Binary digits

From Rosetta Code
Task
Binary digits
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Create and display the sequence of binary digits for a given   non-negative integer.

   The decimal value      5   should produce an output of               101
   The decimal value     50   should produce an output of            110010
   The decimal value   9000   should produce an output of    10001100101000

The results can be achieved using built-in radix functions within the language   (if these are available),   or alternatively a user defined function can be used.

The output produced should consist just of the binary digits of each number followed by a   newline.

There should be no other whitespace, radix or sign markers in the produced output, and leading zeros should not appear in the results.

0815

<lang 0815>}:r:|~ Read numbers in a loop.

 }:b:    Treat the queue as a stack and
   <:2:= accumulate the binary digits
   /=>&~ of the given number.
 ^:b:
 <:0:->  Enqueue negative 1 as a sentinel.
 {       Dequeue the first binary digit.
 }:p:
   ~%={+ Rotate each binary digit into place and print it.
 ^:p:
 <:a:~$  Output a newline.

^:r:</lang>

Output:

Note that 0815 reads numeric input in hexadecimal.

<lang bash>echo -e "5\n32\n2329" | 0815 bin.0 101 110010 10001100101001</lang>

360 Assembly

<lang 360asm>* Binary digits 27/08/2015 BINARY CSECT

        USING  BINARY,R12
        LR     R12,R15            set base register

BEGIN LA R10,4

        LA     R9,N

LOOPN MVC W,0(R9)

        MVI    FLAG,X'00'
        LA     R8,32
        LA     R2,CBIN

LOOP TM W,B'10000000' test fist bit

        BZ     ZERO               zero
        MVI    FLAG,X'01'         one written
        MVI    0(R2),C'1'         write 1
        B      CONT

ZERO CLI FLAG,X'01' is one written ?

        BNE    BLANK
        MVI    0(R2),C'0'         write 0
        B      CONT

BLANK BCTR R2,0 backspace CONT L R3,W

        SLL    R3,1               shilf left
        ST     R3,W
        LA     R2,1(R2)           next bit
        BCT    R8,LOOP            loop on bits

PRINT CLI FLAG,X'00' is '0'

        BNE    NOTZERO
        MVI    0(R2),C'0'         then write 0

NOTZERO L R1,0(R9)

        XDECO  R1,CDEC
        XPRNT  CDEC,45
        LA     R9,4(R9)
        BCT    R10,LOOPN          loop on numbers

RETURN XR R15,R15 set return code

        BR     R14                return to caller

N DC F'0',F'5',F'50',F'9000' W DS F work FLAG DS X flag for trailing blanks CDEC DS CL12 decimal value

        DC     C' '            

CBIN DC CL32' ' binary value

        YREGS  
        END    BINARY</lang>
Output:
           0 0
           5 101
          50 110010
        9000 10001100101000

6502 Assembly

Works with: [VICE]

This example has been written for the C64 and uses some BASIC routines to read the parameter after the SYS command and to print the result. Compile with the Turbo Macro Pro cross assembler:

tmpx -i dec2bin.s -o dec2bin.prg

Use the c1541 utility to create a disk image that can be loaded using VICE x64. Run with:

SYS828,x

where x is an integer ranging from 0 to 65535 (16 bit int). Floating point numbers are truncated and converted accordingly. The example can easily be modified to run on the VIC-20, just change the labels as follows:

chkcom      = $cefd
frmnum      = $cd8a
getadr      = $d7f7
strout      = $cb1e

<lang 6502asm>

C64 - Binary digits
http://rosettacode.org/wiki/Binary_digits
*** labels ***

declow = $fb dechigh = $fc binstrptr = $fd  ; $fe is used for the high byte of the address chkcom = $aefd frmnum = $ad8a getadr = $b7f7 strout = $ab1e

*** main ***
           *=$033c             ; sys828 tbuffer ($033c-$03fb)
           jsr chkcom          ; check for and skip comma
           jsr frmnum          ; evaluate numeric expression
           jsr getadr          ; convert floating point number to two-byte int
           jsr dec2bin         ; convert two-byte int to binary string
           lda #<binstr        ; load the address of the binary string - low
           ldy #>binstr        ; high byte
           jsr skiplz          ; skip leading zeros, return an address in a/y
                               ;   that points to the first "1" 
           jsr strout          ; print the result
           rts
*** subroutines ****
Converts a 16 bit integer to a binary string.
Input
y - low byte of the integer
a - high byte of the integer
Output
a 16 byte string stored at 'binstr'

dec2bin sty declow  ; store the two-byte integer

           sta dechigh
           lda #<binstr        ; store the binary string address on the zero page
           sta binstrptr
           lda #>binstr
           sta binstrptr+1
           ldx #$01            ; start conversion with the high byte

wordloop ldy #$00  ; bit counter byteloop asl declow,x  ; shift left, bit 7 is shifted into carry

           bcs one             ; carry set? jump
           lda #"0"            ; a="0"
           bne writebit

one lda #"1"  ; a="1" writebit sta (binstrptr),y  ; write the digit to the string

           iny                 ; y++
           cpy #$08            ; y==8 all bits converted?
           bne byteloop        ;   no -> convert next bit
           clc                 ; clear carry
           lda #$08            ; a=8
           adc binstrptr       ; add 8 to the string address pointer
           sta binstrptr
           bcc nooverflow      ; address low byte did overflow?
           inc binstrptr+1     ;   yes -> increase the high byte

nooverflow dex  ; x--

           bpl wordloop        ; x<0? no -> convert the low byte
           rts                 ;   yes -> conversion finished, return
Skip leading zeros.
Input
a - low byte of the byte string address
y - high byte -"-
Output
a - low byte of string start address without leading zeros
y - high byte -"-

skiplz sta binstrptr  ; store the binary string address on the zero page

           sty binstrptr+1
           ldy #$00            ; byte counter

skiploop lda (binstrptr),y  ; load a byte from the string

           iny                 ; y++
           cpy #$11            ; y==17
           beq endreached      ;   yes -> end of string reached without a "1"
           cmp #"1"            ; a=="1"
           bne skiploop        ;   no -> take the next byte
           beq add2ptr         ;   yes -> jump

endreached dey  ; move the pointer to the last 0 add2ptr clc

           dey
           tya                 ; a=y
           adc binstrptr       ; move the pointer to the first "1" in the string
           bcc loadhigh        ; overflow?
           inc binstrptr+1     ;  yes -> increase high byte

loadhigh ldy binstrptr+1

           rts
*** data ***

binstr .repeat 16, $00  ; reserve 16 bytes for the binary digits

           .byte $0d, $00      ; newline + null terminator

</lang> Output:

SYS828,5
101

SYS828,50
110010

SYS828,9000
10001100101000

SYS828,4.7
100

8th

<lang forth> 2 base drop

  1. 50 . cr

</lang>

Output:
110010

ACL2

<lang Lisp>(include-book "arithmetic-3/top" :dir :system)

(defun bin-string-r (x)

  (if (zp x)
      ""
      (string-append
       (bin-string-r (floor x 2))
       (if (= 1 (mod x 2))
           "1"
           "0"))))

(defun bin-string (x)

  (if (zp x)
      "0"
      (bin-string-r x)))</lang>

Ada

This solution uses the [Base_Conversion package [1]] from the [find palindromic numbers [2]] task.

