Binary search
A binary search divides a range of values into halves, and continues to narrow down the field of search until the unknown value is found. It is the classic example of a "divide and conquer" algorithm.
You are encouraged to solve this task according to the task description, using any language you may know.
As an analogy, consider the children's game "guess a number." The scorer has a secret number, and will only tell the player if their guessed number is higher than, lower than, or equal to the secret number. The player then uses this information to guess a new number.
As the player, an optimal strategy for the general case is to start by choosing the range's midpoint as the guess, and then asking whether the guess was higher, lower, or equal to the secret number. If the guess was too high, one would select the point exactly between the range midpoint and the beginning of the range. If the original guess was too low, one would ask about the point exactly between the range midpoint and the end of the range. This process repeats until one has reached the secret number.
- Task
Given the starting point of a range, the ending point of a range, and the "secret value", implement a binary search through a sorted integer array for a certain number. Implementations can be recursive or iterative (both if you can). Print out whether or not the number was in the array afterwards. If it was, print the index also.
There are several binary search algorithms commonly seen. They differ by how they treat multiple values equal to the given value, and whether they indicate whether the element was found or not. For completeness we will present pseudocode for all of them.
All of the following code examples use an "inclusive" upper bound (i.e. high = N-1
initially). Any of the examples can be converted into an equivalent example using "exclusive" upper bound (i.e. high = N
initially) by making the following simple changes (which simply increase high
by 1):
- change
high = N-1
tohigh = N
- change
high = mid-1
tohigh = mid
- (for recursive algorithm) change
if (high < low)
toif (high <= low)
- (for iterative algorithm) change
while (low <= high)
towhile (low < high)
- Traditional algorithm
The algorithms are as follows (from Wikipedia). The algorithms return the index of some element that equals the given value (if there are multiple such elements, it returns some arbitrary one). It is also possible, when the element is not found, to return the "insertion point" for it (the index that the value would have if it were inserted into the array).
Recursive Pseudocode:
// initially called with low = 0, high = N-1 BinarySearch(A[0..N-1], value, low, high) { // invariants: value > A[i] for all i < low value < A[i] for all i > high if (high < low) return not_found // value would be inserted at index "low" mid = (low + high) / 2 if (A[mid] > value) return BinarySearch(A, value, low, mid-1) else if (A[mid] < value) return BinarySearch(A, value, mid+1, high) else return mid }
Iterative Pseudocode:
BinarySearch(A[0..N-1], value) { low = 0 high = N - 1 while (low <= high) { // invariants: value > A[i] for all i < low value < A[i] for all i > high mid = (low + high) / 2 if (A[mid] > value) high = mid - 1 else if (A[mid] < value) low = mid + 1 else return mid } return not_found // value would be inserted at index "low" }
- Leftmost insertion point
The following algorithms return the leftmost place where the given element can be correctly inserted (and still maintain the sorted order). This is the lower (inclusive) bound of the range of elements that are equal to the given value (if any). Equivalently, this is the lowest index where the element is greater than or equal to the given value (since if it were any lower, it would violate the ordering), or 1 past the last index if such an element does not exist. This algorithm does not determine if the element is actually found. This algorithm only requires one comparison per level.
Recursive Pseudocode:
// initially called with low = 0, high = N - 1 BinarySearch_Left(A[0..N-1], value, low, high) { // invariants: value > A[i] for all i < low value <= A[i] for all i > high if (high < low) return low mid = (low + high) / 2 if (A[mid] >= value) return BinarySearch_Left(A, value, low, mid-1) else return BinarySearch_Left(A, value, mid+1, high) }
Iterative Pseudocode:
BinarySearch_Left(A[0..N-1], value) { low = 0 high = N - 1 while (low <= high) { // invariants: value > A[i] for all i < low value <= A[i] for all i > high mid = (low + high) / 2 if (A[mid] >= value) high = mid - 1 else low = mid + 1 } return low }
- Rightmost insertion point
The following algorithms return the rightmost place where the given element can be correctly inserted (and still maintain the sorted order). This is the upper (exclusive) bound of the range of elements that are equal to the given value (if any). Equivalently, this is the lowest index where the element is greater than the given value, or 1 past the last index if such an element does not exist. This algorithm does not determine if the element is actually found. This algorithm only requires one comparison per level. Note that these algorithms are almost exactly the same as the leftmost-insertion-point algorithms, except for how the inequality treats equal values.
Recursive Pseudocode:
// initially called with low = 0, high = N - 1 BinarySearch_Right(A[0..N-1], value, low, high) { // invariants: value >= A[i] for all i < low value < A[i] for all i > high if (high < low) return low mid = (low + high) / 2 if (A[mid] > value) return BinarySearch_Right(A, value, low, mid-1) else return BinarySearch_Right(A, value, mid+1, high) }
Iterative Pseudocode:
BinarySearch_Right(A[0..N-1], value) { low = 0 high = N - 1 while (low <= high) { // invariants: value >= A[i] for all i < low value < A[i] for all i > high mid = (low + high) / 2 if (A[mid] > value) high = mid - 1 else low = mid + 1 } return low }
- Extra credit
Make sure it does not have overflow bugs.
The line in the pseudo-code above to calculate the mean of two integers:
mid = (low + high) / 2
could produce the wrong result in some programming languages when used with a bounded integer type, if the addition causes an overflow. (This can occur if the array size is greater than half the maximum integer value.) If signed integers are used, and low + high
overflows, it becomes a negative number, and dividing by 2 will still result in a negative number. Indexing an array with a negative number could produce an out-of-bounds exception, or other undefined behavior. If unsigned integers are used, an overflow will result in losing the largest bit, which will produce the wrong result.
One way to fix it is to manually add half the range to the low number:
mid = low + (high - low) / 2
Even though this is mathematically equivalent to the above, it is not susceptible to overflow.
Another way for signed integers, possibly faster, is the following:
mid = (low + high) >>> 1
where >>>
is the logical right shift operator. The reason why this works is that, for signed integers, even though it overflows, when viewed as an unsigned number, the value is still the correct sum. To divide an unsigned number by 2, simply do a logical right shift.
- Related task
- See also
11l
F binary_search(l, value)
V low = 0
V high = l.len - 1
L low <= high
V mid = (low + high) I/ 2
I l[mid] > value
high = mid - 1
E I l[mid] < value
low = mid + 1
E
R mid
R -1
360 Assembly
* Binary search 05/03/2017
BINSEAR CSECT
USING BINSEAR,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) save previous context
ST R13,4(R15) link backward
ST R15,8(R13) link forward
LR R13,R15 set addressability
MVC LOW,=H'1' low=1
MVC HIGH,=AL2((XVAL-T)/2) high=hbound(t)
SR R6,R6 i=0
MVI F,X'00' f=false
LH R4,LOW low
DO WHILE=(CH,R4,LE,HIGH) do while low<=high
LA R6,1(R6) i=i+1
LH R1,LOW low
AH R1,HIGH +high
SRA R1,1 /2 {by right shift}
STH R1,MID mid=(low+high)/2
SLA R1,1 *2
LH R7,T-2(R1) y=t(mid)
IF CH,R7,EQ,XVAL THEN if xval=y then
MVI F,X'01' f=true
B EXITDO leave
ENDIF , endif
IF CH,R7,GT,XVAL THEN if y>xval then
LH R2,MID mid
BCTR R2,0 -1
STH R2,HIGH high=mid-1
ELSE , else
LH R2,MID mid
LA R2,1(R2) +1
STH R2,LOW low=mid+1
ENDIF , endif
LH R4,LOW low
ENDDO , enddo
EXITDO EQU * exitdo:
XDECO R6,XDEC edit i
MVC PG(4),XDEC+8 output i
MVC PG+4(6),=C' loops'
XPRNT PG,L'PG print buffer
LH R1,XVAL xval
XDECO R1,XDEC edit xval
MVC PG(4),XDEC+8 output xval
IF CLI,F,EQ,X'01' THEN if f then
MVC PG+4(10),=C' found at '
LH R1,MID mid
XDECO R1,XDEC edit mid
MVC PG+14(4),XDEC+8 output mid
ELSE , else
MVC PG+4(20),=C' is not in the list.'
ENDIF , endif
XPRNT PG,L'PG print buffer
L R13,4(0,R13) restore previous savearea pointer
LM R14,R12,12(R13) restore previous context
XR R15,R15 rc=0
BR R14 exit
T DC H'3',H'7',H'13',H'19',H'23',H'31',H'43',H'47'
DC H'61',H'73',H'83',H'89',H'103',H'109',H'113',H'131'
DC H'139',H'151',H'167',H'181',H'193',H'199',H'229',H'233'
DC H'241',H'271',H'283',H'293',H'313',H'317',H'337',H'349'
XVAL DC H'229' <= search value
LOW DS H
HIGH DS H
MID DS H
F DS X flag
PG DC CL80' ' buffer
XDEC DS CL12 temp
YREGS
END BINSEAR
- Output:
5 loops 229 found at 23
8080 Assembly
This is the iterative version of the 'leftmost insertion point' algorithm. (On a processor like the 8080, you would not want to use recursion if you can avoid it. A subroutine call alone takes two bytes of stack space, meaning the needed stack space would be bigger than the array that's being searched.) For simplicity, it operates on an array of unsigned 8-bit integers, as this is the 8080's native datatype, and this task is about binary search, not about implementing operations on other datatypes in terms of 8-bit integers.
On entry, the subroutine binsrch
takes the lookup value in the B
register, a pointer to the start of the array in the HL
registers, and a pointer to the end of the array in the DE
registers. On exit, HL
will contain the location of the value in the array, if it was found, and the leftmost insertion point, if it was not.
Test code is included, which will loop through the values [0..255] and report for each number whether it was in the array or not.
org 100h ; Entry for test code
jmp test
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Binary search in array of unsigned 8-bit integers
;; B = value to look for
;; HL = begin of array (low)
;; DE = end of array, inclusive (high)
;; The entry point is 'binsrch'
;; On return, HL = location of value (if contained
;; in array), or insertion point (if not)
binsrch_lo: inx h ; low = mid + 1
inx sp ; throw away 'low'
inx sp
binsrch: mov a,d ; low > high? (are we there yet?)
cmp h ; test high byte
rc
mov a,e ; test low byte
cmp l
rc
push h ; store 'low'
dad d ; mid = (low+high)>>1
mov a,h ; rotate the carry flag back in
rar ; to take care of any overflow
mov h,a
mov a,l
rar
mov l,a
mov a,m ; A[mid] >= value?
cmp b
jc binsrch_lo
xchg ; high = mid - 1
dcx d
pop h ; restore 'low'
jmp binsrch
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Test data
primes: db 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37
db 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83
db 89, 97, 101, 103, 107, 109, 113, 127, 131
db 137, 139, 149, 151, 157, 163, 167, 173, 179
db 181, 191, 193, 197, 199, 211, 223, 227, 229
db 233, 239, 241, 251
primes_last: equ $ - 1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Test code (CP/M compatible)
yep: db ": yes", 13, 10, "$"
nope: db ": no", 13, 10, "$"
num_out: mov a,b ;; Output number in B as decimal
mvi c,100
call dgt_out
mvi c,10
call dgt_out
mvi c,1
dgt_out: mvi e,'0' - 1 ;; Output 100s, 10s or 1s
dgt_out_loop: inr e ;; (depending on C)
sub c
jnc dgt_out_loop
add c
e_out: push psw ;; Output character in E
push b ;; preserving working registers
mvi c,2
call 5
pop b
pop psw
ret
;; Main test code
test: mvi b,0 ; Test value
test_loop: call num_out ; Output current number to test
lxi h,primes ; Set up input for binary search
lxi d,primes_last
call binsrch ; Search for B in array
lxi d,nope ; Location of "no" string
mov a,b ; Check if location binsrch returned
cmp m ; contains the value we were looking for
jnz str_out ; If not, print the "no" string
lxi d,yep ; But if so, use location of "yes" string
str_out: push b ; Preserve B across CP/M call
mvi c,9 ; Print the string
call 5
pop b ; Restore B
inr b ; Test next value
jnz test_loop
rst 0
AArch64 Assembly
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program binSearch64.s */
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
/*********************************/
/* Initialized data */
/*********************************/
.data
sMessResult: .asciz "Value find at index : @ \n"
szCarriageReturn: .asciz "\n"
sMessRecursif: .asciz "Recursive search : \n"
sMessNotFound: .asciz "Value not found. \n"
TableNumber: .quad 4,6,7,10,11,15,22,30,35
.equ NBELEMENTS, (. - TableNumber) / 8
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
sZoneConv: .skip 24
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: // entry of program
mov x0,4 // search first value
ldr x1,qAdrTableNumber // address number table
mov x2,NBELEMENTS // number of élements
bl bSearch
ldr x1,qAdrsZoneConv
bl conversion10 // décimal conversion
ldr x0,qAdrsMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
mov x0,#11 // search median value
ldr x1,qAdrTableNumber
mov x2,#NBELEMENTS
bl bSearch
ldr x1,qAdrsZoneConv
bl conversion10 // decimal conversion
ldr x0,qAdrsMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
mov x0,#12 //value not found
ldr x1,qAdrTableNumber
mov x2,#NBELEMENTS
bl bSearch
cmp x0,#-1
bne 2f
ldr x0,qAdrsMessNotFound
bl affichageMess
b 3f
2:
ldr x1,qAdrsZoneConv
bl conversion10 // décimal conversion
ldr x0,qAdrsMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
3:
mov x0,#35 // search last value
ldr x1,qAdrTableNumber
mov x2,#NBELEMENTS
bl bSearch
ldr x1,qAdrsZoneConv
bl conversion10 // décimal conversion
ldr x0,qAdrsMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
/****************************************/
/* recursive */
/****************************************/
ldr x0,qAdrsMessRecursif
bl affichageMess // display message
mov x0,#4 // search first value
ldr x1,qAdrTableNumber
mov x2,#0 // low index of elements
mov x3,#NBELEMENTS - 1 // high index of elements
bl bSearchR
ldr x1,qAdrsZoneConv
bl conversion10 // décimal conversion
ldr x0,qAdrsMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
mov x0,#11
ldr x1,qAdrTableNumber
mov x2,#0
mov x3,#NBELEMENTS - 1
bl bSearchR
ldr x1,qAdrsZoneConv
bl conversion10 // décimal conversion
ldr x0,qAdrsMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
mov x0,#12
ldr x1,qAdrTableNumber
mov x2,#0
mov x3,#NBELEMENTS - 1
bl bSearchR
cmp x0,#-1
bne 4f
ldr x0,qAdrsMessNotFound
bl affichageMess
b 5f
4:
ldr x1,qAdrsZoneConv
bl conversion10 // décimal conversion
ldr x0,qAdrsMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
5:
mov x0,#35
ldr x1,qAdrTableNumber
mov x2,#0
mov x3,#NBELEMENTS - 1
bl bSearchR
ldr x1,qAdrsZoneConv
bl conversion10 // décimal conversion
ldr x0,qAdrsMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
100: // standard end of the program
mov x0, #0 // return code
mov x8, #EXIT // request to exit program
svc #0 // perform the system call
//qAdrsMessValeur: .quad sMessValeur
qAdrsZoneConv: .quad sZoneConv
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrsMessResult: .quad sMessResult
qAdrsMessRecursif: .quad sMessRecursif
qAdrsMessNotFound: .quad sMessNotFound
qAdrTableNumber: .quad TableNumber
/******************************************************************/
/* binary search iterative */
/******************************************************************/
/* x0 contains the value to search */
/* x1 contains the adress of table */
/* x2 contains the number of elements */
/* x0 return index or -1 if not find */
bSearch:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
stp x4,x5,[sp,-16]! // save registers
mov x3,#0 // low index
sub x4,x2,#1 // high index = number of elements - 1
1:
cmp x3,x4
bgt 99f
add x2,x3,x4 // compute (low + high) /2
lsr x2,x2,#1
ldr x5,[x1,x2,lsl #3] // load value of table at index x2
cmp x5,x0
beq 98f
bgt 2f
add x3,x2,#1 // lower -> index low = index + 1
b 1b // and loop
2:
sub x4,x2,#1 // bigger -> index high = index - 1
b 1b // and loop
98:
mov x0,x2 // find !!!
b 100f
99:
mov x0,#-1 //not found
100:
ldp x4,x5,[sp],16 // restaur 2 registers
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/******************************************************************/
/* binary search recursif */
/******************************************************************/
/* x0 contains the value to search */
/* x1 contains the adress of table */
/* x2 contains the low index of elements */
/* x3 contains the high index of elements */
/* x0 return index or -1 if not find */
bSearchR:
stp x2,lr,[sp,-16]! // save registers
stp x3,x4,[sp,-16]! // save registers
stp x5,x6,[sp,-16]! // save registers
cmp x3,x2 // index high < low ?
bge 1f
mov x0,#-1 // yes -> not found
b 100f
1:
add x4,x2,x3 // compute (low + high) /2
lsr x4,x4,#1
ldr x5,[x1,x4,lsl #3] // load value of table at index x4
cmp x5,x0
beq 99f
bgt 2f // bigger ?
add x2,x4,#1 // no new search with low = index + 1
bl bSearchR
b 100f
2: // bigger
sub x3,x4,#1 // new search with high = index - 1
bl bSearchR
b 100f
99:
mov x0,x4 // find !!!
b 100f
100:
ldp x5,x6,[sp],16 // restaur 2 registers
ldp x3,x4,[sp],16 // restaur 2 registers
ldp x2,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
Value find at index : 0 Value find at index : 4 Value not found. Value find at index : 8 Recursive search : Value find at index : 0 Value find at index : 4 Value not found. Value find at index : 8
ACL2
(defun defarray (name size initial-element)
(cons name
(compress1 name
(cons (list :HEADER
:DIMENSIONS (list size)
:MAXIMUM-LENGTH (1+ size)
:DEFAULT initial-element
:NAME name)
nil))))
(defconst *dim* 100000)
(defun array-name (array)
(first array))
(defun set-at (array i val)
(cons (array-name array)
(aset1 (array-name array)
(cdr array)
i
val)))
(defun populate-array-ordered (array n)
(if (zp n)
array
(populate-array-ordered (set-at array
(- *dim* n)
(- *dim* n))
(1- n))))
(include-book "arithmetic-3/top" :dir :system)
(defun binary-search-r (needle haystack low high)
(declare (xargs :measure (nfix (1+ (- high low)))))
(let* ((mid (floor (+ low high) 2))
(current (aref1 (array-name haystack)
(cdr haystack)
mid)))
(cond ((not (and (natp low) (natp high))) nil)
((= current needle)
mid)
((zp (1+ (- high low))) nil)
((> current needle)
(binary-search-r needle
haystack
low
(1- mid)))
(t (binary-search-r needle
haystack
(1+ mid)
high)))))
(defun binary-search (needle haystack)
(binary-search-r needle haystack 0
(maximum-length (array-name haystack)
(cdr haystack))))
(defun test-bsearch (needle)
(binary-search needle
(populate-array-ordered
(defarray 'haystack *dim* 0)
*dim*)))
Action!
INT FUNC BinarySearch(INT ARRAY a INT len,value)
INT low,high,mid
low=0 high=len-1
WHILE low<=high
DO
mid=low+(high-low) RSH 1
IF a(mid)>value THEN
high=mid-1
ELSEIF a(mid)<value THEN
low=mid+1
ELSE
RETURN (mid)
FI
OD
RETURN (-1)
PROC Test(INT ARRAY a INT len,value)
INT i
Put('[)
FOR i=0 TO len-1
DO
PrintI(a(i))
IF i<len-1 THEN Put(32) FI
OD
i=BinarySearch(a,len,value)
Print("] ") PrintI(value)
IF i<0 THEN
PrintE(" not found")
ELSE
Print(" found at index ")
PrintIE(i)
FI
RETURN
PROC Main()
INT ARRAY a=[65530 0 1 2 5 6 8 9]
Test(a,8,6)
Test(a,8,-6)
Test(a,8,9)
Test(a,8,-10)
Test(a,8,10)
Test(a,8,7)
RETURN
- Output:
Screenshot from Atari 8-bit computer
[-6 0 1 2 5 6 8 9] 6 found at index 5 [-6 0 1 2 5 6 8 9] -6 found at index 0 [-6 0 1 2 5 6 8 9] 9 found at index 7 [-6 0 1 2 5 6 8 9] -10 not found [-6 0 1 2 5 6 8 9] 10 not found [-6 0 1 2 5 6 8 9] 7 not found
Ada
Both solutions are generic. The element can be of any comparable type (such that the operation < is visible in the instantiation scope of the function Search). Note that the completion condition is different from one given in the pseudocode example above. The example assumes that the array index type does not overflow when mid is incremented or decremented beyond the corresponding array bound. This is a wrong assumption for Ada, where array bounds can start or end at the very first or last value of the index type. To deal with this, the exit condition is rather directly expressed as crossing the corresponding array bound by the coming interval middle.
- Recursive
with Ada.Text_IO; use Ada.Text_IO;
procedure Test_Recursive_Binary_Search is
Not_Found : exception;
generic
type Index is range <>;
type Element is private;
type Array_Of_Elements is array (Index range <>) of Element;
with function "<" (L, R : Element) return Boolean is <>;
function Search (Container : Array_Of_Elements; Value : Element) return Index;
function Search (Container : Array_Of_Elements; Value : Element) return Index is
Mid : Index;
begin
if Container'Length > 0 then
Mid := (Container'First + Container'Last) / 2;
if Value < Container (Mid) then
if Container'First /= Mid then
return Search (Container (Container'First..Mid - 1), Value);
end if;
elsif Container (Mid) < Value then
if Container'Last /= Mid then
return Search (Container (Mid + 1..Container'Last), Value);
end if;
else
return Mid;
end if;
end if;
raise Not_Found;
end Search;
type Integer_Array is array (Positive range <>) of Integer;
function Find is new Search (Positive, Integer, Integer_Array);
procedure Test (X : Integer_Array; E : Integer) is
begin
New_Line;
for I in X'Range loop
Put (Integer'Image (X (I)));
end loop;
Put (" contains" & Integer'Image (E) & " at" & Integer'Image (Find (X, E)));
exception
when Not_Found =>
Put (" does not contain" & Integer'Image (E));
end Test;
begin
Test ((2, 4, 6, 8, 9), 2);
Test ((2, 4, 6, 8, 9), 1);
Test ((2, 4, 6, 8, 9), 8);
Test ((2, 4, 6, 8, 9), 10);
Test ((2, 4, 6, 8, 9), 9);
Test ((2, 4, 6, 8, 9), 5);
end Test_Recursive_Binary_Search;
- Iterative
with Ada.Text_IO; use Ada.Text_IO;
procedure Test_Binary_Search is
Not_Found : exception;
generic
type Index is range <>;
type Element is private;
type Array_Of_Elements is array (Index range <>) of Element;
with function "<" (L, R : Element) return Boolean is <>;
function Search (Container : Array_Of_Elements; Value : Element) return Index;
function Search (Container : Array_Of_Elements; Value : Element) return Index is
Low : Index := Container'First;
High : Index := Container'Last;
Mid : Index;
begin
if Container'Length > 0 then
loop
Mid := (Low + High) / 2;
if Value < Container (Mid) then
exit when Low = Mid;
High := Mid - 1;
elsif Container (Mid) < Value then
exit when High = Mid;
Low := Mid + 1;
else
return Mid;
end if;
end loop;
end if;
raise Not_Found;
end Search;
type Integer_Array is array (Positive range <>) of Integer;
function Find is new Search (Positive, Integer, Integer_Array);
procedure Test (X : Integer_Array; E : Integer) is
begin
New_Line;
for I in X'Range loop
Put (Integer'Image (X (I)));
end loop;
Put (" contains" & Integer'Image (E) & " at" & Integer'Image (Find (X, E)));
exception
when Not_Found =>
Put (" does not contain" & Integer'Image (E));
end Test;
begin
Test ((2, 4, 6, 8, 9), 2);
Test ((2, 4, 6, 8, 9), 1);
Test ((2, 4, 6, 8, 9), 8);
Test ((2, 4, 6, 8, 9), 10);
Test ((2, 4, 6, 8, 9), 9);
Test ((2, 4, 6, 8, 9), 5);
end Test_Binary_Search;
Sample output:
2 4 6 8 9 contains 2 at 1 2 4 6 8 9 does not contain 1 2 4 6 8 9 contains 8 at 4 2 4 6 8 9 does not contain 10 2 4 6 8 9 contains 9 at 5 2 4 6 8 9 does not contain 5
ALGOL 68
BEGIN
MODE ELEMENT = STRING;
# Iterative: #
PROC iterative binary search = ([]ELEMENT hay stack, ELEMENT needle)INT: (
INT out,
low := LWB hay stack,
high := UPB hay stack;
WHILE low < high DO
INT mid := (low+high) OVER 2;
IF hay stack[mid] > needle THEN high := mid-1
ELIF hay stack[mid] < needle THEN low := mid+1
ELSE out:= mid; stop iteration FI
OD;
low EXIT
stop iteration:
out
);
# Recursive: #
PROC recursive binary search = ([]ELEMENT hay stack, ELEMENT needle)INT: (
IF LWB hay stack > UPB hay stack THEN
LWB hay stack
ELIF LWB hay stack = UPB hay stack THEN
IF hay stack[LWB hay stack] = needle THEN LWB hay stack
ELSE LWB hay stack FI
ELSE
INT mid := (LWB hay stack+UPB hay stack) OVER 2;
IF hay stack[mid] > needle THEN recursive binary search(hay stack[:mid-1], needle)
ELIF hay stack[mid] < needle THEN mid + recursive binary search(hay stack[mid+1:], needle)
ELSE mid FI
FI
);
PROC test search = (PROC([]ELEMENT, ELEMENT)INT search, []ELEMENT hay stack, []ELEMENT test cases)VOID:
FOR case TO UPB test cases DO
ELEMENT needle = test cases[case];
INT index = search(hay stack, needle);
BOOL found = ( index <= 0 | FALSE | hay stack[index]=needle);
print(("""", needle, """ ", (found|"FOUND at"|"near"), " index ", whole(index, 0), newline))
OD;
BEGIN # Test cases: #
[]ELEMENT hay stack = ("AA","Maestro","Mario","Master","Mattress","Mister","Mistress","ZZ")
, test cases = ("A","Master","Monk","ZZZ")
;
test search(iterative binary search, hay stack, test cases);
test search(recursive binary search, hay stack, test cases)
END
END
- Output:
Shows iterative search output - recursive search output is the same.
"A" near index 1 "Master" FOUND at index 4 "Monk" near index 8 "ZZZ" near index 8
ALGOL W
Ieterative and recursive binary search procedures, from the pseudo code. Finds the left most occurance/insertion point.
begin % binary search %
% recursive binary search, left most insertion point %
integer procedure binarySearchLR ( integer array A ( * )
; integer value find, Low, high
) ;
if high < low then low
else begin
integer mid;
mid := ( low + high ) div 2;
if A( mid ) >= find then binarySearchLR( A, find, low, mid - 1 )
else binarySearchLR( A, find, mid + 1, high )
end binarySearchR ;
% iteratve binary search leftmost insertion point %
integer procedure binarySearchLI ( integer array A ( * )
; integer value find, lowInit, highInit
) ;
begin
integer low, high;
low := lowInit;
high := highInit;
while low <= high do begin
integer mid;
mid := ( low + high ) div 2;
if A( mid ) >= find then high := mid - 1
else low := mid + 1
end while_low_le_high ;
low
end binarySearchLI ;
% tests %
begin
integer array t ( 1 :: 10 );
integer tPos;
tPos := 1;
for tValue := 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 do begin
t( tPos ) := tValue;
tPos := tPOs + 1
end for_tValue ;
for s := 0 step 8 until 24 do begin
integer pos;
pos := binarySearchLR( t, s, 1, 10 );
if t( pos ) = s then write( I_W := 3, S_W := 0, "recursive search finds ", s, " at ", pos )
else write( I_W := 3, S_W := 0, "recursive search suggests insert ", s, " at ", pos )
;
pos := binarySearchLI( t, s, 1, 10 );
if t( pos ) = s then write( I_W := 3, S_W := 0, "iterative search finds ", s, " at ", pos )
else write( I_W := 3, S_W := 0, "iterative search suggests insert ", s, " at ", pos )
end for_s
end
end.
