHECK p_result NE 'X'.
  • I-- J-- (Left Down)
 lv_dx = -1.
 lv_dy = -1.
 PERFORM check_diagonal USING p_i p_j lv_dx lv_dy CHANGING p_result p_matrix.
 CHECK p_result NE 'X'.
  • I++ J-- (Right Down)
 lv_dx = 1.
 lv_dy = -1.
 PERFORM check_diagonal USING p_i p_j lv_dx lv_dy CHANGING p_result p_matrix.
 CHECK p_result NE 'X'.
  • I-- J++ (Left Up)
 lv_dx = -1.
 lv_dy = 1.
 PERFORM check_diagonal USING p_i p_j lv_dx lv_dy CHANGING p_result p_matrix.
 CHECK p_result NE 'X'.

ENDFORM. " CHECK_DIAGONALS

  • &---------------------------------------------------------------------*
  • & Form CHECK_DIAGONAL
  • &---------------------------------------------------------------------*

FORM check_diagonal USING value(p_i) TYPE i

                           value(p_j)      TYPE i
                           value(p_dx)      TYPE i
                           value(p_dy)      TYPE i
                        CHANGING p_result  TYPE c
                                 p_matrix  TYPE gty_t_matrix.
 DATA: lv_i TYPE i,
       lv_j TYPE i,
       ls_matrix TYPE gty_matrix.
 FIELD-SYMBOLS <fs> TYPE c.
 lv_i = p_i.
 lv_j = p_j.
 WHILE 1 EQ 1.
   ADD: p_dx TO lv_i, p_dy TO lv_j.
   IF p_dx EQ 1.
     IF lv_i GT p_number. EXIT. ENDIF.
   ELSE.
     IF lv_i LT 1. EXIT. ENDIF.
   ENDIF.
   IF p_dy EQ 1.
     IF lv_j GT p_number. EXIT. ENDIF.
   ELSE.
     IF lv_j LT 1. EXIT. ENDIF.
   ENDIF.
   READ TABLE p_matrix INTO ls_matrix INDEX lv_i.
   ASSIGN COMPONENT lv_j OF STRUCTURE ls_matrix TO <fs>.
   IF <fs> EQ 'X'.
     p_result = 'X'.
     RETURN.
   ENDIF.
 ENDWHILE.

ENDFORM. " CHECK_DIAGONAL

  • &---------------------------------------------------------------------*
  • & Form SHOW_MATRIX
  • ----------------------------------------------------------------------*

FORM show_matrix USING p_matrix TYPE gty_t_matrix.

 DATA: lt_matrix TYPE gty_t_matrix,
       lv_j      TYPE i VALUE 1,
       lv_colum  TYPE string VALUE '-'.
 FIELD-SYMBOLS: <fs_matrix> TYPE gty_matrix,
                <fs_field>  TYPE c.
 ADD 1 TO gv_solut.
 WRITE:/ 'Solution: ', gv_solut.
 DO p_number TIMES.
   CONCATENATE lv_colum '----' INTO lv_colum.
 ENDDO.
 LOOP AT p_matrix ASSIGNING <fs_matrix>.
   IF sy-tabix EQ 1.
     WRITE:/ lv_colum.
   ENDIF.
   WRITE:/ '|'.
   DO p_number TIMES.
     ASSIGN COMPONENT lv_j OF STRUCTURE <fs_matrix> TO <fs_field>.
     IF <fs_field> EQ space.
       WRITE: <fs_field> ,'|'.
     ELSE.
       WRITE: <fs_field> COLOR 2 HOTSPOT ON,'|'.
     ENDIF.
     ADD 1 TO lv_j.
   ENDDO.
   lv_j = 1.
   WRITE: / lv_colum.
 ENDLOOP.
 SKIP 1.

ENDFORM. " SHOW_MATRIX </lang>

Ada

<lang Ada>with Ada.Text_IO; use Ada.Text_IO;

procedure Queens is

  Board : array (1..8, 1..8) of Boolean := (others => (others => False));
  function Test (Row, Column : Integer) return Boolean is
  begin
     for J in 1..Column - 1 loop
        if (  Board (Row, J)
           or else
              (Row > J and then Board (Row - J, Column - J))
           or else
              (Row + J <= 8 and then Board (Row + J, Column - J))
           )  then
           return False;
        end if;
     end loop;
     return True;
  end Test;
  function Fill (Column : Integer) return Boolean is
  begin
     for Row in Board'Range (1) loop
        if Test (Row, Column) then
           Board (Row, Column) := True;
           if Column = 8 or else Fill (Column + 1) then
              return True;
           end if;
           Board (Row, Column) := False;
        end if;
     end loop;
     return False;
  end Fill;

begin

  if not Fill (1) then
     raise Program_Error;
  end if;
  for I in Board'Range (1) loop
     Put (Integer'Image (9 - I));
     for J in Board'Range (2) loop
        if Board (I, J) then
           Put ("|Q");
        elsif (I + J) mod 2 = 1 then
           Put ("|/");
        else
           Put ("| ");
        end if;
     end loop;
     Put_Line ("|");
  end loop;
  Put_Line ("   A B C D E F G H");

end Queens;</lang>

Output:
 8|Q|/| |/| |/| |/|
 7|/| |/| |/| |Q| |
 6| |/| |/|Q|/| |/|
 5|/| |/| |/| |/|Q|
 4| |Q| |/| |/| |/|
 3|/| |/|Q|/| |/| |
 2| |/| |/| |Q| |/|
 1|/| |Q| |/| |/| |
   A B C D E F G H

Alternate solution

Translation of: Fortran

This one only counts solutions, though it's easy to do something else with each one (instead of the M := M + 1; line).

<lang ada>with Ada.Text_IO; use Ada.Text_IO;

procedure CountQueens is

   function Queens (N : Integer) return Long_Integer is
       A : array (0 .. N) of Integer;
       U : array (0 .. 2 * N - 1) of Boolean := (others => true);
       V : array (0 .. 2 * N - 1) of Boolean := (others => true);
       M : Long_Integer := 0;
       
       procedure Sub (I: Integer) is
           K, P, Q: Integer;
       begin
           if N = I then
               M := M + 1;
           else
               for J in I .. N - 1 loop
                   P := I + A (J);
                   Q := I + N - 1 - A (J);
                   if U (P) and then V (Q) then
                       U (P) := false;
                       V (Q) := false;
                       K := A (I);
                       A (I) := A (J);
                       A (J) := K;
                       Sub (I + 1);
                       U (P) := true;
                       V (Q) := true;
                       K := A (I);
                       A (I) := A (J);
                       A (J) := K;
                   end if;
               end loop;
           end if;
       end Sub;
   begin
       for I in 0 .. N - 1 loop
           A (I) := I;
       end loop;
       Sub (0);
       return M;
   end Queens;

begin

   for N in 1 .. 16 loop
       Put (Integer'Image (N));
       Put (" ");
       Put_Line (Long_Integer'Image (Queens (N)));
   end loop;

end CountQueens;</lang>

ALGOL 68

Translation of: C
Works with: ALGOL 68 version Standard - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386

<lang Algol68>INT ofs = 1, # Algol68 normally uses array offset of 1 #

   dim = 8; # dim X dim chess board #

[ofs:dim+ofs-1]INT b;

PROC unsafe = (INT y)BOOL:(

 INT i, t, x;
 x := b[y];
 FOR i TO y - LWB b DO
   t := b[y - i];
   IF t = x THEN break true
   ELIF t = x - i THEN break true
   ELIF t = x + i THEN break true
   FI
 OD;
 FALSE EXIT

break true:

 TRUE

);

INT s := 0;

PROC print board = VOID:(

 INT x, y;
 print((new line, "Solution # ", s+:=1, new line));
 FOR y FROM LWB b TO UPB b DO 
   FOR x FROM LWB b TO UPB b DO
     print("|"+(b[y]=x|"Q"|: ODD(x+y)|"/"|" "))
   OD;
   print(("|", new line))
 OD

);

main: (

 INT y := LWB b;
 b[LWB b] := LWB b - 1;
 FOR i WHILE y >= LWB b DO
   WHILE
     b[y]+:=1;
 # BREAK # IF b[y] <= UPB b THEN unsafe(y) ELSE FALSE FI 
   DO SKIP OD;
   IF b[y] <= UPB b  THEN
     IF y < UPB b THEN
       b[y+:=1] := LWB b - 1
     ELSE
       print board
     FI
   ELSE
     y-:=1
   FI
 OD

)</lang>

Dyalog APL

More or less copied from the "DFS" lesson on tryapl.org . <lang APL> ⍝Solution accm←{⍺,((⍴⍵)=⍴⊃⍺)↑⊂⍵} atk←{∪∊(⊂⍵)+¯1 0 1×⊂⌽⍳⍴⍵} dfs←{⊃∇⍨/⌽(⊂⍺ ⍺⍺ ⍵),⍺ ⍵⍵ ⍵} qfmt←{⍵∘.=⍳⍴⍵} subs←{(⊂⍵),¨(⍳⍴⊃⍺)~atk ⍵} queens←{qfmt¨(↓0 ⍵⍴0)accm dfs subs ⍬} printqueens←{i←1⋄{⎕←'answer'i⋄⎕←⍵⋄i+←1}¨queens ⍵}

⍝Example printqueens 6 </lang>

Output:
 answer  1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
 answer  2
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
 answer  3
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
 answer  4
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

AppleScript

<lang applescript>-- Finds all possible solutions and the unique patterns.

property Grid_Size : 8

property Patterns : {} property Solutions : {} property Test_Count : 0

property Rotated : {}

on run

   local diff
   local endTime
   local msg
   local rows
   local startTime
   
   set Patterns to {}
   set Solutions to {}
   set Rotated to {}
   
   set Test_Count to 0
   
   set rows to Make_Empty_List(Grid_Size)
   
   set startTime to current date
   Solve(1, rows)
   set endTime to current date
   set diff to endTime - startTime
   
   set msg to ("Found " & (count Solutions) & " solutions with " & (count Patterns) & " patterns in " & diff & " seconds.") as text
   display alert msg
   
   return Solutions

end run

on Solve(row as integer, rows as list)

   if row is greater than (count rows) then
       Append_Solution(rows)
       return
   end if
   
   repeat with column from 1 to Grid_Size
       set Test_Count to Test_Count + 1
       if Place_Queen(column, row, rows) then
           Solve(row + 1, rows)
       end if
   end repeat

end Solve

on abs(n)

   if n < 0 then
       -n
   else
       n
   end if

end abs

on Place_Queen(column as integer, row as integer, rows as list)

   local colDiff
   local previousRow
   local rowDiff
   local testColumn
   
   repeat with previousRow from 1 to (row - 1)
       set testColumn to item previousRow of rows
       
       if testColumn is equal to column then
           return false
       end if
       
       set colDiff to abs(testColumn - column) as integer
       set rowDiff to row - previousRow
       if colDiff is equal to rowDiff then
           return false
       end if
   end repeat
   
   set item row of rows to column
   return true

end Place_Queen

on Append_Solution(rows as list)

   local column
   local rowsCopy
   local testReflection
   local testReflectionText
   local testRotation
   local testRotationText
   local testRotations
   
   copy rows to rowsCopy
   set end of Solutions to rowsCopy
   local rowsCopy
   
   copy rows to testRotation
   set testRotations to {}
   repeat 3 times
       set testRotation to Rotate(testRotation)
       set testRotationText to testRotation as text
       if Rotated contains testRotationText then
           return
       end if
       set end of testRotations to testRotationText
       
       set testReflection to Reflect(testRotation)
       set testReflectionText to testReflection as text
       if Rotated contains testReflectionText then
           return
       end if
       set end of testRotations to testReflectionText
   end repeat
   
   repeat with testRotationText in testRotations
       set end of Rotated to (contents of testRotationText)
   end repeat
   set end of Rotated to (rowsCopy as text)
   set end of Rotated to (Reflect(rowsCopy) as text)
   
   set end of Patterns to rowsCopy

end Append_Solution

on Make_Empty_List(depth as integer)

   local i
   local emptyList
   
   set emptyList to {}
   repeat with i from 1 to depth
       set end of emptyList to missing value
   end repeat
   return emptyList

end Make_Empty_List

on Rotate(rows as list)

   local column
   local newColumn
   local newRow
   local newRows
   local row
   local rowCount
   
   set rowCount to (count rows)
   set newRows to Make_Empty_List(rowCount)
   repeat with row from 1 to rowCount
       set column to (contents of item row of rows)
       set newRow to column
       set newColumn to rowCount - row + 1
       set item newRow of newRows to newColumn
   end repeat
   
   return newRows

end Rotate

on Reflect(rows as list)

   local column
   local newRows
   
   set newRows to {}
   repeat with column in rows
       set end of newRows to (count rows) - column + 1
   end repeat
   
   return newRows

end Reflect</lang>

Arc

This program prints out all possible solutions: <lang Lisp>(def nqueens (n (o queens))

 (if (< len.queens n)
   (let row (if queens (+ 1 queens.0.0) 0)
     (each col (range 0 (- n 1))
       (let new-queens (cons (list row col) queens)
         (if (no conflicts.new-queens)
           (nqueens n new-queens)))))
   (prn queens)))
check if the first queen in 'queens' lies on the same column or diagonal as
any of the others

(def conflicts (queens)

 (let (curr . rest) queens
   (or (let curr-column curr.1
         (some curr-column (map [_ 1] rest)))  ; columns
       (some [diagonal-match curr _] rest))))

(def diagonal-match (curr other)

 (is (abs (- curr.0 other.0))
     (abs (- curr.1 other.1))))</lang>
Output:

The output is one solution per line, each solution in the form `((row col) (row col) (row col) ...)`:

arc> (nqueens 4)
((3 2) (2 0) (1 3) (0 1))
((3 1) (2 3) (1 0) (0 2))

ATS

<lang ATS> (* ****** ****** *) // // Solving N-queen puzzle // (* ****** ****** *) // // How to test: // ./queens // How to compile: // patscc -DATS_MEMALLOC_LIBC -o queens queens.dats // (* ****** ****** *) //

  1. include

"share/atspre_staload.hats" //

  1. include

"share/HATS/atspre_staload_libats_ML.hats" // (* ****** ****** *)

fun solutions(N:int) = let // fun show (

 board: list0(int)

) : void = (

 list0_foreach<int>
 ( list0_reverse(board)
 , lam(n) => ((N).foreach()(lam(i) => print_string(if i = n then " Q" else " _")); print_newline())
 ) ;
 print_newline()

) // fun safe (

 i: int, j: int, k: int, xs: list0(int)

) : bool = (

 case+ xs of
 | nil0() => true
 | cons0(x, xs) => x != i && x != j && x != k && safe(i, j+1, k-1, xs)

) // fun loop (

 col: int, xs: list0(int)

) : void = (N).foreach() ( lam(i) => if safe(i, i+1, i-1, xs) then let

 val xs = cons0(i, xs)

in

 if col = N then show(xs) else loop(col+1, xs)

end // end of [then] ) // in

 loop(1, nil0())

end // end of [solutions]

(* ****** ****** *)

val () = solutions(8)

(* ****** ****** *)

implement main0() = ()

(* ****** ****** *)

(* end of [queens.dats] *) </lang>

AutoHotkey

Output to formatted Message box

Translation of: C

<lang AutoHotkey>;

Post
http://www.autohotkey.com/forum/viewtopic.php?p=353059#353059
Timestamp
05/may/2010

MsgBox % funcNQP(5) MsgBox % funcNQP(8)

Return

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
** USED VARIABLES **
Global
All variables named Array[???]
Function funcNPQ
nQueens , OutText , qIndex
Function Unsafe
nIndex , Idx , Tmp , Aux
Function PutBoard
Output , QueensN , Stc , xxx , yyy
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

funcNQP(nQueens) {

 Global
 Array[0] := -1
 Local OutText , qIndex := 0
 While ( qIndex >= 0 )
 {
   Array[%qIndex%]++
   While ( (Array[%qIndex%] < nQueens) && Unsafe(qIndex) )
     Array[%qIndex%]++
   If ( Array[%qIndex%] < nQueens )
   {
     If ( qIndex < nQueens-1 )
       qIndex++  ,  Array[%qIndex%] := -1
     Else
       PutBoard(OutText,nQueens)
   }
   Else
     qIndex--
 }
 Return OutText

}

------------------------------------------

Unsafe(nIndex) {

 Global
 Local Idx := 1  ,  Tmp := 0  ,  Aux := Array[%nIndex%]
 While ( Idx <= nIndex )
 {
   Tmp := "Array[" nIndex - Idx "]"
   Tmp := % %Tmp%
   If ( ( Tmp = Aux ) || ( Tmp = Aux-Idx ) || ( Tmp = Aux+Idx ) )
     Return 1
   Idx++
 }
 Return 0

}

------------------------------------------

PutBoard(ByRef Output,QueensN) {

 Global
 Static Stc = 0
 Local xxx := 0 , yyy := 0
 Output .= "`n`nSolution #" (++Stc) "`n"
 While ( yyy < QueensN )
 {
   xxx := 0
   While ( xxx < QueensN )
     Output .= ( "|" ( ( Array[%yyy%] = xxx ) ? "Q" : "_" ) )  ,  xxx++
   Output .= "|`n"  ,  yyy++
 }

}</lang>

Includes a solution browser GUI

This implementation supports N = 4..12 queens, and will find ALL solutions for each of the different sizes. The screenshot shows the first solution of 10 possible solutions for N = 5 queens.

<lang AutoHotkey>N := 5 Number: ; main entrance for different # of queens

   SI := 1
   Progress b2 w250 zh0 fs9, Calculating all solutions for %N% Queens ...
   Gosub GuiCreate
   Result := SubStr(Queens(N),2)
   Progress Off
   Gui Show,,%N%-Queens
   StringSplit o, Result, `n

Fill: ; show solutions

   GuiControl,,SI, %SI% / %o0%
   Loop Parse, o%SI%, `,
   {
       C := A_Index
       Loop %N%
           GuiControl,,%C%_%A_Index% ; clear fields
       GuiControl,,%C%_%A_LoopField%, r
   }

Return ;-----------------------------------------------------------------------

Queens(N) {  ; Size of the board

   Local c, O                              ; global array r
   r1 := 1, c := 2, r2 := 3, O := ""       ; init: r%c% = row of Queen in column c
   Right:                                  ; move to next column
       If (c = N) {                        ; found solution
           Loop %N%                        ; save row indices of Queens
               O .= (A_Index = 1 ? "`n" : ",") r%A_Index%
           GOTO % --c ? "Down" : "OUT"     ; for ALL solutions
       }
       c++, r%c% := 1                      ; next column, top row
       GoTo % BAD(c) ? "Down" : "Right"
   Down:                                   ; move down to next row
       If (r%c% = N)
           GoTo % --c ? "Down" : "OUT"
       r%c%++                              ; row down
       GoTo % BAD(c) ? "Down" : "Right"
   OUT:
       Return O

} ;----------------------------------------------------------------------------

BAD(c) { ; Check placed Queens against Queen in row r%c%, column c

   Loop % c-1
       If (r%A_Index% = r%c% || ABS(r%A_Index%-r%c%) = c-A_Index)
           Return 1

} ;----------------------------------------------------------------------------

GuiCreate: ; Draw chess board

   Gui Margin, 20, 15
   Gui Font, s16, Marlett
   Loop %N% {
       C := A_Index
       Loop %N% { ; fields
           R := A_Index, X := 40*C-17, Y := 40*R-22
           Gui Add, Progress, x%X% y%Y% w41 h41 Cdddddd, % 100*(R+C & 1) ;% shade fields
           Gui Add, Text, x%X% y%Y% w41 h41 BackGroundTrans Border Center 0x200 v%C%_%R%
       }
   }
   Gui Add, Button, x%x% w43 h25 gBF, 4 ; forth (default)
   Gui Add, Button,xm yp w43 h25 gBF, 3 ; back
   Gui Font, bold, Comic Sans MS
   Gui Add, Text,% "x62 yp hp Center 0x200 vSI w" 40*N-80
   Menu FileMenu, Add, E&xit, GuiClose
   Loop 9
       Menu CalcMenu, Add, % "Calculate " A_Index+3 " Queens", Calculate ;%
   Menu HelpMenu, Add, &About, AboutBox
   Menu MainMenu, Add, &File, :FileMenu
   Menu MainMenu, Add, &Calculate, :CalcMenu
   Menu MainMenu, Add, &Help, :HelpMenu
   Gui Menu, Mainmenu

Return ; ----------------------------------------------------------------------

AboutBox: ; message box with AboutText

   Gui 1: +OwnDialogs
   MsgBox, 64, About N-Queens, Many thanks ...

Return

Calculate: ; menu handler for calculations

   N := A_ThisMenuItemPos + 3
   Gui Destroy
   GoTo Number ; -------------------------------------------------------------

BF:

  SI := mod(SI+o0-2*(A_GuiControl=3), o0) + 1 ; left button text is "3"
  GoTo Fill ; ----------------------------------------------------------------

GuiClose: ExitApp</lang>

BBC BASIC

The total number of solutions is displayed in the title bar and one solution is displayed. The code could be adapted to display a selected solution or multiple solutions.

<lang bbcbasic> Size% = 8

     Cell% = 32
     VDU 23,22,Size%*Cell%;Size%*Cell%;Cell%,Cell%,16,128+8,5
     *font Arial Unicode MS,16
     GCOL 3,11
     FOR i% = 0 TO Size%-1 STEP 2
       RECTANGLE FILL i%*Cell%*2,0,Cell%*2,Size%*Cell%*2
       RECTANGLE FILL 0,i%*Cell%*2,Size%*Cell%*2,Cell%*2
     NEXT
     num% = FNqueens(Size%, Cell%)
     SYS "SetWindowText", @hwnd%, "Total " + STR$(num%) + " solutions"
     REPEAT : WAIT 1 : UNTIL FALSE
     END
     
     DEF FNqueens(n%, s%)
     LOCAL i%, j%, m%, p%, q%, r%, a%(), b%(), c%()
     DIM a%(n%), b%(n%), c%(4*n%-2)
     FOR i% = 1 TO DIM(a%(),1) : a%(i%) = i% : NEXT
     m% = 0
     i% = 1
     j% = 0
     r% = 2*n%-1
     REPEAT
       i% -= 1
       j% += 1
       p% = 0
       q% = -r%
       REPEAT
         i% += 1
         c%(p%) = 1
         c%(q%+r%) = 1
         SWAP a%(i%),a%(j%)
         p% = i% - a%(i%) + n%
         q% = i% + a%(i%) - 1
         b%(i%) = j%
         j% = i% + 1
       UNTIL j% > n% OR c%(p%) OR c%(q%+r%)
       IF c%(p%)=0 IF c%(q%+r%)=0 THEN
         IF m% = 0 THEN
           FOR p% = 1 TO n%
             MOVE 2*s%*(a%(p%)-1)+6, 2*s%*p%+6
             PRINT "♛";
           NEXT
         ENDIF
         m% += 1
       ENDIF
       j% = b%(i%)
       WHILE j% >= n% AND i% <> 0
         REPEAT
           SWAP a%(i%), a%(j%)
           j% = j%-1
         UNTIL j% < i%
         i% -= 1
         p% = i% - a%(i%) + n%
         q% = i% + a%(i%) - 1
         j% = b%(i%)
         c%(p%) = 0
         c%(q%+r%) = 0
       ENDWHILE
     UNTIL i% = 0
     = m%</lang>

BCPL

<lang BCPL>// This can be run using Cintcode BCPL freely available from www.cl.cam.ac.uk/users/mr10.

GET "libhdr.h"

GLOBAL { count:ug; all }

LET try(ld, row, rd) BE TEST row=all

                       THEN count := count + 1
                       ELSE { LET poss = all & ~(ld | row | rd)
                              WHILE poss DO
                              { LET p = poss & -poss
                                poss := poss - p
                                try(ld+p << 1, row+p, rd+p >> 1)
                              }
                            }

LET start() = VALOF { all := 1

 FOR i = 1 TO 16 DO
 { count := 0
   try(0, 0, 0)
   writef("Number of solutions to %i2-queens is %i7*n", i, count)
   all := 2*all + 1
 }
 RESULTIS 0

} </lang> The following is a re-implementation of the algorithm given above but using the MC package that allows machine independent runtime generation of native machine code (currently only available for i386 machines). It runs about 25 times faster that the version given above.

<lang BCPL> GET "libhdr.h" GET "mc.h"

MANIFEST {

lo=1; hi=16
dlevel=#b0000
// Register mnemonics
ld    = mc_a
row   = mc_b
rd    = mc_c
poss  = mc_d
p     = mc_e
count = mc_f

}

LET start() = VALOF { // Load the dynamic code generation package

 LET mcseg = globin(loadseg("mci386"))
 LET mcb = 0
 UNLESS mcseg DO
 { writef("Trouble with MC package: mci386*n")
   GOTO fin
 }
 // Create an MC instance for hi functions with a data space
 // of 10 words and code space of 40000
 mcb := mcInit(hi, 10, 40000)
 UNLESS mcb DO
 { writef("Unable to create an mci386 instance*n")
   GOTO fin
 } 
 mc := 0          // Currently no selected MC instance
 mcSelect(mcb)
 mcK(mc_debug, dlevel) // Set the debugging level
 FOR n = lo TO hi DO
 { mcComment("*n*n// Code for a %nx%n board*n", n, n)
   gencode(n) // Compile the code for an nxn board
 }
 mcF(mc_end) // End of code generation
 writef("Code generation complete*n")
 FOR n = lo TO hi DO
 { LET k = mcCall(n)
   writef("Number of solutions to %i2-queens is %i9*n", n, k)
 }

fin:

 IF mc    DO mcClose()
 IF mcseg DO unloadseg(mcseg)  
 writef("*n*nEnd of run*n")

}

AND gencode(n) BE { LET all = (1<<n) - 1

 mcKKK(mc_entry, n, 3, 0)
 mcRK(mc_mv, ld,    0)
 mcRK(mc_mv, row,   0)
 mcRK(mc_mv, rd,    0)
 mcRK(mc_mv, count, 0)
 cmpltry(1, n, all)        // Compile the outermost call of try
 mcRR(mc_mv, mc_a, count)  // return count
 mcF(mc_rtn)
 mcF(mc_endfn)

}

AND cmpltry(i, n, all) BE { LET L = mcNextlab()

 mcComment("*n// Start of code from try(%n, %n, %n)*n", i, n, all)
 mcRR(mc_mv,  poss, ld)         // LET poss = (~(ld | row | rd)) & all
 mcRR(mc_or,  poss, row)
 mcRR(mc_or,  poss, rd)
 mcR (mc_not, poss)
 mcRK(mc_and, poss, all)
 mcRK(mc_cmp, poss, 0)          // IF poss DO
 TEST n-i<=2
 THEN mcJS(mc_jeq, L)           // (use a short jump if near the last row)
 ELSE mcJL(mc_jeq, L)
 TEST i=n
 THEN { // We can place a queen in the final row.
        mcR(mc_inc,  count)     //   count := count+1
      }
 ELSE { // We can place queen(s) in a non final row.
        LET M = mcNextlab()
        mcL (mc_lab,  M)        // { Start of REPEATWHILE loop
        mcRR(mc_mv,   p, poss)  //   LET p = poss & -poss
        mcR (mc_neg,  p)
        mcRR(mc_and,  p, poss)  //   // p is a valid queens position
        mcRR(mc_sub,  poss, p)  //   poss := poss - p


        mcR (mc_push, ld)       //   Save current state
        mcR (mc_push, row)
        mcR (mc_push, rd)
        mcR (mc_push, poss)
                                //   Call try((ld+p)<<1, row+p, (rd+p)>>1)
        mcRR(mc_add,  ld,  p)
        mcRK(mc_lsh,  ld,  1)   //   ld  := (ld+p)<<1
        mcRR(mc_add,  row, p)   //   row := row+p
        mcRR(mc_add,  rd,  p)
        mcRK(mc_rsh,  rd,  1)   //   rd  := (rd+p)>>1
        cmpltry(i+1, n, all)    //   Compile code for row i+1
        mcR (mc_pop,  poss)     //   Restore the state
        mcR (mc_pop,  rd)
        mcR (mc_pop,  row)
        mcR (mc_pop,  ld)
        mcRK(mc_cmp,  poss, 0)
        mcJL(mc_jne, M)         // } REPEATWHILE poss
      }
      mcL(mc_lab, L)
      mcComment("// End   of code from try(%n, %n, %n)*n*n",
                i, n, all)

} </lang>

Befunge

This algorithm works with any board size from 4 upwards.

<lang befunge><+--XX@_v#!:-1,+55,g\1$_:00g2%-0vv:,+55<&,,,,,,"Size: " "| Q"$$$>:01p:2%!00g0>>^<<!:-1\<1>00p::2%-:40p2/50p2*1+ !77**48*+31p\:1\g,::2\g:,\3\g,,^g>0g++40g%40g\-\40g\`*- 2g05\**!!%6g04-g052!:`\g05::-1/2<^4*2%g05\+*+1*!!%6g04-</lang>

Output:
Size: 8

+---+---+---+---+---+---+---+---+
|   |   |   |   | Q |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   | Q |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
| Q |   |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   | Q |   |
+---+---+---+---+---+---+---+---+
|   | Q |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   |   | Q |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   | Q |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   | Q |   |   |   |   |
+---+---+---+---+---+---+---+---+

Bracmat

<lang bracmat>( ( printBoard

   =   board M L x y S R row line
     .   :?board
       & !ups:? [?M
       &   whl
         ' ( !arg:(?x.?y) ?arg
           & !M:?L
           & :?row:?line
           &   whl
             ' ( !L+-1:~<0:?L
               & !x+1:~>!M:?x
               & "---+" !line:?line
               & "   |" !row:?row
               )
           & "---+" !line:?line
           & " Q |" !row:?row
           &   whl
             ' ( !L+-1:~<0:?L
               & "---+" !line:?line
               & "   |" !row:?row
               )
           & "\n|" !row "\n+" !line !board:?board
           )
       & str$("\n+" !line !board)
   )
   ( queens
   =   hor ver up down ups downs a z A Z x y Q
     .   !arg:(?hor.?ver.?ups.?downs.?Q)
       &   !ver
         : (   
             & 1+!solutions:?solutions
             { Comment the line below if you only want a count. }
             & out$(str$("\nsolution " !solutions) printBoard$!Q)
             & ~  { Fail! (and backtrack to find more solutions)}
           |   #%?y
               ( ?z
               &   !hor
                 :   ?A
                     #%?x
                     ( ?Z
                     & !x+!y:?up
                     & !x+-1*!y:?down
                     & ~(!ups:? !up ?)
                     & ~(!downs:? !down ?)
                     &   queens
                       $ ( !A !Z
                         . !z
                         . !up !ups
                         . !down !downs
                         . (!x.!y) !Q
                         )
                     )
               )
           )
   )

& 0:?solutions & 1 2 3 4 5 6 7 8:?H:?V {You can edit this line to find solutions for other sizes.} & ( queens$(!H.!V...)

 | out$(found !solutions solutions)
 )

);</lang>

Output:

(tail)

solution 91

+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   |   | Q |
+---+---+---+---+---+---+---+---+
|   |   | Q |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
| Q |   |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   | Q |   |   |
+---+---+---+---+---+---+---+---+
|   | Q |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   | Q |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   | Q |   |
+---+---+---+---+---+---+---+---+
|   |   |   | Q |   |   |   |   |
+---+---+---+---+---+---+---+---+

solution 92

+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   |   | Q |
+---+---+---+---+---+---+---+---+
|   |   |   | Q |   |   |   |   |
+---+---+---+---+---+---+---+---+
| Q |   |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   | Q |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   | Q |   |   |
+---+---+---+---+---+---+---+---+
|   | Q |   |   |   |   |   |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   | Q |   |
+---+---+---+---+---+---+---+---+
|   |   |   |   | Q |   |   |   |
+---+---+---+---+---+---+---+---+
found 92 solutions

C

C99, compiled with gcc -std=c99 -Wall. Take one commandline argument: size of board, or default to 8. Shows the board layout for each solution.<lang C>#include <stdio.h>

  1. include <stdlib.h>

int count = 0; void solve(int n, int col, int *hist) { if (col == n) { printf("\nNo. %d\n-----\n", ++count); for (int i = 0; i < n; i++, putchar('\n')) for (int j = 0; j < n; j++) putchar(j == hist[i] ? 'Q' : ((i + j) & 1) ? ' ' : '.');

return; }

  1. define attack(i, j) (hist[j] == i || abs(hist[j] - i) == col - j)

for (int i = 0, j = 0; i < n; i++) { for (j = 0; j < col && !attack(i, j); j++); if (j < col) continue;

hist[col] = i; solve(n, col + 1, hist); } }

int main(int n, char **argv) { if (n <= 1 || (n = atoi(argv[1])) <= 0) n = 8; int hist[n]; solve(n, 0, hist); }</lang>

Similiar to above, but using bits to save board configurations and quite a bit faster:<lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <stdint.h>

typedef uint32_t uint; uint full, *qs, count = 0, nn;

void solve(uint d, uint c, uint l, uint r) { uint b, a, *s; if (!d) { count++;

  1. if 0

printf("\nNo. %d\n===========\n", count); for (a = 0; a < nn; a++, putchar('\n')) for (b = 0; b < nn; b++, putchar(' ')) putchar(" -QQ"[((b == qs[a])<<1)|((a + b)&1)]);

  1. endif

return; }

a = (c | (l <<= 1) | (r >>= 1)) & full; if (a != full) for (*(s = qs + --d) = 0, b = 1; b <= full; (*s)++, b <<= 1) if (!(b & a)) solve(d, b|c, b|l, b|r); }

int main(int n, char **argv) { if (n <= 1 || (nn = atoi(argv[1])) <= 0) nn = 8;

qs = calloc(nn, sizeof(int)); full = (1U << nn) - 1;

solve(nn, 0, 0, 0); printf("\nSolutions: %d\n", count); return 0; }</lang> Take that and unwrap the recursion, plus some heavy optimizations, and we have a very fast and very unreadable solution: <lang c>#include <stdio.h>

  1. include <stdlib.h>

typedef unsigned int uint; uint count = 0;

  1. define ulen sizeof(uint) * 8

/* could have defined as int solve(...), but void may have less

  chance to confuse poor optimizer */

void solve(int n) { int cnt = 0; const uint full = -(int)(1 << (ulen - n)); register uint bits, pos, *m, d, e;

uint b0, b1, l[32], r[32], c[32], mm[33] = {0}; n -= 3; /* require second queen to be left of the first queen, so we ever only test half of the possible solutions. This is why we can't handle n=1 here */ for (b0 = 1U << (ulen - n - 3); b0; b0 <<= 1) { for (b1 = b0 << 2; b1; b1 <<= 1) { d = n; /* c: columns occupied by previous queens. l: columns attacked by left diagonals r: by right diagnoals */ c[n] = b0 | b1; l[n] = (b0 << 2) | (b1 << 1); r[n] = (b0 >> 2) | (b1 >> 1);

/* availabe columns on current row. m is stack */ bits = *(m = mm + 1) = full & ~(l[n] | r[n] | c[n]);

while (bits) { /* d: depth, aka row. counting backwards because !d is often faster than d != n */ while (d) { /* pos is right most nonzero bit */ pos = -(int)bits & bits;

/* mark bit used. only put current bits on stack if not zero, so backtracking will skip exhausted rows (because reading stack variable is sloooow compared to registers) */ if ((bits &= ~pos)) *m++ = bits | d;

/* faster than l[d+1] = l[d]... */ e = d--; l[d] = (l[e] | pos) << 1; r[d] = (r[e] | pos) >> 1; c[d] = c[e] | pos;

bits = full & ~(l[d] | r[d] | c[d]);

if (!bits) break; if (!d) { cnt++; break; } } /* Bottom of stack m is a zero'd field acting as sentinel. When saving to stack, left 27 bits are the available columns, while right 5 bits is the depth. Hence solution is limited to size 27 board -- not that it matters in foreseeable future. */ d = (bits = *--m) & 31U; bits &= ~31U; } } } count = cnt * 2; }

int main(int c, char **v) { int nn; if (c <= 1 || (nn = atoi(v[1])) <= 0) nn = 8;

if (nn > 27) { fprintf(stderr, "Value too large, abort\n"); exit(1); }

/* Can't solve size 1 board; might as well skip 2 and 3 */ if (nn < 4) count = nn == 1; else solve(nn);

printf("\nSolutions: %d\n", count); return 0; }</lang>

A slightly cleaned up version of the code above where some optimizations were redundant. This version is also further optimized, and runs about 15% faster than the one above on modern compilers:

<lang c>#include <stdio.h>

  1. define MAXN 31

int nqueens(int n) {

 int q0,q1;
 int cols[MAXN], diagl[MAXN], diagr[MAXN], posibs[MAXN]; // Our backtracking 'stack' 
 int num=0;
 //
 // The top level is two fors, to save one bit of symmetry in the enumeration by forcing second queen to
 // be AFTER the first queen.
 //
 for (q0=0; q0<n-2; q0++) {
   for (q1=q0+2; q1<n; q1++){
     int bit0 = 1<<q0;
     int bit1 = 1<<q1;
     int d=0; // d is our depth in the backtrack stack 
     cols[0] = bit0 | bit1 | (-1<<n); // The -1 here is used to fill all 'coloumn' bits after n ...
     diagl[0]= (bit0<<1 | bit1)<<1;
     diagr[0]= (bit0>>1 | bit1)>>1;
     //  The variable posib contains the bitmask of possibilities we still have to try in a given row ...
     int posib = ~(cols[0] | diagl[0] | diagr[0]);
     while (d >= 0) {
       while(posib) {
         int bit = posib & -posib; // The standard trick for getting the rightmost bit in the mask
         int ncols= cols[d] | bit;
         int ndiagl = (diagl[d] | bit) << 1;
         int ndiagr = (diagr[d] | bit) >> 1;
         int nposib = ~(ncols | ndiagl | ndiagr);
         posib^=bit; // Eliminate the tried possibility.
         // The following is the main additional trick here, as recognizing solution can not be done using stack level (d),
         // since we save the depth+backtrack time at the end of the enumeration loop. However by noticing all coloumns are
         // filled (comparison to -1) we know a solution was reached ...
         // Notice also that avoiding an if on the ncols==-1 comparison is more efficient!
         num += ncols==-1; 
         if (nposib) {
           if (posib) { // This if saves stack depth + backtrack operations when we passed the last possibility in a row.
             posibs[d++] = posib; // Go lower in stack ..
           }
           cols[d] = ncols;
           diagl[d] = ndiagl;
           diagr[d] = ndiagr;
           posib = nposib;
         }
       }
       posib = posibs[--d]; // backtrack ...
     }
   }
 }
 return num*2;

}


main(int ac , char **av) {

 if(ac != 2) {
   printf("usage: nq n\n");
   return 1;
 }
 int n = atoi(av[1]);
 if(n<1 || n > MAXN) {
   printf("n must be between 2 and 31!\n");
 }
 printf("Number of solution for %d is %d\n",n,nqueens(n));

} </lang>

C++

<lang cpp>// Much shorter than the version below; // uses C++11 threads to parallelize the computation; also uses backtracking // Outputs all solutions for any table size

  1. include <vector>
  2. include <iostream>
  3. include <iomanip>
  4. include <thread>
  5. include <future>

// Print table. 'pos' is a vector of positions – the index in pos is the row, // and the number at that index is the column where the queen is placed. static void print(const std::vector<int> &pos) { // print table header for (int i = 0; i < pos.size(); i++) { std::cout << std::setw(3) << char('a' + i); }

std::cout << '\n';

for (int row = 0; row < pos.size(); row++) { int col = pos[row]; std::cout << row + 1 << std::setw(3 * col + 3) << " # "; std::cout << '\n'; }

std::cout << "\n\n"; }

static bool threatens(int row_a, int col_a, int row_b, int col_b) { return row_a == row_b // same row or col_a == col_b // same column or std::abs(row_a - row_b) == std::abs(col_a - col_b); // diagonal }

// the i-th queen is in the i-th row // we only check rows up to end_idx // so that the same function can be used for backtracking and checking the final solution static bool good(const std::vector<int> &pos, int end_idx) { for (int row_a = 0; row_a < end_idx; row_a++) { for (int row_b = row_a + 1; row_b < end_idx; row_b++) { int col_a = pos[row_a]; int col_b = pos[row_b]; if (threatens(row_a, col_a, row_b, col_b)) { return false; } } }

return true; }

static std::mutex print_count_mutex; // mutex protecting 'n_sols' static int n_sols = 0; // number of solutions

// recursive DFS backtracking solver static void n_queens(std::vector<int> &pos, int index) { // if we have placed a queen in each row (i. e. we are at a leaf of the search tree), check solution and return if (index >= pos.size()) { if (good(pos, index)) { std::lock_guard<std::mutex> lock(print_count_mutex); print(pos); n_sols++; }

return; }

// backtracking step if (not good(pos, index)) { return; }

// optimization: the first level of the search tree is parallelized if (index == 0) { std::vector<std::future<void>> fts; for (int col = 0; col < pos.size(); col++) { pos[index] = col; auto ft = std::async(std::launch::async, [=]{ auto cpos(pos); n_queens(cpos, index + 1); }); fts.push_back(std::move(ft)); }

for (const auto &ft : fts) { ft.wait(); } } else { // deeper levels are not for (int col = 0; col < pos.size(); col++) { pos[index] = col; n_queens(pos, index + 1); } } }

int main() { std::vector<int> start(12); // 12: table size n_queens(start, 0); std::cout << n_sols << " solutions found.\n"; return 0; } </lang>

Output:

Output for N = 4

  a  b  c  d                                                                                                  
1    #                                                                                                        
2          #                                                                                                  
3 #                                                                                                           
4       #                                                                                                     
                                                                                                              
                                                                                                              
  a  b  c  d                                                                                                  
1       #                                                                                                     
2 #                                                                                                           
3          #                                                                                                  
4    #       

<lang cpp> // A straight-forward brute-force C++ version with formatted output, // eschewing obfuscation and C-isms, producing ALL solutions, which // works on any OS with a text terminal. // // Two basic optimizations are applied: // // It uses backtracking to only construct potentially valid solutions. // // It only computes half the solutions by brute -- once we get the // queen halfway across the top row, any remaining solutions must be // reflections of the ones already computed. // // This is a bare-bones example, without any progress feedback or output // formatting controls, which a more complete program might provide. // // Beware that computing anything larger than N=14 might take a while. // (Time gets exponentially worse the higher the number.)