<lang Ada>with Ada.Text_IO, Base_Conversion;

procedure Binary_Digits is

  package BC is new Base_Conversion(Integer);
  function To_Binary(N: Natural) return String is
     (BC.Image(N, Base => 2));
  

begin

  Ada.Text_IO.Put_Line(To_Binary(5));    -- 101
  Ada.Text_IO.Put_Line(To_Binary(50));   -- 110010
  Ada.Text_IO.Put_Line(To_Binary(9000)); -- 10001100101000

end Binary_Digits;</lang>

Aime

<lang aime>o_xinteger(2, 0); o_byte('\n'); o_xinteger(2, 5); o_byte('\n'); o_xinteger(2, 50); o_byte('\n'); o_form("/x2/\n", 9000);</lang>

Output:
0
101
110010
10001100101000

ALGOL 68

Works with: ALGOL 68 version Revision 1.
Works with: ALGOL 68G version Any - tested with release algol68g-2.3.3.

File: Binary_digits.a68<lang algol68>#!/usr/local/bin/a68g --script #

printf((

 $g" => "2r3d l$, 5, BIN 5,
 $g" => "2r6d l$, 50, BIN 50,
 $g" => "2r14d l$, 9000, BIN 9000

));

  1. or coerce to an array of BOOL #

print((

 5, " => ", []BOOL(BIN 5)[bits width-3+1:], new line,
 50, " => ", []BOOL(BIN 50)[bits width-6+1:], new line,
 9000, " => ", []BOOL(BIN 9000)[bits width-14+1:], new line

))</lang>

Output
         +5 => 101
        +50 => 110010
      +9000 => 10001100101000
         +5 => TFT
        +50 => TTFFTF
      +9000 => TFFFTTFFTFTFFF

ALGOL W

<lang algolw>begin

   % prints an integer in binary - the number must be greater than zero     %
   procedure printBinaryDigits( integer value n ) ;
   begin
       if n not = 0 then begin
           printBinaryDigits( n div 2 );
           writeon( if n rem 2 = 1 then "1" else "0" )
       end
   end binaryDigits ;
   % prints an integer in binary - the number must not be negative          %
   procedure printBinary( integer value n ) ;
   begin
       if n = 0 then writeon( "0" )
                else printBinaryDigits( n )
   end printBinary ;
   % test the printBinaryDigits procedure                                   %
   for i := 5, 50, 9000 do begin
       write();
       printBinary( i );
   end

end.</lang>


AppleScript

Translation of: JavaScript

(ES6 version)

(The generic showIntAtBase here, which allows us to specify the digit set used (e.g. upper or lower case in hex, or different regional or other digit sets generally), is a rough translation of Haskell's Numeric.showintAtBase) <lang AppleScript>-- showBin :: Int -> String on showBin(n)

   script binaryChar
       on |λ|(n)
           text item (n + 1) of "01"
       end |λ|
   end script
   showIntAtBase(2, binaryChar, n, "")

end showBin

-- GENERIC FUNCTIONS ----------------------------------------------------------

-- showIntAtBase :: Int -> (Int -> Char) -> Int -> String -> String on showIntAtBase(base, toChr, n, rs)

   script showIt
       on |λ|(nd_, r)
           set {n, d} to nd_
           set r_ to toChr's |λ|(d) & r
           if n > 0 then
               |λ|(quotRem(n, base), r_)
           else
               r_
           end if
       end |λ|
   end script
   
   if base ≤ 1 then
       "error: showIntAtBase applied to unsupported base: " & base as string
   else if n < 0 then
       "error: showIntAtBase applied to negative number: " & base as string
   else
       showIt's |λ|(quotRem(n, base), rs)
   end if

end showIntAtBase

-- quotRem :: Integral a => a -> a -> (a, a) on quotRem(m, n)

   {m div n, m mod n}

end quotRem

-- TEST ----------------------------------------------------------------------- on run

   script
       on |λ|(n)
           intercalate(" -> ", {n as string, showBin(n)})
       end |λ|
   end script
   
   return unlines(map(result, {5, 50, 9000}))

end run


-- GENERIC FUNCTIONS FOR TEST -------------------------------------------------

-- intercalate :: Text -> [Text] -> Text on intercalate(strText, lstText)

   set {dlm, my text item delimiters} to {my text item delimiters, strText}
   set strJoined to lstText as text
   set my text item delimiters to dlm
   return strJoined

end intercalate

-- map :: (a -> b) -> [a] -> [b] on map(f, xs)

   tell mReturn(f)
       set lng to length of xs
       set lst to {}
       repeat with i from 1 to lng
           set end of lst to |λ|(item i of xs, i, xs)
       end repeat
       return lst
   end tell

end map

-- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Script on mReturn(f)

   if class of f is script then
       f
   else
       script
           property |λ| : f
       end script
   end if

end mReturn

-- unlines :: [String] -> String on unlines(xs)

   intercalate(linefeed, xs)

end unlines</lang>

Output:
5 -> 101
50 -> 110010
9000 -> 10001100101000

Or,using: <lang AppleScript>-- showBin :: Int -> String on showBin(n)

   script binaryChar
       on |λ|(n)
           text item (n + 1) of "〇一"
       end |λ|
   end script
   showIntAtBase(2, binaryChar, n, "")

end showBin</lang>

5 -> 一〇一
50 -> 一一〇〇一〇
9000 -> 一〇〇〇一一〇〇一〇一〇〇〇

Applesoft BASIC

<lang ApplesoftBasic> 0 N = 5: GOSUB 1:N = 50: GOSUB 1:N = 9000: GOSUB 1: END

1  LET N2 =  ABS ( INT (N))
2  LET B$ = ""
3  FOR N1 = N2 TO 0 STEP 0
4      LET N2 =  INT (N1 / 2)
5      LET B$ =  STR$ (N1 - N2 * 2) + B$
6      LET N1 = N2
7  NEXT N1
8  PRINT B$
9  RETURN</lang>
Output:
101
110010
10001100101000