- Output:
recursive search suggests insert 0 at 1 iterative search suggests insert 0 at 1 recursive search suggests insert 8 at 3 iterative search suggests insert 8 at 3 recursive search finds 16 at 4 iterative search finds 16 at 4 recursive search suggests insert 24 at 5 iterative search suggests insert 24 at 5
APL
APL already includes a binary search primitive (⍸
). The following code offers an interface compatible with the requirement of this task.
binsrch←{
⎕IO(⍺{ ⍝ first lower bound is start of array
⍵<⍺:⍬ ⍝ if high < low, we didn't find it
mid←⌊(⍺+⍵)÷2 ⍝ calculate mid point
⍺⍺[mid]>⍵⍵:⍺∇mid-1 ⍝ if too high, search from ⍺ to mid-1
⍺⍺[mid]<⍵⍵:(mid+1)∇⍵ ⍝ if too low, search from mid+1 to ⍵
mid ⍝ otherwise, we did find it
}⍵)⎕IO+(≢⍺)-1 ⍝ first higher bound is top of array
}
AppleScript
on binarySearch(n, theList, l, r)
repeat until (l = r)
set m to (l + r) div 2
if (item m of theList < n) then
set l to m + 1
else
set r to m
end if
end repeat
if (item l of theList is n) then return l
return missing value
end binarySearch
on test(n, theList, l, r)
set |result| to binarySearch(n, theList, l, r)
if (|result| is missing value) then
return (n as text) & " is not in range " & l & " thru " & r & " of the list"
else
return "The first occurrence of " & n & " in range " & l & " thru " & r & " of the list is at index " & |result|
end if
end test
set theList to {1, 2, 3, 3, 5, 7, 7, 8, 9, 10, 11, 12}
return test(7, theList, 4, 11) & linefeed & test(7, theList, 7, 12) & linefeed & test(7, theList, 1, 5)
- Output:
(AppleScript indices are 1-based)
"The first occurrence of 7 in range 4 thru 11 of the list is at index 6 The first occurrence of 7 in range 7 thru 12 of the list is at index 7 7 is not in range 1 thru 5 of the list"
ARM Assembly
/* ARM assembly Raspberry PI */
/* program binsearch.s */
/************************************/
/* Constantes */
/************************************/
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
/*********************************/
/* Initialized data */
/*********************************/
.data
sMessResult: .ascii "Value find at index : "
sMessValeur: .fill 11, 1, ' ' @ size => 11
szCarriageReturn: .asciz "\n"
sMessRecursif: .asciz "Recursive search : \n"
sMessNotFound: .asciz "Value not found. \n"
.equ NBELEMENTS, 9
TableNumber: .int 4,6,7,10,11,15,22,30,35
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: @ entry of program
mov r0,#4 @ search first value
ldr r1,iAdrTableNumber @ address number table
mov r2,#NBELEMENTS @ number of élements
bl bSearch
ldr r1,iAdrsMessValeur @ display value
bl conversion10 @ call function
ldr r0,iAdrsMessResult
bl affichageMess @ display message
mov r0,#11 @ search median value
ldr r1,iAdrTableNumber
mov r2,#NBELEMENTS
bl bSearch
ldr r1,iAdrsMessValeur @ display value
bl conversion10 @ call function
ldr r0,iAdrsMessResult
bl affichageMess @ display message
mov r0,#12 @value not found
ldr r1,iAdrTableNumber
mov r2,#NBELEMENTS
bl bSearch
cmp r0,#-1
bne 2f
ldr r0,iAdrsMessNotFound
bl affichageMess
b 3f
2:
ldr r1,iAdrsMessValeur @ display value
bl conversion10 @ call function
ldr r0,iAdrsMessResult
bl affichageMess @ display message
3:
mov r0,#35 @ search last value
ldr r1,iAdrTableNumber
mov r2,#NBELEMENTS
bl bSearch
ldr r1,iAdrsMessValeur @ display value
bl conversion10 @ call function
ldr r0,iAdrsMessResult
bl affichageMess @ display message
/****************************************/
/* recursive */
/****************************************/
ldr r0,iAdrsMessRecursif
bl affichageMess @ display message
mov r0,#4 @ search first value
ldr r1,iAdrTableNumber
mov r2,#0 @ low index of elements
mov r3,#NBELEMENTS - 1 @ high index of elements
bl bSearchR
ldr r1,iAdrsMessValeur @ display value
bl conversion10 @ call function
ldr r0,iAdrsMessResult
bl affichageMess @ display message
mov r0,#11
ldr r1,iAdrTableNumber
mov r2,#0
mov r3,#NBELEMENTS - 1
bl bSearchR
ldr r1,iAdrsMessValeur @ display value
bl conversion10 @ call function
ldr r0,iAdrsMessResult
bl affichageMess @ display message
mov r0,#12
ldr r1,iAdrTableNumber
mov r2,#0
mov r3,#NBELEMENTS - 1
bl bSearchR
cmp r0,#-1
bne 2f
ldr r0,iAdrsMessNotFound
bl affichageMess
b 3f
2:
ldr r1,iAdrsMessValeur @ display value
bl conversion10 @ call function
ldr r0,iAdrsMessResult
bl affichageMess @ display message
3:
mov r0,#35
ldr r1,iAdrTableNumber
mov r2,#0
mov r3,#NBELEMENTS - 1
bl bSearchR
ldr r1,iAdrsMessValeur @ display value
bl conversion10 @ call function
ldr r0,iAdrsMessResult
bl affichageMess @ display message
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc #0 @ perform the system call
iAdrsMessValeur: .int sMessValeur
iAdrszCarriageReturn: .int szCarriageReturn
iAdrsMessResult: .int sMessResult
iAdrsMessRecursif: .int sMessRecursif
iAdrsMessNotFound: .int sMessNotFound
iAdrTableNumber: .int TableNumber
/******************************************************************/
/* binary search iterative */
/******************************************************************/
/* r0 contains the value to search */
/* r1 contains the adress of table */
/* r2 contains the number of elements */
/* r0 return index or -1 if not find */
bSearch:
push {r2-r5,lr} @ save registers
mov r3,#0 @ low index
sub r4,r2,#1 @ high index = number of elements - 1
1:
cmp r3,r4
movgt r0,#-1 @not found
bgt 100f
add r2,r3,r4 @ compute (low + high) /2
lsr r2,#1
ldr r5,[r1,r2,lsl #2] @ load value of table at index r2
cmp r5,r0
moveq r0,r2 @ find !!!
beq 100f
addlt r3,r2,#1 @ lower -> index low = index + 1
subgt r4,r2,#1 @ bigger -> index high = index - 1
b 1b @ and loop
100:
pop {r2-r5,lr}
bx lr @ return
/******************************************************************/
/* binary search recursif */
/******************************************************************/
/* r0 contains the value to search */
/* r1 contains the adress of table */
/* r2 contains the low index of elements */
/* r3 contains the high index of elements */
/* r0 return index or -1 if not find */
bSearchR:
push {r2-r5,lr} @ save registers
cmp r3,r2 @ index high < low ?
movlt r0,#-1 @ yes -> not found
blt 100f
add r4,r2,r3 @ compute (low + high) /2
lsr r4,#1
ldr r5,[r1,r4,lsl #2] @ load value of table at index r4
cmp r5,r0
moveq r0,r4 @ find !!!
beq 100f
bgt 1f @ bigger ?
add r2,r4,#1 @ no new search with low = index + 1
bl bSearchR
b 100f
1: @ bigger
sub r3,r4,#1 @ new search with high = index - 1
bl bSearchR
100:
pop {r2-r5,lr}
bx lr @ return
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {r0,r1,r2,r7,lr} @ save registres
mov r2,#0 @ counter length
1: @ loop length calculation
ldrb r1,[r0,r2] @ read octet start position + index
cmp r1,#0 @ if 0 its over
addne r2,r2,#1 @ else add 1 in the length
bne 1b @ and loop
@ so here r2 contains the length of the message
mov r1,r0 @ address message in r1
mov r0,#STDOUT @ code to write to the standard output Linux
mov r7, #WRITE @ code call system "write"
svc #0 @ call systeme
pop {r0,r1,r2,r7,lr} @ restaur des 2 registres
bx lr @ return
/******************************************************************/
/* Converting a register to a decimal unsigned */
/******************************************************************/
/* r0 contains value and r1 address area */
/* r0 return size of result (no zero final in area) */
/* area size => 11 bytes */
.equ LGZONECAL, 10
conversion10:
push {r1-r4,lr} @ save registers
mov r3,r1
mov r2,#LGZONECAL
1: @ start loop
bl divisionpar10U @unsigned r0 <- dividende. quotient ->r0 reste -> r1
add r1,#48 @ digit
strb r1,[r3,r2] @ store digit on area
cmp r0,#0 @ stop if quotient = 0
subne r2,#1 @ else previous position
bne 1b @ and loop
@ and move digit from left of area
mov r4,#0
2:
ldrb r1,[r3,r2]
strb r1,[r3,r4]
add r2,#1
add r4,#1
cmp r2,#LGZONECAL
ble 2b
@ and move spaces in end on area
mov r0,r4 @ result length
mov r1,#' ' @ space
3:
strb r1,[r3,r4] @ store space in area
add r4,#1 @ next position
cmp r4,#LGZONECAL
ble 3b @ loop if r4 <= area size
100:
pop {r1-r4,lr} @ restaur registres
bx lr @return
/***************************************************/
/* division par 10 unsigned */
/***************************************************/
/* r0 dividende */
/* r0 quotient */
/* r1 remainder */
divisionpar10U:
push {r2,r3,r4, lr}
mov r4,r0 @ save value
//mov r3,#0xCCCD @ r3 <- magic_number lower raspberry 3
//movt r3,#0xCCCC @ r3 <- magic_number higter raspberry 3
ldr r3,iMagicNumber @ r3 <- magic_number raspberry 1 2
umull r1, r2, r3, r0 @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0)
mov r0, r2, LSR #3 @ r2 <- r2 >> shift 3
add r2,r0,r0, lsl #2 @ r2 <- r0 * 5
sub r1,r4,r2, lsl #1 @ r1 <- r4 - (r2 * 2) = r4 - (r0 * 10)
pop {r2,r3,r4,lr}
bx lr @ leave function
iMagicNumber: .int 0xCCCCCCCD
Arturo
binarySearch: function [arr,val,low,high][
if high < low -> return ø
mid: shr low+high 1
case [val]
when? [< arr\[mid]] -> return binarySearch arr val low mid-1
when? [> arr\[mid]] -> return binarySearch arr val mid+1 high
else -> return mid
]
ary: [
0 1 4 5 6 7 8 9 12 26 45 67
78 90 98 123 211 234 456 769
865 2345 3215 14345 24324
]
loop [0 42 45 24324 99999] 'v [
i: binarySearch ary v 0 (size ary)-1
if? not? null? i -> print ["found" v "at index:" i]
else -> print [v "not found"]
]
- Output:
found 0 at index: 0 42 not found found 45 at index: 10 found 24324 at index: 24 99999 not found
AutoHotkey
array := "1,2,4,6,8,9"
StringSplit, A, array, `, ; creates associative array
MsgBox % x := BinarySearch(A, 4, 1, A0) ; Recursive
MsgBox % A%x%
MsgBox % x := BinarySearchI(A, A0, 4) ; Iterative
MsgBox % A%x%
BinarySearch(A, value, low, high) { ; A0 contains length of array
If (high < low) ; A1, A2, A3...An are array elements
Return not_found
mid := Floor((low + high) / 2)
If (A%mid% > value) ; A%mid% is automatically global since no such locals are present
Return BinarySearch(A, value, low, mid - 1)
Else If (A%mid% < value)
Return BinarySearch(A, value, mid + 1, high)
Else
Return mid
}
BinarySearchI(A, lengthA, value) {
low := 0
high := lengthA - 1
While (low <= high) {
mid := Floor((low + high) / 2) ; round to lower integer
If (A%mid% > value)
high := mid - 1
Else If (A%mid% < value)
low := mid + 1
Else
Return mid
}
Return not_found
}
AWK
Recursive
function binary_search(array, value, left, right, middle) {
if (right < left) return 0
middle = int((right + left) / 2)
if (value == array[middle]) return 1
if (value < array[middle])
return binary_search(array, value, left, middle - 1)
return binary_search(array, value, middle + 1, right)
}
Iterative
function binary_search(array, value, left, right, middle) {
while (left <= right) {
middle = int((right + left) / 2)
if (value == array[middle]) return 1
if (value < array[middle]) right = middle - 1
else left = middle + 1
}
return 0
}
Axe
Iterative
BSEARCH takes 3 arguments: a pointer to the start of the data, the data to find, and the length of the array in bytes.
Lbl BSEARCH
0→L
r₃-1→H
While L≤H
(L+H)/2→M
If {L+M}>r₂
M-1→H
ElseIf {L+M}<r₂
M+1→L
Else
M
Return
End
End
-1
Return
BASIC
Recursive
FUNCTION binary_search ( array() AS Integer, value AS Integer, lo AS Integer, hi AS Integer) AS Integer
DIM middle AS Integer
IF hi < lo THEN
binary_search = 0
ELSE
middle = (hi + lo) / 2
SELECT CASE value
CASE IS < array(middle)
binary_search = binary_search(array(), value, lo, middle-1)
CASE IS > array(middle)
binary_search = binary_search(array(), value, middle+1, hi)
CASE ELSE
binary_search = middle
END SELECT
END IF
END FUNCTION
Iterative
FUNCTION binary_search ( array() AS Integer, value AS Integer, lo AS Integer, hi AS Integer) AS Integer
DIM middle AS Integer
WHILE lo <= hi
middle = (hi + lo) / 2
SELECT CASE value
CASE IS < array(middle)
hi = middle - 1
CASE IS > array(middle)
lo = middle + 1
CASE ELSE
binary_search = middle
EXIT FUNCTION
END SELECT
WEND
binary_search = 0
END FUNCTION
Testing the function
The following program can be used to test both recursive and iterative version.
SUB search (array() AS Integer, value AS Integer)
DIM idx AS Integer
idx = binary_search(array(), value, LBOUND(array), UBOUND(array))
PRINT "Value "; value;
IF idx < 1 THEN
PRINT " not found"
ELSE
PRINT " found at index "; idx
END IF
END SUB
DIM test(1 TO 10) AS Integer
DIM i AS Integer
DATA 2, 3, 5, 6, 8, 10, 11, 15, 19, 20
FOR i = 1 TO 10 ' Fill the test array
READ test(i)
NEXT i
search test(), 4
search test(), 8
search test(), 20
Output:
Value 4 not found Value 8 found at index 5 Value 20 found at index 10
Applesoft BASIC
100 REM Binary search
110 HOME : REM 110 CLS for Chipmunk Basic, MSX Basic, QBAsic and Quite BASIC
111 REM REMOVE line 110 for Minimal BASIC
120 DIM a(10)
130 LET n = 10
140 FOR j = 1 TO n
150 READ a(j)
160 NEXT j
170 REM Sorted data
180 DATA -31,0,1,2,2,4,65,83,99,782
190 LET x = 2
200 GOSUB 440
210 GOSUB 310
220 LET x = 5
230 GOSUB 440
240 GOSUB 310
250 GOTO 720
300 REM Print result
310 PRINT x;
320 IF i < 0 THEN 350
330 PRINT " is at index "; i; "."
340 RETURN
350 PRINT " is not found."
360 RETURN
400 REM Binary search algorithm
410 REM N - number of elements
420 REM X - searched element
430 REM Result: I - index of X
440 LET l = 0
450 LET h = n - 1
460 LET f = 0
470 LET m = l
480 IF l > h THEN 590
490 IF f <> 0 THEN 590
500 LET m = l + INT((h - l) / 2)
510 IF a(m) >= x THEN 540
520 LET l = m + 1
530 GOTO 480
540 IF a(m) <= x THEN 570
550 LET h = m - 1
560 GOTO 480
570 LET f = 1
580 GOTO 480
590 IF f = 0 THEN 700
600 LET i = m
610 RETURN
700 LET i = -1
710 RETURN
720 END
ASIC
REM Binary search
DIM A(10)
REM Sorted data
DATA -31, 0, 1, 2, 2, 4, 65, 83, 99, 782
FOR I = 0 TO 9
READ A(I)
NEXT I
N = 10
X = 2
GOSUB DoBinarySearch:
GOSUB PrintResult:
X = 5
GOSUB DoBinarySearch:
GOSUB PrintResult:
END
PrintResult:
PRINT X;
IF IndX >= 0 THEN
PRINT " is at index ";
PRINT IndX;
PRINT "."
ELSE
PRINT " is not found."
ENDIF
RETURN
DoBinarySearch:
REM Binary search algorithm
REM N - number of elements
REM X - searched element
REM Result: IndX - index of X
L = 0
H = N - 1
Found = 0
Loop:
IF L > H THEN AfterLoop:
IF Found <> 0 THEN AfterLoop:
REM (L <= H) and (Found = 0)
M = H - L
M = M / 2
M = L + M
REM So, M = L + (H - L) / 2
IF A(M) < X THEN
L = M + 1
ELSE
IF A(M) > X THEN
H = M - 1
ELSE
Found = 1
ENDIF
ENDIF
GOTO Loop:
AfterLoop:
IF Found = 0 THEN
IndX = -1
ELSE
IndX = M
ENDIF
RETURN
- Output:
2 is at index 4. 5 is not found.
BASIC256
Recursive Solution
function binarySearchR(array, valor, lb, ub)
if ub < lb then
return false
else
mitad = floor((lb + ub) / 2)
if valor < array[mitad] then return binarySearchR(array, valor, lb, mitad-1)
if valor > array[mitad] then return binarySearchR(array, valor, mitad+1, ub)
if valor = array[mitad] then return mitad
end if
end function
Iterative Solution
function binarySearchI(array, valor)
lb = array[?,]
ub = array[?]
while lb <= ub
mitad = floor((lb + ub) / 2)
begin case
case array[mitad] > valor
ub = mitad - 1
case array[mitad] < valor
lb = mitad + 1
else
return mitad
end case
end while
return false
end function
Test:
items = 10e5
dim array(items)
for n = 0 to items-1 : array[n] = n : next n
t0 = msec
print binarySearchI(array, 3)
print msec - t0; " millisec"
t1 = msec
print binarySearchR(array, 3, array[?,], array[?])
print msec - t1; " millisec"
end
- Output:
3 839 millisec 3 50 millisec
BBC BASIC
DIM array%(9)
array%() = 7, 14, 21, 28, 35, 42, 49, 56, 63, 70
secret% = 42
index% = FNwhere(array%(), secret%, 0, DIM(array%(),1))
IF index% >= 0 THEN
PRINT "The value "; secret% " was found at index "; index%
ELSE
PRINT "The value "; secret% " was not found"
ENDIF
END
REM Search ordered array A%() for the value S% from index B% to T%
DEF FNwhere(A%(), S%, B%, T%)
LOCAL H%
H% = 2
WHILE H%<(T%-B%) H% *= 2:ENDWHILE
H% /= 2
REPEAT
IF (B%+H%)<=T% IF S%>=A%(B%+H%) B% += H%
H% /= 2
UNTIL H%=0
IF S%=A%(B%) THEN = B% ELSE = -1
Chipmunk Basic
100 rem Binary search
110 cls
120 dim a(10)
130 n% = 10
140 for i% = 0 to 9 : read a(i%) : next i%
150 rem Sorted data
160 data -31,0,1,2,2,4,65,83,99,782
170 x = 2 : gosub 280
180 gosub 230
190 x = 5 : gosub 280
200 gosub 230
210 end
220 rem Print result
230 print x;
240 if indx% >= 0 then print "is at index ";str$(indx%);"." else print "is not found."
250 return
260 rem Binary search algorithm
270 rem N% - number of elements; X - searched element; Result: INDX% - index of X
280 l% = 0 : h% = n%-1 : found% = 0
290 while (l% <= h%) and not found%
300 m% = l%+int((h%-l%)/2)
310 if a(m%) < x then l% = m%+1 else if a(m%) > x then h% = m%-1 else found% = -1
320 wend
330 if found% = 0 then indx% = -1 else indx% = m%
340 return
Craft Basic
'iterative binary search example
define size = 0, search = 0, flag = 0, value = 0
define middle = 0, low = 0, high = 0
dim list[2, 3, 5, 6, 8, 10, 11, 15, 19, 20]
arraysize size, list
let value = 4
gosub binarysearch
let value = 8
gosub binarysearch
let value = 20
gosub binarysearch
end
sub binarysearch
let search = 1
let middle = 0
let low = 0
let high = size
do
if low <= high then
let middle = int((high + low ) / 2)
let flag = 1
if value < list[middle] then
let high = middle - 1
let flag = 0
endif
if value > list[middle] then
let low = middle + 1
let flag = 0
endif
if flag = 1 then
let search = 0
endif
endif
loop low <= high and search = 1
if search = 1 then
let middle = 0
endif
if middle < 1 then
print "not found"
endif
if middle >= 1 then
print "found at index ", middle
endif
return
- Output:
not foundfound at index 4
found at index 9
FreeBASIC
function binsearch( array() as integer, target as integer ) as integer
'returns the index of the target number, or -1 if it is not in the array
dim as uinteger lo = lbound(array), hi = ubound(array), md = (lo + hi)\2
if array(lo) = target then return lo
if array(hi) = target then return hi
while lo + 1 < hi
if array(md) = target then return md
if array(md)<target then lo = md else hi = md
md = (lo + hi)\2
wend
return -1
end function
GW-BASIC
10 REM Binary search
20 DIM A(10)
30 N% = 10
40 FOR I% = 0 TO 9: READ A(I%): NEXT I%
50 REM Sorted data
60 DATA -31, 0, 1, 2, 2, 4, 65, 83, 99, 782
70 X = 2: GOSUB 500
80 GOSUB 200
90 X = 5: GOSUB 500
100 GOSUB 200
110 END
190 REM Print result
200 PRINT X;
210 IF INDX% >= 0 THEN PRINT "is at index"; STR$(INDX%);"." ELSE PRINT "is not found."
220 RETURN
480 REM Binary search algorithm
490 REM N% - number of elements; X - searched element; Result: INDX% - index of X
500 L% = 0: H% = N% - 1: FOUND% = 0
510 WHILE (L% <= H%) AND NOT FOUND%
520 M% = L% + (H% - L%) \ 2
530 IF A(M%) < X THEN L% = M% + 1 ELSE IF A(M%) > X THEN H% = M% - 1 ELSE FOUND% = -1
540 WEND
550 IF FOUND% = 0 THEN INDX% = -1 ELSE INDX% = M%
560 RETURN
- Output:
2 is at index 4. 5 is not found.
IS-BASIC
100 PROGRAM "Search.bas"
110 RANDOMIZE
120 NUMERIC ARR(1 TO 20)
130 CALL FILL(ARR)
140 PRINT:INPUT PROMPT "Value: ":N
150 LET IDX=SEARCH(ARR,N)
160 IF IDX THEN
170 PRINT "The value";N;"was found the index";IDX
180 ELSE
190 PRINT "The value";N;"was not found."
200 END IF
210 DEF FILL(REF T)
220 LET T(LBOUND(T))=RND(3):PRINT T(1);
230 FOR I=LBOUND(T)+1 TO UBOUND(T)
240 LET T(I)=T(I-1)+RND(3)+1
250 PRINT T(I);
260 NEXT
270 END DEF
280 DEF SEARCH(REF T,N)
290 LET SEARCH=0:LET BO=LBOUND(T):LET UP=UBOUND(T)
300 DO
310 LET K=INT((BO+UP)/2)
320 IF T(K)<N THEN LET BO=K+1
330 IF T(K)>N THEN LET UP=K-1
340 LOOP WHILE BO<=UP AND T(K)<>N
350 IF BO<=UP THEN LET SEARCH=K
360 END DEF
Liberty BASIC
dim theArray(100)
for i = 1 to 100
theArray(i) = i
next i
print binarySearch(80,30,90)
wait
FUNCTION binarySearch(val, lo, hi)
IF hi < lo THEN
binarySearch = 0
ELSE
middle = int((hi + lo) / 2):print middle
if val < theArray(middle) then binarySearch = binarySearch(val, lo, middle-1)
if val > theArray(middle) then binarySearch = binarySearch(val, middle+1, hi)
if val = theArray(middle) then binarySearch = middle
END IF
END FUNCTION
Minimal BASIC
10 REM Binary search
20 LET N = 10
30 FOR I = 1 TO N
40 READ A(I)
50 NEXT I
60 REM Sorted data
70 DATA -31, 0, 1, 2, 2, 4, 65, 83, 99, 782
80 LET X = 2
90 GOSUB 500
100 GOSUB 200
110 LET X = 5
120 GOSUB 500
130 GOSUB 200
140 END
190 REM Print result
200 PRINT X;
210 IF I1 < 0 THEN 240
220 PRINT "is at index"; I1; "."
230 RETURN
240 PRINT "is not found."
250 RETURN
460 REM Binary search algorithm
470 REM N - number of elements
480 REM X - searched element
490 REM Result: I1 - index of X
500 LET L = 0
510 LET H = N-1
520 LET F = 0
530 LET M = L
540 IF L > H THEN 650
550 IF F <> 0 THEN 650
560 LET M = L+INT((H-L)/2)
570 IF A(M) >= X THEN 600
580 LET L = M+1
590 GOTO 540
600 IF A(M) <= X THEN 630
610 LET H = M-1
620 GOTO 540
630 LET F = 1
640 GOTO 540
650 IF F = 0 THEN 680
660 LET I1 = M
670 RETURN
680 LET I1 = -1
690 RETURN
MSX Basic
The Minimal BASIC solution works without any changes.
Palo Alto Tiny BASIC
10 REM BINARY SEARCH
20 LET N=10
30 REM SORTED DATA
40 LET @(1)=-31,@(2)=0,@(3)=1,@(4)=2,@(5)=2
50 LET @(6)=4,@(7)=65,@(8)=83,@(9)=99,@(10)=782
60 LET X=2;GOSUB 500
70 GOSUB 200
80 LET X=5;GOSUB 500
90 GOSUB 200
100 STOP
190 REM PRINT RESULT
200 IF J<0 PRINT #1,X," IS NOT FOUND.";RETURN
210 PRINT #1,X," IS AT INDEX ",J,".";RETURN
460 REM BINARY SEARCH ALGORITHM
470 REM N - NUMBER OF ELEMENTS
480 REM X - SEARCHED ELEMENT
490 REM RESULT: J - INDEX OF X
500 LET L=0,H=N-1,F=0,M=L
510 IF L>H GOTO 570
520 IF F#0 GOTO 570
530 LET M=L+(H-L)/2
540 IF @(M)<X LET L=M+1;GOTO 510
550 IF @(M)>X LET H=M-1;GOTO 510
560 LET F=1;GOTO 510
570 IF F=0 LET J=-1;RETURN
580 LET J=M;RETURN
- Output:
2 IS AT INDEX 4. 5 IS NOT FOUND.
PureBasic
Both recursive and iterative procedures are included and called in the code below.