// Copyright 2014 Michael Thomas Greer // Distributed under the Boost Software License, Version 1.0. // http://www.boost.org/LICENSE_1_0.txt

  1. include <algorithm>
  2. include <ciso646>
  3. include <iomanip>
  4. include <iostream>
  5. include <set>
  6. include <sstream>
  7. include <stdexcept>
  8. include <string>
  9. include <vector>


// /////////////////////////////////////////////////////////////////////////// struct queens /////////////////////////////////////////////////////////////////////////// // {

 // TYPES -------------------------------------------------------------------
 // A row or column index. (May be signed or unsigned.)
 //
 typedef signed char index_type;
 // A 'solution' is a row --> column lookup of queens on the board.
 //
 // It has lexicographical order and can be transformed with a variety of
 // reflections, which, when properly combined, produce all possible
 // orientations of a solution.
 //
 struct solution_type: std::vector <index_type>
 {
   typedef std::vector <index_type> base_type;
   // constructors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
   solution_type( std::size_t N          ): base_type( N, -1 ) { }
   solution_type( const solution_type& s ): base_type( s     ) { }
   // compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
   bool operator < ( const solution_type& s ) const
   {
     auto mm = std::mismatch( begin(), end(), s.begin() );
     return (mm.first != end()) and (*mm.first < *mm.second);
   }
   // transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . .
   void vflip() { std::reverse( begin(), end() ); }
   void hflip() { for (auto& x : *this) x = size() - 1 - x; }
   void transpose()
   {
     solution_type result( size() );
     for (index_type y = 0; (std::size_t)y < size(); y++)
       result[ (*this)[ y ] ] = y;
     swap( result );
   }
 };
 // MEMBER VALUES -----------------------------------------------------------
 const int                N;
 std::set <solution_type> solutions;
 // SOLVER ------------------------------------------------------------------
 queens( int N = 8 ):
   N( (N < 0) ? 0 : N )
 {
   // Row by row we create a potentially valid solution.
   // If a queen can be placed in a valid spot by the time
   // we get to the last row, then we've found a solution.
   solution_type solution( N );
   index_type row = 0;
   while (true)
   {
     // Advance the queen along the row
     ++solution[ row ];
     // (If we get past halfway through the first row, we're done.)
     if ((row == 0) and (solution[ 0 ] > N/2)) break;
     if (solution[ row ] < N)
     {
       // If the queen is in a good spot...
       if (ok( solution, row, solution[ row ] ))
       {
         // ...and we're on the last row
         if (row == N-1)
         {
           // Add the solution we found plus all it's reflections
           solution_type
           s = solution;  solutions.insert( s );
           s.vflip();     solutions.insert( s );
           s.hflip();     solutions.insert( s );
           s.vflip();     solutions.insert( s );
           s.transpose(); solutions.insert( s );
           s.vflip();     solutions.insert( s );
           s.hflip();     solutions.insert( s );
           s.vflip();     solutions.insert( s );
         }
         // otherwise begin marching a queen along the next row
         else solution[ ++row ] = -1;
       }
     // When we get to the end of a row's columns then
     // we need to backup a row and continue from there.
     }
     else --row;
   }
 }
 // HELPER ------------------------------------------------------------------
 // This routine helps the solver by identifying column locations
 // that do not conflict with queens already placed in prior rows.
 bool ok( const solution_type& columns, index_type row, index_type column )
 {
   for (index_type r = 0; r < row; r++)
   {
     index_type c         = columns[ r ];
     index_type delta_row = row - r;
     index_type delta_col = (c < column) ? (column - c) : (c - column);
     if ((c == column) or (delta_row == delta_col))
       return false;
   }
   return true;
 }
 // OUTPUT A SINGLE SOLUTION ------------------------------------------------
 //
 // Formatted as (for example):
 //
 //   d1 b2 g3 c4 f5 h6 e7 a8
 //   Q - - - - - - -
 //   - - - - Q - - -
 //   - - - - - - - Q
 //   - - - - - Q - -
 //   - - Q - - - - -
 //   - - - - - - Q -
 //   - Q - - - - - -
 //   - - - Q - - - -
 //
 friend
 std::ostream&
 operator << ( std::ostream& outs, const queens::solution_type& solution )
 {
   static const char* squares[] = { "- ", "Q " };
   index_type N = solution.size();
   // Display the queen positions
   for (auto n = N; n--; )
     outs << (char)('a' + solution[ n ]) << (N - n) << " ";
   // Display the board
   for (auto queen : solution)
   {
     outs << "\n";
     for (index_type col = 0; col < N; col++)
       outs << squares[ col == queen ];
   }
   return outs;
 }
 // OUTPUT ALL SOLUTIONS ----------------------------------------------------
 //
 // Display "no solutions" or "N solutions" followed by
 // each individual solution, separated by blank lines.
 friend
 std::ostream&
 operator << ( std::ostream& outs, const queens& q )
 {
   if (q.solutions.empty()) outs << "no";
   else                     outs << q.solutions.size();
   outs << " solutions";
   std::size_t n = 1;
   for (auto solution : q.solutions)
   {
     outs << "\n\n#" << n++ << "\n" << solution;
   }
   return outs;
 }

};


/* /////////////////////////////////////////////////////////////////////////// string_to <type> ( x ) /////////////////////////////////////////////////////////////////////////// */

template <typename T> T string_to( const std::string& s ) {

 T result;
 std::istringstream ss( s );
 ss >> result;
 if (!ss.eof()) throw std::runtime_error( "to_string(): invalid conversion" );
 return result;

}

template <typename T, T default_value> T string_to( const std::string& s ) {

 try { return string_to <T> ( s ); }
 catch (...) { return default_value; }

}


/* /////////////////////////////////////////////////////////////////////////// main program /////////////////////////////////////////////////////////////////////////// */

int usage( const std::string& name ) {

 std::cerr <<
   "usage:\n  " << name << " 8\n\n"
   ""
   "Solve the N-Queens problem, brute-force,\n"
   "and show all solutions for an 8x8 board.\n\n"
   ""
   "(Specify a value other than 8 for the board size you want.)\n";
 return 1;

}

int main( int argc, char** argv ) {

 signed N =
   (argc < 2) ? 8 :
   (argc > 2) ? 0 : string_to <signed, 0> ( argv[ 1 ] );
 if (N <= 0) return usage( argv[ 0 ] );
 std::cout << queens( N ) << "\n";

} </lang>

Output:

for N=4

2 solutions

#1
c1 a2 d3 b4
- Q - -
- - - Q
Q - - -
- - Q -

#2
b1 d2 a3 c4
- - Q -
Q - - -
- - - Q
- Q - -

Alternate version

Windows-only <lang cpp>

  1. include <windows.h>
  2. include <iostream>
  3. include <string>

//-------------------------------------------------------------------------------------------------- using namespace std;

//-------------------------------------------------------------------------------------------------- class point { public:

   int x, y;
   point(){ x = y = 0; }
   void set( int a, int b ){ x = a; y = b; }

}; //-------------------------------------------------------------------------------------------------- class nQueens { public:

   void solve( int c )
   {
       _count = c; int len = ( c + 1 ) * ( c + 1 ); _queens = new bool[len]; memset( _queens, 0, len );

_cl = new bool[c]; memset( _cl, 0, c ); _ln = new bool[c]; memset( _ln, 0, c ); point pt; pt.set( rand() % c, rand() % c ); putQueens( pt, c ); displayBoard(); delete [] _queens; delete [] _ln; delete [] _cl;

   }

private:

   void displayBoard()
   {

system( "cls" ); string t = "+---+", q = "| Q |", s = "| |"; COORD c = { 0, 0 }; HANDLE h = GetStdHandle( STD_OUTPUT_HANDLE ); for( int y = 0, cy = 0; y < _count; y++ ) { int yy = y * _count; for( int x = 0; x < _count; x++ ) { SetConsoleCursorPosition( h, c ); cout << t; c.Y++; SetConsoleCursorPosition( h, c ); if( _queens[x + yy] ) cout << q; else cout << s; c.Y++; SetConsoleCursorPosition( h, c ); cout << t; c.Y = cy; c.X += 4; } cy += 2; c.X = 0; c.Y = cy;

       }
   }
   bool checkD( int x, int y, int a, int b )
   {

if( x < 0 || y < 0 || x >= _count || y >= _count ) return true; if( _queens[x + y * _count] ) return false; if( checkD( x + a, y + b, a, b ) ) return true; return false;

   }
   bool check( int x, int y )
   {

if( _ln[y] || _cl[x] ) return false; if( !checkD( x, y, -1, -1 ) ) return false; if( !checkD( x, y, 1, -1 ) ) return false; if( !checkD( x, y, -1, 1 ) ) return false; if( !checkD( x, y, 1, 1 ) ) return false; return true;

   }
   bool putQueens( point pt, int cnt )
   {

int it = _count; while( it ) { if( !cnt ) return true; if( check( pt.x, pt.y ) ) { _queens[pt.x + pt.y * _count] = _cl[pt.x] = _ln[pt.y] = true; point tmp = pt; if( ++tmp.x >= _count ) tmp.x = 0; if( ++tmp.y >= _count ) tmp.y = 0; if( putQueens( tmp, cnt - 1 ) ) return true; _queens[pt.x + pt.y * _count] = _cl[pt.x] = _ln[pt.y] = false; } if( ++pt.x >= _count ) pt.x = 0; it--; } return false;

   }
   int          _count;
   bool*        _queens, *_ln, *_cl;

}; //-------------------------------------------------------------------------------------------------- int main( int argc, char* argv[] ) {

   nQueens n; int nq;
   while( true )
   {

system( "cls" ); cout << "Enter board size bigger than 3 (0 - 3 to QUIT): "; cin >> nq; if( nq < 4 ) return 0; n.solve( nq ); cout << endl << endl; system( "pause" );

   }
   return  0;

} //-------------------------------------------------------------------------------------------------- </lang>

Output:
+---+---+---+---+---+   +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
| Q |   |   |   |   |   |   |   |   | Q |   |   |   |   |   |   |   |   |   |   |   |   | Q |   |   |   |
+---+---+---+---+---+   +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
|   |   | Q |   |   |   |   | Q |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | Q |   |
+---+---+---+---+---+   +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
|   |   |   |   | Q |   |   |   |   |   |   |   |   | Q |   |   |   |   | Q |   |   |   |   |   |   |   |
+---+---+---+---+---+   +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
|   | Q |   |   |   |   |   |   |   |   |   | Q |   |   |   |   | Q |   |   |   |   |   |   |   |   |   |
+---+---+---+---+---+   +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
|   |   |   | Q |   |   | Q |   |   |   |   |   |   |   |   |   |   |   |   | Q |   |   |   |   |   |   |
+---+---+---+---+---+   +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
                        |   |   | Q |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | Q |
                        +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
                        |   |   |   |   | Q |   |   |   |   | Q |   |   |   |   |   |   |   |   |   |   |
                        +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
                        |   |   |   |   |   |   | Q |   |   |   |   | Q |   |   |   |   |   |   |   |   |
                        +---+---+---+---+---+---+---+---+   +---+---+---+---+---+---+---+---+---+---+---+
                                                            |   |   |   |   |   | Q |   |   |   |   |   |
                                                            +---+---+---+---+---+---+---+---+---+---+---+
                                                            |   |   |   |   |   |   |   |   | Q |   |   |
                                                            +---+---+---+---+---+---+---+---+---+---+---+
                                                            |   |   |   |   |   |   | Q |   |   |   |   |
							    +---+---+---+---+---+---+---+---+---+---+---+

Version using Heuristics - explained here: Solution_construction <lang cpp>

  1. include <windows.h>
  2. include <iostream>
  3. include <string>
  4. include <vector>
  5. include <algorithm>

//-------------------------------------------------------------------------------------------------- using namespace std;

//-------------------------------------------------------------------------------------------------- typedef unsigned int uint;

//-------------------------------------------------------------------------------------------------- class nQueens_Heuristic { public:

   void solve( uint n ) { makeList( n ); drawBoard( n ); }

private:

   void drawBoard( uint n )
   {

system( "cls" ); string t = "+---+", q = "| Q |", s = "| |"; COORD c = { 0, 0 }; HANDLE h = GetStdHandle( STD_OUTPUT_HANDLE ); uint w = 0; for( uint y = 0, cy = 0; y < n; y++ ) { for( uint x = 0; x < n; x++ ) { SetConsoleCursorPosition( h, c ); cout << t; c.Y++; SetConsoleCursorPosition( h, c ); if( x + 1 == solution[w] ) cout << q; else cout << s; c.Y++; SetConsoleCursorPosition( h, c ); cout << t; c.Y = cy; c.X += 4; } cy += 2; c.X = 0; c.Y = cy; w++; } solution.clear(); odd.clear(); evn.clear();

   }
   void makeList( uint n )
   {

uint r = n % 6; for( uint x = 1; x <= n; x++ ) { if( x & 1 ) odd.push_back( x ); else evn.push_back( x ); } if( r == 2 ) { swap( odd[0], odd[1] ); odd.erase( find( odd.begin(), odd.end(), 5 ) ); odd.push_back( 5 ); } else if( r == 3 ) { odd.erase( odd.begin() ); odd.erase( odd.begin() ); odd.push_back( 1 ); odd.push_back( 3 ); evn.erase( evn.begin() ); evn.push_back( 2 ); } vector<uint>::iterator it = evn.begin(); while( it != evn.end() ) { solution.push_back( ( *it ) ); it++; } it = odd.begin(); while( it != odd.end() ) { solution.push_back( ( *it ) ); it++; }

   }
   vector<uint> odd, evn, solution;

}; //-------------------------------------------------------------------------------------------------- int main( int argc, char* argv[] ) {

   uint n; nQueens_Heuristic nQH;
   while( true )
   {

cout << "Enter board size bigger than 3 (0 - 3 to QUIT): "; cin >> n; if( n < 4 ) return 0; nQH.solve( n ); cout << endl << endl;

   }
   return 0;

} //-------------------------------------------------------------------------------------------------- </lang>

C#

Backtracker

<lang csharp>using System; using System.Collections.Generic; using System.Linq; using System.Text;

namespace NQueens {

   class Program
   {
       const int N = 8;

       static bool Allowed(bool[,] board, int x, int y)
       {
           for (int i=0; i<=x; i++)
           {
               if (board[i,y] || (i <= y && board[x-i,y-i]) || (y+i < N && board[x-i,y+i]))
               {
                   return false;
               }
           }
           return true;
       }

       static bool FindSolution(bool[,] board, int x)
       {
           for (int y = 0; y < N; y++)
           {
               if (Allowed(board, x, y))
               {
                   board[x, y] = true;
                   if (x == N-1 || FindSolution(board, x + 1))
                   {
                       return true;
                   }
                   board[x, y] = false;
               }
           }
           return false;
       }

       static void Main(string[] args)
       {
           bool[,] board = new bool[N, N];

           if (FindSolution(board, 0))
           {
               for (int i = 0; i < N; i++)
               {
                   for (int j = 0; j < N; j++)
                   {
                       Console.Write(board[i, j] ? "|Q" : "| ");
                   }
                   Console.WriteLine("|");
               }
           }
           else
           {
               Console.WriteLine("No solution found for n = " + N + ".");
           }

           Console.ReadKey(true);
       }
   }

}</lang>

Roger Hui (1981) Algorithm

From Hui, Roger, The N Queens Problem, APL Quote-Quad, Volume 11, Number 3, 1981-03:-

"In a solution, each possible row (column) index must appear exactly once: an index occurring more than once means that two queens are on the same row (column); and the absence of an index means that some other index must occur more than once. Hence, we can specify an arrangement as a permutation of ⍳n , which are the column indices, with the row indices understood to be ⍳n . With this, the number of possibilities is reduced from n!n×n to !n . It remains to eliminate arrangements having two queens on the same diagonal.

If two queens occupy the same diagonal, the line connecting them has slope 1 or ¯1 . Conversely, if the line connecting two queens has slope 1 or ¯1 , the two queens share a diagonal. Therefore, we seek to eliminate all permutations specifying a pair of queens where ((change in y) ÷ (change in x)) ∊ 1 ¯1 , or (|change in y) = (|change in x)"

Translation of: J
Works with: C# version 7

<lang csharp>using System.Collections.Generic; using static System.Linq.Enumerable; using static System.Console; using static System.Math;

namespace N_Queens {

   static class Program
   {
       static void Main(string[] args)
       {
           var n = 8;
           var cols = Range(0, n);
           var combs = cols.Combinations(2).Select(pairs=> pairs.ToArray());
           var solved = from v in cols.Permutations().Select(p => p.ToArray())
                        where combs.All(c => Abs(v[c[0]] - v[c[1]]) != Abs(c[0] - c[1]))
                        select v;
           
           WriteLine($"{n}-queens has {solved.Count()} solutions");
           WriteLine("Position is row, value is column:-");
           var first = string.Join(" ", solved.First());
           WriteLine($"First Solution: {first}");
           Read();
       }
       //Helpers 
       public static IEnumerable<IEnumerable<T>> Permutations<T>(this IEnumerable<T> values)
       {
           if (values.Count() == 1)
               return values.ToSingleton();
           return values.SelectMany(v => Permutations(values.Except(v.ToSingleton())), (v, p) => p.Prepend(v));
       }
       public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> seq) =>
           seq.Aggregate(Empty<T>().ToSingleton(), (a, b) => a.Concat(a.Select(x => x.Append(b))));
       public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> seq, int numItems) =>
           seq.Combinations().Where(s => s.Count() == numItems);
       public static IEnumerable<T> ToSingleton<T>(this T item) { yield return item; }
   }

}</lang> Output

8-queens has 92 solutions
Position is row, value is column:-
First Solution: 0 4 7 5 2 6 1 3

Hettinger Algorithm

Compare this to the Hettinger solution used in the first Python answer. The logic is similar but the diagonal calculation is different and more expensive computationally (Both suffer from being unable to eliminate permutation prefixes that are invalid e.g. 0 1 ...) <lang csharp> using System.Collections.Generic; using static System.Linq.Enumerable; using static System.Console; using static System.Math;

namespace N_Queens {

   static class Program
   {
       static void Main(string[] args)
       {
           var n = 8;
           var cols = Range(0, n);
           var solved = from v in cols.Permutations().Select(p => p.ToArray())
                        where n == (from i in cols select v[i]+i).Distinct().Count()
                        where n == (from i in cols select v[i]-i).Distinct().Count()
                        select v;
           WriteLine($"{n}-queens has {solved.Count()} solutions");
           WriteLine("Position is row, value is column:-");
           var first = string.Join(" ", solved.First());
           WriteLine($"First Solution: {first}");
           Read();
       }
       //Helpers from https://gist.github.com/martinfreedman/139dd0ec7df4737651482241e48b062f
       public static IEnumerable<IEnumerable<T>> Permutations<T>(this IEnumerable<T> values)
       {
           if (values.Count() == 1)
               return values.ToSingleton();
           return values.SelectMany(v => Permutations(values.Except(v.ToSingleton())), (v, p) => p.Prepend(v));
       }
       public static IEnumerable<T> ToSingleton<T>(this T item) { yield return item; }
   }

}</lang>

Amb solution

This uses the second version of the Amb C# class in the Amb challenge. Really that is not McCarthy's Amb (Ambiguous function) and here it is used just as a simple general interface by lambdas to a standalone backtrack algorithm. Due to the specification of the Amb challenge, this, ironically (given the notion of ambiguous functions), only produces one solution not 92. It is trivial to update Amb (might be better called a backtracker rather than Amb too) but here it is just used to show how easy it is to go from a generate and prune Linq solution to a backtrack solution. The Linq filters becoming "amb" requirements.

Works with: C# version 7.1

<lang csharp>using static System.Linq.Enumerable; using static System.Console;

namespace N_Queens {

   static class Program
   {
       static void Main(string[] args)
       {
           var n = 8;
           var domain = Range(0, n).ToArray();
           var amb = new Amb.Amb();
           var queens = domain.Select(_ => amb.Choose(domain)).ToArray();
           amb.Require(() => n == queens.Select(q=> q.Value).Distinct().Count());
           amb.Require(() => n == domain.Select(i=> i + queens[i].Value).Distinct().Count());
           amb.Require(() => n == domain.Select(i=> i - queens[i].Value).Distinct().Count());
           if (amb.Disambiguate())
           {
               WriteLine("Position is row, value is column:-");
               WriteLine(string.Join(" ", queens.AsEnumerable()));
           }
           else
               WriteLine("amb is angry");
           Read();
       }
   }

}</lang>

Clojure

This produces all solutions by essentially a backtracking algorithm. The heart is the extends? function, which takes a partial solution for the first k<size columns and sees if the solution can be extended by adding a queen at row n of column k+1. The extend function takes a list of all partial solutions for k columns and produces a list of all partial solutions for k+1 columns. The final list solutions is calculated by starting with the list of 0-column solutions (obviously this is the list [ [] ], and iterates extend for size times. <lang clojure>(def size 8)

(defn extends? [v n]

 (let [k (count v)]
   (not-any? true?
     (for [i (range k) :let [vi (v i)]]
       (or
         (= vi n)  ;check for shared row
         (= (- k i) (Math/abs (- n vi)))))))) ;check for shared diagonal

(defn extend [vs]

 (for [v vs
       n (range 1 (inc size)) :when (extends? v n)]
   (conj v n)))


(def solutions

 (nth (iterate extend [[]]) size))

(doseq [s solutions]

 (println s))

(println (count solutions) "solutions")</lang>

Short Version

<lang clojure>(ns queens

 (:require [clojure.math.combinatorics :as combo]

(defn queens [n]

 (filter (fn [x] (every? #(apply distinct? (map-indexed % x)) [+ -]))
         (combo/permutations (range 1 (inc n))))) </lang>

CoffeeScript

<lang coffeescript>

  1. Unlike traditional N-Queens solutions that use recursion, this
  2. program attempts to more closely model the "human" algorithm.
  3. In this algorithm, the function keeps placing queens on the board
  4. until there is no longer a safe square. If the 8th queen has been
  5. placed, the solution is noted. If fewer than 8th queens have been
  6. placed, then you are at a dead end. In either case, backtracking occurs.
  7. The LAST queen placed on the board gets pulled, then it gets moved
  8. to the next safe square. (We backtrack even after a "good" attempt in
  9. order to get to a new solution.) This backtracking may repeat itself
  10. several times until the original misplaced queen finally is proven to
  11. be a dead end.
  12. Many N-Queens solutions use lazy logic (along with geometry shortcuts)
  13. to determine whether a queen is under attack. In this algorithm, we
  14. are more proactive, essentially updating a sieve every time we lay a
  15. queen down. To make backtracking easier, the sieve uses ref-counts vs.
  16. a simple safe/unsafe boolean.
  17. We precompute the "attack graph" up front, and then we essentially ignore
  18. the geometry of the problem. This approach, while perhaps suboptimal for
  19. queens, probably is more flexible for general "coexistence" problems.

nqueens = (n) ->

 neighbors = precompute_neighbors(n)
 board = []
 num_solutions = 0
 num_backtracks = 0
 queens = []
 pos = 0
 for p in [0...n*n]
   board.push 0
 
 attack = (pos, delta=1) ->
   for neighbor in neighbors[pos]
     board[neighbor] += delta
     
 backtrack = ->
   pos = queens.pop()
   attack pos, -1 # unattack queen you just pulled
   pos += 1
   num_backtracks += 1
 # The following loop finds all 92 solutions to 
 # the 8-queens problem (for n=8).
 while true  
   if pos >= n*n
     if queens.length == 0
       break
     backtrack()
     continue
   # If a square is empty
   if board[pos] == 0
     attack pos
     queens.push pos
     if queens.length == n
       num_solutions += 1
       show_queens queens, n
       backtrack()
   pos += 1
   
 console.log "#{num_solutions} solutions"
 console.log "#{num_backtracks} backtracks"


precompute_neighbors = (n) ->

 # For each board position, build a list of all
 # the board positions that would be under attack if
 # you placed a queen on it.  This assumes a 1d array
 # of squares.
 neighbors = []
 find_neighbors = (pos) ->
   arr = []
   row = Math.floor pos / n
   col = pos % n
   for i in [0...n]
     if i != col
       arr.push row*n + i
       r1 = row + col - i
       r2 = row + i - col
       if 0 <= r1 and r1 < n
         arr.push r1*n + i
       if 0 <= r2 and r2 < n
         arr.push r2*n + i
     if i != row
       arr.push i*n + col
   arr
 for pos in [0...n*n]
   neighbors.push find_neighbors(pos) 
 neighbors


show_queens = (queens, n) ->

 # precondition: queens is a sorted array of integers,
 # and each row is represented
 console.log "\n------"
 for q in queens
   col = q % n
   s = 
   for c in [0...n]
     if c == col
       s += "Q "
     else
       s += "* "
   console.log s + "\n"

nqueens(8) </lang>


Common Lisp

<lang lisp>(defun queens (n &optional (m n))

 (if (zerop n)
     (list nil)
     (loop for solution in (queens (1- n) m)
           nconc (loop for new-col from 1 to m
                        when (loop for row from 1 to n
                                    for col in solution
                                    always (/= new-col col (+ col row) (- col row)))
                        collect (cons new-col solution)))))

(defun print-solution (solution)

 (loop for queen-col in solution
       do (loop for col from 1 to (length solution)
                 do (write-char (if (= col queen-col) #\Q #\.)))
          (terpri))
 (terpri))

(defun print-queens (n)

 (mapc #'print-solution (queens n)))</lang>

Alternate solution

Translation of Fortran 77 <lang lisp>(defun queens1 (n)

   (let ((a (make-array n))
         (s (make-array n))
         (u (make-array (list (- (* 4 n) 2)) :initial-element t))
         y z (i 0) j p q (r (1- (* 2 n))) (m 0))
       (dotimes (i n) (setf (aref a i) i))
       (tagbody
           L1
           (if (>= i n) (go L5))
           (setf j i)
           L2
           (setf y (aref a j) z (aref a i))
           (setf p (+ (- i y) n -1) q (+ i y))
           (setf (aref a i) y (aref a j) z)
           (when (and (aref u p) (aref u (+ q r))) 
               (setf (aref s i) j (aref u p) nil (aref u (+ q r)) nil)
               (incf i)
               (go L1))
           L3
           (incf j)
           (if (< j n) (go L2))
           L4
           (decf j)
           (if (= j i) (go L6))
           (rotatef (aref a i) (aref a j))
           (go L4)
           L5
           (incf m)
           L6
           (decf i)
           (if (minusp i) (go L7))
           (setf p (+ (- i (aref a i)) n -1) q (+ i (aref a i)) j (aref s i))
           (setf (aref u p) t (aref u (+ q r)) t)
           (go L3)
           L7)
       m))

> (loop for n from 1 to 14 collect (cons n (queens1 n))) ((1 . 1) (2 . 0) (3 . 0) (4 . 2) (5 . 10) (6 . 4) (7 . 40) (8 . 92) (9 . 352)

(10 . 724) (11 . 2680) (12 . 14200) (13 . 73712) (14 . 365596))</lang>

As in Fortran, the iterative function above is equivalent to the recursive function below:

<lang lisp>(defun queens2 (n)

   (let ((a (make-array n))
         (u (make-array (+ n n -1) :initial-element t))
         (v (make-array (+ n n -1) :initial-element t))
         (m 0))
       (dotimes (i n) (setf (aref a i) i))
       (labels ((sub (i)
           (if (= i n)
               ;(push (copy-seq a) s)
               (incf m)
               (loop for k from i below n do
                   (let ((p (+ i (aref a k)))
                         (q (+ (- i (aref a k)) n -1)))
                       (when (and (aref u p) (aref v q))
                           (setf (aref u p) nil (aref v q) nil)
                           (rotatef (aref a i) (aref a k))
                           (sub (1+ i))
                           (setf (aref u p) t (aref v q) t)
                           (rotatef (aref a i) (aref a k))))))))
           (sub 0))
       m))</lang>

Curry

Three different ways of attacking the same problem. All copied from A Catalog of Design Patterns in FLP <lang curry> -- 8-queens implementation with the Constrained Constructor pattern -- Sergio Antoy -- Fri Jul 13 07:05:32 PDT 2001

-- Place 8 queens on a chessboard so that no queen can capture -- (and be captured by) any other queen.

-- Non-deterministic choice operator

infixl 0 ! X ! _ = X _ ! Y = Y

-- A solution is represented by a list of integers. -- The i-th integer in the list is the column of the board -- in which the queen in the i-th row is placed. -- Rows and columns are numbered from 1 to 8. -- For example, [4,2,7,3,6,8,5,1] is a solution where the -- the queen in row 1 is in column 4, etc. -- Any solution must be a permutation of [1,2,...,8].

-- The state of a queen is its position, row and column, on the board. -- Operation column is a particularly simple instance -- of a Constrained Constructor pattern. -- When it is invoked, it produces only valid states.

column = 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8

-- A path of the puzzle is a sequence of successive placements of -- queens on the board. It is not explicitly defined as a type. -- A path is a potential solution in the making.

-- Constrained Constructor on a path -- Any path must be valid, i.e., any column must be in the range 1..8 -- and different from any other column in the path. -- Furthermore, the path must be safe for the queens. -- No queen in a path may capture any other queen in the path. -- Operation makePath add column n to path c or fails.

makePath c n | valid c && safe c 1 = n:c

   where valid c | n =:= column = uniq c
            where uniq [] = True
                  uniq (c:cs) = n /= c && uniq cs
         safe [] _ = True
         safe (c:cs) k = abs (n-c) /= k && safe cs (k+1)
            where abs x = if x < 0 then -x else x

-- extend the path argument till all the queens are on the board -- see the Incremental Solution pattern

extend p = if (length p == 8)

            then p
            else extend (makePath p x)
     where x free

-- solve the puzzle

main = extend [] </lang>

Another approach from the same source.

<lang curry> -- N-queens puzzle implemented with "Distinct Choices" pattern -- Sergio Antoy -- Tue Sep 4 13:16:20 PDT 2001 -- updated: Mon Sep 23 15:22:15 PDT 2002

import Integer

queens x | y =:= permute x & void (capture y) = y where y free

capture y = let l1,l2,l3,y1,y2 free in

 l1 ++ [y1] ++ l2 ++ [y2] ++ l3 =:= y & abs (y1-y2) =:= length l2 + 1

-- negation as failure (implemented by encapsulated search): void c = (findall \_->c) =:= []

-- How does this permutation algorithm work? -- Only the elements [0,1,...,n-1] can be permuted. -- The reason is that each element is used as an index in a list. -- A list, called store, of free variables of length n is created. -- Then, the n iterations described below are executed. -- At the i-th iteration, an element, say s, -- of the initial list is non-deterministically selected. -- This element is used as index in the store. -- The s-th variable of the store is unified with i. -- At the end of the iterations, the elements of the store -- are a permutation of [0,1,...,n-1], i.e., the elements -- are unique since two iterations cannot select the same index.

permute n = result n

  where result n = if n==0 then [] else pick n store : result (n-1)
        pick i store | store !! k =:= i = k where k = range n
        range n | n > 0 = range (n-1) ! (n-1)
        store = free

-- end </lang>

Yet another approach, also from the same source.

<lang curry> -- 8-queens implementation with both the Constrained Constructor -- and the Fused Generate and Test patterns. -- Sergio Antoy -- Fri Jul 13 07:05:32 PDT 2001

-- Place 8 queens on a chessboard so that no queen can capture -- (and be captured by) any other queen.

-- Non-deterministic choice operator

infixl 0 ! X ! _ = X _ ! Y = Y

-- A solution is represented by a list of integers. -- The i-th integer in the list is the column of the board -- in which the queen in the i-th row is placed. -- Rows and columns are numbered from 1 to 8. -- For example, [4,2,7,3,6,8,5,1] is a solution where the -- the queen in row 1 is in column 4, etc. -- Any solution must be a permutation of [1,2,...,8].

-- The state of a queen is its position, row and column, on the board. -- Operation column is a particularly simple instance -- of a Constrained Constructor pattern. -- When it is invoked, it produces only valid states.

column = 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8

-- A path of the puzzle is a sequence of successive placements of -- queens on the board. It is not explicitly defined as a type. -- A path is a potential solution in the making.

-- Constrained Constructor on a path -- Any path must be valid, i.e., any column must be in the range 1..8 -- and different from any other column in the path. -- Furthermore, the path must be safe for the queens. -- No queen in a path may capture any other queen in the path. -- Operation makePath add column n to path c or fails.

makePath c n | valid c && safe c 1 = n:c

   where valid c | n =:= column = uniq c
            where uniq [] = True
                  uniq (c:cs) = n /= c && uniq cs
         safe [] _ = True
         safe (c:cs) k = abs (n-c) /= k && safe cs (k+1)
            where abs x = if x < 0 then -x else x

-- extend the path argument till all the queens are on the board -- see the Incremental Solution pattern

extend p = if (length p == 8)

            then p
            else extend (makePath p x)
     where x free

-- solve the puzzle

main = extend [] </lang> Mainly webpakcs, uses constraint-solver. <lang curry>import CLPFD import Findall

queens n qs =

   qs =:= [_ | _ <- [1..n]]
 & domain qs 1 (length qs)
 & allDifferent qs
 & allSafe qs
 & labeling [FirstFail] qs

allSafe [] = success allSafe (q:qs) = safe q qs 1 & allSafe qs

safe :: Int -> [Int] -> Int -> Success safe _ [] _ = success safe q (q1:qs) p = q /=# q1+#p & q /=# q1-#p & safe q qs (p+#1)

-- oneSolution = unpack $ queens 8 -- allSolutions = findall $ queens 8</lang>

D

Short Version

This high-level version uses the second solution of the Permutations task. <lang d>void main() {

   import std.stdio, std.algorithm, std.range, permutations2;
   enum n = 8;
   n.iota.array.permutations.filter!(p =>
       n.iota.map!(i => p[i] + i).array.sort().uniq.count == n &&
       n.iota.map!(i => p[i] - i).array.sort().uniq.count == n)
   .count.writeln;

}</lang>

Output:
92

Intermediate Version

This version shows all the solutions.

Translation of: C

<lang d>enum side = 8; __gshared int[side] board;

bool isUnsafe(in int y) nothrow @nogc {

   immutable int x = board[y];
   foreach (immutable i; 1 .. y + 1) {
       immutable int t = board[y - i];
       if (t == x || t == x - i || t == x + i)
           return true;
   }
   return false;

}

void showBoard() nothrow @nogc {

   import core.stdc.stdio;
   static int s = 1;
   printf("\nSolution #%d:\n", s++);
   foreach (immutable y; 0 .. side) {
       foreach (immutable x; 0 .. side)
           putchar(board[y] == x ? 'Q' : '.');
       putchar('\n');
   }

}

void main() nothrow @nogc {

   int y = 0;
   board[0] = -1;
   while (y >= 0) {
       do {
           board[y]++;
       } while (board[y] < side && y.isUnsafe);
       if (board[y] < side) {
           if (y < (side - 1))
               board[++y] = -1;
           else
               showBoard;
       } else
           y--;
   }

}</lang>

Output:
Solution #1:
Q.......
....Q...
.......Q
.....Q..
..Q.....
......Q.
.Q......
...Q....

[...]

Solution #91:
.......Q
..Q.....
Q.......
.....Q..
.Q......
....Q...
......Q.
...Q....

Solution #92:
.......Q
...Q....
Q.......
..Q.....
.....Q..
.Q......
......Q.
....Q...

Fast Version

Translation of: C

<lang d>ulong nQueens(in uint nn) pure nothrow @nogc @safe in {

   assert(nn > 0 && nn <= 27,
          "'side' value must be in 1 .. 27.");

} body {

   if (nn < 4)
       return nn == 1;
   enum uint ulen = uint.sizeof * 8;
   immutable uint full = uint.max - ((1 << (ulen - nn)) - 1);
   immutable n = nn - 3;
   typeof(return) count;
   uint[32] l=void, r=void, c=void;
   uint[33] mm; // mm and mmi are a stack.
   // Require second queen to be left of the first queen, so
   // we ever only test half of the possible solutions. This
   // is why we can't handle n=1 here.
   for (uint b0 = 1U << (ulen - n - 3); b0; b0 <<= 1) {
       for (uint b1 = b0 << 2; b1; b1 <<= 1) {
           uint d = n;
           // c: columns occupied by previous queens.
           c[n] = b0 | b1;
           // l: columns attacked by left diagonals.
           l[n] = (b0 << 2) | (b1 << 1);
           // r: by right diagnoals.
           r[n] = (b0 >> 2) | (b1 >> 1);
           // Availabe columns on current row.
           uint bits = full & ~(l[n] | r[n] | c[n]);
           uint mmi = 1;
           mm[mmi] = bits;
           while (bits) {
               // d: depth, aka row. counting backwards.
               // Because !d is often faster than d != n.
               while (d) {
                   // immutable uint pos = 1U << bits.bsf; // Slower.
                   immutable uint pos = -int(bits) & bits;
                   // Mark bit used. Only put current bits on
                   // stack if not zero, so backtracking will
                   // skip exhausted rows (because reading stack
                   // variable is slow compared to registers).
                   bits &= ~pos;
                   if (bits) {
                       mm[mmi] = bits | d;
                       mmi++;
                   }
                   d--;
                   l[d] = (l[d + 1] | pos) << 1;
                   r[d] = (r[d + 1] | pos) >> 1;
                   c[d] =  c[d + 1] | pos;
                   bits = full & ~(l[d] | r[d] | c[d]);
                   if (!bits)
                       break;
                   if (!d) {
                       count++;
                       break;
                   }
               }
               // Bottom of stack m is a zero'd field acting as
               // sentinel.  When saving to stack, left 27 bits
               // are the available columns, while right 5 bits
               // is the depth. Hence solution is limited to size
               // 27 board -- not that it matters in foreseeable
               // future.
               mmi--;
               bits = mm[mmi];
               d = bits & 31U;
               bits &= ~31U;
           }
       }
   }
   return count * 2;

}

void main(in string[] args) {

   import std.stdio, std.conv;
   immutable uint side = (args.length >= 2) ? args[1].to!uint : 8;
   writefln("N-queens(%d) = %d solutions.", side, side.nQueens);

}</lang>

Output:
N-queens(8) = 92 solutions.