AutoHotkey

<lang AutoHotkey>MsgBox % NumberToBinary(5) ;101 MsgBox % NumberToBinary(50) ;110010 MsgBox % NumberToBinary(9000) ;10001100101000

NumberToBinary(InputNumber) {

While, InputNumber
 Result := (InputNumber & 1) . Result, InputNumber >>= 1
Return, Result

}</lang>

AutoIt

<lang autoit> ConsoleWrite(IntToBin(50) & @CRLF)

Func IntToBin($iInt) $Stack = ObjCreate("System.Collections.Stack") Local $b = -1, $r = "" While $iInt <> 0 $b = Mod($iInt, 2) $iInt = INT($iInt/2) $Stack.Push ($b) WEnd For $i = 1 TO $Stack.Count $r &= $Stack.Pop Next Return $r EndFunc  ;==>IntToBin </lang>

AWK

<lang awk>BEGIN {

 print tobinary(5)
 print tobinary(50)
 print tobinary(9000)

}

function tobinary(num) {

 outstr = ""
 l = num
 while ( l ) {
   if ( l%2 == 0 ) {
     outstr = "0" outstr
   } else {
     outstr = "1" outstr
   }
   l = int(l/2)
 }
 # Make sure we output a zero for a value of zero
 if ( outstr == "" ) {
   outstr = "0"
 }
 return outstr

}</lang>

Axe

This example builds a string backwards to ensure the digits are displayed in the correct order. It uses bitwise logic to extract one bit at a time. <lang axe>Lbl BIN .Axe supports 16-bit integers, so 16 digits are enough L₁+16→P 0→{P} While r₁

P--
{(r₁ and 1)▶Hex+3}→P
r₁/2→r₁

End Disp P,i Return</lang>

BaCon

<lang freebasic>' Binary digits OPTION MEMTYPE int INPUT n$ IF VAL(n$) = 0 THEN

   PRINT "0"

ELSE

   PRINT CHOP$(BIN$(VAL(n$)), "0", 1)

ENDIF</lang>

Batch File

This num2bin.bat file handles non-negative input as per the requirements with no leading zeros in the output. Batch only supports signed integers. This script also handles negative values by printing the appropriate two's complement notation. <lang dos>@echo off

num2bin IntVal [RtnVar]
 setlocal enableDelayedExpansion
 set /a n=%~1
 set rtn=
 for /l %%b in (0,1,31) do (
   set /a "d=n&1, n>>=1"
   set rtn=!d!!rtn!
 )
 for /f "tokens=* delims=0" %%a in ("!rtn!") do set rtn=%%a
 (endlocal & rem -- return values
   if "%~2" neq "" (set %~2=%rtn%) else echo %rtn%
 )

exit /b</lang>

BBC BASIC

<lang bbcbasic> FOR num% = 0 TO 16

       PRINT FN_tobase(num%, 2, 0)
     NEXT
     END
     
     REM Convert N% to string in base B% with minimum M% digits:
     DEF FN_tobase(N%,B%,M%)
     LOCAL D%,A$
     REPEAT
       D% = N%MODB%
       N% DIV= B%
       IF D%<0 D% += B%:N% -= 1
       A$ = CHR$(48 + D% - 7*(D%>9)) + A$
       M% -= 1
     UNTIL (N%=FALSE OR N%=TRUE) AND M%<=0
     =A$</lang>

The above is a generic "Convert to any base" program. Here is a faster "Convert to Binary" program: <lang bbcbasic>PRINT FNbinary(5) PRINT FNbinary(50) PRINT FNbinary(9000) END

DEF FNbinary(N%) LOCAL A$ REPEAT

 A$ = STR$(N% AND 1) + A$
 N% = N% >>> 1  : REM BBC Basic prior to V5 can use N% = N% DIV 2

UNTIL N% = 0 =A$</lang>

bc

Translation of: dc

<lang bc>obase = 2 5 50 9000 quit</lang>

Befunge

Reads the number to convert from standard input. <lang befunge>&>0\55+\:2%68>*#<+#8\#62#%/#2:_$>:#,_$@</lang>

Output:
9000
10001100101000

Bracmat

<lang bracmat> ( dec2bin

 =   bit bits
   .   :?bits
     &   whl
       ' ( !arg:>0
         & mod$(!arg,2):?bit
         & div$(!arg,2):?arg
         & !bit !bits:?bits
         )
     & (str$!bits:~|0)
 )

& 0 5 50 9000 423785674235000123456789:?numbers & whl

 ' ( !numbers:%?dec ?numbers
   & put$(str$(!dec ":\n" dec2bin$!dec \n\n))
   )
</lang>

Output:

0:
0

5:
101

50:
110010

9000:
10001100101000

423785674235000123456789:
1011001101111010111011110101001101111000000000000110001100000100111110100010101

Brainf***

This is almost an exact duplicate of Count in octal#Brainf***. It outputs binary numbers until it is forced to terminate or the counter overflows to 0.

<lang bf>+[ Start with n=1 to kick off the loop [>>++<< Set up {n 0 2} for divmod magic [->+>- Then [>+>>]> do [+[-<+>]>+>>] the <<<<<<] magic >>>+ Increment n % 2 so that 0s don't break things >] Move into n / 2 and divmod that unless it's 0 -< Set up sentinel ‑1 then move into the first binary digit [++++++++ ++++++++ ++++++++ Add 47 to get it to ASCII

++++++++ ++++++++ +++++++. and print it

[<]<] Get to a 0; the cell to the left is the next binary digit >>[<+>-] Tape is {0 n}; make it {n 0} >[>+] Get to the ‑1 <[[-]<] Zero the tape for the next iteration ++++++++++. Print a newline [-]<+] Zero it then increment n and go again</lang>

Burlesque

<lang burlesque> blsq ) {5 50 9000}{2B!}m[uN 101 110010 10001100101000 </lang>

C

Converts int to a string. <lang c>#include <math.h>

  1. include <stdio.h>
  2. include <stdlib.h>
  3. include <stdint.h>

char *bin(uint32_t x);

int main(void) {

   for (size_t i = 0; i < 20; i++) {
       char *binstr = bin(i);
       printf("%s\n", binstr);
       free(binstr);
   }

