# Haversine formula

Haversine formula
You are encouraged to solve this task according to the task description, using any language you may know.
 This page uses content from Wikipedia. The original article was at Haversine formula. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)

The haversine formula is an equation important in navigation, giving great-circle distances between two points on a sphere from their longitudes and latitudes.

It is a special case of a more general formula in spherical trigonometry, the law of haversines, relating the sides and angles of spherical "triangles".

Implement a great-circle distance function, or use a library function, to show the great-circle distance between:

• Nashville International Airport (BNA)   in Nashville, TN, USA,   which is:
```   N 36°7.2',   W 86°40.2'     (36.12,   -86.67)           -and-
```
• Los Angeles International Airport (LAX)  in Los Angeles, CA, USA,   which is:
```   N 33°56.4',  W 118°24.0'    (33.94,  -118.40)
```

```User Kaimbridge clarified on the Talk page:

-- 6371.0 km is the authalic radius based on/extracted from surface area;
-- 6372.8 km is an approximation of the radius of the average circumference
(i.e., the average great-elliptic or great-circle radius), where the
boundaries are the meridian (6367.45 km) and the equator (6378.14 km).

Using either of these values results, of course, in differing distances:

6371.0 km -> 2886.44444283798329974715782394574671655 km;
6372.8 km -> 2887.25995060711033944886005029688505340 km;
(results extended for accuracy check:  Given that the radii are only
approximations anyways, .01' ≈ 1.0621333 km and .001" ≈ .00177 km,
practical precision required is certainly no greater than about
.0000001——i.e., .1 mm!)

As distances are segments of great circles/circumferences, it is
recommended that the latter value (r = 6372.8 km) be used (which
```

Most of the examples below adopted Kaimbridge's recommended value of 6372.8 km for the earth radius. However, the derivation of this ellipsoidal quadratic mean radius is wrong (the averaging over azimuth is biased). When applying these examples in real applications, it is better to use the mean earth radius, 6371 km. This value is recommended by the International Union of Geodesy and Geophysics and it minimizes the RMS relative error between the great circle and geodesic distance.

## ABAP

<lang abap>

``` DATA: X1 TYPE F, Y1 TYPE F,
X2 TYPE F, Y2 TYPE F, YD TYPE F,
PI TYPE F,
PI_180 TYPE F,
MINUS_1 TYPE F VALUE '-1'.
```

PI = ACOS( MINUS_1 ). PI_180 = PI / 180.

LATITUDE1 = 36,12 . LONGITUDE1 = -86,67 . LATITUDE2 = 33,94 . LONGITUDE2 = -118,4 .

``` X1 = LATITUDE1  * PI_180.
Y1 = LONGITUDE1 * PI_180.
X2 = LATITUDE2  * PI_180.
Y2 = LONGITUDE2 * PI_180.
YD = Y2 - Y1.
```
``` DISTANCE = 20000 / PI *
ACOS( SIN( X1 ) * SIN( X2 ) + COS( X1 ) * COS( X2 ) * COS( YD ) ).
```

WRITE : 'Distance between given points = ' , distance , 'km .' . </lang>

Output:
```Distance between given points = 2.884,2687 km .
```

procedure Haversine_Formula is

```  package Math is new Ada.Numerics.Generic_Elementary_Functions (Long_Float); use Math;
```
```  -- Compute great circle distance, given latitude and longitude of two points, in radians
function Great_Circle_Distance (lat1, long1, lat2, long2 : Long_Float) return Long_Float is
Earth_Radius : constant := 6371.0; -- in kilometers
a : Long_Float := Sin (0.5 * (lat2 - lat1));
b : Long_Float := Sin (0.5 * (long2 - long1));
begin
return 2.0 * Earth_Radius * ArcSin (Sqrt (a * a + Cos (lat1) * Cos (lat2) * b * b));
end Great_Circle_Distance;
```
```  -- convert degrees, minutes and seconds to radians
function DMS_To_Radians (Deg, Min, Sec : Long_Float := 0.0) return Long_Float is
Pi_Over_180 : constant := 0.017453_292519_943295_769236_907684_886127;
begin
return (Deg + Min/60.0 + Sec/3600.0) * Pi_Over_180;
```

begin

```  Put_Line("Distance in kilometers between BNA and LAX");
Put (Great_Circle_Distance (
DMS_To_Radians (33.0, 56.4), DMS_To_Radians (118.0, 24.0)),    -- Los Angeles International Airport (LAX)
Aft=>3, Exp=>0);
```

end Haversine_Formula;</lang>

## ALGOL 68

Translation of: C
Works with: ALGOL 68 version Revision 1.
Works with: ALGOL 68G version Any - tested with release algol68g-2.3.5.

File: Haversine_formula.a68<lang algol68>#!/usr/local/bin/a68g --script #

REAL r = 20 000/pi + 6.6 # km #,

```    to rad = pi/180;
```

PROC dist = (REAL th1 deg, ph1 deg, th2 deg, ph2 deg)REAL: (

```       REAL ph1 = (ph1 deg - ph2 deg) * to rad,
th1 = th1 deg * to rad, th2 = th2 deg * to rad,
```
```            dz = sin(th1) - sin(th2),
dx = cos(ph1) * cos(th1) - cos(th2),
dy = sin(ph1) * cos(th1);
arc sin(sqrt(dx * dx + dy * dy + dz * dz) / 2) * 2 * r
```

);

main: (

```       REAL d = dist(36.12, -86.67, 33.94, -118.4);
# Americans don't know kilometers #
printf((\$"dist: "g(0,1)" km ("g(0,1)" mi.)"l\$, d, d / 1.609344))
```

)</lang>

Output:
```dist: 2887.3 km (1794.1 mi.)
```

## AMPL

<lang AMPL> set location; set geo;

param coord{i in location, j in geo}; param dist{i in location, j in location};

data;

set location := BNA LAX; set geo := LAT LON;

param coord:

```              LAT      LON :=
BNA    36.12   -86.67
LAX    33.94   -118.4
```

let dist['BNA','LAX'] := 2 * 6372.8 * asin (sqrt(sin(atan(1)/45*(coord['LAX','LAT']-coord['BNA','LAT'])/2)^2 + cos(atan(1)/45*coord['BNA','LAT']) * cos(atan(1)/45*coord['LAX','LAT']) * sin(atan(1)/45*(coord['LAX','LON'] - coord ['BNA','LON'])/2)^2));

printf "The distance between the two points is approximately %f km.\n", dist['BNA','LAX']; </lang>

Output:
```The distance between the two points is approximately 2887.259951 km.
```

## APL

<lang apl>r←6371 hf←{(p q)←○⍺ ⍵÷180 ⋄ 2×r×¯1○(+/(2*⍨1○(p-q)÷2)×1(×/2○⊃¨p q))*÷2} 36.12 ¯86.67 hf 33.94 ¯118.40</lang>

Output:
`2886.44`

## AppleScript

AppleScript provides no trigonometric functions.

Here we reach through a foreign function interface to a temporary instance of a JavaScript interpreter.

<lang applescript>use AppleScript version "2.4" -- Yosemite (10.10) or later use framework "Foundation" use framework "JavaScriptCore" use scripting additions

property js : missing value

-- haversine :: (Num, Num) -> (Num, Num) -> Num on haversine(latLong, latLong2)

```   set {lat, lon} to latLong
set {lat2, lon2} to latLong2

set {rlat1, rlat2, rlon1, rlon2} to ¬
map(my radians, {lat, lat2, lon, lon2})

set dLat to rlat2 - rlat1
set dLon to rlon2 - rlon1
set radius to 6372.8 -- km

set asin to math("asin")
set sin to math("sin")
set cos to math("cos")

(asin's |λ|((sqrt(((sin's |λ|(dLat / 2)) ^ 2) + ¬
(((sin's |λ|(dLon / 2)) ^ 2) * ¬
(cos's |λ|(rlat1)) * (cos's |λ|(rlat2)))))))) * 100) / 100
```

end haversine

-- math :: String -> Num -> Num on math(f)

```   script
on |λ|(x)
if missing value is js then ¬
set js to current application's JSContext's new()
(js's evaluateScript:("Math." & f & "(" & x & ")"))'s toDouble()
end |λ|
end script
```

end math

TEST ---------------------------

on run

```   set distance to haversine({36.12, -86.67}, {33.94, -118.4})

set js to missing value -- Clearing a c pointer.
return distance
```

end run

GENERIC FUNCTIONS --------------------

-- map :: (a -> b) -> [a] -> [b] on map(f, xs)

```   -- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
```

end map

-- mReturn :: First-class m => (a -> b) -> m (a -> b) on mReturn(f)

```   -- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
```

end mReturn

```   (pi / 180) * x
```

-- round :: a -> Int on |round|(n)

```   round n
```

end |round|

-- sqrt :: Num -> Num on sqrt(n)

```   if n ≥ 0 then
n ^ (1 / 2)
else
missing value
end if
```

end sqrt</lang>

Output:
`2887.26`

## ATS

<lang ATS>

1. include

1. define R 6372.8
2. define TO_RAD (3.1415926536 / 180)

typedef d = double

fun dist (

``` th1: d, ph1: d, th2: d, ph2: d
```

) : d = let

``` val ph1 = ph1 - ph2
val ph1 = TO_RAD * ph1
val th1 = TO_RAD * th1
val th2 = TO_RAD * th2
val dz = sin(th1) - sin(th2)
val dx = cos(ph1) * cos(th1) - cos(th2)
val dy = sin(ph1) * cos(th1)
```

in

``` asin(sqrt(dx*dx + dy*dy + dz*dz)/2)*2*R
```

end // end of [dist]

implement main0((*void*)) = let

``` val d = dist(36.12, ~86.67, 33.94, ~118.4);
/* Americans don't know kilometers */
```

in

``` \$extfcall(void, "printf", "dist: %.1f km (%.1f mi.)\n", d, d / 1.609344)
```

end // end of [main0] </lang>

Output:
```dist: 2887.3 km (1794.1 mi.)
```

## AutoHotkey

<lang AutoHotkey>MsgBox, % GreatCircleDist(36.12, 33.94, -86.67, -118.40, 6372.8, "km")

GreatCircleDist(La1, La2, Lo1, Lo2, R, U) { return, 2 * R * ASin(Sqrt(Hs(Rad(La2 - La1)) + Cos(Rad(La1)) * Cos(Rad(La2)) * Hs(Rad(Lo2 - Lo1)))) A_Space U }

Hs(n) { return, (1 - Cos(n)) / 2 }

Rad(Deg) { return, Deg * 4 * ATan(1) / 180 }</lang>

Output:
`2887.259951 km`

## AWK

<lang AWK>

1. syntax: GAWK -f HAVERSINE_FORMULA.AWK
2. converted from Python

BEGIN {

```   distance(36.12,-86.67,33.94,-118.40) # BNA to LAX
exit(0)
```

} function distance(lat1,lon1,lat2,lon2, a,c,dlat,dlon) {

```   dlat = radians(lat2-lat1)
a = (sin(dlat/2))^2 + cos(lat1) * cos(lat2) * (sin(dlon/2))^2
c = 2 * atan2(sqrt(a),sqrt(1-a))
printf("distance: %.4f km\n",6372.8 * c)
```

```   return degree * (3.1415926 / 180.)
```

} </lang>

Output:
```distance: 2887.2599 km
```

## BBC BASIC

Uses BBC BASIC's MOD(array()) function which calculates the square-root of the sum of the squares of the elements of an array. <lang bbcbasic> PRINT "Distance = " ; FNhaversine(36.12, -86.67, 33.94, -118.4) " km"

```     END

DEF FNhaversine(n1, e1, n2, e2)
LOCAL d() : DIM d(2)
= ASN(MOD(d()) / 2) * 6372.8 * 2</lang>
```
Output:
```Distance = 2887.25995 km
```

## C

<lang c>#include <stdio.h>

1. include <stdlib.h>
2. include <math.h>
1. define R 6371
2. define TO_RAD (3.1415926536 / 180)

double dist(double th1, double ph1, double th2, double ph2) { double dx, dy, dz; ph1 -= ph2; ph1 *= TO_RAD, th1 *= TO_RAD, th2 *= TO_RAD;

dz = sin(th1) - sin(th2); dx = cos(ph1) * cos(th1) - cos(th2); dy = sin(ph1) * cos(th1); return asin(sqrt(dx * dx + dy * dy + dz * dz) / 2) * 2 * R; }

int main() { double d = dist(36.12, -86.67, 33.94, -118.4); /* Americans don't know kilometers */ printf("dist: %.1f km (%.1f mi.)\n", d, d / 1.609344);

return 0; }</lang>

## C#

Translation of: Groovy

<lang csharp>public static class Haversine {

``` public static double calculate(double lat1, double lon1, double lat2, double lon2) {
var R = 6372.8; // In kilometers
var dLat = toRadians(lat2 - lat1);
var dLon = toRadians(lon2 - lon1);

var a = Math.Sin(dLat / 2) * Math.Sin(dLat / 2) + Math.Sin(dLon / 2) * Math.Sin(dLon / 2) * Math.Cos(lat1) * Math.Cos(lat2);
var c = 2 * Math.Asin(Math.Sqrt(a));
return R * 2 * Math.Asin(Math.Sqrt(a));
}

public static double toRadians(double angle) {
return Math.PI * angle / 180.0;
}
```

}

void Main() {

``` Console.WriteLine(String.Format("The distance between coordinates {0},{1} and {2},{3} is: {4}", 36.12, -86.67, 33.94, -118.40, Haversine.calculate(36.12, -86.67, 33.94, -118.40)));
```

}

// Returns: The distance between coordinates 36.12,-86.67 and 33.94,-118.4 is: 2887.25995060711 </lang>

## C++

<lang cpp>

1. define _USE_MATH_DEFINES
1. include <math.h>
2. include <iostream>

const static double EarthRadiusKm = 6372.8;

inline double DegreeToRadian(double angle) { return M_PI * angle / 180.0; }

class Coordinate { public: Coordinate(double latitude ,double longitude):myLatitude(latitude), myLongitude(longitude) {}

double Latitude() const { return myLatitude; }

double Longitude() const { return myLongitude; }

private:

double myLatitude; double myLongitude; };

double computation = asin(sqrt(sin(diffLa / 2) * sin(diffLa / 2) + cos(latRad1) * cos(latRad2) * sin(doffLo / 2) * sin(doffLo / 2))); return 2 * EarthRadiusKm * computation; }

int main() { Coordinate c1(36.12, -86.67); Coordinate c2(33.94, -118.4);

std::cout << "Distance = " << HaversineDistance(c1, c2) << std::endl; return 0; } </lang>

## clojure

Translation of: Java

<lang clojure> (defn haversine

``` [{lon1 :longitude lat1 :latitude} {lon2 :longitude lat2 :latitude}]
(let [R 6372.8 ; kilometers
a (+ (* (Math/sin (/ dlat 2)) (Math/sin (/ dlat 2))) (* (Math/sin (/ dlon 2)) (Math/sin (/ dlon 2)) (Math/cos lat1) (Math/cos lat2)))]
(* R 2 (Math/asin (Math/sqrt a)))))
```