With side = 17:

N-queens(17) = 95815104 solutions.

Run-time for side = 17 compiled with ldc2 is about 49.5 seconds.

N-queens(19) = 4968057848 solutions.

Dart

<lang dart>/** Return true if queen placement q[n] does not conflict with other queens q[0] through q[n-1]

  • /

isConsistent(List q, int n) {

 for (int i=0; i<n; i++) {
   if (q[i] == q[n]) {
     return false; // Same column
   }
   
   if ((q[i] - q[n]) == (n - i)) {
     return false; // Same major diagonal
   }
   
   if ((q[n] - q[i]) == (n - i)) {
     return false; // Same minor diagonal
   }
 }
 
 return true;

}

/** Print out N-by-N placement of queens from permutation q in ASCII.

  • /

printQueens(List q) {

 int N = q.length;
 for (int i=0; i<N; i++) {
   StringBuffer sb = new StringBuffer();
   for (int j=0; j<N; j++) {
     if (q[i] == j) {
       sb.write("Q ");
     } else {
       sb.write("* ");
     }
   }
   print(sb.toString());
 }
 print("");

}

/** Try all permutations using backtracking

  • /

enumerate(int N) {

 var a = new List(N);
 _enumerate(a, 0);

}

_enumerate(List q, int n) {

 if (n == q.length) {
   printQueens(q);
 } else {
   for (int i = 0; i < q.length; i++) {
     q[n] = i;
     if (isConsistent(q, n)){
       _enumerate(q, n+1);
     }
   } 
 }

}

void main() {

 enumerate(4);

}</lang>

Output:
* Q * * 
* * * Q 
Q * * * 
* * Q * 

* * Q * 
Q * * * 
* * * Q 
* Q * * 

Easyprog.online

<lang>n = 8 len queen_row[] n

func print_solution . .

 h$ = "┏"
 for i range n - 1
   h$ &= "━━━┳"
 .
 h$ &= "━━━┓"
 pr h$
 h$ = "┣"
 for i range n - 1
   h$ &= "━━━╋"
 .
 h$ &= "━━━┫"
 for i range n
   s$ = "┃"
   for j range n
     if j = queen_row[i]
       s$ &= " Q ┃"
     else
       s$ &= "   ┃"
     .
   .
   pr s$
   if i = n - 1
     h$ = "┗"
     for j range n - 1
       h$ &= "━━━┻"
     .
     h$ &= "━━━┛"
   .
   pr h$
 .
 pr ""

.

func test_free col row . free .

 free = 1
 while i < row and free = 1
   if queen_row[i] = col or abs (queen_row[i] - col) = abs (row - i)
     free = 0
   .
   i += 1
 .

.

pr "First solution: " pr "" n_solutions = 0 func try_row row . .

 if row = n
   n_solutions += 1
   if n_solutions <= 1
     call print_solution
   .
 else
   for col range n
     call test_free col row free
     if free = 1
       queen_row[row] = col
       call try_row row + 1
     .
   .
 .

. call try_row 0 pr "Number of solutions: " & n_solutions</lang>

Output:
First solution: 

┏━━━┳━━━┳━━━┳━━━┳━━━┳━━━┳━━━┳━━━┓
┃ Q ┃   ┃   ┃   ┃   ┃   ┃   ┃   ┃
┣━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━┫
┃   ┃   ┃   ┃   ┃ Q ┃   ┃   ┃   ┃
┣━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━┫
┃   ┃   ┃   ┃   ┃   ┃   ┃   ┃ Q ┃
┣━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━┫
┃   ┃   ┃   ┃   ┃   ┃ Q ┃   ┃   ┃
┣━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━┫
┃   ┃   ┃ Q ┃   ┃   ┃   ┃   ┃   ┃
┣━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━┫
┃   ┃   ┃   ┃   ┃   ┃   ┃ Q ┃   ┃
┣━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━┫
┃   ┃ Q ┃   ┃   ┃   ┃   ┃   ┃   ┃
┣━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━╋━━━┫
┃   ┃   ┃   ┃ Q ┃   ┃   ┃   ┃   ┃
┗━━━┻━━━┻━━━┻━━━┻━━━┻━━━┻━━━┻━━━┛

Number of solutions: 92

EchoLisp

<lang scheme>

square num is i + j*N

(define-syntax-rule (sq i j) (+ i (* j N)))

compute diag number for each square

(define (do-diag1 i0 j0 dnum into: dnum1 N) ;; ++i and ++j diags (for [(i (in-range i0 N)) (j (in-range j0 N))] ;;(writeln i j 'diag1 dnum) (vector-set! dnum1 (sq i j) dnum)))

(define (do-diag2 i0 j0 dnum into: dnum2 N) ;; --i and ++j diags (for [(i (in-range i0 -1 -1)) (j (in-range j0 N))] ;; (writeln i j 'diag2 dnum) (vector-set! dnum2 (sq i j) dnum)))

(define (init-diags dnum1 dnum2 N) (define dnum 0) (for ((j N)) (do-diag1 0 j dnum dnum1 N) (++ dnum)) (for ((i (in-range 1 N)))

                    (do-diag1 i 0 dnum dnum1  N) (++ dnum))

(set! dnum 0) (for ((j N)) (do-diag2 (1- N) j dnum dnum2 N) (++ dnum)) (for ((i (1- N))) (do-diag2 i 0 dnum dnum2 N) (++ dnum)))

end boring diags part

(define (q-search i N col diag1 diag2 dnum1 dnum2 &hits (ns)) (cond [(= i N) (set-box! &hits (1+ (unbox &hits))) ] ;; (writeln 'HIT col) [else

(for ((j N)) (set! ns (sq i j)) #:continue (or [col j] [diag1 [dnum1 ns]] [diag2 [dnum2 ns]]) (vector-set! col j i) ;; move (vector-set! diag1 [dnum1 ns] #t) ;; flag busy diagonal (vector-set! diag2 [dnum2 ns] #t) (q-search (1+ i) N col diag1 diag2 dnum1 dnum2 &hits) (vector-set! col j #f) ;; unmove (vector-set! diag1 [dnum1 ns] #f) (vector-set! diag2 [dnum2 ns] #f)) ]))

(define (q-count (N 8)) (define dnum1 (make-vector (* N N))) (define dnum2 (make-vector (* N N ))) (init-diags dnum1 dnum2 N)

(define diag1 (make-vector (* 2 N) #f)) ; busy diag's (define diag2 (make-vector (* 2 N) #f)) (define col (make-vector N #f)) (define &hits (box 0))


(q-search 0 N col diag1 diag2 dnum1 dnum2 &hits) (unbox &hits))

(define (task up-to-n) (for ((i up-to-n)) (writeln i ' ♕ (q-count i) 'solutions))) </lang>

Output:
(task 13)

0     ♕     1     solutions    
1     ♕     1     solutions    
2     ♕     0     solutions    
3     ♕     0     solutions    
4     ♕     2     solutions    
5     ♕     10     solutions    
6     ♕     4     solutions    
7     ♕     40     solutions    
8     ♕     92     solutions    
9     ♕     352     solutions    
10     ♕     724     solutions    
11     ♕     2680     solutions 
12     ♕     14200     solutions    


Eiffel

<lang Eiffel> class QUEENS

create make

feature {NONE} counter: INTEGER

place_queens(board: ARRAY[INTEGER]; level: INTEGER) local i, j: INTEGER safe: BOOLEAN do if level > board.count then counter := counter + 1 else from i := 1 until i > board.count loop safe := True from j := 1 until j = level or not safe loop if (board[j] = i) or (j - level = i - board[j]) or (j - level = board[j] - i) then safe := False end j := j + 1 end if safe then board[level] := i place_queens(board, level + 1) end i := i + 1 end end end

feature possible_positions_of_n_queens(n: INTEGER): INTEGER local board: ARRAY[INTEGER] do create board.make_filled (0, 1, n) counter := 0 place_queens(board, 1) Result := counter end

make local n: INTEGER do io.put_string ("Please enter the number of queens: ") io.read_integer n := io.last_integer print("%NPossible number of placings: " + possible_positions_of_n_queens(n).out + "%N") end end </lang>

Output:
Please enter the number of queens: 1
Possible number of placings: 1

Please enter the number of queens: 2
Possible number of placings: 0

Please enter the number of queens: 3
Possible number of placings: 0

Please enter the number of queens: 4
Possible number of placings: 2

Please enter the number of queens: 5
Possible number of placings: 10

Please enter the number of queens: 6
Possible number of placings: 4

Please enter the number of queens: 7
Possible number of placings: 40

Please enter the number of queens: 8
Possible number of placings: 92

Please enter the number of queens: 9
Possible number of placings: 352

Please enter the number of queens: 10
Possible number of placings: 724

Elixir

Translation of: Ruby

<lang elixir>defmodule RC do

 def queen(n, display \\ true) do
   solve(n, [], [], [], display)
 end
 
 defp solve(n, row, _, _, display) when n==length(row) do
   if display, do: print(n,row)
   1
 end
 defp solve(n, row, add_list, sub_list, display) do
   Enum.map(Enum.to_list(0..n-1) -- row, fn x ->
     add = x + length(row)             # \ diagonal check
     sub = x - length(row)             # / diagonal check
     if (add in add_list) or (sub in sub_list) do
       0
     else
       solve(n, [x|row], [add | add_list], [sub | sub_list], display)
     end
   end) |> Enum.sum                    # total of the solution
 end
 
 defp print(n, row) do
   IO.puts frame = "+" <> String.duplicate("-", 2*n+1) <> "+"
   Enum.each(row, fn x ->
     line = Enum.map_join(0..n-1, fn i -> if x==i, do: "Q ", else: ". " end)
     IO.puts "| #{line}|"
   end)
   IO.puts frame
 end

end

Enum.each(1..6, fn n ->

 IO.puts " #{n} Queen : #{RC.queen(n)}"

end)

Enum.each(7..12, fn n ->

 IO.puts " #{n} Queen : #{RC.queen(n, false)}"             # no display

end)</lang>

Output:
+---+
| Q |
+---+
 1 Queen : 1
 2 Queen : 0
 3 Queen : 0
+---------+
| . . Q . |
| Q . . . |
| . . . Q |
| . Q . . |
+---------+
+---------+
| . Q . . |
| . . . Q |
| Q . . . |
| . . Q . |
+---------+
 4 Queen : 2
+-----------+
| . . . Q . |
| . Q . . . |
| . . . . Q |
| . . Q . . |
| Q . . . . |
+-----------+
+-----------+
| . . Q . . |
| . . . . Q |
| . Q . . . |
| . . . Q . |
| Q . . . . |
+-----------+
+-----------+
| . . . . Q |
| . . Q . . |
| Q . . . . |
| . . . Q . |
| . Q . . . |
+-----------+
+-----------+
| . . . Q . |
| Q . . . . |
| . . Q . . |
| . . . . Q |
| . Q . . . |
+-----------+
+-----------+
| . . . . Q |
| . Q . . . |
| . . . Q . |
| Q . . . . |
| . . Q . . |
+-----------+
+-----------+
| Q . . . . |
| . . . Q . |
| . Q . . . |
| . . . . Q |
| . . Q . . |
+-----------+
+-----------+
| . Q . . . |
| . . . . Q |
| . . Q . . |
| Q . . . . |
| . . . Q . |
+-----------+
+-----------+
| Q . . . . |
| . . Q . . |
| . . . . Q |
| . Q . . . |
| . . . Q . |
+-----------+
+-----------+
| . . Q . . |
| Q . . . . |
| . . . Q . |
| . Q . . . |
| . . . . Q |
+-----------+
+-----------+
| . Q . . . |
| . . . Q . |
| Q . . . . |
| . . Q . . |
| . . . . Q |
+-----------+
 5 Queen : 10
+-------------+
| . . . . Q . |
| . . Q . . . |
| Q . . . . . |
| . . . . . Q |
| . . . Q . . |
| . Q . . . . |
+-------------+
+-------------+
| . . . Q . . |
| Q . . . . . |
| . . . . Q . |
| . Q . . . . |
| . . . . . Q |
| . . Q . . . |
+-------------+
+-------------+
| . . Q . . . |
| . . . . . Q |
| . Q . . . . |
| . . . . Q . |
| Q . . . . . |
| . . . Q . . |
+-------------+
+-------------+
| . Q . . . . |
| . . . Q . . |
| . . . . . Q |
| Q . . . . . |
| . . Q . . . |
| . . . . Q . |
+-------------+
 6 Queen : 4
 7 Queen : 40
 8 Queen : 92
 9 Queen : 352
 10 Queen : 724
 11 Queen : 2680
 12 Queen : 14200

Erlang

Instead of spawning a new process to search for each possible solution I backtrack. <lang Erlang> -module( n_queens ).

-export( [display/1, solve/1, task/0] ).

display( Board ) -> %% Queens are in the positions in the Board list. %% Top left corner is {1, 1}, Bottom right is {N, N}. There is a queen in the max column. N = lists:max( [X || {X, _Y} <- Board] ), [display_row(Y, N, Board) || Y <- lists:seq(1, N)].

solve( N ) ->

   Positions = [{X, Y} || X <- lists:seq(1, N), Y <- lists:seq(1, N)],
   try
   bt( N, Positions, [] )
   catch
   _:{ok, Board} -> Board
   end.

task() ->

   task( 4 ),
   task( 8 ).


bt( N, Positions, Board ) -> bt_reject( is_not_allowed_queen_placement(N, Board), N, Positions, Board ).

bt_accept( true, _N, _Positions, Board ) -> erlang:throw( {ok, Board} ); bt_accept( false, N, Positions, Board ) -> bt_loop( N, Positions, [], Board ).

bt_loop( _N, [], _Rejects, _Board ) -> failed; bt_loop( N, [Position | T], Rejects, Board ) -> bt( N, T ++ Rejects, [Position | Board] ), bt_loop( N, T, [Position | Rejects], Board ).

bt_reject( true, _N, _Positions, _Board ) -> backtrack; bt_reject( false, N, Positions, Board ) -> bt_accept( is_all_queens(N, Board), N, Positions, Board ).

diagonals( N, {X, Y} ) -> D1 = diagonals( N, X + 1, fun diagonals_add1/1, Y + 1, fun diagonals_add1/1 ), D2 = diagonals( N, X + 1, fun diagonals_add1/1, Y - 1, fun diagonals_subtract1/1 ), D3 = diagonals( N, X - 1, fun diagonals_subtract1/1, Y + 1, fun diagonals_add1/1 ), D4 = diagonals( N, X - 1, fun diagonals_subtract1/1, Y - 1, fun diagonals_subtract1/1 ), D1 ++ D2 ++ D3 ++ D4.

diagonals( _N, 0, _Change_x, _Y, _Change_y ) -> []; diagonals( _N, _X, _Change_x, 0, _Change_y ) -> []; diagonals( N, X, _Change_x, _Y, _Change_y ) when X > N -> []; diagonals( N, _X, _Change_x, Y, _Change_y ) when Y > N -> []; diagonals( N, X, Change_x, Y, Change_y ) -> [{X, Y} | diagonals( N, Change_x(X), Change_x, Change_y(Y), Change_y )].

diagonals_add1( N ) -> N + 1.

diagonals_subtract1( N ) -> N - 1.

display_row( Row, N, Board ) -> [io:fwrite("~s", [display_queen(X, Row, Board)]) || X <- lists:seq(1, N)], io:nl().

display_queen( X, Y, Board ) -> display_queen( lists:member({X, Y}, Board) ). display_queen( true ) -> " Q"; display_queen( false ) -> " .".

is_all_queens( N, Board ) -> N =:= erlang:length( Board ).

is_diagonal( _N, [] ) -> false; is_diagonal( N, [Position | T] ) -> Diagonals = diagonals( N, Position ), T =/= (T -- Diagonals) orelse is_diagonal( N, T ).

is_not_allowed_queen_placement( N, Board ) -> Pieces = erlang:length( Board ), {Xs, Ys} = lists:unzip( Board ), Pieces =/= erlang:length( lists:usort(Xs) ) orelse Pieces =/= erlang:length( lists:usort(Ys) ) orelse is_diagonal( N, Board ).

task( N ) ->

   io:fwrite( "N = ~p. One solution.~n", [N] ),
   Board = solve( N ),
   display( Board ).

</lang>

Output:
22> n_queens:task().
N = 4. One solution.
 . . Q .
 Q . . .
 . . . Q
 . Q . .
N = 8. One solution.
 Q . . . . . . .
 . . . . . . Q .
 . . . . Q . . .
 . . . . . . . Q
 . Q . . . . . .
 . . . Q . . . .
 . . . . . Q . .
 . . Q . . . . .

ERRE

<lang> !------------------------------------------------ ! QUEENS.R : solve queens problem on a NxN board !------------------------------------------------

PROGRAM QUEENS

DIM COL%[15]

BEGIN

 MAXSIZE%=15
 PRINT(TAB(25);" --- PROBLEMA DELLE REGINE --- ")
 PRINT
 PRINT("Board dimension ";)
 INPUT(N%)
 PRINT
 IF (N%<1 OR N%>MAXSIZE%)
   THEN
     PRINT("Illegal dimension!!")
   ELSE
     FOR CURCOLNBR%=1 TO N%
       COL%[CURCOLNBR%]=0
     END FOR
     CURCOLNBR%=1
     WHILE CURCOLNBR%>0 DO
       PLACEDAQUEEN%=FALSE
       I%=COL%[CURCOLNBR%]+1
       WHILE (I%<=N%) AND NOT PLACEDAQUEEN% DO
         PLACEDAQUEEN%=TRUE
         J%=1
         WHILE PLACEDAQUEEN% AND (J%<CURCOLNBR%) DO
           PLACEDAQUEEN%=COL%[J%]<>I%
           J%=J%+1
         END WHILE
         IF PLACEDAQUEEN%
           THEN
             DIAGNBR%=I%+CURCOLNBR%
             J%=1
             WHILE PLACEDAQUEEN% AND (J%<CURCOLNBR%) DO
               PLACEDAQUEEN%=(COL%[J%]+J%)<>DIAGNBR%
               J%=J%+1
             END WHILE
           ELSE
         END IF
         IF PLACEDAQUEEN%
           THEN
             DIAGNBR%=I%-CURCOLNBR%
             J%=1
             WHILE PLACEDAQUEEN% AND (J%<CURCOLNBR%) DO
                PLACEDAQUEEN%=(COL%[J%]-J%)<>DIAGNBR%
                J%=J%+1
             END WHILE
           ELSE
         END IF
         IF NOT PLACEDAQUEEN%
           THEN
             I%=I%+1
           ELSE
             COL%[CURCOLNBR%]=I%
         END IF
       END WHILE
       IF NOT PLACEDAQUEEN%
         THEN
           COL%[CURCOLNBR%]=0
           CURCOLNBR%=CURCOLNBR%-1
         ELSE
           IF CURCOLNBR%=N%
             THEN
               NSOL%=NSOL%+1
               PRINT("Soluzione";NSOL%;":";)
               FOR I%=1 TO N%
                 PRINT(COL%[I%];)
               END FOR
               PRINT
             ELSE
               CURCOLNBR%=CURCOLNBR%+1
           END IF
       END IF
     END WHILE
     PRINT("Search completed")
     REPEAT
        GET(CH$)
     UNTIL CH$<>""
   END IF

END PROGRAM </lang> Note: The program prints solutions one per line. This version works well for the PC and the C-64. For PC only you can omit the % integer-type specificator with a !$INTEGER pragma directive.

F#

<lang fsharp> let rec iterate f value = seq {

   yield value
   yield! iterate f (f value) }

let up i = i + 1 let right i = i let down i = i - 1

let noCollisionGivenDir solution number dir =

   Seq.forall2 (<>) solution (Seq.skip 1 (iterate dir number))

let goodAddition solution number =

   List.forall (noCollisionGivenDir solution number) [ up; right; down ]

let rec extendSolution n ps =

   [0..n - 1]
   |> List.filter (goodAddition ps)
   |> List.map (fun num -> num :: ps)

let allSolutions n =

   iterate (List.collect (extendSolution n)) [[]]

// Print one solution for the 8x8 case let printOneSolution () =

   allSolutions 8
   |> Seq.item 8
   |> Seq.head
   |> List.iter (fun rowIndex ->
       printf "|"
       [0..8] |> List.iter (fun i -> printf (if i = rowIndex then "X|" else " |"))
       printfn "")

// Print number of solution for the other cases let printNumberOfSolutions () =

   printfn "Size\tNr of solutions"
   [1..11]
   |> List.map ((fun i -> Seq.item i (allSolutions i)) >> List.length)
   |> List.iteri (fun i cnt -> printfn "%d\t%d" (i+1) cnt)

printOneSolution()

printNumberOfSolutions() </lang>

The output:

<lang> | | | |X| | | | | | | |X| | | | | | | | | | | | | | |X| | | | | |X| | | | | | | | | | | | |X| | | | | | | | | | | |X| | | | | | |X| | | | | |X| | | | | | | | |

Size Nr of solutions 1 1 2 0 3 0 4 2 5 10 6 4 7 40 8 92 9 352 10 724 11 2680 </lang>

Factor

<lang factor>USING: kernel sequences math math.combinatorics formatting io locals ; IN: queens

/= ( x y -- ? ) = not ; inline
safe? ( board q -- ? )
   [let  q board nth :> x
     q iota [
        x swap
        [ board nth ] keep
        q swap -
          [ + /= ]
          [ - /= ] 3bi and
     ] all?
   ] ;
solution? ( board -- ? )
   dup length iota [ dupd safe? ] all? nip ;
queens ( n -- l )
   iota all-permutations [ solution? ] filter ;
.queens ( n -- )
   queens
   [ 
     [ 1 + "%d " printf ] each nl
   ] each ;</lang>

Fōrmulæ

In this page you can see the solution of this task.

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text (more info). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.

The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.

Forth

<lang forth>variable solutions variable nodes

bits ( n -- mask ) 1 swap lshift 1- ;
lowBit ( mask -- bit ) dup negate and ;
lowBit- ( mask -- bits ) dup 1- and ;
next3 ( dl dr f files -- dl dr f dl' dr' f' )
 invert >r
 2 pick r@ and 2* 1+
 2 pick r@ and 2/
 2 pick r> and ;
try ( dl dr f -- )
 dup if
   1 nodes +!
   dup 2over and and
   begin ?dup while
     dup >r lowBit next3 recurse r> lowBit-
   repeat
 else 1 solutions +! then
 drop 2drop ;
queens ( n -- )
 0 solutions ! 0 nodes !
 -1 -1 rot bits try
 solutions @ . ." solutions, " nodes @ . ." nodes" ;

8 queens \ 92 solutions, 1965 nodes</lang>

Fortran

Works with: Fortran version 95 and later

Using a back tracking method to find one solution <lang fortran>program Nqueens

 implicit none
 integer, parameter :: n = 8  ! size of board
 integer :: file = 1, rank = 1, queens = 0
 integer :: i
 logical :: board(n,n) = .false.
 do while (queens < n)
   board(file, rank) = .true.
   if(is_safe(board, file, rank)) then
     queens = queens + 1
     file = 1
     rank = rank + 1
   else
     board(file, rank) = .false.
     file = file + 1
     do while(file > n)
        rank = rank - 1
        if (rank < 1) then
          write(*, "(a,i0)") "No solution for n = ", n
          stop
        end if  
        do i = 1, n
          if (board(i, rank)) then
            file = i
            board(file, rank) = .false.
            queens = queens - 1
            file = i + 1
            exit
          end if
        end do
      end do
   end if
 end do
 call Printboard(board)
 

contains

function is_safe(board, file, rank)

 logical :: is_safe
 logical, intent(in) :: board(:,:)
 integer, intent(in) :: file, rank
 integer :: i, f, r
 
 is_safe = .true.
 do i = rank-1, 1, -1
   if(board(file, i)) then
     is_safe = .false.
     return
   end if
 end do
 
 f = file - 1
 r = rank - 1
 do while(f > 0 .and. r > 0)
   if(board(f, r)) then
     is_safe = .false.
     return
   end if
   f = f - 1
   r = r - 1
 end do
 f = file + 1
 r = rank - 1
 do while(f <= n .and. r > 0)
   if(board(f, r)) then
     is_safe = .false.
     return
   end if
   f = f + 1
   r = r - 1
 end do

end function

subroutine Printboard(board)

 logical, intent(in) :: board(:,:)
 character(n*4+1) :: line
 integer :: f, r
 
 write(*, "(a, i0)") "n = ", n
 line = repeat("+---", n) // "+"
 do r = 1, n
   write(*, "(a)") line
   do f = 1, n
     write(*, "(a)", advance="no") "|"
     if(board(f, r)) then
       write(*, "(a)", advance="no") " Q "
     else if(mod(f+r, 2) == 0) then
       write(*, "(a)", advance="no") "   "
     else
       write(*, "(a)", advance="no") "###"
     end if
   end do
   write(*, "(a)") "|"
 end do
 write(*, "(a)") line

end subroutine end program</lang>

Output:

for 8, 16 and 32 queens

n = 8
+---+---+---+---+---+---+---+---+
| Q |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+
|###|   |###|   | Q |   |###|   |
+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   | Q |
+---+---+---+---+---+---+---+---+
|###|   |###|   |###| Q |###|   |
+---+---+---+---+---+---+---+---+
|   |###| Q |###|   |###|   |###|
+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   | Q |   |
+---+---+---+---+---+---+---+---+
|   | Q |   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+
|###|   |###| Q |###|   |###|   |
+---+---+---+---+---+---+---+---+

n = 16
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

n = 32
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   | Q |   |###|   |###|   |###|   |###|   |###|   |###|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###|   |###| Q |###|   |###|   |###|   |###|   |###|   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Alternate Fortran 77 solution

<lang fortran>C This one implements depth-first backtracking. C See the 2nd program for Scheme on the "Permutations" page for the C main idea. C As is, the program only prints the number of n-queens configurations. C To print also the configurations, uncomment the line after label 80.

     program queens
     implicit integer(a-z)
     parameter(l=18)
     dimension a(l),s(l),u(4*l-2)
     do 10 i=1,l
  10 a(i)=i
     do 20 i=1,4*l-2
  20 u(i)=0
     do 110 n=1,l
     m=0
     i=1
     r=2*n-1
     go to 40
  30 s(i)=j
     u(p)=1
     u(q+r)=1
     i=i+1
  40 if(i.gt.n) go to 80
     j=i
  50 z=a(i)
     y=a(j)
     p=i-y+n
     q=i+y-1
     a(i)=y
     a(j)=z
     if((u(p).eq.0).and.(u(q+r).eq.0)) goto 30
  60 j=j+1
     if(j.le.n) go to 50
  70 j=j-1
     if(j.eq.i) go to 90
     z=a(i)
     a(i)=a(j)
     a(j)=z
     go to 70
  80 m=m+1

C print *,(a(k),k=1,n)

  90 i=i-1
     if(i.eq.0) go to 100
     p=i-a(i)+n
     q=i+a(i)-1
     j=s(i)
     u(p)=0
     u(q+r)=0
     go to 60
 100 print *,n,m
 110 continue
     end

C Output C 1 1 C 2 0 C 3 0 C 4 2 C 5 10 C 6 4 C 7 40 C 8 92 C 9 352 C 10 724 C 11 2680 C 12 14200 C 13 73712 C 14 365596 C 15 2279184 C 16 14772512 C 17 95815104 C 18 666090624 </lang>

<lang fortran>!The preceding program implements recursion using arrays, since Fortran 77 does not allow recursive !functions. The same algorithm is much easier to follow in Fortran 90, using the RECURSIVE keyword. !Like previously, the program only counts solutions. It's pretty straightforward to adapt it to print !them too: one has to replace the 'm = m + 1' instruction with a PRINT statement.

function numq(n)

   implicit none
   integer :: i, n, m, a(n), numq
   logical :: up(2*n - 1), down(2*n - 1)
   do i = 1, n
       a(i) = i
   end do
   up = .true.
   down = .true.
   m = 0
   call sub(1)
   numq = m

contains

   recursive subroutine sub(i)
       integer :: i, j, k, p, q, s
       do k = i, n
           j = a(k)
           p = i + j - 1
           q = i - j + n
           if(up(p) .and. down(q)) then
               if(i == n) then
                   m = m + 1
               else
                   up(p) = .false.
                   down(q) = .false.
                   s = a(i)
                   a(i) = a(k)
                   a(k) = s
                   call sub(i + 1)
                   up(p) = .true.
                   down(q) = .true.
                   s = a(i)
                   a(i) = a(k)
                   a(k) = s
               end if
           end if
       end do
   end subroutine

end function

program queens

   implicit none
   integer :: numq, n, m
   do n = 4, 16
       m = numq(n)
       print *, n, m
   end do

end program</lang>

Alternate Fortran 95 solution with OpenMP

This code is useful mainly for counting solutions. Here we use the same algorithm as with Fortran 77, with an optimization: because of symmetry of the chess board, computations are divided by two. The remaining is parallelized with OpenMP. The loop is done on the valid combinations of queens in the first two columns. The original algorithm is slightly changed to start backtracking from column three.

If using GCC, compile with gfortran -O2 -fopenmp queens.f90. With Absoft Pro Fortran, af90 -O2 -openmp queens.f90, and with Intel Fortran, ifort /fast /openmp queens.f90.

With some versions of GCC the function OMP_GET_WTIME is not known, which seems to be a bug. Then it's enough to comment out the two calls, and the program won't display timings.

<lang fortran>program queens

   use omp_lib
   implicit none
   integer, parameter :: long = selected_int_kind(17)
   integer, parameter :: l = 18
   integer :: n, i, j, a(l*l, 2), k, p, q
   integer(long) :: s, b(l*l)
   real(kind(1d0)) :: t1, t2
   do n = 6, l
       k = 0
       p = n/2
       q = mod(n, 2)*(p + 1)
       do i = 1, n
           do j = 1, n
               if ((abs(i - j) > 1) .and. ((i <= p) .or. ((i == q) .and. (j < i)))) then
                   k = k + 1
                   a(k, 1) = i
                   a(k, 2) = j
               end if
           end do
       end do
       s = 0
       t1 = omp_get_wtime()
       !$omp parallel do schedule(dynamic)
       do i = 1, k
           b(i) = pqueens(n, a(i, 1), a(i, 2))
       end do
       !$omp end parallel do
       t2 = omp_get_wtime()
       print "(I4, I12, F12.3)", n, 2*sum(b(1:k)), t2 - t1
   end do
   

contains

   function pqueens(n, k1, k2) result(m)
       implicit none
       integer(long) :: m
       integer, intent(in) :: n, k1, k2
       integer, parameter :: l = 20
       integer :: a(l), s(l), u(4*l - 2)
       integer :: i, j, y, z, p, q, r
       do i = 1, n
           a(i) = i
       end do
       
       do i = 1, 4*n - 2
           u(i) = 0
       end do
       
       m = 0
       r = 2*n - 1
       if (k1 == k2) return
       p = 1 - k1 + n
       q = 1 + k1 - 1
       if ((u(p) /= 0) .or. (u(q + r) /= 0)) return
       u(p) = 1
       u(q + r) = 1
       z = a(1)
       a(1) = a(k1)
       a(k1) = z
       p = 2 - k2 + n
       q = 2 + k2 - 1
       if ((u(p) /= 0) .or. (u(q + r) /= 0)) return
       u(p) = 1
       u(q + r) = 1
       if (k2 /= 1) then
           z = a(2)
           a(2) = a(k2)
           a(k2) = z
       else
           z = a(2)
           a(2) = a(k1)
           a(k1) = z
       end if
       i = 3
       go to 40
    30 s(i) = j
       u(p) = 1
       u(q + r) = 1
       i = i + 1
    40 if (i > n) go to 80

       j = i
    50 z = a(i)
       y = a(j)
       p = i - y + n
       q = i + y - 1
       a(i) = y
       a(j) = z
       if ((u(p) == 0) .and. (u(q + r) == 0)) go to 30
       
    60 j = j + 1
       if (j <= n) go to 50
       
    70 j = j - 1
       if (j == i) go to 90
       
       z = a(i)
       a(i) = a(j)
       a(j) = z
       go to 70
       
       !valid queens position found
    80 m = m + 1
    
    90 i = i - 1
       if (i == 2) return
       
       p = i - a(i) + n
       q = i + a(i) - 1
       j = s(i)
       u(p) = 0
       u(q + r) = 0
       go to 60
   end function

end program</lang>

FreeBASIC

Get slower for N > 14 <lang freebasic>' version 13-04-2017 ' compile with: fbc -s console Dim Shared As ULong count, c()

Sub n_queens(row As ULong, n As ULong, show As ULong = 0)

   Dim As ULong x, y
   For x = 1 To n
       
       For y = 1 To row -1
           If c(y) = x OrElse ((row - y) - Abs(x - c(y))) = 0 Then
               Continue For, For
           End If
       Next
       
       c(row) = x
       If row < n Then
           n_queens(row +1 , n, show)
       Else
           count += 1
           
           If show <> 0 Then
               For y = 1 To n
                   Print Using "###"; c(y);
               Next
               Print
           End If
           
       End If
       
   Next

End Sub

' ------=< MAIN >=------

Dim As ULong n = 5 ReDim c(n) ' n_queens(1, n, show = 0 only show total | show <> 0 show every solution n_queens(1, n, 1) Print Using "## x ## board, ##### solutions"; n; n; count Print

For n = 1 To 14

   ReDim c(n)
   count = 0
   n_queens(1, n)
   Print Using "A ## x ## board has ######## solutions"; n; n; count

Next

' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
  1  3  5  2  4
  1  4  2  5  3
  2  4  1  3  5
  2  5  3  1  4
  3  1  4  2  5
  3  5  2  4  1
  4  1  3  5  2
  4  2  5  3  1
  5  2  4  1  3
  5  3  1  4  2
 5 x  5 board,    10 solutions

A  1 x  1 board has        1 solutions
A  2 x  2 board has        0 solutions
A  3 x  3 board has        0 solutions
A  4 x  4 board has        2 solutions
A  5 x  5 board has       10 solutions
A  6 x  6 board has        4 solutions
A  7 x  7 board has       40 solutions
A  8 x  8 board has       92 solutions
A  9 x  9 board has      352 solutions
A 10 x 10 board has      724 solutions
A 11 x 11 board has     2680 solutions
A 12 x 12 board has    14200 solutions
A 13 x 13 board has    73712 solutions
A 14 x 14 board has   365596 solutions

GAP

Translation of Fortran 77. See also alternate Python implementation. One function to return the number of solutions, another to return the list of permutations.

<lang gap>NrQueens := function(n)

   local a, up, down, m, sub;
   a := [1 .. n];
   up := ListWithIdenticalEntries(2*n - 1, true);
   down := ListWithIdenticalEntries(2*n - 1, true);
   m := 0;
   sub := function(i)
       local j, k, p, q;
       for k in [i .. n] do
           j := a[k];
           p := i + j - 1;
           q := i - j + n;
           if up[p] and down[q] then
               if i = n then
                   m := m + 1;
               else
                   up[p] := false;
                   down[q] := false;
                   a[k] := a[i];
                   a[i] := j;
                   sub(i + 1);
                   up[p] := true;
                   down[q] := true;
                   a[i] := a[k];
                   a[k] := j;
               fi;
           fi;
       od;
   end;
   sub(1);
   return m;

end;

Queens := function(n)

   local a, up, down, v, sub;
   a := [1 .. n];
   up := ListWithIdenticalEntries(2*n - 1, true);
   down := ListWithIdenticalEntries(2*n - 1, true);
   v := [];
   sub := function(i)
       local j, k, p, q;
       for k in [i .. n] do
           j := a[k];
           p := i + j - 1;
           q := i - j + n;
           if up[p] and down[q] then
               if i = n then
                   Add(v, ShallowCopy(a));
               else
                   up[p] := false;
                   down[q] := false;
                   a[k] := a[i];
                   a[i] := j;
                   sub(i + 1);
                   up[p] := true;
                   down[q] := true;
                   a[i] := a[k];
                   a[k] := j;
               fi;
           fi;
       od;
   end;
   sub(1);
   return v;

end;

NrQueens(8); a := Queens(8);; PrintArray(PermutationMat(PermList(a[1]), 8));

[ [ 1, 0, 0, 0, 0, 0, 0, 0 ],

 [  0,  0,  0,  0,  1,  0,  0,  0 ],
 [  0,  0,  0,  0,  0,  0,  0,  1 ],
 [  0,  0,  0,  0,  0,  1,  0,  0 ],
 [  0,  0,  1,  0,  0,  0,  0,  0 ],
 [  0,  0,  0,  0,  0,  0,  1,  0 ],
 [  0,  1,  0,  0,  0,  0,  0,  0 ],
 [  0,  0,  0,  1,  0,  0,  0,  0 ] ]</lang>

Go

<lang go>// A fairly literal translation of the example program on the referenced // WP page. Well, it happened to be the example program the day I completed // the task. It seems from the WP history that there has been some churn // in the posted example program. The example program of the day was in // Pascal and was credited to Niklaus Wirth, from his "Algorithms + // Data Structures = Programs." package main

import "fmt"

var (

   i int
   q bool
   a [9]bool
   b [17]bool
   c [15]bool // offset by 7 relative to the Pascal version
   x [9]int

)

func try(i int) {

   for j := 1; ; j++ {
       q = false
       if a[j] && b[i+j] && c[i-j+7] {
           x[i] = j
           a[j] = false
           b[i+j] = false
           c[i-j+7] = false
           if i < 8 {
               try(i + 1)
               if !q {
                   a[j] = true
                   b[i+j] = true
                   c[i-j+7] = true
               }
           } else {
               q = true
           }
       }
       if q || j == 8 {
           break
       }
   }

}

func main() {

   for i := 1; i <= 8; i++ {
       a[i] = true
   }
   for i := 2; i <= 16; i++ {
       b[i] = true
   }
   for i := 0; i <= 14; i++ {
       c[i] = true
   }
   try(1)
   if q {
       for i := 1; i <= 8; i++ {
           fmt.Println(i, x[i])
       }
   }

}</lang>

Output:
1 1
2 5
3 8
4 6
5 3
6 7
7 2
8 4

Dancing Links / Algorithm X

Using Knuth's dancing links technique to implement his Knuth's Algorithm X. The Go code for this technique is in the dlx packge.