}

char *bin(uint32_t x) {

   size_t bits = (x == 0) ? 1 : log10((double) x)/log10(2) + 1;
   char *ret = malloc((bits + 1) * sizeof (char));
   for (size_t i = 0; i < bits ; i++) {
      ret[bits - i - 1] = (x & 1) ? '1' : '0';
      x >>= 1;
   }
   ret[bits] = '\0';
   return ret;

}</lang>

Output:
0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111
10000
10001
10010
10011

C++

<lang cpp>#include <bitset>

  1. include <iostream>
  2. include <limits>
  3. include <string>

void print_bin(unsigned int n) {

 std::string str = "0";
 if (n > 0) {
   str = std::bitset<std::numeric_limits<unsigned int>::digits>(n).to_string();
   str = str.substr(str.find('1')); // remove leading zeros
 } 
 
 std::cout << str << '\n';

}

int main() {

 print_bin(0);
 print_bin(5);
 print_bin(50);
 print_bin(9000);

} </lang> Output:

0
101
110010
10001100101000

Shorter version using bitset <lang cpp>#include <iostream>

  1. include <bitset>

void printBits(int n) { // Use int like most programming languages.

 int iExp = 0;                             // Bit-length
 while (n >> iExp) ++iExp;                 // Could use template <log(x)*1.44269504088896340736>  
 for (int at = iExp - 1; at >= 0; at--)    // Reverse iter from the bit-length to 0 - msb is at end
   std::cout << std::bitset<32>(n)[at];    // Show 1's, show lsb, hide leading zeros
 std::cout << '\n';

} int main(int argc, char* argv[]) {

 printBits(5);
 printBits(50);
 printBits(9000);

} // for testing with n=0 printBits<32>(0);</lang> Using >> operator. (1st example is 2.75x longer. Matter of taste.) <lang cpp>#include <iostream> int main(int argc, char* argv[]) {

 unsigned int in[] = {5, 50, 9000};        // Use int like most programming languages
 for (int i = 0; i < 3; i++)               // Use all inputs
   for (int at = 31; at >= 0; at--)        // reverse iteration from the max bit-length to 0, because msb is at the end
     if (int b = (in[i] >> at))            // skip leading zeros. Start output when significant bits are set
        std::cout << ('0' + b & 1) << (!at ? "\n": "");	// '0' or '1'. Add EOL if last bit of num

} </lang> To be fair comparison with languages that doesn't declare a function like C++ main(). 3.14x shorter than 1st example. <lang cpp>#include <iostream> int main(int argc, char* argv[]) { // Usage: program.exe 5 50 9000

 for (int i = 1; i < argc; i++)                          // argv[0] is program name
   for (int at = 31; at >= 0; at--)                      // reverse iteration from the max bit-length to 0, because msb is at the end
     if (int b = (atoi(argv[i]) >> at))                  // skip leading zeros
        std::cout << ('0' + b & 1) << (!at ? "\n": "");  // '0' or '1'. Add EOL if last bit of num

} </lang> Using bitwise operations with recursion. <lang cpp>

  1. include <iostream>

std::string binary(int n) {

 return n == 0 ? "" : binary(n >> 1) + std::to_string(n & 1);

}

int main(int argc, char* argv[]) {

 for (int i = 1; i < argc; ++i) {
   std::cout << binary(std::stoi(argv[i])) << std::endl;
 }

} </lang> Output:

101
110010
10001100101000

Clojure

<lang clojure>(Integer/toBinaryString 5) (Integer/toBinaryString 50) (Integer/toBinaryString 9000)</lang>

COBOL

<lang COBOL> IDENTIFICATION DIVISION.

      PROGRAM-ID. SAMPLE.
      DATA DIVISION.
      WORKING-STORAGE SECTION.
        01 binary_number   pic X(21).
        01 str             pic X(21).
        01 binary_digit    pic X.
        01 digit           pic 9.
        01 n               pic 9(7).
        01 nstr            pic X(7).
      PROCEDURE DIVISION.
        accept nstr
        move nstr to n
        perform until n equal 0
          divide n by 2 giving n remainder digit
          move digit to binary_digit
          string binary_digit  DELIMITED BY SIZE
                 binary_number DELIMITED BY SPACE
                 into str
          move str to binary_number
        end-perform.
        display binary_number
        stop run.

</lang> Free-form, using a reference modifier to index into binary-number. <lang cobol>IDENTIFICATION DIVISION. PROGRAM-ID. binary-conversion.

DATA DIVISION. WORKING-STORAGE SECTION. 01 binary-number pic X(21). 01 digit pic 9. 01 n pic 9(7). 01 nstr pic X(7). 01 ptr pic 99.

PROCEDURE DIVISION. display "Number: " with no advancing. accept nstr. move nstr to n. move zeroes to binary-number. move length binary-number to ptr. perform until n equal 0 divide n by 2 giving n remainder digit move digit to binary-number(ptr:1) subtract 1 from ptr if ptr < 1 exit perform end-if end-perform. display binary-number. stop run.</lang>

CoffeeScript

<lang coffeescript>binary = (n) ->

 new Number(n).toString(2)
 

console.log binary n for n in [5, 50, 9000]</lang>

Common Lisp

Just print the number with "~b": <lang lisp>(format t "~b" 5)

or

(write 5 :base 2)</lang>

C#

<lang csharp>using System;

class Program {

   static void Main()
   {
       foreach (var number in new[] { 5, 50, 9000 })
       {
           Console.WriteLine(Convert.ToString(number, 2));
       }
   }

}</lang> Output:

101
110010
10001100101000

Component Pascal

BlackBox Component Builder <lang oberon2> MODULE BinaryDigits; IMPORT StdLog,Strings;

PROCEDURE Do*; VAR str : ARRAY 33 OF CHAR; BEGIN Strings.IntToStringForm(5,2, 1,'0',FALSE,str); StdLog.Int(5);StdLog.String(":> " + str);StdLog.Ln; Strings.IntToStringForm(50,2, 1,'0',FALSE,str); StdLog.Int(50);StdLog.String(":> " + str);StdLog.Ln; Strings.IntToStringForm(9000,2, 1,'0',FALSE,str); StdLog.Int(9000);StdLog.String(":> " + str);StdLog.Ln; END Do; END BinaryDigits. </lang> Execute: ^Q BinaryDigits.Do
Output:

 5:> 101
 50:> 110010
 9000:> 10001100101000

D

<lang d>void main() {

   import std.stdio;
   foreach (immutable i; 0 .. 16)
       writefln("%b", i);

}</lang>

Output:
0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111

Dart

<lang dart>String binary(int n) {

 if(n<0)
   throw new IllegalArgumentException("negative numbers require 2s complement");
 if(n==0) return "0";
 String res="";
 while(n>0) {
   res=(n%2).toString()+res;
   n=(n/2).toInt();
 }
 return res;

}

main() {

 print(binary(0));
 print(binary(1));
 print(binary(5));
 print(binary(10));
 print(binary(50));
 print(binary(9000));
 print(binary(65535));
 print(binary(0xaa5511ff));
 print(binary(0x123456789abcde));
 // fails due to precision limit
 print(binary(0x123456789abcdef));

}</lang>

dc

<lang dc>2o 5p 50p 9000p</lang>

Output:
101
110010
10001100101000

Delphi

<lang Delphi> program BinaryDigit; {$APPTYPE CONSOLE} uses

 sysutils;

function IntToBinStr(AInt : LongWord) : string; begin

 Result := ;
 repeat
   Result := Chr(Ord('0')+(AInt and 1))+Result;
   AInt := AInt div 2;
 until (AInt = 0);

end;

Begin

 writeln('   5: ',IntToBinStr(5));
 writeln('  50: ',IntToBinStr(50));
 writeln('9000: '+IntToBinStr(9000));

end.</lang>

output
   5: 101
  50: 110010
9000: 10001100101000

EchoLisp

<lang scheme>

primitive
(number->string number [base]) - default base = 10

(number->string 2 2) → 10

(for-each (compose writeln (rcurry number->string 2)) '( 5 50 9000)) → 101 110010 10001100101000 </lang>


</lang>

Elena

ELENA 3.x : <lang elena>import system'routines. import extensions.

program = [

   (5,50,9000) run each: (:n)
   [
       console printLine:(n toLiteral base:2).
   ].

].</lang>

Output:
101
110010
10001100101000

Elixir

Use Integer.to_string with a base of 2: <lang Elixir> IO.puts Integer.to_string(5,2) </lang> Or, using the pipe operator: <lang Elixir> 5 |> Integer.to_string(2) |> IO.puts </lang> <lang Elixir> [5,50,9000] |> Enum.each(fn n -> IO.puts Integer.to_string(n,2) end) </lang>

Output:
101
110010
10001100101000

Erlang

<lang erlang>lists:map( fun(N) -> io:fwrite("~.2B~n", [N]) end, [5, 50, 9000]). </lang> Output:

101
110010
10001100101000

Euphoria

<lang euphoria>function toBinary(integer i)

   sequence s
   s = {}
   while i do
       s = prepend(s, '0'+and_bits(i,1))
       i = floor(i/2)
   end while
   return s

end function

puts(1, toBinary(5) & '\n') puts(1, toBinary(50) & '\n') puts(1, toBinary(9000) & '\n')</lang>

Functional/Recursive

<lang euphoria>include std/math.e include std/convert.e

function Bin(integer n, sequence s = "")

 if n > 0 then
  return Bin(floor(n/2),(mod(n,2) + #30) & s)
 end if
 if length(s) = 0 then
  return to_integer("0")
 end if
 return to_integer(s)

end function

printf(1, "%d\n", Bin(5)) printf(1, "%d\n", Bin(50)) printf(1, "%d\n", Bin(9000))</lang>

F#

Translation of C#, using imperative coding style: <lang FSharp>open System for i in [5; 50; 9000] do printfn "%s" <| Convert.ToString (i, 2)</lang>

Alternative way, by creating a function printBin which prints in binary: <lang FSharp>open System

// define the function let printBin (i: int) =

   Convert.ToString (i, 2)
   |> printfn "%s" 

// use the function [5; 50; 9000] |> List.iter printBin</lang> Output (either version):

101
110010
10001100101000

Factor

<lang factor>USING: io kernel math math.parser ;

5 >bin print 50 >bin print 9000 >bin print</lang>

FBSL

<lang fbsl>#AppType Console function Bin(byval n as integer, byval s as string = "") as string if n > 0 then return Bin(n \ 2, (n mod 2) & s) if s = "" then return "0" return s end function

print Bin(5) print Bin(50) print Bin(9000)

pause </lang>

Forth

<lang forth>\ Forth uses a system variable 'BASE' for number conversion

\ HEX is a standard word to change the value of base to 16 \ DECIMAL is a standard word to change the value of base to 10

\ we can easily compile a word into the system to set 'BASE' to 2

 : binary  2 base ! ; ok


\ interactive console test with conversion and binary masking example

hex 0FF binary . 11111111 ok decimal 679 binary . 1010100111 ok

 ok

binary 11111111111 00000110000 and . 110000 ok

decimal ok

</lang>

Fortran

Please find compilation instructions and the example run at the start of the FORTRAN90 source that follows. Thank you. <lang FORTRAN> !-*- mode: compilation; default-directory: "/tmp/" -*- !Compilation started at Sun May 19 23:14:14 ! !a=./F && make $a && $a < unixdict.txt !f95 -Wall -ffree-form F.F -o F !101 !110010 !10001100101000 ! !Compilation finished at Sun May 19 23:14:14 ! ! ! tobin=: -.&' '@":@#: ! tobin 5 !101 ! tobin 50 !110010 ! tobin 9000 !10001100101000

program bits

 implicit none
 integer, dimension(3) :: a
 integer :: i
 data a/5,50,9000/
 do i = 1, 3
   call s(a(i))
 enddo

contains

 subroutine s(a)
   integer, intent(in) :: a
   integer :: i
   if (a .eq. 0) then
     write(6,'(a)')'0'
     return
   endif
   do i = 31, 0, -1
     if (btest(a, i)) exit
   enddo
   do while (0 .lt. i)
     if (btest(a, i)) then
       write(6,'(a)',advance='no')'1'
     else
       write(6,'(a)',advance='no')'0'
     endif
     i = i-1
   enddo
   if (btest(a, i)) then
     write(6,'(a)')'1'
   else
     write(6,'(a)')'0'
   endif
 end subroutine s

end program bits </lang>

FreeBASIC

<lang freebasic> ' FreeBASIC v1.05.0 win64 Dim As String fmt = "#### -> &" Print Using fmt; 5; Bin(5) Print Using fmt; 50; Bin(50) Print Using fmt; 9000; Bin(9000) Print Print "Press any key to exit the program" Sleep End </lang>

Output:
   5 -> 101
  50 -> 110010
9000 -> 10001100101000

FunL

<lang funl>for n <- [5, 50, 9000, 9000000000]

 println( n, bin(n) )</lang>
Output:
5, 101
50, 110010
9000, 10001100101000
9000000000, 1000011000011100010001101000000000

Futhark

We produce the binary number as a 64-bit integer whose digits are all 0s and 1s - this is because Futhark does not have any way to print, nor strings for that matter.