(haversine {:latitude 36.12 :longitude -86.67} {:latitude 33.94 :longitude -118.40})

=> 2887.2599506071106

</lang>

## CoffeeScript

Translation of: JavaScript

<lang coffee>haversine = (args...) ->

``` R = 6372.8; # km
radians = args.map (deg) -> deg/180.0 * Math.PI
dLat = lat2 - lat1
dLon = lon2 - lon1
a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.sin(dLon / 2) * Math.sin(dLon / 2) * Math.cos(lat1) * Math.cos(lat2)
R * 2 * Math.asin(Math.sqrt(a))
```

console.log haversine(36.12, -86.67, 33.94, -118.40)</lang>

Output:
`2887.2599506071124`

## Common Lisp

``` (* x *rad-conv*))
```

(defun haversine (x)

``` (expt (sin (/ x 2)) 2))
```

(defun dist-rad (lat1 lng1 lat2 lng2)

``` (let* ((hlat (haversine (- lat2 lat1)))
(hlng (haversine (- lng2 lng1)))
(root (sqrt (+ hlat (* (cos lat1) (cos lat2) hlng)))))
```

(defun dist-deg (lat1 lng1 lat2 lng2)

``` (dist-rad (deg->rad lat1)
```
Output:
```CL-USER> (format t "~%The distance between BNA and LAX is about ~\$ km.~%"
(dist-deg 36.12 -86.67 33.94 -118.40))

The distance between BNA and LAX is about 2887.26 km.```

## Crystal

Translation of: Python

<lang ruby>include Math

def haversine(lat1, lon1, lat2, lon2)

```   r = 6372.8        # Earth radius in kilometers

dLat = (lat2 - lat1) * deg2rad
dLon = (lon2 - lon1) * deg2rad

a = sin(dLat / 2)**2 + cos(lat1) * cos(lat2) * sin(dLon / 2)**2
c = 2 * asin(sqrt(a))
r * c
```

end

puts "distance is #{haversine(36.12, -86.67, 33.94, -118.40)} km " </lang>

Output:
```distance is 2887.2599506071106 km
```

## D

<lang d>import std.stdio, std.math;

real haversineDistance(in real dth1, in real dph1,

```                      in real dth2, in real dph2)
```

pure nothrow @nogc {

```   enum real R = 6371;
enum real TO_RAD = PI / 180;
```
```   alias imr = immutable real;
imr ph1d = dph1 - dph2;
imr ph1 = ph1d * TO_RAD;
imr th1 = dth1 * TO_RAD;
imr th2 = dth2 * TO_RAD;
```
```   imr dz = th1.sin - th2.sin;
imr dx = ph1.cos * th1.cos - th2.cos;
imr dy = ph1.sin * th1.cos;
return asin(sqrt(dx ^^ 2 + dy ^^ 2 + dz ^^ 2) / 2) * 2 * R;
```

}

void main() {

```   writefln("Haversine distance: %.1f km",
haversineDistance(36.12, -86.67, 33.94, -118.4));
```

}</lang>

Output:
`Haversine distance: 2887.3 km`

### Alternative Version

An alternate direct implementation of the haversine formula as shown at wikipedia. The same length, but perhaps a little more clear about what is being done.

<lang d>import std.stdio, std.math;

real toRad(in real degrees) pure nothrow @safe @nogc {

```   return degrees * PI / 180;
```

}

real haversin(in real theta) pure nothrow @safe @nogc {

```   return (1 - theta.cos) / 2;
```

}

real greatCircleDistance(in real lat1, in real lng1,

```                        in real lat2, in real lng2,
```

pure nothrow @safe @nogc {

```   immutable h = haversin(lat2.toRad - lat1.toRad) +
return 2 * radius * h.sqrt.asin;
```

}

void main() {

```   enum real earthRadius = 6372.8L; // Average earth radius.
```
```   writefln("Great circle distance: %.1f km",
greatCircleDistance(36.12, -86.67, 33.94, -118.4,
```

}</lang>

Output:
```Great circle distance: 2887.3 km
```

## Dart

Translation of: Java

<lang dart>import 'dart:math';

class Haversine {

``` static final R = 6372.8; // In kilometers
```
``` static double haversine(double lat1, lon1, lat2, lon2) {
double dLat = _toRadians(lat2 - lat1);
double dLon = _toRadians(lon2 - lon1);
double a = pow(sin(dLat / 2), 2) + pow(sin(dLon / 2), 2) * cos(lat1) * cos(lat2);
double c = 2 * asin(sqrt(a));
return R * c;
}
```
``` static double _toRadians(double degree) {
return degree * pi / 180;
}
```
``` static void main() {
print(haversine(36.12, -86.67, 33.94, -118.40));
}
```

} </lang>

Output:
`2887.2599506071106`

## Delphi

<lang delphi>program HaversineDemo; uses Math;

function HaversineDist(th1, ph1, th2, ph2:double):double; const diameter = 2 * 6372.8; var dx, dy, dz:double; begin

``` ph1    := degtorad(ph1 - ph2);
```
``` dz     := sin(th1) - sin(th2);
dx     := cos(ph1) * cos(th1) - cos(th2);
dy     := sin(ph1) * cos(th1);
Result := arcsin(sqrt(sqr(dx) + sqr(dy) + sqr(dz)) / 2) * diameter;
```

end;

begin

``` Writeln('Haversine distance: ', HaversineDist(36.12, -86.67, 33.94, -118.4):7:2, ' km.');
```

end.</lang>

Output:
`Haversine distance: 2887.26 km.`

## Elena

ELENA 4.x: <lang elena>import extensions; import system'math;

Haversine(lat1,lon1,lat2,lon2) {

```   var R := 6372.8r;
var dLat := (lat2 - lat1).Radian;
var dLon := (lon2 - lon1).Radian;

var a := (dLat / 2).sin() * (dLat / 2).sin() + (dLon / 2).sin() * (dLon / 2).sin() * dLat1.cos() * dLat2.cos();

^ R * 2 * a.sqrt().arcsin()
```

}

public program() {

```   console.printLineFormatted("The distance between coordinates {0},{1} and {2},{3} is: {4}", 36.12r, -86.67r, 33.94r, -118.40r,
Haversine(36.12r, -86.67r, 33.94r, -118.40r))
```

}</lang>

Output:
```The distance between coordinates 36.12,-86.67 and 33.94,-118.4 is: 2887.259950607
```

## Elixir

<lang elixir>defmodule Haversine do

``` @v  :math.pi / 180
@r  6372.8            # km for the earth radius
def distance({lat1, long1}, {lat2, long2}) do
dlat  = :math.sin((lat2 - lat1) * @v / 2)
dlong = :math.sin((long2 - long1) * @v / 2)
a = dlat * dlat + dlong * dlong * :math.cos(lat1 * @v) * :math.cos(lat2 * @v)
@r * 2 * :math.asin(:math.sqrt(a))
end
```

end

bna = {36.12, -86.67} lax = {33.94, -118.40} IO.puts Haversine.distance(bna, lax)</lang>

Output:
```2887.2599506071106
```

## Elm

<lang elm>haversine : ( Float, Float ) -> ( Float, Float ) -> Float haversine ( lat1, lon1 ) ( lat2, lon2 ) =

```   let
r =
6372.8
```
```       dLat =
degrees (lat2 - lat1)
```
```       dLon =
degrees (lon2 - lon1)
```
```       a =
(sin (dLat / 2))
^ 2
+ (sin (dLon / 2))
^ 2
* cos (degrees lat1)
* cos (degrees lat2)
in
r * 2 * asin (sqrt a)
```

view =

```   Html.div []
[ Html.text (toString (haversine ( 36.12, -86.67 ) ( 33.94, -118.4 )))
]
```

</lang>

Output:
```2887.2599506071106
```

## Erlang

<lang erlang>% Implementer by Arjun Sunel -module(haversine). -export([main/0]).

main() -> haversine(36.12, -86.67, 33.94, -118.40).

haversine(Lat1, Long1, Lat2, Long2) -> V = math:pi()/180, R = 6372.8, % In kilometers Diff_Lat = (Lat2 - Lat1)*V , Diff_Long = (Long2 - Long1)*V, NLat = Lat1*V, NLong = Lat2*V, A = math:sin(Diff_Lat/2) * math:sin(Diff_Lat/2) + math:sin(Diff_Long/2) * math:sin(Diff_Long/2) * math:cos(NLat) * math:cos(NLong), C = 2 * math:asin(math:sqrt(A)), R*C. </lang>

Output:
```2887.2599506071106
```

## ERRE

<lang ERRE>% Implemented by Claudio Larini

PROGRAM HAVERSINE_DEMO

!\$DOUBLE

CONST DIAMETER=12745.6

```   DEG2RAD=X*π/180
```

END FUNCTION

```   RAD2DEG=X*180/π
```

END FUNCTION

PROCEDURE HAVERSINE_DIST(TH1,PH1,TH2,PH2->RES)

```   LOCAL DX,DY,DZ
DZ=SIN(TH1)-SIN(TH2)
DX=COS(PH1)*COS(TH1)-COS(TH2)
DY=SIN(PH1)*COS(TH1)
RES=ASN(SQR(DX^2+DY^2+DZ^2)/2)*DIAMETER
```

END PROCEDURE

BEGIN

```   HAVERSINE_DIST(36.12,-86.67,33.94,-118.4->RES)
PRINT("HAVERSINE DISTANCE: ";RES;" KM.")
```

END PROGRAM </lang> Using double-precision variables output is 2887.260209071741 km, while using single-precision variable output is 2887.261 Km.

## Euler Math Toolbox

Euler has a package for spherical geometry, which is used in the following code. The distances are then computed with the average radius between the two positions. Overwriting the rearth function with the given value yields the known result.

```>load spherical
Spherical functions for Euler.
>esdist(TNA,LAX)->km
2886.48817482
>type esdist
function esdist (frompos: vector, topos: vector)
r1=rearth(frompos[1]);
r2=rearth(topos[1]);
xfrom=spoint(frompos)*r1;
xto=spoint(topos)*r2;
delta=xto-xfrom;
return asin(norm(delta)/(r1+r2))*(r1+r2);
endfunction
>function overwrite rearth (x) := 6372.8*km\$
>esdist(TNA,LAX)->km
2887.25995061
```

## F#

Translation of: Go

using units of measure

<lang fsharp>open System

[<Measure>] type deg [<Measure>] type rad [<Measure>] type km

type pos(latitude: float<deg>, longitude: float<deg>) =

```   member this.φ = latitude * radPerDeg
member this.ψ = longitude * radPerDeg
```

let rEarth = 6372.8<km>

let hsDist (p1: pos) (p2: pos) =

```   2.0 * rEarth *
Math.Asin(Math.Sqrt(haversine(p2.φ - p1.φ)+
```

[<EntryPoint>] let main argv =

```   printfn "%A" (hsDist (pos(36.12<deg>, -86.67<deg>)) (pos(33.94<deg>, -118.40<deg>)))
0</lang>
```
Output:
`2887.259951`

## Factor

Translation of: J

<lang factor>USING: arrays kernel math math.constants math.functions math.vectors sequences ;

haversin ( x -- y ) cos 1 swap - 2 / ;
haversininv ( y -- x ) 2 * 1 swap - acos ;
haversineDist ( as bs -- d )

[ [ 180 / pi * ] map ] bi@

``` [ [ swap - haversin ] 2map ]
[ [ first cos ] bi@ * 1 swap 2array ]
2bi
```

v. haversininv R_earth * ;</lang> <lang factor>( scratchpad ) { 36.12 -86.67 } { 33.94 -118.4 } haversineDist . 2887.259950607113</lang>

## FBSL

Based on the Fortran and Groovy versions. <lang qbasic>#APPTYPE CONSOLE

PRINT "Distance = ", Haversine(36.12, -86.67, 33.94, -118.4), " km" PAUSE

FUNCTION Haversine(DegLat1 AS DOUBLE, DegLon1 AS DOUBLE, DegLat2 AS DOUBLE, DegLon2 AS DOUBLE) AS DOUBLE

```   CONST radius = 6372.8
DIM dLat AS DOUBLE = D2R(DegLat2 - DegLat1)
DIM dLon AS DOUBLE = D2R(DegLon2 - DegLon1)
DIM lat1 AS DOUBLE = D2R(DegLat1)
DIM lat2 AS DOUBLE = D2R(DegLat2)
DIM a AS DOUBLE = SIN(dLat / 2) * SIN(dLat / 2) + SIN(dLon / 2) * SIN(dLon / 2) * COS(lat1) * COS(lat2)
DIM c AS DOUBLE = 2 * ASIN(SQRT(a))
```

END FUNCTION </lang>

Output:
```Distance = 2887.25995060711 km
Press any key to continue...
```

## Forth

<lang forth>: s>f s>d d>f ;

difference f- deg>rad 2 s>f f/ fsin fdup f* ;
haversine ( lat1 lon1 lat2 lon2 -- haversine)
``` frot difference                      ( lat1 lat2 dLon^2)
frot frot fover fover                ( dLon^2 lat1 lat2 lat1 lat2)
fswap difference                     ( dLon^2 lat1 lat2 dLat^2)
fswap deg>rad fcos                   ( dLon^2 lat1 dLat^2 lat2)
frot  deg>rad fcos f*                ( dLon^2 dLat2 lat1*lat2)
frot  f* f+                          ( lat1*lat2*dLon^2+dLat^2)
fsqrt fasin 127456 s>f f* 10 s>f f/  ( haversine)
```

36.12e -86.67e 33.94e -118.40e haversine cr f.</lang>

Output:
```2887.25995060711
```

## Fortran

<lang Fortran> program example implicit none real :: d

d = haversine(36.12,-86.67,33.94,-118.40) ! BNA to LAX print '(A,F9.4,A)', 'distance: ',d,' km' ! distance: 2887.2600 km

contains

```     function to_radian(degree) result(rad)
real,intent(in) :: degree
real, parameter :: deg_to_rad = atan(1.0)/45 ! exploit intrinsic atan to generate pi/180 runtime constant
```
```         rad = degree*deg_to_rad

function haversine(deglat1,deglon1,deglat2,deglon2) result (dist)
! great circle distance -- adapted from Matlab
real,intent(in) :: deglat1,deglon1,deglat2,deglon2
real :: a,c,dist,dlat,dlon,lat1,lat2
```
```         dlat = to_radian(deglat2-deglat1)
a = (sin(dlat/2))**2 + cos(lat1)*cos(lat2)*(sin(dlon/2))**2
c = 2*asin(sqrt(a))
end function haversine
```

end program example </lang>

## Free Pascal

Here is a Free Pascal version, works in most Pascal dialects, but also note the Delphi entry that also works in Free Pascal. <lang pascal>program HaversineDemo; uses

``` Math;
```

function HaversineDistance(const lat1, lon1, lat2, lon2:double):double;inline; const