<lang Go>package main

import ( "flag" "fmt" "log" "os" "time"

"rosettacode.org/dlx" // or where ever you put the dlx package )

func main() { log.SetPrefix("N-queens: ") log.SetFlags(0) profile := flag.Bool("profile", false, "show DLX profile") flag.Parse()

for N := 2; N <= 18; N++ { err := nqueens(N, N == 8, *profile) if err != nil { log.Fatal(err) } } }

func nqueens(N int, printFirst, profile bool) error { // Build a new DLX matrix with 2N primary columns and 4N-6 secondary // columns: R0..R(N-1), F0..F(N-1), A1..A(2N-3), B1..B(2N-3). // We also know the number of cells and solution rows required. m := dlx.NewWithHint(2*N, 4*N-6, N*N*4-4, 8)

s := solution{ N: N, renumFwd: make([]int, 0, 2*N), renumBack: make([]int, 2*N), printFirst: printFirst, }

// column indexes iR0 := 0 iF0 := iR0 + N iA1 := iF0 + N iB1 := iA1 + 2*N - 3

// Use "organ-pipe" ordering. E.g. for N=8: // R4 F4 R3 F3 R5 F5 R2 F2 R6 F6 R1 F1 R7 F7 R0 F0 // This can reduce the number of link updates required by // almost half for large N; see Knuth's paper for details. mid := N / 2 for off := 0; off <= N-mid; off++ { i := mid - off if i >= 0 { s.renumBack[iR0+i] = len(s.renumFwd) s.renumBack[iF0+i] = len(s.renumFwd) + 1 s.renumFwd = append(s.renumFwd, iR0+i, iF0+i) } if i = mid + off; off != 0 && i < N { s.renumBack[iR0+i] = len(s.renumFwd) s.renumBack[iF0+i] = len(s.renumFwd) + 1 s.renumFwd = append(s.renumFwd, iR0+i, iF0+i) } }

// Add constraint rows. // TODO: pre-eliminate symetrical possibilities. cols := make([]int, 4) for i := 0; i < N; i++ { for j := 0; j < N; j++ { cols[0] = iR0 + i // Ri, rank i cols[1] = iF0 + j // Fj, file j a := (i + j) // A(i+j), diagonals b := (N - 1 - i + j) // B(N-1-i+j), reverse diagonals cols = cols[:2] // Do organ-pipe reordering for R and F. for i, c := range cols { cols[i] = s.renumBack[c] }

// Only add diagonals with more than one space; that // is we omit the corners: A0, A(2N-2), B0, and B(2N-2) if 0 < a && a < 2*N-2 { cols = append(cols, iA1+a-1) } if 0 < b && b < 2*N-2 { cols = append(cols, iB1+b-1) }

m.AddRow(cols) } }

// Search for solutions. start := time.Now() err := m.Search(s.found) if err != nil { return err } elapsed := time.Since(start) fmt.Printf("%d×%d queens has %2d solutions, found in %v\n", N, N, s.count, elapsed) if profile { m.ProfileWrite(os.Stderr) } return nil }

type solution struct { N int count int renumFwd []int // for "organ-pipe" column ordering renumBack []int printFirst bool }

func (s *solution) found(m *dlx.Matrix) error { s.count++ if s.printFirst && s.count == 1 { fmt.Printf("First %d×%d queens solution:\n", s.N, s.N) for _, cols := range m.SolutionIDs(nil) { var r, f int for _, c := range cols { // Undo organ-pipe reodering if c < len(s.renumFwd) { c = s.renumFwd[c] } if c < s.N { r = c + 1 } else if c < 2*s.N { f = c - s.N + 1 } } fmt.Printf(" R%d F%d\n", r, f) } } return nil }</lang>

Output:
2×2 queens has  0 solutions, found in 1.915µs
3×3 queens has  0 solutions, found in 1.22µs
4×4 queens has  2 solutions, found in 3.095µs
5×5 queens has 10 solutions, found in 7.15µs
6×6 queens has  4 solutions, found in 17.663µs
7×7 queens has 40 solutions, found in 54.08µs
First 8×8 queens solution:
    R5 F1
    R1 F4
    R3 F5
    R4 F3
    R6 F6
    R2 F7
    R7 F8
    R8 F2
8×8 queens has 92 solutions, found in 186.991µs
9×9 queens has 352 solutions, found in 580.225µs
10×10 queens has 724 solutions, found in 2.078235ms
11×11 queens has 2680 solutions, found in 8.186708ms
12×12 queens has 14200 solutions, found in 38.037841ms
13×13 queens has 73712 solutions, found in 183.846653ms
14×14 queens has 365596 solutions, found in 961.249859ms
15×15 queens has 2279184 solutions, found in 5.491853276s
16×16 queens has 14772512 solutions, found in 33.286561009s
17×17 queens has 95815104 solutions, found in 3m34.643824374s
18×18 queens has 666090624 solutions, found in 24m22.30241617s

Groovy

Distinct Solutions

This solver starts with the N! distinct solutions to the N-Rooks problem and then keeps only the candidates in which all Queens are mutually diagonal-safe. <lang groovy>def listOrder = { a, b ->

   def k = [a.size(), b.size()].min()
   def i = (0..<k).find { a[it] != b[it] }
   (i != null) ? a[i] <=> b[i] : a.size() <=> b.size()

}

def orderedPermutations = { list ->

   def n = list.size()
   (0..<n).permutations().sort(listOrder)

}

def diagonalSafe = { list ->

   def n = list.size()
   n == 1 || (0..<(n-1)).every{ i ->
       ((i+1)..<n).every{ j ->
           !([list[i]+j-i, list[i]+i-j].contains(list[j]))
       }
   }

}

def queensDistinctSolutions = { n ->

   // each permutation is an N-Rooks solution
   orderedPermutations((0..<n)).findAll (diagonalSafe)

}</lang>

Unique Solutions

Unique solutions are equivalence classes of distinct solutions, factoring out all reflections and rotations of a given solution. See the Wikipedia page for more details. <lang groovy>class Reflect {

   public static final diag = { list ->
       final n = list.size()
       def tList = [0] * n
       (0..<n).each { tList[list[it]] = it }
       tList
   }
   
   public static final vert = { list ->
       list.reverse()
   }
   
   public static final horiz = { list ->
       final n = list.size()
       list.collect { n - it - 1 }
   }

}

enum Rotations {

   r0([]),
   r90([Reflect.vert, Reflect.diag]),
   r180([Reflect.vert, Reflect.diag, Reflect.vert, Reflect.diag]),
   r270([Reflect.diag, Reflect.vert]);
   
   private final List operations
   
   private Rotations(List ops) {
       operations = ops ?: []
   }
   
   public static void eliminateDups(primary, solutions) {
       (r0..r270).each { rot -> rot.eliminateDuplicates(primary, solutions) }
   }
   
   private void eliminateDuplicates(primary, solutions) {
       def rotated = [] + primary
       operations.each { rotated = it(rotated) }
       solutions.removeAll([rotated, Reflect.vert(rotated)])
   }

}

def queensUniqueSolutions = { start ->

   assert start instanceof Number || start instanceof List
   def qus = (start instanceof Number) \
               ? queensDistinctSolutions(start) \
               : [] + start
   for (def i = 0; i < qus.size()-1; i++) {
       Rotations.eliminateDups(qus[i], qus[(i+1)..<(qus.size())])
   }
   qus

}</lang>

Test and Results

This script tests both distinct and unique solution lists. <lang groovy>(1..9).each { n ->

   def qds = queensDistinctSolutions(n)
   def qus = queensUniqueSolutions(qds)
   println ([boardSize:n, "number of distinct solutions":qds.size(), "number of unique solutions":qus.size()])
   if(n < 9) { qus.each { println it } }
   else { println "first:${qus[0]}"; println "last:${qus[-1]}" }
   println()

}</lang>

Interpreting the Results:

Each individual result is given as a list of N numbers. Each number represents a column number within the list-indexed row. So, the following 4-queens solution:

[1, 3, 0, 2]

should be interpreted as follows:

row 0 has a queen in column 1
row 1 has a queen in column 3
row 2 has a queen in column 0
row 3 has a queen in column 2

In other words, this:

|///| Q |///|   |
 --- --- --- --- 
|   |///|   |/Q/|
 --- --- --- --- 
|/Q/|   |///|   |
 --- --- --- --- 
|   |///| Q |///|

Results:

[boardSize:1, number of distinct solutions:1, number of unique solutions:1]
[0]

[boardSize:2, number of distinct solutions:0, number of unique solutions:0]

[boardSize:3, number of distinct solutions:0, number of unique solutions:0]

[boardSize:4, number of distinct solutions:2, number of unique solutions:1]
[1, 3, 0, 2]

[boardSize:5, number of distinct solutions:10, number of unique solutions:2]
[0, 2, 4, 1, 3]
[1, 4, 2, 0, 3]

[boardSize:6, number of distinct solutions:4, number of unique solutions:1]
[1, 3, 5, 0, 2, 4]

[boardSize:7, number of distinct solutions:40, number of unique solutions:6]
[0, 2, 4, 6, 1, 3, 5]
[0, 3, 6, 2, 5, 1, 4]
[1, 3, 0, 6, 4, 2, 5]
[1, 4, 0, 3, 6, 2, 5]
[1, 4, 6, 3, 0, 2, 5]
[1, 5, 2, 6, 3, 0, 4]

[boardSize:8, number of distinct solutions:92, number of unique solutions:12]
[0, 4, 7, 5, 2, 6, 1, 3]
[0, 5, 7, 2, 6, 3, 1, 4]
[1, 3, 5, 7, 2, 0, 6, 4]
[1, 4, 6, 0, 2, 7, 5, 3]
[1, 4, 6, 3, 0, 7, 5, 2]
[1, 5, 0, 6, 3, 7, 2, 4]
[1, 5, 7, 2, 0, 3, 6, 4]
[1, 6, 2, 5, 7, 4, 0, 3]
[1, 6, 4, 7, 0, 3, 5, 2]
[2, 4, 1, 7, 0, 6, 3, 5]
[2, 4, 7, 3, 0, 6, 1, 5]
[2, 5, 1, 4, 7, 0, 6, 3]

[boardSize:9, number of distinct solutions:352, number of unique solutions:46]
first:[0, 2, 5, 7, 1, 3, 8, 6, 4]
last:[3, 1, 6, 8, 0, 7, 4, 2, 5]

Haskell

<lang haskell>import Control.Monad import Data.List

-- given n, "queens n" solves the n-queens problem, returning a list of all the -- safe arrangements. each solution is a list of the columns where the queens are -- located for each row queens :: Int -> Int queens n = map fst $ foldM oneMoreQueen ([],[1..n]) [1..n] where

 -- foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a
 -- foldM folds (from left to right) in the list monad, which is convenient for 
 -- "nondeterminstically" finding "all possible solutions" of something. the 
 -- initial value [] corresponds to the only safe arrangement of queens in 0 rows
 -- given a safe arrangement y of queens in the first i rows, and a list of 
 -- possible choices, "oneMoreQueen y _" returns a list of all the safe 
 -- arrangements of queens in the first (i+1) rows along with remaining choices 
 oneMoreQueen (y,d) _ = [(x:y, delete x d) | x <- d, safe x]  where
   -- "safe x" tests whether a queen at column x is safe from previous queens
   safe x = and [x /= c + n && x /= c - n | (n,c) <- zip [1..] y]

-- prints what the board looks like for a solution; with an extra newline printSolution y = do

    let n = length y
    mapM_ (\x -> putStrLn [if z == x then 'Q' else '.' | z <- [1..n]]) y
    putStrLn ""

-- prints all the solutions for 6 queens main = mapM_ printSolution $ queens 6</lang>

If you just want one solution, simply take the head of the result of queens n; since Haskell is lazy, it will only do as much work as needed to find one solution and stop.

Alternative version

<lang haskell>import Control.Monad (foldM) import Data.List ((\\))

main :: IO () main = mapM_ print $ queens 8

queens :: Int -> Int queens n = foldM f [] [1..n]

   where
     f qs _ = [q:qs | q <- [1..n] \\ qs, q `notDiag` qs]
     q `notDiag` qs = and [abs (q - qi) /= i | (qi,i) <- qs `zip` [1..]]</lang>

Using permutations

This version uses permutations to generate unique horizontal and vertical position for each queen. Thus, we only need to check diagonals. However, it is less efficient than the previous version because it does not prune out prefixes that are found to be unsuitable. <lang haskell>import Data.List (nub, permutations)

-- checks if queens are on the same diagonal -- with [0..] we place each queen on her own row check f = length . nub . zipWith f [0..]

-- filters out results where 2 or more queens are on the same diagonal -- with [0..n-1] we place each queeen on her own column generate n = filter (\x -> check (+) x == n && check (-) x == n) $ permutations [0..n-1]

-- 8 is for "8 queens" main = print $ generate 8</lang>

In terms of foldr

A back-tracking variant using the Prelude's plain foldr:

Translation of: JavaScript

<lang haskell>import Data.List (transpose, intercalate) import Data.Bool (bool)

queenPuzzle :: Int -> Int -> Int queenPuzzle nRows nCols

 | nRows <= 0 = [[]]
 | otherwise =
   foldr
     (\solution a ->
         a ++
         foldr
           (\iCol b ->
               bool
                 b
                 (b ++ [solution ++ [iCol]])
                 (safe (nRows - 1) iCol solution))
           []
           [1 .. nCols])
     []
     (queenPuzzle (nRows - 1) nCols)
 where
   safe iRow iCol solution =
     (not . or) $
     zipWith
       (\sc sr ->
           (iCol == sc) ||
           (sc + sr == (iCol + iRow)) || (sc - sr == (iCol - iRow)))
       solution
       [0 .. iRow - 1]

-- TEST ------------------------------------------------------------------------ -- 10 columns of solutions for the 7*7 board: showSolutions :: Int -> Int -> [String] showSolutions nCols nSize =

 unlines <$>
 ((fmap (intercalate "   ") . transpose . fmap boardLines) <$>
  chunksOf nCols (queenPuzzle nSize nSize))
 where
   boardLines rows =
     (\r -> (bool '.' '♛' . (== r)) <$> [1 .. (length rows)]) <$> rows

chunksOf :: Int -> [a] -> a chunksOf i xs = take i <$> ($ (:)) (splits xs) []

 where
   splits [] _ n = []
   splits l c n = l `c` splits (drop i l) c n

main :: IO () main = (putStrLn . unlines) $ showSolutions 10 7</lang>

Output:
......♛   ......♛   ......♛   ......♛   .....♛.   .....♛.   .....♛.   .....♛.   .....♛.   .....♛.
.♛.....   ..♛....   ...♛...   ....♛..   ♛......   .♛.....   ..♛....   ..♛....   ..♛....   ...♛...
...♛...   .....♛.   ♛......   ..♛....   ..♛....   ....♛..   ......♛   ....♛..   ♛......   ......♛
.....♛.   .♛.....   ....♛..   ♛......   ....♛..   ♛......   ...♛...   ......♛   ...♛...   ♛......
♛......   ....♛..   .♛.....   .....♛.   ......♛   ...♛...   ♛......   ♛......   ......♛   ..♛....
..♛....   ♛......   .....♛.   ...♛...   .♛.....   ......♛   ....♛..   ...♛...   ....♛..   ....♛..
....♛..   ...♛...   ..♛....   .♛.....   ...♛...   ..♛....   .♛.....   .♛.....   .♛.....   .♛.....

.....♛.   ....♛..   ....♛..   ....♛..   ....♛..   ....♛..   ....♛..   ...♛...   ...♛...   ...♛...
...♛...   ♛......   ♛......   .♛.....   ..♛....   ......♛   ......♛   ♛......   ♛......   .♛.....
.♛.....   .....♛.   ...♛...   .....♛.   ♛......   .♛.....   .♛.....   ....♛..   ..♛....   ......♛
......♛   ...♛...   ......♛   ..♛....   .....♛.   ...♛...   .....♛.   .♛.....   .....♛.   ....♛..
....♛..   .♛.....   ..♛....   ......♛   ...♛...   .....♛.   ..♛....   .....♛.   .♛.....   ..♛....
..♛....   ......♛   .....♛.   ...♛...   .♛.....   ♛......   ♛......   ..♛....   ......♛   ♛......
♛......   ..♛....   .♛.....   ♛......   ......♛   ..♛....   ...♛...   ......♛   ....♛..   .....♛.

...♛...   ...♛...   ...♛...   ..♛....   ..♛....   ..♛....   ..♛....   ..♛....   ..♛....   .♛.....
.....♛.   ......♛   ......♛   ♛......   ♛......   ....♛..   .....♛.   ......♛   ......♛   ...♛...
♛......   ....♛..   ..♛....   .....♛.   .....♛.   ......♛   .♛.....   ...♛...   .♛.....   .....♛.
..♛....   .♛.....   .....♛.   .♛.....   ...♛...   .♛.....   ....♛..   ♛......   ...♛...   ♛......
....♛..   .....♛.   .♛.....   ....♛..   .♛.....   ...♛...   ♛......   ....♛..   .....♛.   ..♛....
......♛   ♛......   ....♛..   ......♛   ......♛   .....♛.   ...♛...   .♛.....   ♛......   ....♛..
.♛.....   ..♛....   ♛......   ...♛...   ....♛..   ♛......   ......♛   .....♛.   ....♛..   ......♛

.♛.....   .♛.....   .♛.....   .♛.....   .♛.....   .♛.....   ♛......   ♛......   ♛......   ♛......
...♛...   ....♛..   ....♛..   ....♛..   .....♛.   ......♛   ..♛....   ...♛...   ....♛..   .....♛.
♛......   ......♛   ..♛....   ♛......   ..♛....   ....♛..   ....♛..   ......♛   .♛.....   ...♛...
......♛   ...♛...   ♛......   ...♛...   ......♛   ..♛....   ......♛   ..♛....   .....♛.   .♛.....
....♛..   ♛......   ......♛   ......♛   ...♛...   ♛......   .♛.....   .....♛.   ..♛....   ......♛
..♛....   ..♛....   ...♛...   ..♛....   ♛......   .....♛.   ...♛...   .♛.....   ......♛   ....♛..
.....♛.   .....♛.   .....♛.   .....♛.   ....♛..   ...♛...   .....♛.   ....♛..   ...♛...   ..♛....

Breadth-first search and Depth-first search

<lang haskell>import Control.Monad import System.Environment

-- | data types for the puzzle type Row = Int type State = [Row] type Thread = [Row]

-- | utility functions empty = null

-- | Check for infeasible states infeasible :: Int -> (State, Thread) -> Bool infeasible n ([], _) = False infeasible n ((r:rs),t) = length rs >= n || attack r rs || infeasible n (rs, t)

feasible n st = not $ infeasible n st

-- | Check if a row is attacking another row of a state attack :: Row -> [Row] -> Bool attack r rs = r `elem` rs

           || r `elem` (upperDiag rs)
           || r `elem` (lowerDiag rs)
 where 
   upperDiag xs = zipWith (-) xs [1..]
   lowerDiag xs = zipWith (+) xs [1..]

-- | Check if it is a goal state isGoal :: Int -> (State, Thread) -> Bool isGoal n (rs,t) = (feasible n (rs,t)) && (length rs == n)

-- | Perform a move move :: Int -> (State, Thread) -> (State, Thread) move x (s,t) = (x:s, x:t)

choices n = [1..n] moves n = pure move <*> choices n

emptySt = ([],[])

-- | Breadth-first search bfs :: Int -> [(State, Thread)] -> (State, Thread) bfs n [] = error "Couldn't find a feasible solution" bfs n sts | (not.empty) goal = head goal

         | otherwise        = bfs n sts'
 where 
   goal = filter (isGoal n) sts'
   sts' = filter (feasible n) $ (moves n) <*> sts

-- | Depth-first search dfs :: Int -> (State, Thread) -> [(State, Thread)] dfs n st | isGoal n st = [st]

        | infeasible n st = [emptySt]
        | otherwise       = do x   <- [1..n]
                               st' <- dfs n $ move x st
                               guard $ st' /= emptySt
                               return st'

main = do

 [narg] <- getArgs
 let n = read narg :: Int
 print (bfs n [emptySt])
 print (head $ dfs n emptySt)</lang>
Output:
([1,5,8,6,3,7,2,4],[1,5,8,6,3,7,2,4])
([4,2,7,3,6,8,5,1],[4,2,7,3,6,8,5,1])

Heron

<lang heron>module NQueens {

   inherits {
       Heron.Windows.Console;
   }
   fields {
       n : Int = 4;
       sols : List = new List();
   }
   methods {
       PosToString(row : Int, col : Int) : String {
           return "row " + row.ToString() + ", col " + col.ToString();
       }
       AddQueen(b : Board, row : Int, col : Int)
       {
           if (!b.TryAddQueen(row, col))
               return;            
           if (row < n - 1)
               foreach (i in 0..n-1)
                  AddQueen(new Board(b), row + 1, i);
           else
               sols.Add(b);
       }        
       Main() {
           foreach (i in 0..n-1)
               AddQueen(new Board(), 0, i);
           foreach (b in sols) {
               b.Output();
               WriteLine("");
           }
           WriteLine("Found " + sols.Count().ToString() + " solutions");
       }
   }

}

class Board {

   fields {
       rows = new List();
   }
   methods {
       Constructor() {
           foreach (r in 0..n-1) {
               var col = new List();
               foreach (c in 0..n-1)
                   col.Add(false);
               rows.Add(col);
           }
       }
       Constructor(b : Board) {
           Constructor();
           foreach (r in 0..n-1)
               foreach (c in 0..n-1)
                   SetSpaceOccupied(r, c, b.SpaceOccupied(r, c));
       }
       SpaceOccupied(row : Int, col : Int) : Bool {
           return rows[row][col];
       }
       SetSpaceOccupied(row : Int, col : Int, b : Bool)  {
           rows[row][col] = b;
       }
       ValidPos(row : Int, col : Int) : Bool {
           return ((row >= 0) && (row < n)) && ((col >= 0) && (col < n)); 
       }
       VectorOccupied(row : Int, col : Int, rowDir : Int, colDir : Int) : Bool {
           var nextRow = row + rowDir;
           var nextCol = col + colDir;
           if (!ValidPos(nextRow, nextCol)) 
               return false;
           if (SpaceOccupied(nextRow, nextCol)) 
               return true;
           return VectorOccupied(nextRow, nextCol, rowDir, colDir);
       }
       TryAddQueen(row : Int, col : Int) : Bool {
           foreach (rowDir in -1..1)
               foreach (colDir in -1..1)
                   if (rowDir != 0 || colDir != 0)
                       if (VectorOccupied(row, col, rowDir, colDir))
                           return false;
           SetSpaceOccupied(row, col, true);
           return true;
       }
       Output() {
           foreach (row in 0..n-1) {
               foreach (col in 0..n-1) {
                   if (SpaceOccupied(row, col)) {
                       Write("Q");
                   }
                   else {
                       Write(".");
                   }
               }
               WriteLine("");
           }
       }
   }

}</lang>

Icon and Unicon

Here's a solution to the n = 8 case: <lang icon>procedure main()

   write(q(1), " ", q(2), " ", q(3), " ", q(4), " ", q(5), " ", q(6), " ", q(7), " ", q(8))

end

procedure q(c)

   static udiag, ddiag, row
   initial {
       udiag := list(15, 0)
       ddiag := list(15, 0)
       row := list(8, 0)
   }
   every 0 = row[r := 1 to 8] = ddiag[r + c - 1] = udiag[8 + r - c] do   # test if free
       suspend row[r] <- ddiag[r + c - 1] <- udiag[8 + r - c] <- r       # place and yield

end</lang>

Notes:

  • Solution assumes attempting to place 8 queens on a standard chessboard, and is a simplification of a program in the The Icon Programming Library (IPL) which is in the public domain.
  • There are 15 left-side-down-diagonals and 15 left-side-up-diagonals represented in the lists. An unfilled row or diagonal has value 0, otherwise the row number is stored to indicate placement.
  • The numeric equality operator =, like all the comparators in Icon, yields the right argument as its solution, or fails. The chain of 0 = A = B = C therefore tests each of A B and C for equality with 0; these semantics read very naturally.
  • every drives the chain of = tests to yield every possible result; the iterable component is the generator 1 to 8 which is progressively stored into r and will be backtracked if any of the equality tests fail. If all the placements are zero, the chain of equalities suceeds, and the suspend is invoked for that iteration.
  • <- is the "reversible assignment" operator. It restores the original value and fails if it is resumed by backtracking. The suspend will use it to temporarily consume the placements and then it will yield the value of the chosen row r.
  • procedure q() attempts to place the c-th column queen into row 1 to 8 in turn, suspending only if that queen can be placed at [c,r]
  • As the calls to q() are evaluated in main, each one will suspend a possible row, thereby allowing the next q(n) in main to be evaluated. If any of the q() fails to yield a row for the nth queen (or runs out of solutions) the previous, suspended calls to q() are backtracked progressively. If the final q(8) yields a row, the write() will be called with the row positions of each queen. Note that even the final q(8) will be suspended along with the other 7 calls to q(). Unless the write() is driven to produce more solutions (see next point) the suspended procedures will be closed at the "end of statement" ie after the write has "succeeded".
  • If you want to derive all possible solutions, main() can be embellished with the every keyword:

<lang icon> procedure main()

   every write(q(1), " ", q(2), " ", q(3), " ", q(4), " ", q(5), " ", q(6), " ", q(7), " ", q(8))

end </lang> This drives the backtracking to find more solutions.

The following is a general N-queens solution, adapted from a solution placed into the public domain by Peter A. Bigot in 1990. The program produces a solution for a specified value of N. The comment explains how to modify the program to produce all solutions for a given N. <lang icon>global n, rw, dd, ud

procedure main(args)

   n := integer(args[1]) | 8
   rw := list(n)
   dd := list(2*n-1)
   ud := list(2*n-1)
   solvequeen(1)

end

procedure solvequeen(c)

   if (c > n) then return show()
   else suspend placequeen(c) & solvequeen(c+1)

end

procedure placequeen(c)

   suspend (/rw[r := 1 to n] <- /dd[r+c-1] <- /ud[n+r-c] <- c)

end

procedure show()

   static count, line, border
   initial {
       count := 0
       line := repl("|   ",n) || "|"
       border := repl("----",n) || "-"
       }
   write("solution: ", count+:=1)
   write("  ", border)
   every line[4*(!rw - 1) + 3] <- "Q" do {
       write("  ", line)
       write("  ", border)
       }
   write()
   return      # Comment out to see all possible solutions

end</lang>

A sample run for N = 6:

->nq 6
solution: 1
  -------------------------
  |   |   |   | Q |   |   |
  -------------------------
  | Q |   |   |   |   |   |
  -------------------------
  |   |   |   |   | Q |   |
  -------------------------
  |   | Q |   |   |   |   |
  -------------------------
  |   |   |   |   |   | Q |
  -------------------------
  |   |   | Q |   |   |   |
  -------------------------

->

Two solutions are in the IPL queens and genqueen.

IS-BASIC

<lang IS-BASIC>100 PROGRAM "NQueens.bas" 110 TEXT 80 120 DO 130 INPUT PROMPT "Size of board (2-12): ":N$ 140 LET N=VAL(N$) 150 LOOP UNTIL N>1 AND N<13 160 NUMERIC A(1 TO N),X(1 TO N),B(2 TO 2*N),C(-N+1 TO N-1) 170 LET SOL=0 180 CALL INIT(A):CALL INIT(B):CALL INIT(C) 190 CALL TRY(1) 200 PRINT SOL;"solutions." 210 END 220 DEF WRITE 230 LET S$="":LET SOL=SOL+1 240 FOR K=1 TO N 250 LET S$=S$&CHR$(64+K)&STR$(X(K))&" " 260 NEXT 270 PRINT S$ 280 END DEF 290 DEF TRY(I) 300 NUMERIC J 310 FOR J=1 TO N 320 IF A(J) AND B(I+J) AND C(I-J) THEN 330 LET X(I)=J:LET A(J),B(I+J),C(I-J)=0 340 IF I<N THEN 350 CALL TRY(I+1) 360 ELSE 370 CALL WRITE 380 END IF 390 LET A(J),B(I+J),C(I-J)=1 400 END IF 410 NEXT 420 END DEF 430 DEF INIT(REF T) 440 FOR I=LBOUND(T) TO UBOUND(T) 450 LET T(I)=1 460 NEXT 470 END DEF</lang>

J

This is one of several J solutions shown and explained on this J wiki page

<lang j>perm =: ! A.&i. ] NB. all permutations of integers 0 to y comb2 =: (, #: I.@,@(</)&i.)~ NB. all size 2 combinations of integers 0 to y mask =: [ */@:~:&(|@-/) { queenst=: comb2 (] #"1~ mask)&.|: perm</lang>

Note that the Roger Hui's approach (used here) matches the description attributed to Raymond Hettinger (in the Python implementation). (Both were posted years ago: 1981 for Hui's version which was used here, and 2009 for Hettinger's.) However they do use different diagonal queen clash elimination approaches -see C# Roger Hui Algorithm for a comparison of the two approaches.

Example use:

<lang j> $queenst 8 92 8</lang>

92 distinct solutions for an 8 by 8 board.

<lang j> {.queenst 8 0 4 7 5 2 6 1 3</lang>

One of the solutions. Position indicates row number, the integer indicates column number (0..7) for each queen -- though of course you could just as validly think of that the other way around.

Java

<lang java>public class NQueens {

 private static int[] b = new int[8];
 private static int s = 0;
 static boolean unsafe(int y) {
   int x = b[y];
   for (int i = 1; i <= y; i++) {
     int t = b[y - i];
     if (t == x ||
         t == x - i ||
         t == x + i) {
       return true;
     }
   }
   return false;
 }
 public static void putboard() {
   System.out.println("\n\nSolution " + (++s));
   for (int y = 0; y < 8; y++) {
     for (int x = 0; x < 8; x++) {
       System.out.print((b[y] == x) ? "|Q" : "|_");
     }
     System.out.println("|");
   }
 }
 public static void main(String[] args) {
   int y = 0;
   b[0] = -1;
   while (y >= 0) {
     do {
       b[y]++;
     } while ((b[y] < 8) && unsafe(y));
     if (b[y] < 8) {
       if (y < 7) {
         b[++y] = -1;
       } else {
         putboard();
       }
     } else {
       y--;
     }
   }
 }

}</lang>

JavaScript

ES5

Algorithm uses recursive Backtracking. Checks for correct position on subfields, whichs saves a lot position checks. Needs 15.720 position checks for a 8x8 field. <lang javascript>function queenPuzzle(rows, columns) {

   if (rows <= 0) {
       return [[]];
   } else {
       return addQueen(rows - 1, columns);
   }

}

function addQueen(newRow, columns, prevSolution) {

   var newSolutions = [];
   var prev = queenPuzzle(newRow, columns);
   for (var i = 0; i < prev.length; i++) {
       var solution = prev[i];
       for (var newColumn = 0; newColumn < columns; newColumn++) {
           if (!hasConflict(newRow, newColumn, solution))
               newSolutions.push(solution.concat([newColumn]))
       }
   }
   return newSolutions;

}

function hasConflict(newRow, newColumn, solution) {

   for (var i = 0; i < newRow; i++) {
       if (solution[i]     == newColumn          ||
           solution[i] + i == newColumn + newRow || 
           solution[i] - i == newColumn - newRow) {
               return true;
       }
   }
   return false;

}

console.log(queenPuzzle(8,8));</lang>

ES6

Translating the ES5 version, and adding a function to display columns of solutions. <lang JavaScript>(() => {

   'use strict';
   // N QUEENS PROBLEM ------------------------------------------------------
   // queenPuzzle :: Int -> Int -> Int
   const queenPuzzle = (nRows, nCols) =>
       nRows <= 0 ? [
           []
       ] : queenPuzzle(nRows - 1, nCols)
       .reduce((a, solution) =>
           append(a, enumFromTo(0, nCols - 1)
               .reduce((b, iCol) =>
                   safe(nRows - 1, iCol, solution) ? (
                       b.concat([solution.concat(iCol)])
                   ) : b, [])
           ), []);
   // safe : Int -> Int -> [Int] -> Bool
   const safe = (iRow, iCol, solution) => !any(
       ([sc, sr]) =>
       (iCol === sc) || (sc + sr === iCol + iRow) || (sc - sr === iCol - iRow),
       zip(solution, enumFromTo(0, iRow - 1))
   );
   // GENERIC FUNCTIONS -----------------------------------------------------
   // abs :: Num a => a -> a
   const abs = Math.abs
   // any :: (a -> Bool) -> [a] -> Bool
   const any = (f, xs) => xs.some(f);
   // (++) :: [a] -> [a] -> [a]
   const append = (xs, ys) => xs.concat(ys);
   // chunksOf :: Int -> [a] -> a
   const chunksOf = (n, xs) =>
       xs.reduce((a, _, i, xs) =>
           i % n ? a : a.concat([xs.slice(i, i + n)]), []);
   // concat :: a -> [a] | [String] -> String
   const concat = xs => {
       if (xs.length > 0) {
           const unit = typeof xs[0] === 'string' ?  : [];
           return unit.concat.apply(unit, xs);
       } else return [];
   };
   // concatMap :: (a -> [b]) -> [a] -> [b]
   const concatMap = (f, xs) => [].concat.apply([], xs.map(f));
   // 2 or more arguments
   // curry :: Function -> Function
   const curry = (f, ...args) => {
       const go = xs => xs.length >= f.length ? (f.apply(null, xs)) :
           function () {
               return go(xs.concat([].slice.apply(arguments)));
           };
       return go([].slice.call(args, 1));
   };
   // enumFromTo :: Int -> Int -> [Int]
   const enumFromTo = (m, n) =>
       Array.from({
           length: Math.floor(n - m) + 1
       }, (_, i) => m + i);
   // intercalate :: String -> [a] -> String
   const intercalate = curry((s, xs) => xs.join(s));
   // map :: (a -> b) -> [a] -> [b]
   const map = (f, xs) => xs.map(f)
   // transpose :: a -> a
   const transpose = xs =>
       xs[0].map((_, iCol) => xs.map(row => row[iCol]));
   // unlines :: [String] -> String
   const unlines = xs => xs.join('\n');
   // zip :: [a] -> [b] -> [(a,b)]
   const zip = (xs, ys) =>
       xs.slice(0, Math.min(xs.length, ys.length))
       .map((x, i) => [x, ys[i]]);
   // TEST ------------------------------------------------------------------
   // Ten columns of solutions to the 7*7 board
   // showSolutions :: Int -> Int -> String
   const showSolutions = (nCols, nBoardSize) =>
       intercalate('\n\n', map(unlines,
           map(col => map(intercalate("  "), transpose(map(rows =>
                   map(r => concat(concatMap(c =>
                       c === r ? '♛' : '.',
                       enumFromTo(1, rows.length))), rows), col))),
               chunksOf(nCols, queenPuzzle(nBoardSize, nBoardSize))
           )));
   return showSolutions(10, 7);

})();</lang>

jq

Single Solution

Works with: jq version 1.4

This section presents a function for finding a single solution using the formulae for explicit solutions at Eight Queens Puzzle. <lang jq>def single_solution_queens(n):

 def q: "♛";
 def init(k): reduce range(0;k) as $i ([]; . + ["."]);
 def matrix(k): init(k) as $row | reduce range(0;k) as $i ([]; . + [$row]);
 def place(stream; i; j):
   # jq indexing is based on offsets but we are using the 1-based formulae:
   reduce stream as $s (.; setpath([-1+($s|i), -1+($s|j)]; q) );
 def even(k): 
   if ((k-2) % 6) != 0 then
        place( range(1; 1+(k/2));         .; 2*. )
      | place( range(1; 1+(k/2)); (k/2) + .; 2*. -1 )
   else place( range(1; 1+(k/2));         .; 1 + ((2*. + (k/2) - 3) % k))  
      | place( range(1; 1+(n/2)); n + 1 - .; n - ((2*. + (n/2) - 3) % n))  
   end;
 matrix(n)                          # the chess board
 | if (n % 2) == 0 then even(n)
   else even(n-1) | .[n-1][n-1] = q
   end;
  1. Example:

def pp: reduce .[] as $row

 ("";  reduce $row[] as $x (.; . + $x) + "\n");

single_solution_queens(8) | pp</lang>

Output:

$ jq -M -n -r -f n-queens-single-solution.jq <lang sh>...♛.... .....♛.. .......♛ .♛...... ......♛. ♛....... ..♛..... ....♛...</lang>

Generate-and-test counter

Works with: jq version 1.4

Part 1: Generic functions <lang jq># permutations of 0 .. (n-1) def permutations(n):

 # Given a single array, generate a stream by inserting n at different positions:
 def insert(m;n):
    if m >= 0 then (.[0:m] + [n] + .[m:]), insert(m-1;n) else empty end;
 if n==0 then []
 elif n == 1 then [1]
 else
   permutations(n-1) | insert(n-1; n)
 end;

def count(g): reduce g as $i (0; .+1);</lang> Part 2: n-queens <lang jq>def queens(n):

 def sums:
 . as $board
 | [ range(0;length) | . + $board[.]]
 | unique | length;
 def differences:
 . as $board
 | [ range(0;length) | . - $board[.]]
 | unique | length;
 def allowable:
   length as $n
   | sums == $n and differences == $n;
 count( permutations(n) | select(allowable) );

</lang> Example: <lang jq>queens(8)</lang>

Output:
92

Julia

<lang ruby>

  1. !/usr/bin/env julia

__precompile__(true)

"""

  1. EightQueensPuzzle

Ported to **Julia** from examples in several languages from here: https://hbfs.wordpress.com/2009/11/10/is-python-slow """ module EightQueensPuzzle

export main

type Board

   cols::Int
   nodes::Int
   diag45::Int
   diag135::Int
   solutions::Int
   Board() = new(0, 0, 0, 0, 0)

end

"Marks occupancy." function mark!(b::Board, k::Int, j::Int)

   b.cols    $= (1 << j)
   b.diag135 $= (1 << (j+k))
   b.diag45  $= (1 << (32+j-k))

end

"Tests if a square is menaced." function test(b::Board, k::Int, j::Int)

   b.cols    & (1 << j)        +
   b.diag135 & (1 << (j+k))    +
   b.diag45  & (1 << (32+j-k)) == 0

end

"Backtracking solver." function solve!(b::Board, niv::Int, dx::Int)

   if niv > 0
       for i in 0:dx-1
           if test(b, niv, i) == true
               mark!(b, niv, i)
               solve!(b, niv-1, dx)
               mark!(b, niv, i)
           end
       end
   else
       for i in 0:dx-1
           if test(b, 0, i) == true
               b.solutions += 1
           end
       end
   end
   b.nodes += 1
   b.solutions

end

"C/C++-style `main` function." function main()

   for n = 1:17
       gc()
       b = Board()
       @show n
       print("elapsed:")
       solutions = @time solve!(b, n-1, n)
       @show solutions
       println()
   end

end

end

using EightQueensPuzzle

main() </lang>

<lang ruby> juser@juliabox:~$ /opt/julia-0.5/bin/julia eight_queen_puzzle.jl n = 1 elapsed: 0.000001 seconds solutions = 1

n = 2 elapsed: 0.000001 seconds solutions = 0

n = 3 elapsed: 0.000001 seconds solutions = 0

n = 4 elapsed: 0.000001 seconds solutions = 2

n = 5 elapsed: 0.000003 seconds solutions = 10

n = 6 elapsed: 0.000008 seconds solutions = 4

n = 7 elapsed: 0.000028 seconds solutions = 40

n = 8 elapsed: 0.000108 seconds solutions = 92

n = 9 elapsed: 0.000463 seconds solutions = 352

n = 10 elapsed: 0.002146 seconds solutions = 724

n = 11 elapsed: 0.010646 seconds solutions = 2680

n = 12 elapsed: 0.057603 seconds solutions = 14200

n = 13 elapsed: 0.334600 seconds solutions = 73712

n = 14 elapsed: 2.055078 seconds solutions = 365596

n = 15 elapsed: 13.480449 seconds solutions = 2279184

n = 16 elapsed: 97.192552 seconds solutions = 14772512

n = 17 elapsed:720.314676 seconds solutions = 95815104 </lang>

Kotlin

Translation of: FreeBASIC

<lang scala>// version 1.1.3

var count = 0 var c = IntArray(0) var f = ""

fun nQueens(row: Int, n: Int) {

   outer@ for (x in 1..n) {
       for (y in 1..row - 1) {
           if (c[y] == x) continue@outer
           if (row - y == Math.abs(x - c[y])) continue@outer           
       }
       c[row] = x
       if (row < n) nQueens(row + 1, n)
       else if (++count == 1) f = c.drop(1).map { it - 1 }.toString()
   }

}

fun main(args: Array<String>) {

  for (n in 1..14) { 
      count = 0
      c = IntArray(n + 1)
      f = ""
      nQueens(1, n)
      println("For a $n x $n board:")
      println("  Solutions = $count")
      if (count > 0) println("  First is $f")
      println()
  }

}</lang>

Output:
For a 1 x 1 board:
  Solutions = 1
  First is [0]

For a 2 x 2 board:
  Solutions = 0

For a 3 x 3 board:
  Solutions = 0

For a 4 x 4 board:
  Solutions = 2
  First is [1, 3, 0, 2]

For a 5 x 5 board:
  Solutions = 10
  First is [0, 2, 4, 1, 3]

For a 6 x 6 board:
  Solutions = 4
  First is [1, 3, 5, 0, 2, 4]

For a 7 x 7 board:
  Solutions = 40
  First is [0, 2, 4, 6, 1, 3, 5]

For a 8 x 8 board:
  Solutions = 92
  First is [0, 4, 7, 5, 2, 6, 1, 3]

For a 9 x 9 board:
  Solutions = 352
  First is [0, 2, 5, 7, 1, 3, 8, 6, 4]

For a 10 x 10 board:
  Solutions = 724
  First is [0, 2, 5, 7, 9, 4, 8, 1, 3, 6]

For a 11 x 11 board:
  Solutions = 2680
  First is [0, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9]

For a 12 x 12 board:
  Solutions = 14200
  First is [0, 2, 4, 7, 9, 11, 5, 10, 1, 6, 8, 3]

For a 13 x 13 board:
  Solutions = 73712
  First is [0, 2, 4, 1, 8, 11, 9, 12, 3, 5, 7, 10, 6]

For a 14 x 14 board:
  Solutions = 365596
  First is [0, 2, 4, 6, 11, 9, 12, 3, 13, 8, 1, 5, 7, 10]

Liberty BASIC

Program uses permutation generator (stores all permutations) and solves tasks 4x4 to 9x9. It prints all the solutions. <lang lb> 'N queens '>10 would not work due to way permutations used 'anyway, 10 doesn't fit in memory Input "Input N for N queens puzzle (4..9) ";N if N<4 or N>9 then print "N out of range - quitting": end

ABC$= " " dash$ = "" for i = 0 to N-1

   ABC$=ABC$+" "+chr$(asc("a")+i)
   dash$ = dash$+"--"

next

dim q(N) t0=time$("ms")

fact = 1 for i = 1 to N

   fact = fact*i

next

dim anagram$(fact) global nPerms print "Filling permutations array" t0=time$("ms")

   res$=permutation$("", left$("0123456789", N))

t1=time$("ms") print "Created all possible permutations ";t1-t0

t0=time$("ms") 'actually fact = nPerms for k=1 to nPerms

   for i=0 to N-1
       q(i)=val(mid$(anagram$(k),i+1,1))
       'print q(i);
   next
   'print
   fail = 0
   for i=0 to N-1
       for j=i+1 to N-1
           'check rows are different
           if q(i)=q(j) then fail = 1: exit for
           'check diagonals are different
           if i+q(i)=j+q(j) then fail = 1: exit for
           'check other diagonals are different
           if i-q(i)=j-q(j) then fail = 1: exit for
       next
       if fail then exit for
   next
   if not(fail) then
       num=num+1
       print " ";dash$
           for i=0 to N-1
               print N-i; space$(2*q(i));" *"
           next
       print " ";dash$
       print ABC$
   end if

next

t1=time$("ms") print "Time taken ";t1-t0 print "Number of solutions ";num

'---------------------------------- 'from 'http://babek.info/libertybasicfiles/lbnews/nl124/wordgames.htm 'Programming a Word Game by Janet Terra, 'The Liberty Basic Newsletter - Issue #124 - September 2004 Function permutation$(pre$, post$) 'Note the variable nPerms must first be stated as a global variable.

   lgth = Len(post$)
   If lgth < 2 Then
       nPerms = nPerms + 1
       anagram$(nPerms) = pre$;post$
   Else
       For i = 1 To lgth
           tmp$=permutation$(pre$+Mid$(post$,i,1),Left$(post$,i-1)+Right$(post$,lgth-i))
       Next i
   End If

End Function

</lang>

Locomotive Basic

Uses the heuristic from the Wikipedia article to get one solution.