<lang Futhark> fun main(x: i32): i64 =

 loop (out = 0i64) = for i < 32 do
   let digit = (x >> (31-i)) & 1
   let out = (out * 10i64) + i64(digit)
   in out
 in out

</lang>

Frink

The following all provide equivalent output. Input can be arbitrarily-large integers. <lang frink> 9000 -> binary 9000 -> base2 base2[9000] base[9000, 2] </lang>

Gambas

<lang gambas>Public Sub Main() Dim siBin As Short[] = [5, 50, 9000] Dim siCount As Short

For siCount = 0 To siBin.Max

 Print Bin(siBin[siCount])

Next

End</lang> Output:

101
110010
10001100101000

Go

<lang go>package main

import ( "fmt" )

func main() { for i := 0; i < 16; i++ { fmt.Printf("%b\n", i) } }</lang>

Output:
0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111

Groovy

Solutions: <lang groovy>print

 n        binary

---------------

[5, 50, 9000].each {

   printf('%5d %15s\n', it, Integer.toBinaryString(it))

}</lang> Output:

  n        binary
----- ---------------
    5             101
   50          110010
 9000  10001100101000

Haskell

<lang haskell>import Data.List import Numeric import Text.Printf

-- Use the built-in function showIntAtBase. toBin n = showIntAtBase 2 ("01" !!) n ""

-- Implement our own version. toBin1 0 = [] toBin1 x = (toBin1 $ x `div` 2) ++ (show $ x `mod` 2)

-- Or even more efficient (due to fusion) and universal implementation toBin2 = foldMap show . reverse . toBase 2

toBase base = unfoldr modDiv

 where modDiv 0 = Nothing
       modDiv n = let (q, r) = (n `divMod` base) in Just (r, q) 


printToBin n = putStrLn $ printf "%4d %14s %14s" n (toBin n) (toBin1 n)

main = do

 putStrLn $ printf "%4s  %14s  %14s" "N" "toBin" "toBin1"
 mapM_ printToBin [5, 50, 9000]</lang>

Sample output:

   N           toBin          toBin1
   5             101             101
  50          110010          110010
9000  10001100101000  10001100101000

Icon and Unicon

There is no built-in way to output the bit string representation of an whole number in Icon and Unicon. There are generalized radix conversion routines in the Icon Programming Library that comes with every distribution. This procedure is a customized conversion routine that will populate and use a tunable cache as it goes. <lang Icon>procedure main() every i := 5 | 50 | 255 | 1285 | 9000 do

 write(i," = ",binary(i))

end

procedure binary(n) #: return bitstring for integer n static CT, cm, cb initial {

  CT := table()                         # cache table for results
  cm := 2 ^ (cb := 4)                   # (tunable) cache modulus & pad bits 
  }   

b := "" # build reversed bit string while n > 0 do { # use cached result ...

  if not (b ||:= \CT[1(i := n % cm, n /:= cm) ]) then {                     
     CT[j := i] := ""                   # ...or start new cache entry
     while j > 0 do 
        CT[i] ||:=  "01"[ 1(1+j % 2, j /:= 2 )]
     b ||:= CT[i] := left(CT[i],cb,"0") # finish cache with padding
     }
  }

return reverse(trim(b,"0")) # nothing extraneous end</lang> Output:

5 = 101
50 = 110010
255 = 11111111
1285 = 10100000101
9000 = 10001100101000


Idris

<lang Idris>module Main

binaryDigit : Integer -> Char binaryDigit n = if (mod n 2) == 1 then '1' else '0'

binaryString : Integer -> String binaryString 0 = "0" binaryString n = pack (loop n [])

 where loop : Integer -> List Char -> List Char
       loop 0 acc = acc
       loop n acc = loop (div n 2) (binaryDigit n :: acc)

main : IO () main = do

 putStrLn (binaryString 0)
 putStrLn (binaryString 5)
 putStrLn (binaryString 50)
 putStrLn (binaryString 9000)

</lang>

Output:

0
101
110010
10001100101000

J

<lang j> tobin=: -.&' '@":@#:

  tobin 5

101

  tobin 50

110010

  tobin 9000

10001100101000</lang> Algorithm: Remove spaces from the character list which results from formatting the binary list which represents the numeric argument.

I am using implicit output.

Java

<lang java>public class Main {

   public static void main(String[] args) {
       System.out.println(Integer.toBinaryString(5));
       System.out.println(Integer.toBinaryString(50));
       System.out.println(Integer.toBinaryString(9000));
   }

}</lang> Output:

101
110010
10001100101000

JavaScript

ES5

<lang javascript>function toBinary(number) {

   return new Number(number)
       .toString(2);

} var demoValues = [5, 50, 9000]; for (var i = 0; i < demoValues.length; ++i) {

   // alert() in a browser, wscript.echo in WSH, etc.
   print(toBinary(demoValues[i])); 

}</lang>

ES6

The simplest showBin (or showIntAtBase), using default digit characters, would use JavaScript's standard String.toString(base):

<lang JavaScript>(() => {

   // showIntAtBase_ :: // Int -> Int -> String
   const showIntAtBase_ = (base, n) => (n)
       .toString(base);
   // showBin :: Int -> String
   const showBin = n => showIntAtBase_(2, n);
   // GENERIC FUNCTIONS FOR TEST ---------------------------------------------
   // intercalate :: String -> [a] -> String
   const intercalate = (s, xs) => xs.join(s);
   // map :: (a -> b) -> [a] -> [b]
   const map = (f, xs) => xs.map(f);
   // unlines :: [String] -> String
   const unlines = xs => xs.join('\n');
   // show :: a -> String
   const show = x => JSON.stringify(x);
   // TEST -------------------------------------------------------------------
   return unlines(map(
       n => intercalate(' -> ', [show(n), showBin(n)]),
       [5, 50, 9000]
   ));

})();</lang>

Output:
5 -> 101
50 -> 110010
9000 -> 10001100101000

Or, if we need more flexibility with the set of digits used, we can write a version of showIntAtBase which takes a more specific Int -> Char function as as an argument. This one is a rough translation of Haskell's Numeric.showIntAtBase:

<lang JavaScript>(() => {

   // showBin :: Int -> String
   const showBin = n => {
       const binaryChar = n => n !== 0 ? '一' : '〇';
       return showIntAtBase(2, binaryChar, n, );
   };
   // showIntAtBase :: Int -> (Int -> Char) -> Int -> String -> String
   const showIntAtBase = (base, toChr, n, rs) => {
       const showIt = ([n, d], r) => {
           const r_ = toChr(d) + r;
           return n !== 0 ? (
               showIt(quotRem(n, base), r_)
           ) : r_;
       };
       return base <= 1 ? (
           'error: showIntAtBase applied to unsupported base'
       ) : n < 0 ? (
           'error: showIntAtBase applied to negative number'
       ) : showIt(quotRem(n, base), rs);
   };
   // quotRem :: Integral a => a -> a -> (a, a)
   const quotRem = (m, n) => [Math.floor(m / n), m % n];
   // GENERIC FUNCTIONS FOR TEST ---------------------------------------------
   // intercalate :: String -> [a] -> String
   const intercalate = (s, xs) => xs.join(s);
   // map :: (a -> b) -> [a] -> [b]
   const map = (f, xs) => xs.map(f);
   // unlines :: [String] -> String
   const unlines = xs => xs.join('\n');
   // show :: a -> String
   const show = x => JSON.stringify(x);
   // TEST -------------------------------------------------------------------
   return unlines(map(
       n => intercalate(' -> ', [show(n), showBin(n)]), [5, 50, 9000]
   ));

})();</lang>

Output:
5 -> 一〇一
50 -> 一一〇〇一〇
9000 -> 一〇〇〇一一〇〇一〇一〇〇〇

Joy

<lang joy>HIDE _ == [null] [pop] [2 div swap] [48 + putch] linrec IN int2bin == [null] [48 + putch] [_] ifte '\n putch END</lang> Using int2bin: <lang joy>0 setautoput 0 int2bin 5 int2bin 50 int2bin 9000 int2bin.</lang>

jq

<lang jq>def binary_digits:

 if . == 0 then "0"
 else [recurse( if . == 0 then empty else ./2 | floor end ) % 2 | tostring]
   | reverse
   | .[1:]     # remove the leading 0
   | join("")
 end ;
  1. The task:

(5, 50, 9000) | binary_digits</lang>

Output:
$ jq -n -r -f Binary_digits.jq
101
110010
10001100101000

Julia

<lang Julia> for i in [0, 5, 50, 9000]

   println(i, " => ", bin(i))

end </lang>

Output:
0 => 0
5 => 101
50 => 110010
9000 => 10001100101000

K

<lang k> tobin: ,/$2_vs

 tobin' 5 50 9000

("101"

"110010"
"10001100101000")</lang>

Kotlin

<lang scala>// version 1.0.5-2

fun main(args: Array<String>) {

   val numbers = intArrayOf(5, 50, 9000)
   for (number in numbers) println("%4d".format(number) + " -> " + Integer.toBinaryString(number))

}</lang>

Output:
   5 -> 101
  50 -> 110010
9000 -> 10001100101000

Lang5

<lang lang5>'%b '__number_format set [5 50 9000] [3 1] reshape .</lang>

Output:
[
  [ 101  ]
  [ 110010  ]
  [ 10001100101000  ]
]

LFE

If one is simple printing the results and doesn't need to use them (e.g., assign them to any variables, etc.), this is very concise: <lang lisp> (: io format '"~.2B~n~.2B~n~.2B~n" (list 5 50 9000)) </lang>

If, however, you do need to get the results from a function, you can use (: erlang integer_to_list ... ). Here's a simple example that does the same thing as the previous code: <lang lisp> (: lists foreach

 (lambda (x) 
   (: io format
     '"~s~n" 
     (list (: erlang integer_to_list x 2))))
 (list 5 50 9000))

</lang>

Both of these give the same output:

101
110010
10001100101000

Liberty BASIC

<lang lb>for a = 0 to 16 print a;"=";dec2bin$(a) next a=50:print a;"=";dec2bin$(a) a=254:print a;"=";dec2bin$(a) a=9000:print a;"=";dec2bin$(a) wait

function dec2bin$(num)

  if num=0 then dec2bin$="0":exit function
   while num>0
       dec2bin$=str$(num mod 2)+dec2bin$
       num=int(num/2)
   wend

end function </lang>

Locomotive Basic

<lang locobasic>10 PRINT BIN$(5) 20 PRINT BIN$(50) 30 PRINT BIN$(9000)</lang> Output:

101
110010
10001100101000

LOLCODE

This example is incorrect. Please fix the code and remove this message.

Details: The task is to convert numbers into binary, not count in binary.

This program prints binary digits until it is forced to terminate or the counter overflows to 0. It's almost an exact duplicate of Count in octal#LOLCODE.

<lang LOLCODE>HAI 1.3

HOW IZ I binary YR num

   I HAS A digit, I HAS A bin ITZ ""
   IM IN YR binarizer
       digit R MOD OF num AN 2
       bin R SMOOSH digit bin MKAY
       num R QUOSHUNT OF num AN 2
       NOT num, O RLY?
           YA RLY, FOUND YR bin
       OIC
   IM OUTTA YR binarizer

IF U SAY SO

IM IN YR printer UPPIN YR num

   VISIBLE I IZ binary YR num MKAY

IM OUTTA YR printer

KTHXBYE</lang>

Lua

<lang Lua>function dec2bin (n)

   local bin = ""
   while n > 0 do
       bin = n % 2 .. bin
       n = math.floor(n / 2)
   end
   return bin

end

print(dec2bin(5)) print(dec2bin(50)) print(dec2bin(9000))</lang>

Output:
101
110010
10001100101000

Maple

<lang Maple> > convert( 50, 'binary' ); 110010 > convert( 9000, 'binary' ); 10001100101000 </lang>

Mathematica / Wolfram Language

<lang Mathematica>StringJoin @@ ToString /@ IntegerDigits[50, 2] </lang>

MATLAB / Octave

<lang Matlab> dec2bin(5)

 dec2bin(50)
 dec2bin(9000)  </lang>

The output is a string containing ascii(48) (i.e. '0') and ascii(49) (i.e. '1').