``` rads = pi / 180;
dia  = 2 * 6372.8;
```

begin

``` HaversineDistance := dia * arcsin(sqrt(sqr(cos(rads * (lon1 - lon2)) * cos(rads * lat1)
```

end;

begin

``` Writeln('Haversine distance between BNA and LAX: ', HaversineDistance(36.12, -86.67, 33.94, -118.4):7:2, ' km.');
```

end.</lang>

## FreeBASIC

<lang freebasic>' version 09-10-2016 ' compile with: fbc -s console

' Nashville International Airport (BNA) in Nashville, TN, USA, ' N 36°07.2', W 86°40.2' (36.12, -86.67) ' Los Angeles International Airport (LAX) in Los Angeles, CA, USA, ' N 33°56.4', W 118°24.0' (33.94, -118.40). ' 6372.8 km is an approximation of the radius of the average circumference

1. Define Pi Atn(1) * 4 ' define Pi = 3.1415..
2. Define deg2rad Pi / 180 ' define deg to rad 0.01745..

Function Haversine(lat1 As Double, long1 As Double, lat2 As Double, _

```                               long2 As Double , radius As Double) As Double
```
``` Dim As Double d_long = deg2rad * (long1 - long2)
Dim As Double theta1 = deg2rad * lat1
Dim As Double theta2 = deg2rad * lat2
Dim As Double dx = Cos(d_long) * Cos(theta1) - Cos(theta2)
Dim As Double dy = Sin(d_long) * Cos(theta1)
Dim As Double dz = Sin(theta1) - Sin(theta2)
Return Asin(Sqr(dx*dx + dy*dy + dz*dz) / 2) * radius * 2
```

End Function

Print Print " Haversine distance between BNA and LAX = "; _

```     Haversine(36.12, -86.67, 33.94, -118.4, earth_radius); " km."
```

' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
` Haversine distance between BNA and LAX =  2887.259950607111 km.`

## Frink

<lang frink> haversine[theta] := (1-cos[theta])/2

dist[lat1, long1, lat2, long2] := 2 earthradius arcsin[sqrt[haversine[lat2-lat1] + cos[lat1] cos[lat2] haversine[long2-long1]]]

d = dist[36.12 deg, -86.67 deg, 33.94 deg, -118.40 deg] println[d-> "km"] </lang>

Note that physical constants like degrees, kilometers, and the average radius of the earth (as well as the polar and equatorial radii) are already known to Frink. Also note that units of measure are tracked throughout all calculations, and results can be displayed in a huge number of units of distance (miles, km, furlongs, chains, feet, statutemiles, etc.) by changing the final `"km"` to something like `"miles"`.

However, Frink's library/sample program navigation.frink (included in larger distributions) contains a much higher-precision calculation that uses ellipsoidal (not spherical) calculations to determine the distance on earth's geoid with far greater accuracy:

d = earthDistance[36.12 deg North, 86.67 deg West, 33.94 deg North, 118.40 deg West] println[d-> "km"] </lang>

## FunL

<lang funl>import math.*

def haversin( theta ) = (1 - cos( theta ))/2

def radians( deg ) = deg Pi/180

def haversine( (lat1, lon1), (lat2, lon2) ) =

``` R = 6372.8
2R asin( sqrt(h) )
```

println( haversine((36.12, -86.67), (33.94, -118.40)) )</lang>

Output:
```2887.259950607111
```

## FutureBasic

Note: The Haversine function returns an approximate theoretical value of the Great Circle Distance between two points because it does not factor the ellipsoidal shape of Earth -- fat in the middle from centrifugal force, and squashed at the ends. Navigators once relied on trigonometric functions like versine (versed sine) where angle A is 1-cos(A), and haversine (half versine) or ( 1-cos(A) ) / 2. Also, the radius of the Earth varies, at least depending on who you talk to. Here's NASA's take on it: http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html

Since it was trivial, this functions returns the distance in miles and kilometers. <lang futurebasic> include "ConsoleWindow"

local fn Haversine( lat1 as double, lon1 as double, lat2 as double, lon2 as double, miles as ^double, kilometers as ^double ) dim as double deg2rad, dLat, dLon, a, c, earth_radius_miles, earth_radius_kilometers

earth_radius_miles = 3959.0 // Radius of the Earth in miles earth_radius_kilometers = 6372.8 // Radius of the Earth in kilometers deg2rad = Pi / 180 // Pi is predefined in FutureBasic

dLat = deg2rad * ( lat2 - lat1 ) dLon = deg2rad * ( lon2 - lon1 ) a = sin( dLat / 2 ) * sin( dLat / 2 ) + cos( deg2rad * lat1 ) * cos( deg2rad * lat2 ) * sin( dLon / 2 ) * sin( dLon / 2 ) c = 2 * asin( sqr(a) )

miles.nil# = earth_radius_miles * c kilometers.nil# = earth_radius_kilometers * c end fn

dim as double miles, kilometers fn Haversine( 36.12, -86.67, 33.94, -118.4, @miles, @kilometers )

print "Distance in miles between BNA and LAX: "; using "####.####"; miles; " miles." print "Distance in kilometers between BNA LAX: "; using "####.####"; kilometers; " km."

</lang> Output:

```Distance in miles between BNA and LAX: 1793.6640 miles.
Distance in kilometers between BNA LAX: 2887.2600 km.
```

## Go

<lang go>package main

import (

```   "fmt"
"math"
```

)

func haversine(θ float64) float64 {

```   return .5 * (1 - math.Cos(θ))
```

}

type pos struct {

```   φ float64 // latitude, radians
```

}

func degPos(lat, lon float64) pos {

```   return pos{lat * math.Pi / 180, lon * math.Pi / 180}
```

}

const rEarth = 6372.8 // km

func hsDist(p1, p2 pos) float64 {

```   return 2 * rEarth * math.Asin(math.Sqrt(haversine(p2.φ-p1.φ)+
math.Cos(p1.φ)*math.Cos(p2.φ)*haversine(p2.ψ-p1.ψ)))
```

}

func main() {

```   fmt.Println(hsDist(degPos(36.12, -86.67), degPos(33.94, -118.40)))
```

}</lang>

Output:
```2887.2599506071097
```

## Groovy

<lang Groovy>def haversine(lat1, lon1, lat2, lon2) {

``` def R = 6372.8
// In kilometers
def dLat = Math.toRadians(lat2 - lat1)
def dLon = Math.toRadians(lon2 - lon1)
```
``` def a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.sin(dLon / 2) * Math.sin(dLon / 2) * Math.cos(lat1) * Math.cos(lat2)
def c = 2 * Math.asin(Math.sqrt(a))
R * c
```

}

haversine(36.12, -86.67, 33.94, -118.40)

> 2887.25995060711</lang>

<lang Haskell>import Text.Printf import Control.Arrow ((***))

-- The haversine of an angle. haversine :: Float -> Float haversine = (^ 2) . sin . (/ 2)

-- The approximate distance, in kilometers, between two points on Earth. -- The latitude and longtitude are assumed to be in degrees. earthDist :: (Float, Float) -> (Float, Float) -> Float earthDist = distDeg 6371

``` where
asin
(min
1.0
(sqrt \$
haversine (lat2 - lat1) +
((cos lat1 * cos lat2) * haversine (lng2 - lng1))))
where
d2r = (/ 180) . (pi *)
```

main :: IO () main =

``` printf
"The distance between BNA and LAX is about %0.f km.\n"
(earthDist bna lax)
where
bna = (36.12, -86.67)
lax = (33.94, -118.40)</lang>
```
Output:
`The distance between BNA and LAX is about 2886 km.`

## Icon and Unicon

Translation of: C

procedure main() #: Haversine formula

```  printf("BNA to LAX is %d km (%d miles)\n",
d := gcdistance([36.12, -86.67],[33.94, -118.40]),d*3280/5280)  # with cute km2mi conversion
```

end

procedure gcdistance(a,b) a[2] -:= b[2]

```  every (x := a|b)[i := 1 to 2] := dtor(x[i])
```

dz := sin(a[1]) - sin(b[1]) dx := cos(a[2]) * cos(a[1]) - cos(b[1]) dy := sin(a[2]) * cos(a[1]) return asin(sqrt(dx * dx + dy * dy + dz * dz) / 2) * 2 * 6371 end</lang>

Output:
`BNA to LAX is 2886 km (1793 miles)`

## Idris

<lang Idris>module Main

-- The haversine of an angle. hsin : Double -> Double hsin t = let u = sin (t/2) in u*u

-- The distance between two points, given by latitude and longtitude, on a -- circle. The points are specified in radians. distRad : Double -> (Double, Double) -> (Double, Double) -> Double distRad radius (lat1, lng1) (lat2, lng2) =

``` let hlat = hsin (lat2 - lat1)
hlng = hsin (lng2 - lng1)
root = sqrt (hlat + cos lat1 * cos lat2 * hlng)
in 2 * radius * asin (min 1.0 root)

```

-- The distance between two points, given by latitude and longtitude, on a -- circle. The points are specified in degrees. distDeg : Double -> (Double, Double) -> (Double, Double) -> Double distDeg radius p1 p2 = distRad radius (deg2rad p1) (deg2rad p2)

``` where
d2r : Double -> Double
d2r t = t * pi / 180
deg2rad (t, u) = (d2r t, d2r u)

```

-- The approximate distance, in kilometers, between two points on Earth. -- The latitude and longtitude are assumed to be in degrees. earthDist : (Double, Double) -> (Double, Double) -> Double earthDist = distDeg 6372.8

main : IO () main = putStrLn \$ "The distance between BNA and LAX is about " ++ show (floor dst) ++ " km."

```where
bna : (Double, Double)
bna = (36.12,  -86.67)
```
```     lax : (Double, Double)
lax = (33.94, -118.40)
```
```     dst : Double
dst = earthDist bna lax
```

</lang>

Output:
`The distance between BNA and LAX is about 2887 km.`

## IS-BASIC

<lang IS-BASIC>100 PROGRAM "Haversine.bas" 110 PRINT "Haversine distance:";HAVERSINE(36.12,-86.67,33.94,-118.4);"km" 120 DEF HAVERSINE(LAT1,LON1,LAT2,LON2) 130 OPTION ANGLE RADIANS 140 LET R=6372.8 150 LET DLAT=RAD(LAT2-LAT1):LET DLON=RAD(LON2-LON1) 160 LET LAT1=RAD(LAT1):LET LAT2=RAD(LAT2) 170 LET HAVERSINE=R*2*ASIN(SQR(SIN(DLAT/2)^2+SIN(DLON/2)^2*COS(LAT1)*COS(LAT2))) 190 END DEF</lang>

## J

Solution: <lang j>require 'trig' haversin=: 0.5 * 1 - cos Rearth=: 6372.8 haversineDist=: Rearth * haversin^:_1@((1 , *&(cos@{.)) +/ .* [: haversin -)&rfd </lang> Note: J derives the inverse haversin ( `haversin^:_1` ) from the definition of haversin.

Example Use: <lang j> 36.12 _86.67 haversineDist 33.94 _118.4 2887.26</lang>

## Java

Translation of: Groovy

<lang java>public class Haversine {

```   public static final double R = 6372.8; // In kilometers
public static double haversine(double lat1, double lon1, double lat2, double lon2) {
double dLat = Math.toRadians(lat2 - lat1);
double dLon = Math.toRadians(lon2 - lon1);
```
```       double a = Math.pow(Math.sin(dLat / 2),2) + Math.pow(Math.sin(dLon / 2),2) * Math.cos(lat1) * Math.cos(lat2);
double c = 2 * Math.asin(Math.sqrt(a));
return R * c;
}
public static void main(String[] args) {
System.out.println(haversine(36.12, -86.67, 33.94, -118.40));
}
```

}</lang>

Output:
`2887.2599506071106`

## JavaScript

### ES5

Translation of: Java

<lang javascript>function haversine() {

```      var radians = Array.prototype.map.call(arguments, function(deg) { return deg/180.0 * Math.PI; });
var R = 6372.8; // km
var dLat = lat2 - lat1;
var dLon = lon2 - lon1;
var a = Math.sin(dLat / 2) * Math.sin(dLat /2) + Math.sin(dLon / 2) * Math.sin(dLon /2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.asin(Math.sqrt(a));
return R * c;
```

} console.log(haversine(36.12, -86.67, 33.94, -118.40));</lang>

Output:
`2887.2599506071124`

### ES6

<lang JavaScript>((x, y) => {

```   'use strict';
```
```   // haversine :: (Num, Num) -> (Num, Num) -> Num
const haversine = ([lat1, lon1], [lat2, lon2]) => {
// Math lib function names
const [pi, asin, sin, cos, sqrt, pow, round] = [
'PI', 'asin', 'sin', 'cos', 'sqrt', 'pow', 'round'
]
.map(k => Math[k]),
```
```           // degrees as radians
[rlat1, rlat2, rlon1, rlon2] = [lat1, lat2, lon1, lon2]
.map(x => x / 180 * pi),
```
```           dLat = rlat2 - rlat1,
dLon = rlon2 - rlon1,
```
```       // km
return round(
sqrt(
pow(sin(dLat / 2), 2) +
pow(sin(dLon / 2), 2) *
cos(rlat1) * cos(rlat2)
)
) * 100
) / 100;
};
```
```   // TEST
return haversine(x, y);
```
```   // --> 2887.26
```

})([36.12, -86.67], [33.94, -118.40]);</lang>

Output:
`2887.26`

## jq

<lang jq>def haversine(lat1;lon1; lat2;lon2):

``` def radians: . * (1|atan)/45;
def sq: . * .;
```
```   (((lat2 - lat1)/2) | sind | sq) as \$dlat
| (((lon2 - lon1)/2) | sind | sq) as \$dlon
| 2 * 6372.8 * (( \$dlat + (lat1|cosd) * (lat2|cosd) * \$dlon ) | sqrt | asin) ;</lang>
```

Example:

```haversine(36.12; -86.67; 33.94; -118.4)
# 2887.2599506071106
```

## Jsish

From Javascript, ES5, except the arguments value is an Array in jsish, not an Object. <lang javascript>/* Haversine formula, in Jsish */ function haversine() {

```      var radians = arguments.map(function(deg) { return deg/180.0 * Math.PI; });
var R = 6372.8; // km
var dLat = lat2 - lat1;
var dLon = lon2 - lon1;
var a = Math.sin(dLat / 2) * Math.sin(dLat /2) + Math.sin(dLon / 2) * Math.sin(dLon /2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.asin(Math.sqrt(a));
return R * c;
```

}

haversine(36.12, -86.67, 33.94, -118.40);

/*

# !EXPECTSTART!

haversine(36.12, -86.67, 33.94, -118.40) ==> 2887.259950607112

# !EXPECTEND!

• /</lang>
Output:
```prompt\$ jsish -u haversineFormula.jsi
[PASS] haversineFormula.jsi```

## Julia

Works with: Julia version 0.6

<lang julia>haversine(lat1, lon1, lat2, lon2) =

```   2 * 6372.8 * asin(sqrt(sind((lat2 - lat1) / 2) ^ 2 +
cosd(lat1) * cosd(lat2) * sind((lon2 - lon1) / 2) ^ 2))
```