<lang locobasic>10 mode 1:defint a-z 20 while n<4:input "How many queens (N>=4)";n:wend 30 dim q(n),e(n),o(n) 40 r=n mod 6 50 if r<>2 and r<>3 then gosub 320:goto 220 60 for i=1 to int(n/2) 70 e(i)=2*i 80 next 90 for i=1 to round(n/2) 100 o(i)=2*i-1 110 next 120 if r=2 then gosub 410 130 if r=3 then gosub 460 140 s=1 150 for i=1 to n 160 if e(i)>0 then q(s)=e(i):s=s+1 170 next 180 for i=1 to n 190 if o(i)>0 then q(s)=o(i):s=s+1 200 next 210 ' print board 220 cls 230 for i=1 to n 240 locate i,26-q(i):print chr$(238); 250 locate i,24-n :print chr$(96+i); 260 locate n+1,26-i :print i; 270 next 280 locate 1,1 290 call &bb06 300 end 310 ' the simple case 320 p=1 330 for i=1 to n 340 if i mod 2=0 then q(p)=i:p=p+1 350 next 360 for i=1 to n 370 if i mod 2 then q(p)=i:p=p+1 380 next 390 return 400 ' edit list when remainder is 2 410 for i=1 to n 420 if o(i)=3 then o(i)=1 else if o(i)=1 then o(i)=3 430 if o(i)=5 then o(i)=-1 else if o(i)=0 then o(i)=5:return 440 next 450 ' edit list when remainder is 3 460 for i=1 to n 470 if e(i)=2 then e(i)=-1 else if e(i)=0 then e(i)=2:goto 500 480 next 490 ' edit list some more 500 for i=1 to n 510 if o(i)=1 or o(i)=3 then o(i)=-1 else if o(i)=0 then o(i)=1:o(i+1)=3:return 520 next</lang>

<lang logo>to try :files :diag1 :diag2 :tried

 if :files = 0 [make "solutions :solutions+1  show :tried  stop]
 localmake "safe (bitand :files :diag1 :diag2)
 until [:safe = 0] [
   localmake "f bitnot bitand :safe minus :safe
   try bitand :files :f  ashift bitand :diag1 :f -1  (ashift bitand :diag2 :f 1)+1  fput bitnot :f :tried
   localmake "safe bitand :safe :safe-1
 ]

end

to queens :n

 make "solutions 0
 try (lshift 1 :n)-1 -1 -1 []
 output :solutions

end

print queens 8  ; 92</lang>

Lua

<lang Lua>N = 8

-- We'll use nil to indicate no queen is present. grid = {} for i = 0, N do

 grid[i] = {}

end

function can_find_solution(x0, y0)

 local x0, y0 = x0 or 0, y0 or 1  -- Set default vals (0, 1).
 for x = 1, x0 - 1 do
   if grid[x][y0] or grid[x][y0 - x0 + x] or grid[x][y0 + x0 - x] then
     return false
   end
 end
 grid[x0][y0] = true
 if x0 == N then return true end
 for y0 = 1, N do
   if can_find_solution(x0 + 1, y0) then return true end
 end
 grid[x0][y0] = nil
 return false

end

if can_find_solution() then

 for y = 1, N do
   for x = 1, N do
     -- Print "|Q" if grid[x][y] is true; "|_" otherwise.
     io.write(grid[x][y] and "|Q" or "|_")
   end
   print("|")
 end

else

 print(string.format("No solution for %d queens.\n", N))

end</lang>

M2000 Interpreter

Translation of: VBA

<lang M2000 Interpreter> Module N_queens {

         Const l = 15  'number of queens
         Const b = False  'print option
         Dim a(0 to  l), s(0 to l), u(0 to 4 * l - 2)
         Def long n, m, i, j, p, q, r, k, t
         For i = 1 To l: a(i) = i: Next i
         For n = 1 To l
             m = 0
             i = 1
             j = 0
             r = 2 * n - 1
             Do {
                 i--
                 j++
                 p = 0
                 q = -r
                 Do {
                     i++
                     u(p) = 1
                     u(q + r) = 1
                     Swap a(i), a(j)
                     p = i - a(i) + n
                     q = i + a(i) - 1
                     s(i) = j
                     j = i + 1
                 } Until j > n Or u(p) Or u(q + r)
                 If u(p) = 0 Then {
                     If u(q + r) = 0 Then {
                         m++  'm: number of solutions
                         If b Then {
                             Print "n="; n; "m="; m
                             For k = 1 To n {
                                 For t = 1 To n {
                                     Print If$(a(n - k + 1) = t-> "Q", ".");
                                 }
                                 Print
                             }
                         }
                     }
                 }
                 j = s(i)
                 While j >= n And i <> 0 {
                           Do {
                                     Swap a(i), a(j)
                                     j--
                           }  Until j < i
                           i--
                           p = i - a(i) + n
                           q = i + a(i) - 1
                           j = s(i)
                           u(p) = 0
                           u(q + r) = 0
                 }
             } Until i = 0
             Print n, m  'number of queens, number of solutions
         Next n

} N_queens </lang>

Mathematica

This code recurses through the possibilities, using the "safe" method to check if the current set is allowed. The recursive method has the advantage that finding all possibilities is about as hard (code-wise, not computation-wise) as finding just one. <lang Mathematica>safe[q_List, n_] :=

With[{l = Length@q}, 
 Length@Union@q == Length@Union[q + Range@l] == 
  Length@Union[q - Range@l] == l]

nQueen[q_List: {}, n_] :=

If[safe[q, n], 
 If[Length[q] == n, {q}, 
  Cases[nQueen[Append[q, #], n] & /@ Range[n], 
   Except[{Null} | {}], {2}]], Null]</lang>

This returns a list of valid permutations by giving the queen's column number for each row. It can be displayed in a list of chess-board tables like this: <lang Mathematica>matrixView[n_] :=

Grid[Normal@
    SparseArray[MapIndexed[{#, First@#2} -> "Q" &, #], {n, n}, "."], 
   Frame -> All] & /@ nQueen[n]

matrixView[6] // OutputForm</lang>

Output:
{.   .   .   Q   .   ., .   .   .   .   Q   ., .   Q   .   .   .   ., .   .   Q   .   .   .}

 Q   .   .   .   .   .  .   .   Q   .   .   .  .   .   .   Q   .   .  .   .   .   .   .   Q

 .   .   .   .   Q   .  Q   .   .   .   .   .  .   .   .   .   .   Q  .   Q   .   .   .   .

 .   Q   .   .   .   .  .   .   .   .   .   Q  Q   .   .   .   .   .  .   .   .   .   Q   .

 .   .   .   .   .   Q  .   .   .   Q   .   .  .   .   Q   .   .   .  Q   .   .   .   .   .

 .   .   Q   .   .   .  .   Q   .   .   .   .  .   .   .   .   Q   .  .   .   .   Q   .   .

Alternate Solution This solution uses Permutations and subsets, also prints out a board representation.

<lang Mathematica>n=8;cnt=1;per=Permutations[Range[n],{n}];(* All Permutations of length n *) Do[perq=Partition[Riffle[Reverse[Range[n]],perq],2],{q,1,Length[per]}];(* Riffled in the reverse of [range n] partitioned into pairs*) Do[w=Subsets[pert,{2}];(* This is a full subset of the previous set of pairs taken 2 at a time *) tot=0; Do[y=Abs[wq,1,1-wq,2,1];x=Abs[wq,1,2-wq,2,2];If[x==y,tot++],{q,1,Length[w]}];(* x and y are the abs values of x1-y1 and x2-y2 if equal they are on same diagonal *) If[tot==0,g=Grid[Table[" ",{n},{n}],Alignment->Center,Frame->All,Spacings->{1.2,1}];(* If no clashing diagonals setup an array and print the permutation and the grid*) Do[g[[1,pert,w,1,pert,w,2]]="Q",{w,1,n}]; Print[cnt," ",pert," ",g];cnt++],{t,1,Length[per]}]</lang>

Alternative Solution using Linear Programming:

<lang Mathematica> dispSol[sol_] := sol /. {1 -> "Q" , 0 -> "-"} // Grid

solveNqueens[n_] :=

Module[{c, m, b, vars}, c = cqueens[n]; m = mqueens[n]; 
 vars = mqueens2[n]; b = bqueens[Length[m]]; 
 Partition[LinearProgramming[c, m, b, vars, Integers], n]]

cqueens[n_] := Table[-1, {i, n^2}]

bqueens[l_] := Table[{1, -1}, {i, l}]

mqueens2[n_] := Table[{0, 1}, {i, n^2}]

mqueens[n_] :=

Module[{t, t2, t3, t4}, t = mqueensh[n]; t2 = Append[t, mqueensv[n]];
  t3 = Append[t2, mqueensd[n]]; t4 = Append[t3, mqueensdm[n]]; 
 Partition[Flatten[t4], n^2]]

mqueensh[n_] :=

Module[{t}, t = Table[0, {i, n}, {j, n^2}]; 
 For[i = 1, i <= n, i++, 
  For[j = 1, j <= n, j++, ti, ((i - 1)*n) + j = 1]]; t]

mqueensv[n_] :=

Module[{t}, t = Table[0, {i, n}, {j, n^2}]; 
 For[i = 1, i <= n, i++, 
  For[j = 1, j <= n, j++, tj, ((i - 1)*n) + j = 1]]; t]

mqueensd[n_] :=

Module[{t}, t = Table[0, {i, (2*n) - 1}, {j, n^2}]; 
 For[k = 2, k <= 2 n, k++, 
  For[i = 1, i <= n, i++, 
   For[j = 1, j <= n, j++, 
    If[i + j == k, tk - 1, ((i - 1)*n) + j = 1]]]]; t]

mqueensdm[n_] :=

Module[{t}, t = Table[0, {i, Sum[1, {i, 1 - n, n - 1}]}, {j, n^2}]; 
 For[k = 1 - n, k <= n - 1, k++, 
  For[i = 1, i <= n, i++, 
   For[j = 1, j <= n, j++, 
    If[i == j - k, tk + n, ((i - 1)*n) + j = 1]]]]; t]


solveNqueens[8] // dispSol </lang>

-	-	-	-	Q	-	-	-
-	Q	-	-	-	-	-	-
-	-	-	-	-	Q	-	-
Q	-	-	-	-	-	-	-
-	-	-	-	-	-	Q	-
-	-	-	Q	-	-	-	-
-	-	-	-	-	-	-	Q
-	-	Q	-	-	-	-	-

Maxima

<lang maxima>/* translation of Fortran 77, return solutions as permutations */

queens(n) := block([a, i, j, m, p, q, r, s, u, v, w, y, z], a: makelist(i, i, 1, n), s: a*0, u: makelist(0, i, 1, 4*n - 2), m: 0, i: 1, r: 2*n - 1, w: [ ], go(L40), L30, s[i]: j, u[p]: 1, u[q + r]: 1, i: i + 1, L40, if i > n then go(L80), j: i, L50, z: a[i], y: a[j], p: i - y + n, q: i + y - 1, a[i]: y, a[j]: z, if u[p] = 0 and u[q + r] = 0 then go(L30), L60, j: j + 1, if j <= n then go(L50), L70, j: j - 1, if j = i then go(L90), z: a[i], a[i]: a[j], a[j]: z, go(L70), L80, m: m + 1, w: endcons(copylist(a), w), L90, i: i - 1, if i = 0 then go(L100), p: i - a[i] + n, q: i + a[i] - 1, j: s[i], u[p]: 0, u[q + r]: 0, go(L60), L100, w)$

queens(8); /* [[1, 5, 8, 6, 3, 7, 2, 4],

              [1, 6, 8, 3, 7, 4, 2, 5],
              ...]] */

length(%); /* 92 */</lang>

MUMPS

<lang MUMPS>Queens New count,flip,row,sol Set sol=0 For row(1)=1:1:4 Do try(2)  ; Not 8, the other 4 are symmetric... ; ; Remove symmetric solutions Set sol="" For Set sol=$Order(sol(sol)) Quit:sol="" Do . New xx,yy . Kill sol($Translate(sol,12345678,87654321)) ; Vertical flip . Kill sol($Reverse(sol)) ; Horizontal flip . Set flip="--------" for xx=1:1:8 Do  ; Flip over top left to bottom right diagonal . . New nx,ny . . Set yy=$Extract(sol,xx),nx=8+1-xx,ny=8+1-yy . . Set $Extract(flip,ny)=nx . . Quit . Kill sol(flip) . Set flip="--------" for xx=1:1:8 Do  ; Flip over top right to bottom left diagonal . . New nx,ny . . Set yy=$Extract(sol,xx),nx=xx,ny=yy . . Set $Extract(flip,ny)=nx . . Quit . Kill sol(flip) . Quit ; ; Display remaining solutions Set count=0,sol="" For Set sol=$Order(sol(sol)) Quit:sol="" Do Quit:sol="" . New s1,s2,s3,txt,x,y . Set s1=sol,s2=$Order(sol(s1)),s3="" Set:s2'="" s3=$Order(sol(s2)) . Set txt="+--+--+--+--+--+--+--+--+" . Write !," ",txt Write:s2'="" " ",txt Write:s3'="" " ",txt . For y=8:-1:1 Do . . Write !,y," |" . . For x=1:1:8 Write $Select($Extract(s1,x)=y:" Q",x+y#2:" ",1:"##"),"|" . . If s2'="" Write " |" . . If s2'="" For x=1:1:8 Write $Select($Extract(s2,x)=y:" Q",x+y#2:" ",1:"##"),"|" . . If s3'="" Write " |" . . If s3'="" For x=1:1:8 Write $Select($Extract(s3,x)=y:" Q",x+y#2:" ",1:"##"),"|" . . Write !," ",txt Write:s2'="" " ",txt Write:s3'="" " ",txt . . Quit . Set txt=" A B C D E F G H" . Write !," ",txt Write:s2'="" " ",txt Write:s3'="" " ",txt Write ! . Set sol=s3 . Quit Quit try(col) New ok,pcol If col>8 Do Quit . New out,x . Set out="" For x=1:1:8 Set out=out_row(x) . Set sol(out)=1 . Quit For row(col)=1:1:8 Do . Set ok=1 . For pcol=1:1:col-1 If row(pcol)=row(col) Set ok=0 Quit . Quit:'ok . For pcol=1:1:col-1 If col-pcol=$Translate(row(pcol)-row(col),"-") Set ok=0 Quit . Quit:'ok . Do try(col+1) . Quit Quit Do Queens </lang>

<lang MUMPS>

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| Q|##| |##| |##| | |##| Q|##| |##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| |##| |##| Q|##| | |##| |##| | Q| |##| | |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| | Q| |##| |##| | | Q| |##| |##| |##| | |##| Q|##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| Q|##| |##| |##| | |##| |##| |##| |##| Q| |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| |##| |##| | Q| | |##| |##| | Q| |##| | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| | Q| |##| | |##| |##| Q|##| |##| | |##| |##| | Q| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | |##| |##| |##| Q|##| | |##| |##| |##| Q|##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 | Q| |##| |##| |##| | | Q| |##| |##| |##| | |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| |##| | Q| |##| | |##| |##| | Q| |##| | |##| |##| | Q| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| | Q| |##| |##| | |##| | Q| |##| |##| | |##| |##| Q|##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| |##| |##| Q|##| | |##| |##| |##| Q|##| | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| Q|##| |##| |##| | |##| Q|##| |##| |##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| |##| |##| | Q| | |##| | Q| |##| |##| | |##| |##| Q|##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| | Q| |##| | |##| |##| |##| |##| Q| |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| Q|##| |##| | |##| |##| | Q| |##| | |##| | Q| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| Q|##| |##| |##| | |##| |##| Q|##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| |##| |##| | Q| | |##| Q|##| |##| |##| | |##| Q|##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | | Q| |##| |##| |##| | |##| | Q| |##| |##| | |##| |##| |##| Q|##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| |##| |##| |##| Q| |##| |##| |##| Q|##| | |##| | Q| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| |##| | Q| |##| | |##| |##| |##| | Q| | |##| |##| | Q| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| Q|##| |##| | |##| | Q| |##| |##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| | Q| |##| | |##| |##| |##| | Q| | |##| |##| | Q| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | | Q| |##| |##| |##| | |##| | Q| |##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| |##| |##| | Q| | |##| |##| |##| Q|##| | |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| Q|##| |##| |##| | |##| |##| |##| | Q| | |##| |##| Q|##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| |##| |##| Q|##| | |##| Q|##| |##| |##| | |##| Q|##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| |##| |##| | Q| | |##| |##| |##| Q|##| | |##| |##| | Q| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| | Q| |##| | | Q| |##| |##| |##| | | Q| |##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | Q|##| |##| |##| |##| | |##| Q|##| |##| |##| | |##| Q|##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| Q|##| |##| | |##| |##| | Q| |##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| Q|##| |##| |##| | |##| |##| Q|##| |##| | |##| |##| Q|##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| |##| |##| Q|##| | |##| |##| |##| | Q| | |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| |##| |##| | Q| | | Q| |##| |##| |##| | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| Q|##| |##| |##| | |##| |##| Q|##| |##| | |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| | Q| |##| |##| | |##| |##| |##| | Q| | |##| Q|##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 | Q| |##| |##| |##| | | Q| |##| |##| |##| | | Q| |##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | |##| |##| |##| Q|##| | |##| Q|##| |##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| | Q| |##| | |##| |##| |##| Q|##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| Q|##| |##| |##| | |##| Q|##| |##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| |##| |##| Q|##| | |##| |##| |##| | Q| | |##| Q|##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | | Q| |##| |##| |##| | | Q| |##| |##| |##| | |##| |##| |##| | Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| |##| | Q| |##| | |##| |##| |##| |##| Q| |##| |##| | Q| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| |##| |##| | Q| | |##| |##| Q|##| |##| | |##| |##| |##| Q|##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 | Q| |##| |##| |##| | | Q| |##| |##| |##| | | Q| |##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | |##| |##| |##| Q|##| | |##| | Q| |##| |##| | |##| Q|##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| Q|##| |##| | |##| |##| |##| Q|##| | |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| | Q| |##| |##| | | Q| |##| |##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| Q|##| |##| |##| | |##| |##| Q|##| |##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| |##| Q|##| |##| | |##| |##| | Q| |##| | |##| |##| Q|##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| |##| |##| |##| Q| |##| |##| |##| |##| Q| |##| | Q| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | |##| |##| | Q| |##| | |##| Q|##| |##| |##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 | Q| |##| |##| |##| | | Q| |##| |##| |##| | |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | |##| Q|##| |##| |##| | |##| |##| |##| Q|##| | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| |##| | Q| | |##| |##| | Q| |##| | |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| |##| | Q| |##| | |##| Q|##| |##| |##| | |##| Q|##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| | Q| |##| |##| | |##| |##| | Q| |##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| |##| Q|##| |##| | |##| |##| |##| | Q| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| |##| |##| |##| Q| |##| |##| Q|##| |##| | |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| Q|##| |##| | |##| |##| |##| | Q| | |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | | Q| |##| |##| |##| | | Q| |##| |##| |##| | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| |##| | Q| | |##| |##| |##| Q|##| | |##| |##| | Q| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| |##| | Q| |##| | |##| Q|##| |##| |##| | |##| | Q| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| |##| |##| |##| Q| |##| |##| | Q| |##| | |##| Q|##| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | | Q| |##| |##| |##| | | Q| |##| |##| |##| | |##| |##| |##| | Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| |##| Q|##| |##| | |##| |##| |##| |##| Q| |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| |##| | Q| | |##| |##| |##| | Q| | |##| | Q| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | |##| |##| Q|##| |##| | |##| | Q| |##| |##| | |##| |##| Q|##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| | Q| |##| |##| | |##| |##| |##| Q|##| | |##| |##| |##| | Q| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

8 | |##| |##| |##| | Q| | | Q| |##| |##| |##| | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

7 |##| Q|##| |##| |##| | |##| |##| |##| | Q| | |##| |##| | Q| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

6 | |##| |##| Q|##| |##| | |##| |##| Q|##| |##| | |##| |##| |##| Q|##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

5 |##| | Q| |##| |##| | |##| |##| |##| |##| Q| |##| |##| Q|##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

4 | Q|##| |##| |##| |##| | Q|##| |##| |##| |##| | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

3 |##| |##| |##| | Q| | |##| |##| Q|##| |##| | |##| |##| |##| |##| Q|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

2 | |##| | Q| |##| |##| | |##| |##| | Q| |##| | |##| |##| | Q| |##|

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+

1 |##| |##| |##| Q|##| | |##| | Q| |##| |##| | |##| | Q| |##| |##| |

 +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+
  A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H    A  B  C  D  E  F  G  H

 +--+--+--+--+--+--+--+--+

8 | | Q| |##| |##| |##|

 +--+--+--+--+--+--+--+--+

7 |##| |##| |##| Q|##| |

 +--+--+--+--+--+--+--+--+

6 | |##| |##| |##| | Q|

 +--+--+--+--+--+--+--+--+

5 |##| | Q| |##| |##| |

 +--+--+--+--+--+--+--+--+

4 | Q|##| |##| |##| |##|

 +--+--+--+--+--+--+--+--+

3 |##| |##| Q|##| |##| |

 +--+--+--+--+--+--+--+--+

2 | |##| |##| |##| Q|##|

 +--+--+--+--+--+--+--+--+

1 |##| |##| | Q| |##| |

 +--+--+--+--+--+--+--+--+
A B C D E F G H</lang>

Nim

<lang nim>const boardSize = 8

proc underAttack(col, queens): bool =

 if col in queens: return true
 for i, x in queens:
   if abs(col - x) == queens.len - i:
     return true
 return false

proc solve(n): auto =

 result = newSeq[seq[int]]()
 result.add(@[])
 var newSolutions = newSeq[seq[int]]()
 for row in 1..n:
   for solution in result:
     for i in 1..boardSize:
       if not underAttack(i, solution):
         newSolutions.add(solution & i)
   swap result, newSolutions
   newSolutions.setLen(0)

for answer in solve(boardSize):

 for i, x in answer:
   if i > 0: stdout.write ", "
   stdout.write "(",i,", ",x,")"</lang>

Objeck

Translation of: Java

<lang objeck>bundle Default {

 class NQueens {
   b : static : Int[];
   s : static : Int;
   function : Main(args : String[]) ~ Nil {
     b := Int->New[8];
     s := 0;
     y := 0;
     b[0] := -1;
     while (y >= 0) {
       do {
         b[y]+=1;
       } 
       while((b[y] < 8) & Unsafe(y));
       if(b[y] < 8) {
         if (y < 7) {
           b[y + 1] := -1;
           y += 1;
         } 
         else {
           PutBoard();
         };
       } 
       else {
         y-=1;
       };
     };
   }
   function : Unsafe(y : Int) ~ Bool {
     x := b[y];
     for(i := 1; i <= y; i+=1;) {
       t := b[y - i];
       if(t = x | t = x - i | t = x + i) {
         return true;
       };
     };
 
     return false;
   }
   function : PutBoard() ~ Nil {
     IO.Console->Print("\n\nSolution ")->PrintLine(s + 1);
     s += 1;
     for(y := 0; y < 8; y+=1;) {
       for(x := 0; x < 8; x+=1;) {
         IO.Console->Print((b[y] = x) ? "|Q" : "|_");
       };
       "|"->PrintLine();
     };
   }
 }

} </lang>

OCaml

Library: FaCiLe

<lang ocaml>(* Authors: Nicolas Barnier, Pascal Brisset

  Copyright 2004 CENA. All rights reserved.
  This code is distributed under the terms of the GNU LGPL *)

open Facile open Easy

(* Print a solution *) let print queens =

 let n = Array.length queens in
 if n <= 10 then (* Pretty printing *)
   for i = 0 to n - 1 do
     let c = Fd.int_value queens.(i) in (* queens.(i) is bound *)
     for j = 0 to n - 1 do
       Printf.printf "%c " (if j = c then '*' else '-')
     done;
     print_newline ()
   done
 else (* Short print *)
   for i = 0 to n-1 do
     Printf.printf "line %d : col %a\n" i Fd.fprint queens.(i)
   done;
 flush stdout;

(* Solve the n-queens problem *) let queens n =

 (* n decision variables in 0..n-1 *)
 let queens = Fd.array n 0 (n-1) in
 (* 2n auxiliary variables for diagonals *)
 let shift op = Array.mapi (fun i qi -> Arith.e2fd (op (fd2e qi) (i2e i))) queens in
 let diag1 = shift (+~) and diag2 = shift (-~) in
 (* Global constraints *)
 Cstr.post (Alldiff.cstr queens);
 Cstr.post (Alldiff.cstr diag1);
 Cstr.post (Alldiff.cstr diag2);
 (* Heuristic Min Size, Min Value *)
 let h a = (Var.Attr.size a, Var.Attr.min a) in
 let min_min = Goals.Array.choose_index (fun a1 a2 -> h a1 < h a2) in
 (* Search goal *)
 let labeling = Goals.Array.forall ~select:min_min Goals.indomain in
 (* Solve *)
 let bt = ref 0 in
 if Goals.solve ~control:(fun b -> bt := b) (labeling queens) then begin
   Printf.printf "%d backtracks\n" !bt;
   print queens
 end else
   prerr_endline "No solution"

let _ =

 if Array.length Sys.argv <> 2
 then raise (Failure "Usage: queens <nb of queens>");
 Gc.set ({(Gc.get ()) with Gc.space_overhead = 500}); (* May help except with an underRAMed system *)
 queens (int_of_string Sys.argv.(1));;</lang>

A stand-alone OCaml solution

<lang ocaml>let solutions n =

 let show board =
   let pr v =
     for i = 1 to n do
       print_string (if i=v then " q" else " _");
     done;
     print_newline() in
   List.iter pr board;
   print_newline() in
 let rec safe i j k = function
   | [] -> true
   | h::t -> h<>i && h<>j && h<>k && safe i (j+1) (k-1) t in
 let rec loop col p =
   for i = 1 to n
   do
     if safe i (i+1) (i-1) p then
       let p' = i::p in
       if col = n then show p'
       else loop (col+1) p'
   done in
 loop 1 [] in

let n =

 if Array.length Sys.argv > 1
 then int_of_string Sys.argv.(1)
 else 8 in

solutions n</lang>

Output:
$ ocaml queens.ml 6
 _ _ _ _ q _
 _ _ q _ _ _
 q _ _ _ _ _
 _ _ _ _ _ q
 _ _ _ q _ _
 _ q _ _ _ _

 _ _ _ q _ _
 q _ _ _ _ _
 _ _ _ _ q _
 _ q _ _ _ _
 _ _ _ _ _ q
 _ _ q _ _ _

 _ _ q _ _ _
 _ _ _ _ _ q
 _ q _ _ _ _
 _ _ _ _ q _
 q _ _ _ _ _
 _ _ _ q _ _

 _ q _ _ _ _
 _ _ _ q _ _
 _ _ _ _ _ q
 q _ _ _ _ _
 _ _ q _ _ _
 _ _ _ _ q _

Oz

A pretty naive solution, using constraint programming: <lang oz>declare

 fun {Queens N}
    proc {$ Board}
       %% a board is a N-tuple of rows
       Board = {MakeTuple queens N}
       for Y in 1..N  do
          %% a row is a N-tuple of values in [0,1]
          %% (0: no queen, 1: queen)
          Board.Y = {FD.tuple row N 0#1}
       end
       {ForAll {Rows Board} SumIs1}
       {ForAll {Columns Board} SumIs1}
       %% for every two points on a diagonal
       for [X1#Y1 X2#Y2] in {DiagonalPairs N} do
          %$ at most one of them has a queen
          Board.Y1.X1 + Board.Y2.X2 =<: 1
       end
       %% enumerate all such boards
       {FD.distribute naive {FlatBoard Board}}
    end
 end
 fun {Rows Board}
    {Record.toList Board}
 end
 fun {Columns Board}
    for X in {Arity Board.1} collect:C1 do
       {C1
        for Y in {Arity Board} collect:C2 do
           {C2 Board.Y.X}
        end}
    end
 end
 proc {SumIs1 Xs}
    {FD.sum Xs '=:' 1}
 end
 fun {DiagonalPairs N}
    proc {Coords Root}
       [X1#Y1 X2#Y2] = Root
       Diff
    in
       X1::1#N Y1::1#N
       X2::1#N Y2::1#N
       %% (X1,Y1) and (X2,Y2) are on a diagonal if {Abs X2-X1} = {Abs Y2-Y1}
       Diff::1#N-1
       {FD.distance X2 X1 '=:' Diff}
       {FD.distance Y2 Y1 '=:' Diff}
       %% enumerate all such coordinates
       {FD.distribute naive [X1 Y1 X2 Y2]}
    end
 in
    {SearchAll Coords}
 end
 fun {FlatBoard Board}
    {Flatten {Record.toList {Record.map Board Record.toList}}}
 end
 Solutions = {SearchAll {Queens 8}}

in

 {Length Solutions} = 92 %% assert
 {Inspect {List.take Solutions 3}}</lang>

There is a more concise and much more efficient solution in the Mozart documentation.


Pascal

<lang pascal>program queens;

const l=16;

var i,j,k,m,n,p,q,r,y,z: integer;

   a,s: array[1..l] of integer;
   u: array[1..4*l-2] of integer;

label L3,L4,L5,L6,L7,L8,L9,L10;

begin

  for i:=1 to l do a[i]:=i;
  for i:=1 to 4*l-2 do u[i]:=0;
  for n:=1 to l do
  begin
     m:=0;
     i:=1;
     r:=2*n-1;
     goto L4;

L3:

     s[i]:=j;
     u[p]:=1;
     u[q+r]:=1;
     i:=i+1;

L4:

     if i>n then goto L8;
     j:=i;

L5:

     z:=a[i];
     y:=a[j];
     p:=i-y+n;
     q:=i+y-1;
     a[i]:=y;
     a[j]:=z;
     if (u[p]=0) and (u[q+r]=0) then goto L3;

L6:

     j:=j+1;
     if j<=n then goto L5;

L7:

     j:=j-1;
     if j=i then goto L9;
     z:=a[i];
     a[i]:=a[j];
     a[j]:=z;
     goto L7;

L8:

     m:=m+1;
     { uncomment the following to print solutions }
     { write(n,' ',m,':');
     for k:=1 to n do write(' ',a[k]);
     writeln; }

L9:

     i:=i-1;
     if i=0 then goto L10;
     p:=i-a[i]+n;
     q:=i+a[i]-1;
     j:=s[i];
     u[p]:=0;
     u[q+r]:=0;
     goto L6;

L10:

     writeln(n,' ',m);
  end;

end.

{ 1 1

 2 0
 3 0
 4 2
 5 10
 6 4
 7 40
 8 92
 9 352
10 724
11 2680
12 14200
13 73712
14 365596
15 2279184
16 14772512 }</lang>

Alternative

Using Rekusion and Nikolaus Wirth is much faster. Ok , this http://rosettacode.org/wiki/N-queens_problem#Fast_Version is nearly 4 times faster, but uses sysmmetry (50% less to search for) :

algo:

recursion:
  If row< n then 
    For each free column (in Freecol[row..n] )
      Take free column
      check diagonals
      IF free then
        swap freecol to used column, move to next  row -> recurse(row+1)
  else
    Solution found

<lang pascal>program NQueens; {$IFDEF FPC}

  {$MODE DELPHI}
  {$OPTIMIZATION ON}{$OPTIMIZATION REGVAR}{$OPTIMIZATION PeepHole}
  {$OPTIMIZATION CSE}{$OPTIMIZATION ASMCSE}

{$ELSE}

 {$Apptype console}

{$ENDIF}

uses

 sysutils;// TDatetime

const

 nmax = 17;

type {$IFNDEF FPC}

 NativeInt = longInt;

{$ENDIF}

 //ala Nikolaus Wirth  A-1  = H - 8
 //diagonal left  (A1) to rigth (H8)
 tLR_diagonale = array[-nmax-1..nmax-1] of char;
 //diagonal right (A8) to left (H1)
 tRL_diagonale = array[0..2*nmax-2] of char;
 //up to Col are the used Cols, after that the unused
 tFreeCol = array[0..nmax-1] of nativeInt;

var

 LR_diagonale:tLR_diagonale;
 RL_diagonale:tRL_diagonale;
 //Using pChar, cause it is implicit an array
 //It is always set to
 //@LR_diagonale[row] ,@RL_diagonale[row]
 pLR,pRL : pChar;
 FreeCol : tFreeCol;
 i,
 n : nativeInt;
 gblCount : nativeUInt;
 T0,T1 : TdateTime;

procedure Solution; var

 i : NativeInt;

begin // Take's a lot of time under DOS/Win32

 If gblCount AND $FFF = 0 then
   write(gblCount:10,#8#8#8#8#8#8#8#8#8#8);
 // IF n< 9 then
 IF n < 0 then
  begin
    For i := 1 to n do
      write(FreeCol[i]:4);
    writeln;
  end;

end;

procedure SetQueen(Row:nativeInt); var

 i,Col : nativeInt;

begin IF row <= n then

 begin
 For i := row to n do
   begin
   Col := FreeCol[i];
   //check diagonals occupied
   If (ORD(pLR[-Col]) AND ORD(pRL[Col]))<>0 then
     begin
     //a "free" position is found
     //mark it
     pRL[ Col]:=#0;      //RL_Diagonale[ Row +Col] := 0;
     pLR[-Col]:=#0;      //LR_Diagonale[ Row -Col] := 0;
     //swap FreeRow[Row<->i]
     FreeCol[i] := FreeCol[Row];
     //next row
     inc(pRL);
     inc(pLR);
     FreeCol[Row] := Col;
     // check next row
       SetQueen(Row+1);
     //Undo
     dec(pLR);
     dec(pRL);
     FreeCol[Row] := FreeCol[i];
     FreeCol[i] := Col;
     pRL[ Col]:=#1;
     pLR[-Col]:=#1;
     end;
   end;
 end

else

 begin
 //solution ist found
 inc(gblCount);
 //Solution
 end;

end;

begin

 For i := 0 to nmax-1 do
   FreeCol[i] := i;
 //diagonals filled with True = #1 , something <>0
 fillchar(LR_Diagonale[low(LR_Diagonale)],sizeof(tLR_Diagonale),#1);
 fillchar(RL_Diagonale[low(RL_Diagonale)],sizeof(tRL_Diagonale),#1);
 For n := 1 to nMax do
   begin
   t0 := time;
   pLR:=@LR_Diagonale[0];
   pRL:=@RL_Diagonale[0];
   gblCount := 0;
   SetQueen(1);
   t1:= time;
   WriteLn(n:6,gblCount:12,FormatDateTime(' NN:SS.ZZZ',T1-t0),' secs');
   end;
 WriteLn('Fertig');

end.</lang>

Output:
{output: i3 4330 3.5 Ghz FPC 2.6.4
     1           1  00:00.000 secs
     2           0  00:00.000 secs
     3           0  00:00.000 secs
     4           2  00:00.000 secs
     5          10  00:00.000 secs
     6           4  00:00.000 secs
     7          40  00:00.000 secs
     8          92  00:00.000 secs
     9         352  00:00.000 secs
    10         724  00:00.001 secs
    11        2680  00:00.004 secs
    12       14200  00:00.019 secs
    13       73712  00:00.104 secs
    14      365596  00:00.610 secs
    15     2279184  00:03.837 secs
    16    14772512  00:25.684 secs
    17    95815104  03:00.950 secs=180.98 secs
Fertig}

Perl

<lang perl>my ($board_size, @occupied, @past, @solutions);

sub try_column {

       my ($depth, @diag) = shift;
       if ($depth == $board_size) {
               push @solutions, "@past\n";
               return;
       }
       # @diag: marks cells diagonally attackable by any previous queens.
       #        Here it's pre-allocated to double size just so we don't need
       #        to worry about negative indices.
       $#diag = 2 * $board_size;
       for (0 .. $#past) {
               $diag[ $past[$_] + $depth - $_ ] = 1;
               $diag[ $past[$_] - $depth + $_ ] = 1;
       }
       for my $row (0 .. $board_size - 1) {
               next if $occupied[$row] || $diag[$row];
               # @past:     row numbers of previous queens
               # @occupied: rows already used. This gets inherited by each
               #            recursion so we don't need to repeatedly look them up
               push @past, $row;
               $occupied[$row] = 1;
               try_column($depth + 1);
               # clean up, for next recursion
               $occupied[$row] = 0;
               pop @past;
       }

}

$board_size = 12; try_column(0);

  1. print for @solutions; # un-comment to see all solutions

print "total " . @solutions . " solutions\n";</lang>

Output:
total 14200 solutions

Perl 6

Works with: rakudo version 2015-11-29

Neither pretty nor efficient, a simple backtracking solution

<lang perl6>sub MAIN(\N = 8) {

   sub collision(@field, $row) {
       for ^$row -> $i {
           my $distance = @field[$i] - @field[$row];
           return True if $distance == any(0, $row - $i, $i - $row);
       }
       False;
   }
   sub search(@field, $row) {
       return @field if $row == N;
       for ^N -> $i {
           @field[$row] = $i;
           return search(@field, $row + 1) || next
               unless collision(@field, $row);
       }
       ()
   }
   for 0 .. N / 2 {
       if search [$_], 1 -> @f {
           say @f;
           last;
       }
   }

}</lang>

Output:
[0 4 7 5 2 6 1 3]

Phix

<lang Phix>-- -- demo\rosetta\n_queens.exw -- ========================= -- sequence co, -- columns occupied

               -- (ro is implicit)
        fd,    -- forward diagonals
        bd,    -- backward diagonals
        board

atom count

procedure solve(integer row, integer N, integer show)

   for col=1 to N do
       if not co[col] then
           integer fdi = col+row-1,
                   bdi = row-col+N
           if not fd[fdi]
           and not bd[bdi] then
               board[row][col] = 'Q'
               co[col] = 1
               fd[fdi] = 1
               bd[bdi] = 1
               if row=N then
                   if show then
                       puts(1,join(board,"\n")&"\n")
                       puts(1,repeat('=',N)&"\n")
                   end if
                   count += 1
               else
                   solve(row+1,N,show)
               end if
               board[row][col] = '.'
               co[col] = 0
               fd[fdi] = 0
               bd[bdi] = 0
           end if
       end if
   end for

end procedure

procedure n_queens(integer N=8, integer show=1)

   co = repeat(0,N)
   fd = repeat(0,N*2-1)
   bd = repeat(0,N*2-1)
   board  = repeat(repeat('.',N),N)
   count = 0
   solve(1,N,show)
   printf(1,"%d queens: %d solutions\n",{N,count})

end procedure

for N=1 to 14 do

   n_queens(N,N<5)

end for</lang>

Output:
Q
=
1 queens: 1 solutions
2 queens: 0 solutions
3 queens: 0 solutions
.Q..
...Q
Q...
..Q.
====
..Q.
Q...
...Q
.Q..
====
4 queens: 2 solutions
5 queens: 10 solutions
6 queens: 4 solutions
7 queens: 40 solutions
8 queens: 92 solutions
9 queens: 352 solutions
10 queens: 724 solutions
11 queens: 2680 solutions
12 queens: 14200 solutions
13 queens: 73712 solutions
14 queens: 365596 solutions

N=14 takes about 10s

PHP

Probably not a great solution given this is one of my first forays into PHP. First solves the n rooks problem and then finds solutions for n-queens, disregarding any rotations/reflections. Checked up to n=10.