#Recursive = 0 ;recursive binary search method
#Iterative = 1 ;iterative binary search method
#NotFound = -1 ;search result if item not found
;Recursive
Procedure R_BinarySearch(Array a(1), value, low, high)
Protected mid
If high < low
ProcedureReturn #NotFound
EndIf
mid = (low + high) / 2
If a(mid) > value
ProcedureReturn R_BinarySearch(a(), value, low, mid - 1)
ElseIf a(mid) < value
ProcedureReturn R_BinarySearch(a(), value, mid + 1, high)
Else
ProcedureReturn mid
EndIf
EndProcedure
;Iterative
Procedure I_BinarySearch(Array a(1), value, low, high)
Protected mid
While low <= high
mid = (low + high) / 2
If a(mid) > value
high = mid - 1
ElseIf a(mid) < value
low = mid + 1
Else
ProcedureReturn mid
EndIf
Wend
ProcedureReturn #NotFound
EndProcedure
Procedure search (Array a(1), value, method)
Protected idx
Select method
Case #Iterative
idx = I_BinarySearch(a(), value, 0, ArraySize(a()))
Default
idx = R_BinarySearch(a(), value, 0, ArraySize(a()))
EndSelect
Print(" Value " + Str(Value))
If idx < 0
PrintN(" not found")
Else
PrintN(" found at index " + Str(idx))
EndIf
EndProcedure
#NumElements = 9 ;zero based count
Dim test(#NumElements)
DataSection
Data.i 2, 3, 5, 6, 8, 10, 11, 15, 19, 20
EndDataSection
;fill the test array
For i = 0 To #NumElements
Read test(i)
Next
If OpenConsole()
PrintN("Recursive search:")
search(test(), 4, #Recursive)
search(test(), 8, #Recursive)
search(test(), 20, #Recursive)
PrintN("")
PrintN("Iterative search:")
search(test(), 4, #Iterative)
search(test(), 8, #Iterative)
search(test(), 20, #Iterative)
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
Input()
CloseConsole()
EndIf
Sample output:
Recursive search: Value 4 not found Value 8 found at index 4 Value 20 found at index 9 Iterative search: Value 4 not found Value 8 found at index 4 Value 20 found at index 9
Quite BASIC
100 REM Binary search
110 CLS : REM 110 HOME for Applesoft BASIC : REM REMOVE for Minimal BASIC
120 DIM a(10)
130 LET n = 10
140 FOR j = 1 TO n
150 READ a(j)
160 NEXT j
170 REM Sorted data
180 DATA -31,0,1,2,2,4,65,83,99,782
190 LET x = 2
200 GOSUB 440
210 GOSUB 310
220 LET x = 5
230 GOSUB 440
240 GOSUB 310
250 GOTO 720
300 REM Print result
310 PRINT x;
320 IF i < 0 THEN 350
330 PRINT " is at index "; i; "."
340 RETURN
350 PRINT " is not found."
360 RETURN
400 REM Binary search algorithm
410 REM N - number of elements
420 REM X - searched element
430 REM Result: I - index of X
440 LET l = 0
450 LET h = n - 1
460 LET f = 0
470 LET m = l
480 IF l > h THEN 590
490 IF f <> 0 THEN 590
500 LET m = l + INT((h - l) / 2)
510 IF a(m) >= x THEN 540
520 LET l = m + 1
530 GOTO 480
540 IF a(m) <= x THEN 570
550 LET h = m - 1
560 GOTO 480
570 LET f = 1
580 GOTO 480
590 IF f = 0 THEN 700
600 LET i = m
610 RETURN
700 LET i = -1
710 RETURN
720 END
Run BASIC
Recursive
dim theArray(100)
global theArray
for i = 1 to 100
theArray(i) = i
next i
print binarySearch(80,30,90)
FUNCTION binarySearch(val, lo, hi)
IF hi < lo THEN
binarySearch = 0
ELSE
middle = (hi + lo) / 2
if val < theArray(middle) then binarySearch = binarySearch(val, lo, middle-1)
if val > theArray(middle) then binarySearch = binarySearch(val, middle+1, hi)
if val = theArray(middle) then binarySearch = middle
END IF
END FUNCTION
TI-83 BASIC
PROGRAM:BINSEARC
:Disp "INPUT A LIST:"
:Input L1
:SortA(L1)
:Disp "INPUT A NUMBER:"
:Input A
:1→L
:dim(L1)→H
:int(L+(H-L)/2)→M
:While L<H and L1(M)≠A
:If A>M
:Then
:M+1→L
:Else
:M-1→H
:End
:int(L+(H-L)/2)→M
:End
:If L1(M)=A
:Then
:Disp A
:Disp "IS AT POSITION"
:Disp M
:Else
:Disp A
:Disp "IS NOT IN"
:Disp L1
uBasic/4tH
The overflow is fixed - which is a bit of overkill, since uBasic/4tH has only one array of 256 elements.
For i = 1 To 100 ' Fill array with some values
@(i-1) = i
Next
Print FUNC(_binarySearch(50,0,99)) ' Now find value '50'
End ' and prints its index
_binarySearch Param(3) ' value, start index, end index
Local(1) ' The middle of the array
If c@ < b@ Then ' Ok, signal we didn't find it
Return (-1)
Else
d@ = SHL(b@ + c@, -1) ' Prevent overflow (LOL!)
If a@ < @(d@) Then Return (FUNC(_binarySearch (a@, b@, d@-1)))
If a@ > @(d@) Then Return (FUNC(_binarySearch (a@, d@+1, c@)))
If a@ = @(d@) Then Return (d@) ' We found it, return index!
EndIf
VBA
Recursive version:
Public Function BinarySearch(a, value, low, high)
'search for "value" in ordered array a(low..high)
'return index point if found, -1 if not found
If high < low Then
BinarySearch = -1 'not found
Exit Function
End If
midd = low + Int((high - low) / 2) ' "midd" because "Mid" is reserved in VBA
If a(midd) > value Then
BinarySearch = BinarySearch(a, value, low, midd - 1)
ElseIf a(midd) < value Then
BinarySearch = BinarySearch(a, value, midd + 1, high)
Else
BinarySearch = midd
End If
End Function
Here are some test functions:
Public Sub testBinarySearch(n)
Dim a(1 To 100)
'create an array with values = multiples of 10
For i = 1 To 100: a(i) = i * 10: Next
Debug.Print BinarySearch(a, n, LBound(a), UBound(a))
End Sub
Public Sub stringtestBinarySearch(w)
'uses BinarySearch with a string array
Dim a
a = Array("AA", "Maestro", "Mario", "Master", "Mattress", "Mister", "Mistress", "ZZ")
Debug.Print BinarySearch(a, w, LBound(a), UBound(a))
End Sub
and sample output:
stringtestBinarySearch "Master" 3 testBinarySearch "Master" -1 testBinarySearch 170 17 stringtestBinarySearch 170 -1 stringtestBinarySearch "Moo" -1 stringtestBinarySearch "ZZ" 7
Iterative version:
Public Function BinarySearch2(a, value)
'search for "value" in array a
'return index point if found, -1 if not found
low = LBound(a)
high = UBound(a)
Do While low <= high
midd = low + Int((high - low) / 2)
If a(midd) = value Then
BinarySearch2 = midd
Exit Function
ElseIf a(midd) > value Then
high = midd - 1
Else
low = midd + 1
End If
Loop
BinarySearch2 = -1 'not found
End Function
VBScript
Recursive
Function binary_search(arr,value,lo,hi)
If hi < lo Then
binary_search = 0
Else
middle=Int((hi+lo)/2)
If value < arr(middle) Then
binary_search = binary_search(arr,value,lo,middle-1)
ElseIf value > arr(middle) Then
binary_search = binary_search(arr,value,middle+1,hi)
Else
binary_search = middle
Exit Function
End If
End If
End Function
'Tesing the function.
num_range = Array(2,3,5,6,8,10,11,15,19,20)
n = CInt(WScript.Arguments(0))
idx = binary_search(num_range,n,LBound(num_range),UBound(num_range))
If idx > 0 Then
WScript.StdOut.Write n & " found at index " & idx
WScript.StdOut.WriteLine
Else
WScript.StdOut.Write n & " not found"
WScript.StdOut.WriteLine
End If
- Output:
Note: Array index starts at 0.
C:\>cscript /nologo binary_search.vbs 4 4 not found C:\>cscript /nologo binary_search.vbs 8 8 found at index 4 C:\>cscript /nologo binary_search.vbs 20 20 found at index 9
Visual Basic .NET
Iterative
Function BinarySearch(ByVal A() As Integer, ByVal value As Integer) As Integer
Dim low As Integer = 0
Dim high As Integer = A.Length - 1
Dim middle As Integer = 0
While low <= high
middle = (low + high) / 2
If A(middle) > value Then
high = middle - 1
ElseIf A(middle) < value Then
low = middle + 1
Else
Return middle
End If
End While
Return Nothing
End Function
Recursive
Function BinarySearch(ByVal A() As Integer, ByVal value As Integer, ByVal low As Integer, ByVal high As Integer) As Integer
Dim middle As Integer = 0
If high < low Then
Return Nothing
End If
middle = (low + high) / 2
If A(middle) > value Then
Return BinarySearch(A, value, low, middle - 1)
ElseIf A(middle) < value Then
Return BinarySearch(A, value, middle + 1, high)
Else
Return middle
End If
End Function
Yabasic
sub floor(n)
return int(n + .5)
end sub
sub binarySearch(list(), value)
local low, high, mid
low = 1 : high = arraysize(list(), 1)
while(low <= high)
mid = floor((low + high) / 2)
if list(mid) > value then
high = mid - 1
elsif list(mid) < value then
low = mid + 1
else
return mid
end if
wend
return false
end sub
ITEMS = 10e6
dim list(ITEMS)
for n = 1 to ITEMS
list(n) = n
next n
print binarySearch(list(), 3)
print peek("millisrunning")
ZX Spectrum Basic
Iterative method:
10 DATA 2,3,5,6,8,10,11,15,19,20
20 DIM t(10)
30 FOR i=1 TO 10
40 READ t(i)
50 NEXT i
60 LET value=4: GO SUB 100
70 LET value=8: GO SUB 100
80 LET value=20: GO SUB 100
90 STOP
100 REM Binary search
110 LET lo=1: LET hi=10
120 IF lo>hi THEN LET idx=0: GO TO 170
130 LET middle=INT ((hi+lo)/2)
140 IF value<t(middle) THEN LET hi=middle-1: GO TO 120
150 IF value>t(middle) THEN LET lo=middle+1: GO TO 120
160 LET idx=middle
170 PRINT "Value ";value;
180 IF idx=0 THEN PRINT " not found": RETURN
190 PRINT " found at index ";idx: RETURN
Batch File
@echo off & setlocal enabledelayedexpansion
:: Binary Chop Algorithm - Michael Sanders 2017
::
:: example output...
::
:: binary chop algorithm vs. standard for loop
::
:: number to find 941
:: for loop required 941 iterations
:: binchop required 10 iterations
:setup
set x=1
set y=999
set /a z=(%random% * (%y% - 1) / 32768 + 1)
:pseudoarray
for /l %%q in (%x%,1,%y%) do set /a array[%%q]=%%q
:std4loop
for /l %%q in (%x%,1,%y%) do (
if !array[%%q]!==%z% (set f=%%q& goto :binchop)
)
:binchop
if !x! leq !y! (
set /a i+=1
set /a "p=(!x!+!y!)/2"
call set /a t=%%array[!p!]%%
if !t! equ !z! (set b=!i!& goto :done)
if !t! lss !z! (set /a x=!p!+1) else (set /a y=!p!-1)
goto :binchop
)
:done
cls
echo binary chop algorithm vs. standard for loop...
echo.
echo . number to find !z!
echo . for loop required !f! iterations
echo . binchop required !b! iterations
endlocal & exit /b 0
BQN
BQN has two builtin functions for binary search: ⍋
(Bins Up) and ⍒
(Bins Down). This is a recursive method.
BSearch ← {
BS ⟨a, value⟩:
BS ⟨a, value, 0, ¯1+≠a⟩;
BS ⟨a, value, low, high⟩:
mid ← ⌊2÷˜low+high
{
high<low ? ¯1;
(mid⊑a)>value ? BS ⟨a, value, low, mid-1⟩;
(mid⊑a)<value ? BS ⟨a, value, mid+1, high⟩;
mid
}
}
•Show BSearch ⟨8‿30‿35‿45‿49‿77‿79‿82‿87‿97, 97⟩
9
Brat
binary_search = { search_array, value, low, high |
true? high < low
{ null }
{
mid = ((low + high) / 2).to_i
true? search_array[mid] > value
{ binary_search search_array, value, low, mid - 1 }
{ true? search_array[mid] < value
{ binary_search search_array, value, mid + 1, high }
{ mid }
}
}
}
#Populate array
numbers = 1000.of { random 1000 }
#Sort the array
numbers.sort!
#Find a number
x = random 1000
p "Looking for #{x}"
index = binary_search numbers, x, 0, numbers.length - 1
null? index
{ p "Not found" }
{ p "Found at index: #{index}" }
Bruijn
:import std/Combinator .
:import std/Math .
:import std/List .
:import std/Option .
binary-search [y [[[[[2 <? 3 none go]]]]] (+0) --(∀0) 0]
go [compare-case eq lt gt (2 !! 0) 1] /²(3 + 2)
eq some 0
lt 5 4 --0 2 1
gt 5 ++0 3 2 1
# example using sorted list of x^3, x=[-50,50]
find [[map-or "not found" [0 : (1 !! 0)] (binary-search 0 1)] lst]
lst take (+100) ((\pow (+3)) <$> (iterate ++‣ (-50)))
:test (find (+100)) ("not found")
:test ((head (find (+125))) =? (+55)) ([[1]])
:test ((head (find (+117649))) =? (+99)) ([[1]])
C
#include <stdio.h>
int bsearch (int *a, int n, int x) {
int i = 0, j = n - 1;
while (i <= j) {
int k = i + ((j - i) / 2);
if (a[k] == x) {
return k;
}
else if (a[k] < x) {
i = k + 1;
}
else {
j = k - 1;
}
}
return -1;
}
int bsearch_r (int *a, int x, int i, int j) {
if (j < i) {
return -1;
}
int k = i + ((j - i) / 2);
if (a[k] == x) {
return k;
}
else if (a[k] < x) {
return bsearch_r(a, x, k + 1, j);
}
else {
return bsearch_r(a, x, i, k - 1);
}
}
int main () {
int a[] = {-31, 0, 1, 2, 2, 4, 65, 83, 99, 782};
int n = sizeof a / sizeof a[0];
int x = 2;
int i = bsearch(a, n, x);
if (i >= 0)
printf("%d is at index %d.\n", x, i);
else
printf("%d is not found.\n", x);
x = 5;
i = bsearch_r(a, x, 0, n - 1);
if (i >= 0)
printf("%d is at index %d.\n", x, i);
else
printf("%d is not found.\n", x);
return 0;
}
- Output:
2 is at index 4. 5 is not found.
C#
Recursive
namespace Search {
using System;
public static partial class Extensions {
/// <summary>Use Binary Search to find index of GLB for value</summary>
/// <typeparam name="T">type of entries and value</typeparam>
/// <param name="entries">array of entries</param>
/// <param name="value">search value</param>
/// <remarks>entries must be in ascending order</remarks>
/// <returns>index into entries of GLB for value</returns>
public static int RecursiveBinarySearchForGLB<T>(this T[] entries, T value)
where T : IComparable {
return entries.RecursiveBinarySearchForGLB(value, 0, entries.Length - 1);
}
/// <summary>Use Binary Search to find index of GLB for value</summary>
/// <typeparam name="T">type of entries and value</typeparam>
/// <param name="entries">array of entries</param>
/// <param name="value">search value</param>
/// <param name="left">leftmost index to search</param>
/// <param name="right">rightmost index to search</param>
/// <remarks>entries must be in ascending order</remarks>
/// <returns>index into entries of GLB for value</returns>
public static int RecursiveBinarySearchForGLB<T>(this T[] entries, T value, int left, int right)
where T : IComparable {
if (left <= right) {
var middle = left + (right - left) / 2;
return entries[middle].CompareTo(value) < 0 ?
entries.RecursiveBinarySearchForGLB(value, middle + 1, right) :
entries.RecursiveBinarySearchForGLB(value, left, middle - 1);
}
//[Assert]left == right + 1
// GLB: entries[right] < value && value <= entries[right + 1]
return right;
}
/// <summary>Use Binary Search to find index of LUB for value</summary>
/// <typeparam name="T">type of entries and value</typeparam>
/// <param name="entries">array of entries</param>
/// <param name="value">search value</param>
/// <remarks>entries must be in ascending order</remarks>
/// <returns>index into entries of LUB for value</returns>
public static int RecursiveBinarySearchForLUB<T>(this T[] entries, T value)
where T : IComparable {
return entries.RecursiveBinarySearchForLUB(value, 0, entries.Length - 1);
}
/// <summary>Use Binary Search to find index of LUB for value</summary>
/// <typeparam name="T">type of entries and value</typeparam>
/// <param name="entries">array of entries</param>
/// <param name="value">search value</param>
/// <param name="left">leftmost index to search</param>
/// <param name="right">rightmost index to search</param>
/// <remarks>entries must be in ascending order</remarks>
/// <returns>index into entries of LUB for value</returns>
public static int RecursiveBinarySearchForLUB<T>(this T[] entries, T value, int left, int right)
where T : IComparable {
if (left <= right) {
var middle = left + (right - left) / 2;
return entries[middle].CompareTo(value) <= 0 ?
entries.RecursiveBinarySearchForLUB(value, middle + 1, right) :
entries.RecursiveBinarySearchForLUB(value, left, middle - 1);
}
//[Assert]left == right + 1
// LUB: entries[left] > value && value >= entries[left - 1]
return left;
}
}
}
Iterative
namespace Search {
using System;
public static partial class Extensions {
/// <summary>Use Binary Search to find index of GLB for value</summary>
/// <typeparam name="T">type of entries and value</typeparam>
/// <param name="entries">array of entries</param>
/// <param name="value">search value</param>
/// <remarks>entries must be in ascending order</remarks>
/// <returns>index into entries of GLB for value</returns>
public static int BinarySearchForGLB<T>(this T[] entries, T value)
where T : IComparable {
return entries.BinarySearchForGLB(value, 0, entries.Length - 1);
}
/// <summary>Use Binary Search to find index of GLB for value</summary>
/// <typeparam name="T">type of entries and value</typeparam>
/// <param name="entries">array of entries</param>
/// <param name="value">search value</param>
/// <param name="left">leftmost index to search</param>
/// <param name="right">rightmost index to search</param>
/// <remarks>entries must be in ascending order</remarks>
/// <returns>index into entries of GLB for value</returns>
public static int BinarySearchForGLB<T>(this T[] entries, T value, int left, int right)
where T : IComparable {
while (left <= right) {
var middle = left + (right - left) / 2;
if (entries[middle].CompareTo(value) < 0)
left = middle + 1;
else
right = middle - 1;
}
//[Assert]left == right + 1
// GLB: entries[right] < value && value <= entries[right + 1]
return right;
}
/// <summary>Use Binary Search to find index of LUB for value</summary>
/// <typeparam name="T">type of entries and value</typeparam>
/// <param name="entries">array of entries</param>
/// <param name="value">search value</param>
/// <remarks>entries must be in ascending order</remarks>
/// <returns>index into entries of LUB for value</returns>
public static int BinarySearchForLUB<T>(this T[] entries, T value)
where T : IComparable {
return entries.BinarySearchForLUB(value, 0, entries.Length - 1);
}
/// <summary>Use Binary Search to find index of LUB for value</summary>
/// <typeparam name="T">type of entries and value</typeparam>
/// <param name="entries">array of entries</param>
/// <param name="value">search value</param>
/// <param name="left">leftmost index to search</param>
/// <param name="right">rightmost index to search</param>
/// <remarks>entries must be in ascending order</remarks>
/// <returns>index into entries of LUB for value</returns>
public static int BinarySearchForLUB<T>(this T[] entries, T value, int left, int right)
where T : IComparable {
while (left <= right) {
var middle = left + (right - left) / 2;
if (entries[middle].CompareTo(value) <= 0)
left = middle + 1;
else
right = middle - 1;
}
//[Assert]left == right + 1
// LUB: entries[left] > value && value >= entries[left - 1]
return left;
}
}
}
Example
//#define UseRecursiveSearch
using System;
using Search;
class Program {
static readonly int[][] tests = {
new int[] { },
new int[] { 2 },
new int[] { 2, 2 },
new int[] { 2, 2, 2, 2 },
new int[] { 3, 3, 4, 4 },
new int[] { 0, 1, 3, 3, 4, 4 },
new int[] { 0, 1, 2, 2, 2, 3, 3, 4, 4},
new int[] { 0, 1, 1, 2, 2, 2, 3, 3, 4, 4 },
new int[] { 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4 },
new int[] { 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4 },
new int[] { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4 },
};
static void Main(string[] args) {
var index = 0;
foreach (var test in tests) {
var join = String.Join(" ", test);
Console.WriteLine($"test[{index}]: {join}");
#if UseRecursiveSearch
var glb = test.RecursiveBinarySearchForGLB(2);
var lub = test.RecursiveBinarySearchForLUB(2);
#else
var glb = test.BinarySearchForGLB(2);
var lub = test.BinarySearchForLUB(2);
#endif
Console.WriteLine($"glb = {glb}");
Console.WriteLine($"lub = {lub}");
index++;
}
#if DEBUG
Console.Write("Press Enter");
Console.ReadLine();
#endif
}
}
Output
test[0]: glb = -1 lub = 0 test[1]: 2 glb = -1 lub = 1 test[2]: 2 2 glb = -1 lub = 2 test[3]: 2 2 2 2 glb = -1 lub = 4 test[4]: 3 3 4 4 glb = -1 lub = 0 test[5]: 0 1 3 3 4 4 glb = 1 lub = 2 test[6]: 0 1 2 2 2 3 3 4 4 glb = 1 lub = 5 test[7]: 0 1 1 2 2 2 3 3 4 4 glb = 2 lub = 6 test[8]: 0 1 1 1 1 2 2 3 3 4 4 glb = 4 lub = 7 test[9]: 0 1 1 1 1 2 2 2 2 2 2 2 3 3 4 4 glb = 4 lub = 12 test[10]: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 4 4 glb = 13 lub = 21
C++
Recursive
template <class T> int binsearch(const T array[], int low, int high, T value) {
if (high < low) {
return -1;
}
auto mid = (low + high) / 2;
if (value < array[mid]) {
return binsearch(array, low, mid - 1, value);
} else if (value > array[mid]) {
return binsearch(array, mid + 1, high, value);
}
return mid;
}
#include <iostream>
int main()
{
int array[] = {2, 3, 5, 6, 8};
int result1 = binsearch(array, 0, sizeof(array)/sizeof(int), 4),
result2 = binsearch(array, 0, sizeof(array)/sizeof(int), 8);
if (result1 == -1) std::cout << "4 not found!" << std::endl;
else std::cout << "4 found at " << result1 << std::endl;
if (result2 == -1) std::cout << "8 not found!" << std::endl;
else std::cout << "8 found at " << result2 << std::endl;
return 0;
}
Iterative
template <class T>
int binSearch(const T arr[], int len, T what) {
int low = 0;
int high = len - 1;
while (low <= high) {
int mid = (low + high) / 2;
if (arr[mid] > what)
high = mid - 1;
else if (arr[mid] < what)
low = mid + 1;
else
return mid;
}
return -1; // indicate not found
}
Library
C++'s Standard Template Library has four functions for binary search, depending on what information you want to get. They all need
#include <algorithm>
The lower_bound()
function returns an iterator to the first position where a value could be inserted without violating the order; i.e. the first element equal to the element you want, or the place where it would be inserted.
int *ptr = std::lower_bound(array, array+len, what); // a custom comparator can be given as fourth arg
The upper_bound()
function returns an iterator to the last position where a value could be inserted without violating the order; i.e. one past the last element equal to the element you want, or the place where it would be inserted.
int *ptr = std::upper_bound(array, array+len, what); // a custom comparator can be given as fourth arg
The equal_range()
function returns a pair of the results of lower_bound()
and upper_bound()
.
std::pair<int *, int *> bounds = std::equal_range(array, array+len, what); // a custom comparator can be given as fourth arg
Note that the difference between the bounds is the number of elements equal to the element you want.
The binary_search()
function returns true or false for whether an element equal to the one you want exists in the array. It does not give you any information as to where it is.
bool found = std::binary_search(array, array+len, what); // a custom comparator can be given as fourth arg
Chapel
iterative -- almost a direct translation of the pseudocode
proc binsearch(A : [], value)
{
var low = A.domain.dim(0).low;
var high = A.domain.dim(0).high;
while (low <= high)
{
var mid = (low + high) / 2;
if A(mid) > value then
high = mid - 1;
else if A(mid) < value then
low = mid + 1;
else
return mid;
}
return 0;
}
writeln(binsearch([3, 4, 6, 9, 11], 9));
- Output:
4
Clojure
Recursive
(defn bsearch
([coll t]
(bsearch coll 0 (dec (count coll)) t))
([coll l u t]
(if (> l u) -1
(let [m (quot (+ l u) 2) mth (nth coll m)]
(cond
; the middle element is greater than t
; so search the lower half
(> mth t) (recur coll l (dec m) t)
; the middle element is less than t
; so search the upper half
(< mth t) (recur coll (inc m) u t)
; we've found our target
; so return its index
(= mth t) m)))))
CLU
% Binary search in an array
% If the item is found, returns `true' and the index;
% if the item is not found, returns `false' and the leftmost insertion point
% The datatype must support the < and > operators.
binary_search = proc [T: type] (a: array[T], val: T) returns (bool, int)
where T has lt: proctype (T,T) returns (bool),
T has gt: proctype (T,T) returns (bool)
low: int := array[T]$low(a)
high: int := array[T]$high(a)
while low <= high do
mid: int := low + (high - low) / 2
if a[mid] > val then
high := mid - 1
elseif a[mid] < val then
low := mid + 1
else
return (true, mid)
end
end
return (false, low)
end binary_search
% Test the binary search on an array
start_up = proc ()
po: stream := stream$primary_output()
% primes up to 20 (note that arrays are 1-indexed by default)
primes: array[int] := array[int]$[2,3,5,7,11,13,17,19]
% binary search for each number from 1 to 20
for n: int in int$from_to(1,20) do
i: int
found: bool
found, i := binary_search[int](primes, n)
if found then
stream$putl(po, int$unparse(n)
|| " found at location "
|| int$unparse(i));
else
stream$putl(po, int$unparse(n)
|| " not found, would be inserted at location "
|| int$unparse(i));
end
end
end start_up
- Output:
1 not found, would be inserted at location 1 2 found at location 1 3 found at location 2 4 not found, would be inserted at location 3 5 found at location 3 6 not found, would be inserted at location 4 7 found at location 4 8 not found, would be inserted at location 5 9 not found, would be inserted at location 5 10 not found, would be inserted at location 5 11 found at location 5 12 not found, would be inserted at location 6 13 found at location 6 14 not found, would be inserted at location 7 15 not found, would be inserted at location 7 16 not found, would be inserted at location 7 17 found at location 7 18 not found, would be inserted at location 8 19 found at location 8 20 not found, would be inserted at location 9
COBOL
COBOL's SEARCH ALL
statement is implemented as a binary search on most implementations.
>>SOURCE FREE
IDENTIFICATION DIVISION.
PROGRAM-ID. binary-search.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 nums-area VALUE "01040612184356".
03 nums PIC 9(2)
OCCURS 7 TIMES
ASCENDING KEY nums
INDEXED BY nums-idx.
PROCEDURE DIVISION.
SEARCH ALL nums
WHEN nums (nums-idx) = 4
DISPLAY "Found 4 at index " nums-idx
END-SEARCH
.
END PROGRAM binary-search.
CoffeeScript
Recursive
binarySearch = (xs, x) ->
do recurse = (low = 0, high = xs.length - 1) ->
mid = Math.floor (low + high) / 2
switch
when high < low then NaN
when xs[mid] > x then recurse low, mid - 1
when xs[mid] < x then recurse mid + 1, high
else mid
Iterative
binarySearch = (xs, x) ->
[low, high] = [0, xs.length - 1]
while low <= high
mid = Math.floor (low + high) / 2
switch
when xs[mid] > x then high = mid - 1
when xs[mid] < x then low = mid + 1
else return mid
NaN
Test
do (n = 12) ->
odds = (it for it in [1..n] by 2)
result = (it for it in \
(binarySearch odds, it for it in [0..n]) \
when not isNaN it)
console.assert "#{result}" is "#{[0...odds.length]}"
console.log "#{odds} are odd natural numbers"
console.log "#{it} is ordinal of #{odds[it]}" for it in result
Output:
1,3,5,7,9,11 are odd natural numbers" 0 is ordinal of 1 1 is ordinal of 3 2 is ordinal of 5 3 is ordinal of 7 4 is ordinal of 9 5 is ordinal of 11
Common Lisp
Iterative
(defun binary-search (value array)
(let ((low 0)
(high (1- (length array))))
(do () ((< high low) nil)
(let ((middle (floor (+ low high) 2)))
(cond ((> (aref array middle) value)
(setf high (1- middle)))
((< (aref array middle) value)
(setf low (1+ middle)))
(t (return middle)))))))
Recursive
(defun binary-search (value array &optional (low 0) (high (1- (length array))))
(if (< high low)
nil
(let ((middle (floor (+ low high) 2)))
(cond ((> (aref array middle) value)
(binary-search value array low (1- middle)))
((< (aref array middle) value)
(binary-search value array (1+ middle) high))
(t middle)))))
Crystal
Recursive
class Array
def binary_search(val, low = 0, high = (size - 1))
return nil if high < low
#mid = (low + high) >> 1
mid = low + ((high - low) >> 1)
case val <=> self[mid]
when -1
binary_search(val, low, mid - 1)
when 1
binary_search(val, mid + 1, high)
else mid
end
end
end
ary = [0,1,4,5,6,7,8,9,12,26,45,67,78,90,98,123,211,234,456,769,865,2345,3215,14345,24324]
[0, 42, 45, 24324, 99999].each do |val|
i = ary.binary_search(val)
if i
puts "found #{val} at index #{i}: #{ary[i]}"
else
puts "#{val} not found in array"
end
end
Iterative
class Array
def binary_search_iterative(val)
low, high = 0, size - 1
while low <= high
#mid = (low + high) >> 1
mid = low + ((high - low) >> 1)
case val <=> self[mid]
when 1
low = mid + 1
when -1
high = mid - 1
else
return mid
end
end
nil
end
end
ary = [0,1,4,5,6,7,8,9,12,26,45,67,78,90,98,123,211,234,456,769,865,2345,3215,14345,24324]
[0, 42, 45, 24324, 99999].each do |val|
i = ary.binary_search_iterative(val)
if i
puts "found #{val} at index #{i}: #{ary[i]}"
else
puts "#{val} not found in array"
end
end
- Output:
found 0 at index 0: 0 42 not found in array found 45 at index 10: 45 found 24324 at index 24: 24324 99999 not found in array
D
import std.stdio, std.array, std.range, std.traits;
/// Recursive.
bool binarySearch(R, T)(/*in*/ R data, in T x) pure nothrow @nogc
if (isRandomAccessRange!R && is(Unqual!T == Unqual!(ElementType!R))) {
if (data.empty)
return false;
immutable i = data.length / 2;
immutable mid = data[i];
if (mid > x)
return data[0 .. i].binarySearch(x);
if (mid < x)
return data[i + 1 .. $].binarySearch(x);
return true;
}
/// Iterative.
bool binarySearchIt(R, T)(/*in*/ R data, in T x) pure nothrow @nogc
if (isRandomAccessRange!R && is(Unqual!T == Unqual!(ElementType!R))) {
while (!data.empty) {
immutable i = data.length / 2;
immutable mid = data[i];
if (mid > x)
data = data[0 .. i];
else if (mid < x)
data = data[i + 1 .. $];
else
return true;
}
return false;
}
void main() {
/*const*/ auto items = [2, 4, 6, 8, 9].assumeSorted;
foreach (const x; [1, 8, 10, 9, 5, 2])
writefln("%2d %5s %5s %5s", x,
items.binarySearch(x),
items.binarySearchIt(x),
// Standard Binary Search:
!items.equalRange(x).empty);
}
- Output:
1 false false false 8 true true true 10 false false false 9 true true true 5 false false false 2 true true true
Delphi
See #Pascal.