@show haversine(36.12, -86.67, 33.94, -118.4)</lang>

Output:
`haversine(36.12, -86.67, 33.94, -118.4) = 2887.2599506071106`

## Kotlin

Translation of: Groovy

Use Unicode characters. <lang scala>import java.lang.Math.*

const val R = 6372.8 // in kilometers

fun haversine(lat1: Double, lon1: Double, lat2: Double, lon2: Double): Double {

```   val λ1 = toRadians(lat1)
val Δλ = toRadians(lat2 - lat1)
val Δφ = toRadians(lon2 - lon1)
return 2 * R * asin(sqrt(pow(sin(Δλ / 2), 2.0) + pow(sin(Δφ / 2), 2.0) * cos(λ1) * cos(λ2)))
```

}

fun main(args: Array<String>) = println("result: " + haversine(36.12, -86.67, 33.94, -118.40))</lang>

## Liberty BASIC

<lang lb>print "Haversine distance: "; using( "####.###########", havDist( 36.12, -86.67, 33.94, -118.4)); " km." end function havDist( th1, ph1, th2, ph2)

``` degtorad   = acs(-1)/180
diameter   = 2 * 6372.8
LgD      = degtorad  * (ph1 - ph2)
dz       = sin( th1) - sin( th2)
dx       = cos( LgD) * cos( th1) - cos( th2)
dy       = sin( LgD) * cos( th1)
havDist  = asn( ( dx^2 +dy^2 +dz^2)^0.5 /2) *diameter
```

end function</lang>

`Haversine distance: 2887.25995060711  km.`

## LiveCode

```   return n * (3.1415926 / 180)
```

function haversine lat1, lng1, lat2, lng2

```   local radiusEarth
local lat3, lng3
local haver
put (lat2 - lat1) into lat3
put (lng2 - lng1) into lng3

into haver
return (radiusEarth * (2.0 * asin(sqrt(haver))))

```

end haversine</lang> Test <lang LiveCode>haversine(36.12, -86.67, 33.94, -118.40) 2887.259923</lang>

## Lua

<lang lua>local function haversine(x1, y1, x2, y2) r=0.017453292519943295769236907684886127; x1= x1*r; x2= x2*r; y1= y1*r; y2= y2*r; dy = y2-y1; dx = x2-x1; a = math.pow(math.sin(dx/2),2) + math.cos(x1) * math.cos(x2) * math.pow(math.sin(dy/2),2); c = 2 * math.asin(math.sqrt(a)); d = 6372.8 * c; return d; end</lang> Usage: <lang lua>print(haversine(36.12, -86.67, 33.94, -118.4));</lang> Output:

`2887.2599506071`

## Maple

Inputs assumed to be in radians. <lang Maple>distance := (theta1, phi1, theta2, phi2)->2*6378.14*arcsin( sqrt((1-cos(theta2-theta1))/2 + cos(theta1)*cos(theta2)*(1-cos(phi2-phi1))/2) );</lang> If you prefer, you can define a haversine function to clarify the definition:<lang Maple>haversin := theta->(1-cos(theta))/2; distance := (theta1, phi1, theta2, phi2)->2*6378.14*arcsin( sqrt(haversin(theta2-theta1) + cos(theta1)*cos(theta2)*haversin(phi2-phi1)) );</lang>

Usage:

`distance(0.6304129261, -1.512676863, 0.5923647483, -2.066469834)`
Output:
`2889.679287`

## Mathematica / Wolfram Language

Inputs assumed in degrees. Sin and Haversine expect arguments in radians; the built-in variable 'Degree' converts from degrees to radians. <lang Mathematica> distance[{theta1_, phi1_}, {theta2_, phi2_}] :=

```2*6378.14 ArcSin@
Sqrt[Haversine[(theta2 - theta1) Degree] +
Cos[theta1*Degree] Cos[theta2*Degree] Haversine[(phi2 - phi1) Degree]]
```

</lang> Usage:

`distance[{36.12, -86.67}, {33.94, -118.4}]`
Output:
`2889.68`

## MATLAB / Octave

```   rad = degree .* pi / 180;
```

end;

function [a,c,dlat,dlon]=haversine(lat1,lon1,lat2,lon2) % HAVERSINE_FORMULA.AWK - converted from AWK

```   dlat = radians(lat2-lat1);
a = (sin(dlat./2)).^2 + cos(lat1) .* cos(lat2) .* (sin(dlon./2)).^2;
c = 2 .* asin(sqrt(a));
arrayfun(@(x) printf("distance: %.4f km\n",6372.8 * x), c);
```

end;

[a,c,dlat,dlon] = haversine(36.12,-86.67,33.94,-118.40); % BNA to LAX</lang>

Output:
`distance: 2887.2600 km`

## Maxima

<lang maxima>dms(d, m, s) := (d + m/60 + s/3600)*%pi/180\$

great_circle_distance(lat1, long1, lat2, long2) :=

```  12742*asin(sqrt(sin((lat2 - lat1)/2)^2 + cos(lat1)*cos(lat2)*sin((long2 - long1)/2)^2))\$
```

/* Coordinates are found here:

```     http://www.airport-data.com/airport/BNA/
http://www.airport-data.com/airport/LAX/   */
```

great_circle_distance(dms( 36, 7, 28.10), -dms( 86, 40, 41.50),

```                     dms( 33, 56, 32.98), -dms(118, 24, 29.05)), numer;
```

/* 2886.326609413624 */</lang>

## МК-61/52

<lang>П3 -> П2 -> П1 -> П0 пи 1 8 0 / П4 ИП1 МГ ИП3 МГ - ИП4 * П1 ИП0 МГ ИП4 * П0 ИП2 МГ ИП4 * П2 ИП0 sin ИП2 sin - П8 ИП1 cos ИП0 cos * ИП2 cos - П6 ИП1 sin ИП0 cos * П7 ИП6 x^2 ИП7 x^2 ИП8 x^2 + + КвКор 2 / arcsin 2 * ИП5 * С/П</lang>

Input: 6371,1 as a radius of the Earth, taken as the ball, or 6367,554 as an average radius of the Earth, or 6367,562 as an approximation of the radius of the average circumference (by Krasovsky's ellipsoid) to Р5; В/О lat1 С/П long1 С/П lat2 С/П long2 С/П; the coordinates must be entered as degrees,minutes (example: 46°50' as 46,5).

Test:

• N 36°7.2', W 86°40.2' - N 33°56.4', W 118°24.0' (Nashville - Los Angeles):
Input: 6371,1 П5 36,072 С/П -86,402 С/П 33,564 С/П -118,24 С/П
Output: 2886,4897.
• N 54°43', E 20°3' - N 43°07', E 131°54' (Kaliningrad - Vladivostok):
Input: 6371,1 П5 54,43 С/П 20,3 С/П 43,07 С/П 131,54 С/П
Output: 7357,4526.

## MySQL

<lang MySQL>DELIMITER \$\$

CREATE FUNCTION haversine ( lat1 FLOAT, lon1 FLOAT, lat2 FLOAT, lon2 FLOAT ) RETURNS FLOAT NO SQL DETERMINISTIC BEGIN DECLARE r FLOAT unsigned DEFAULT 6372.8; DECLARE dLat FLOAT unsigned; DECLARE dLon FLOAT unsigned; DECLARE a FLOAT unsigned; DECLARE c FLOAT unsigned;

SET a = POW(SIN(dLat / 2), 2) + COS(lat1) * COS(lat2) * POW(SIN(dLon / 2), 2); SET c = 2 * ASIN(SQRT(a));

RETURN (r * c); END\$\$

DELIMITER ;</lang>

Usage:

`SELECT haversine(36.12, -86.67, 33.94, -118.4);`
Output:
`2887.260009765625`

## Nim

<lang nim>import math

proc radians(x): float = x * Pi / 180

proc haversine(lat1, lon1, lat2, lon2): float =

``` const r = 6372.8 # Earth radius in kilometers
let
```
```   a = sin(dLat/2)*sin(dLat/2) + cos(lat1)*cos(lat2)*sin(dLon/2)*sin(dLon/2)
c = 2*arcsin(sqrt(a))
```
``` result = r * c
```

echo haversine(36.12, -86.67, 33.94, -118.40)</lang>

Output:
`2.8872599506071115e+03`

## Oberon-2

Works with oo2c version2 <lang oberon2> MODULE Haversines; IMPORT

``` LRealMath,
Out;

PROCEDURE Distance(lat1,lon1,lat2,lon2: LONGREAL): LONGREAL;
CONST
r = 6372.8D0; (* Earth radius as LONGREAL *)
VAR
d,ph1,th1,th2: LONGREAL;
dz,dx,dy: LONGREAL;
BEGIN
d := lon1 - lon2;

dz := LRealMath.sin(th1) - LRealMath.sin(th2);
dx := LRealMath.cos(ph1) * LRealMath.cos(th1) - LRealMath.cos(th2);
dy := LRealMath.sin(ph1) * LRealMath.cos(th1);

RETURN LRealMath.arcsin(LRealMath.sqrt(LRealMath.power(dx,2.0) + LRealMath.power(dy,2.0) + LRealMath.power(dz,2.0)) / 2.0) * 2.0 * r;
END Distance;
```

BEGIN

``` Out.LongRealFix(Distance(36.12,-86.67,33.94,-118.4),6,10);Out.Ln
```

END Haversines. </lang> Output:

```2887.2602975600
```

## Objeck

<lang objeck> bundle Default {

``` class Haversine {
function : Dist(th1 : Float, ph1 : Float, th2 : Float, ph2 : Float) ~ Float {
ph1 -= ph2;
```
```     dz := th1->Sin()- th2->Sin();
dx := ph1->Cos() * th1->Cos() - th2->Cos();
dy := ph1->Sin() * th1->Cos();
```
```     return ((dx * dx + dy * dy + dz * dz)->SquareRoot() / 2.0)->ArcSin() * 2 * 6371.0;
}
```
```   function : Main(args : String[]) ~ Nil {
IO.Console->Print("distance: ")->PrintLine(Dist(36.12, -86.67, 33.94, -118.4));
}
}
```

} </lang>

Output:
```distance: 2886.44
```

## Objective-C

<lang objc>+ (double) distanceBetweenLat1:(double)lat1 lon1:(double)lon1

```                         lat2:(double)lat2 lon2:(double)lon2 {
double lat1rad = lat1 * M_PI/180;
double lon1rad = lon1 * M_PI/180;
double lat2rad = lat2 * M_PI/180;
double lon2rad = lon2 * M_PI/180;

//deltas
```
```   double a = sin(dLat/2) * sin(dLat/2) + sin(dLon/2) * sin(dLon/2) * cos(lat1rad) * cos(lat2rad);
double c = 2 * asin(sqrt(a));
double R = 6372.8;
return R * c;
```

}</lang>

## OCaml

The core calculation is fairly straightforward, but with an eye toward generality and reuse, this is how I might start: <lang ocaml>(* Preamble -- some math, and an "angle" type which might be part of a common library. *) let pi = 4. *. atan 1. let radians_of_degrees = ( *. ) (pi /. 180.) let haversin theta = 0.5 *. (1. -. cos theta)

(* The angle type can track radians or degrees, which I'll use for automatic conversion. *) type angle = Deg of float | Rad of float let as_radians = function

``` | Deg d -> radians_of_degrees d
```

(* Demonstrating use of a module, and record type. *) module LatLong = struct

``` type t = { lat: float; lng: float }
let of_angles lat lng = { lat = as_radians lat; lng = as_radians lng }
let sub a b = { lat = a.lat-.b.lat; lng = a.lng-.b.lng }
```
``` let dist radius a b =
let d = sub b a in
let h = haversin d.lat +. haversin d.lng *. cos a.lat *. cos b.lat in
2. *. radius *. asin (sqrt h)
```

end

(* Now we can use the LatLong module to construct coordinates and calculate

```* great-circle distances.
* NOTE radius and resulting distance are in the same measure, and units could
* be tracked for this too... but who uses miles? ;) *)
```

let earth_dist = LatLong.dist 6372.8 and bna = LatLong.of_angles (Deg 36.12) (Deg (-86.67)) and lax = LatLong.of_angles (Deg 33.94) (Deg (-118.4)) in earth_dist bna lax;;</lang>

If the above is fed to the REPL, the last line will produce this:

```# earth_dist bna lax;;
- : float = 2887.25995060711102
```

## Oforth

<lang Oforth>import: math

haversine(lat1, lon1, lat2, lon2)

| lat lon |

```  lat2 lat1 - asRadian ->lat
```
```  lon 2 / sin sq lat1 asRadian cos * lat2 asRadian cos *
lat 2 / sin sq + sqrt asin 2 * 6372.8 * ;
```

haversine(36.12, -86.67, 33.94, -118.40) println</lang>

Output:
```2887.25995060711
```

## ooRexx

Translation of: REXX

The rxmath library provides the required functions. <lang oorexx>/*REXX pgm calculates distance between Nashville & Los Angles airports. */ say " Nashville: north 36º 7.2', west 86º 40.2' = 36.12º, -86.67º" say "Los Angles: north 33º 56.4', west 118º 24.0' = 33.94º, -118.40º" say dist=surfaceDistance(36.12, -86.67, 33.94, -118.4) kdist=format(dist/1 ,,2) /*show 2 digs past decimal point.*/ mdist=format(dist/1.609344,,2) /* " " " " " " */ ndist=format(mdist*5280/6076.1,,2) /* " " " " " " */ say ' distance between= ' kdist " kilometers," say ' or ' mdist " statute miles," say ' or ' ndist " nautical or air miles." exit /*stick a fork in it, we're done.*/ /*----------------------------------SURFACEDISTANCE subroutine----------*/ surfaceDistance: arg th1,ph1,th2,ph2 /*use haversine formula for dist.*/

``` radius = 6372.8                      /*earth's mean radius in km      */
ph1 = ph1-ph2
x = cos(ph1) * cos(th1) - cos(th2)
y = sin(ph1) * cos(th1)
z = sin(th1) - sin(th2)
return radius * 2 * aSin(sqrt(x**2+y**2+z**2)/2 )
```

cos: Return RxCalcCos(arg(1)) sin: Return RxCalcSin(arg(1)) asin: Return RxCalcArcSin(arg(1),,'R') sqrt: Return RxCalcSqrt(arg(1))

requires rxMath library</lang>
Output:
``` Nashville:  north 36º  7.2', west  86º 40.2'   =   36.12º,  -86.67º
Los Angles:  north 33º 56.4', west 118º 24.0'   =   33.94º, -118.40º

distance between=   2887.26  kilometers,
or    1794.06  statute miles,
or    1559.00  nautical or air miles.```

## PARI/GP

<lang parigp>dist(th1, th2, ph)={

``` my(v=[cos(ph)*cos(th1)-cos(th2),sin(ph)*cos(th1),sin(th1)-sin(th2)]);
asin(sqrt(norml2(v))/2)
```

}; distEarth(th1, ph1, th2, ph2)={