<lang PHP> <html> <head> <title> n x n Queen solving program </title> </head> <body> <?php

echo "

n x n Queen solving program

";

//Get the size of the board $boardX = $_POST['boardX']; $boardY = $_POST['boardX'];

// Function to rotate a board 90 degrees function rotateBoard($p, $boardX) { $a=0; while ($a < count($p)) { $b = strlen(decbin($p[$a]))-1; $tmp[$b] = 1 << ($boardX - $a - 1); ++$a; } ksort($tmp); return $tmp; }

// This function will find rotations of a solution function findRotation($p, $boardX,$solutions){ $tmp = rotateBoard($p,$boardX); // Rotated 90 if (in_array($tmp,$solutions)) {} else {$solutions[] = $tmp;}

$tmp = rotateBoard($tmp,$boardX); // Rotated 180 if (in_array($tmp,$solutions)){} else {$solutions[] = $tmp;}

$tmp = rotateBoard($tmp,$boardX); // Rotated 270 if (in_array($tmp,$solutions)){} else {$solutions[] = $tmp;}

// Reflected $tmp = array_reverse($p); if (in_array($tmp,$solutions)){} else {$solutions[] = $tmp;}

$tmp = rotateBoard($tmp,$boardX); // Reflected and Rotated 90 if (in_array($tmp,$solutions)){} else {$solutions[] = $tmp;}

$tmp = rotateBoard($tmp,$boardX); // Reflected and Rotated 180 if (in_array($tmp,$solutions)){} else {$solutions[] = $tmp;}

$tmp = rotateBoard($tmp,$boardX); // Reflected and Rotated 270 if (in_array($tmp,$solutions)){} else {$solutions[] = $tmp;} return $solutions; }

// This is a function which will render the board function renderBoard($p,$boardX) { $img = '';

echo "

"; for ($y = 0; $y < $boardX; ++$y) { echo ''; for ($x = 0; $x < $boardX; ++$x){ if (($x+$y) & 1) { $cellCol = '#9C661F';} else {$cellCol = '#FCE6C9';} if ($p[$y] == 1 << $x) { echo "";} else { echo "";}

}

echo ''; } echo '
<img width=30 height=30 src='".$img."'>

&nbsp';

}

//This function allows me to generate the next order of rows. function pc_next_permutation($p) { $size = count($p) - 1; // slide down the array looking for where we're smaller than the next guy

for ($i = $size - 1; $p[$i] >= $p[$i+1]; --$i) { }

// if this doesn't occur, we've finished our permutations // the array is reversed: (1, 2, 3, 4) => (4, 3, 2, 1) if ($i == -1) { return false; }

// slide down the array looking for a bigger number than what we found before for ($j = $size; $p[$j] <= $p[$i]; --$j) { } // swap them $tmp = $p[$i]; $p[$i] = $p[$j]; $p[$j] = $tmp; // now reverse the elements in between by swapping the ends for (++$i, $j = $size; $i < $j; ++$i, --$j) { $tmp = $p[$i]; $p[$i] = $p[$j]; $p[$j] = $tmp; } return $p; }

//This function needs to check the current state to see if there are any function checkBoard($p,$boardX) { $a = 0; //this is the row being checked while ($a < count($p)) { $b = 1; while ($b < ($boardX - $a)){ $x = $p[$a+$b] << $b; $y = $p[$a+$b] >> $b; if ($p[$a] == $x | $p[$a] == $y) { return false;} ++$b; } ++$a; } return true; }


if (isset($_POST['process']) && isset($_POST['boardX'])) { //Within here is the code that needs to be run if process is clicked.


//First I need to create the different possible rows for ($x = 0; $x < $boardX; ++$x){ $row[$x] = 1 << $x; }

//Now I need to create all the possible orders of rows, will be equal to [boardY]! $solcount = 0; $solutions = array(); while ($row != false) { if (checkBoard($row,$boardX)){ if(!in_array($row,$solutions)){ $solutions[] = $row; renderBoard($row,$boardX); $solutions = findRotation($row,$boardX,$solutions); ++$solcount; }

} $row = pc_next_permutation($row);

} echo "

&nbsp&nbsp&nbsp&nbspRows/Columns: ".$boardX."
&nbsp&nbsp&nbsp&nbspUnique Solutions: ".$solcount."
&nbsp&nbsp&nbsp&nbspTotal Solutions: ".count($solutions)." - Note: This includes symmetrical solutions
"; //print_r($solutions); }

//This code collects the starting parameters echo <<<_END <form name="input" action="queens.php" method="post"> &nbsp&nbsp&nbsp&nbspNumber of columns/rows <select name="boardX" /> <option value="1">One</option> <option value="2">Two</option> <option value="3">Three</option> <option value="4" >Four</option> <option value="5">Five</option> <option value="6">Six</option> <option value="7">Seven</option> <option value="8" selected="selected">Eight</option> <option value="9">Nine</option> <option value="10">Ten</option> </select>

   <input type="hidden" name="process" value="yes" />

&nbsp<input type="submit" value="Process" /> </form>

_END;

?> </body> </html></lang>

PicoLisp

Calling 'permute'

<lang PicoLisp>(load "@lib/simul.l") # for 'permute'

(de queens (N)

  (let (R (range 1 N)  Cnt 0)
     (for L (permute (range 1 N))
        (when
           (= N  # from the Python solution
              (length (uniq (mapcar + L R)))
              (length (uniq (mapcar - L R))) )
           (inc 'Cnt) ) )
     Cnt ) )</lang>

Permuting inline

This alternative version does not first pre-generate all permutations with 'permute', but creates them recursively. Also, it directly checks for duplicates, instead of calling 'uniq' and 'length'. This is much faster. <lang PicoLisp>(de queens (N)

  (let (R (range 1 N)  L (copy R)  X L  Cnt 0)
     (recur (X)  # Permute
        (if (cdr X)
           (do (length X)
              (recurse (cdr X))
              (rot X) )
           (or
              (seek  # Direct check for duplicates
                 '((L) (member (car L) (cdr L)))
                 (mapcar + L R) )
              (seek
                 '((L) (member (car L) (cdr L)))
                 (mapcar - L R) )
              (inc 'Cnt) ) ) )
     Cnt ) )</lang>
Output:

for both cases

: (queens 8)
-> 92

PowerBASIC

<lang powerbasic> defint a-z

  option base 1
  input "n=",n
  dim a(n), s(n), u(4*n-2)
  for i=1 to n: a(i)=i: next
  for i=1 to 4*n-2: u(i)=0: next
  m=0
  i=1
  r=2*n-1
  goto 20

10 s(i)=j

  u(p)=1
  u(q+r)=1
  incr i

20 if i>n goto 60

  j=i

30 z=a(i)

  y=a(j)
  p=i-y+n
  q=i+y-1
  a(i)=y
  a(j)=z
  if u(p)=0 and u(q+r)=0 goto 10

40 incr j

  if j<=n goto 30

50 decr j

  if j=i goto 70
  swap a(i),a(j)
  goto 50

60 incr m

  for k=1 to n: print a(k);: next: print

70 decr i

  if i=0 goto 80
  p=i-a(i)+n
  q=i+a(i)-1
  j=s(i)
  u(p)=0
  u(q+r)=0
  goto 40

80 print m</lang>

PowerShell

Works with: PowerShell version 2

<lang PowerShell> function PlaceQueen ( [ref]$Board, $Row, $N )

   {
   #  For the current row, start with the first column
   $Board.Value[$Row] = 0
   #  While haven't exhausted all columns in the current row...
   While ( $Board.Value[$Row] -lt $N )
       {
       #  If not the first row, check for conflicts
       $Conflict = $Row -and
                   (   (0..($Row-1)).Where{ $Board.Value[$_] -eq $Board.Value[$Row] }.Count -or
                       (0..($Row-1)).Where{ $Board.Value[$_] -eq $Board.Value[$Row] - $Row + $_ }.Count -or
                       (0..($Row-1)).Where{ $Board.Value[$_] -eq $Board.Value[$Row] + $Row - $_ }.Count )

       #  If no conflicts and the current column is a valid column...
       If ( -not $Conflict -and $Board.Value[$Row] -lt $N )
           {
           #  If this is the last row
           #    Board completed successfully
           If ( $Row -eq ( $N - 1 ) )
               {
               return $True
               }
           #  Recurse
           #  If all nested recursions were successful
           #    Board completed successfully
           If ( PlaceQueen $Board ( $Row + 1 ) $N )
               {
               return $True
               }
           }
       
       #  Try the next column
       $Board.Value[$Row]++
       }
   #  Everything was tried, nothing worked
   Return $False
   }

function Get-NQueensBoard ( $N )

   {
   #  Start with a default board (array of column positions for each row)
   $Board = @( 0 ) * $N
   #  Place queens on board
   #  If successful...
   If ( PlaceQueen -Board ([ref]$Board) -Row 0 -N $N )
       {
       #  Convert board to strings for display
       $Board | ForEach { ( @( "" ) + @(" ") * $_ + "Q" + @(" ") * ( $N - $_ ) ) -join "|" }
       }
   Else
       {
       "There is no solution for N = $N"
       }
   }

</lang> <lang PowerShell> Get-NQueensBoard 8 Get-NQueensBoard 3 Get-NQueensBoard 4 Get-NQueensBoard 14 </lang>

Output:
|Q| | | | | | | | 
| | | | |Q| | | | 
| | | | | | | |Q| 
| | | | | |Q| | | 
| | |Q| | | | | | 
| | | | | | |Q| | 
| |Q| | | | | | | 
| | | |Q| | | | | 

There is no solution for N = 3

| |Q| | | 
| | | |Q| 
|Q| | | | 
| | |Q| | 

|Q| | | | | | | | | | | | | | 
| | |Q| | | | | | | | | | | | 
| | | | |Q| | | | | | | | | | 
| | | | | | |Q| | | | | | | | 
| | | | | | | | | | | |Q| | | 
| | | | | | | | | |Q| | | | | 
| | | | | | | | | | | | |Q| | 
| | | |Q| | | | | | | | | | | 
| | | | | | | | | | | | | |Q| 
| | | | | | | | |Q| | | | | | 
| |Q| | | | | | | | | | | | | 
| | | | | |Q| | | | | | | | | 
| | | | | | | |Q| | | | | | | 
| | | | | | | | | | |Q| | | |

PL/I

This code compiles with PL/I compilers ranging from the ancient IBM MVT PL/I F compiler of the 1960s, the IBM PL/I Optimizing compiler, thru the IBM PL/I compiler for MVS and VM, to the z/OS Enterprise PL/I v4.60 compiler;spanning 50 years of PL/I compilers. It only outputs the number of solutions found for a given N instead of printing out each individual chess board solution to avoid filling up spool space for large values of N. It's trivial to add a print-out of the individual solutions. <lang pli> NQUEENS: PROC OPTIONS (MAIN);

DCL A(35) BIN FIXED(31) EXTERNAL;                             
DCL COUNT BIN FIXED(31) EXTERNAL;                             
COUNT = 0;                                                    
DECLARE SYSIN FILE;                                           
DCL ABS BUILTIN;                                              
DECLARE SYSPRINT FILE;                                        
DECLARE N BINARY FIXED (31); /* COUNTER */                    
/* MAIN LOOP STARTS HERE */                                   
GET LIST (N) FILE(SYSIN); /* N QUEENS, N X N BOARD */        
PUT SKIP (1) FILE(SYSPRINT);                                  
PUT SKIP LIST('BEGIN N QUEENS PROCESSING *****') FILE(SYSPRINT);    
PUT SKIP LIST('SOLUTIONS FOR N: ',N) FILE(SYSPRINT);          
PUT SKIP (1) FILE(SYSPRINT);                                  
 IF N < 4 THEN DO;                                            
   /* LESS THAN 4 MAKES NO SENSE  */                          
     PUT SKIP (2) FILE(SYSPRINT);                             
     PUT SKIP LIST (N,' N TOO LOW') FILE (SYSPRINT);               
     PUT SKIP (2) FILE(SYSPRINT);                             
     RETURN (1);                                              
  END;                                                        
  IF N > 35 THEN DO;                                                
    /* WOULD TAKE WEEKS    */                               
      PUT SKIP (2) FILE(SYSPRINT);                                  
      PUT SKIP LIST (N,' N TOO HIGH') FILE (SYSPRINT);                   
      PUT SKIP (2) FILE(SYSPRINT);                                  
      RETURN (1);                                                   
   END;                                                             
                                                     
   CALL QUEEN(N);                                                   
                                                                    
    PUT SKIP (2) FILE(SYSPRINT);                                    
    PUT SKIP LIST (COUNT,' SOLUTIONS FOUND') FILE(SYSPRINT);             
    PUT SKIP (1) FILE(SYSPRINT);                                    
    PUT SKIP LIST ('END OF PROCESSING ****') FILE(SYSPRINT);             
    RETURN(0);                                                      
 /* MAIN LOOP ENDS ABOVE  */                                        
                                                                    
 PLACE: PROCEDURE (PS);                                             
    DCL PS BIN FIXED(31);                                           
    DCL I  BIN FIXED(31) INIT(0);                                  
    DCL A(50) BIN FIXED(31) EXTERNAL;                               
                                                                    
 DO I=1 TO PS-1;                                                    
      IF A(I) = A(PS) THEN  RETURN(0);                              
      IF ABS ( A(I) - A(PS) ) = (PS-I) THEN RETURN(0);              
 END;                                                               
   RETURN (1);                                                      
 END PLACE;                                                         
 QUEEN: PROCEDURE (N);                                          
     DCL N BIN FIXED (31);                                      
     DCL K BIN FIXED (31);                                      
     DCL A(50) BIN FIXED(31) EXTERNAL;                          
     DCL COUNT BIN FIXED(31) EXTERNAL;                          
     K = 1;                                                     
     A(K) = 0;                                                  
     DO WHILE (K > 0);                                          
        A(K) = A(K) + 1;                                        
        DO WHILE ( ( A(K)<= N) & (PLACE(K) =0) );               
            A(K) = A(K) +1;                                     
        END;                                     
        IF (A(K) <= N) THEN DO;                                 
          IF (K = N ) THEN DO;                                  
                        COUNT = COUNT + 1;                      
                END;                                            
          ELSE DO;                                              
            K= K +1;                                            
            A(K) = 0;                                           
          END; /* OF INSIDE ELSE */                              
        END; /* OF FIRST IF */                                  
        ELSE DO;                                                
             K = K -1;                                          
        END;                                                    
     END;  /* OF EXTERNAL WHILE LOOP  */                                         
  END QUEEN;                                                    
                                                                
END NQUEENS;  </lang>

Prolog

The code for these samples is taken from [1].

Solution #1: <lang Prolog>solution([]).

solution([X/Y|Others]) :-

solution(Others),
member(Y, [1,2,3,4,5,6,7,8]),
noattack(X/Y, Others).

noattack(_,[]).

noattack(X/Y,[X1/Y1|Others]) :-

Y =\= Y1,
Y1 - Y =\= X1 - X,
Y1 - Y =\= X - X1,
noattack(X/Y,Others).

member(Item,[Item|Rest]).

member(Item,[First|Rest]) :-

member(Item,Rest).

template([1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]).</lang>

Solution #2: <lang Prolog>solution(Queens) :-

permutation([1,2,3,4,5,6,7,8], Queens),
safe(Queens).

permutation([],[]).

permutation([Head|Tail],PermList) :-

permutation(Tail,PermTail),
del(Head,PermList,PermTail).

del(Item,[Item|List],List).

del(Item,[First|List],[First|List1]) :-

del(Item,List,List1).

safe([]).

safe([Queen|Others]) :-

safe(Others),
noattack(Queen,Others,1).

noattack(_,[],_).

noattack(Y,[Y1|Ylist],Xdist) :-

Y1-Y=\=Xdist,
Y-Y1=\=Xdist,
Dist1 is Xdist + 1,
noattack(Y,Ylist,Dist1).</lang>

Solution #3: <lang Prolog>solution(Ylist) :-

sol(Ylist,[1,2,3,4,5,6,7,8],
   [1,2,3,4,5,6,7,8],
   [-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7],
   [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]).

sol([],[],[],Du,Dv).

sol([Y|Ylist],[X|Dx1],Dy,Du,Dv) :-

del(Y,Dy,Dy1),
U is X-Y,
del(U,Du,Du1),
V is X+Y,
del(V,Dv,Dv1),
sol(Ylist,Dx1, Dy1,Du1,Dv1).

del(Item,[Item|List],List).

del(Item,[First|List],[First|List1]) :-

del(Item,List,List1).</lang>

Output:

  ?- findall(S, solution(S), LS), length(LS,N), write(N).
  92

Alternative version

Uses non-ISO predicates between/3 and select/3 (available in SWI Prolog and GNU Prolog). <lang prolog>:- initialization(main).


queens(N,Qs) :- bagof(X, between(1,N,X), Xs), place(Xs,[],Qs).

place(Xs,Qs,Res) :-

   Xs = [] -> Res = Qs
 ; select(Q,Xs,Ys), not_diag(Q,Qs,1), place(Ys,[Q|Qs],Res)
 .

not_diag(_, [] , _). not_diag(Q, [Qh|Qs], D) :-

    abs(Q - Qh) =\= D, D1 is D + 1, not_diag(Q,Qs,D1).


main :- findall(Qs, (queens(8,Qs), write(Qs), nl), _), halt.</lang> Runs in: time: 0.02 memory: 68352

Alternative Solution

Uses backtracking- a highly efficient mechanism in Prolog to find all solutions.

Works with: SWI Prolog version version 6.2.6 by Jan Wielemaker, University of Amsterdam

<lang prolog>% 8 queens problem. % q(Row) represents a queen, allocated one per row. No rows ever clash. % The columns are chosen iteratively from available columns held in a % list, reduced with each allocation, so we need never check verticals. % For diagonals, we check prior to allocation whether each newly placed % queen will clash with any of the prior placements. This prevents % most invalid permutations from ever being attempted. can_place(_, []) :- !.  % success for empty board can_place(q(R,C),Board) :- % check diagonals against allocated queens member(q(Ra,Ca), Board), abs(Ra-R) =:= abs(Ca-C), !, fail. can_place(_,_).  % succeed if no diagonals failed

queens([], [], Board, Board).  % found a solution queens([q(R)|Queens], Columns, Board, Solution) :- nth0(_,Columns,C,Free), can_place(q(R,C),Board), % find all solutions queens(Queens,Free,[q(R,C)|Board], Solution).  % recursively

queens :-

 findall(q(N), between(0,7,N), Queens), findall(N, between(0,7,N), Columns),
 findall(B, queens(Queens, Columns, [], B), Boards),     % backtrack over all
 length(Boards, Len), writef('%w solutions:\n', [Len]),  % Output solutions
 member(R,Boards), reverse(R,Board), writef('  - %w\n', [Board]), fail.

queens.</lang>

Output:
?- queens.
92 solutions:
  - [q(0,0),q(1,4),q(2,7),q(3,5),q(4,2),q(5,6),q(6,1),q(7,3)]
  - [q(0,0),q(1,5),q(2,7),q(3,2),q(4,6),q(5,3),q(6,1),q(7,4)]
  - [q(0,0),q(1,6),q(2,3),q(3,5),q(4,7),q(5,1),q(6,4),q(7,2)]
  - [q(0,0),q(1,6),q(2,4),q(3,7),q(4,1),q(5,3),q(6,5),q(7,2)]
...
  - [q(0,7),q(1,1),q(2,4),q(3,2),q(4,0),q(5,6),q(6,3),q(7,5)]
  - [q(0,7),q(1,2),q(2,0),q(3,5),q(4,1),q(5,4),q(6,6),q(7,3)]
  - [q(0,7),q(1,3),q(2,0),q(3,2),q(4,5),q(5,1),q(6,6),q(7,4)]
true.

Short version

SWI-Prolog 7.2.3 <lang Prolog>not_diagonal(X, N) :-

 maplist(plus, X, N, Z1), maplist(plus, X, Z2, N), is_set(Z1), is_set(Z2).

queens(N, Qs) :-

 numlist(1, N, P), findall(Q, (permutation(P, Q), not_diagonal(Q, P)), Qs).</lang>
Output:
?- queens(8, X), length(X, L).
X = [[1, 5, 8, 6, 3, 7, 2, 4], [1, 6, 8, 3, 7, 4, 2|...], [1, 7, 4, 6, 8, 2|...], [1, 7, 5, 8, 2|...], [2, 4, 6, 8|...], [2, 5, 7|...], [2, 5|...], [2|...], [...|...]|...],
L = 92.

Pure

From the Pure (programming language) Wikipedia page

<lang pure>/*

n-queens.pure
Tectonics:
    pure -c queens.pure -o queens
 or 
    pure -q -i queens.pure
  • /

using system;

queens n = search n 1 [] with

  search n i p  = [reverse p] if i>n;
                = cat [search n (i+1) ((i,j):p) | j = 1..n; safe (i,j) p];
  safe (i,j) p  = ~any (check (i,j)) p;
  check (i1,j1) (i2,j2)
                = i1==i2 || j1==j2 || i1+j1==i2+j2 || i1-j1==i2-j2;

end;

compiling || (puts("queens 4: " + str(queens 4)) $$

             puts("Solutions to queens 7: " + str(#queens 7)));</lang>
Output:
prompt$ pure -c queens.pure -o queens
prompt$ time -p ./queens
queens 4: [[(1,2),(2,4),(3,1),(4,3)],[(1,3),(2,1),(3,4),(4,2)]]
Solutions to queens 7: 40
real 0.03
user 0.02
sys 0.00

prompt$ pure -i -q queens.pure
> #queens 10;
724
> 

PureBasic

A recursive approach is taken. A queen is placed in an unused column for each new row. An array keeps track if a queen has already been placed in a given column so that no duplicate columns result. That handles the Rook attacks. Bishop attacks are handled by checking the diagonal alignments of each new placement against the previously placed queens and if an attack is possible the solution backtracks. The solutions are kept track of in a global variable and the routine queens(n) is called with the required number of queens specified. <lang PureBasic>Global solutions

Procedure showBoard(Array queenCol(1))

 Protected row, column, n = ArraySize(queenCol())
 PrintN(" Solution " + Str(solutions))
 For row = 0 To n
   For column = 0 To n
     If queenCol(row) = column
       Print("|Q")
     Else
       Print("| ")
     EndIf
   Next
   PrintN("|")
 Next

EndProcedure

Macro advanceIfPossible()

 x + 1
 While x <= n And columns(x): x + 1: Wend
 If x > n
   ProcedureReturn #False ;backtrack
 EndIf 

EndMacro

Procedure placeQueens(Array queenCol(1), Array columns(1), row = 0)

 Protected n = ArraySize(queenCol())
 
 If row > n
   solutions + 1
   showBoard(queenCol())
   ProcedureReturn #False ;backtrack
 EndIf
 
 Protected x, queen, passed
 While columns(x): x + 1: Wend
   
 ;place a new queen in one of the available columns
 Repeat 
   passed = #True
   For queen = 0 To row - 1
     If ((queenCol(queen) - x) = (queen - row)) Or ((queenCol(queen) - x) = -(queen - row))
       advanceIfPossible()
       passed = #False
       Break ;ForNext loop
     EndIf
   Next
   
   If passed
     queenCol(row) = x: columns(x) = 1
     If Not placeQueens(queenCol(), columns(), row + 1)
       columns(x) = 0
       advanceIfPossible()
     EndIf 
   EndIf 
 ForEver

EndProcedure

Procedure queens(n)

 If n > 0
   Dim queenCol(n - 1)
   Dim columns(n - 1)
   placeQueens(queenCol(), columns()) 
 EndIf 

EndProcedure

If OpenConsole()

 Define i
 For i = 1 To 12
   solutions = 0
   queens(i)
   PrintN(#CRLF$ + Str(solutions) + " solutions found for " + Str(i) + "-queens.")
   Input()
 Next 
 
 Print(#CRLF$ + "Press ENTER to exit")
 Input()
 CloseConsole()

EndIf</lang> Sample output showing the last solution (all are actually displayed) for 1 - 12 queens:

 Solution 1
|Q|

1 solutions found for 1-queens. {Press ENTER}

0 solutions found for 2-queens. {Press ENTER}

0 solutions found for 3-queens. {Press ENTER}

 Solution 2
| | |Q| |
|Q| | | |
| | | |Q|
| |Q| | |

2 solutions found for 4-queens. {Press ENTER}

 Solution 10
| | | | |Q|
| | |Q| | |
|Q| | | | |
| | | |Q| |
| |Q| | | |

10 solutions found for 5-queens. {Press ENTER}

 Solution 4
| | | | |Q| |
| | |Q| | | |
|Q| | | | | |
| | | | | |Q|
| | | |Q| | |
| |Q| | | | |

4 solutions found for 6-queens. {Press ENTER}

 Solution 40
| | | | | | |Q|
| | | | |Q| | |
| | |Q| | | | |
|Q| | | | | | |
| | | | | |Q| |
| | | |Q| | | |
| |Q| | | | | |

40 solutions found for 7-queens. {Press ENTER}

 Solution 92
| | | | | | | |Q|
| | | |Q| | | | |
|Q| | | | | | | |
| | |Q| | | | | |
| | | | | |Q| | |
| |Q| | | | | | |
| | | | | | |Q| |
| | | | |Q| | | |

92 solutions found for 8-queens. {Press ENTER}

 Solution 352
| | | | | | | | |Q|
| | | | | | |Q| | |
| | | |Q| | | | | |
| |Q| | | | | | | |
| | | | | | | |Q| |
| | | | | |Q| | | |
|Q| | | | | | | | |
| | |Q| | | | | | |
| | | | |Q| | | | |

352 solutions found for 9-queens. {Press ENTER}

 Solution 724
| | | | | | | | | |Q|
| | | | | | | |Q| | |
| | | | |Q| | | | | |
| | |Q| | | | | | | |
|Q| | | | | | | | | |
| | | | | |Q| | | | |
| |Q| | | | | | | | |
| | | | | | | | |Q| |
| | | | | | |Q| | | |
| | | |Q| | | | | | |

724 solutions found for 10-queens. {Press ENTER}

 Solution 2680
| | | | | | | | | | |Q|
| | | | | | | | |Q| | |
| | | | | | |Q| | | | |
| | | | |Q| | | | | | |
| | |Q| | | | | | | | |
|Q| | | | | | | | | | |
| | | | | | | | | |Q| |
| | | | | | | |Q| | | |
| | | | | |Q| | | | | |
| | | |Q| | | | | | | |
| |Q| | | | | | | | | |

2680 solutions found for 11-queens. {Press ENTER}

 Solution 14200
| | | | | | | | | | | |Q|
| | | | | | | | | |Q| | |
| | | | | | | |Q| | | | |
| | | | |Q| | | | | | | |
| | |Q| | | | | | | | | |
|Q| | | | | | | | | | | |
| | | | | | |Q| | | | | |
| |Q| | | | | | | | | | |
| | | | | | | | | | |Q| |
| | | | | |Q| | | | | | |
| | | |Q| | | | | | | | |
| | | | | | | | |Q| | | |

14200 solutions found for 12-queens. {Press ENTER}

Python

Python: Raymond Hettingers permutations based solution

This solution, originally by Raymond Hettinger for demonstrating the power of the itertools module, generates all solutions.

<lang python>from itertools import permutations

n = 8 cols = range(n) for vec in permutations(cols):

   if n == len(set(vec[i]+i for i in cols)) \
        == len(set(vec[i]-i for i in cols)):
       print ( vec )</lang>

The output is presented in vector form (each number represents the column position of a queen on consecutive rows). The vector can be pretty printed by substituting a call to board instead of print, with the same argument, and where board is pre-defined as: <lang python>def board(vec):

   print ("\n".join('.' * i + 'Q' + '.' * (n-i-1) for i in vec) + "\n===\n")</lang>

Raymond's description is:

With the solution represented as a vector with one queen in each row, we don't have to check to see if two queens are on the same row. By using a permutation generator, we know that no value in the vector is repeated, so we don't have to check to see if two queens are on the same column. Since rook moves don't need to be checked, we only need to check bishop moves.
The technique for checking the diagonals is to add or subtract the column number from each entry, so any two entries on the same diagonal will have the same value (in other words, the sum or difference is unique for each diagonal). Now all we have to do is make sure that the diagonals for each of the eight queens are distinct. So, we put them in a set (which eliminates duplicates) and check that the set length is eight (no duplicates were removed).
Any permutation with non-overlapping diagonals is a solution. So, we print it and continue checking other permutations.

One disadvantage with this solution is that we can't simply "skip" all the permutations that start with a certain prefix, after discovering that that prefix is incompatible. For example, it is easy to verify that no permutation of the form (1,2,...) could ever be a solution, but since we don't have control over the generation of the permutations, we can't just tell it to "skip" all the ones that start with (1,2).

Python: Alternative Solution

Works with: Python version 2.6, 3.x

<lang python># From: http://wiki.python.org/moin/SimplePrograms, with permission from the author, Steve Howell BOARD_SIZE = 8

def under_attack(col, queens):

   return col in queens or \
          any(abs(col - x) == len(queens)-i for i,x in enumerate(queens))

def solve(n):

   solutions = [[]]
   for row in range(n):
       solutions = [solution+[i+1]
                      for solution in solutions
                      for i in range(BOARD_SIZE)
                      if not under_attack(i+1, solution)]
   return solutions

for answer in solve(BOARD_SIZE): print(list(enumerate(answer, start=1)))</lang>

Python: Simple Backtracking Solution

A surprisingly simple change to the above code (changing the list comprehension to a generator expression) produces a backtracking solution:

Works with: Python version 2.6, 3.x

<lang python>BOARD_SIZE = 8

def under_attack(col, queens):

   return col in queens or \
          any(abs(col - x) == len(queens)-i for i,x in enumerate(queens))

def solve(n):

   solutions = [[]]
   for row in range(n):
       solutions = (solution+[i+1]
                      for solution in solutions # first for clause is evaluated immediately,
                                                # so "solutions" is correctly captured
                      for i in range(BOARD_SIZE)
                      if not under_attack(i+1, solution))
   return solutions

answers = solve(BOARD_SIZE) first_answer = next(answers) print(list(enumerate(first_answer, start=1)))</lang>

Python: Simple Backtracking Solution (functional style)

This simple version, which uses a generator function and lists, has an excellent performance with PyPy. <lang python>def solve(n, i, a, b, c):

   if i < n:
       for j in range(n):
           if j not in a and i+j not in b and i-j not in c:
               for solution in solve(n, i+1, a+[j], b+[i+j], c+[i-j]):
                   yield solution
   else:
       yield a

for solution in solve(8, 0, [], [], []):

   print(solution)</lang>

Python: backtracking on permutations

Queens positions on a n x n board are encoded as permutations of [0, 1, ..., n]. The algorithms consists in building a permutation from left to right, by swapping elements of the initial [0, 1, ..., n], recursively calling itself unless the current position is not possible. The test is done by checking only diagonals, since rows/columns have by definition of a permutation, only one queen.

This is initially a translation of the Fortran 77 solution.

The solutions are returned as a generator, using the "yield from" functionality of Python 3.3, described in PEP-380.

<lang python>def queens(n):

   a = list(range(n))
   up = [True]*(2*n - 1)
   down = [True]*(2*n - 1)
   def sub(i):
       if i == n:
           yield tuple(a)
       else:
           for k in range(i, n):
               j = a[k]
               p = i + j
               q = i - j + n - 1
               if up[p] and down[q]:
                   up[p] = down[q] = False
                   a[i], a[k] = a[k], a[i]
                   yield from sub(i + 1)
                   up[p] = down[q] = True
                   a[i], a[k] = a[k], a[i]
   yield from sub(0)
  1. Count solutions for n=8:

sum(1 for p in queens(8)) 92</lang>

The preceding function does not enumerate solutions in lexicographic order, see Permutations#Recursive implementation for an explanation. The following does, but is almost 50% slower, because the exchange is always made (otherwise the loop to shift the array a by one place would not work).

However, it may be interesting to look at the first solution in lexicographic order: for growing n, and apart from a +1 offset, it gets closer and closer to the sequence A065188 at OEIS. The first n for which the first solutions differ is n=26.

<lang python>def queens_lex(n):

   a = list(range(n))
   up = [True]*(2*n - 1)
   down = [True]*(2*n - 1)
   def sub(i):
       if i == n:
           yield tuple(a)
       else:
           for k in range(i, n):
               a[i], a[k] = a[k], a[i]
               j = a[i]
               p = i + j
               q = i - j + n - 1
               if up[p] and down[q]:
                   up[p] = down[q] = False
                   yield from sub(i + 1)
                   up[p] = down[q] = True
           x = a[i]
           for k in range(i + 1, n):
               a[k - 1] = a[k]
           a[n - 1] = x
   yield from sub(0)

next(queens(31)) (0, 2, 4, 1, 3, 8, 10, 12, 14, 6, 17, 21, 26, 28, 25, 27, 24, 30, 7, 5, 29, 15, 13, 11, 9, 18, 22, 19, 23, 16, 20)

next(queens_lex(31)) (0, 2, 4, 1, 3, 8, 10, 12, 14, 5, 17, 22, 25, 27, 30, 24, 26, 29, 6, 16, 28, 13, 9, 7, 19, 11, 15, 18, 21, 23, 20)

  1. Compare to A065188
  2. 1, 3, 5, 2, 4, 9, 11, 13, 15, 6, 8, 19, 7, 22, 10, 25, 27, 29, 31, 12, 14, 35, 37, ...</lang>

Python: fold/reduce

Expressed in terms of nested folds, allowing for graphic display of results, and listing the number of solutions found for boards of various sizes:

Works with: Python version 3.7

<lang Python>N Queens problem

from functools import reduce from itertools import chain


  1. queenPuzzle :: Int -> Int -> Int

def queenPuzzle(nRows, nCols):

   Board patterns of this dimension
      which entail no Queen clashes.
   def go(nRows, nCols):
       return reduce(
           lambda a, xys: a + reduce(
               lambda b, iCol: b + [xys + [iCol]] if (
                   safe(nRows - 1, iCol, xys)
               ) else b,
               enumFromTo(1)(nCols),
               []
           ),
           go(nRows - 1, nCols),
           []
       ) if nRows > 0 else [[]]
   return go(nRows, nCols)


  1. safe :: Int -> Int -> [Int] -> Bool

def safe(iRow, iCol, pattern):

   True if no two queens in the pattern
      share a row column or diagonal.
   
   def p(sc, sr):
       return (iCol == sc) or (
           sc + sr == (iCol + iRow)
       ) or (sc - sr == (iCol - iRow))
   return not any(map(p, pattern, range(0, iRow)))


  1. TEST ----------------------------------------------------
  2. main :: IO ()

def main():

   Number of solutions for boards of various sizes
   n = 5
   xs = queenPuzzle(n, n)
   print(
       str(len(xs)) + ' solutions for a {n} * {n} board:\n'.format(n=n)
   )
   print(showBoards(10)(xs))
   print(
       fTable(
           '\n\n' + main.__doc__ + ':\n'
       )(str)(lambda n: str(n).rjust(3, ' '))(
           lambda n: len(queenPuzzle(n, n))
       )(enumFromTo(1)(10))
   )


  1. GENERIC -------------------------------------------------
  1. enumFromTo :: (Int, Int) -> [Int]

def enumFromTo(m):

   Integer enumeration from m to n.
   return lambda n: list(range(m, 1 + n))


  1. chunksOf :: Int -> [a] -> a

def chunksOf(n):

   A series of lists of length n, subdividing the
      contents of xs. Where the length of xs is not evenly
      divible, the final list will be shorter than n.
   
   return lambda xs: reduce(
       lambda a, i: a + [xs[i:n + i]],
       range(0, len(xs), n), []
   ) if 0 < n else []


  1. intercalate :: [a] -> a -> [a]
  2. intercalate :: String -> [String] -> String

def intercalate(x):

   The concatenation of xs
      interspersed with copies of x.
   
   return lambda xs: x.join(xs) if isinstance(x, str) else list(
       chain.from_iterable(
           reduce(lambda a, v: a + [x, v], xs[1:], [xs[0]])
       )
   ) if xs else []


  1. FORMATTING ----------------------------------------------
  1. showBoards :: Int -> Int -> String

def showBoards(nCols):

   String representation, with N columns
      of a set of board patterns.
   
   def showBlock(b):
       return '\n'.join(map(intercalate('  '), zip(*b)))
   def go(bs):
       return '\n\n'.join(map(
           showBlock,
           chunksOf(nCols)(
               list(map(showBoard, bs))
           )
       ))
   return lambda boards: go(boards)


  1. showBoard :: [Int] -> String

def showBoard(xs):

   String representation of a Queens board.
   lng = len(xs)
   def showLine(n):
       return ('.' * (n - 1)) + '♛' + ('.' * (lng - n))
   return list(map(showLine, xs))


  1. fTable :: String -> (a -> String) ->
  2. (b -> String) -> (a -> b) -> [a] -> String

def fTable(s):

   Heading -> x display function -> fx display function ->
                    f -> xs -> tabular string.
   
   def go(xShow, fxShow, f, xs):
       ys = [xShow(x) for x in xs]
       w = max(map(len, ys))
       return s + '\n' + '\n'.join(map(
           lambda x, y: y.rjust(w, ' ') + ' -> ' + fxShow(f(x)),
           xs, ys
       ))
   return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
       xShow, fxShow, f, xs
   )


  1. MAIN ---

if __name__ == '__main__':

   main()</lang>
Output:
10 solutions for a 5 * 5 board:

♛....  ♛....  .♛...  .♛...  ..♛..  ..♛..  ...♛.  ...♛.  ....♛  ....♛
..♛..  ...♛.  ...♛.  ....♛  ♛....  ....♛  ♛....  .♛...  .♛...  ..♛..
....♛  .♛...  ♛....  ..♛..  ...♛.  .♛...  ..♛..  ....♛  ...♛.  ♛....
.♛...  ....♛  ..♛..  ♛....  .♛...  ...♛.  ....♛  ..♛..  ♛....  ...♛.
...♛.  ..♛..  ....♛  ...♛.  ....♛  ♛....  .♛...  ♛....  ..♛..  .♛...

