N-queens problem/dlx go

From Rosetta Code

"Algorithm X" is the name Donald Knuth used in his paper "Dancing Links" to refer to "the most obvious trial-and-error approach" for finding all solutions to the exact cover problem. This is an implementation of based on that paper.

The Rosetta Code tasks this can used for include:

Go

<lang Go>// Package dlx is an implementation of Knuth's Dancing Links for algorithm X // to solve a generalized cover problem. // // See: // arXiv:cs/0011047 // https://en.wikipedia.org/wiki/Dancing_Links // An alternative implementation can be found within: // https://rosettacode.org/wiki/Sudoku#Go package dlx

import ( "bufio" "errors" "fmt" "io" "strings" )

// x is Knuth's data object. type x struct { left, right *x // row links up, down *x // column links col *column // column list header }

// column is Knuth's column object. type column struct { x size int // number of 1's in column id int // XXX name string? }

// Matrix represents the matrix for a generalized cover problem. type Matrix struct { root *x // up, down, col fields unused headers []column // column headers sol []*x // solution so far cells []x // pre-allocated cells stats []stat

maxCols int // maximum number of columns seen in any row constraint }

type stat struct { nodes int updates int }

// New returns a new DLX Matrix with the specified number of columns func New(primaryCols, secondaryCols int) *Matrix { return NewWithHint(primaryCols, secondaryCols, 0, 0) }

// NewWithHint is like New but provides an allocation hint for the // estimated number of cells and estimated maximum number of rows in // solutions. func NewWithHint(primaryCols, secondaryCols, estCells, estSolutionRows int) *Matrix { n := primaryCols + secondaryCols m := &Matrix{ headers: make([]column, n), sol: make([]*x, 0, estSolutionRows), cells: make([]x, estCells+1), // +1 to use as the root stats: make([]stat, 0, estSolutionRows), } m.root = &m.cells[0] m.cells = m.cells[1:] m.root.left = &m.headers[primaryCols-1].x m.root.left.right = m.root prev := m.root for i := 0; i < n; i++ { c := &m.headers[i] c.id = i c.col = c c.up = &c.x c.down = &c.x if i < primaryCols { c.left = prev prev.right = &c.x prev = &c.x } else { c.left = &c.x c.right = &c.x } } return m }

// AddRow adds a new constraint row to the matrix. // 'cols' indicates which column indices should have a 1 for this row. func (m *Matrix) AddRow(cols []int) { if len(cols) == 0 { return } if len(cols) > m.maxCols { m.maxCols = len(cols) } var buf []x if len(cols) <= len(m.cells) { buf = m.cells[:len(cols)] m.cells = m.cells[len(cols):] } else { buf = make([]x, len(cols)) } //sort.Ints(cols) // not strictly required prev := &buf[len(cols)-1] for i, id := range cols { c := &m.headers[id] c.size++ x := &buf[i] x.col = c x.up = c.up x.down = &c.x x.left = prev x.up.down = x x.down.up = x prev.right = x prev = x } }

// SearchFunc is the type of the function called for each solution // found by Matrix.Search. // // The pseudo error value Stop may be returned to indication the search // should terminate without error. type SearchFunc func(*Matrix) error

// Stop is used as a return value from SearchFuncs to indicate that // the search should terminate instead of continuing to search for // alternative solutions. // It is not returned as an error by any function. var Stop = errors.New("terminate search")

func (m *Matrix) callFn(fn SearchFunc) error { return fn(m) }

// SolutionString returns a text representation of // the solution using the provided column names. func (m *Matrix) SolutionString(names []string) string { var buf strings.Builder _ = m.SolutionWrite(&buf, names) return buf.String() }

// SolutionWrite writes a text representation of the // solution to `w` using the provided column names. func (m *Matrix) SolutionWrite(w io.Writer, names []string) error { bw := bufio.NewWriter(w) for _, x := range m.sol { n := names[x.col.id] fmt.Fprint(bw, n) for j := x.right; j != x; j = j.right { n = names[j.col.id] fmt.Fprint(bw, " ", n) } fmt.Fprintln(bw) } return bw.Flush() }

// SolutionIDs writes the column IDs of the solution // to `buf` and returns the extended slice. func (m *Matrix) SolutionIDs(buf [][]int) [][]int { if cap(buf) < len(m.sol) { new := make([][]int, len(buf), len(m.sol)) copy(new, buf) buf = new } solIDs := buf[:len(m.sol)] for i, x := range m.sol { n := 1 min := x for j := x.right; j != x; j = j.right { n++ if j.col.id < min.col.id { min = j } } ids := solIDs[i] if cap(ids) < n { ids = make([]int, 1, m.maxCols) } else { ids = ids[:1] } ids[0] = min.col.id for j := min.right; j != min; j = j.right { ids = append(ids, j.col.id) } //sort.Ints(ids) // not strictly required solIDs[i] = ids } return solIDs }

// ProfileString returns profiling output as a string. func (m *Matrix) ProfileString() string { var buf strings.Builder _ = m.ProfileWrite(&buf) return buf.String() }

// ProfileWrite writes profiling output to `w`. func (m *Matrix) ProfileWrite(w io.Writer) error { bw := bufio.NewWriter(w) var total stat for _, s := range m.stats { total.nodes += s.nodes total.updates += s.updates } fmt.Fprintln(bw, "Level Nodes Updates Updates per node") for i, s := range m.stats { pn := float64(s.nodes) / float64(total.nodes) * 100.0 pu := float64(s.updates) / float64(total.updates) * 100.0 per := float64(s.updates) / float64(s.nodes) fmt.Fprintf(bw, "%5d %8d (%2.0f%%) %10d (%2.0f%%) %14.1f\n", i, s.nodes, pn, s.updates, pu, per) } per := float64(total.updates) / float64(total.nodes) fmt.Fprintf(bw, "Total %8d (100%%) %10d (100%%) %14.1f\n", total.nodes, total.updates, per) return bw.Flush() }

// Search runs Knuth's algorithm X on `m` // and for each solution found calls `fn`. func (m *Matrix) Search(fn SearchFunc) error { if len(m.sol) > 0 { return errors.New("recursive call to Matrix.Search") } err := m.search(fn) if err == Stop { return nil } return err }

func (m *Matrix) search(fn SearchFunc) error { k := len(m.sol) j := m.root.right if j == m.root { return m.callFn(fn) } c := j.col if true { // Knuth's "S heuristic" for j = j.right; j != m.root; j = j.right { if j.col.size < c.size { c = j.col } } } if c.size < 1 { return nil } if len(m.stats) <= k { m.stats = append(m.stats, stat{}) } s := &m.stats[k] s.nodes += c.size

cover(c, s) m.sol = append(m.sol, nil) for r := c.down; r != &c.x; r = r.down { m.sol[k] = r for j = r.right; j != r; j = j.right { cover(j.col, s) } if err := m.search(fn); err != nil { return err } for j = r.left; j != r; j = j.left { uncover(j.col) } }

m.sol = m.sol[:k] uncover(c) return nil }

func cover(c *column, s *stat) { c.right.left, c.left.right = c.left, c.right s.updates++ for i := c.down; i != &c.x; i = i.down { for j := i.right; j != i; j = j.right { j.down.up, j.up.down = j.up, j.down j.col.size-- s.updates++ } } }

func uncover(c *column) { for i := c.up; i != &c.x; i = i.up { for j := i.left; j != i; j = j.left { j.col.size++ j.down.up, j.up.down = j, j } } c.right.left, c.left.right = &c.x, &c.x }</lang>