``` my(d=12742, deg=Pi/180); \\ Authalic diameter of the Earth
d*dist(th1*deg, th2*deg, (ph1-ph2)*deg)
```

}; distEarth(36.12, -86.67, 33.94, -118.4)</lang>

Output:
`%1 = 2886.44444`

## Pascal

Works with: Free_Pascal
Library: Math

<lang pascal>Program HaversineDemo(output);

uses

``` Math;
```

function haversineDist(th1, ph1, th2, ph2: double): double;

``` const
diameter = 2 * 6372.8;
var
dx, dy, dz: double;
begin

dz := sin(th1) - sin(th2);
dx := cos(ph1) * cos(th1) - cos(th2);
dy := sin(ph1) * cos(th1);
haversineDist := arcsin(sqrt(dx**2 + dy**2 + dz**2) / 2) * diameter;
end;
```

begin

``` writeln ('Haversine distance: ', haversineDist(36.12, -86.67, 33.94, -118.4):7:2, ' km.');
```

end.</lang>

Output:
```Haversine distance: 2887.26 km.
```

## Perl

Library: ntheory

<lang perl>use ntheory qw/Pi/;

sub asin { my \$x = shift; atan2(\$x, sqrt(1-\$x*\$x)); }

sub surfacedist {

``` my(\$lat1, \$lon1, \$lat2, \$lon2) = @_;
my \$radians = Pi() / 180;;
my \$dlat = (\$lat2 - \$lat1) * \$radians;
my \$dlon = (\$lon2 - \$lon1) * \$radians;
my \$a = sin(\$dlat/2)**2 + cos(\$lat1) * cos(\$lat2) * sin(\$dlon/2)**2;
my \$c = 2 * asin(sqrt(\$a));
```

} my @BNA = (36.12, -86.67); my @LAX = (33.94, -118.4); printf "Distance: %.3f km\n", surfacedist(@BNA, @LAX);</lang>

Output:
`Distance: 2887.260 km`

## Phix

<lang Phix>constant MER = 6371 -- mean earth radius(km) constant DEG_TO_RAD = PI/180

function haversine(atom lat1, long1, lat2, long2)

```   lat1 *= DEG_TO_RAD
return MER*arccos(sin(lat1)*sin(lat2)+cos(lat1)*cos(lat2)*cos(long2-long1))
```

end function

atom d = haversine(36.12,-86.67,33.94,-118.4) printf(1,"Distance is %f km (%f miles)\n",{d,d/1.609344})</lang>

Output:
```Distance is 2886.444443 km (1793.553425 miles)
```

## PHP

<lang php>class POI {

```   private \$latitude;
private \$longitude;
```
```   public function __construct(\$latitude, \$longitude) {
}
```
```   public function getLatitude() {
return \$this->latitude;
}
```
```   public function getLongitude() {
return \$this->longitude;
}
```
```   public function getDistanceInMetersTo(POI \$other) {
```
```       \$diffLatitude = \$other->getLatitude() - \$this->latitude;
\$diffLongitude = \$other->getLongitude() - \$this->longitude;
```
```       \$a = sin(\$diffLatitude / 2) ** 2 +
cos(\$this->latitude) *
cos(\$other->getLatitude()) *
sin(\$diffLongitude / 2) ** 2;
```
```       \$c = 2 * asin(sqrt(\$a));
```
```       return \$distance;
}
```

}</lang> Test: <lang php>\$bna = new POI(36.12, -86.67); // Nashville International Airport \$lax = new POI(33.94, -118.40); // Los Angeles International Airport printf('%.2f km', \$bna->getDistanceInMetersTo(\$lax));</lang>

Output:
`2886.44 km`

## PicoLisp

(de haversine (Th1 Ph1 Th2 Ph2)

```  (setq
Ph1 (*/ (- Ph1 Ph2) pi 180.0)
Th1 (*/ Th1 pi 180.0)
Th2 (*/ Th2 pi 180.0) )
(let
(DX (- (*/ (cos Ph1) (cos Th1) 1.0) (cos Th2))
DY (*/ (sin Ph1) (cos Th1) 1.0)
DZ (- (sin Th1) (sin Th2)) )
(* `(* 2 6371)
(asin
(/
(sqrt (+ (* DX DX) (* DY DY) (* DZ DZ)))
2 ) ) ) ) )</lang>
```

Test: <lang PicoLisp>(prinl

```  "Haversine distance: "
(round (haversine 36.12 -86.67 33.94 -118.4))
" km" )</lang>
```
Output:
`Haversine distance: 2,886.444 km`

## PL/I

<lang PL/I>test: procedure options (main); /* 12 January 2014. Derived from Fortran version */

```  declare d float;
```
```  d = haversine(36.12, -86.67, 33.94, -118.40);  /* BNA to LAX */
put edit ( 'distance: ', d, ' km') (A, F(10,3)); /* distance: 2887.2600 km */
```

```  declare degree float nonassignable;
declare pi float (15) initial ( (4*atan(1.0d0)) );
```
```  return ( degree*pi/180 );
```

haversine: procedure (deglat1, deglon1, deglat2, deglon2) returns (float);

```  declare (deglat1, deglon1, deglat2, deglon2) float nonassignable;
declare (a, c, dlat, dlon, lat1, lat2) float;
```
```  dlat = degrees_to_radians(deglat2-deglat1);
a = (sin(dlat/2))**2 + cos(lat1)*cos(lat2)*(sin(dlon/2))**2;
c = 2*asin(sqrt(a));
```

end haversine;

end test;</lang>

Output:
```distance:   2887.260 km
```

## PowerShell

Works with: PowerShell version 3

\$BNA = New-Object System.Device.Location.GeoCoordinate 36.12, -86.67 \$LAX = New-Object System.Device.Location.GeoCoordinate 33.94, -118.40

\$BNA.GetDistanceTo( \$LAX ) / 1000 </lang>

Output:
```2888.93627213254
```
Works with: PowerShell version 2

<lang PowerShell> function Get-GreatCircleDistance ( \$Coord1, \$Coord2 )

```   {
#  Convert decimal degrees to radians
\$Lat1  = \$Coord1[0] / 180 * [math]::Pi
\$Long1 = \$Coord1[1] / 180 * [math]::Pi
\$Lat2  = \$Coord2[0] / 180 * [math]::Pi
\$Long2 = \$Coord2[1] / 180 * [math]::Pi

\$R = 6371

#  Haversine formula
\$ArcLength = 2 * \$R *
[math]::Asin(
[math]::Sqrt(
[math]::Sin( ( \$Lat1 - \$Lat2 ) / 2 ) *
[math]::Sin( ( \$Lat1 - \$Lat2 ) / 2 ) +
[math]::Cos( \$Lat1 ) *
[math]::Cos( \$Lat2 ) *
[math]::Sin( ( \$Long1 - \$Long2 ) / 2 ) *
[math]::Sin( ( \$Long1 - \$Long2 ) / 2 ) ) )
return \$ArcLength
}

```

\$BNA = 36.12, -86.67 \$LAX = 33.94, -118.40

Get-GreatCircleDistance \$BNA \$LAX </lang>

Output:
```2886.44444283799
```

## Pure Data

Up until now there is no 64bit float in Pure Data, so the result of the calculation might not be completely accurate.

```#N canvas 527 1078 450 686 10;
#X obj 28 427 atan2;
#X obj 28 406 sqrt;
#X obj 62 405 sqrt;
#X obj 28 447 * 2;
#X obj 62 384 -;
#X msg 62 362 1 \\$1;
#X obj 28 339 t f f;
#X obj 28 210 sin;
#X obj 83 207 sin;
#X obj 138 206 cos;
#X obj 193 206 cos;
#X obj 28 179 / 2;
#X obj 83 182 / 2;
#X obj 28 74 unpack f f;
#X obj 28 98 t f f;
#X obj 28 301 expr \$f1 + (\$f2 * \$f3 * \$f4);
#X obj 28 232 t f f;
#X obj 28 257 *;
#X obj 83 232 t f f;
#X obj 83 257 *;
#X obj 83 98 t f b;
#X obj 28 542 * 6372.8;
#X obj 193 120 f 33.94;
#X obj 28 125 - 33.94;
#X msg 28 45 36.12 -86.67;
#X obj 83 123 - -118.4;
#X floatatom 28 577 8 0 0 0 - - -, f 8;
#X connect 0 0 3 0;
#X connect 1 0 0 0;
#X connect 2 0 0 1;
#X connect 3 0 25 0;
#X connect 4 0 2 0;
#X connect 5 0 4 0;
#X connect 6 0 1 0;
#X connect 6 1 5 0;
#X connect 7 0 20 0;
#X connect 8 0 22 0;
#X connect 9 0 15 2;
#X connect 10 0 15 3;
#X connect 11 0 7 0;
#X connect 12 0 8 0;
#X connect 13 0 14 0;
#X connect 13 1 24 0;
#X connect 14 0 27 0;
#X connect 14 1 18 0;
#X connect 15 0 6 0;
#X connect 16 0 11 0;
#X connect 17 0 12 0;
#X connect 18 0 9 0;
#X connect 19 0 10 0;
#X connect 20 0 21 0;
#X connect 20 1 21 1;
#X connect 21 0 15 0;
#X connect 22 0 23 0;
#X connect 22 1 23 1;
#X connect 23 0 15 1;
#X connect 24 0 29 0;
#X connect 24 1 26 0;
#X connect 25 0 30 0;
#X connect 26 0 19 0;
#X connect 27 0 16 0;
#X connect 28 0 13 0;
#X connect 29 0 17 0;
```

## PureBasic

Translation of: Pascal

<lang PureBasic>#DIA=2*6372.8

Procedure.d Haversine(th1.d,ph1.d,th2.d,ph2.d)

``` Define dx.d,
dy.d,
dz.d

dz=Sin(th1)-Sin(th2)
dx=Cos(ph1)*Cos(th1)-Cos(th2)
dy=Sin(ph1)*Cos(th1)
ProcedureReturn ASin(Sqr(Pow(dx,2)+Pow(dy,2)+Pow(dz,2))/2)*#DIA
```

EndProcedure

OpenConsole("Haversine distance") Print("Haversine distance: ") Print(StrD(Haversine(36.12,-86.67,33.94,-118.4),7)+" km.") Input()</lang>

Output:
`Haversine distance: 2887.2599506 km.`

## Python

<lang python>from math import radians, sin, cos, sqrt, asin

def haversine(lat1, lon1, lat2, lon2):

```   R = 6372.8  # Earth radius in kilometers
```
```   dLat = radians(lat2 - lat1)
```
```   a = sin(dLat / 2)**2 + cos(lat1) * cos(lat2) * sin(dLon / 2)**2
c = 2 * asin(sqrt(a))
```
```   return R * c
```

>>> haversine(36.12, -86.67, 33.94, -118.40) 2887.2599506071106 >>> </lang>

## QB64

<lang QB64> SCREEN _NEWIMAGE(800, 100, 32)

'*** Units: K=kilometers M=miles N=nautical miles DIM UNIT AS STRING DIM Distance AS STRING DIM Result AS DOUBLE DIM ANSWER AS DOUBLE

'*** Change the To/From Latittude/Logitudes for your run

'*** LAT/LON for Nashville International Airport (BNA) lat1 = 36.12 Lon1 = -86.67

'*** LAT/LONG for Los Angeles International Airport (LAX) Lat2 = 33.94 Lon2 = -118.40

'*** Initialize Values UNIT = "K" Distance = "" 'Radius = 6378.137 Radius = 6372.8

'*** Calculate distance using Haversine Function lat1 = (lat1 * _PI / 180) Lon1 = (Lon1 * _PI / 180) Lat2 = (Lat2 * _PI / 180) Lon2 = (Lon2 * _PI / 180) DLon = Lon1 - Lon2

ANSWER = _ACOS(SIN(lat1) * SIN(Lat2) + COS(lat1) * COS(Lat2) * COS(DLon)) * Radius

'*** Adjust Answer based on Distance Unit (kilometers, miles, nautical miles) SELECT CASE UNIT

```      CASE "M"
Distance = "miles"
CASE "N"
Distance = "nautical miles"
CASE ELSE
Distance = "kilometers"
```

END SELECT

'*** Change PRINT statement with your labels for FROM/TO locations PRINT "The distance from Nashville International to Los Angeles International in "; Distance; PRINT USING " is: ##,###.##"; Result; PRINT "."

END </lang>

## R

<lang r>dms_to_rad <- function(d, m, s) (d + m / 60 + s / 3600) * pi / 180

1. Volumetric mean radius is 6371 km, see http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
2. The diameter is thus 12742 km

great_circle_distance <- function(lat1, long1, lat2, long2) {

```  a <- sin(0.5 * (lat2 - lat1))
b <- sin(0.5 * (long2 - long1))
12742 * asin(sqrt(a * a + cos(lat1) * cos(lat2) * b * b))
```

}

1. Coordinates are found here:
2. http://www.airport-data.com/airport/BNA/
3. http://www.airport-data.com/airport/LAX/

great_circle_distance(

```  dms_to_rad(36,  7, 28.10), dms_to_rad( 86, 40, 41.50),   # Nashville International Airport (BNA)
dms_to_rad(33, 56, 32.98), dms_to_rad(118, 24, 29.05))  # Los Angeles International Airport (LAX)
```
1. Output: 2886.327</lang>

## Racket

Almost the same as the Scheme version. <lang racket>

1. lang racket

(define (distance lat1 long1 lat2 long2)

``` (define (h a b) (sqr (sin (/ (- b a) 2))))
(asin (sqrt (+ (h lat1 lat2)
(* (cos lat1) (cos lat2) (h long1 long2)))))))
```

``` (* (/ pi 180) (+ d (/ m 60) (/ s 3600))))
```

```         (deg-to-rad 33 56.4 0) (deg-to-rad 118 24.0 0))
```

</lang>

Output:
```2886.444442837984
```

## Raku

(formerly Perl 6) <lang perl6>class EarthPoint {

```       has \$.lat; # latitude
has \$.lon; # longitude
```
```       has \$earth_radius = 6371; # mean earth radius
has \$radian_ratio = pi / 180;
```
```       # accessors for radians
method latR { \$.lat * \$radian_ratio }
method lonR { \$.lon * \$radian_ratio }
```
```       method haversine-dist(EarthPoint \$p) {
```
```               my EarthPoint \$arc .= new(
lat => \$!lat - \$p.lat,
lon => \$!lon - \$p.lon );
```
```               my \$a = sin(\$arc.latR/2) ** 2 + sin(\$arc.lonR/2) ** 2
* cos(\$.latR) * cos(\$p.latR);
my \$c = 2 * asin( sqrt(\$a) );
```
```               return \$earth_radius * \$c;
}
```

}

my EarthPoint \$BNA .= new(lat => 36.12, lon => -86.67); my EarthPoint \$LAX .= new(lat => 33.94, lon => -118.4);

say \$BNA.haversine-dist(\$LAX); # 2886.44444099822</lang>

## Raven

Translation of: Groovy

<lang Raven>define PI