Number of solutions for boards of various sizes:

 1 ->   1
 2 ->   0
 3 ->   0
 4 ->   2
 5 ->  10
 6 ->   4
 7 ->  40
 8 ->  92
 9 -> 352
10 -> 724

QB64

<lang QB64> DIM SHARED QUEENS AS INTEGER PRINT "# of queens:";: INPUT QUEENS IF QUEENS = 0 THEN END OPEN LTRIM$(STR$(QUEENS)) + "queens.dat" FOR OUTPUT AS #1 PRINT "Queens: Calculates"; QUEENS; " queens problem." DIM SHARED arrayqcol(QUEENS) AS LONG ' columns of queens DIM SHARED nsolutions AS LONG CALL dorow(1) ' start with row 1 LOCATE 22, 1 PRINT STR$(nsolutions) + " solutions" END SUB dorow (irow) ' starts with row irow

   FOR icol = 1 TO QUEENS
       FOR iqueen = 1 TO irow - 1 ' check for conflict with previous queens
           IF arrayqcol(iqueen) = icol THEN GOTO continue1 ' same column?
           ' iqueen is also row of queen
           IF iqueen + arrayqcol(iqueen) = irow + icol THEN GOTO continue1 ' right diagonal?
           IF iqueen - arrayqcol(iqueen) = irow - icol THEN GOTO continue1 ' left diagonal?
       NEXT iqueen
       ' at this point we can add a queen
       arrayqcol(irow) = icol ' add to array
       LOCATE irow + 2, icol: PRINT "x"; ' show progress
       _DELAY (.001) ' slows processing
       IF irow = QUEENS THEN ' solution?
           nsolutions = nsolutions + 1
           PRINT #1, "Solution #" + MID$(STR$(nsolutions), 2) + "."
           FOR i1 = 1 TO QUEENS ' rows
               s1$ = STRING$(QUEENS, ".") ' columns
               MID$(s1$, arrayqcol(i1), 1) = "x" ' x in queen column
               PRINT #1, s1$
           NEXT i1
           PRINT #1, ""
       ELSE
           CALL dorow(irow + 1) ' recursive call to next row
       END IF
       LOCATE irow + 2, icol: PRINT "."; ' remove queen
       continue1:
   NEXT icol

END SUB </lang>

R

<lang r># Brute force, see the "Permutations" page for the next.perm function safe <- function(p) {

 n <- length(p)
 for (i in seq(1, n - 1)) {
   for (j in seq(i + 1, n)) {
     if (abs(p[j] - p[i]) == abs(j - i)) return(F)
   }
 }
 return(T)

}

queens <- function(n) {

 p <- 1:n
 k <- 0
 while (!is.null(p)) {
   if(safe(p)) {
     cat(p, "\n")
     k <- k + 1
   }
   p <- next.perm(p)
 }
 return(k)

}

queens(8)

  1. 1 5 8 6 3 7 2 4
  2. ...
  3. 92</lang>

Racket

Backtracking algorithm; returns one solution

<lang racket>

  1. lang racket

(struct Q (x y) #:transparent)

returns true if given q1 and q2 do not conflict

(define (safe? q1 q2)

 (match* (q1 q2)
   [((Q x1 y1) (Q x2 y2))
    (not (or (= x1 x2) (= y1 y2)
             (= (abs (- x1 x2)) (abs (- y1 y2)))))]))
returns true if given q doesn't conflict with anything in given list of qs

(define (safe-lst? q qs) (for/and ([q2 qs]) (safe? q q2)))

(define (nqueens n)

 ;; qs is partial solution; x y is current position to try
 (let loop ([qs null] [x 0] [y 0])
   (cond [(= (length qs) n) qs]          ; found a solution
         [(>= x n) (loop qs 0 (add1 y))] ; go to next row
         [(>= y n) #f]                   ; current solution is invalid
         [else
          (define q (Q x y))
          (if (safe-lst? q qs) ; is current position safe?
              (or (loop (cons q qs) 0 (add1 y)) ; optimistically place a queen
                                                ; (and move pos to next row)
                  (loop qs (add1 x) y))  ; backtrack if it fails
              (loop qs (add1 x) y))])))

(nqueens 8)

=> (list (Q 3 7) (Q 1 6) (Q 6 5) (Q 2 4) (Q 5 3) (Q 7 2) (Q 4 1) (Q 0 0))

</lang>

Show result with "How to Design Programs" GUI. <lang racket> (require htdp/show-queen)

(define (show-nqueens n)

 (define qs (time (nqueens n)))
 (show-queen
  (for/list ([row n])
    (for/list ([col n])
      (if (member (Q row col) qs) #t #f)))))

(show-nqueens 8) </lang>

When hovering mouse, GUI also displays conflicts for potential additional queens.


Lazy-style solution, ie, generate all solutions, then filter out invalid ones. Computes all solutions.

<lang racket>

  1. lang racket

(struct Q (x y) #:transparent)

(define-syntax-rule (lcons x y) (cons x (lazy y)))

(define (lazy-filter p? lst)

 (define flst (force lst))
 (if (null? flst) '()
     (let ([x (car flst)])
       (if (p? x)
           (lcons x (lazy-filter p? (cdr flst)))
           (lazy-filter p? (cdr flst))))))

(define (lazy-foldr f base lst)

 (define flst (force lst))
 (if (null? flst) base
     (f (car flst) (lazy (lazy-foldr f base (cdr flst))))))

(define (tails lst)

 (if (null? lst) '(())
     (cons lst (tails (cdr lst)))))

(define (safe? q1 q2)

 (match* (q1 q2)
   [((Q x1 y1) (Q x2 y2))
    (not (or (= x1 x2) (= y1 y2)
             (= (abs (- x1 x2)) (abs (- y1 y2)))))]))

(define (safe-lst? lst)

 (or (null? lst)
     (let ([q1 (car lst)])
       (for/and ([q2 (cdr lst)]) (safe? q1 q2)))))

(define (valid? lst) (andmap safe-lst? (tails lst)))

(define (nqueens n)

 (define all-possible-solutions
   (for/fold ([qss-so-far '(())]) ([row (in-range n)])
     (lazy-foldr
      (λ (qs new-qss)
        (append (for/list ([col (in-range n)]) (cons (Q row col) qs))
                new-qss))
      '() qss-so-far)))
 (lazy-filter valid? all-possible-solutions))

</lang>

Taking the first solution does not compute the other solutions:

<lang racket> (car (nqueens 8))

=> (list (Q 7 3) (Q 6 1) (Q 5 6) (Q 4 2) (Q 3 5) (Q 2 7) (Q 1 4) (Q 0 0))

</lang>

Computing all solutions is also possible:

<lang racket> (define (force-and-print qs)

 (define forced (force qs))
 (unless (null? forced)
   (printf "~v\n" (car forced))
   (force-and-print (cdr forced))))

(force-and-print (nqueens 8))

=>
(list (Q 7 3) (Q 6 1) (Q 5 6) (Q 4 2) (Q 3 5) (Q 2 7) (Q 1 4) (Q 0 0))
(list (Q 7 4) (Q 6 1) (Q 5 3) (Q 4 6) (Q 3 2) (Q 2 7) (Q 1 5) (Q 0 0))
(list (Q 7 2) (Q 6 4) (Q 5 1) (Q 4 7) (Q 3 5) (Q 2 3) (Q 1 6) (Q 0 0))
(list (Q 7 2) (Q 6 5) (Q 5 3) (Q 4 1) (Q 3 7) (Q 2 4) (Q 1 6) (Q 0 0))

...

(list (Q 7 5) (Q 6 3) (Q 5 6) (Q 4 0) (Q 3 2) (Q 2 4) (Q 1 1) (Q 0 7))
(list (Q 7 3) (Q 6 6) (Q 5 4) (Q 4 1) (Q 3 5) (Q 2 0) (Q 1 2) (Q 0 7))
(list (Q 7 4) (Q 6 6) (Q 5 1) (Q 4 5) (Q 3 2) (Q 2 0) (Q 1 3) (Q 0 7))

</lang>

Logic borrowed from the Ruby example <lang racket>

  1. lang racket

(define (remove x lst)

 (for/list ([i (in-range (length lst))]
            #:when (not (= x i)))
   (list-ref lst i)))

(define (switch-pairs lst)

 (cond [(null? lst) '()]
       [(null? (cdr lst)) (list '() (car lst))]
       [else (append (list (cadr lst) (car lst))
                     (switch-pairs (cddr lst)))]))

(define (switch-places a1 a2 lst)

 (for/list ([i (length lst)])
   (list-ref lst (cond [(= a1 i) a2] [(= a2 i) a1] [else i]))))

(define (position-queens n)

 (cond [(= 1 n) (list (list 1))]
       [(> 4 n) #f]
       [else (possible-queens n)]))

(define (possible-queens n)

 (define rem (remainder n 12))
 (define lst (build-list n add1))
 (define evens (filter even? lst))
 (define odds (filter odd? lst))
 (cond [(or (= rem 9) (= rem 3)) (case3or9 evens odds)]
       [(= rem 8) (case8 evens odds)]
       [(= rem 2) (case2 evens odds)]
       [else (append evens odds)]))

(define (case3or9 evens odds)

 (for/fold ([acum (append (cdr evens) (list (car evens)) odds)])
           ([i (in-list '(1 3))])
   (append (remove (list-ref acum i) acum) (list i))))

(define (case8 evens odds)

 (append evens (switch-pairs odds)))

(define (case2 evens odds)

 (define nums (append evens odds))
 (define idx (map (λ(i) (list-ref nums i)) '(1 3 5)))
 (append (remove (caddr idx)
                 (switch-places (car idx) (cadr idx) nums))
         '(5)))

(define (queens n)

 (define position-numbers (position-queens n))
 (define positions-on-board
   (for/list ([i n]) (cons i (sub1 (list-ref position-numbers i)))))
 (for/list ([x n])
   (for/list ([y n])
     (if (member (cons x y) positions-on-board) "Q" "."))))

(define (print-queens n)

 (for ([x (queens n)]) (displayln (string-join x))))

</lang>

Rascal

<lang Rascal>import Prelude;

public set[list[int]] Nqueens(int n){ cols = upTill(n); result = {}; for (vector <- permutations(cols)){ if (n == size({vector[j] + j |j <- cols}) && n == size({vector[j] - j |j <- cols})) result += vector;} return result; }</lang>

REXX

The logic was borrowed from the Fortran example and modified for speed;   the display of the chessboard was
also changed to allow for the aspect ratio of display terminals to make the chessboard appear square.

Logic was added to the REXX program to preserve the color for a black square when a queen occupies it.

About half of the REXX code involves presentation (and colorization achieved through dithering) of the chessboard and queens. <lang rexx>/*REXX program places N queens on an NxN chessboard (the eight queens problem). */ parse arg N . /*obtain optional argument from the CL.*/ if N== | N=="," then N= 8 /*Not specified: Then use the default.*/ if N<1 then call nOK /*display a message, the board is bad. */ rank= 1; file= 1; #=0 /*starting rank&file; #≡number queens.*/ @.= 0; pad= left(, 9* (N<18) ) /*define empty board; set indentation.*/

                                                /* [↓]  rank&file ≡ chessboard row&cols*/
 do  while #<N;     @.file.rank= 1              /*keep placing queens until we're done.*/
 if ok(file, rank)  then do; file= 1;  #= # + 1 /*Queen not being attacked? Then eureka*/
                             rank= rank + 1     /*use another attempt at another rank. */
                             iterate            /*go and try another queen placement.  */
                         end                    /* [↑]  found a good queen placement.  */
 @.file.rank= 0                                 /*It isn't safe.  So remove this queen.*/
 file= file+1                                   /*So, try the next (higher) chess file.*/
              do  while file>N;    rank= rank - 1;            if rank==0  then call nOK
                 do j=1  for N;    if \@.j.rank  then iterate               /*¿ocupado?*/
                 @.j.rank= 0;      #= # - 1;          file= j + 1;        leave
                 end  /*j*/
              end     /*while file>N*/
 end                  /*while    #<N*/

call show exit 1 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ nOK: say; say "No solution for" N 'queens.'; say; exit 0 /*──────────────────────────────────────────────────────────────────────────────────────*/ ok: parse arg f,r; fp= f + 1; rm= r - 1 /*if return≡0, then queen isn't safe. */

             do k=1          for rm;               if @.f.k  then return 0;           end
    f= f-1;  do k=rm  by -1  for rm  while f\==0;  if @.f.k  then return 0;  f= f-1;  end
    f= fp;   do k=rm  by -1  for rm  while f <=N;  if @.f.k  then return 0;  f= f+1;  end
    return 1   /*1≡queen is safe. */            /*  ↑↑↑↑↑↑↑↑    is queen under attack? */

/*──────────────────────────────────────────────────────────────────────────────────────*/ show: say 'A solution for ' N " queens:" /*display a title to the terminal.*/

     g= substr( copies("╬═══",  N)  ,2)              /*start of all cells on chessboard*/
     say;      say pad  translate('╔'g"╗", '╦', "╬") /*display top rank (of the board).*/
     line   = '╠'g"╣";   dither= "▓";   ditherQ= '░' /*define a line for cell boundary.*/
     bar    = '║'    ;   queen = "Q"                 /*kinds:   horiz.,  vert.,  salad.*/
     Bqueen = ditherQ || queen || ditherQ            /*glyph befitting a black square Q*/
     Wqueen =         ' 'queen" "                    /*  "       "     " white    "   "*/
       do   rank=1  for N;     if rank\==1  then say pad line;    _=  /*show rank sep. */
         do file=1  for N;         B = (file + rank)  //  2           /*square black ? */
         Qgylph= Wqueen;       if  B  then Qgylph= Bqueen             /*use dithered Q.*/
         if @.file.rank then _= _ || bar || Qgylph                    /*3─char Q symbol*/
                        else if B then _=_ || bar || copies(dither,3) /*dithering      */
                                  else _=_ || bar || copies(  ' ' ,3) /* 3 blanks      */
         end   /*file*/                              /* [↑]  preserve square─ish board.*/
       say pad  _ || bar                             /*show a single rank of the board.*/
       end     /*rank*/                              /*80 cols  can view a 19x19 board.*/
     say pad  translate('╚'g"╝", '╩', "╬");   return /*display the last rank (of board)*/</lang>
output   when using the default of an   8x8   chessboard:
A solution for  8  queens:

          ╔═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╗
          ║ Q ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║
          ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
          ║▓▓▓║   ║▓▓▓║   ║░Q░║   ║▓▓▓║   ║
          ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
          ║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║░Q░║
          ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
          ║▓▓▓║   ║▓▓▓║   ║▓▓▓║ Q ║▓▓▓║   ║
          ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
          ║   ║▓▓▓║ Q ║▓▓▓║   ║▓▓▓║   ║▓▓▓║
          ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
          ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║░Q░║   ║
          ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
          ║   ║░Q░║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║
          ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
          ║▓▓▓║   ║▓▓▓║ Q ║▓▓▓║   ║▓▓▓║   ║
          ╚═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╝
output   when using   20x20   chessboard with the input of:     20
A solution for  20  queens:

 ╔═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╦═══╗
 ║ Q ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║▓▓▓║   ║░Q░║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║   ║▓▓▓║   ║▓▓▓║ Q ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║▓▓▓║ Q ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║   ║▓▓▓║   ║░Q░║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║░Q░║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║ Q ║▓▓▓║   ║▓▓▓║   ║▓▓▓║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║ Q ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║░Q░║   ║▓▓▓║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║ Q ║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║ Q ║▓▓▓║   ║▓▓▓║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║░Q░║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║░Q░║   ║▓▓▓║   ║▓▓▓║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║░Q░║   ║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║░Q░║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║ Q ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║ Q ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║ Q ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║   ║▓▓▓║   ║▓▓▓║   ║░Q░║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║
 ╠═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╬═══╣
 ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║░Q░║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║▓▓▓║   ║
 ╚═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╩═══╝

Ruby

This implements the heuristics found on the wikipedia page to return just one solution <lang ruby># 1. Divide n by 12. Remember the remainder (n is 8 for the eight queens

  1. puzzle).
  2. 2. Write a list of the even numbers from 2 to n in order.
  3. 3. If the remainder is 3 or 9, move 2 to the end of the list.
  4. 4. Append the odd numbers from 1 to n in order, but, if the remainder is 8,
  5. switch pairs (i.e. 3, 1, 7, 5, 11, 9, …).
  6. 5. If the remainder is 2, switch the places of 1 and 3, then move 5 to the
  7. end of the list.
  8. 6. If the remainder is 3 or 9, move 1 and 3 to the end of the list.
  9. 7. Place the first-column queen in the row with the first number in the
  10. list, place the second-column queen in the row with the second number in
  11. the list, etc.


def n_queens(n)

 if n == 1
   return "Q"
 elsif n < 4
   puts "no solutions for n=#{n}"
   return ""
 end

 evens = (2..n).step(2).to_a
 odds = (1..n).step(2).to_a

 rem = n % 12  # (1)
 nums = evens  # (2)

 nums.rotate if rem == 3 or rem == 9  # (3)

 # (4)
 if rem == 8
   odds = odds.each_slice(2).flat_map(&:reverse)
 end
 nums.concat(odds)

 # (5)
 if rem == 2
   nums[nums.index(1)], nums[nums.index(3)] = nums[nums.index(3)], nums[nums.index(1)]
   nums << nums.delete(5)
 end

 # (6)
 if rem == 3 or rem == 9
   nums << nums.delete(1)
   nums << nums.delete(3)
 end

 # (7)
 nums.map do |q|
   a = Array.new(n,".")
   a[q-1] = "Q"
   a*(" ")
 end

end

(1 .. 15).each {|n| puts "n=#{n}"; puts n_queens(n); puts}</lang>

Output:
n=1
Q

n=2
no solutions for n=2


n=3
no solutions for n=3


n=4
. Q . .
. . . Q
Q . . .
. . Q .

n=5
. Q . . .
. . . Q .
Q . . . .
. . Q . .
. . . . Q

n=6
. Q . . . .
. . . Q . .
. . . . . Q
Q . . . . .
. . Q . . .
. . . . Q .

n=7
. Q . . . . .
. . . Q . . .
. . . . . Q .
Q . . . . . .
. . Q . . . .
. . . . Q . .
. . . . . . Q

n=8
. Q . . . . . .
. . . Q . . . .
. . . . . Q . .
. . . . . . . Q
. . Q . . . . .
Q . . . . . . .
. . . . . . Q .
. . . . Q . . .

n=9
. . . Q . . . . .
. . . . . Q . . .
. . . . . . . Q .
. Q . . . . . . .
. . . . Q . . . .
. . . . . . Q . .
. . . . . . . . Q
Q . . . . . . . .
. . Q . . . . . .

n=10
. Q . . . . . . . .
. . . Q . . . . . .
. . . . . Q . . . .
. . . . . . . Q . .
. . . . . . . . . Q
Q . . . . . . . . .
. . Q . . . . . . .
. . . . Q . . . . .
. . . . . . Q . . .
. . . . . . . . Q .

n=11
. Q . . . . . . . . .
. . . Q . . . . . . .
. . . . . Q . . . . .
. . . . . . . Q . . .
. . . . . . . . . Q .
Q . . . . . . . . . .
. . Q . . . . . . . .
. . . . Q . . . . . .
. . . . . . Q . . . .
. . . . . . . . Q . .
. . . . . . . . . . Q

n=12
. Q . . . . . . . . . .
. . . Q . . . . . . . .
. . . . . Q . . . . . .
. . . . . . . Q . . . .
. . . . . . . . . Q . .
. . . . . . . . . . . Q
Q . . . . . . . . . . .
. . Q . . . . . . . . .
. . . . Q . . . . . . .
. . . . . . Q . . . . .
. . . . . . . . Q . . .
. . . . . . . . . . Q .

n=13
. Q . . . . . . . . . . .
. . . Q . . . . . . . . .
. . . . . Q . . . . . . .
. . . . . . . Q . . . . .
. . . . . . . . . Q . . .
. . . . . . . . . . . Q .
Q . . . . . . . . . . . .
. . Q . . . . . . . . . .
. . . . Q . . . . . . . .
. . . . . . Q . . . . . .
. . . . . . . . Q . . . .
. . . . . . . . . . Q . .
. . . . . . . . . . . . Q

n=14
. Q . . . . . . . . . . . .
. . . Q . . . . . . . . . .
. . . . . Q . . . . . . . .
. . . . . . . Q . . . . . .
. . . . . . . . . Q . . . .
. . . . . . . . . . . Q . .
. . . . . . . . . . . . . Q
. . Q . . . . . . . . . . .
Q . . . . . . . . . . . . .
. . . . . . Q . . . . . . .
. . . . . . . . Q . . . . .
. . . . . . . . . . Q . . .
. . . . . . . . . . . . Q .
. . . . Q . . . . . . . . .

n=15
. . . Q . . . . . . . . . . .
. . . . . Q . . . . . . . . .
. . . . . . . Q . . . . . . .
. . . . . . . . . Q . . . . .
. . . . . . . . . . . Q . . .
. . . . . . . . . . . . . Q .
. Q . . . . . . . . . . . . .
. . . . Q . . . . . . . . . .
. . . . . . Q . . . . . . . .
. . . . . . . . Q . . . . . .
. . . . . . . . . . Q . . . .
. . . . . . . . . . . . Q . .
. . . . . . . . . . . . . . Q
Q . . . . . . . . . . . . . .
. . Q . . . . . . . . . . . .

Alternate solution

If there is not specification, it outputs all solutions. <lang ruby>class Queen

 attr_reader :count
 
 def initialize(num=8, out=true)
   @num   = num
   @out   = out
   @row   = *0...@num
   @frame = "+-" + "--" * @num + "+"
   @count = 0
   add = Array.new(2 * @num - 1, true)       # \ direction check
   sub = Array.new(2 * @num - 1, true)       # / direction check
   solve([], add, sub)
 end
 
 private
 def solve(row, add, sub)
   y = row.size
   if y == @num
     print_out(row) if @out
     @count += 1
   else
     (@row-row).each do |x|
       next unless add[x+y] and sub[x-y]
       add[x+y] = sub[x-y] = false
       solve(row+[x], add, sub)
       add[x+y] = sub[x-y] = true
     end
   end
 end
 
 def print_out(row)
   puts @frame
   row.each do |i|
     line = @num.times.map {|j| j==i ? "Q " : ". "}.join
     puts "| #{line}|"
   end
   puts @frame
 end

end</lang>

Example: <lang ruby>(1..6).each do |n|

 puzzle = Queen.new(n)
 puts " #{n} Queen : #{puzzle.count}"

end

(7..12).each do |n|

 puzzle = Queen.new(n, false)                # do not display
 puts " #{n} Queen : #{puzzle.count}"

end</lang>

Output:
+---+
| Q |
+---+
 1 Queen : 1
 2 Queen : 0
 3 Queen : 0
+---------+
| . Q . . |
| . . . Q |
| Q . . . |
| . . Q . |
+---------+
+---------+
| . . Q . |
| Q . . . |
| . . . Q |
| . Q . . |
+---------+
 4 Queen : 2
+-----------+
| Q . . . . |
| . . Q . . |
| . . . . Q |
| . Q . . . |
| . . . Q . |
+-----------+
+-----------+
| Q . . . . |
| . . . Q . |
| . Q . . . |
| . . . . Q |
| . . Q . . |
+-----------+
+-----------+
| . Q . . . |
| . . . Q . |
| Q . . . . |
| . . Q . . |
| . . . . Q |
+-----------+
+-----------+
| . Q . . . |
| . . . . Q |
| . . Q . . |
| Q . . . . |
| . . . Q . |
+-----------+
+-----------+
| . . Q . . |
| Q . . . . |
| . . . Q . |
| . Q . . . |
| . . . . Q |
+-----------+
+-----------+
| . . Q . . |
| . . . . Q |
| . Q . . . |
| . . . Q . |
| Q . . . . |
+-----------+
+-----------+
| . . . Q . |
| Q . . . . |
| . . Q . . |
| . . . . Q |
| . Q . . . |
+-----------+
+-----------+
| . . . Q . |
| . Q . . . |
| . . . . Q |
| . . Q . . |
| Q . . . . |
+-----------+
+-----------+
| . . . . Q |
| . Q . . . |
| . . . Q . |
| Q . . . . |
| . . Q . . |
+-----------+
+-----------+
| . . . . Q |
| . . Q . . |
| Q . . . . |
| . . . Q . |
| . Q . . . |
+-----------+
 5 Queen : 10
+-------------+
| . Q . . . . |
| . . . Q . . |
| . . . . . Q |
| Q . . . . . |
| . . Q . . . |
| . . . . Q . |
+-------------+
+-------------+
| . . Q . . . |
| . . . . . Q |
| . Q . . . . |
| . . . . Q . |
| Q . . . . . |
| . . . Q . . |
+-------------+
+-------------+
| . . . Q . . |
| Q . . . . . |
| . . . . Q . |
| . Q . . . . |
| . . . . . Q |
| . . Q . . . |
+-------------+
+-------------+
| . . . . Q . |
| . . Q . . . |
| Q . . . . . |
| . . . . . Q |
| . . . Q . . |
| . Q . . . . |
+-------------+
 6 Queen : 4
 7 Queen : 40
 8 Queen : 92
 9 Queen : 352
 10 Queen : 724
 11 Queen : 2680
 12 Queen : 14200

Run BASIC

<lang runbasic>[loop] input "How many queens (N>=4)";n if n < 4 then

print "Must be greater than 4"
goto [loop]

end if

dim plot$(100,100) dim q(n+20) dim e(n+20) dim o(n+20) r=n mod 6 if r<>2 and r<>3 then

 gosub [samp]
 goto [shoBoard]

end if for i=1 to int(n/2)

 e(i) = 2 * i

next for i=1 to int((n/2)+.5)

o(i) = 2 *i-1

next if r = 2 then gosub [edt2] if r = 3 then gosub [edt3] s = 1 for i=1 to n

 if e(i)>0 then 
   q(s) = e(i)
   s    = s+1
 end if

next for i=1 to n

 if o(i) > 0 then 
   q(s) = o(i)
   s    = s + 1
 end if

next ' print board [shoBoard] cls for i = 1 to n

 plot$(i,26-q(i)) = "*"
 plot$(i,24-n)    = chr$(96+i)
 plot$(n+1,26-i)  = str$(i)

next i for ii = 1 to 100

for jj = 1 to 100
 print left$(plot$(jj,ii)+" ",1);
next jj

print next ii end

' the simple case [samp] p = 1 for i = 1 to n

 if i mod 2=0 then 
   q(p) = i
   p    = p + 1
 end if

next i for i = 1 to n

 if i mod 2 then 
   q(p) = i
   p    = p + 1
 end if

next return ' edit list when remainder is 2 [edt2] for i=1 to n

 if o(i) = 3 then 
   o(i) = 1 
  else 
   if o(i)=1 then o(i) = 3
 end if
 if o(i) = 5 then 
   o(i)= o(i) -1 
  else 
   if o(i) = 0 then 
     o(i) = 5
     return
   end if
 end if

next

' edit list when remainder is 3 [edt3] for i = 1 to n

 if e(i) = 2 then 
   e(i)  = e(i)-1 
  else 
   if e(i) = 0 then 
     e(i) = 2
     goto [more]
   end if
 end if

next i ' edit list some more [more] for i = 1 to n

 if (o(i)=1 or o(i)=3) then 
   o(i) = o(i)-1 
  else 
   if o(i) = 0 then 
     o(i)   = 1
     o(i+1) = 3
     return
   end if
 end if

next</lang>

abcdefgh                                                                                            
   *    8                                                                                           
       *7                                                                                           
  *     6                                                                                           
        5                                                                                           
 *    * 4                                                                                           
    *   3                                                                                           
*       2                                                                                           
     *  1

Rust

<lang rust>const N: usize = 8;

fn try(mut board: &mut [[bool; N]; N], row: usize, mut count: &mut i64) {

  if row == N {
      *count += 1;
      for r in board.iter() {
          println!("{}", r.iter().map(|&x| if x {"x"} else {"."}.to_string()).collect::<Vec<String>>().join(" "))
      }
      println!("");
      return
  }
  for i in 0..N {
      let mut ok: bool = true;
      for j in 0..row {
          if board[j][i]
              || i+j >= row && board[j][i+j-row]
              || i+row < N+j && board[j][i+row-j]
          { ok = false }
      }
      if ok {
          board[row][i] = true;
          try(&mut board, row+1, &mut count);
          board[row][i] = false;
      }
  }

}

fn main() {

  let mut board: [[bool; N]; N] = [[false; N]; N];
  let mut count: i64 = 0;
  try (&mut board, 0, &mut count);
  println!("Found {} solutions", count)

}</lang>

Using Iterators

Solution to the puzzle using an iterator that yields the 92 solutions for 8 queens. <lang rust>use std::collections::LinkedList; use std::iter::IntoIterator;

fn main() {

   for (n, s) in NQueens::new(8).enumerate() {
       println!("Solution #{}:\n{}\n", n + 1, s.to_string());
   }

}

fn permutations<'a, T, I>(collection: I) -> Box<Iterator<Item=LinkedList<T>> + 'a>

   where I: 'a + IntoIterator<Item=T> + Clone,
         T: 'a + PartialEq + Copy + Clone {
   if collection.clone().into_iter().count() == 0 {
       Box::new(vec![LinkedList::new()].into_iter())
   }
   else { 
       Box::new(
           collection.clone().into_iter().flat_map(move |i| {
               permutations(collection.clone().into_iter()
                   .filter(move |&i0| i != i0)
                   .collect::<Vec<_>>())
                   .map(move |mut l| {l.push_front(i); l})
           })
       )
   }

}

pub struct NQueens {

   iterator: Box<Iterator<Item=NQueensSolution>>

}

impl NQueens {

   pub fn new(n: u32) -> NQueens {
       NQueens {
           iterator: Box::new(permutations(0..n)
               .filter(|vec| {
                   let iter = vec.iter().enumerate();
                   iter.clone().all(|(col, &row)| {
                       iter.clone().filter(|&(c,_)| c != col)
                           .all(|(ocol, &orow)| {
                           col as i32 - row as i32 != 
                               ocol as i32 - orow as i32 &&
                           col as u32 + row != ocol as u32 + orow 
                       })
                   })
               })
               .map(|vec| NQueensSolution(vec))
           )
       }
   }

}

impl Iterator for NQueens {

   type Item = NQueensSolution;
   fn next(&mut self) -> Option<NQueensSolution> {
       self.iterator.next()
   }

}

pub struct NQueensSolution(LinkedList<u32>);

impl ToString for NQueensSolution {

   fn to_string(&self) -> String {
       let mut str = String::new();
       for &row in self.0.iter() {
           for r in 0..self.0.len() as u32 {
               if r == row {
                   str.push_str("Q ");
               } else {
                   str.push_str("- ");
               }
           }
           str.push('\n');
       }
       str
   }

}</lang>

SAS

<lang sas>/* Store all 92 permutations in a SAS dataset. Translation of Fortran 77 */ data queens; array a{8} p1-p8; array s{8}; array u{30}; n=8; do i=1 to n; a(i)=i; end; do i=1 to 4*n-2; u(i)=0; end; m=0; i=1; r=2*n-1; goto L40; L30: s(i)=j; u(p)=1; u(q+r)=1; i=i+1; L40: if i>n then goto L80; j=i; L50: z=a(i); y=a(j); p=i-y+n; q=i+y-1; a(i)=y; a(j)=z; if u(p)=0 and u(q+r)=0 then goto L30; L60: j=j+1; if j<=n then goto L50; L70: j=j-1; if j=i then goto L90; z=a(i); a(i)=a(j); a(j)=z; goto L70; L80: m=m+1; output; L90: i=i-1; if i=0 then goto L100; p=i-a(i)+n; q=i+a(i)-1; j=s(i); u(p)=0; u(q+r)=0; goto L60; L100: put n m; keep p1-p8; run;</lang>

Scala

Extends a Tuple2[T,T] (also represented as (T, T)) using an enriched implicit class to define check that positions are safe or threatened.

Lazily generates permutations with an Iterator.

<lang scala> object NQueens {

 private implicit class RichPair[T](
   pair: (T,T))(
   implicit num: Numeric[T]
 ) {
   import num._
   def safe(x: T, y: T): Boolean =
     pair._1 - pair._2 != abs(x - y)
 }
 
 def solve(n: Int): Iterator[Seq[Int]] = {
   (0 to n-1)
     .permutations
     .filter { v =>
       (0 to n-1).forall { y =>
         (y+1 to n-1).forall { x =>
           (x,y).safe(v(x),v(y))
         }
       }
     }
 }
 def main(args: Array[String]): Unit = {
   val n = args.headOption.getOrElse("8").toInt
   val (solns1, solns2) = solve(n).duplicate
   solns1
     .zipWithIndex
     .foreach { case (soln, i) =>
       Console.out.println(s"Solution #${i+1}")
       output(n)(soln)
     }
   val n_solns = solns2.size
   if (n_solns == 1) {
     Console.out.println("Found 1 solution")
   } else {
     Console.out.println(s"Found $n_solns solutions")
   }
 }
 def output(n: Int)(board: Seq[Int]): Unit = {
   board.foreach { queen =>
     val row = 
       "_|" * queen + "Q" + "|_" * (n-queen-1)
     Console.out.println(row)
   }
 }

} </lang>

scala> NQueens.main(Array("8"))
Solution #1
Q|_|_|_|_|_|_|_
_|_|_|_|Q|_|_|_
_|_|_|_|_|_|_|Q
_|_|_|_|_|Q|_|_
_|_|Q|_|_|_|_|_
_|_|_|_|_|_|Q|_
_|Q|_|_|_|_|_|_
_|_|_|Q|_|_|_|_

Solution #2
Q|_|_|_|_|_|_|_
_|_|_|_|_|Q|_|_
_|_|_|_|_|_|_|Q
_|_|Q|_|_|_|_|_
_|_|_|_|_|_|Q|_
_|_|_|Q|_|_|_|_
_|Q|_|_|_|_|_|_
_|_|_|_|Q|_|_|_
...
Found 92 solutions

Scheme

This is a simple breadth-first technique to retrieve all solutions.

<lang scheme> (import (scheme base)

       (scheme write)
       (srfi 1))
return list of solutions to n-queens problem

(define (n-queens n) ; breadth-first solution

 (define (place-initial-row) ; puts a queen on each column of row 0
   (list-tabulate n (lambda (col) (list (cons 0 col)))))
 (define (place-on-row soln-so-far row)
   (define (invalid? col)
     (any (lambda (posn) 
            (or (= col (cdr posn)) ; on same column
                (= (abs (- row (car posn))) ; on same diagonal
                   (abs (- col (cdr posn))))))
          soln-so-far))
   ;
   (do ((col 0 (+ 1 col))
        (res '() (if (invalid? col)
                   res
                   (cons (cons (cons row col) soln-so-far)
                         res))))
     ((= col n) res)))
 ;
 (do ((res (place-initial-row) 
           (apply append 
                  (map (lambda (soln-so-far) (place-on-row soln-so-far row))
                       res)))
      (row 1 (+ 1 row)))
   ((= row n) res)))
display solutions in 2-d array form

(define (pretty-print solutions n)

 (define (posn->index posn)
   (+ (* n (cdr posn))
      (car posn)))
 (define (pp solution)
   (let ((board (make-vector (square n) ".")))
     (for-each (lambda (queen) (vector-set! board 
                                            (posn->index queen)
                                            "Q"))
               solution)
     (let loop ((row 0)
                (col 0))
       (cond ((= row n) 
              (newline))
             ((= col n) 
              (newline)
              (loop (+ 1 row) 0))
             (else
               (display (vector-ref board (posn->index (cons row col))))
               (loop row (+ 1 col)))))))
 ;
 (display (string-append "Found "
                         (number->string (length solutions))
                         " solutions for n="
                         (number->string n)
                         "\n\n"))
 (for-each pp solutions))
create table of number of solutions

(do ((n 1 (+ 1 n)))

 ((> n 10) )
 (display n)
 (display " ")
 (display (length (n-queens n)))
 (newline))
show some examples

(pretty-print (n-queens 1) 1) (pretty-print (n-queens 2) 2) (pretty-print (n-queens 3) 3) (pretty-print (n-queens 4) 4) (pretty-print (n-queens 5) 5) (pretty-print (n-queens 8) 8) </lang>

Output:
1 1
2 0
3 0
4 2
5 10
6 4
7 40
8 92
9 352
10 724
Found 1 solutions for n=1

Q

Found 0 solutions for n=2

Found 0 solutions for n=3

Found 2 solutions for n=4

.Q..
...Q
Q...
..Q.

..Q.
Q...
...Q
.Q..

Found 10 solutions for n=5

Q....
...Q.
.Q...
....Q
..Q..

Q....
..Q..
....Q
.Q...
...Q.

[[ etc ]]
Found 92 solutions for n=8

Q.......
......Q.
....Q...
.......Q
.Q......
...Q....
.....Q..
..Q.....

Q.......
......Q.
...Q....
.....Q..
.......Q
.Q......
....Q...
..Q.....