E
/** Returns null if the value is not found. */
def binarySearch(collection, value) {
var low := 0
var high := collection.size() - 1
while (low <= high) {
def mid := (low + high) // 2
def comparison := value.op__cmp(collection[mid])
if (comparison.belowZero()) { high := mid - 1 } \
else if (comparison.aboveZero()) { low := mid + 1 } \
else if (comparison.isZero()) { return mid } \
else { throw("You expect me to binary search with a partial order?") }
}
return null
}
EasyLang
proc binSearch val . a[] res .
low = 1
high = len a[]
res = 0
while low <= high and res = 0
mid = (low + high) div 2
if a[mid] > val
high = mid - 1
elif a[mid] < val
low = mid + 1
else
res = mid
.
.
.
a[] = [ 2 4 6 8 9 ]
binSearch 8 a[] r
print r
Eiffel
The following solution is based on the one described in: C. A. Furia, B. Meyer, and S. Velder. Loop Invariants: Analysis, Classification, and Examples. ACM Computing Surveys, 46(3), Article 34, January 2014. (Also available at http://arxiv.org/abs/1211.4470). It includes detailed loop invariants and pre- and postconditions, which make the running time linear (instead of logarithmic) when full contract checking is enabled.
class
APPLICATION
create
make
feature {NONE} -- Initialization
make
local
a: ARRAY [INTEGER]
keys: ARRAY [INTEGER]
do
a := <<0, 1, 4, 5, 6, 7, 8, 9,
12, 26, 45, 67, 78, 90,
98, 123, 211, 234, 456,
769, 865, 2345, 3215,
14345, 24324>>
keys := <<0, 42, 45, 24324, 99999>>
across keys as k loop
if has_binary (a, k.item) then
print ("The array has an element " + k.item.out)
else
print ("The array has NOT an element " + k.item.out)
end
print ("%N")
end
end
feature -- Search
has_binary (a: ARRAY [INTEGER]; key: INTEGER): BOOLEAN
-- Does `a[a.lower..a.upper]' include an element `key'?
require
is_sorted (a, a.lower, a.upper)
local
i: INTEGER
do
i := where_binary (a, key)
if a.lower <= i and i <= a.upper then
Result := True
else
Result := False
end
end
where_binary (a: ARRAY [INTEGER]; key: INTEGER): INTEGER
-- The index of an element `key' within `a[a.lower..a.upper]' if it exists.
-- Otherwise an integer outside `[a.lower..a.upper]'
require
is_sorted (a, a.lower, a.upper)
do
Result := where_binary_range (a, key, a.lower, a.upper)
end
where_binary_range (a: ARRAY [INTEGER]; key: INTEGER; low, high: INTEGER): INTEGER
-- The index of an element `key' within `a[low..high]' if it exists.
-- Otherwise an integer outside `[low..high]'
note
source: "http://arxiv.org/abs/1211.4470"
require
is_sorted (a, low, high)
local
i, j, mid: INTEGER
do
if low > high then
Result := low - 1
else
from
i := low
j := high
mid := low
Result := low - 1
invariant
low <= i and i <= mid + 1
low <= mid and mid <= j and j <= high
i <= j
has (a, key, i, j) = has (a, key, low, high)
until
i >= j
loop
mid := i + (j - i) // 2
if a [mid] < key then
i := mid + 1
else
j := mid
end
variant
j - i
end
if a [i] = key then
Result := i
end
end
ensure
low <= Result and Result <= high implies a [Result] = key
Result < low or Result > high implies not has (a, key, low, high)
end
feature -- Implementation
is_sorted (a: ARRAY [INTEGER]; low, high: INTEGER): BOOLEAN
-- Is `a[low..high]' sorted in nondecreasing order?
require
a.lower <= low
high <= a.upper
do
Result := across low |..| (high - 1) as i all a [i.item] <= a [i.item + 1] end
end
has (a: ARRAY [INTEGER]; key: INTEGER; low, high: INTEGER): BOOLEAN
-- Is there an element `key' in `a[low..high]'?
require
a.lower <= low
high <= a.upper
do
Result := across low |..| high as i some a [i.item] = key end
end
end
Elixir
defmodule Binary do
def search(list, value), do: search(List.to_tuple(list), value, 0, length(list)-1)
def search(_tuple, _value, low, high) when high < low, do: :not_found
def search(tuple, value, low, high) do
mid = div(low + high, 2)
midval = elem(tuple, mid)
cond do
value < midval -> search(tuple, value, low, mid-1)
value > midval -> search(tuple, value, mid+1, high)
value == midval -> mid
end
end
end
list = [0,1,4,5,6,7,8,9,12,26,45,67,78,90,98,123,211,234,456,769,865,2345,3215,14345,24324]
Enum.each([0,42,45,24324,99999], fn val ->
case Binary.search(list, val) do
:not_found -> IO.puts "#{val} not found in list"
index -> IO.puts "found #{val} at index #{index}"
end
end)
- Output:
found 0 at index 0 42 not found in list found 45 at index 10 found 24324 at index 24 99999 not found in list
Emacs Lisp
(defun binary-search (value array)
(let ((low 0)
(high (1- (length array))))
(cl-do () ((< high low) nil)
(let ((middle (floor (+ low high) 2)))
(cond ((> (aref array middle) value)
(setf high (1- middle)))
((< (aref array middle) value)
(setf low (1+ middle)))
(t (cl-return middle)))))))
EMal
type BinarySearch:Recursive
fun binarySearch ← int by List values, int value
fun recurse ← int by int low, int high
if high < low do return -1 end
int mid ← low + (high - low) / 2
return when(values[mid] > value,
recurse(low, mid - 1),
when(values[mid] < value,
recurse(mid + 1, high),
mid))
end
return recurse(0, values.length - 1)
end
type BinarySearch:Iterative
fun binarySearch ← int by List values, int value
int low ← 0
int high ← values.length - 1
while low ≤ high
int mid ← low + (high - low) / 2
if values[mid] > value do high ← mid - 1
else if values[mid] < value do low ← mid + 1
else do return mid
end
end
return -1
end
List values ← int[0, 1, 4, 5, 6, 7, 8, 9, 12, 26, 45, 67, 78,
90, 98, 123, 211, 234, 456, 769, 865, 2345, 3215, 14345, 24324]
List matches ← int[24324, 32, 78, 287, 0, 42, 45, 99999]
writeLine("recursive | iterative")
matches.list(<int match|writeLine(
(text!BinarySearch:Recursive.binarySearch(values, match)).padStart(9, " "), " | ",
(text!BinarySearch:Iterative.binarySearch(values, match)).padStart(9, " ")))
- Output:
recursive | iterative 24 | 24 -1 | -1 12 | 12 -1 | -1 0 | 0 -1 | -1 10 | 10 -1 | -1
Erlang
%% Task: Binary Search algorithm
%% Author: Abhay Jain
-module(searching_algorithm).
-export([start/0]).
start() ->
List = [1,2,3],
binary_search(List, 5, 1, length(List)).
binary_search(List, Value, Low, High) ->
if Low > High ->
io:format("Number ~p not found~n", [Value]),
not_found;
true ->
Mid = (Low + High) div 2,
MidNum = lists:nth(Mid, List),
if MidNum > Value ->
binary_search(List, Value, Low, Mid-1);
MidNum < Value ->
binary_search(List, Value, Mid+1, High);
true ->
io:format("Number ~p found at index ~p", [Value, Mid]),
Mid
end
end.
Euphoria
Recursive
function binary_search(sequence s, object val, integer low, integer high)
integer mid, cmp
if high < low then
return 0 -- not found
else
mid = floor( (low + high) / 2 )
cmp = compare(s[mid], val)
if cmp > 0 then
return binary_search(s, val, low, mid-1)
elsif cmp < 0 then
return binary_search(s, val, mid+1, high)
else
return mid
end if
end if
end function
Iterative
function binary_search(sequence s, object val)
integer low, high, mid, cmp
low = 1
high = length(s)
while low <= high do
mid = floor( (low + high) / 2 )
cmp = compare(s[mid], val)
if cmp > 0 then
high = mid - 1
elsif cmp < 0 then
low = mid + 1
else
return mid
end if
end while
return 0 -- not found
end function
F#
Generic recursive version, using #light syntax:
let rec binarySearch (myArray:array<IComparable>, low:int, high:int, value:IComparable) =
if (high < low) then
null
else
let mid = (low + high) / 2
if (myArray.[mid] > value) then
binarySearch (myArray, low, mid-1, value)
else if (myArray.[mid] < value) then
binarySearch (myArray, mid+1, high, value)
else
myArray.[mid]
Factor
Factor already includes a binary search in its standard library. The following code offers an interface compatible with the requirement of this task, and returns either the index of the element if it has been found or f otherwise.
USING: binary-search kernel math.order ;
: binary-search ( seq elt -- index/f )
[ [ <=> ] curry search ] keep = [ drop f ] unless ;
FBSL
FBSL has built-in QuickSort() and BSearch() functions:
#APPTYPE CONSOLE
DIM va[], sign = {1, -1}, toggle
PRINT "Loading ... ";
DIM gtc = GetTickCount()
FOR DIM i = 0 TO 1000000
va[] = sign[toggle] * PI * i
toggle = NOT toggle ' randomize the array
NEXT
PRINT "done in ", GetTickCount() - gtc, " milliseconds"
PRINT "Sorting ... ";
gtc = GetTickCount()
QUICKSORT(va) ' quick sort the array
PRINT "done in ", GetTickCount() - gtc, " milliseconds"
gtc = GetTickCount()
PRINT 1000000 * PI, " found at index ", BSEARCH(va, 1000000 * PI), _ ' binary search through the array
" in ", GetTickCount() - gtc, " milliseconds"
PAUSE
Output:
Loading ... done in 906 milliseconds Sorting ... done in 547 milliseconds 3141592.65358979 found at index 1000000 in 0 milliseconds Press any key to continue...
User-defined implementations of the same would be considerably slower. Nonetheless, here they are in order to comply with the task requirements.
Iterative:
#APPTYPE CONSOLE
DIM va[]
PRINT "Loading ... ";
DIM gtc = GetTickCount()
FOR DIM i = 0 TO 1000000: va[] = i * PI: NEXT
PRINT "done in ", GetTickCount() - gtc, " milliseconds"
gtc = GetTickCount()
PRINT 1000000 * PI, " found at index ", BSearchIter(va, 1000000 * PI), _
" in ", GetTickCount() - gtc, " milliseconds"
PAUSE
FUNCTION BSearchIter(BYVAL array, BYVAL num)
STATIC low = LBOUND(va), high = UBOUND(va)
WHILE low <= high
DIM midp = (high + low) \ 2
IF array[midp] > num THEN
high = midp - 1
ELSEIF array[midp] < num THEN
low = midp + 1
ELSE
RETURN midp
END IF
WEND
RETURN -1
END FUNCTION
Output:
Loading ... done in 391 milliseconds 3141592.65358979 found at index 1000000 in 62 milliseconds Press any key to continue...
Recursive:
#APPTYPE CONSOLE
DIM va[]
PRINT "Loading ... ";
DIM gtc = GetTickCount()
FOR DIM i = 0 TO 1000000: va[] = i * PI: NEXT
PRINT "done in ", GetTickCount() - gtc, " milliseconds"
gtc = GetTickCount()
PRINT 1000000 * PI, " found at index ", BSearchRec(va, 1000000 * PI, LBOUND(va), UBOUND(va)), _
" in ", GetTickCount() - gtc, " milliseconds"
PAUSE
FUNCTION BSearchRec(BYVAL array, BYVAL num, BYVAL low, BYVAL high)
IF high < low THEN RETURN -1
DIM midp = (high + low) \ 2
IF array[midp] > num THEN
RETURN BSearchRec(array, num, low, midp - 1)
ELSEIF array[midp] < num THEN
RETURN BSearchRec(array, num, midp + 1, high)
END IF
RETURN midp
END FUNCTION
Output:
Loading ... done in 390 milliseconds 3141592.65358979 found at index 1000000 in 938 milliseconds Press any key to continue...
Forth
This version is designed for maintaining a sorted array. If the item is not found, then then location returned is the proper insertion point for the item. This could be used in an optimized Insertion sort, for example.
defer (compare)
' - is (compare) \ default to numbers
: cstr-compare ( cstr1 cstr2 -- <=> ) \ counted strings
swap count rot count compare ;
: mid ( u l -- mid ) tuck - 2/ -cell and + ;
: bsearch ( item upper lower -- where found? )
rot >r
begin 2dup >
while 2dup mid
dup @ r@ (compare)
dup
while 0<
if nip cell+ ( upper mid+1 )
else rot drop swap ( mid lower )
then
repeat drop nip nip true
else max ( insertion-point ) false
then
r> drop ;
create test 2 , 4 , 6 , 9 , 11 , 99 ,
: probe ( n -- ) test 5 cells bounds bsearch . @ . cr ;
1 probe \ 0 2
2 probe \ -1 2
3 probe \ 0 4
10 probe \ 0 11
11 probe \ -1 11
12 probe \ 0 99
Fortran
Recursive In ISO Fortran 90 or later use a RECURSIVE function and ARRAY SECTION argument:
recursive function binarySearch_R (a, value) result (bsresult)
real, intent(in) :: a(:), value
integer :: bsresult, mid
mid = size(a)/2 + 1
if (size(a) == 0) then
bsresult = 0 ! not found
else if (a(mid) > value) then
bsresult= binarySearch_R(a(:mid-1), value)
else if (a(mid) < value) then
bsresult = binarySearch_R(a(mid+1:), value)
if (bsresult /= 0) then
bsresult = mid + bsresult
end if
else
bsresult = mid ! SUCCESS!!
end if
end function binarySearch_R
Iterative
In ISO Fortran 90 or later use an ARRAY SECTION POINTER:
function binarySearch_I (a, value)
integer :: binarySearch_I
real, intent(in), target :: a(:)
real, intent(in) :: value
real, pointer :: p(:)
integer :: mid, offset
p => a
binarySearch_I = 0
offset = 0
do while (size(p) > 0)
mid = size(p)/2 + 1
if (p(mid) > value) then
p => p(:mid-1)
else if (p(mid) < value) then
offset = offset + mid
p => p(mid+1:)
else
binarySearch_I = offset + mid ! SUCCESS!!
return
end if
end do
end function binarySearch_I
Iterative, exclusive bounds, three-way test.
This has the array indexed from 1 to N, and the "not found" return code is zero or negative. Changing the search to be for A(first:last) is trivial, but the "not-found" return protocol would require adjustment, as when starting the array indexing at zero. Aside from the "not found" report, The variables used in the search must be able to hold the values first - 1 and last + 1 so for example with sixteen-bit two's complement integers the maximum value for last is 32766, not 32767.
Depending on the version of Fortran the compiler supports, the specification of the array parameter may vary, as A(1) or A(*) or A(:), and in the latter case, parameter N could be omitted because the size of an array parameter may be ascertained via the SIZE function. For the more advanced fortrans, declaring the parameters to be INTENT(IN) may help, as despite passing arrays "by reference" being the norm, the newer compilers may generate copy-in, copy-out code, vitiating the whole point of using a fast binary search instead of a slow linear search. In this case, INTENT(IN) will at least prevent the copy-back. In such a situation however, preparing in-line code may be the better move: fortunately, there is not a lot of code involved. There is no point in using an explicitly recursive version (even though the same actions may result during execution) because of the overhead of parameter passing and procedure entry/exit.
Later compilers offer features allowing the development of "generic" functions so that the same function name may be used yet the actual routine invoked will be selected according to how the parameters are integers or floating-point, and of different precisions. There would still need to be a version of the function for each type combination, each with its own name. Unfortunately, there is no three-way comparison test for character data.
The use of "exclusive" bounds simplifies the adjustment of the bounds: the appropriate bound simply receives the value of P, there is no + 1 or - 1 adjustment at every step; similarly, the determination of an empty span is easy, and avoiding the risk of integer overflow via (L + R)/2 is achieved at the same time. The "inclusive" bounds version by contrast requires two manipulations of L and R at every step - once to see if the span is empty, and a second time to locate the index to test.
INTEGER FUNCTION FINDI(X,A,N) !Binary chopper. Find i such that X = A(i)
Careful: it is surprisingly difficult to make this neat, due to vexations when N = 0 or 1.
REAL X,A(*) !Where is X in array A(1:N)?
INTEGER N !The count.
INTEGER L,R,P !Fingers.
L = 0 !Establish outer bounds, to search A(L+1:R-1).
R = N + 1 !L = first - 1; R = last + 1.
1 P = (R - L)/2 !Probe point. Beware INTEGER overflow with (L + R)/2.
IF (P.LE.0) GO TO 5 !Aha! Nowhere!! The span is empty.
P = P + L !Convert an offset from L to an array index.
IF (X - A(P)) 3,4,2 !Compare to the probe point.
2 L = P !A(P) < X. Shift the left bound up: X follows A(P).
GO TO 1 !Another chop.
3 R = P !X < A(P). Shift the right bound down: X precedes A(P).
GO TO 1 !Try again.
4 FINDI = P !A(P) = X. So, X is found, here!
RETURN !Done.
Curse it!
5 FINDI = -L !X is not found. Insert it at L + 1, i.e. at A(1 - FINDI).
END FUNCTION FINDI !A's values need not be all different, merely in order.
Statistics
Imagine a test array containing the even numbers: 2,4,6,8. A count could be kept of the number of probes required to find each of those four values, and likewise with a search for the odd numbers 1,3,5,7,9 that would probe all the places where a value might be not found. Plot the average number of probes for the two cases, plus the maximum number of probes for any case, and then repeat for another number of elements to search. With only one element in the array to be searched, all values are the same: one probe.
An alternative version
INTEGER FUNCTION FINDI(X,A,N) !Binary chopper. Find i such that X = A(i)
Careful: it is surprisingly difficult to make this neat, due to vexations when N = 0 or 1.
REAL X,A(*) !Where is X in array A(1:N)?
INTEGER N !The count.
INTEGER L,R,P !Fingers.
L = 0 !Establish outer bounds, to search A(L+1:R-1).
R = N + 1 !L = first - 1; R = last + 1.
GO TO 1 !Hop to it.
2 L = P !A(P) < X. Shift the left bound up: X follows A(P).
1 P = (R - L)/2 !Probe point. Beware INTEGER overflow with (L + R)/2.
IF (P.LE.0) GO TO 5 !Aha! Nowhere!! The span is empty.
P = P + L !Convert an offset from L to an array index.
IF (X - A(P)) 3,4,2 !Compare to the probe point.
3 R = P !X < A(P). Shift the right bound down: X precedes A(P).
GO TO 1 !Try again.
4 FINDI = P !A(P) = X. So, X is found, here!
RETURN !Done.
Curse it!
5 FINDI = -L !X is not found. Insert it at L + 1, i.e. at A(1 - FINDI).
END FUNCTION FINDI !A's values need not be all different, merely in order.
The point of this is that the IF-test is going to initiate some jumps, so why not arrange that one of the bound adjustments needs no subsequent jump to the start of the next iteration - in the first version, both bound adjustments needed such a jump, the GO TO 1 statements. This was done by shifting the code for label 2 up to precede the code for label 1 - and removing its now pointless GO TO 1 (executed each time), but adding an initial GO TO 1, executed once only. This sort of change is routine when manipulating spaghetti code...
It is because the method involves such a small amount of effort per iteration that minor changes offer a significant benefit. A lot depends on the implementation of the three-way test: the hope is that after the comparison, the computer hardware has indicators set for various outcomes, so that the necessary conditional branches can be made through successive inspection of those indicators, rather than repeating the comparison. These branch tests may in turn be made in an order that notes which option (if any) involves "falling through" to the next statement, thus it may be better to swap the order of labels 3 and 4. Further, the compiler may itself choose to re-order the various code pieces. First Fortran (in 1958) had a FREQUENCY statement whereby the programmer could indicate which paths were the more likely - for the binary search, equality is the less likely discovery. An assembler version of this routine attended to all these details.
Some compilers do not produce machine code directly, but instead translate the source code into another language which is then compiled, and a common choice for that is C. This is all very well, but C is one of the many languages that do not have a three-way test option and so cannot represent Fortran's three-way IF statement directly. Before emitting asservations of faith that pseudocode such as
if expression > 0 then optionP else if expression < 0 then optionN else optionZ;
will be recognised by the most excellent compiler producing only one comparison, note that the two expressions are not the same (one has <, the other >), and test what happens with pseudocode such as
if X > 0 then print "Positive" else if X > 0 then print "Still positive";
That is, does the compiler make any remark, and does the resulting machine code contain a redundant test? However, despite all the above, the three-way IF statement has been declared deprecated in later versions of Fortran, with no alternative to repeated testing offered.
Incidentally, the exclusive-bounds version leads to a good version of the interpolation search (whereby the probe position is interpolated, not just in the middle of the span), unlike the version based on inclusive-bounds. Further, the unsourced offering in Wikipedia contains a bug - try searching an array of two equal elements for that value.
Futhark
Straightforward translation of imperative iterative algorithm.
fun main(as: [n]int, value: int): int =
let low = 0
let high = n-1
loop ((low,high)) = while low <= high do
-- invariants: value > as[i] for all i < low
-- value < as[i] for all i > high
let mid = (low+high) / 2
in if as[mid] > value
then (low, mid - 1)
else if as[mid] < value
then (mid + 1, high)
else (mid, mid-1) -- Force termination.
in low
GAP
Find := function(v, x)
local low, high, mid;
low := 1;
high := Length(v);
while low <= high do
mid := QuoInt(low + high, 2);
if v[mid] > x then
high := mid - 1;
elif v[mid] < x then
low := mid + 1;
else
return mid;
fi;
od;
return fail;
end;
u := [1..10]*7;
# [ 7, 14, 21, 28, 35, 42, 49, 56, 63, 70 ]
Find(u, 34);
# fail
Find(u, 35);
# 5
Go
Recursive:
func binarySearch(a []float64, value float64, low int, high int) int {
if high < low {
return -1
}
mid := (low + high) / 2
if a[mid] > value {
return binarySearch(a, value, low, mid-1)
} else if a[mid] < value {
return binarySearch(a, value, mid+1, high)
}
return mid
}
Iterative:
func binarySearch(a []float64, value float64) int {
low := 0
high := len(a) - 1
for low <= high {
mid := (low + high) / 2
if a[mid] > value {
high = mid - 1
} else if a[mid] < value {
low = mid + 1
} else {
return mid
}
}
return -1
}
Library:
import "sort"
//...
sort.SearchInts([]int{0,1,4,5,6,7,8,9}, 6) // evaluates to 4
Exploration of library source code shows that it uses the mid = low + (high - low) / 2 technique to avoid overflow.
There are also functions sort.SearchFloat64s()
, sort.SearchStrings()
, and a very general sort.Search()
function that allows you to binary search a range of numbers based on any condition (not necessarily just search for an index of an element in an array).
Groovy
Both solutions use sublists and a tracking offset in preference to "high" and "low".
Recursive Solution
def binSearchR
//define binSearchR closure.
binSearchR = { a, key, offset=0 ->
def m = n.intdiv(2)
def n = a.size()
a.empty \
? ["The insertion point is": offset] \
: a[m] > key \
? binSearchR(a[0..<m],key, offset) \
: a[m] < target \
? binSearchR(a[(m + 1)..<n],key, offset + m + 1) \
: [index: offset + m]
}
Iterative Solution
def binSearchI = { aList, target ->
def a = aList
def offset = 0
while (!a.empty) {
def n = a.size()
def m = n.intdiv(2)
if(a[m] > target) {
a = a[0..<m]
} else if (a[m] < target) {
a = a[(m + 1)..<n]
offset += m + 1
} else {
return [index: offset + m]
}
}
return ["insertion point": offset]
}
Test:
def a = [] as Set
def random = new Random()
while (a.size() < 20) { a << random.nextInt(30) }
def source = a.sort()
source[0..-2].eachWithIndex { si, i -> assert si < source[i+1] }
println "${source}"
1.upto(5) {
target = random.nextInt(10) + (it - 2) * 10
print "Trial #${it}. Looking for: ${target}"
def answers = [binSearchR, binSearchI].collect { search ->
search(source, target)
}
assert answers[0] == answers[1]
println """
Answer: ${answers[0]}, : ${source[answers[0].values().iterator().next()]}"""
}
Output:
[1, 2, 5, 8, 9, 10, 11, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29] Trial #1. Looking for: -9 Answer: [insertion point:0], : 1 Trial #2. Looking for: 7 Answer: [insertion point:3], : 8 Trial #3. Looking for: 18 Answer: [index:9], : 18 Trial #4. Looking for: 29 Answer: [index:19], : 29 Trial #5. Looking for: 32 Answer: [insertion point:20], : null
Haskell
Recursive algorithm
The algorithm itself, parametrized by an "interrogation" predicate p in the spirit of the explanation above:
import Data.Array (Array, Ix, (!), listArray, bounds)
-- BINARY SEARCH --------------------------------------------------------------
bSearch
:: Integral a
=> (a -> Ordering) -> (a, a) -> Maybe a
bSearch p (low, high)
| high < low = Nothing
| otherwise =
let mid = (low + high) `div` 2
in case p mid of
LT -> bSearch p (low, mid - 1)
GT -> bSearch p (mid + 1, high)
EQ -> Just mid
-- Application to an array:
bSearchArray
:: (Ix i, Integral i, Ord e)
=> Array i e -> e -> Maybe i
bSearchArray a x = bSearch (compare x . (a !)) (bounds a)
-- TEST -----------------------------------------------------------------------
axs
:: (Num i, Ix i)
=> Array i String
axs =
listArray
(0, 11)
[ "alpha"
, "beta"
, "delta"
, "epsilon"
, "eta"
, "gamma"
, "iota"
, "kappa"
, "lambda"
, "mu"
, "theta"
, "zeta"
]
main :: IO ()
main =
let e = "mu"
found = bSearchArray axs e
in putStrLn $
'\'' :
e ++
case found of
Nothing -> "' Not found"
Just x -> "' found at index " ++ show x
- Output:
'mu' found at index 9
The algorithm uses tail recursion, so the iterative and the recursive approach are identical in Haskell (the compiler will convert recursive calls into jumps).