``` -1 acos
```

``` \$degree PI * 180 /
```

define haversine use \$lat1, \$lon1, \$lat2, \$lon2

``` 6372.8 as \$R
# In kilometers
\$lat2 \$lat1 - toRadians   as \$dLat
\$lon2 \$lon1 - toRadians   as \$dLon

\$dLat 2 /  sin
\$dLat 2 /  sin *
\$dLon 2 /  sin
\$dLon 2 /  sin *
\$lat1 cos *
\$lat2 cos * +        as \$a
\$a sqrt  asin  2 *   as \$c
\$R \$c *
```

}

-118.40 33.94 -86.67 36.12 haversine "haversine: %.15g\n" print</lang>

Output:
`haversine: 2887.25995060711`

## REXX

The use of normalization for angles isn't required for the Haversine formula, but those normalization functions were included
herein anyway   (to support normalization of input arguments to the trigonometric functions for the general case). <lang rexx>/*REXX program calculates the distance between Nashville and Los Angles airports.*/ call pi; numeric digits length(pi) % 2 /*use half of PI dec. digits for output*/ say " Nashville: north 36º 7.2', west 86º 40.2' = 36.12º, -86.67º" say " Los Angles: north 33º 56.4', west 118º 24.0' = 33.94º, -118.40º" @using_radius= 'using the mean radius of the earth as ' /*a literal for SAY.*/ radii.=.; radii.1=6372.8; radii.2=6371 /*mean radii of the earth in kilometers*/ say; m=1/0.621371192237 /*M: one statute mile in " */

```   do radius=1  while radii.radius\==.          /*calc. distance using specific radii. */
say ' Distance between:  '   format(d/1            ,,2)    " kilometers,"
say '               or   '   format(d/m            ,,2)    " statute miles,"
say '               or   '   format(d/m*5280/6076.1,,2)    " nautical (or air miles)."
end   /*radius*/                             /*show──┘   2 dec. digs past dec. point*/
```

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ surfaceDist: parse arg th1,ph1,th2,ph2,r /*use haversine formula for distance.*/

```     numeric digits digits() * 2                /*double number of decimal digits used.*/
ph1 = d2r(ph1 - ph2)               /*convert degrees ──► radians & reduce.*/
th1 = d2r(th1)                     /*   "       "           "    "    "   */
th2 = d2r(th2)                     /*   "       "           "    "    "   */
cosTH1= cos(th1)                           /*compute a shortcut (it's used twice).*/
x = cos(ph1) * cosTH1 - cos(th2) /*   "    X   coordinate.              */
y = sin(ph1) * cosTH1            /*   "    Y       "                    */
z = sin(th1)          - sin(th2) /*   "    Z       "                    */
return Asin(sqrt(x*x + y*y + z*z)*.5) *r*2 /*compute the arcsin and return value. */
```

/*──────────────────────────────────────────────────────────────────────────────────────*/ Acos: return pi() * .5 - aSin( arg(1) ) /*calculate the ArcCos of an argument. */ d2d: return arg(1) // 360 /*normalize degrees to a unit circle. */ d2r: return r2r( arg(1) * pi() / 180) /*normalize and convert deg ──► radians*/ r2d: return d2d( (arg(1) * 180 / pi())) /*normalize and convert rad ──► degrees*/ r2r: return arg(1) // (pi() * 2) /*normalize radians to a unit circle. */ pi: pi= 3.141592653589793238462643383279502884197169399375105820975; return pi /*──────────────────────────────────────────────────────────────────────────────────────*/ Asin: procedure; parse arg x 1 z 1 o 1 p; a= abs(x); aa= a * a

```     if a >= sqrt(2) * .5  then return sign(x) * Acos( sqrt(1 - aa) )
do j=2  by 2  until p=z;    p= z;     o= o * aa * (j-1) / j;   z= z  +  o / (j+1)
end   /*j*/;                return z      /* [↑]  compute until no more noise.  */
```

/*──────────────────────────────────────────────────────────────────────────────────────*/ cos: procedure; parse arg x; x= r2r(x); a= abs(x); Hpi= pi * .5

```     numeric fuzz min(6, digits() - 3)  ;     if a=pi    then return -1
if a=Hpi | a=Hpi*3  then return 0  ;     if a=pi/3  then return .5
if a=pi* 2/3        then return -.5;     q= x*x;    p= 1;     z= 1;     _= 1
do k=2  by 2;  _= -_*q / (k*(k-1)); z= z+_; if z=p  then leave; p=z; end; return z
```

/*──────────────────────────────────────────────────────────────────────────────────────*/ sin: procedure; parse arg x; x= r2r(x); numeric fuzz min(5, digits() - 3)

```     if abs(x)=pi  then  return 0;            q= x*x;    p= x;     z= x;      _= x
do k=2  by 2; _= -_*q / (k*(k+1));  z= z+_; if z=p  then leave; p=z; end; return z
```

/*──────────────────────────────────────────────────────────────────────────────────────*/ sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); m.=9; numeric form; h=d+6

```     numeric digits;  parse value format(x,2,1,,0) 'E0' with g "E" _ .;  g=g * .5'e'_ % 2
do j=0  while h>9;      m.j= h;              h= h%2 + 1;    end  /*j*/
do k=j+5  to 0  by -1;  numeric digits m.k;  g= (g+x/g)*.5; end  /*k*/;   return g</lang>
```

REXX doesn't have most of the higher math functions, so they are included here (above) as subroutines (functions).

```      ╔════════════════════════════════════════════════════════════════════════╗
║ A note on built─in functions:  REXX doesn't have a lot of mathematical ║
║ or  (particularly) trigonometric functions,  so REXX programmers have  ║
║ to write their own.  Usually, this is done once, or most likely,  one  ║
║ is borrowed from another program.  Knowing this, the one that is used  ║
║ has a lot of boilerplate in it.                                        ║
║                                                                        ║
║ Programming note:  the  "general 1─liner"  subroutines are taken from  ║
║ other programs that I wrote, but I broke up their one line of source   ║
║ so it can be viewed without shifting the viewing window.               ║
║                                                                        ║
║ The    pi    constant  (as used here)  is actually a much more robust  ║
║ function and will return up to one million digits in the real version. ║
║                                                                        ║
║ One bad side effect is that, like a automobile without a hood, you see ║
║ all the dirty stuff going on.    Also, don't visit a sausage factory.  ║
╚════════════════════════════════════════════════════════════════════════╝
```
output   when using the in-line defaults:
```       Nashville:  north 36º  7.2', west  86º 40.2'   =   36.12º,  -86.67º
Los Angles:  north 33º 56.4', west 118º 24.0'   =   33.94º, -118.40º

─────────using the mean radius of the earth as  6372.8  kilometers─────────
Distance between:   2887.26  kilometers,
or    1794.06  statute miles,
or    1559.00  nautical (or air miles).

──────────using the mean radius of the earth as  6371  kilometers──────────
Distance between:   2886.44  kilometers,
or    1793.55  statute miles,
or    1558.56  nautical (or air miles).
```

## Ring

<lang ring> decimals(8) see haversine(36.12, -86.67, 33.94, -118.4) + nl

func haversine x1, y1, x2, y2

```    r=0.01745
x1= x1*r
x2= x2*r
y1= y1*r
y2= y2*r
dy = y2-y1
dx = x2-x1
a = pow(sin(dx/2),2) + cos(x1) * cos(x2) * pow(sin(dy/2),2)
c = 2 * asin(sqrt(a))
d = 6372.8 * c
return d
```

</lang>

## Ruby

<lang ruby>include Math

def spherical_distance(start_coords, end_coords)

``` lat1, long1 = deg2rad *start_coords
2 * Radius * asin(sqrt(sin((lat2-lat1)/2)**2 + cos(lat1) * cos(lat2) * sin((long2 - long1)/2)**2))
```

end

``` [lat * PI / 180, long * PI / 180]
```

end

bna = [36.12, -86.67] lax = [33.94, -118.4]

puts "%.1f" % spherical_distance(bna, lax)</lang>

Output:
`2886.4`

Alternativley:

Translation of: Python

<lang ruby>include Math

def haversine(lat1, lon1, lat2, lon2)

```   r = 6372.8        # Earth radius in kilometers

dLat = (lat2 - lat1) * deg2rad
dLon = (lon2 - lon1) * deg2rad

a = sin(dLat / 2)**2 + cos(lat1) * cos(lat2) * sin(dLon / 2)**2
c = 2 * asin(sqrt(a))
r * c
```

end

puts "distance is #{haversine(36.12, -86.67, 33.94, -118.40)} km " </lang>

Output:
```distance is 2887.2599506071106 km
```

## Run BASIC

<lang runbasic> D2R = atn(1)/45

```   diam  = 2 * 6372.8
```

Lg1m2 = ((-86.67)-(-118.4)) * D2R Lt1 = 36.12 * D2R ' degrees to rad Lt2 = 33.94 * D2R

```   dz    = sin(Lt1) - sin(Lt2)
dx    = cos(Lg1m2) * cos(Lt1) - cos(Lt2)
dy    = sin(Lg1m2) * cos(Lt1)
hDist = asn((dx^2 + dy^2 + dz^2)^0.5 /2) * diam
```

print "Haversine distance: ";using("####.#############",hDist);" km."

```'Tips: ( 36 deg 7 min 12 sec ) = print 36+(7/60)+(12/3600).  Produces: 36.12 deg.
'
'      Search   36.12,-86.67
'      Earth.
'      Center the pin, zoom airport.
'      Directions (destination).
'      36.12.-86.66999
```

' Distance is 35.37 inches.</lang>Output

`Haversine distance: 2887.2599506071104 km.`

## Rust

<lang rust> use std::f64;

static R: f64 = 6372.8;

struct Point {

```   lat: f64,
lon: f64,
```

}

fn haversine(mut origin: Point, mut destination: Point) -> f64 {

```   origin.lon -= destination.lon;
let dz: f64 = origin.lat.sin() - destination.lat.sin();
let dx: f64 = origin.lon.cos() * origin.lat.cos() - destination.lat.cos();
let dy: f64 = origin.lon.sin() * origin.lat.cos();
((dx * dx + dy * dy + dz * dz).sqrt() / 2.0).asin() * 2.0 * R
```

}

fn main() {

```   let origin: Point = Point {
lat: 36.12,
lon:-86.67
};
let destination: Point = Point {
lat: 33.94,
lon:-118.4
};
let d: f64 = haversine(origin, destination);
println!("Distance: {} km ({} mi)", d, d / 1.609344);
```

}

</lang>Output

`Distance: 2887.2599506071106 km (1794.060157807846 mi)`

## SAS

<lang SAS> options minoperator;

%macro haver(lat1, long1, lat2, long2, type=D, dist=K);

%if %upcase(&type) in (D DEG DEGREE DEGREES) %then %do; %let convert = constant('PI')/180; %end; %else %if %upcase(&type) in (R RAD RADIAN RADIANS) %then %do; %let convert = 1; %end; %else %do; %put ERROR - Enter RADIANS or DEGREES for type.; %goto exit; %end;

%if %upcase(&dist) in (M MILE MILES) %then %do; %let distrat = 1.609344; %end; %else %if %upcase(&dist) in (K KM KILOMETER KILOMETERS) %then %do; %let distrat = 1; %end; %else %do; %put ERROR - Enter M on KM for dist; %goto exit; %end;

data _null_; convert = &convert; lat1 = &lat1 * convert; lat2 = &lat2 * convert; long1 = &long1 * convert; long2 = &long2 * convert;

diff1 = lat2 - lat1; diff2 = long2 - long1;

part1 = sin(diff1/2)**2; part2 = cos(lat1)*cos(lat2); part3 = sin(diff2/2)**2;

root = sqrt(part1 + part2*part3);

dist = 2 * 6372.8 / &distrat * arsin(root);

put "Distance is " dist "%upcase(&dist)"; run;

%exit: %mend;

%haver(36.12, -86.67, 33.94, -118.40); </lang>

Output:
`Distance is 2887.2599506 K`

## Scala

<lang scala>import math._

object Haversine {

```  val R = 6372.8  //radius in km
```
```  def haversine(lat1:Double, lon1:Double, lat2:Double, lon2:Double)={

val c = 2 * asin(sqrt(a))
R * c
}
```
```  def main(args: Array[String]): Unit = {
println(haversine(36.12, -86.67, 33.94, -118.40))
}
```

}</lang>

Output:
`2887.2599506071106`

## Scheme

<lang scheme>(define earth-radius 6371) (define pi (acos -1))

(define (distance lat1 long1 lat2 long2) (define (h a b) (expt (sin (/ (- b a) 2)) 2)) (* 2 earth-radius (asin (sqrt (+ (h lat1 lat2) (* (cos lat1) (cos lat2) (h long1 long2)))))))

(define (deg-to-rad d m s) (* (/ pi 180) (+ d (/ m 60) (/ s 3600))))

```         (deg-to-rad 33 56.4 0) (deg-to-rad 118 24.0 0))
```
2886.444442837984</lang>

## Seed7

<lang seed7>\$ include "seed7_05.s7i";

``` include "float.s7i";
include "math.s7i";
```

const func float: greatCircleDistance (in float: latitude1, in float: longitude1,

```   in float: latitude2, in float: longitude2) is func
result
var float: distance is 0.0;
local
const float: EarthRadius is 6372.8;  # Average great-elliptic or great-circle radius in kilometers
begin
distance := 2.0 * EarthRadius * asin(sqrt(sin(0.5 * (latitude2 - latitude1)) ** 2 +
cos(latitude1) * cos(latitude2) *
sin(0.5 * (longitude2 - longitude1)) ** 2));
end func;
```

const func float: degToRad (in float: degrees) is

``` return degrees * 0.017453292519943295769236907684886127;
```

const proc: main is func

``` begin
writeln("Distance in kilometers between BNA and LAX");
digits 2);
end func;</lang>
```
Output:
```2887.26
```

## Sidef

Translation of: Raku

<lang ruby>class EarthPoint(lat, lon) {

```   const earth_radius = 6371       # mean earth radius
```
```   # accessors for radians
method latR { self.lat * radian_ratio }
method lonR { self.lon * radian_ratio }
```
```   method haversine_dist(EarthPoint p) {
var arc = EarthPoint(
self.lat - p.lat,
self.lon - p.lon,
)
```
```       var a = Math.sum(
(arc.latR / 2).sin**2,
(arc.lonR / 2).sin**2 *
self.latR.cos * p.latR.cos
)
```
```       earth_radius * a.sqrt.asin * 2
}
```

}

var BNA = EarthPoint.new(lat: 36.12, lon: -86.67) var LAX = EarthPoint.new(lat: 33.94, lon: -118.4)

say BNA.haversine_dist(LAX) #=> 2886.444442837983299747157823945746716...</lang>

## Batch File

Translation of: BASIC

<lang smart BASIC> '*** LAT/LONG for Nashville International Airport (BNA) lat1=36.12 Lon1=-86.67

'*** LAT/LONG for Los Angeles International Airport (LAX) Lat2=33.94 Lon2=-118.40

'*** Units: K=kilometers M=miles N=nautical miles Unit\$ = "K"

Result=HAVERSINE(Lat1,Lon1,Lat2,Lon2,Unit\$) R\$=STR\$(Result,"#,###.##")

PRINT "The distance between Nashville International Airport and Los Angeles International Airport in kilometers is: "&R\$

STOP

DEF HAVERSINE(Lat1,Lon1,Lat2,Lon2,Unit\$) '--------------------------------------------------------------- '*** Haversine Formula - Calculate distances by LAT/LONG '

'*** Pass to it the LAT/LONG of the two locations, and then unit of measure '*** Usage: X=HAVERSINE(Lat1,Lon1,Lat2,Lon2,Unit\$)