[[ etc ]]

Scilab

Naive brute-force search. <lang>//Length of board side Board_size = 8;

function flag_out = no_attack(side, board, pos)

   //Evaluates (pos(1),pos(2)) in board if it's not on any queen attacking range
   //side (scalar): board's side length
   //board (sidexside matrix): matrix of 0s and 1s representing queens on a board
   //pos (1x2 matrix): postition on board to be evaluated
   //flag_out (bool): %T if position is available, and %F otherwise
   
   //Counting queens on rows and columns
   row_col = sum(board(pos(1),:)) + sum(board(:,pos(2)));
   
   //Counting queens on first diagonal
   diag_1 = sum(...
                diag(board, 0 +...
                    (pos(2)>pos(1))*(pos(2)-pos(1)) +...
                    (pos(1)>pos(2))*(pos(2)-pos(1))...
                    )...
                );
   
   //Counting queens on second diagonal
   a = pos(1) + pos(2);
   if a<=side+1 then
       rows = [1:a-1]
       cols = a - rows;
   else
       d = 2*(side+1)-a-1;
       rows = [side:-1:side-d+1]
       cols  = a - rows;
   end
   diag_2 = 0;
   for i = 1:length(rows)
       diag_2 = diag_2 + board(rows(i),cols(i));
   end
   
   //Check if there's any queen
   flag_out = ( ~(row_col | diag_1 | diag_2) );

endfunction

//Solution counter Sol_count = 0;

//"Soltion found" flag Sol_found = %F;

//Empty board Board = zeros(Board_size,Board_size);

//Matrix for backtracking Queens= zeros(Board_size,2);

//Queens counter N_queens = Board_size;

//Row and column counters i = 1; j = 1;

//Start counting time tic();

//Begin search while i <= Board_size

   while j <= Board_size
       //Availability flag: check position (i,j)
       flag = %F;
       if (0 < i & 0 < j) & (i <= Board_size & j <= Board_size) then
           flag = no_attack(Board_size,Board,[i j]);
       end
       
       //Reset solution flag
       Sol_found = %F;
       
       if flag then
           //Put a queen on the board if position is available
           Board(i,j) = 1;
           
           //Update number of remaining queens
           N_queens = N_queens - 1;
           
           //Keep track of queens positions
           Queens(Board_size - N_queens,:) = [i j];
           
           //Jump to next row end of line is reached
           if i+1<=Board_size
               i = i + 1;
           end
           //Start over from the begining of new line
           j = 0;
           
           //Count and flag a solution if all queens have
           //been placed on the board
           if N_queens == 0 then
               Sol_count = Sol_count + 1;
               Sol_found = %T;
               break
           end
       end
       
       //Increment column number
       j = j + 1;
   end
   
   //Increment row number and start from first column
   if ~Sol_found then
       i = i + 1;
       j = 1;
       
       //Limiting placement of the first queen to the first row
       //Stop searching solutions if columns of first row 
       //have been tested
       if i == 2 & j == 1 & sum(Board) == 0  then
           break
       end
   end
   
   //Backtracking: if (i,j) reaches the and of the board
   //and there are queens left to be placed on it
   if ~Sol_found & i == Board_size + 1 & j == 1 then
       ind = Board_size - N_queens;
       if ind > 0 then
           //Recover last queen's position
           i = Queens(ind,1);
           j = Queens(ind,2);
           
           //Remove it from the board and from the counter
           Board(i,j) = 0;
           Queens(ind,:) = [0 0];
           N_queens = N_queens + 1;
           
           //Move to next column
           j = j + 1;
       end
   end 

end

//Printing result on console disp("There are "+string(Sol_count)+" solutions for a "+...

    string(Board_size)+"x"+string(Board_size)+" board.");

//Time elapsed disp("Time: "+string(toc())+"s.");</lang>

Output:
 There are 92 solutions for a 8x8 board.

 Time: 58.705327s.

Seed7

<lang seed7>$ include "seed7_05.s7i";

var array integer: board is 8 times 0; var integer: solutionNum is 0;

const func boolean: safe (in integer: y) is func

 result
   var boolean: safe is TRUE;
 local
   var integer: i is 1;
 begin
   while i < y and safe do
     safe := board[y - i] <> board[y] and
             board[y - i] <> board[y] - i and
             board[y - i] <> board[y] + i;
     incr(i);
   end while;
 end func;

const proc: putBoard is func

 local
   var integer: y is 0;
 begin
   incr(solutionNum);
   writeln;
   writeln("Solution " <& solutionNum);
   for y range 1 to 8 do
     writeln("|_" mult pred(board[y]) <& "|Q" <& "|_" mult (8 - board[y]) <& "|");
   end for;
 end func;

const proc: main is func

 local
   var integer: y is 1;
 begin
   while y >= 1 do
     repeat
       incr(board[y]);
     until board[y] > 8 or safe(y);
     if board[y] <= 8 then
       if y < 8 then
         incr(y);
         board[y] := 0;
       else
         putBoard;
       end if;
     else
       decr(y);
     end if;
   end while;
 end func;</lang>

Sidef

Translation of: Perl 6

<lang ruby>func N_queens_solution(N = 8) {

   func collision(field, row) {
       for i in (^row) {
           var distance = (field[i] - field[row])
           distance ~~ [0, row-i, i-row] && return true
       }
       return false
   }
   func search(field, row) {
       row == N && return field
       for i in (^N) {
           field[row] = i
           if (!collision(field, row)) {
               return (__FUNC__(field, row+1) || next)
           }
       }
       return []
   }
   for i in (0 .. N>>1) {
       if (var r = search([i], 1)) {
           return r
       }
   }

}

for n in (1..15) {

   say "#{'%2d' % n}: #{N_queens_solution(n) || 'No solution'}"

}</lang>

Output:
 1: [0]
 2: No solution
 3: No solution
 4: [1, 3, 0, 2]
 5: [0, 2, 4, 1, 3]
 6: [1, 3, 5, 0, 2, 4]
 7: [0, 2, 4, 6, 1, 3, 5]
 8: [0, 4, 7, 5, 2, 6, 1, 3]
 9: [0, 2, 5, 7, 1, 3, 8, 6, 4]
10: [0, 2, 5, 7, 9, 4, 8, 1, 3, 6]
11: [0, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9]
12: [0, 2, 4, 7, 9, 11, 5, 10, 1, 6, 8, 3]
13: [0, 2, 4, 1, 8, 11, 9, 12, 3, 5, 7, 10, 6]
14: [0, 2, 4, 6, 11, 9, 12, 3, 13, 8, 1, 5, 7, 10]
15: [0, 2, 4, 1, 9, 11, 13, 3, 12, 8, 5, 14, 6, 10, 7]

SNOBOL4

<lang SNOBOL4>

  • N queens problem
  • Set N to the desired number. The program prints out all solution boards.

N = 5 NM1 = N - 1; NP1 = N + 1; NSZ = N * NP1; &STLIMIT = 10 ** 9; &ANCHOR = 1 DEFINE('SOLVE(B)I')

  • This pattern tests if the first queen attacks any of the others:

TEST = BREAK('Q') 'Q' (ARBNO(LEN(N) '-') LEN(N) 'Q' + | ARBNO(LEN(NP1) '-') LEN(NP1) 'Q' + | ARBNO(LEN(NM1) '-') LEN(NM1) 'Q') P = LEN(NM1) . X LEN(1); L = 'Q' DUPL('-',NM1) ' ' SOLVE()  :(END) SOLVE EQ(SIZE(B),NSZ) :S(PRINT)

  • Add another row with a queen:

B = L B LOOP I = LT(I,N) I + 1 :F(RETURN) B TEST :S(NEXT) SOLVE(B)

  • Try queen in next square:

NEXT B P = '-' X :(LOOP) PRINT SOLUTION = SOLUTION + 1 OUTPUT = 'Solution number ' SOLUTION ' is:' PRTLOOP B LEN(NP1) . OUTPUT = :S(PRTLOOP)F(RETURN) END </lang>

Sparkling

This is somewhat a transliteration of the "shortened" C++ code above.

<lang sparkling>let print_table = function (pos) { pos.foreach(function (_, i) { stdout.printf(" %c", 'a' + i); });

stdout.write("\n");

pos.foreach(function (col, row) { stdout.printf("%d", row + 1); stdout.printf("%s #\n", range(col).reduce("", function (s, t) { return s .. " "; })); });

stdout.write("\n\n"); };

let threatens = function (row_a, col_a, row_b, col_b) { return row_a == row_b or col_a == col_b or abs(row_a - row_b) == abs(col_a - col_b); };

let good = function(pos, end_idx) { return pos.all(function (col_a, row_a) { return range(row_a + 1, end_idx).all(function (row_b) { let col_b = pos[row_b]; return not threatens(row_a, col_a, row_b, col_b); }); }); };

// Returns number of solutions let n_queens = function (pos, index) { if index >= pos.length { if good(pos, index) { print_table(pos); return 1; }

return 0; }

if not good(pos, index) { return 0; }

return pos.map(function (_, col) { pos[index] = col; return n_queens(pos, index + 1); }).reduce(0, function (a, b) { return a + b; }); };

stdout.printf("%d solutions\n", n_queens(range(8), 0));</lang>

SQL

This implementation, which solves the problem for n=8, makes use of Common Table Expressions and has been tested with SQLite (>=3.8.3) and Postgres (please note the related comment in the code). It might be compatible with other SQL dialects as well. A gist with the SQL file and a Python script that runs it using SQLite is available on Github: https://gist.github.com/adewes/5e5397b693eb50e67f07

<lang SQL> WITH RECURSIVE

 positions(i) as (
   VALUES(0)
   UNION SELECT ALL
   i+1 FROM positions WHERE i < 63
   ),
 solutions(board, n_queens) AS (
   SELECT '----------------------------------------------------------------', cast(0 AS bigint) 
     FROM positions
   UNION
   SELECT
     substr(board, 1, i) || '*' || substr(board, i+2),n_queens + 1 as n_queens
     FROM positions AS ps, solutions 
   WHERE n_queens < 8
     AND substr(board,1,i) != '*'
     AND NOT EXISTS (
       SELECT 1 FROM positions WHERE
         substr(board,i+1,1) = '*' AND
           (
               i % 8 = ps.i %8 OR
               cast(i / 8 AS INT) = cast(ps.i / 8 AS INT) OR
               cast(i / 8 AS INT) + (i % 8) = cast(ps.i / 8 AS INT) + (ps.i % 8) OR
               cast(i / 8 AS INT) - (i % 8) = cast(ps.i / 8 AS INT) - (ps.i % 8)
           )
       LIMIT 1
       ) 
  ORDER BY n_queens DESC -- remove this when using Postgres (they don't support ORDER BY in CTEs)
 )

SELECT board,n_queens FROM solutions WHERE n_queens = 8;

</lang>

Standard ML

This implementation uses failure continuations for backtracking. <lang Standard ML> (*

* val threat : (int * int) -> (int * int) -> bool
* Returns true iff the queens at the given positions threaten each other
*)

fun threat (x, y) (x', y') =

 x = x' orelse y = y' orelse abs(x - x') = abs(y - y');

(*

* val conflict : (int * int) -> (int * int) list -> bool
* Returns true if there exists a conflict with the position and the list of queens.
*)

fun conflict pos = List.exists (threat pos);

(*

* val addqueen : (int * int * (int * int) list * (unit -> (int * int) list option)) -> (int * int) list option
* Returns either NONE in the case that no solution exists or SOME(l) where l is a list of positions making up the solution.
*)

fun addqueen(i, n, qs, fc) =

 let
   fun try j =
     if j > n then fc()
     else if (conflict (i, j) qs) then try (j + 1)
     else if i = n then SOME((i, j)::qs)
     else addqueen(i + 1, n, (i,j)::qs, fn() => try (j + 1))
 in
   try 1
 end;

(*

* val queens : int -> (int * int) list option
* Given the board dimension n, returns a solution for the n-queens problem.
*)

fun queens(n) = addqueen(1, n, [], fn () => NONE);

(* SOME [(8,4),(7,2),(6,7),(5,3),(4,6),(3,8),(2,5),(1,1)] *) queens(8);

(* NONE *) queens(2); </lang>

Stata

Iterative version

Adapted from the Fortran 77 program, to illustrate the goto statement in Stata.

<lang stata>mata real matrix queens(real scalar n) { real scalar i, j, k, p, q real rowvector a, s, u, v real matrix m

m = J(0, n, .) a = 1..n s = J(1, n, 0) u = J(1, 2*n-1, 1) v = J(1, 2*n-1, 1) i = 1 L1: if (i > n) { m = m\a goto L4 } j=i L2: k = a[j] p = i-k+n q = i+k-1 if (u[p] & v[q]) { u[p] = v[q] = 0 a[j] = a[i] a[i] = k s[i++] = j goto L1 } L3: if (++j <= n) goto L2 L4: if (--i == 0) return(m) j = s[i] k = a[i] a[i] = a[j] a[j] = k p = i-k+n q = i+k-1 u[p] = v[q] = 1 goto L3 }

a = queens(8) e = I(8) 1:/e[a[1,.],.]

      1   2   3   4   5   6   7   8
   +---------------------------------+
 1 |  1   .   .   .   .   .   .   .  |
 2 |  .   .   .   .   1   .   .   .  |
 3 |  .   .   .   .   .   .   .   1  |
 4 |  .   .   .   .   .   1   .   .  |
 5 |  .   .   1   .   .   .   .   .  |
 6 |  .   .   .   .   .   .   1   .  |
 7 |  .   1   .   .   .   .   .   .  |
 8 |  .   .   .   1   .   .   .   .  |
   +---------------------------------+


rows(a)

 92

end</lang>

It's also possible to save the solutions to a Stata dataset:

<lang stata>clear mata: a=queens(8) getmata (a*)=a save queens, replace</lang>

Recursive version

The recursive solution is adapted from one of the Python programs.

<lang stata>mata real matrix queens_rec(real scalar n) { real rowvector a, u, v real matrix m

a = 1..n u = J(1, 2*n-1, 1) v = J(1, 2*n-1, 1) m = J(0, n, .) queens_aux(n, 1, a, u, v, m) return(m) }

void queens_aux(real scalar n, real scalar i, real rowvector a, real rowvector u, real rowvector v, real matrix m) { real scalar j, k

if (i > n) { m = m\a } else { for (j = i; j <= n; j++) { k = a[j] p = i-k+n q = i+k-1 if (u[p] & v[q]) { u[p] = v[q] = 0 a[j] = a[i] a[i] = k queens_aux(n, i+1, a, u, v, m) u[p] = v[q] = 1 a[i] = a[j] a[j] = k } } } } end</lang>

The iterative and the recursive programs are equivalent:

<lang stata>queens(8) == queens_rec(8)

 1</lang>

Swift

Port of the optimized C code above <lang Swift> let maxn = 31

func nq(n: Int) -> Int { var cols = Array(repeating: 0, count: maxn) var diagl = Array(repeating: 0, count: maxn) var diagr = Array(repeating: 0, count: maxn) var posibs = Array(repeating: 0, count: maxn) var num = 0 for q0 in 0...n-3 { for q1 in q0+2...n-1 { let bit0: Int = 1<<q0 let bit1: Int = 1<<q1 var d: Int = 0 cols[0] = bit0 | bit1 | (-1<<n) diagl[0] = (bit0<<1|bit1)<<1 diagr[0] = (bit0>>1|bit1)>>1

var posib: Int = ~(cols[0] | diagl[0] | diagr[0])

while (d >= 0) { while(posib != 0) { let bit: Int = posib & -posib let ncols: Int = cols[d] | bit let ndiagl: Int = (diagl[d] | bit) << 1; let ndiagr: Int = (diagr[d] | bit) >> 1; let nposib: Int = ~(ncols | ndiagl | ndiagr); posib^=bit num += (ncols == -1 ? 1 : 0) if (nposib != 0){ if(posib != 0) { posibs[d] = posib d += 1 } cols[d] = ncols diagl[d] = ndiagl diagr[d] = ndiagr posib = nposib } } d -= 1 posib = d<0 ? n : posibs[d]

} }

} return num*2 } if(CommandLine.arguments.count == 2) {

let board_size: Int = Int(CommandLine.arguments[1])! print ("Number of solutions for board size \(board_size) is: \(nq(n:board_size))")

} else { print("Usage: 8q <n>") }

</lang>


SystemVerilog

Create a random board configuration, with the 8-queens as a constraint <lang SystemVerilog>program N_queens;

 parameter SIZE_LOG2 = 3;
 parameter SIZE = 1 << SIZE_LOG2;
 `define ABS_DIFF(a,b) (a>b?a-b:b-a)
 class board;
   rand bit [SIZE_LOG2-1:0] row[SIZE];
   constraint rook_moves {
     foreach (row[i]) foreach (row[j]) if (i < j) {
       row[i] != row[j];
     }
   }
   constraint diagonal_moves {
     foreach (row[i]) foreach (row[j]) if (i < j) {
       `ABS_DIFF(row[i], row[j]) != `ABS_DIFF(i,j);
     }
   }
   function void next;
     randomize;
     foreach (row[i]) begin
       automatic bit [SIZE-1:0] x = 1 << row[i];
       $display( "  %b", x );
     end
     $display("--");
   endfunction
 endclass
 board b = new;
 initial repeat(1) b.next;

endprogram </lang>

Tcl

This solution is based on the C version on wikipedia. By default it solves the 8-queen case; to solve for any other number, pass N as an extra argument on the script's command line (see the example for the N=6 case, which has anomalously few solutions).

Works with: Tcl version 8.5

<lang tcl>package require Tcl 8.5

proc unsafe {y} {

   global b
   set x [lindex $b $y]
   for {set i 1} {$i <= $y} {incr i} {

set t [lindex $b [expr {$y - $i}]] if {$t==$x || $t==$x-$i || $t==$x+$i} { return 1 }

   }
   return 0

}

proc putboard {} {

   global b s N
   puts "\n\nSolution #[incr s]"
   for {set y 0} {$y < $N} {incr y} {

for {set x 0} {$x < $N} {incr x} { puts -nonewline [expr {[lindex $b $y] == $x ? "|Q" : "|_"}] } puts "|"

   }

}

proc main {n} {

   global b N
   set N $n
   set b [lrepeat $N 0]
   set y 0
   lset b 0 -1
   while {$y >= 0} {

lset b $y [expr {[lindex $b $y] + 1}] while {[lindex $b $y] < $N && [unsafe $y]} { lset b $y [expr {[lindex $b $y] + 1}] } if {[lindex $b $y] >= $N} { incr y -1 } elseif {$y < $N-1} { lset b [incr y] -1; } else { putboard }

   }

}

main [expr {$argc ? int(0+[lindex $argv 0]) : 8}]</lang>

Output:
$ tclsh8.5 8queens.tcl 6

Solution #1
|_|Q|_|_|_|_|
|_|_|_|Q|_|_|
|_|_|_|_|_|Q|
|Q|_|_|_|_|_|
|_|_|Q|_|_|_|
|_|_|_|_|Q|_|


Solution #2
|_|_|Q|_|_|_|
|_|_|_|_|_|Q|
|_|Q|_|_|_|_|
|_|_|_|_|Q|_|
|Q|_|_|_|_|_|
|_|_|_|Q|_|_|


Solution #3
|_|_|_|Q|_|_|
|Q|_|_|_|_|_|
|_|_|_|_|Q|_|
|_|Q|_|_|_|_|
|_|_|_|_|_|Q|
|_|_|Q|_|_|_|


Solution #4
|_|_|_|_|Q|_|
|_|_|Q|_|_|_|
|Q|_|_|_|_|_|
|_|_|_|_|_|Q|
|_|_|_|Q|_|_|
|_|Q|_|_|_|_|

UNIX Shell

Works with: Bash

The total number of solutions for 8 queens is displayed at the end of the run. The code could be adapted to display a selected solution or multiple solutions. This code runs anywhere you can get bash to run.

<lang bash>#!/bin/bash

  1. variable declaration

typeset -i BoardSize=8 typeset -i p=0 typeset -i total=0 typeset -i board

  1. initialization

function init {

   for (( i=0;i<$BoardSize;i++ ))
   do
       (( board[$i]=-1 ))
   done

}

  1. check if queen can be placed

function place {

       typeset -i flag=1
       for (( i=0;i<$1;i++ ))
       do
               if [[ (${board[$i]}-${board[$1]} -eq ${i}-${1}) || (${board[$i]}-${board[$1]} -eq ${1}-${i}) || (${board[$i]} -eq ${board[$1]}) ]]
               then
                       (( flag=0 ))
               fi
       done
       $flag -eq 0 
       return $?

}

  1. print the result

function out {

       printf "Problem of queen %d:%d\n" $BoardSize $total

}

  1. free the variables

function depose {

   unset p
   unset total
   unset board
   unset BoardSize

}

  1. back tracing

function work {

   while $p -gt -1 
       do
       (( board[$p]++ ))
       if  [[ ${board[$p]} -ge ${BoardSize} ]]
       then  # back tracing
           (( p-- ))
       else  # try next position
           place $p
           if $? -eq 1 
           then
               (( p++ ))
               if [[ $p -ge ${BoardSize} ]]
               then
                   (( total++ ))
                   (( p-- ))
               else
                   (( board[$p]=-1 ))
               fi
           fi
       fi
   done

}

  1. entry

init work out depose</lang>

Ursala

This is invoked as a command line application by queens -n, where n is a number greater than 3. Multiple solutions may be reported but reflections and rotations thereof are omitted. <lang Ursala>#import std

  1. import nat

remove_reflections = ^D(length@ht,~&); ~&K2hlPS+ * ^lrNCCs/~&r difference*D remove_rotations = ~&K2hlrS2S+ * num; ~&srlXSsPNCCs

  1. executable <'par',>
  2. optimize+

queens =

%np+~command.options.&h.keyword.&iNC; -+

  ~&iNC+ file$[contents: --<>+ mat` *+ %nP*=*],
  remove_rotations+ remove_reflections+ ~&rSSs+ nleq-<&l*rFlhthPXPSPS,
  ~&i&& ~&lNrNCXX; ~&rr->rl ^/~&l ~&lrrhrSiF4E?/~&rrlPlCrtPX @r ^|/~& ^|T\~& -+
     -<&l^|*DlrTS/~& ~&iiDlSzyCK9hlPNNXXtCS,
     ^jrX/~& @rZK20lrpblPOlrEkPK13lhPK2 ~&i&& nleq$-&lh+-,
  ^/~&NNXS+iota -<&l+ ~&plll2llr2lrPrNCCCCNXS*=irSxPSp+ ^H/block iota; *iiK0 ^/~& sum+-</lang>

The output shows one solution on each line. A solution is reported as a sequence of numbers with the -th number being the index of the occupied row in the -th column.

$ queens -4                     
2 3 0 1                         
$ queens -5                     
0 2 1 3 4                       
2 4 3 0 1
1 3 2 4 0
$ queens 6
4 3 0 2 1 5

VBA

Translation of: BBC BASIC

<lang vb>'N-queens problem - non recursive & structured - vba - 26/02/2017 Sub n_queens()

   Const l = 15  'number of queens
   Const b = False  'print option
   Dim a(l), s(l), u(4 * l - 2)
   Dim n, m, i, j, p, q, r, k, t, z
   For i = 1 To UBound(a): a(i) = i: Next i
   For n = 1 To l
       m = 0
       i = 1
       j = 0
       r = 2 * n - 1
       Do
           i = i - 1
           j = j + 1
           p = 0
           q = -r
           Do
               i = i + 1
               u(p) = 1
               u(q + r) = 1
               z = a(j): a(j) = a(i): a(i) = z  'Swap a(i), a(j)
               p = i - a(i) + n
               q = i + a(i) - 1
               s(i) = j
               j = i + 1
           Loop Until j > n Or u(p) Or u(q + r)
           If u(p) = 0 Then
               If u(q + r) = 0 Then
                   m = m + 1  'm: number of solutions
                   If b Then
                       Debug.Print "n="; n; "m="; m
                       For k = 1 To n
                           For t = 1 To n
                               Debug.Print IIf(a(n - k + 1) = t, "Q", ".");
                           Next t
                           Debug.Print
                       Next k
                   End If
               End If
           End If
           j = s(i)
           Do While j >= n And i <> 0
               Do
                   z = a(j): a(j) = a(i): a(i) = z  'Swap a(i), a(j)
                   j = j - 1
               Loop Until j < i
               i = i - 1
               p = i - a(i) + n
               q = i + a(i) - 1
               j = s(i)
               u(p) = 0
               u(q + r) = 0
           Loop
       Loop Until i = 0
       Debug.Print n, m  'number of queens, number of solutions
   Next n

End Sub 'n_queens</lang>

Output:
 1             1 
 2             0 
 3             0 
 4             2 
 5             10 
 6             4 
 7             40 
 8             92 
 9             352 
 10            724 
 11            2680 
 12            14200 
 13            73712 
 14            365596 
 15            2279184 

VBScript

Translation of: BBC BASIC

To have the solutions printed (raw format) uncomment the ad hoc statement. <lang vb>'N-queens problem - non recursive & structured - vbs - 24/02/2017 const l=15 dim a(),s(),u(): redim a(l),s(l),u(4*l-2) for i=1 to l: a(i)=i: next for n=1 to l

   m=0
   i=1
   j=0
   r=2*n-1
   Do
       i=i-1
       j=j+1
       p=0
       q=-r
       Do
           i=i+1
           u(p)=1
           u(q+r)=1
           z=a(j): a(j)=a(i): a(i)=z  'swap a(i),a(j)
           p=i-a(i)+n
           q=i+a(i)-1
           s(i)=j
           j=i+1
       Loop Until j>n Or u(p)<>0 Or u(q+r)<>0
       If u(p)=0 Then
           If u(q+r)=0 Then
               m=m+1  'm: number of solutions
               'x="": for k=1 to n: x=x&" "&a(k): next: msgbox x,,m
            End If
       End If
       j=s(i)
       Do While j>=n And i<>0
           Do
               z=a(j): a(j)=a(i): a(i)=z  'swap a(i),a(j)
               j=j-1
           Loop Until j<i
           i=i-1
           p=i-a(i)+n
           q=i+a(i)-1
           j=s(i)
           u(p)=0
           u(q+r)=0
       Loop
   Loop Until i=0
   wscript.echo n &":"& m

next 'n</lang>

Output:
1 : 1
2 : 0
3 : 0
4 : 2
5 : 10
6 : 4
7 : 40
8 : 92
9 : 352
10 : 724
11 : 2680
12 : 14200
13 : 73712
14 : 365596
15 : 2279184

Visual Basic

Works with: Visual Basic version VB6 Standard
Translation of: BBC BASIC

<lang vb>'N-queens problem - non recursive & structured - vb6 - 25/02/2017 Sub n_queens()

   Const l = 15  'number of queens
   Const b = False  'print option
   Dim a(l), s(l), u(4 * l - 2)
   Dim n, m, i, j, p, q, r, k, t, z
   For i = 1 To UBound(a): a(i) = i: Next i
   For n = 1 To l
       m = 0
       i = 1
       j = 0
       r = 2 * n - 1
       Do
           i = i - 1
           j = j + 1
           p = 0
           q = -r
           Do
               i = i + 1
               u(p) = 1
               u(q + r) = 1
               z = a(j): a(j) = a(i): a(i) = z  'Swap a(i), a(j)
               p = i - a(i) + n
               q = i + a(i) - 1
               s(i) = j
               j = i + 1
           Loop Until j > n Or u(p) Or u(q + r)
           If u(p) = 0 Then
               If u(q + r) = 0 Then
                   m = m + 1  'm: number of solutions
                   If b Then
                       Debug.Print "n="; n; "m="; m
                       For k = 1 To n
                           For t = 1 To n
                               Debug.Print IIf(a(n - k + 1) = t, "Q", ".");
                           Next t
                           Debug.Print
                       Next k
                   End If
               End If
           End If
           j = s(i)
           Do While j >= n And i <> 0
               Do
                   z = a(j): a(j) = a(i): a(i) = z  'Swap a(i), a(j)
                   j = j - 1
               Loop Until j < i
               i = i - 1
               p = i - a(i) + n
               q = i + a(i) - 1
               j = s(i)
               u(p) = 0
               u(q + r) = 0
           Loop
       Loop Until i = 0
       Debug.Print n, m  'number of queens, number of solutions
   Next n

End Sub 'n_queens</lang>

Output:
 1             1 
 2             0 
 3             0 
 4             2 
 5             10 
 6             4 
 7             40 
 8             92 
 9             352 
 10            724 
 11            2680 
 12            14200 
 13            73712
 14            365596
 15            2279184

Visual Basic .NET

Translation of: BBC BASIC

<lang vb>'N-queens problem - non recursive & structured - vb.net - 26/02/2017 Module Mod_n_queens

   Sub n_queens()
       Const l = 15  'number of queens
       Const b = False  'print option
       Dim a(l), s(l), u(4 * l - 2)
       Dim n, m, i, j, p, q, r, k, t, z
       Dim w As String
       For i = 1 To UBound(a) : a(i) = i : Next i
       For n = 1 To l
           m = 0
           i = 1
           j = 0
           r = 2 * n - 1
           Do
               i = i - 1
               j = j + 1
               p = 0
               q = -r
               Do
                   i = i + 1
                   u(p) = 1
                   u(q + r) = 1
                   z = a(j) : a(j) = a(i) : a(i) = z  'Swap a(i), a(j)
                   p = i - a(i) + n
                   q = i + a(i) - 1
                   s(i) = j
                   j = i + 1
               Loop Until j > n Or u(p) Or u(q + r)
               If u(p) = 0 Then
                   If u(q + r) = 0 Then
                       m = m + 1  'm: number of solutions
                       If b Then
                           Debug.Print("n=" & n & " m=" & m) : w = ""
                           For k = 1 To n
                               For t = 1 To n
                                   w = w & If(a(n - k + 1) = t, "Q", ".")
                               Next t
                               Debug.Print(w)
                           Next k
                       End If
                   End If
               End If
               j = s(i)
               Do While j >= n And i <> 0
                   Do
                       z = a(j) : a(j) = a(i) : a(i) = z  'Swap a(i), a(j)
                       j = j - 1
                   Loop Until j < i
                   i = i - 1
                   p = i - a(i) + n
                   q = i + a(i) - 1
                   j = s(i)
                   u(p) = 0
                   u(q + r) = 0
               Loop
           Loop Until i = 0
           Debug.Print(n & vbTab & m)  'number of queens, number of solutions
       Next n
   End Sub 'n_queens

End Module</lang>

Output:
1   1
2   0
3   0
4   2
5   10
6   4
7   40
8   92
9   352
10  724
11  2680
12  14200
13  73712
14  365596
15  2279184 

Wart

<lang Wart>def (nqueens n queens)

 prn "step: " queens  # show progress
 if (len.queens = n)
   prn "solution! " queens
   # else
   let row (if queens (queens.zero.zero + 1) 0)
     for col 0 (col < n) ++col
       let new_queens (cons (list row col) queens)
         if (no conflicts.new_queens)
           (nqueens n new_queens)
  1. check if the first queen in 'queens' lies on the same column or diagonal as
  2. any of the others

def (conflicts queens)

 let (curr ... rest) queens
   or (let curr_column curr.1
        (some (fn(_) (= _ curr_column))
              (map cadr rest)))  # columns
      (some (fn(_) (diagonal_match curr _))
            rest)

def (diagonal_match curr other)

 (= (abs (curr.0 - other.0))
    (abs (curr.1 - other.1)))</lang>

Xanadu

Copied from http://www.cs.bu.edu/~hwxi/Xanadu/Examples/ <lang Xanadu> int abs(i: int) {

   if (i >= 0) return i; else return -i;

}

unit print_dots(n: int) {

 while (n > 0) { print_string("."); n = n - 1; }
 return;

}

{size:int | 0 < size} unit print_board (board[size]: int, size: int(size)) {

 var: int n, row;;
 invariant: [i:nat] (row: int(i))
 for (row = 0; row < size; row = row + 1) {
   n = board[row];
   print_dots(n-1);
   print_string("Q");
   print_dots(size - n);
   print_newline();
 }
   print_newline();
   return;

}

{size:int, j:int | 0 <= j < size} bool test (j: int(j), board[size]: int) {

 var: int diff, i, qi, qj;;
 qj = board[j];
 invariant: [i:nat] (i: int(i))
 for (i = 0; i < j; i = i + 1) {
   qi = board[i]; diff = abs (qi - qj);
   if (diff == 0) { return false; } 
   else { if (diff == j - i) return false; }
 }
 return true;

}

{size:int | 0 < size} nat queen(size: int(size)) {

 var: int board[], next, row; nat count;;
 count = 0; row = 0; board = alloc(size, 0);
 invariant: [n:nat | n < size] (row: int(n))
 while (true) {
   next = board[row]; next = next + 1;
   if (next > size) {
     if (row == 0) break; else { board[row] = 0; row = row - 1; }
   } else {
     board[row] = next;
     if (test(row, board)) {
       row = row + 1;
       if (row == size) {
         count = count + 1;

print_board(board, size);

         row = row - 1;
       }
     }
   }
 }
 return count;

}

int main () {

 return queen (8);

}</lang>

XSLT

Below simple stylesheet does produce this output (either by XSLT processors saxon-6.5.5, xsltproc, xalan, or any of the big5 browsers): <lang> 15863724 16837425 ... 88 lines omitted ... 83162574 84136275 </lang>

You can view the results directly in your browser (Chrome/FF/IE/Opera/Safari) here: [[2]]

This stylesheet is in category XSLT because it makes use or EXSLT [[3]] exslt:node-set() extension function not available in XSLT 1.0

It is extracted from a bigger solution described in this blog posting: [[4]]

  • determine all 500 n-queens solutions for 4<=n<=9
  • determine distict solutions and totals
  • display solutions graphically nicely
  • with references to external .gif images [[5]]
  • with internal "data:..." .gif images [[6]]

This is the initial part of a screenshot from browser output:


Here is stylesheet 8-queens.xsl.xml which produces the (simple) output by having itself as input: [[7]] <lang xml>

<?xml-stylesheet href="#" type="text/xsl"?>

<!DOCTYPE xsl:stylesheet [

 <!ENTITY N "8"> 

]>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:exslt="http://exslt.org/common"
 xmlns:n-queens="urn:n-queens"
 exclude-result-prefixes="n-queens exslt"

>

 <xsl:output omit-xml-declaration="yes"/>


 <xsl:template match="/xsl:stylesheet">
   <xsl:variable name="row0">
     <xsl:call-template name="n-queens:row">
       <xsl:with-param name="n" select="&N;"/>
     </xsl:call-template>
   </xsl:variable>
   <xsl:variable name="row" select="exslt:node-set($row0)"/>
   <xsl:variable name="rows0">
     <xsl:for-each select="$row/*">
       <r><xsl:copy-of select="$row"/></r>
     </xsl:for-each>
   </xsl:variable>
   <xsl:variable name="rows" select="exslt:node-set($rows0)"/>

<html>

    <!-- determine all solutions of $N queens problem -->
    <xsl:call-template name="n-queens:search">
      <xsl:with-param name="b" select="$rows/*"/>
    </xsl:call-template>

</html>

 </xsl:template>


 <xsl:template name="n-queens:search">    
   <xsl:param name="b"/>  
   <xsl:param name="s"/>  
   <xsl:if test="not($b)"> 
     <xsl:value-of select="$s"/><xsl:text>
</xsl:text> 
   </xsl:if>
   <xsl:for-each select="$b[1]/*">
     <xsl:variable name="sieved0">
       <xsl:call-template name="n-queens:sieve">
         <xsl:with-param name="c" select="."/>
         <xsl:with-param name="b" select="$b[position()>1]"/>
       </xsl:call-template>
     </xsl:variable>
     <xsl:variable name="sieved" select="exslt:node-set($sieved0)"/>
     <xsl:call-template name="n-queens:search">
       <xsl:with-param name="b" select="$sieved/*"/>
       <xsl:with-param name="s" select="concat($s, .)"/>
     </xsl:call-template>
   </xsl:for-each>
 </xsl:template>
 <xsl:template name="n-queens:sieve">    
   <xsl:param name="c"/>  
   <xsl:param name="b"/>  
   <xsl:for-each select="$b">
     <xsl:variable name="r" select="position()"/>
     <r><xsl:copy-of select="*[. != $c][. - $r != $c][. + $r != $c]"/></r>
   </xsl:for-each>
 </xsl:template>
 <xsl:template name="n-queens:row">    
   <xsl:param name="n"/>
   <xsl:if test="$n>0">
     <xsl:call-template name="n-queens:row">
       <xsl:with-param name="n" select="$n - 1"/>
     </xsl:call-template>
     <f><xsl:value-of select="$n"/></f>
   </xsl:if>
 </xsl:template>


<msxsl:script xmlns:msxsl="urn:schemas-microsoft-com:xslt"

             language="JScript" implements-prefix="exslt"

>

 this['node-set'] = function (x) {
   return x;
 } 

</msxsl:script>

</xsl:stylesheet> </lang>

XPL0

<lang XPL0>def N=8; \board size (NxN) int R, C; \row and column of board char B(N,N); \board include c:\cxpl\codes;

proc Try; \Try adding a queen to the board int R; \row, for each level of recursion

   func Okay;
   \Returns 'true' if no row, column, or diagonal from square R,C has a queen
   int I;
   [for I:= 0 to N-1 do
       [if B(I,C) then return false;                   \row is occupied
       if B(R,I) then return false;                    \column is occupied
       if R+I<N & C+I<N then
               if B(R+I, C+I) then return false;       \diagonal down right
       if R-I>=0 & C-I>=0 then
               if B(R-I, C-I) then return false;       \diagonal up left
       if R-I>=0 & C+I<N then
               if B(R-I, C+I) then return false;       \diagonal up right
       if R+I<N & C-I>=0 then
               if B(R+I, C-I) then return false;       \diagonal down left
       ];
   return true;
   ]; \Okay

[ \Try if C>=N then

       [for R:= 0 to N-1 do                            \display solution
           [ChOut(0, ^ ); \(avoids scrolling up a color)
           for C:= 0 to N-1 do
               [Attrib(if (R|C)&1 then $0F else $4F);  \checkerboard pattern
               ChOut(6, if B(R,C) then $F2 else ^ );   \cute queen symbol
               ChOut(6, if B(R,C) then $F3 else ^ );
               ];
           CrLf(0);
           ];
       exit;                                           \one solution is enough
       ];

for R:= 0 to N-1 do

   [if Okay(R,C) then          \a queen can be placed here
       [B(R,C):= true;         \ so do it
       C:= C+1;                \move to next column
       Try;                    \ and try from there
       C:= C-1;                \didn't work: backup
       B(R,C):= false;         \undo queen placement
       ];
   ];

]; \Try


[for R:= 0 to N-1 do \clear the board

   for C:= 0 to N-1 do
       B(R,C):= false;

C:= 0; \start at left column Try; ]</lang>

Yabasic

<lang Yabasic>DOCU The N Queens Problem: DOCU Place N Queens on an NxN chess board DOCU such that they don't threaten each other.

N = 8 // try some other sizes

sub threat(q1r, q1c, q2r, q2c) // do two queens threaten each other?

  if q1c = q2c then    return true
  elsif (q1r - q1c) = (q2r - q2c) then return true
  elsif (q1r + q1c) = (q2r + q2c) then return true
  elsif q1r = q2r then    return true
  else return false
  end if

end sub

sub conflict(r, c, queens$) // Would square p cause a conflict with other queens on board so far?

  local r2, c2
  for i = 1 to len(queens$) step 2
      r2 = val(mid$(queens$,i,1))
      c2 = val(mid$(queens$,i+1,1))
      if threat(r, c, r2, c2) then
           return true
      end if
   next i
  return false

end sub

sub print_board(queens$) // print a solution, showing the Queens on the board

  local k$
  print at(1, 1);
  print "Solution #", soln, "\n\n   ";
  for c = asc("a") to (asc("a") + N - 1)
       print chr$(c)," ";
  next c
  print
  for r = 1 to N
       print r using "##"," ";
       for c = 1 to N
           pos = instr(queens$, (str$(r)+str$(c)))
           if pos and mod(pos, 2) then
               queens$ = mid$(queens$,pos)
               print "Q ";
           else
               print ". ";
           end if
       next c
       print
   next r
   print "\nPress Enter. (q to quit) "
   while(true)
       k$ = inkey$
       if lower$(k$) = "q" then
          exit
       elsif k$ = "enter" then
          break
       end if
   wend

end sub </lang>

zkl

Modified from a Haskell version (if I remember correctly) <lang zkl>fcn isAttacked(q, x,y) // ( (r,c), x,y ) : is queen at r,c attacked by q@(x,y)?

  { r,c:=q; (r==x or c==y or r+c==x+y or r-c==x-y) }

fcn isSafe(r,c,qs) // queen safe at (r,c)?, qs=( (r,c),(r,c)..) solution so far

  { ( not qs.filter1(isAttacked,r,c) ) }

fcn queensN(N=8,row=1,queens=T){

  qs:=[1..N].filter(isSafe.fpM("101",row,queens)) #isSafe(row,?,( (r,c),(r,c).. )
      .apply(fcn(c,r,qs){ qs.append(T(r,c)) },row,queens);
  if (row == N) return(qs);
  return(qs.apply(self.fcn.fp(N,row+1)).flatten());

}</lang> <lang zkl>queens := queensN(4); println(queens.len()," solution(s):"); queens.apply2(Console.println);</lang>

Output:
2 solution(s):
L(L(1,2),L(2,4),L(3,1),L(4,3))
L(L(1,3),L(2,1),L(3,4),L(4,2))
Cookies help us deliver our services. By using our services, you agree to our use of cookies.