A common optimisation of recursion is to delegate the main computation to a helper function with simpler type signature. For the option type of the return value, we could also use an Either as an alternative to a Maybe.
import Data.Array (Array, Ix, (!), listArray, bounds)
-- BINARY SEARCH USING A HELPER FUNCTION WITH A SIMPLER TYPE SIGNATURE
findIndexBinary
:: Ord a
=> (a -> Ordering) -> Array Int a -> Either String Int
findIndexBinary p axs =
let go (lo, hi)
| hi < lo = Left "not found"
| otherwise =
let mid = (lo + hi) `div` 2
in case p (axs ! mid) of
LT -> go (lo, pred mid)
GT -> go (succ mid, hi)
EQ -> Right mid
in go (bounds axs)
-- TEST ---------------------------------------------------
haystack :: Array Int String
haystack =
listArray
(0, 11)
[ "alpha"
, "beta"
, "delta"
, "epsilon"
, "eta"
, "gamma"
, "iota"
, "kappa"
, "lambda"
, "mu"
, "theta"
, "zeta"
]
main :: IO ()
main =
let needle = "lambda"
in putStrLn $
'\'' :
needle ++
either
("' " ++)
(("' found at index " ++) . show)
(findIndexBinary (compare needle) haystack)
- Output:
'lambda' found at index 8
Iterative algorithm
The iterative algorithm could be written in terms of the until function, which takes a predicate p, a function f, and a seed value x.
It returns the result of applying f until p holds.
import Data.Array (Array, Ix, (!), listArray, bounds)
-- BINARY SEARCH USING THE ITERATIVE ALGORITHM
findIndexBinary_
:: Ord a
=> (a -> Ordering) -> Array Int a -> Either String Int
findIndexBinary_ p axs =
let (lo, hi) =
until
(\(lo, hi) -> lo > hi || 0 == hi)
(\(lo, hi) ->
let m = quot (lo + hi) 2
in case p (axs ! m) of
LT -> (lo, pred m)
GT -> (succ m, hi)
EQ -> (m, 0))
(bounds axs) :: (Int, Int)
in if 0 /= hi
then Left "not found"
else Right lo
-- TEST ---------------------------------------------------
haystack :: Array Int String
haystack =
listArray
(0, 11)
[ "alpha"
, "beta"
, "delta"
, "epsilon"
, "eta"
, "gamma"
, "iota"
, "kappa"
, "lambda"
, "mu"
, "theta"
, "zeta"
]
main :: IO ()
main =
let needle = "kappa"
in putStrLn $
'\'' :
needle ++
either
("' " ++)
(("' found at index " ++) . show)
(findIndexBinary_ (compare needle) haystack)
- Output:
'kappa' found at index 7
HicEst
REAL :: n=10, array(n)
array = NINT( RAN(n) )
SORT(Vector=array, Sorted=array)
x = NINT( RAN(n) )
idx = binarySearch( array, x )
WRITE(ClipBoard) x, "has position ", idx, "in ", array
END
FUNCTION binarySearch(A, value)
REAL :: A(1), value
low = 1
high = LEN(A)
DO i = 1, high
IF( low > high) THEN
binarySearch = 0
RETURN
ELSE
mid = INT( (low + high) / 2 )
IF( A(mid) > value) THEN
high = mid - 1
ELSEIF( A(mid) < value ) THEN
low = mid + 1
ELSE
binarySearch = mid
RETURN
ENDIF
ENDIF
ENDDO
END
7 has position 9 in 0 0 1 2 3 3 4 6 7 8
5 has position 0 in 0 0 1 2 3 3 4 6 7 8
Hoon
|= [arr=(list @ud) x=@ud]
=/ lo=@ud 0
=/ hi=@ud (dec (lent arr))
|-
?> (lte lo hi)
=/ mid (div (add lo hi) 2)
=/ val (snag mid arr)
?: (lth x val) $(hi (dec mid))
?: (gth x val) $(lo +(mid))
mid
Icon and Unicon
Only a recursive solution is shown here.
A program to test this is:
with some sample runs:
->bins 0 Searching: 1 3 5 7 9 11 13 15 17 0 is not found ->bins 1 Searching: 1 3 5 7 9 11 13 15 17 1 is at 1 ->bins 2 Searching: 1 3 5 7 9 11 13 15 17 2 is not found ->bins 3 Searching: 1 3 5 7 9 11 13 15 17 3 is at 2 ->bins 16 Searching: 1 3 5 7 9 11 13 15 17 16 is not found ->bins 17 Searching: 1 3 5 7 9 11 13 15 17 17 is at 9 ->bins 7 Searching: 1 3 5 7 9 11 13 15 17 7 is at 4 ->bins 9 Searching: 1 3 5 7 9 11 13 15 17 9 is at 5 ->bins 10 Searching: 1 3 5 7 9 11 13 15 17 10 is not found ->
J
J already includes a binary search primitive (I.
). The following code offers an interface compatible with the requirement of this task, and returns either the index of the element if it has been found or 'Not Found' otherwise:
bs=. i. 'Not Found'"_^:(-.@-:) I.
Examples:
2 3 5 6 8 10 11 15 19 20 bs 11
6
2 3 5 6 8 10 11 15 19 20 bs 12
Not Found
Direct tacit iterative and recursive versions to compare to other implementations follow:
Iterative
'`X Y L H M'=. ,{{y&{::`''}}&>i.5 NB. Setting mnemonics for boxes (e.g. X=.0&{::)
'l h m' =. 2 3 4 NB. more box mnemonics (used for e.g. m})
boxes =. ;,a:$~3: NB. Appending 3 (empty) boxes to the inputs
LowHigh =. (0;#@X) (l,h)} ] NB. Setting the low and high bounds
midpoint=. <@(<.@(2%~L+H)) m} ] NB. Updating the midpoint
case =. >:@:*@(Y-M{X) NB. Less=0, equal=1, or greater=2
squeeze =. (<@(_1+M) h} ])`(<@_ l} ])`(<@(1+M) l} ])@.case
return =. [: M (<@'Not Found' m} ])^:(_~:L)
bs =. return@(squeeze@midpoint^:(L<:H)^:_)@LowHigh@boxes
Recursive
'`X Y L H M'=. ,{{y&{::`''}}&>i.5 NB. Setting mnemonics for boxes (e.g. X=.0&{::)
'l h m' =. 2 3 4 NB. more box mnemonics (used for e.g. m})
boxes =. a:,~; NB. Appending 3 (empty) boxes to the inputs
LowHigh =. (0;#@X) (l,h)} ] NB. Setting the low and high bounds
midpoint=. <@(<.@(2%~L+H)) m} ] NB. Updating the midpoint
case =. >:@:*@(Y-M{X) NB. Less=0, equal=1, or greater=2
recur =. (X bs Y;L;(_1+M))`M`(X bs Y;(1+M);H)@.case
bs =. recur@midpoint`('Not Found'"_)@.(H<L)@boxes :: ([ bs ]; 0; <:@#@[)
Java
Iterative
public class BinarySearchIterative {
public static int binarySearch(int[] nums, int check) {
int hi = nums.length - 1;
int lo = 0;
while (hi >= lo) {
int guess = (lo + hi) >>> 1; // from OpenJDK
if (nums[guess] > check) {
hi = guess - 1;
} else if (nums[guess] < check) {
lo = guess + 1;
} else {
return guess;
}
}
return -1;
}
public static void main(String[] args) {
int[] haystack = {1, 5, 6, 7, 8, 11};
int needle = 5;
int index = binarySearch(haystack, needle);
if (index == -1) {
System.out.println(needle + " is not in the array");
} else {
System.out.println(needle + " is at index " + index);
}
}
}
Recursive
public class BinarySearchRecursive {
public static int binarySearch(int[] haystack, int needle, int lo, int hi) {
if (hi < lo) {
return -1;
}
int guess = (hi + lo) / 2;
if (haystack[guess] > needle) {
return binarySearch(haystack, needle, lo, guess - 1);
} else if (haystack[guess] < needle) {
return binarySearch(haystack, needle, guess + 1, hi);
}
return guess;
}
public static void main(String[] args) {
int[] haystack = {1, 5, 6, 7, 8, 11};
int needle = 5;
int index = binarySearch(haystack, needle, 0, haystack.length);
if (index == -1) {
System.out.println(needle + " is not in the array");
} else {
System.out.println(needle + " is at index " + index);
}
}
}
Library
When the key is not found, the following functions return ~insertionPoint
(the bitwise complement of the index where the key would be inserted, which is guaranteed to be a negative number).
For arrays:
import java.util.Arrays;
int index = Arrays.binarySearch(array, thing);
int index = Arrays.binarySearch(array, startIndex, endIndex, thing);
// for objects, also optionally accepts an additional comparator argument:
int index = Arrays.binarySearch(array, thing, comparator);
int index = Arrays.binarySearch(array, startIndex, endIndex, thing, comparator);
For Lists:
import java.util.Collections;
int index = Collections.binarySearch(list, thing);
int index = Collections.binarySearch(list, thing, comparator);
JavaScript
ES5
Recursive binary search implementation
function binary_search_recursive(a, value, lo, hi) {
if (hi < lo) { return null; }
var mid = Math.floor((lo + hi) / 2);
if (a[mid] > value) {
return binary_search_recursive(a, value, lo, mid - 1);
}
if (a[mid] < value) {
return binary_search_recursive(a, value, mid + 1, hi);
}
return mid;
}
Iterative binary search implementation
function binary_search_iterative(a, value) {
var mid, lo = 0,
hi = a.length - 1;
while (lo <= hi) {
mid = Math.floor((lo + hi) / 2);
if (a[mid] > value) {
hi = mid - 1;
} else if (a[mid] < value) {
lo = mid + 1;
} else {
return mid;
}
}
return null;
}
ES6
Recursive and iterative, by composition of pure functions, with tests and output:
(() => {
'use strict';
const main = () => {
// findRecursive :: a -> [a] -> Either String Int
const findRecursive = (x, xs) => {
const go = (lo, hi) => {
if (hi < lo) {
return Left('not found');
} else {
const
mid = div(lo + hi, 2),
v = xs[mid];
return v > x ? (
go(lo, mid - 1)
) : v < x ? (
go(mid + 1, hi)
) : Right(mid);
}
};
return go(0, xs.length);
};
// findRecursive :: a -> [a] -> Either String Int
const findIter = (x, xs) => {
const [m, l, h] = until(
([mid, lo, hi]) => lo > hi || lo === mid,
([mid, lo, hi]) => {
const
m = div(lo + hi, 2),
v = xs[m];
return v > x ? [
m, lo, m - 1
] : v < x ? [
m, m + 1, hi
] : [m, m, hi];
},
[div(xs.length / 2), 0, xs.length - 1]
);
return l > h ? (
Left('not found')
) : Right(m);
};
// TESTS ------------------------------------------
const
// (pre-sorted AZ)
xs = ["alpha", "beta", "delta", "epsilon", "eta", "gamma",
"iota", "kappa", "lambda", "mu", "nu", "theta", "zeta"
];
return JSON.stringify([
'Recursive',
map(x => either(
l => "'" + x + "' " + l,
r => "'" + x + "' found at index " + r,
findRecursive(x, xs)
),
knuthShuffle(['cape'].concat(xs).concat('cairo'))
),
'',
'Iterative:',
map(x => either(
l => "'" + x + "' " + l,
r => "'" + x + "' found at index " + r,
findIter(x, xs)
),
knuthShuffle(['cape'].concat(xs).concat('cairo'))
)
], null, 2);
};
// GENERIC FUNCTIONS ----------------------------------
// Left :: a -> Either a b
const Left = x => ({
type: 'Either',
Left: x
});
// Right :: b -> Either a b
const Right = x => ({
type: 'Either',
Right: x
});
// div :: Int -> Int -> Int
const div = (x, y) => Math.floor(x / y);
// either :: (a -> c) -> (b -> c) -> Either a b -> c
const either = (fl, fr, e) =>
'Either' === e.type ? (
undefined !== e.Left ? (
fl(e.Left)
) : fr(e.Right)
) : undefined;
// Abbreviation for quick testing
// enumFromTo :: (Int, Int) -> [Int]
const enumFromTo = (m, n) =>
Array.from({
length: 1 + n - m
}, (_, i) => m + i);
// FOR TESTS
// knuthShuffle :: [a] -> [a]
const knuthShuffle = xs => {
const swapped = (iFrom, iTo, xs) =>
xs.map(
(x, i) => iFrom !== i ? (
iTo !== i ? x : xs[iFrom]
) : xs[iTo]
);
return enumFromTo(0, xs.length - 1)
.reduceRight((a, i) => {
const iRand = randomRInt(0, i)();
return i !== iRand ? (
swapped(i, iRand, a)
) : a;
}, xs);
};
// map :: (a -> b) -> [a] -> [b]
const map = (f, xs) =>
(Array.isArray(xs) ? (
xs
) : xs.split('')).map(f);
// FOR TESTS
// randomRInt :: Int -> Int -> IO () -> Int
const randomRInt = (low, high) => () =>
low + Math.floor(
(Math.random() * ((high - low) + 1))
);
// reverse :: [a] -> [a]
const reverse = xs =>
'string' !== typeof xs ? (
xs.slice(0).reverse()
) : xs.split('').reverse().join('');
// until :: (a -> Bool) -> (a -> a) -> a -> a
const until = (p, f, x) => {
let v = x;
while (!p(v)) v = f(v);
return v;
};
// MAIN ---
return main();
})();
- Output:
[ "Recursive", [ "'delta' found at index 2", "'cairo' not found", "'cape' not found", "'gamma' found at index 5", "'eta' found at index 4", "'kappa' found at index 7", "'alpha' found at index 0", "'mu' found at index 9", "'beta' found at index 1", "'epsilon' found at index 3", "'nu' found at index 10", "'iota' found at index 6", "'theta' found at index 11", "'lambda' found at index 8", "'zeta' found at index 12" ], "", "Iterative:", [ "'theta' found at index 11", "'kappa' found at index 7", "'zeta' found at index 12", "'cairo' not found", "'epsilon' found at index 3", "'beta' found at index 1", "'nu' found at index 10", "'eta' found at index 4", "'alpha' found at index 0", "'lambda' found at index 8", "'iota' found at index 6", "'mu' found at index 9", "'gamma' found at index 5", "'delta' found at index 2", "'cape' not found" ] ]
jq
Also works with gojq, the Go implementation of jq
jq and gojq both have a binary-search builtin named `bsearch`.
In the following, a parameterized filter for performing a binary search of a sorted JSON array is defined. Specifically, binarySearch(value) will return an index (i.e. offset) of `value` in the array if the array contains the value, and otherwise (-1 - ix), where ix is the insertion point, if the value cannot be found.
binarySearch will always terminate. The inner function is recursive.
def binarySearch(value):
# To avoid copying the array, simply pass in the current low and high offsets
def binarySearch(low; high):
if (high < low) then (-1 - low)
else ( (low + high) / 2 | floor) as $mid
| if (.[$mid] > value) then binarySearch(low; $mid-1)
elif (.[$mid] < value) then binarySearch($mid+1; high)
else $mid
end
end;
binarySearch(0; length-1);
Example:
[-1,-1.1,1,1,null,[null]] | binarySearch(1)
- Output:
2
Jsish
/**
Binary search, in Jsish, based on Javascript entry
Tectonics: jsish -u -time true -verbose true binarySearch.jsi
*/
function binarySearchIterative(haystack, needle) {
var mid, low = 0, high = haystack.length - 1;
while (low <= high) {
mid = Math.floor((low + high) / 2);
if (haystack[mid] > needle) {
high = mid - 1;
} else if (haystack[mid] < needle) {
low = mid + 1;
} else {
return mid;
}
}
return null;
}
/* recursive */
function binarySearchRecursive(haystack, needle, low, high) {
if (high < low) { return null; }
var mid = Math.floor((low + high) / 2);
if (haystack[mid] > needle) {
return binarySearchRecursive(haystack, needle, low, mid - 1);
}
if (haystack[mid] < needle) {
return binarySearchRecursive(haystack, needle, mid + 1, high);
}
return mid;
}
/* Testing and timing */
if (Interp.conf('unitTest') > 0) {
var arr = [];
for (var i = -5000; i <= 5000; i++) { arr.push(i); }
assert(arr.length == 10001);
assert(binarySearchIterative(arr, 0) == 5000);
assert(binarySearchRecursive(arr, 0, 0, arr.length - 1) == 5000);
assert(binarySearchIterative(arr, 5000) == 10000);
assert(binarySearchRecursive(arr, -5000, 0, arr.length - 1) == 0);
assert(binarySearchIterative(arr, -5001) == null);
puts('--Time 100 passes--');
puts('Iterative:', Util.times(function() { binarySearchIterative(arr, 42); }, 100), 'µs');
puts('Recursive:', Util.times(function() { binarySearchRecursive(arr, 42, 0, arr.length - 1); }, 100), 'µs');
}
- Output:
prompt$ jsish -u -time true -verbose true binarySearch.jsi Test binarySearch.jsi CMD: /usr/local/bin/jsish -Iasserts true -IunitTest 1 binarySearch.jsi OUTPUT: <--Time 100 passes-- Iterative: 25969 µs Recursive: 40863 µs > [PASS] binarySearch.jsi (165 ms)
Julia
Iterative:
function binarysearch(lst::Vector{T}, val::T) where T
low = 1
high = length(lst)
while low ≤ high
mid = (low + high) ÷ 2
if lst[mid] > val
high = mid - 1
elseif lst[mid] < val
low = mid + 1
else
return mid
end
end
return 0
end
Recursive:
function binarysearch(lst::Vector{T}, value::T, low=1, high=length(lst)) where T
if isempty(lst) return 0 end
if low ≥ high
if low > high || lst[low] != value
return 0
else
return low
end
end
mid = (low + high) ÷ 2
if lst[mid] > value
return binarysearch(lst, value, low, mid-1)
elseif lst[mid] < value
return binarysearch(lst, value, mid+1, high)
else
return mid
end
end
K
Recursive:
bs:{[a;t]
if[0=#a; :_n];
m:_(#a)%2;
if[t>a@m
tmp:_f[(m+1) _ a;t]
:[_n~tmp; :_n; :1+m+tmp]]
if[t<a@m
:_f[m#a;t]]
:m
}
v:8 30 35 45 49 77 79 82 87 97
{bs[v;x]}' v
0 1 2 3 4 5 6 7 8 9
Kotlin
fun <T : Comparable<T>> Array<T>.iterativeBinarySearch(target: T): Int {
var hi = size - 1
var lo = 0
while (hi >= lo) {
val guess = lo + (hi - lo) / 2
if (this[guess] > target) hi = guess - 1
else if (this[guess] < target) lo = guess + 1
else return guess
}
return -1
}
fun <T : Comparable<T>> Array<T>.recursiveBinarySearch(target: T, lo: Int, hi: Int): Int {
if (hi < lo) return -1
val guess = (hi + lo) / 2
return if (this[guess] > target) recursiveBinarySearch(target, lo, guess - 1)
else if (this[guess] < target) recursiveBinarySearch(target, guess + 1, hi)
else guess
}
fun main(args: Array<String>) {
val a = arrayOf(1, 3, 4, 5, 6, 7, 8, 9, 10)
var target = 6
var r = a.iterativeBinarySearch(target)
println(if (r < 0) "$target not found" else "$target found at index $r")
target = 250
r = a.iterativeBinarySearch(target)
println(if (r < 0) "$target not found" else "$target found at index $r")
target = 6
r = a.recursiveBinarySearch(target, 0, a.size)
println(if (r < 0) "$target not found" else "$target found at index $r")
target = 250
r = a.recursiveBinarySearch(target, 0, a.size)
println(if (r < 0) "$target not found" else "$target found at index $r")
}
- Output:
6 found at index 4 250 not found 6 found at index 4 250 not found
Lambdatalk
Can be tested in (http://lambdaway.free.fr)[1]
{def BS
{def BS.r {lambda {:a :v :i0 :i1}
{let { {:a :a} {:v :v} {:i0 :i0} {:i1 :i1}
{:m {floor {* {+ :i0 :i1} 0.5}}} }
{if {< :i1 :i0}
then :v is not found
else {if {> {array.item :a :m} :v}
then {BS.r :a :v :i0 {- :m 1} }
else {if {< {array.item :a :m} :v}
then {BS.r :a :v {+ :m 1} :i1 }
else :v is at array[:m] }}}}} }
{lambda {:a :v}
{BS.r :a :v 0 {- {array.length :a} 1}} }}
-> BS
{def A {array 12 14 16 18 20 22 25 27 30}}
-> A = [12,14,16,18,20,22,25,27,30]
{BS {A} -1} -> -1 is not found
{BS {A} 24} -> 24 is not found
{BS {A} 25} -> 25 is at array[6]
{BS {A} 123} -> 123 is not found
{def B {array {serie 1 100000 2}}}
-> B = [1,3,5,... 99997,99999]
{BS {B} 100} -> 100 is not found
{BS {B} 12345} -> 12345 is at array[6172]
Logo
to bsearch :value :a :lower :upper
if :upper < :lower [output []]
localmake "mid int (:lower + :upper) / 2
if item :mid :a > :value [output bsearch :value :a :lower :mid-1]
if item :mid :a < :value [output bsearch :value :a :mid+1 :upper]
output :mid
end
Lolcode
Iterative
HAI 1.2
CAN HAS STDIO?
VISIBLE "HAI WORLD!!!1!"
VISIBLE "IMA GONNA SHOW U BINA POUNCE NAO"
I HAS A list ITZ A BUKKIT
list HAS A index0 ITZ 2
list HAS A index1 ITZ 3
list HAS A index2 ITZ 5
list HAS A index3 ITZ 7
list HAS A index4 ITZ 8
list HAS A index5 ITZ 9
list HAS A index6 ITZ 12
list HAS A index7 ITZ 20
BTW Method to access list by index number aka: list[index4]
HOW IZ list access YR indexNameNumber
FOUND YR list'Z SRS indexNameNumber
IF U SAY SO
BTW Method to print the array on the same line
HOW IZ list printList
I HAS A allList ITZ ""
I HAS A indexNameNumber ITZ "index0"
I HAS A index ITZ 0
IM IN YR walkingLoop UPPIN YR index TIL BOTH SAEM index AN 8
indexNameNumber R SMOOSH "index" index MKAY
allList R SMOOSH allList " " list IZ access YR indexNameNumber MKAY MKAY
IM OUTTA YR walkingLoop
FOUND YR allList
IF U SAY SO
VISIBLE "WE START WIF BUKKIT LIEK DIS: " list IZ printList MKAY
I HAS A target ITZ 12
VISIBLE "AN TARGET LIEK DIS: " target
VISIBLE "AN NAO 4 MAGI"
HOW IZ I binaPounce YR list AN YR listLength AN YR target
I HAS A left ITZ 0
I HAS A right ITZ DIFF OF listLength AN 1
IM IN YR whileLoop
BTW exit while loop when left > right
DIFFRINT left AN SMALLR OF left AN right
O RLY?
YA RLY
GTFO
OIC
I HAS A mid ITZ QUOSHUNT OF SUM OF left AN right AN 2
I HAS A midIndexname ITZ SMOOSH "index" mid MKAY
BTW if target == list[mid] return mid
BOTH SAEM target AN list IZ access YR midIndexname MKAY
O RLY?
YA RLY
FOUND YR mid
OIC
BTW if target < list[mid] right = mid - 1
DIFFRINT target AN BIGGR OF target AN list IZ access YR midIndexname MKAY
O RLY?
YA RLY
right R DIFF OF mid AN 1
OIC
BTW if target > list[mid] left = mid + 1
DIFFRINT target AN SMALLR OF target AN list IZ access YR midIndexname MKAY
O RLY?
YA RLY
left R SUM OF mid AN 1
OIC
IM OUTTA YR whileLoop
FOUND YR -1
IF U SAY SO
BTW call binary search on target here and print the index
I HAS A targetIndex ITZ I IZ binaPounce YR list AN YR 8 AN YR target MKAY
VISIBLE "TARGET " target " IZ IN BUKKIT " targetIndex
VISIBLE "WE HAS TEH TARGET!!1!!"
VISIBLE "I CAN HAS UR CHEEZBURGER NAO?"
KTHXBYE
end
Output
HAI WORLD!!!1! IMA GONNA SHOW U BINA POUNCE NAO WE START WIF BUKKIT LIEK DIS: 2 3 5 7 8 9 12 20 AN TARGET LIEK DIS: 12 AN NAO 4 MAGI TARGET 12 IZ IN BUKKIT 6 WE HAS TEH TARGET!!1!! I CAN HAS UR CHEEZBURGER NAO?
Lua
Iterative
function binarySearch (list,value)
local low = 1
local high = #list
while low <= high do
local mid = math.floor((low+high)/2)
if list[mid] > value then high = mid - 1
elseif list[mid] < value then low = mid + 1
else return mid
end
end
return false
end
Recursive
function binarySearch (list, value)
local function search(low, high)
if low > high then return false end
local mid = math.floor((low+high)/2)
if list[mid] > value then return search(low,mid-1) end
if list[mid] < value then return search(mid+1,high) end
return mid
end
return search(1,#list)
end
M4
define(`notfound',`-1')dnl
define(`midsearch',`ifelse(defn($1[$4]),$2,$4,
`ifelse(eval(defn($1[$4])>$2),1,`binarysearch($1,$2,$3,decr($4))',`binarysearch($1,$2,incr($4),$5)')')')dnl
define(`binarysearch',`ifelse(eval($4<$3),1,notfound,`midsearch($1,$2,$3,eval(($3+$4)/2),$4)')')dnl
dnl
define(`setrange',`ifelse(`$3',`',$2,`define($1[$2],$3)`'setrange($1,incr($2),shift(shift(shift($@))))')')dnl
define(`asize',decr(setrange(`a',1,1,3,5,7,11,13,17,19,23,29)))dnl
dnl
binarysearch(`a',5,1,asize)
binarysearch(`a',8,1,asize)
Output:
3 -1
M2000 Interpreter
\\ binary search
const N=10
Dim A(0 to N-1)
A(0):=1,2,3,4,5,6,8,9,10,11
Print Len(A())=10
Function BinarySearch(&A(), aValue) {
def long mid, lo, hi
def boolean ok=False
let lo=0, hi=Len(A())-1
While lo<=hi
mid=(lo+hi)/2
if A(mid)>aValue Then
hi=mid-1
Else.if A(mid)<aValue Then
lo=mid+1
Else
=mid
ok=True
exit
End if
End While
if not ok then =-lo-1
}
For i=0 to 12
Rem Print "Search for value:";i
where= BinarySearch(&A(), i)
if where>=0 then
Print "found i at index: ";where
else
where=-where-1
if where<len(A()) then
Print "Not found, we can insert it at index: ";where
Dim A(len(A())+1) ' redim
stock A(where) keep len(A())-where-1, A(where+1) 'move items up
A(where)=i ' insert value
Else
Print "Not found, we can append to array at index: ";where
Dim A(len(A())+1) ' redim
A(where)=i ' insert value
End If
end if
next i
Print Len(A())=13
Print A()
MACRO-11
This deals with the overflow problem when calculating `mid` by using a `ROR` (rotate right) instruction to divide by two, which rotates the carry flag back into the result. `ADD` produces a 17-bit result, with the 17th bit in the carry flag.
.TITLE BINRTA
.MCALL .TTYOUT,.PRINT,.EXIT
; TEST CODE
BINRTA::CLR R5
1$: MOV R5,R0
ADD #'0,R0
.TTYOUT
MOV R5,R0
MOV #DATA,R1
MOV #DATEND,R2
JSR PC,BINSRC
BEQ 2$
.PRINT #4$
BR 3$
2$: .PRINT #5$
3$: INC R5
CMP R5,#^D10
BLT 1$
.EXIT
4$: .ASCII / NOT/
5$: .ASCIZ / FOUND/
.EVEN
; TEST DATA
DATA: .WORD 1, 2, 3, 5, 7
DATEND = . + 2
; BINARY SEARCH
; INPUT: R0 = VALUE, R1 = LOW PTR, R2 = HIGH PTR
; OUTPUT: ZF SET IF VALUE FOUND; R1 = INSERTION POINT
BINSRC: BR 3$
1$: MOV R1,R3
ADD R2,R3
ROR R3
CMP (R3),R0
BGE 2$
ADD #2,R3
MOV R3,R1
BR 3$
2$: SUB #2,R3
MOV R3,R2
3$: CMP R2,R1
BGE 1$
CMP (R1),R0
RTS PC
.END BINRTA
- Output:
0 NOT FOUND 1 FOUND 2 FOUND 3 FOUND 4 NOT FOUND 5 FOUND 6 NOT FOUND 7 FOUND 8 NOT FOUND 9 NOT FOUND
Maple
The calculation of "mid" cannot overflow, since Maple uses arbitrary precision integer arithmetic, and the largest list or array is far, far smaller than the effective range of integers.