```   PI=3.14159265358979323846
Lat1=(Lat1*PI/180)
Lon1=(Lon1*PI/180)
Lat2=(Lat2*PI/180)
Lon2=(Lon2*PI/180)
DLon=Lon1-Lon2
```
```   IF UNIT\$="M" THEN Answer=Answer*0.621371192
```
``` RETURN Answer
```

ENDDEF </lang>

Output:
```The distance between Nashville International Airport and Los Angeles International Airport in kilometers is: 2,887.26
```

## Stata

First, a program to add a distance variable to a dataset, given variables for LAT/LON of two points.

<lang stata>program spheredist version 15.0 syntax varlist(min=4 max=4 numeric), GENerate(namelist max=1) /// [Radius(real 6371) ALTitude(real 0) LABel(string)] confirm new variable `generate' local lat1 : word 1 of `varlist' local lon1 : word 2 of `varlist' local lat2 : word 3 of `varlist' local lon2 : word 4 of `varlist' local r=2*(`radius'+`altitude'/1000) local k=_pi/180 gen `generate'=`r'*asin(sqrt(sin((`lat2'-`lat1')*`k'/2)^2+ /// cos(`lat1'*`k')*cos(`lat2'*`k')*sin((`lon2'-`lon1')*`k'/2)^2)) if `"`label'"' != "" { label variable `generate' `"`label'"' } end</lang>

Illustration with a sample dataset.

<lang stata>import delimited airports.csv, clear format %9.4f l* list

```    +----------------------------------------------------------------------------------------------------+
| iata                                   airport          city         country       lat         lon |
|----------------------------------------------------------------------------------------------------|
1. |  AMS                Amsterdam Airport Schiphol     Amsterdam     Netherlands   52.3086      4.7639 |
2. |  BNA           Nashville International Airport     Nashville   United States   36.1245    -86.6782 |
3. |  CDG   Charles de Gaulle International Airport         Paris          France   49.0128      2.5500 |
4. |  CGN                      Cologne Bonn Airport       Cologne         Germany   50.8659      7.1427 |
5. |  LAX         Los Angeles International Airport   Los Angeles   United States   33.9425   -118.4080 |
|----------------------------------------------------------------------------------------------------|
6. |  MEM             Memphis International Airport       Memphis   United States   35.0424    -89.9767 |
+----------------------------------------------------------------------------------------------------+</lang>
```

MEM/CGN joins two Fedex Express hubs. The line AMS/LAX is operated by KLM Royal Dutch Airlines. We will compute the distance between each pair of airports, both at sea level and at typical cruising flight level (35000 ft).

Bear in mind that the actual route of an airliner is usually not a piece of great circle, so this will only give an idea. For instance, according to FlightAware, the route of a Fedex flight from Memphis to Paris is 7852 km long, at FL300 altitude (9150 m). The program given here would yield 7328.33 km instead.

<lang stata>keep iata lat lon rename (iata lat lon) =2 gen k=0 tempfile tmp save "`tmp'" rename *2 *1 joinby k using `tmp' drop if iata1>=iata2 drop k list

```    +-----------------------------------------------------------+
| iata1      lat1        lon1   iata2      lat2        lon2 |
|-----------------------------------------------------------|
1. |   AMS   52.3086      4.7639     BNA   36.1245    -86.6782 |
2. |   AMS   52.3086      4.7639     CGN   50.8659      7.1427 |
3. |   AMS   52.3086      4.7639     LAX   33.9425   -118.4080 |
4. |   AMS   52.3086      4.7639     CDG   49.0128      2.5500 |
5. |   AMS   52.3086      4.7639     MEM   35.0424    -89.9767 |
|-----------------------------------------------------------|
6. |   BNA   36.1245    -86.6782     CGN   50.8659      7.1427 |
7. |   BNA   36.1245    -86.6782     CDG   49.0128      2.5500 |
8. |   BNA   36.1245    -86.6782     LAX   33.9425   -118.4080 |
9. |   BNA   36.1245    -86.6782     MEM   35.0424    -89.9767 |
10. |   CDG   49.0128      2.5500     LAX   33.9425   -118.4080 |
|-----------------------------------------------------------|
11. |   CDG   49.0128      2.5500     MEM   35.0424    -89.9767 |
12. |   CDG   49.0128      2.5500     CGN   50.8659      7.1427 |
13. |   CGN   50.8659      7.1427     LAX   33.9425   -118.4080 |
14. |   CGN   50.8659      7.1427     MEM   35.0424    -89.9767 |
15. |   LAX   33.9425   -118.4080     MEM   35.0424    -89.9767 |
+-----------------------------------------------------------+</lang>
```

Now compute the distances and print the result.

<lang stata>spheredist lat1 lon1 lat2 lon2, gen(dist) lab(Distance at sea level) spheredist lat1 lon1 lat2 lon2, gen(fl350) alt(10680) lab(Distance at FL350 altitude) format %9.2f dist fl350 list iata* dist fl350

```    +-----------------------------------+
| iata1   iata2      dist     fl350 |
|-----------------------------------|
1. |   AMS     CGN    229.64    230.03 |
2. |   AMS     CDG    398.27    398.94 |
3. |   AMS     MEM   7295.19   7307.56 |
4. |   AMS     BNA   7004.61   7016.48 |
5. |   AMS     LAX   8955.95   8971.13 |
|-----------------------------------|
6. |   BNA     LAX   2886.32   2891.21 |
7. |   BNA     CGN   7222.75   7234.99 |
8. |   BNA     CDG   7018.39   7030.29 |
9. |   BNA     MEM    321.62    322.16 |
10. |   CDG     LAX   9102.51   9117.94 |
|-----------------------------------|
11. |   CDG     CGN    387.82    388.48 |
12. |   CDG     MEM   7317.82   7330.23 |
13. |   CGN     LAX   9185.47   9201.04 |
14. |   CGN     MEM   7514.96   7527.70 |
15. |   LAX     MEM   2599.71   2604.12 |
+-----------------------------------+</lang>
```

Notice that the distance from Nashville to Los Angeles is given as 2886.32 km, which is slightly different from the task description. The coordinates come from OpenFlights and are supposably more accurate. Using the data in the task description, one gets 2886.44 as expected.

## Swift

Translation of: Objective-C

<lang Swift>import Foundation

func haversine(lat1:Double, lon1:Double, lat2:Double, lon2:Double) -> Double {

```   let lat1rad = lat1 * Double.pi/180
let lon1rad = lon1 * Double.pi/180
let lat2rad = lat2 * Double.pi/180
let lon2rad = lon2 * Double.pi/180

let a = sin(dLat/2) * sin(dLat/2) + sin(dLon/2) * sin(dLon/2) * cos(lat1rad) * cos(lat2rad)
let c = 2 * asin(sqrt(a))
let R = 6372.8

return R * c
```

}

print(haversine(lat1:36.12, lon1:-86.67, lat2:33.94, lon2:-118.40))</lang>

Output:
```2887.25995060711
```

## Symsyn

<lang Symsyn> lat1 : 36.12 lon1 : -86.67 lat2 : 33.94 lon2 : -118.4

dx : 0. dy : 0. dz : 0. kms : 0.

```{degtorad(lon2 - lon1)} lon1
```
```{sin lat1 - sin lat2} dz
{cos lon1 * cos lat1 - cos lat2} dx
{sin lon1 * cos lat1} dy
```
```{arcsin(sqrt(dx^2 + dy^2 + dz^2)/2) * 12745.6} kms
```
```"'Haversine distance: ' kms ' kms'" []
```

</lang>

Output:
```Haversine distance:        2887.259951 kms
```

## tbas

print using "Nashville International Airport to Los Angeles International Airport ####.########### km", haversine(36.12, -86.67, 33.94, -118.40) print using "Perth, WA Australia to Baja California, Mexico #####.########### km", haversine(-31.95, 115.86, 31.95, -115.86) </lang>

```Nashville International Airport to Los Angeles International Airport  2887.25995060712 km
Perth, WA Australia to Baja California, Mexico 15188.70229560390 km

```

## Tcl

Translation of: Groovy

<lang tcl>package require Tcl 8.5 proc haversineFormula {lat1 lon1 lat2 lon2} {

```   set rads [expr atan2(0,-1)/180]
set R 6372.8    ;# In kilometers
```
```   set dLat [expr {(\$lat2-\$lat1) * \$rads}]
set dLon [expr {(\$lon2-\$lon1) * \$rads}]
set lat1 [expr {\$lat1 * \$rads}]
set lat2 [expr {\$lat2 * \$rads}]
```
```   set a [expr {sin(\$dLat/2)**2 + sin(\$dLon/2)**2*cos(\$lat1)*cos(\$lat2)}]
set c [expr {2*asin(sqrt(\$a))}]
return [expr {\$R * \$c}]
```

}

1. Don't bother with too much inappropriate accuracy!

puts [format "distance=%.1f km" [haversineFormula 36.12 -86.67 33.94 -118.40]]</lang>

Output:
`distance=2887.3 km`

## TechBASIC

<lang TechBASIC>

Translation of: BASIC

FUNCTION HAVERSINE !--------------------------------------------------------------- !*** Haversine Formula - Calculate distances by LAT/LONG !

!*** LAT/LON of the two locations and Unit of measure are GLOBAL !*** as they are defined in the main logic of the program, so they !*** available for use in the Function. !*** Usage: X=HAVERSINE

```   Radius=6378.137
Lat1=(Lat1*MATH.PI/180)
Lon1=(Lon1*MATH.PI/180)
Lat2=(Lat2*MATH.PI/180)
Lon2=(Lon2*MATH.PI/180)
DLon=Lon1-Lon2
```
```   DISTANCE="kilometers"
SELECT CASE UNIT
CASE "M"
Distance="miles"
CASE "N"
Distance="nautical miles"
END SELECT
```

END FUNCTION </lang>

The following is the main code that invokes the function. It takes your location and determines how far away you are from Tampa, Florida. You can change UNIT to either M=Miles, N=Nautical Miles, or K (or leave blank) as default is in Kilometers:

```!*** In techBASIC, all variables defined in the main program act as GLOBAL
!*** variables and are available to all SUBROUTINES and FUNCTIONS. So in the
!*** HAVERSINE Function being used, no paramaters need to be passed to it, so
!*** it acts as a variable when I use it as Result=HAVERSINE. The way that
!*** the Function is setup, it returns its value back as HAVERSINE.

BASE 1

!*** Get the GPS LAT/LONG of current location
location = sensors.location(30)
Lat1=location(1)
Lon1=location(2)

!*** LAT/LONG For Tampa, FL
Lat2=27.9506
Lon2=-82.4572

!*** Units: K=kilometers  M=miles  N=nautical miles
DIM UNIT      AS STRING
DIM Distance  AS STRING
DIM Result    AS SINGLE
UNIT = "M"

!*** Calculate distance using Haversine Function
Result=HAVERSINE

PRINT "The distance from your current location to Tampa, FL in ";Distance;" is: ";
PRINT USING "#,###.##";Result;"."

STOP
```

OUTPUT: *** NOTE: When I run this, I am in my house in Venice, Florida, and that distance is correct (as the crow flies). ***

```The distance from your current location to Tampa, FL in miles is:    57.94
```

<lang SQL>

1. syntax: call SP_HAVERSINE(36.12,33.94,-86.67,-118.40,x);

CREATE PROCEDURE SP_HAVERSINE ( IN lat1 FLOAT, IN lat2 FLOAT, IN lon1 FLOAT, IN lon2 FLOAT, OUT distance FLOAT)

BEGIN

```   DECLARE dLat FLOAT;
DECLARE dLon FLOAT;
DECLARE c FLOAT;
DECLARE a FLOAT;
DECLARE km FLOAT;
```
```   SET dLat = RADIANS(lat2-lat1);
```
```   SET a = SIN(dLat / 2) * SIN(dLat / 2) + SIN(dLon / 2) * SIN(dLon / 2) * COS(RADIANS(lat1)) * COS(RADIANS(lat2));
SET c = 2 * ASIN(SQRT(a));
SET km = 6372.8 * c;

select km into distance;
```

END; </lang>

Output:
```distance: 2887.2599 km
```

## Transact-SQL

Translation of: C#

<lang SQL>CREATE FUNCTION [dbo].[Haversine](@Lat1 AS DECIMAL(9,7), @Lon1 AS DECIMAL(10,7), @Lat2 AS DECIMAL(9,7), @Lon2 AS DECIMAL(10,7)) RETURNS DECIMAL(12,7) AS BEGIN DECLARE @R DECIMAL(11,7); DECLARE @dLat DECIMAL(9,7); DECLARE @dLon DECIMAL(10,7); DECLARE @a DECIMAL(10,7); DECLARE @c DECIMAL(10,7);

SET @R = 6372.8; SET @dLat = RADIANS(@Lat2 - @Lat1); SET @dLon = RADIANS(@Lon2 - @Lon1); SET @Lat1 = RADIANS(@Lat1); SET @Lat2 = RADIANS(@Lat2); SET @a = SIN(@dLat / 2) * SIN(@dLat / 2) + SIN(@dLon / 2) * SIN(@dLon / 2) * COS(@Lat1) * COS(@Lat2); SET @c = 2 * ASIN(SQRT(@a));

RETURN @R * @c; END GO

SELECT dbo.Haversine(36.12,-86.67,33.94,-118.4) </lang>

Output:
``` 2887.2594934
```

## TypeScript

Translation of: Matlab

<lang Typescript> let radians = function (degree: number) {

```   // degrees to radians
let rad: number = degree * Math.PI / 180;
```
```   return rad;
```

}

export const haversine = (lat1: number, lon1: number, lat2: number, lon2: number) => {

```   // var dlat: number, dlon: number, a: number, c: number, R: number;
let dlat, dlon, a, c, R: number;
```
```   R = 6372.8; // km
a = Math.sin(dlat / 2) * Math.sin(dlat / 2) + Math.sin(dlon / 2) * Math.sin(dlon / 2) * Math.cos(lat1) * Math.cos(lat2)
c = 2 * Math.asin(Math.sqrt(a));
return R * c;
```

}

console.log("Distance:" + haversine(36.12, -86.67, 33.94, -118.40)); </lang>

Output:
```Distance: 2887.2599506071106
```

## UBASIC

<lang basic>