Recursive
BinarySearch := proc( A, value, low, high )
description "recursive binary search";
if high < low then
FAIL
else
local mid := iquo( high + low, 2 );
if A[ mid ] > value then
thisproc( A, value, low, mid - 1 )
elif A[ mid ] < value then
thisproc( A, value, mid + 1, high )
else
mid
end if
end if
end proc:
Iterative
BinarySearch := proc( A, value )
description "iterative binary search";
local low, high;
low, high := ( lowerbound, upperbound )( A );
while low <= high do
local mid := iquo( low + high, 2 );
if A[ mid ] > value then
high := mid - 1
elif A[ mid ] < value then
low := mid + 1
else
return mid
end if
end do;
FAIL
end proc:
We can use either lists or Arrays (or Vectors) for the first argument for these.
> N := 10:
> P := [seq]( ithprime( i ), i = 1 .. N ):
> BinarySearch( P, 12, 1, N ); # recursive version
FAIL
> BinarySearch( P, 13, 1, N ); # recursive version
6
> BinarySearch( Array( P ), 13, 1, N ); # make P into an array
6
> PP := Array( -2 .. 7, P ): # check it works if the array is not 1-based.
> BinarySearch( PP, 13 ); # iterative version
3
> PP[ 3 ];
13
Mathematica / Wolfram Language
Recursive
BinarySearchRecursive[x_List, val_, lo_, hi_] :=
Module[{mid = lo + Round@((hi - lo)/2)},
If[hi < lo, Return[-1]];
Return[
Which[x[[mid]] > val, BinarySearchRecursive[x, val, lo, mid - 1],
x[[mid]] < val, BinarySearchRecursive[x, val, mid + 1, hi],
True, mid]
];
]
Iterative
BinarySearch[x_List, val_] := Module[{lo = 1, hi = Length@x, mid},
While[lo <= hi,
mid = lo + Round@((hi - lo)/2);
Which[x[[mid]] > val, hi = mid - 1,
x[[mid]] < val, lo = mid + 1,
True, Return[mid]
];
];
Return[-1];
]
MATLAB
Recursive
function mid = binarySearchRec(list,value,low,high)
if( high < low )
mid = [];
return
end
mid = floor((low + high)/2);
if( list(mid) > value )
mid = binarySearchRec(list,value,low,mid-1);
return
elseif( list(mid) < value )
mid = binarySearchRec(list,value,mid+1,high);
return
else
return
end
end
Sample Usage:
>> binarySearchRec([1 2 3 4 5 6 6.5 7 8 9 11 18],6.5,1,numel([1 2 3 4 5 6 6.5 7 8 9 11 18]))
ans =
7
Iterative
function mid = binarySearchIter(list,value)
low = 1;
high = numel(list) - 1;
while( low <= high )
mid = floor((low + high)/2);
if( list(mid) > value )
high = mid - 1;
elseif( list(mid) < value )
low = mid + 1;
else
return
end
end
mid = [];
end
Sample Usage:
>> binarySearchIter([1 2 3 4 5 6 6.5 7 8 9 11 18],6.5)
ans =
7
Maxima
find(L, n) := block([i: 1, j: length(L), k, p],
if n < L[i] or n > L[j] then 0 else (
while j - i > 0 do (
k: quotient(i + j, 2),
p: L[k],
if n < p then j: k - 1 elseif n > p then i: k + 1 else i: j: k
),
if n = L[i] then i else 0
)
)$
".."(a, b) := if a < b then makelist(i, i, a, b) else makelist(i, i, a, b, -1)$
infix("..")$
a: sublist(1 .. 1000, primep)$
find(a, 27);
0
find(a, 421);
82
MAXScript
Iterative
fn binarySearchIterative arr value =
(
lower = 1
upper = arr.count
while lower <= upper do
(
mid = (lower + upper) / 2
if arr[mid] > value then
(
upper = mid - 1
)
else if arr[mid] < value then
(
lower = mid + 1
)
else
(
return mid
)
)
-1
)
arr = #(1, 3, 4, 5, 6, 7, 8, 9, 10)
result = binarySearchIterative arr 6
Recursive
fn binarySearchRecursive arr value lower upper =
(
if lower == upper then
(
if arr[lower] == value then
(
return lower
)
else
(
return -1
)
)
mid = (lower + upper) / 2
if arr[mid] > value then
(
return binarySearchRecursive arr value lower (mid-1)
)
else if arr[mid] < value then
(
return binarySearchRecursive arr value (mid+1) upper
)
else
(
return mid
)
)
arr = #(1, 3, 4, 5, 6, 7, 8, 9, 10)
result = binarySearchRecursive arr 6 1 arr.count
Modula-2
MODULE BinarySearch;
FROM STextIO IMPORT
WriteLn, WriteString;
FROM SWholeIO IMPORT
WriteInt;
TYPE
TArray = ARRAY [0 .. 9] OF INTEGER;
CONST
A = TArray{-31, 0, 1, 2, 2, 4, 65, 83, 99, 782}; (* Sorted data *)
VAR
X: INTEGER;
PROCEDURE DoBinarySearch(A: ARRAY OF INTEGER; X: INTEGER): INTEGER;
VAR
L, H, M: INTEGER;
BEGIN
L := 0; H := HIGH(A);
WHILE L <= H DO
M := L + (H - L) / 2;
IF A[M] < X THEN
L := M + 1
ELSIF A[M] > X THEN
H := M - 1
ELSE
RETURN M
END
END;
RETURN -1
END DoBinarySearch;
PROCEDURE DoBinarySearchRec(A: ARRAY OF INTEGER; X, L, H: INTEGER): INTEGER;
VAR
M: INTEGER;
BEGIN
IF H < L THEN
RETURN -1
END;
M := L + (H - L) / 2;
IF A[M] > X THEN
RETURN DoBinarySearchRec(A, X, L, M - 1)
ELSIF A[M] < X THEN
RETURN DoBinarySearchRec(A, X, M + 1, H)
ELSE
RETURN M
END
END DoBinarySearchRec;
PROCEDURE WriteResult(X, IndX: INTEGER);
BEGIN
WriteInt(X, 1);
IF IndX >= 0 THEN
WriteString(" is at index ");
WriteInt(IndX, 1);
WriteString(".")
ELSE
WriteString(" is not found.")
END;
WriteLn
END WriteResult;
BEGIN
X := 2;
WriteResult(X, DoBinarySearch(A, X));
X := 5;
WriteResult(X, DoBinarySearchRec(A, X, 0, HIGH(A)));
END BinarySearch.
- Output:
2 is at index 4. 5 is not found.
MiniScript
Recursive:
binarySearch = function(A, value, low, high)
if high < low then return null
mid = floor((low + high) / 2)
if A[mid] > value then return binarySearch(A, value, low, mid-1)
if A[mid] < value then return binarySearch(A, value, mid+1, high)
return mid
end function
Iterative:
binarySearch = function(A, value)
low = 0
high = A.len - 1
while true
if high < low then return null
mid = floor((low + high) / 2)
if A[mid] > value then
high = mid - 1
else if A[mid] < value then
low = mid + 1
else
return mid
end if
end while
end function
N/t/roff
.de end
..
.de array
. nr \\$1.c 0 1
. de \\$1.push end
. nr \\$1..\\\\n+[\\$1.c] \\\\$1
. end
. de \\$1.pushln end
. if \\\\n(.$>0 .\\$1.push \\\\$1
. if \\\\n(.$>1 \{ \
. shift
. \\$1.pushln \\\\$@
\}
. end
..
.
.de binarysearch
. nr min 1
. nr max \\n[\\$1.c]
. nr guess \\n[min]+\\n[max]/2
. while !\\n[\\$1..\\n[guess]]=\\$2 \{ \
. ie \\n[\\$1..\\n[guess]]<\\$2 .nr min \\n[guess]+1
. el .nr max \\n[guess]-1
.
. if \\n[min]>\\n[max] \{
. nr guess 0
. break
. \}
. nr guess \\n[min]+\\n[max]/2
. \}
\\n[guess]
..
.array a
.a.pushln 1 4 9 16 25 36 49 64 81 100 121 144
.binarysearch a 100
.br
.ie \n[guess]=0 The item \fBdoesn't exist\fP.
.el The item \fBdoes exist\fP.
Nim
Library
import algorithm
let s = @[2,3,4,5,6,7,8,9,10,12,14,16,18,20,22,25,27,30]
echo binarySearch(s, 10)
Iterative (from the standard library)
proc binarySearch[T](a: openArray[T], key: T): int =
var b = len(a)
while result < b:
var mid = (result + b) div 2
if a[mid] < key: result = mid + 1
else: b = mid
if result >= len(a) or a[result] != key: result = -1
Niue
Library
1 2 3 4 5
3 bsearch . ( => 2 )
5 bsearch . ( => 0 )
'sam 'tom 'kenny ( must be sorted before calling bsearch )
sort
.s ( => kenny sam tom )
'sam bsearch . ( => 1 )
'tom bsearch . ( => 0 )
'kenny bsearch . ( => 2 )
'tony bsearch . ( => -1)
Oberon-2
MODULE BS;
IMPORT Out;
VAR
List:ARRAY 10 OF REAL;
PROCEDURE Init(VAR List:ARRAY OF REAL);
BEGIN
List[0] := -31; List[1] := 0; List[2] := 1; List[3] := 2;
List[4] := 2; List[5] := 4; List[6] := 65; List[7] := 83;
List[8] := 99; List[9] := 782;
END Init;
PROCEDURE BinarySearch(List:ARRAY OF REAL;Element:REAL):LONGINT;
VAR
L,M,H:LONGINT;
BEGIN
L := 0;
H := LEN(List)-1;
WHILE L <= H DO
M := (L + H) DIV 2;
IF List[M] > Element THEN
H := M - 1;
ELSIF List[M] < Element THEN
L := M + 1;
ELSE
RETURN M;
END;
END;
RETURN -1;
END BinarySearch;
PROCEDURE RBinarySearch(VAR List:ARRAY OF REAL;Element:REAL;L,R:LONGINT):LONGINT;
VAR
M:LONGINT;
BEGIN
IF R < L THEN RETURN -1 END;
M := (L + R) DIV 2;
IF Element = List[M] THEN
RETURN M
ELSIF Element < List[M] THEN
RETURN RBinarySearch(List, Element, L, R-1)
ELSE
RETURN RBinarySearch(List, Element, M-1, R)
END;
END RBinarySearch;
BEGIN
Init(List);
Out.Int(BinarySearch(List, 2), 0); Out.Ln;
Out.Int(RBinarySearch(List, 65, 0, LEN(List)-1),0); Out.Ln;
END BS.
Objeck
Iterative
use Structure;
bundle Default {
class BinarySearch {
function : Main(args : String[]) ~ Nil {
values := [-1, 3, 8, 13, 22];
DoBinarySearch(values, 13)->PrintLine();
DoBinarySearch(values, 7)->PrintLine();
}
function : native : DoBinarySearch(values : Int[], value : Int) ~ Int {
low := 0;
high := values->Size() - 1;
while(low <= high) {
mid := (low + high) / 2;
if(values[mid] > value) {
high := mid - 1;
}
else if(values[mid] < value) {
low := mid + 1;
}
else {
return mid;
};
};
return -1;
}
}
}
Objective-C
Iterative
#import <Foundation/Foundation.h>
@interface NSArray (BinarySearch)
// Requires all elements of this array to implement a -compare: method which
// returns a NSComparisonResult for comparison.
// Returns NSNotFound when not found
- (NSInteger) binarySearch:(id)key;
@end
@implementation NSArray (BinarySearch)
- (NSInteger) binarySearch:(id)key {
NSInteger lo = 0;
NSInteger hi = [self count] - 1;
while (lo <= hi) {
NSInteger mid = lo + (hi - lo) / 2;
id midVal = self[mid];
switch ([midVal compare:key]) {
case NSOrderedAscending:
lo = mid + 1;
break;
case NSOrderedDescending:
hi = mid - 1;
break;
case NSOrderedSame:
return mid;
}
}
return NSNotFound;
}
@end
int main()
{
@autoreleasepool {
NSArray *a = @[@1, @3, @4, @5, @6, @7, @8, @9, @10];
NSLog(@"6 is at position %d", [a binarySearch:@6]); // prints 4
}
return 0;
}
Recursive
#import <Foundation/Foundation.h>
@interface NSArray (BinarySearchRecursive)
// Requires all elements of this array to implement a -compare: method which
// returns a NSComparisonResult for comparison.
// Returns NSNotFound when not found
- (NSInteger) binarySearch:(id)key inRange:(NSRange)range;
@end
@implementation NSArray (BinarySearchRecursive)
- (NSInteger) binarySearch:(id)key inRange:(NSRange)range {
if (range.length == 0)
return NSNotFound;
NSInteger mid = range.location + range.length / 2;
id midVal = self[mid];
switch ([midVal compare:key]) {
case NSOrderedAscending:
return [self binarySearch:key
inRange:NSMakeRange(mid + 1, NSMaxRange(range) - (mid + 1))];
case NSOrderedDescending:
return [self binarySearch:key
inRange:NSMakeRange(range.location, mid - range.location)];
default:
return mid;
}
}
@end
int main()
{
@autoreleasepool {
NSArray *a = @[@1, @3, @4, @5, @6, @7, @8, @9, @10];
NSLog(@"6 is at position %d", [a binarySearch:@6]); // prints 4
}
return 0;
}
Library
#import <Foundation/Foundation.h>
int main()
{
@autoreleasepool {
NSArray *a = @[@1, @3, @4, @5, @6, @7, @8, @9, @10];
NSLog(@"6 is at position %lu", [a indexOfObject:@6
inSortedRange:NSMakeRange(0, [a count])
options:0
usingComparator:^(id x, id y){ return [x compare: y]; }]); // prints 4
}
return 0;
}
Using Core Foundation (part of Cocoa, all versions):
#import <Foundation/Foundation.h>
CFComparisonResult myComparator(const void *x, const void *y, void *context) {
return [(__bridge id)x compare:(__bridge id)y];
}
int main(int argc, const char *argv[]) {
@autoreleasepool {
NSArray *a = @[@1, @3, @4, @5, @6, @7, @8, @9, @10];
NSLog(@"6 is at position %ld", CFArrayBSearchValues((__bridge CFArrayRef)a,
CFRangeMake(0, [a count]),
(__bridge const void *)@6,
myComparator,
NULL)); // prints 4
}
return 0;
}
OCaml
Recursive
let rec binary_search a value low high =
if high = low then
if a.(low) = value then
low
else
raise Not_found
else let mid = (low + high) / 2 in
if a.(mid) > value then
binary_search a value low (mid - 1)
else if a.(mid) < value then
binary_search a value (mid + 1) high
else
mid
Output:
# let arr = [|1; 3; 4; 5; 6; 7; 8; 9; 10|];; val arr : int array = [|1; 3; 4; 5; 6; 7; 8; 9; 10|] # binary_search arr 6 0 (Array.length arr - 1);; - : int = 4 # binary_search arr 2 0 (Array.length arr - 1);; Exception: Not_found.
OCaml supports proper tail-recursion; so this is effectively the same as iteration.
Octave
Recursive
function i = binsearch_r(array, val, low, high)
if ( high < low )
i = 0;
else
mid = floor((low + high) / 2);
if ( array(mid) > val )
i = binsearch_r(array, val, low, mid-1);
elseif ( array(mid) < val )
i = binsearch_r(array, val, mid+1, high);
else
i = mid;
endif
endif
endfunction
Iterative
function i = binsearch(array, value)
low = 1;
high = numel(array);
i = 0;
while ( low <= high )
mid = floor((low + high)/2);
if (array(mid) > value)
high = mid - 1;
elseif (array(mid) < value)
low = mid + 1;
else
i = mid;
return;
endif
endwhile
endfunction
Example of using
r = sort(discrete_rnd(10, [1:10], ones(10,1)/10));
disp(r);
binsearch_r(r, 5, 1, numel(r))
binsearch(r, 5)
Ol
(define (binary-search value vector)
(let helper ((low 0)
(high (- (vector-length vector) 1)))
(unless (< high low)
(let ((middle (quotient (+ low high) 2)))
(cond
((> (vector-ref vector middle) value)
(helper low (- middle 1)))
((< (vector-ref vector middle) value)
(helper (+ middle 1) high))
(else middle))))))
(print
(binary-search 12 [1 2 3 4 5 6 7 8 9 10 11 12 13]))
; ==> 12
ooRexx
data = .array~of(1, 3, 5, 7, 9, 11)
-- search keys with a number of edge cases
searchkeys = .array~of(0, 1, 4, 7, 11, 12)
say "recursive binary search"
loop key over searchkeys
pos = recursiveBinarySearch(data, key)
if pos == 0 then say "Key" key "not found"
else say "Key" key "found at postion" pos
end
say
say "iterative binary search"
loop key over searchkeys
pos = iterativeBinarySearch(data, key)
if pos == 0 then say "Key" key "not found"
else say "Key" key "found at postion" pos
end
::routine recursiveBinarySearch
-- NB: Rexx arrays are 1-based
use strict arg data, value, low = 1, high = (data~items)
-- make sure we don't go beyond the bounds
high = min(high, data~items)
-- zero indicates not found
if high < low then return 0
mid = (low + high) % 2
if data[mid] > value then
return recursiveBinarySearch(data, value, low, mid - 1)
else if data[mid] < value then
return recursiveBinarySearch(data, value, mid + 1, high)
-- got it!
return mid
::routine iterativeBinarySearch
-- NB: Rexx arrays are 1-based
use strict arg data, value, low = 1, high = (data~items)
-- make sure we don't go beyond the bounds
high = min(high, data~items)
-- zero indicates not found
if high < low then return 0
loop while low <= high
mid = (low + high) % 2
if data[mid] > value then
high = mid - 1
else if data[mid] < value then
low = mid + 1
else
return mid
end
return 0
Output:
recursive binary search Key 0 not found Key 1 found at postion 1 Key 4 not found Key 7 found at postion 4 Key 11 found at postion 6 Key 12 not found iterative binary search Key 0 not found Key 1 found at postion 1 Key 4 not found Key 7 found at postion 4 Key 11 found at postion 6 Key 12 not found
Oz
Recursive
declare
fun {BinarySearch Arr Val}
fun {Search Low High}
if Low > High then nil
else
Mid = (Low+High) div 2
in
if Val < Arr.Mid then {Search Low Mid-1}
elseif Val > Arr.Mid then {Search Mid+1 High}
else [Mid]
end
end
end
in
{Search {Array.low Arr} {Array.high Arr}}
end
A = {Tuple.toArray unit(2 3 5 6 8)}
in
{System.printInfo "searching 4: "} {Show {BinarySearch A 4}}
{System.printInfo "searching 8: "} {Show {BinarySearch A 8}}
Iterative
declare
fun {BinarySearch Arr Val}
Low = {NewCell {Array.low Arr}}
High = {NewCell {Array.high Arr}}
in
for while:@Low =< @High return:Return default:nil do
Mid = (@Low + @High) div 2
in
if Val < Arr.Mid then High := Mid-1
elseif Val > Arr.Mid then Low := Mid+1
else {Return [Mid]}
end
end
end
A = {Tuple.toArray unit(2 3 5 6 8)}
in
{System.printInfo "searching 4: "} {Show {BinarySearch A 4}}
{System.printInfo "searching 8: "} {Show {BinarySearch A 8}}
PARI/GP
Note that, despite the name, setsearch
works on sorted vectors as well as sets.
setsearch(s, n)
The following is another implementation that takes a more manual approach. Instead of using an intrinsic function, a general binary search algorithm is implemented using the language alone.
binarysearch(v, x) = {
local(
minm = 1,
maxm = length(v),
guess = floor(maxm/2+minm/2)
);
while(v[guess] != x,
if(v[guess] < x, minm = guess + 1, maxm = guess - 1);
if(minm > maxm,
guess = 0;
break
);
guess = floor(maxm/2+minm/2)
);
return(guess);
}
idx = binarysearch([1,4,9,16,25,36,49,64,81,100,121,144], 121);
if(idx, \
print("Item exists on index ", idx), \
print("Item does not exist anywhere.") \
)
Pascal
Iterative
function binary_search(element: real; list: array of real): integer;
var
l, m, h: integer;
begin
l := Low(list);
h := High(list);
binary_search := -1;
while l <= h do
begin
m := (l + h) div 2;
if list[m] > element then
begin
h := m - 1;
end
else if list[m] < element then
begin
l := m + 1;
end
else
begin
binary_search := m;
break;
end;
end;
end;
Usage:
var
list: array[0 .. 9] of real;
// ...
indexof := binary_search(123, list);
PascalABC.NET
function BinarySearch(a: array of integer; x: integer): integer;
begin
var (l,r) := (0, a.Length-1);
repeat
var mid := (l + r) div 2;
if x = a[mid] then
begin
Result := mid;
exit
end;
if x > a[mid] then
l := mid + 1
else r := mid - 1;
until l > r;
Result := -1;
end;
function BinarySearchRecursive(a: array of integer; x: integer): integer;
function BinarySearchHelper(a: array of integer; x: integer; l,r: integer): integer;
begin
if l > r then
Result := -1
else begin
var mid := (l + r) div 2;
if x = a[mid] then
Result := mid
else if x < a[mid] then
Result := BinarySearchHelper(a, x, l, mid - 1)
else Result := BinarySearchHelper(a, x, mid + 1, r)
end;
end;
begin
Result := BinarySearchHelper(a,x,0,a.Length-1);
end;
begin
var a := ArrRandomInteger(10,1,20);
a.Sort;
a.Println;
var x := 10;
var ind := BinarySearch(a,x);
if ind >= 0 then
Println($'{x} found at index {ind}')
else Println($'{x} not found');
ind := BinarySearchRecursive(a,x);
if ind >= 0 then
Println($'{x} found at index {ind}')
else Println($'{x} not found');
x := a.RandomElement;
ind := BinarySearch(a,x);
if ind >= 0 then
Println($'{x} found at index {ind}')
else Println($'{x} not found');
ind := BinarySearchRecursive(a,x);
if ind >= 0 then
Println($'{x} found at index {ind}')
else Println($'{x} not found');
end.
- Output:
2 3 5 12 13 14 14 15 15 17 10 not found 10 not found 13 found at index 4 13 found at index 4
Library
##
var s := |2,3,4,5,6,7,8,9,10,12,14,16,18,20,22,25,27,30|;
s.binarysearch(10).println;
Perl
Iterative
sub binary_search {
my ($array_ref, $value, $left, $right) = @_;
while ($left <= $right) {
my $middle = int(($right + $left) >> 1);
if ($value == $array_ref->[$middle]) {
return $middle;
}
elsif ($value < $array_ref->[$middle]) {
$right = $middle - 1;
}
else {
$left = $middle + 1;
}
}
return -1;
}
Recursive
sub binary_search {
my ($array_ref, $value, $left, $right) = @_;
return -1 if ($right < $left);
my $middle = int(($right + $left) >> 1);
if ($value == $array_ref->[$middle]) {
return $middle;
}
elsif ($value < $array_ref->[$middle]) {
binary_search($array_ref, $value, $left, $middle - 1);
}
else {
binary_search($array_ref, $value, $middle + 1, $right);
}
}
Phix
Standard autoinclude builtin/bsearch.e, reproduced here (for reference only, don't copy/paste unless you plan to modify and rename it)
global function binary_search(object needle, sequence haystack) integer lo = 1, hi = length(haystack), mid = lo, c = 0 while lo<=hi do mid = floor((lo+hi)/2) c = compare(needle, haystack[mid]) if c<0 then hi = mid-1 elsif c>0 then lo = mid+1 else return mid -- found! end if end while mid += c>0 return -mid -- where it would go, if inserted now end function
The low + (high-low)/2 trick is not needed, since interim integer results are accurate to 53 bits (on 32 bit, 64 bits on 64 bit) on Phix.
Returns a positive index if found, otherwise the negative index where it would go if inserted now. Example use
with javascript_semantics ?binary_search(0,{1,3,5}) -- -1 ?binary_search(1,{1,3,5}) -- 1 ?binary_search(2,{1,3,5}) -- -2 ?binary_search(3,{1,3,5}) -- 2 ?binary_search(4,{1,3,5}) -- -3 ?binary_search(5,{1,3,5}) -- 3 ?binary_search(6,{1,3,5}) -- -4
PHP
Iterative
function binary_search( $array, $secret, $start, $end )
{
do
{
$guess = (int)($start + ( ( $end - $start ) / 2 ));
if ( $array[$guess] > $secret )
$end = $guess;
if ( $array[$guess] < $secret )
$start = $guess;
if ( $end < $start)
return -1;
} while ( $array[$guess] != $secret );
return $guess;
}
Recursive
function binary_search( $array, $secret, $start, $end )
{
$guess = (int)($start + ( ( $end - $start ) / 2 ));
if ( $end < $start)
return -1;
if ( $array[$guess] > $secret )
return (binary_search( $array, $secret, $start, $guess ));
if ( $array[$guess] < $secret )
return (binary_search( $array, $secret, $guess, $end ) );
return $guess;
}
Picat
Iterative
go =>
A = [2, 4, 6, 8, 9],
TestValues = [2,1,8,10,9,5],
foreach(Value in TestValues)
test(binary_search,A, Value)
end,
test(binary_search,[1,20,3,4], 5),
nl.
% Test with binary search predicate Search
test(Search,A,Value) =>
Ret = apply(Search,A,Value),
printf("A: %w Value:%d Ret: %d: ", A, Value, Ret),
if Ret == -1 then
println("The array is not sorted.")
elseif Ret == 0 then
printf("The value %d is not in the array.\n", Value)
else
printf("The value %d is found at position %d.\n", Value, Ret)
end.
binary_search(A, Value) = V =>
V1 = 0,
% we want a sorted array
if not sort(A) == A then
V1 := -1
else
Low = 1,
High = A.length,
Mid = 1,
Found = 0,
while (Found == 0, Low <= High)
Mid := (Low + High) // 2,
if A[Mid] > Value then
High := Mid - 1
elseif A[Mid] < Value then
Low := Mid + 1
else
V1 := Mid,
Found := 1
end
end
end,
V = V1.
- Output:
A: [2,4,6,8,9] Value:2 Ret: 1: The value 2 is found at position 1. A: [2,4,6,8,9] Value:1 Ret: 0: The value 1 is not in the array. A: [2,4,6,8,9] Value:8 Ret: 4: The value 8 is found at position 4. A: [2,4,6,8,9] Value:10 Ret: 0: The value 10 is not in the array. A: [2,4,6,8,9] Value:9 Ret: 5: The value 9 is found at position 5. A: [2,4,6,8,9] Value:5 Ret: 0: The value 5 is not in the array. A: [1,20,3,4] Value:5 Ret: -1: The array is not sorted.
Recursive version
binary_search_rec(A, Value) = Ret =>
Ret = binary_search_rec(A,Value, 1, A.length).
binary_search_rec(A, _Value, _Low, _High) = -1, sort(A) != A => true.
binary_search_rec(_A, _Value, Low, High) = 0, High < Low => true.
binary_search_rec(A, Value, Low, High) = Mid =>
Mid1 = (Low + High) // 2,
if A[Mid1] > Value then
Mid1 := binary_search_rec(A, Value, Low, Mid1-1)
elseif A[Mid1] < Value then
Mid1 := binary_search_rec(A, Value, Mid1+1, High)
end,
Mid = Mid1.