```  10  Point 7    'Sets decimal display to 32 places (0+.1^56)
20  Rf=#pi/180 'Degree -> Radian Conversion
100 ?Using(,7),.DxH(36+7.2/60,-(86+40.2/60),33+56.4/60,-(118+24/60));" km"
999  End
1000 '*** Haversine Distance Function ***
1010 .DxH(Lat_s,Long_s,Lat_f,Long_f)
1020  L_s=Lat_s*rf:L_f=Lat_f*rf:LD=L_f-L_s:MD=(Long_f-Long_s)*rf
1030  Return(12745.6*asin( (sin(.5*LD)^2+cos(L_s)*cos(L_f)*sin(.5*MD)^2)^.5))

```
```Run
2887.2599506 km
OK
```

</lang>

## VBA

Translation of: Phix

<lang vb>Const MER = 6371 '-- mean earth radius(km)

Function haversine(lat1 As Double, long1 As Double, lat2 As Double, long2 As Double) As Double

```   lat1 = lat1 * DEG_TO_RAD
haversine = MER * WorksheetFunction.Acos(Sin(lat1) * Sin(lat2) + Cos(lat1) * Cos(lat2) * Cos(long2 - long1))
```

End Function

Public Sub main()

```   DEG_TO_RAD = WorksheetFunction.Pi / 180
d = haversine(36.12, -86.67, 33.94, -118.4)
Debug.Print "Distance is "; Format(d, "#.######"); " km ("; Format(d / 1.609344, "#.######"); " miles)."
```

End Sub</lang>

Output:
`Distance is 2886,444443 km (1793,553425 miles).`

## Visual Basic .NET

Translation of: C#

If you read the fine print in the Wikipedia article, you will find that the Haversine method of finding distances may have an error of up to 0.5%. This could lead one to believe that discussion about whether to use 6371.0 km or 6372.8 km for an approximation of the Earth's radius is moot.

<lang vbnet>Imports System.Math

Module Module1

``` Const deg2rad As Double = PI / 180
```
``` Structure AP_Loc
Public IATA_Code As String, Lat As Double, Lon As Double
```
```   Public Sub New(ByVal iata_code As String, ByVal lat As Double, ByVal lon As Double)
Me.IATA_Code = iata_code : Me.Lat = lat * deg2rad : Me.Lon = lon * deg2rad
End Sub
```
```   Public Overrides Function ToString() As String
End Function
End Structure
```
``` Function Sin2(ByVal x As Double) As Double
Return Pow(Sin(x / 2), 2)
End Function
```
``` Function calculate(ByVal one As AP_Loc, ByVal two As AP_Loc) As Double
Dim R As Double = 6371, ' In kilometers, (as recommended by the International Union of Geodesy and Geophysics)
a As Double = Sin2(two.Lat - one.Lat) + Sin2(two.Lon - one.Lon) * Cos(one.Lat) * Cos(two.Lat)
Return R * 2 * Asin(Sqrt(a))
End Function
```
``` Sub ShowOne(pntA As AP_Loc, pntB as AP_Loc)
Dim adst As Double = calculate(pntA, pntB), sfx As String = "km"
If adst < 1000 Then adst *= 1000 : sfx = "m"
Console.WriteLine("The approximate distance between airports {0} and {1} is {2:n2} {3}.", pntA, pntB, adst, sfx)
Console.WriteLine("The uncertainty is under 0.5%, or {0:n1} {1}." & vbLf, adst / 200, sfx)
End Sub
```

' Airport coordinate data excerpted from the data base at http://www.partow.net/miscellaneous/airportdatabase/

' The four additional airports are the furthest and closest pairs, according to the "Fun Facts..." section.

' KBNA, BNA, NASHVILLE INTERNATIONAL, NASHVILLE, USA, 036, 007, 028, N, 086, 040, 041, W, 00183, 36.124, -86.678 ' KLAX, LAX, LOS ANGELES INTERNATIONAL, LOS ANGELES, USA, 033, 056, 033, N, 118, 024, 029, W, 00039, 33.942, -118.408 ' SKNV, NVA, BENITO SALAS, NEIVA, COLOMBIA, 002, 057, 000, N, 075, 017, 038, W, 00439, 2.950, -75.294 ' WIPP, PLM, SULTAN MAHMUD BADARUDDIN II, PALEMBANG, INDONESIA, 002, 053, 052, S, 104, 042, 004, E, 00012, -2.898, 104.701 ' LOWL, LNZ, HORSCHING INTERNATIONAL AIRPORT (AUS - AFB), LINZ, AUSTRIA, 048, 014, 000, N, 014, 011, 000, E, 00096, 48.233, 14.183 ' LOXL, N/A, LINZ, LINZ, AUSTRIA, 048, 013, 059, N, 014, 011, 015, E, 00299, 48.233, 14.188

``` Sub Main()
ShowOne(New AP_Loc("BNA", 36.124, -86.678),  New AP_Loc("LAX", 33.942, -118.408))
ShowOne(New AP_Loc("NVA",  2.95,  -75.294),  New AP_Loc("PLM", -2.898,  104.701))
ShowOne(New AP_Loc("LNZ", 48.233,  14.183),  New AP_Loc("N/A", 48.233,   14.188))
End Sub
```

End Module</lang>

Output:
```The approximate distance between airports BNA: (36.124, -86.678) and LAX: (33.942, -118.408) is 2,886.36 km.
The uncertainty is under 0.5%, or 14.4 km.

The approximate distance between airports NVA: (2.95, -75.294) and PLM: (-2.898, 104.701) is 20,009.28 km.
The uncertainty is under 0.5%, or 100.0 km.

The approximate distance between airports LNZ: (48.233, 14.183) and N/A: (48.233, 14.188) is 370.34 m.
The uncertainty is under 0.5%, or 1.9 m.```

Looking at the altitude difference between the last two airports, (299 - 96 = 203), the reported distance of 370 meters ought to be around 422 meters if you actually went there and saw it for yourself.

## Wren

Translation of: Julia

<lang ecmascript>var R = 6372.8 // Earth's approximate radius in kilometers.

/* Class containing trig methods which work with degrees rather than radians. */ class D {

```   static deg2Rad(deg) { (deg*Num.pi/180 + 2*Num.pi) % (2*Num.pi) }
```

}

var haversine = Fn.new { |lat1, lon1, lat2, lon2|

```   var dlat = lat2 - lat1
var dlon = lon2 - lon1
return 2 * R * (D.sin(dlat/2).pow(2) + D.cos(lat1) * D.cos(lat2) * D.sin(dlon/2).pow(2)).sqrt.asin
```

}

System.print(haversine.call(36.12, -86.67, 33.94, -118.4))</lang>

Output:
```2887.2599506071
```

## X86 Assembly

Assemble with tasm /m /l; tlink /t <lang asm>0000 .model tiny 0000 .code

```                                    .486
org     100h            ;.com files start here
```

0100 9B DB E3 start: finit ;initialize floating-point unit (FPU)

```                            ;Great circle distance =
; 2.0*Radius * ASin( sqrt( Haversine(Lat2-Lat1) +
;                          Haversine(Lon2-Lon1)*Cos(Lat1)*Cos(Lat2) ) )
```

0103 D9 06 0191r fld Lat2 ;push real onto FPU stack 0107 D8 26 018Dr fsub Lat1 ;subtract real from top of stack (st(0) = st) 010B E8 0070 call Haversine  ;(1.0-cos(st)) / 2.0 010E D9 06 0199r fld Lon2 ;repeat for longitudes 0112 D8 26 0195r fsub Lon1 0116 E8 0065 call Haversine ;st(1)=Lats; st=Lons 0119 D9 06 018Dr fld Lat1 011D D9 FF fcos ;replace st with its cosine 011F D9 06 0191r fld Lat2 0123 D9 FF fcos ;st=cos(Lat2); st(1)=cos(Lat1); st(2)=Lats; st(3)=Lons 0125 DE C9 fmul ;st=cos(Lat2)*cos(Lat1); st(1)=Lats; st(2)=Lons 0127 DE C9 fmul ;st=cos(Lat2)*cos(Lat1)*Lats; st(1)=Lons 0129 DE C1 fadd ;st=cos(Lat2)*cos(Lat1)*Lats + Lons 012B D9 FA fsqrt ;replace st with its square root

```                            ;asin(x) = atan(x/sqrt(1-x^2))
```

012D D9 C0 fld st ;duplicate tos 012F D8 C8 fmul st, st ;x^2 0131 D9 E8 fld1 ;get 1.0 0133 DE E1 fsubr ;1 - x^2 0135 D9 FA fsqrt ;sqrt(1-x^2) 0137 D9 F3 fpatan ;take atan(st(1)/st) 0139 D8 0E 019Dr fmul Radius2  ;*2.0*Radius

```                            ;Display value in FPU's top of stack (st)
=0004                  before  equ     4               ;places before
=0002                  after   equ     2               ; and after decimal point
=0001                  scaler  =       1               ;"=" allows scaler to be redefined, unlike equ
rept    after           ;repeat block "after" times
scaler  =       scaler*10
endm                    ;scaler now = 10^after
```

013D 66| 6A 64 push dword ptr scaler;use stack for convenient memory location 0140 67| DA 0C 24 fimul dword ptr [esp] ;st:= st*scaler 0144 67| DB 1C 24 fistp dword ptr [esp] ;round st to nearest integer 0148 66| 58 pop eax  ; and put it into eax

014A 66| BB 0000000A mov ebx, 10 ;set up for idiv instruction 0150 B9 0006 mov cx, before+after;set up loop counter 0153 66| 99 ro10: cdq ;convert double to quad; i.e: edx:= 0 0155 66| F7 FB idiv ebx ;eax:= edx:eax/ebx; remainder in edx 0158 52 push dx ;save least significant digit on stack 0159 E2 F8 loop ro10 ;cx--; loop back if not zero

015B B1 06 mov cl, before+after;(ch=0) 015D B3 00 mov bl, 0 ;used to suppress leading zeros 015F 58 ro20: pop ax ;get digit 0160 0A D8 or bl, al ;turn off suppression if not a zero 0162 80 F9 03 cmp cl, after+1 ;is digit immediately to left of decimal point? 0165 75 01 jne ro30 ;skip if not 0167 43 inc bx ;turn off leading zero suppression 0168 04 30 ro30: add al, '0' ;if leading zero then ' ' else add 0 016A 84 DB test bl, bl 016C 75 02 jne ro40 016E B0 20 mov al, ' ' 0170 CD 29 ro40: int 29h ;display character in al register 0172 80 F9 03 cmp cl, after+1 ;is digit immediately to left of decimal point? 0175 75 04 jne ro50 ;skip if not 0177 B0 2E mov al, '.' ;display decimal point 0179 CD 29 int 29h 017B E2 E2 ro50: loop ro20 ;loop until all digits displayed 017D C3 ret ;return to OS

017E Haversine: ;return (1.0-Cos(Ang)) / 2.0 in st 017E D9 FF fcos 0180 D9 E8 fld1 0182 DE E1 fsubr 0184 D8 36 0189r fdiv N2 0188 C3 ret

0189 40000000 N2 dd 2.0 018D 3F21628D Lat1 dd 0.63041 ;36.12*pi/180 0191 3F17A4E8 Lat2 dd 0.59236 ;33.94*pi/180 0195 BFC19F80 Lon1 dd -1.51268  ;-86.67*pi/180 0199 C004410B Lon2 dd -2.06647  ;-118.40*pi/180 019D 46472666 Radius2 dd 12745.6 ;6372.8 average radius of Earth (km) times 2

```                            ;(TASM isn't smart enough to do floating point constant calculations)
end     start
```

</lang>

Output:
```2887.25
```

## XPL0

<lang XPL0>include c:\cxpl\codes; \intrinsic 'code' declarations

func real Haversine(Ang); real Ang; return (1.0-Cos(Ang)) / 2.0;

func real Dist(Lat1, Lat2, Lon1, Lon2); \Great circle distance real Lat1, Lat2, Lon1, Lon2; def R = 6372.8; \average radius of Earth (km) return 2.0*R * ASin( sqrt( Haversine(Lat2-Lat1) +

```      Cos(Lat1)*Cos(Lat2)*Haversine(Lon2-Lon1) ));
```

def D2R = 3.141592654/180.0; \degrees to radians RlOut(0, Dist(36.12*D2R, 33.94*D2R, -86.67*D2R, -118.40*D2R ));</lang>

Output:
``` 2887.25995
```

## XQuery

<lang XQuery>declare namespace xsd = "http://www.w3.org/2001/XMLSchema"; declare namespace math = "http://www.w3.org/2005/xpath-functions/math";

declare function local:haversine(\$lat1 as xsd:float, \$lon1 as xsd:float, \$lat2 as xsd:float, \$lon2 as xsd:float)

```   as xsd:float
```

{

```   let \$dlat  := (\$lat2 - \$lat1) * math:pi() div 180
let \$dlon  := (\$lon2 - \$lon1) * math:pi() div 180
let \$rlat1 := \$lat1 * math:pi() div 180
let \$rlat2 := \$lat2 * math:pi() div 180
let \$a     := math:sin(\$dlat div 2) * math:sin(\$dlat div 2) + math:sin(\$dlon div 2) * math:sin(\$dlon div 2) * math:cos(\$rlat1) * math:cos(\$rlat2)
let \$c     := 2 * math:atan2(math:sqrt(\$a), math:sqrt(1-\$a))
return xsd:float(\$c * 6371.0)
```

};

local:haversine(36.12, -86.67, 33.94, -118.4)</lang>

Output:
``` 2886.444
```

## zkl

Translation of: Erlang

<lang zkl>haversine(36.12, -86.67, 33.94, -118.40).println();

fcn haversine(Lat1, Long1, Lat2, Long2){

```  const R = 6372.8; 	// In kilometers;
Diff_Lat  := (Lat2  - Lat1) .toRad();
A 	     := (Diff_Lat/2) .sin().pow(2) +
(Diff_Long/2).sin().pow(2) *
```

NLat.cos() * NLong.cos();

```  C 	     := 2.0 * A.sqrt().asin();
R*C;
```

}</lang>

Output:
```2887.26
```

## ZX Spectrum Basic

Translation of: Run_BASIC

<lang zxbasic>10 LET diam=2*6372.8 20 LET Lg1m2=FN r((-86.67)-(-118.4)) 30 LET Lt1=FN r(36.12) 40 LET Lt2=FN r(33.94) 50 LET dz=SIN (Lt1)-SIN (Lt2) 60 LET dx=COS (Lg1m2)*COS (Lt1)-COS (Lt2) 70 LET dy=SIN (Lg1m2)*COS (Lt1) 80 LET hDist=ASN ((dx*dx+dy*dy+dz*dz)^0.5/2)*diam 90 PRINT "Haversine distance: ";hDist;" km." 100 STOP 1000 DEF FN r(a)=a*0.017453293: REM convert degree to radians</lang>