PicoLisp
Recursive
(de recursiveSearch (Val Lst Len)
(unless (=0 Len)
(let (N (inc (/ Len 2)) L (nth Lst N))
(cond
((= Val (car L)) Val)
((> Val (car L))
(recursiveSearch Val (cdr L) (- Len N)) )
(T (recursiveSearch Val Lst (dec N))) ) ) ) )
Output:
: (recursiveSearch 5 (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9) -> 5 : (recursiveSearch '(a b) (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9) -> (a b) : (recursiveSearch (9) (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9) -> NIL
Iterative
(de iterativeSearch (Val Lst Len)
(use (N L)
(loop
(T (=0 Len))
(setq
N (inc (/ Len 2))
L (nth Lst N) )
(T (= Val (car L)) Val)
(if (> Val (car L))
(setq Lst (cdr L) Len (- Len N))
(setq Len (dec N)) ) ) ) )
Output:
: (iterativeSearch 5 (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9) -> 5 : (iterativeSearch '(a b) (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9) -> (a b) : (iterativeSearch (9) (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9) -> NIL
PL/I
/* A binary search of list A for element M */
search: procedure (A, M) returns (fixed binary);
declare (A(*), M) fixed binary;
declare (l, r, mid) fixed binary;
l = lbound(a,1)-1; r = hbound(A,1)+1;
do while (l <= r);
mid = (l+r)/2;
if A(mid) = M then return (mid);
if A(mid) < M then
L = mid+1;
else
R = mid-1;
end;
return (lbound(A,1)-1);
end search;
Pop11
Iterative
define BinarySearch(A, value);
lvars low = 1, high = length(A), mid;
while low <= high do
(low + high) div 2 -> mid;
if A(mid) > value then
mid - 1 -> high;
elseif A(mid) < value then
mid + 1 -> low;
else
return(mid);
endif;
endwhile;
return("not_found");
enddefine;
/* Tests */
lvars A = {2 3 5 6 8};
BinarySearch(A, 4) =>
BinarySearch(A, 5) =>
BinarySearch(A, 8) =>
Recursive
define BinarySearch(A, value);
define do_it(low, high);
if high < low then
return("not_found");
endif;
(low + high) div 2 -> mid;
if A(mid) > value then
do_it(low, mid-1);
elseif A(mid) < value then
do_it(mid+1, high);
else
mid;
endif;
enddefine;
do_it(1, length(A));
enddefine;
PowerShell
function BinarySearch-Iterative ([int[]]$Array, [int]$Value)
{
[int]$low = 0
[int]$high = $Array.Count - 1
while ($low -le $high)
{
[int]$mid = ($low + $high) / 2
if ($Array[$mid] -gt $Value)
{
$high = $mid - 1
}
elseif ($Array[$mid] -lt $Value)
{
$low = $mid + 1
}
else
{
return $mid
}
}
return -1
}
function BinarySearch-Recursive ([int[]]$Array, [int]$Value, [int]$Low = 0, [int]$High = $Array.Count)
{
if ($High -lt $Low)
{
return -1
}
[int]$mid = ($Low + $High) / 2
if ($Array[$mid] -gt $Value)
{
return BinarySearch $Array $Value $Low ($mid - 1)
}
elseif ($Array[$mid] -lt $Value)
{
return BinarySearch $Array $Value ($mid + 1) $High
}
else
{
return $mid
}
}
function Show-SearchResult ([int[]]$Array, [int]$Search, [ValidateSet("Iterative", "Recursive")][string]$Function)
{
switch ($Function)
{
"Iterative" {$index = BinarySearch-Iterative -Array $Array -Value $Search}
"Recursive" {$index = BinarySearch-Recursive -Array $Array -Value $Search}
}
if ($index -ge 0)
{
Write-Host ("Using BinarySearch-{0}: {1} is at index {2}" -f $Function, $numbers[$index], $index)
}
else
{
Write-Host ("Using BinarySearch-{0}: {1} not found" -f $Function, $Search) -ForegroundColor Red
}
}
Show-SearchResult -Array 10, 28, 41, 46, 58, 74, 76, 86, 89, 98 -Search 41 -Function Iterative
Show-SearchResult -Array 10, 28, 41, 46, 58, 74, 76, 86, 89, 98 -Search 99 -Function Iterative
Show-SearchResult -Array 10, 28, 41, 46, 58, 74, 76, 86, 89, 98 -Search 86 -Function Recursive
Show-SearchResult -Array 10, 28, 41, 46, 58, 74, 76, 86, 89, 98 -Search 11 -Function Recursive
- Output:
Using BinarySearch-Iterative: 41 is at index 2 Using BinarySearch-Iterative: 99 not found Using BinarySearch-Recursive: 86 is at index 7 Using BinarySearch-Recursive: 11 not found
Prolog
Tested with Gnu-Prolog.
bin_search(Elt,List,Result):-
length(List,N), bin_search_inner(Elt,List,1,N,Result).
bin_search_inner(Elt,List,J,J,J):-
nth(J,List,Elt).
bin_search_inner(Elt,List,Begin,End,Mid):-
Begin < End,
Mid is (Begin+End) div 2,
nth(Mid,List,Elt).
bin_search_inner(Elt,List,Begin,End,Result):-
Begin < End,
Mid is (Begin+End) div 2,
nth(Mid,List,MidElt),
MidElt < Elt,
NewBegin is Mid+1,
bin_search_inner(Elt,List,NewBegin,End,Result).
bin_search_inner(Elt,List,Begin,End,Result):-
Begin < End,
Mid is (Begin+End) div 2,
nth(Mid,List,MidElt),
MidElt > Elt,
NewEnd is Mid-1,
bin_search_inner(Elt,List,Begin,NewEnd,Result).
- Output examples:
?- bin_search(4,[1,2,4,8,16,32,64,128],Result). Result = 3. ?- bin_search(5,[1,2,4,8],Result). Result = -1.
Python
Python: Iterative
def binary_search(l, value):
low = 0
high = len(l)-1
while low <= high:
mid = (low+high)//2
if l[mid] > value: high = mid-1
elif l[mid] < value: low = mid+1
else: return mid
return -1
We can also generalize this kind of binary search from direct matches to searches using a custom comparator function. In addition to a search for a particular word in an AZ-sorted list, for example, we could also perform a binary search for a word of a given length (in a word-list sorted by rising length), or for a particular value of any other comparable property of items in a suitably sorted list:
# findIndexBinary :: (a -> Ordering) -> [a] -> Maybe Int
def findIndexBinary(p):
def isFound(bounds):
(lo, hi) = bounds
return lo > hi or 0 == hi
def half(xs):
def choice(lh):
(lo, hi) = lh
mid = (lo + hi) // 2
cmpr = p(xs[mid])
return (lo, mid - 1) if cmpr < 0 else (
(1 + mid, hi) if cmpr > 0 else (
mid, 0
)
)
return lambda bounds: choice(bounds)
def go(xs):
(lo, hi) = until(isFound)(
half(xs)
)((0, len(xs) - 1)) if xs else None
return None if 0 != hi else lo
return lambda xs: go(xs)
# COMPARISON CONSTRUCTORS ---------------------------------
# compare :: a -> a -> Ordering
def compare(a):
'''Simple comparison of x and y -> LT|EQ|GT'''
return lambda b: -1 if a < b else (1 if a > b else 0)
# byKV :: (a -> b) -> a -> a -> Ordering
def byKV(f):
'''Property accessor function -> target value -> x -> LT|EQ|GT'''
def go(v, x):
fx = f(x)
return -1 if v < fx else 1 if v > fx else 0
return lambda v: lambda x: go(v, x)
# TESTS ---------------------------------------------------
def main():
# BINARY SEARCH FOR WORD IN AZ-SORTED LIST
mb1 = findIndexBinary(compare('iota'))(
# Sorted AZ
['alpha', 'beta', 'delta', 'epsilon', 'eta', 'gamma', 'iota',
'kappa', 'lambda', 'mu', 'theta', 'zeta']
)
print (
'Not found' if None is mb1 else (
'Word found at index ' + str(mb1)
)
)
# BINARY SEARCH FOR WORD OF GIVEN LENGTH (IN WORD-LENGTH SORTED LIST)
mb2 = findIndexBinary(byKV(len)(7))(
# Sorted by rising length
['mu', 'eta', 'beta', 'iota', 'zeta', 'alpha', 'delta', 'gamma',
'kappa', 'theta', 'lambda', 'epsilon']
)
print (
'Not found' if None is mb2 else (
'Word of given length found at index ' + str(mb2)
)
)
# GENERIC -------------------------------------------------
# until :: (a -> Bool) -> (a -> a) -> a -> a
def until(p):
def go(f, x):
v = x
while not p(v):
v = f(v)
return v
return lambda f: lambda x: go(f, x)
if __name__ == '__main__':
main()
- Output:
Word found at index 6 Word of given length found at index 11
Python: Recursive
def binary_search(l, value, low = 0, high = -1):
if not l: return -1
if(high == -1): high = len(l)-1
if low >= high:
if l[low] == value: return low
else: return -1
mid = (low+high)//2
if l[mid] > value: return binary_search(l, value, low, mid-1)
elif l[mid] < value: return binary_search(l, value, mid+1, high)
else: return mid
Generalizing again with a custom comparator function (see preamble to second iterative version above).
This time using the recursive definition:
# findIndexBinary_ :: (a -> Ordering) -> [a] -> Maybe Int
def findIndexBinary_(p):
def go(xs):
def bin(lo, hi):
if hi < lo:
return None
else:
mid = (lo + hi) // 2
cmpr = p(xs[mid])
return bin(lo, mid - 1) if -1 == cmpr else (
bin(mid + 1, hi) if 1 == cmpr else (
mid
)
)
n = len(xs)
return bin(0, n - 1) if 0 < n else None
return lambda xs: go(xs)
# COMPARISON CONSTRUCTORS ---------------------------------
# compare :: a -> a -> Ordering
def compare(a):
'''Simple comparison of x and y -> LT|EQ|GT'''
return lambda b: -1 if a < b else (1 if a > b else 0)
# byKV :: (a -> b) -> a -> a -> Ordering
def byKV(f):
'''Property accessor function -> target value -> x -> LT|EQ|GT'''
def go(v, x):
fx = f(x)
return -1 if v < fx else 1 if v > fx else 0
return lambda v: lambda x: go(v, x)
# TESTS ---------------------------------------------------
if __name__ == '__main__':
# BINARY SEARCH FOR WORD IN AZ-SORTED LIST
mb1 = findIndexBinary_(compare('mu'))(
# Sorted AZ
['alpha', 'beta', 'delta', 'epsilon', 'eta', 'gamma', 'iota',
'kappa', 'lambda', 'mu', 'theta', 'zeta']
)
print (
'Not found' if None is mb1 else (
'Word found at index ' + str(mb1)
)
)
# BINARY SEARCH FOR WORD OF GIVEN LENGTH (IN WORD-LENGTH SORTED LIST)
mb2 = findIndexBinary_(byKV(len)(6))(
# Sorted by rising length
['mu', 'eta', 'beta', 'iota', 'zeta', 'alpha', 'delta', 'gamma',
'kappa', 'theta', 'lambda', 'epsilon']
)
print (
'Not found' if None is mb2 else (
'Word of given length found at index ' + str(mb2)
)
)
- Output:
Word found at index 9 Word of given length found at index 10
Python: Library
Python's bisect
module provides binary search functions
index = bisect.bisect_left(list, item) # leftmost insertion point
index = bisect.bisect_right(list, item) # rightmost insertion point
index = bisect.bisect(list, item) # same as bisect_right
# same as above but actually insert the item into the list at the given place:
bisect.insort_left(list, item)
bisect.insort_right(list, item)
bisect.insort(list, item)
Python: Alternate
Complete binary search function with python's bisect
module:
from bisect import bisect_left
def binary_search(a, x, lo=0, hi=None): # can't use a to specify default for hi
hi = hi if hi is not None else len(a) # hi defaults to len(a)
pos = bisect_left(a,x,lo,hi) # find insertion position
return (pos if pos != hi and a[pos] == x else -1) # don't walk off the end
Python: Approximate binary search
Returns the nearest item of list l to value.
def binary_search(l, value):
low = 0
high = len(l)-1
while low + 1 < high:
mid = (low+high)//2
if l[mid] > value:
high = mid
elif l[mid] < value:
low = mid
else:
return mid
return high if abs(l[high] - value) < abs(l[low] - value) else low
Quackery
Written from pseudocode for rightmost insertion point, iterative.
[ stack ] is value.bs ( --> n )
[ stack ] is nest.bs ( --> n )
[ stack ] is test.bs ( --> n )
[ ]'[ test.bs put
value.bs put
nest.bs put
1 - swap
[ 2dup < if done
2dup + 1 >>
nest.bs share over peek
value.bs share swap
test.bs share do iff
[ 1 - unrot nip ]
again
[ 1+ nip ] again ]
drop
nest.bs take over peek
value.bs take 2dup swap
test.bs share do
dip [ test.bs take do ]
or not
dup dip [ not + ] ] is bsearchwith ( n n [ x --> n b )
[ dup echo
over size 0 swap 2swap
bsearchwith < iff
[ say " was identified as item " ]
else
[ say " could go into position " ]
echo
say "." cr ] is task ( [ n --> n )
- Output:
Testing in the shell.
/O> ' [ 10 20 30 40 50 60 70 80 90 ] 30 task ... ' [ 10 20 30 40 50 60 70 80 90 ] 66 task ... 30 was identified as item 2. 66 could go into position 6. Stack empty.
R
Recursive
BinSearch <- function(A, value, low, high) {
if ( high < low ) {
return(NULL)
} else {
mid <- floor((low + high) / 2)
if ( A[mid] > value )
BinSearch(A, value, low, mid-1)
else if ( A[mid] < value )
BinSearch(A, value, mid+1, high)
else
mid
}
}
Iterative
IterBinSearch <- function(A, value) {
low = 1
high = length(A)
i = 0
while ( low <= high ) {
mid <- floor((low + high)/2)
if ( A[mid] > value )
high <- mid - 1
else if ( A[mid] < value )
low <- mid + 1
else
return(mid)
}
NULL
}
Example
a <- 1:100
IterBinSearch(a, 50)
BinSearch(a, 50, 1, length(a)) # output 50
IterBinSearch(a, 101) # outputs NULL
Racket
#lang racket
(define (binary-search x v)
; loop : index index -> index or #f
; return i s.t. l<=i<h and v[i]=x
(define (loop l h)
(cond [(>= l h) #f]
[else (define m (quotient (+ l h) 2))
(define y (vector-ref v m))
(cond
[(> y x) (loop l (- m 1))]
[(< y x) (loop (+ m 1) h)]
[else m])]))
(loop 0 (vector-length v)))
Examples:
(binary-search 6 #(1 3 4 5 6 7 8 9 10)) ; gives 4 (binary-search 6 #(1 3 4 5 7 8 9 10)) ; gives #f
Raku
(formerly Perl 6)
With either of the below implementations of binary_search
, one could write a function to search any object that does Positional
this way:
sub search (@a, $x --> Int) {
binary_search { $x cmp @a[$^i] }, 0, @a.end
}
Iterative
sub binary_search (&p, Int $lo is copy, Int $hi is copy --> Int) {
until $lo > $hi {
my Int $mid = ($lo + $hi) div 2;
given p $mid {
when -1 { $hi = $mid - 1; }
when 1 { $lo = $mid + 1; }
default { return $mid; }
}
}
fail;
}
Recursive
sub binary_search (&p, Int $lo, Int $hi --> Int) {
$lo <= $hi or fail;
my Int $mid = ($lo + $hi) div 2;
given p $mid {
when -1 { binary_search &p, $lo, $mid - 1 }
when 1 { binary_search &p, $mid + 1, $hi }
default { $mid }
}
}
REXX
recursive version
Incidentally, REXX doesn't care if the values in the list are integers (or even numbers), as long as they're in order.
(includes the extra credit)
/*REXX program finds a value in a list of integers using an iterative binary search.*/ list=3 7 13 19 23 31 43 47 61 73 83 89 103 109 113 131 139 151 167 181 193 199,
229 233 241 271 283 293 313 317 337 349 353 359 383 389 401 409 421 433 443, 449 463 467 491 503 509 523 547 571 577 601 619 643 647 661 677 683 691 709, 743 761 773 797 811 823 829 839 859 863 883 887 911 919 941 953 971 983 1013
/* [needle] a list of some low weak primes.*/ Parse Arg needle . /* get a # that's specified on t*/ If needle== Then
Call exit '***error*** no argument specified.'
low=1 high=words(list) loc=binarysearch(low,high) If loc==-1 Then
Call exit needle "wasn't found in the list."
Say needle "is in the list, its index is:" loc'.' Exit /*---------------------------------------------------------------------*/ binarysearch: Procedure Expose list needle
Parse Arg i_low,i_high If i_high<i_low Then /* the item wasn't found in the list */ Return-1 i_mid=(i_low+i_high)%2 /* calculate the midpoint in the list */ y=word(list,i_mid) /* obtain the midpoint value in the list */ Select When y=needle Then Return i_mid When y>needle Then Return binarysearch(i_low,i_mid-1) Otherwise Return binarysearch(i_mid+1,i_high) End
exit: Say arg(1)
- output when using the input of: 499.1
499.1 wasn't found in the list.
- output when using the input of: 619
619 is in the list, its index is: 53.
iterative version
(includes the extra credit)
/* REXX program finds a value in a list of integers */
/* using an iterative binary search. */
list=3 7 13 19 23 31 43 47 61 73 83 89 103 109 113 131 139 151 167 181 193 199,
229 233 241 271 283 293 313 317 337 349 353 359 383 389 401 409 421 433 443,
449 463 467 491 503 509 523 547 571 577 601 619 643 647 661 677 683 691 709,
743 761 773 797 811 823 829 839 859 863 883 887 911 919 941 953 971 983 1013
/* list: a list of some low weak primes. */
Parse Arg needle /* get a number to be looked for */
If needle=="" Then
Call exit "***error*** no argument specified."
low=1
high=words(list)
Do While low<=high
mid=(low+high)%2
y=word(list,mid)
Select
When y=needle Then
Call exit needle "is in the list, its index is:" mid'.'
When y>needle Then /* too high */
high=mid-1 /* set upper nound */
Otherwise /* too low */
low=mid+1 /* set lower limit */
End
End
Call exit needle "wasn't found in the list."
exit: Say arg(1)
- output when using the input of: -314
-314 wasn't found in the list.
- output when using the input of: 619
619 is in the list, its index is: 53.
iterative version
(includes the extra credit)
/*REXX program finds a value in a list of integers using an iterative binary search.*/
@= 3 7 13 19 23 31 43 47 61 73 83 89 103 109 113 131 139 151 167 181,
193 199 229 233 241 271 283 293 313 317 337 349 353 359 383 389 401 409 421 433,
443 449 463 467 491 503 509 523 547 571 577 601 619 643 647 661 677 683 691 709,
743 761 773 797 811 823 829 839 859 863 883 887 911 919 941 953 971 983 1013
/* [↑] a list of some low weak primes.*/
parse arg ? . /*get a # that's specified on the CL.*/
if ?=='' then do; say; say '***error*** no argument specified.'; say
exit 13
end
low= 1
high= words(@)
say 'arithmetic mean of the ' high " values is: " (word(@, 1) + word(@, high)) / 2
say
do while low<=high; mid= (low + high) % 2; y= word(@, mid)
if ?=y then do; say ? ' is in the list, its index is: ' mid
exit /*stick a fork in it, we're all done. */
end
if y>? then high= mid - 1 /*too high? */
else low= mid + 1 /*too low? */
end /*while*/
say ? " wasn't found in the list." /*stick a fork in it, we're all done. */
- output when using the input of: -314
arithmetic mean of the 79 values is: 508 -314 wasn't found in the list.
- output when using the input of: 619
arithmetic mean of the 79 values is: 508 619 is in the list, its index is: 53
Ring
decimals(0)
array = [7, 14, 21, 28, 35, 42, 49, 56, 63, 70]
find= 42
index = where(array,find,0,len(array))
if index >= 0
see "the value " + find+ " was found at index " + index
else
see "the value " + find + " was not found"
ok
func where(a,s,b,t)
h = 2
while h<(t-b)
h *= 2
end
h /= 2
while h != 0
if (b+h)<=t
if s>=a[b+h]
b += h
ok
ok
h /= 2
end
if s=a[b]
return b-1
else
return -1
ok
Output:
the value 42 was found at index 6
RPL
Iterative
If the searched value is not found, it returns the insertion point as a negative number.
« → a value « 1 a SIZE 1 CF WHILE DUP2 ≤ 1 FC? AND REPEAT DUP2 + 2 / FLOOR CASE a OVER GET value > THEN SWAP DROP 1 - END a OVER GET value < THEN ROT DROP 1 + SWAP END 1 SF END END IF 1 FS? THEN ROT ROT DROP2 ELSE DROP NEG END » » 'BINPOS' STO @ ( { items } value → position )
Ruby
Recursive
class Array
def binary_search(val, low=0, high=(length - 1))
return nil if high < low
mid = (low + high) >> 1
case val <=> self[mid]
when -1
binary_search(val, low, mid - 1)
when 1
binary_search(val, mid + 1, high)
else mid
end
end
end
ary = [0,1,4,5,6,7,8,9,12,26,45,67,78,90,98,123,211,234,456,769,865,2345,3215,14345,24324]
[0,42,45,24324,99999].each do |val|
i = ary.binary_search(val)
if i
puts "found #{val} at index #{i}: #{ary[i]}"
else
puts "#{val} not found in array"
end
end
Iterative
class Array
def binary_search_iterative(val)
low, high = 0, length - 1
while low <= high
mid = (low + high) >> 1
case val <=> self[mid]
when 1
low = mid + 1
when -1
high = mid - 1
else
return mid
end
end
nil
end
end
ary = [0,1,4,5,6,7,8,9,12,26,45,67,78,90,98,123,211,234,456,769,865,2345,3215,14345,24324]
[0,42,45,24324,99999].each do |val|
i = ary.binary_search_iterative(val)
if i
puts "found #{val} at index #{i}: #{ary[i]}"
else
puts "#{val} not found in array"
end
end
- Output:
found 0 at index 0: 0 42 not found in array found 45 at index 10: 45 found 24324 at index 24: 24324 99999 not found in array
Built in Since Ruby 2.0, arrays ship with a binary search method "bsearch":
haystack = [0,1,4,5,6,7,8,9,12,26,45,67,78,90,98,123,211,234,456,769,865,2345,3215,14345,24324]
needles = [0,42,45,24324,99999]
needles.select{|needle| haystack.bsearch{|hay| needle <=> hay} } # => [0, 45, 24324]
Which is 60% faster than "needles & haystack".
Rust
Iterative
fn binary_search<T:PartialOrd>(v: &[T], searchvalue: T) -> Option<T> {
let mut lower = 0 as usize;
let mut upper = v.len() - 1;
while upper >= lower {
let mid = (upper + lower) / 2;
if v[mid] == searchvalue {
return Some(searchvalue);
} else if searchvalue < v[mid] {
upper = mid - 1;
} else {
lower = mid + 1;
}
}
None
}
Scala
Recursive
def binarySearch[A <% Ordered[A]](a: IndexedSeq[A], v: A) = {
def recurse(low: Int, high: Int): Option[Int] = (low + high) / 2 match {
case _ if high < low => None
case mid if a(mid) > v => recurse(low, mid - 1)
case mid if a(mid) < v => recurse(mid + 1, high)
case mid => Some(mid)
}
recurse(0, a.size - 1)
}
Iterative
def binarySearch[T](xs: Seq[T], x: T)(implicit ordering: Ordering[T]): Option[Int] = {
var low: Int = 0
var high: Int = xs.size - 1
while (low <= high)
low + high >>> 1 match {
case guess if ordering.gt(xs(guess), x) => high = guess - 1 //too high
case guess if ordering.lt(xs(guess), x) => low = guess + 1 // too low
case guess => return Some(guess) //found it
}
None //not found
}
Test
def testBinarySearch(n: Int) = {
val odds = 1 to n by 2
val result = (0 to n).flatMap(binarySearch(odds, _))
assert(result == (0 until odds.size))
println(s"$odds are odd natural numbers")
for (it <- result)
println(s"$it is ordinal of ${odds(it)}")
}
def main() = testBinarySearch(12)
Output:
Range(1, 3, 5, 7, 9, 11) are odd natural numbers 0 is ordinal of 1 1 is ordinal of 3 2 is ordinal of 5 3 is ordinal of 7 4 is ordinal of 9 5 is ordinal of 11
Scheme
Recursive
(define (binary-search value vector)
(let helper ((low 0)
(high (- (vector-length vector) 1)))
(if (< high low)
#f
(let ((middle (quotient (+ low high) 2)))
(cond ((> (vector-ref vector middle) value)
(helper low (- middle 1)))
((< (vector-ref vector middle) value)
(helper (+ middle 1) high))
(else middle))))))
Example:
> (binary-search 6 '#(1 3 4 5 6 7 8 9 10)) 4 > (binary-search 2 '#(1 3 4 5 6 7 8 9 10)) #f
The calls to helper are in tail position, so since Scheme implementations support proper tail-recursion the computation proces is iterative.
Seed7
Iterative
const func integer: binarySearchIterative (in array elemType: arr, in elemType: aKey) is func
result
var integer: result is 0;
local
var integer: low is 1;
var integer: high is 0;
var integer: middle is 0;
begin
high := length(arr);
while result = 0 and low <= high do
middle := low + (high - low) div 2;
if aKey < arr[middle] then
high := pred(middle);
elsif aKey > arr[middle] then
low := succ(middle);
else
result := middle;
end if;
end while;
end func;
Recursive
const func integer: binarySearch (in array elemType: arr, in elemType: aKey, in integer: low, in integer: high) is func
result
var integer: result is 0;
begin
if low <= high then
result := (low + high) div 2;
if aKey < arr[result] then
result := binarySearch(arr, aKey, low, pred(result)); # search left
elsif aKey > arr[result] then
result := binarySearch(arr, aKey, succ(result), high); # search right
end if;
end if;
end func;
const func integer: binarySearchRecursive (in array elemType: arr, in elemType: aKey) is
return binarySearch(arr, aKey, 1, length(arr));
SequenceL
Recursive
binarySearch(A(1), value(0), low(0), high(0)) :=
let
mid := low + (high - low) / 2;
in
-1 when high < low //Not Found
else
binarySearch(A, value, low, mid - 1) when A[mid] > value
else
binarySearch(A, value, mid + 1, high) when A[mid] < value
else
mid;
Sidef
Iterative:
func binary_search(a, i) {
var l = 0
var h = a.end
while (l <= h) {
var mid = (h+l / 2 -> int)
a[mid] > i && (h = mid-1; next)
a[mid] < i && (l = mid+1; next)
return mid
}
return -1
}
Recursive:
func binary_search(arr, value, low=0, high=arr.end) {
high < low && return -1
var middle = ((high+low) // 2)
given (arr[middle]) { |item|
case (value < item) {
binary_search(arr, value, low, middle-1)
}
case (value > item) {
binary_search(arr, value, middle+1, high)
}
case (value == item) {
middle
}
}
}
Usage:
say binary_search([34, 42, 55, 778], 55); #=> 2
Simula
BEGIN
INTEGER PROCEDURE BINARYSEARCHREC(A, LVALUE);
INTEGER ARRAY A;
INTEGER LVALUE; ! VALUE IS A KEY WORD ;
BEGIN
INTEGER PROCEDURE SEARCH(LOW, HIGH);
INTEGER LOW, HIGH;
BEGIN
INTEGER MID;
! INVARIANTS: VALUE > A[I] FOR ALL I < LOW
VALUE < A[I] FOR ALL I > HIGH ;
MID := (LOW + HIGH) // 2;
SEARCH := IF HIGH < LOW THEN -LOW - 1
ELSE IF A(MID) > LVALUE THEN SEARCH(LOW, MID-1)
ELSE IF A(MID) < LVALUE THEN SEARCH(MID+1, HIGH)
ELSE MID;
END SEARCH;
BINARYSEARCHREC := SEARCH(LOWERBOUND(A, 1), UPPERBOUND(A, 1));
END BINARYSEARCHREC;
INTEGER PROCEDURE BINARYSEARCH(A, LVALUE);
INTEGER ARRAY A;
INTEGER LVALUE; ! VALUE IS A KEY WORD ;
BEGIN
INTEGER LOW, HIGH, MID;
BOOLEAN FOUND;
LOW := LOWERBOUND(A, 1);
HIGH := UPPERBOUND(A, 1);
WHILE NOT FOUND AND LOW <= HIGH DO BEGIN
! INVARIANTS: LVALUE > A(I) FOR ALL I < LOW
LVALUE < A(I) FOR ALL I > HIGH ;
MID := (LOW + HIGH) // 2;
IF A(MID) > LVALUE THEN
HIGH := MID - 1
ELSE IF A(MID) < LVALUE THEN
LOW := MID + 1
ELSE
FOUND := TRUE;
END;
! LVALUE WOULD BE INSERTED AT INDEX "LOW" ;
BINARYSEARCH := IF FOUND THEN MID ELSE -LOW - 1;
END BINARYSEARCH;
COMMENT ** CAUTION ** ONLY WORKS FOR ARRAY LOWER BOUND=0;
INTEGER ARRAY HAYSTACK(0:9);
INTEGER I, J, K, NEEDLE;
OUTTEXT("ARRAY = (");
I := LOWERBOUND(HAYSTACK, 1);
FOR J := 1, 6, 17, 29, 45, 78, 79, 87, 95, 100 DO BEGIN
HAYSTACK(I) := J;
OUTINT(HAYSTACK(I), 0);
IF I < UPPERBOUND(HAYSTACK, 1) THEN OUTTEXT(", ");
I := I + 1;
END;
OUTTEXT(")");
OUTIMAGE;
OUTIMAGE;
FOR NEEDLE:= 0, 1, 7, 17, 95, 99, 100, 101 DO BEGIN
OUTTEXT("LOOKUP RECURSIV ");
OUTINT(NEEDLE, 3);
OUTTEXT(" ... INDEX = ");
K := BINARYSEARCHREC(HAYSTACK, NEEDLE);
OUTINT(K, 3);
IF K < 0 THEN OUTTEXT(" NOT FOUND!");
OUTIMAGE;
OUTTEXT("LOOKUP ITERATIV ");
OUTINT(NEEDLE, 3);
OUTTEXT(" ... INDEX = ");
K := BINARYSEARCH(HAYSTACK, NEEDLE);
OUTINT(K, 3);
IF K < 0 THEN OUTTEXT(" NOT FOUND!");
OUTIMAGE;
OUTIMAGE;
END;
END
- Output:
ARRAY = (1, 6, 17, 29, 45, 78, 79, 87, 95, 100) LOOKUP RECURSIV 0 ... INDEX = -1 NOT FOUND! LOOKUP ITERATIV 0 ... INDEX = -1 NOT FOUND! LOOKUP RECURSIV 1 ... INDEX = 0 LOOKUP ITERATIV 1 ... INDEX = 0 LOOKUP RECURSIV 7 ... INDEX = -3 NOT FOUND! LOOKUP ITERATIV 7 ... INDEX = -3 NOT FOUND! LOOKUP RECURSIV 17 ... INDEX = 2 LOOKUP ITERATIV 17 ... INDEX = 2 LOOKUP RECURSIV 95 ... INDEX = 8 LOOKUP ITERATIV 95 ... INDEX = 8 LOOKUP RECURSIV 99 ... INDEX = -10 NOT FOUND! LOOKUP ITERATIV 99 ... INDEX = -10 NOT FOUND! LOOKUP RECURSIV 100 ... INDEX = 9 LOOKUP ITERATIV 100 ... INDEX = 9 LOOKUP RECURSIV 101 ... INDEX = -11 NOT FOUND! LOOKUP ITERATIV 101 ... INDEX = -11 NOT FOUND!
SPARK
SPARK does not allow recursion, so only the iterative solution is provided. This example shows the use of a loop assertion.
All the code for this task validates with SPARK GPL 2010 and compiles and executes with GPS GPL 2010.
The Binary_Searches package is shown first. Search is a procedure, rather than a function, so that it can return a Found flag and a Position for Item, if found. This is better design than having a Position value that means 'item not found'.
There are two versions of the package provided, although the Ada code of the two versions is identical.
The first version has a postcondition that if Found is True the Position value returned is correct. This version also has a number of 'check' annotations. These are inserted to allow the Simplifier to prove all the verification conditions. See the SPARK Proof Process.
package Binary_Searches is
subtype Item_Type is Integer; -- From specs.
subtype Index_Type is Integer range 1 .. 100;
type Array_Type is array (Index_Type range <>) of Item_Type;
procedure Search (Source : in Array_Type;
Item : in Item_Type;
Found : out Boolean;
Position : out Index_Type);
--# derives Found,
--# Position from
--# Source,
--# Item;
--# post Found -> Source (Position) = Item;
-- If Found is False then Position is undefined.
end Binary_Searches;
package body Binary_Searches is
procedure Search (Source : in Array_Type;
Item : in Item_Type;
Found : out Boolean;
Position : out Index_Type)
is
Lower : Index_Type; -- Lower bound of Subrange.
Upper : Index_Type; -- Upper bound of Subrange.
Terminated : Boolean;
begin
Found := False;
-- Default status updated on success.
Lower := Source'First;
Upper := Source'Last;
Position := (Lower + Upper) / 2;
Terminated := False;
while not Terminated loop
--# assert Lower >= Source'First
--# and Upper <= Source'Last
--# and Position in Lower .. Upper
--# and not Found;
if Item < Source (Position) then
if Position = Lower then
-- No lower subrange.
Terminated := True;
else
--# check Position > Lower;
-- For the two following proofs.
--# check Position - 1 >= Lower;
--# check Lower + Position - 1 >= Lower * 2;
--# check (Lower + Position - 1) / 2 >= Lower;
-- For "Position >= Lower" in loop assertion.
--# check Lower < Position;
--# check Lower + Position - 1 <= (Position - 1) * 2;
--# check (Lower + Position - 1) / 2 <= (Position - 1);
-- For "Position <= Upper" in loop assertion.
-- Switch to lower half subrange.
Upper := Position - 1;
Position := (Lower + Upper) / 2;
end if;
elsif Item > Source (Position) then
if Position = Upper then
-- No upper subrange.
Terminated := True;
else
--# check Position < Upper;
-- For the two following proofs.
--# check Upper >= Position + 1;
--# check Position + 1 + Upper >= (Position + 1) * 2;
--# check (Position + 1 + Upper) / 2 >= (Position + 1);
-- For "Position >= Lower" in loop assertion.
--# check Position + 1 <= Upper;
--# check Position + 1 + Upper <= Upper * 2;
--# check (Position + 1 + Upper) / 2 <= Upper;
-- For "Position <= Upper" in loop assertion.
-- Switch to upper half subrange.
Lower := Position + 1;
Position := (Lower + Upper) / 2;
end if;
else
Found := True;
Terminated := True;
end if;
end loop;
end Search;
end Binary_Searches;
The second version of the package has a stronger postcondition on Search, which also states that if Found is False then there is no value in Source equal to Item. This postcondition cannot be proved without a precondition that Source is ordered. This version needs four user rules (see the SPARK Proof Process) to be provided to the Simplifier so that it can prove all the verification conditions.
package Binary_Searches is
subtype Item_Type is Integer; -- From specs.
subtype Index_Type is Integer range 1 .. 100;
type Array_Type is array (Index_Type range <>) of Item_Type;
-- Ordered_Between is a 'proof function'. It does not have a code
-- body, but its meaning is defined by a proof rule:
--
-- Ordered_Between (Source, Low_Bound, High_Bound)
-- <->
-- for all I in Index_Type range Low_Bound .. High_Bound - 1 =>
-- (Source(I) < Source(I + 1)) ;
--
--# function Ordered_Between (Source : Array_Type;
--# Range_From, Range_To : Index_Type)
--# return Boolean;
procedure Search (Source : in Array_Type;
Item : in Item_Type;
Found : out Boolean;
Position : out Index_Type);
--# derives Found,
--# Position from
--# Source,
--# Item;
--# pre Ordered_Between (Source, Source'First, Source'Last);
--# post (Found -> (Source (Position) = Item))
--# and (not Found ->
--# (for all I in Index_Type range Source'Range
--# => (Source(I) /= Item)));
end Binary_Searches;
package body Binary_Searches is
procedure Search (Source : in Array_Type;
Item : in Item_Type;
Found : out Boolean;
Position : out Index_Type)
is
Lower : Index_Type; -- Lower bound of Subrange.
Upper : Index_Type; -- Upper bound of Subrange.
Terminated : Boolean;
begin
Found := False;
-- Default status updated on success.
Lower := Source'First;
Upper := Source'Last;
Position := (Lower + Upper) / 2;
Terminated := False;
while not Terminated loop
--# assert not Terminated
--# and not Found
--# and Lower >= Source'First
--# and Upper <= Source'Last
--# and Position in Lower .. Upper
--# and (Lower = Source'First or
--# (Lower > Source'First and Source(Lower - 1) < Item))
--# and (Upper = Source'Last or
--# (Upper < Source'Last and Source(Upper + 1) > Item));
if Item < Source (Position) then
if Position = Lower then
-- No lower subrange.
Terminated := True;
else
-- Switch to lower half subrange.
Upper := Position - 1;
Position := (Lower + Upper) / 2;
end if;
elsif Item > Source (Position) then
if Position = Upper then
-- No upper subrange.
Terminated := True;
else
-- Switch to upper half subrange.
Lower := Position + 1;
Position := (Lower + Upper) / 2;
end if;
else
Found := True;
Terminated := True;
end if;
end loop;
end Search;
end Binary_Searches;
The user rules for this version of the package (written in FDL, a language for modelling algorithms).
binary_search_rule(1): (X + Y) div 2 >= X may_be_deduced_from [ X <= Y, X >= 1, Y >= 1] . binary_search_rule(2): (X + Y) div 2 <= Y may_be_deduced_from [ X <= Y, X >= 1, Y >= 1] . binary_search_rule(3): for_all(I_ : integer, First <= I_ and I_ <= Last -> element(S, [I_]) <> X) may_be_deduced_from [ ordered_between(S, First, Last), P >= First, P <= Last, element(S, [P]) > X, P = First or (P > First and element(S, [P - 1]) < X) ] . binary_search_rule(4): for_all(I_ : integer, First <= I_ and I_ <= Last -> element(S, [I_]) <> X) may_be_deduced_from [ ordered_between(S, First, Last), P >= First, P <= Last, element(S, [P]) < X, P = Last or (P < Last and element(S, [P + 1]) > X) ] .
The test program:
with Binary_Searches;
with SPARK_IO;
--# inherit Binary_Searches,
--# SPARK_IO;
--# main_program;
procedure Test_Binary_Search
--# global in out SPARK_IO.Outputs;
--# derives SPARK_IO.Outputs from *;
is
subtype Index_Type5 is Binary_Searches.Index_Type range 1 .. 5;
subtype Index_Type7 is Binary_Searches.Index_Type range 1 .. 7;
subtype Index_Type9 is Binary_Searches.Index_Type range 91 .. 99;
-- Needed to define a constrained Array_Type.
subtype Array_Type5 is Binary_Searches.Array_Type (Index_Type5);
subtype Array_Type7 is Binary_Searches.Array_Type (Index_Type7);
subtype Array_Type9 is Binary_Searches.Array_Type (Index_Type9);
-- Needed to pass an array literal to Run_Search.
-- SPARK does not allow an unconstrained type mark for that purpose.
procedure Run_Search (Source : in Binary_Searches.Array_Type;
Item : in Binary_Searches.Item_Type)
--# global in out SPARK_IO.Outputs;
--# derives SPARK_IO.Outputs from *,
--# Item,
--# Source;
is
Found : Boolean;
Position : Binary_Searches.Index_Type;
begin
SPARK_IO.Put_String (File => SPARK_IO.Standard_Output,
Item => "Searching for ",
Stop => 0);
SPARK_IO.Put_Integer (File => SPARK_IO.Standard_Output,
Item => Item,
Width => 3,
Base => 10);
SPARK_IO.Put_String (File => SPARK_IO.Standard_Output,
Item => " in (",
Stop => 0);
for Source_Index in Binary_Searches.Index_Type range Source'Range loop
SPARK_IO.Put_Integer (File => SPARK_IO.Standard_Output,
Item => Source (Source_Index),
Width => 3,
Base => 10);
end loop;
SPARK_IO.Put_String (File => SPARK_IO.Standard_Output,
Item => "): ",
Stop => 0);
Binary_Searches.Search (Source => Source, -- in
Item => Item, -- in
Found => Found, -- out
Position => Position); -- out
if Found then
SPARK_IO.Put_String (File => SPARK_IO.Standard_Output,
Item => "found as #",
Stop => 0);
SPARK_IO.Put_Integer (File => SPARK_IO.Standard_Output,
Item => Position,
Width => 0, -- to stick to the sibling '#' sign.
Base => 10);
SPARK_IO.Put_Line (File => SPARK_IO.Standard_Output,
Item => ".",
Stop => 0);
else
SPARK_IO.Put_Line (File => SPARK_IO.Standard_Output,
Item => "not found.",
Stop => 0);
end if;
end Run_Search;
begin
SPARK_IO.New_Line (File => SPARK_IO.Standard_Output, Spacing => 1);
Run_Search (Source => Array_Type5'(0, 1, 2, 3, 4), Item => 3);
Run_Search (Source => Array_Type5'(2, 4, 6, 8, 10), Item => 3);
Run_Search (Source => Array_Type7'(1, 2, 3, 4, 5, 6, 7), Item => 0);
Run_Search (Source => Array_Type7'(1, 2, 3, 4, 5, 6, 7), Item => 7);
Run_Search (Source => Array_Type9'(1, 2, 3, 4, 5, 6, 7, 8, 9), Item => 10);
Run_Search (Source => Array_Type9'(1, 2, 3, 4, 5, 6, 7, 8, 9), Item => 1);
Run_Search (Source => Array_Type9'(1, 2, 3, 4, 5, 6, 7, 8, 9), Item => 6);
end Test_Binary_Search;
Test output (for the last three tests the array is indexed from 91):
Searching for 3 in ( 0 1 2 3 4): found as #4. Searching for 3 in ( 2 4 6 8 10): not found. Searching for 0 in ( 1 2 3 4 5 6 7): not found. Searching for 7 in ( 1 2 3 4 5 6 7): found as #7. Searching for 10 in ( 1 2 3 4 5 6 7 8 9): not found. Searching for 1 in ( 1 2 3 4 5 6 7 8 9): found as #91. Searching for 6 in ( 1 2 3 4 5 6 7 8 9): found as #96.
Standard ML
Recursive
fun binary_search cmp (key, arr) =
let
fun aux slice =
if ArraySlice.isEmpty slice then
NONE
else
let
val mid = ArraySlice.length slice div 2
in
case cmp (ArraySlice.sub (slice, mid), key)
of LESS => aux (ArraySlice.subslice (slice, mid+1, NONE))
| GREATER => aux (ArraySlice.subslice (slice, 0, SOME mid))
| EQUAL => SOME (#2 (ArraySlice.base slice) + mid)
end
in
aux (ArraySlice.full arr)
end
Usage:
- val a = Array.fromList [2, 3, 5, 6, 8]; val a = [|2,3,5,6,8|] : int array - binary_search Int.compare (4, a); val it = NONE : int option - binary_search Int.compare (8, a); val it = SOME 4 : int option
Standard ML supports proper tail-recursion; so this is effectively the same as iteration.
Library
Usage:
- structure IntArray = struct = open Array = type elem = int = type array = int Array.array = type vector = int Vector.vector = end; structure IntArray : sig [ ... rest omitted ] - structure IntBSearch = BSearchFn (IntArray); structure IntBSearch : sig structure A : <sig> val bsearch : ('a * A.elem -> order) -> 'a * A.array -> (int * A.elem) option end - val a = Array.fromList [2, 3, 5, 6, 8]; val a = [|2,3,5,6,8|] : int array - IntBSearch.bsearch Int.compare (4, a); val it = NONE : (int * IntArray.elem) option - IntBSearch.bsearch Int.compare (8, a); val it = SOME (4,8) : (int * IntArray.elem) option
Swift
Recursive
func binarySearch<T: Comparable>(xs: [T], x: T) -> Int? {
var recurse: ((Int, Int) -> Int?)!
recurse = {(low, high) in switch (low + high) / 2 {
case _ where high < low: return nil
case let mid where xs[mid] > x: return recurse(low, mid - 1)
case let mid where xs[mid] < x: return recurse(mid + 1, high)
case let mid: return mid
}}
return recurse(0, xs.count - 1)
}
Iterative
func binarySearch<T: Comparable>(xs: [T], x: T) -> Int? {
var (low, high) = (0, xs.count - 1)
while low <= high {
switch (low + high) / 2 {
case let mid where xs[mid] > x: high = mid - 1
case let mid where xs[mid] < x: low = mid + 1
case let mid: return mid
}
}
return nil
}
Test
func testBinarySearch(n: Int) {
let odds = Array(stride(from: 1, through: n, by: 2))
let result = flatMap(0...n) {binarySearch(odds, $0)}
assert(result == Array(0..<odds.count))
println("\(odds) are odd natural numbers")
for it in result {
println("\(it) is ordinal of \(odds[it])")
}
}
testBinarySearch(12)
func flatMap<T, U>(source: [T], transform: (T) -> U?) -> [U] {
return source.reduce([]) {(var xs, x) in if let x = transform(x) {xs.append(x)}; return xs}
}
Output:
[1, 3, 5, 7, 9, 11] are odd natural numbers 0 is ordinal of 1 1 is ordinal of 3 2 is ordinal of 5 3 is ordinal of 7 4 is ordinal of 9 5 is ordinal of 11
Symsyn
a : 1 : 2 : 27 : 44 : 46 : 57 : 77 : 154 : 212
binary_search param item index size
index saveindex
index L
(index + size - 1) H
if L <= H
((L + H) shr 1) M
if base.M > item
- 1 M H
else
if base.M < item
+ 1 M L
else
- saveindex M
return M
endif
endif
goif
endif
return -1
start
call binary_search 77 @a #a
result R
"'result = ' R" []
Tcl
ref: Tcl wiki
proc binSrch {lst x} {
set len [llength $lst]
if {$len == 0} {
return -1
} else {
set pivotIndex [expr {$len / 2}]
set pivotValue [lindex $lst $pivotIndex]
if {$pivotValue == $x} {
return $pivotIndex
} elseif {$pivotValue < $x} {
set recursive [binSrch [lrange $lst $pivotIndex+1 end] $x]
return [expr {$recursive > -1 ? $recursive + $pivotIndex + 1 : -1}]
} elseif {$pivotValue > $x} {
set recursive [binSrch [lrange $lst 0 $pivotIndex-1] $x]
return [expr {$recursive > -1 ? $recursive : -1}]
}
}
}
proc binary_search {lst x} {
if {[set idx [binSrch $lst $x]] == -1} {
puts "element $x not found in list"
} else {
puts "element $x found at index $idx"
}
}
Note also that, from Tcl 8.4 onwards, the lsearch command includes the -sorted option to enable binary searching of Tcl lists.
proc binarySearch {lst x} {
set idx [lsearch -sorted -exact $lst $x]
if {$idx == -1} {
puts "element $x not found in list"
} else {
puts "element $x found at index $idx"
}
}
UNIX Shell
Reading values line by line
#!/bin/ksh
# This should work on any clone of Bourne Shell, ksh is the fastest.
value=$1; [ -z "$value" ] && exit
array=()
size=0
while IFS= read -r line; do
size=$(($size + 1))
array[${#array[*]}]=$line
done
Iterative
left=0
right=$(($size - 1))
while [ $left -le $right ] ; do
mid=$((($left + $right) >> 1))
# echo "$left $mid(${array[$mid]}) $right"
if [ $value -eq ${array[$mid]} ] ; then
echo $mid
exit
elif [ $value -lt ${array[$mid]} ]; then
right=$(($mid - 1))
else
left=$((mid + 1))
fi
done
echo 'ERROR 404 : NOT FOUND'
Recursive
No code yet
UnixPipes
Parallel
splitter() {
a=$1; s=$2; l=$3; r=$4;
mid=$(expr ${#a[*]} / 2);
echo $s ${a[*]:0:$mid} > $l
echo $(($mid + $s)) ${a[*]:$mid} > $r
}
bsearch() {
(to=$1; read s arr; a=($arr);
test ${#a[*]} -gt 1 && (splitter $a $s >(bsearch $to) >(bsearch $to)) || (test "$a" -eq "$to" && echo $a at $s)
)
}
binsearch() {
(read arr; echo "0 $arr" | bsearch $1)
}
echo "1 2 3 4 6 7 8 9" | binsearch 6
Vedit macro language
Iterative
For this implementation, the numbers to be searched must be stored in current edit buffer, one number per line. (Could be for example a csv table where the first column is used as key field.)
// Main program for testing BINARY_SEARCH
#3 = Get_Num("Value to search: ")
EOF
#2 = Cur_Line // hi
#1 = 1 // lo
Call("BINARY_SEARCH")
Message("Value ") Num_Type(#3, NOCR)
if (Return_Value < 1) {
Message(" not found\n")
} else {
Message(" found at index ") Num_Type(Return_Value)
}
return
:BINARY_SEARCH:
while (#1 <= #2) {
#12 = (#1 + #2) / 2
Goto_Line(#12)
#11 = Num_Eval()
if (#3 == #11) {
return(#12) // found
} else {
if (#3 < #11) {
#2 = #12-1
} else {
#1 = #12+1
}
}
}
return(0) // not found
V (Vlang)
fn binary_search_rec(a []f64, value f64, low int, high int) int { // recursive
if high <= low {
return -1
}
mid := (low + high) / 2
if a[mid] > value {
return binary_search_rec(a, value, low, mid-1)
} else if a[mid] < value {
return binary_search_rec(a, value, mid+1, high)
}
return mid
}
fn binary_search_it(a []f64, value f64) int { //iterative
mut low := 0
mut high := a.len - 1
for low <= high {
mid := (low + high) / 2
if a[mid] > value {
high = mid - 1
} else if a[mid] < value {
low = mid + 1
} else {
return mid
}
}
return -1
}
fn main() {
f_list := [1.2,1.5,2,5,5.13,5.4,5.89,9,10]
println(binary_search_rec(f_list,9,0,f_list.len))
println(binary_search_rec(f_list,15,0,f_list.len))
println(binary_search_it(f_list,9))
println(binary_search_it(f_list,15))
}
- Output:
7 -1 7 -1
Wortel
; Recursive
@var rec &[a v l h] [
@if < h l @return null
@var m @/ +h l 2
@? {
> `m a v @!rec[a v l -m 1]
< `m a v @!rec[a v +1 m h]
m
}
]
; Iterative
@var itr &[a v] [
@vars{l 0 h #-a}
@while <= l h [
@var m @/ +l h 2
@iff {
> `m a v :h -m 1
< `m a v :l +m 1
@return m
}
]
null
]
Wren
class BinarySearch {
static recursive(a, value, low, high) {
if (high < low) return -1
var mid = low + ((high - low)/2).floor
if (a[mid] > value) return recursive(a, value, low, mid-1)
if (a[mid] < value) return recursive(a, value, mid+1, high)
return mid
}
static iterative(a, value) {
var low = 0
var high = a.count - 1
while (low <= high) {
var mid = low + ((high - low)/2).floor
if (a[mid] > value) {
high = mid - 1
} else if (a[mid] < value) {
low = mid + 1
} else {
return mid
}
}
return -1
}
}
var a = [10, 22, 45, 67, 89, 97]
System.print("array = %(a)")
System.print("\nUsing the recursive algorithm:")
for (value in [67, 93]) {
var index = BinarySearch.recursive(a, value, 0, a.count - 1)
if (index >= 0) {
System.print(" %(value) was found at index %(index) of the array.")
} else {
System.print(" %(value) was not found in the array.")
}
}
System.print("\nUsing the iterative algorithm:")
for (value in [22, 70]) {
var index = BinarySearch.iterative(a, value)
if (index >= 0) {
System.print(" %(value) was found at index %(index) of the array.")
} else {
System.print(" %(value) was not found in the array.")
}
}
- Output:
array = [10, 22, 45, 67, 89, 97] Using the recursive algorithm: 67 was found at index 3 of the array. 93 was not found in the array. Using the iterative algorithm: 22 was found at index 1 of the array. 70 was not found in the array.
XPL0
\Binary search
code CrLf=9, IntOut=11, Text=12;
def Size = 10;
integer A, X, I;
function integer DoBinarySearch(A, N, X);
integer A, N, X;
integer L, H, M;
begin
L:= 0; H:= N - 1;
while L <= H do
begin
M:= L + (H - L) / 2;
case of
A(M) < X: L:= M + 1;
A(M) > X: H:= M - 1
other return M;
end;
return -1;
end;
function integer DoBinarySearchRec(A, X, L, H);
integer A, X, L, H;
integer M;
begin
if H < L then
return -1;
M:= L + (H - L) / 2;
case of
A(M) > X: return DoBinarySearchRec(A, X, L, M - 1);
A(M) < X: return DoBinarySearchRec(A, X, M + 1, H)
other return M
end;
procedure PrintResult(X, IndX);
integer X, IndX;
begin
IntOut(0, X);
if IndX >= 0 then
begin
Text(0, " is at index ");
IntOut(0, IndX);
Text(0, ".")
end
else
Text(0, " is not found.");
CrLf(0)
end;
begin
\Sorted data
A:= [-31, 0, 1, 2, 2, 4, 65, 83, 99, 782];
X:= 2;
I:= DoBinarySearch(A, Size, X);
PrintResult(X, I);
X:= 5;
I:= DoBinarySearchRec(A, X, 0, Size - 1);
PrintResult(X, I);
end
- Output:
2 is at index 4. 5 is not found.
z/Arch Assembler
This optimized version for z/Arch, uses six general regs and avoid branch misspredictions for high/low cases.
* Binary search
BINSRCH LA R5,TABLE Begin of table
SR R2,R2 low = 0
LA R3,ENTRIES-1 high = N-1
LOOP CR R2,R3 while (low <= high)
JH NOTFOUND {
ARK R4,R2,R3 mid = low + high
SRL R4,1 mid = mid / 2
LA R1,1(R4) mid + 1
AHIK R0,R4,-1 mid - 1
MSFI R4,ENTRYL mid * length
AR R4,R5 Table[mid]
CLC 0(L'KEY,R4),SEARCH Compare
JE FOUND Equal? => Found
LOCRH R3,R0 High? => HIGH = MID-1
LOCRL R2,R1 Low? => LOW = MID+1
J LOOP }
Zig
Works with: 0.11.x, 0.12.0-dev.1381+61861ef39
For 0.10.x, replace @intFromPtr(...) with @ptrToInt(...) in these examples.
With slices
Iterative
pub fn binarySearch(comptime T: type, input: []const T, search_value: T) ?usize {
if (input.len == 0) return null;
if (@sizeOf(T) == 0) return 0;
var view: []const T = input;
const item_ptr: *const T = item_ptr: while (view.len > 0) {
const mid = (view.len - 1) / 2;
const mid_elem_ptr: *const T = &view[mid];
if (mid_elem_ptr.* > search_value)
view = view[0..mid]
else if (mid_elem_ptr.* < search_value)
view = view[mid + 1 .. view.len]
else
break :item_ptr mid_elem_ptr;
} else return null;
const distance_in_bytes = @intFromPtr(item_ptr) - @intFromPtr(input.ptr);
return (distance_in_bytes / @sizeOf(T));
}
Recursive
pub fn binarySearch(comptime T: type, input: []const T, search_value: T) ?usize {
return binarySearchInner(T, input, search_value, @intFromPtr(input.ptr));
}
fn binarySearchInner(comptime T: type, input: []const T, search_value: T, start_address: usize) ?usize {
if (input.len == 0) return null;
if (@sizeOf(T) == 0) return 0;
const mid = (input.len - 1) / 2;
const mid_elem_ptr: *const T = &input[mid];
return if (mid_elem_ptr.* > search_value)
binarySearchInner(T, input[0..mid], search_value, start_address)
else if (mid_elem_ptr.* < search_value)
binarySearchInner(T, input[mid + 1 .. input.len], search_value, start_address)
else
(@intFromPtr(mid_elem_ptr) - start_address) / @sizeOf(T);
}
With indexes
Iterative
const math = @import("std").math;
pub fn binarySearch(comptime T: type, input: []const T, search_value: T) ?usize {
if (input.len == 0) return null;
if (@sizeOf(T) == 0) return 0;
var low: usize = 0;
var high: usize = input.len - 1;
return while (low <= high) {
const mid = ((high - low) / 2) + low;
const mid_elem: T = input[mid];
if (mid_elem > search_value)
high = math.sub(usize, mid, 1) catch break null
else if (mid_elem < search_value)
low = mid + 1
else
break mid;
} else null;
}
Recursive
const math = @import("std").math;
pub fn binarySearch(comptime T: type, input: []const T, search_value: T) ?usize {
if (input.len == 0) return null;
if (@sizeOf(T) == 0) return 0;
return binarySearchInner(T, input, search_value, 0, input.len - 1);
}
fn binarySearchInner(comptime T: type, input: []const T, search_value: T, low: usize, high: usize) ?usize {
if (low > high) return null;
const mid = ((high - low) / 2) + low;
const mid_elem: T = input[mid];
return if (mid_elem > search_value)
binarySearchInner(T, input, search_value, low, math.sub(usize, mid, 1) catch return null)
else if (mid_elem < search_value)
binarySearchInner(T, input, search_value, mid + 1, high)
else
mid;
}
zkl
This algorithm is tail recursive, which means it is both recursive and iterative (since tail recursion optimizes to a jump). Overflow is not possible because Ints (64 bit) are a lot bigger than the max length of a list.
fcn bsearch(list,value){ // list is sorted
fcn(list,value, low,high){
if (high < low) return(Void); // not found
mid:=(low + high) / 2;
if (list[mid] > value) return(self.fcn(list,value, low, mid-1));
if (list[mid] < value) return(self.fcn(list,value, mid+1, high));
return(mid); // found
}(list,value,0,list.len()-1);
}
list:=T(1,3,5,7,9,11); println("Sorted values: ",list);
foreach i in ([0..12]){
n:=bsearch(list,i);
if (Void==n) println("Not found: ",i);
else println("found ",i," at index ",n);
}
- Output:
Sorted values: L(1,3,5,7,9,11) Not found: 0 found 1 at index 0 Not found: 2 found 3 at index 1 Not found: 4 found 5 at index 2 Not found: 6 found 7 at index 3 Not found: 8 found 9 at index 4 Not found: 10 found 11 at index 5 Not found: 12