Maxima

<lang maxima>digits([arg]) := block(

  [n: first(arg), b: if length(arg) > 1 then second(arg) else 10, v: [ ], q],
  do (
    [n, q]: divide(n, b),
    v: cons(q, v),
    if n=0 then return(v)))$
  

binary(n) := simplode(digits(n, 2))$ binary(9000); /*

                               10001100101000
  • /</lang>

Mercury

<lang mercury>:- module binary_digits.

- interface.
- import_module io.
- pred main(io::di, io::uo) is det.
- implementation.
- import_module int, list, string.

main(!IO) :-

   list.foldl(print_binary_digits, [5, 50, 9000], !IO).
- pred print_binary_digits(int::in, io::di, io::uo) is det.

print_binary_digits(N, !IO) :-

   io.write_string(int_to_base_string(N, 2), !IO),
   io.nl(!IO).</lang>

mLite

<lang sml>fun binary (0, b) = implode ` map (fn x = if int x then chr (x + 48) else x) b | (n, b) = binary (n div 2, n mod 2 :: b) | n = binary (n, [])

</lang>

from the REPL

mLite
> binary 5;
"101"
> binary 50;
"110010"
> binary 9000;
"10001100101000"

Modula-3

<lang modula3>MODULE Binary EXPORTS Main;

IMPORT IO, Fmt;

VAR num := 10;

BEGIN

 IO.Put(Fmt.Int(num, 2) & "\n");
 num := 150;
 IO.Put(Fmt.Int(num, 2) & "\n");

END Binary.</lang> Output:

1010
10010110

NetRexx

<lang NetRexx>/* NetRexx */ options replace format comments java crossref symbols nobinary

runSample(arg) return

method getBinaryDigits(nr) public static

 bd = nr.d2x.x2b.strip('L', 0)
 if bd.length = 0 then bd = 0
 return bd

method runSample(arg) public static

 parse arg list
 if list =  then list = '0 5 50 9000'
 loop n_ = 1 to list.words
   w_ = list.word(n_)
   say w_.right(20)':' getBinaryDigits(w_)
   end n_</lang>
Output:
                   0: 0
                   5: 101
                  50: 110010
                9000: 10001100101000

Nim

<lang nim>proc binDigits(x: BiggestInt, r: int): int =

 ## Calculates how many digits `x` has when each digit covers `r` bits.
 result = 1
 var y = x shr r
 while y > 0:
   y = y shr r
   inc(result)

proc toBin*(x: BiggestInt, len: Natural = 0): string =

 ## converts `x` into its binary representation. The resulting string is
 ## always `len` characters long. By default the length is determined
 ## automatically. No leading ``0b`` prefix is generated.
 var
   mask: BiggestInt = 1
   shift: BiggestInt = 0
   len = if len == 0: binDigits(x, 1) else: len
 result = newString(len)
 for j in countdown(len-1, 0):
   result[j] = chr(int((x and mask) shr shift) + ord('0'))
   shift = shift + 1
   mask = mask shl 1

for i in 0..15:

 echo toBin(i)</lang>

Output:

0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111

Oberon-2

<lang oberon2> MODULE BinaryDigits; IMPORT Out;

 PROCEDURE OutBin(x: INTEGER);
 BEGIN
   IF x > 1 THEN OutBin(x DIV 2) END;
   Out.Int(x MOD 2, 1);
 END OutBin;


BEGIN

 OutBin(0); Out.Ln;
 OutBin(1); Out.Ln;
 OutBin(2); Out.Ln;
 OutBin(3); Out.Ln;
 OutBin(42); Out.Ln;

END BinaryDigits. </lang>

Output:
0
1
10
11
101010

Objeck

<lang objeck>class Binary {

 function : Main(args : String[]) ~ Nil {
   5->ToBinaryString()->PrintLine();
   50->ToBinaryString()->PrintLine();
   9000->ToBinaryString()->PrintLine();
 }

}</lang>

Output:

101
110010
10001100101000

OCaml

<lang ocaml>let bin_of_int d =

 if d < 0 then invalid_arg "bin_of_int" else
 if d = 0 then "0" else
 let rec aux acc d =
   if d = 0 then acc else
   aux (string_of_int (d land 1) :: acc) (d lsr 1)
 in
 String.concat "" (aux [] d)
 

let () =

 let d = read_int () in
 Printf.printf "%8s\n" (bin_of_int d)</lang>

Oforth

Output:
>5 asStringOfBase(2) println
101
ok
>50 asStringOfBase(2) println
110010
ok
>9000 asStringOfBase(2) println
10001100101000
ok
>423785674235000123456789 asStringOfBase(2) println
1011001101111010111011110101001101111000000000000110001100000100111110100010101
ok

OxygenBasic

The Assembly code uses block structures to minimise the use of labels. <lang oxygenbasic>

function BinaryBits(sys n) as string

 string buf=nuls 32
 sys p=strptr buf
 sys le
 mov eax,n
 mov edi,p
 mov ecx,32
 '
 'STRIP LEADING ZEROS
 (
  dec ecx
  jl fwd done
  shl eax,1
  jnc repeat
 )
 'PLACE DIGITS
 '
 mov byte [edi],49 '1'
 inc edi
 (
  cmp ecx,0
  jle exit
  mov dl,48 '0'
  shl eax,1
  (
   jnc exit
   mov dl,49 '1'
  )
  mov [edi],dl
  inc edi
  dec ecx
  repeat
 )
 done:
 '
 sub edi,p
 mov le,edi
 if le then return left buf,le
 return "0"

end function

print BinaryBits 0xaa 'result 10101010 </lang>

PARI/GP

<lang parigp>bin(n:int)=concat(apply(s->Str(s),binary(n)))</lang>

Panda

<lang panda>0..15.radix:2 nl</lang> output:

0 
1 
10 
11 
100 
101 
110 
111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111

Pascal

Works with: Free Pascal

FPC compiler Version 2.6 upwards.The obvious version. <lang pascal>program IntToBinTest; {$MODE objFPC} uses

 strutils;//IntToBin

function WholeIntToBin(n: NativeUInt):string; var

 digits: NativeInt;

begin // BSR?Word -> index of highest set bit but 0 -> 255 ==-1 )

 IF n <> 0 then
 Begin

{$ifdef CPU64}

   digits:= BSRQWord(NativeInt(n))+1;

{$ELSE}

   digits:= BSRDWord(NativeInt(n))+1;

{$ENDIF}

  WholeIntToBin := IntToBin(NativeInt(n),digits);
 end
 else
   WholeIntToBin:='0';

end; procedure IntBinTest(n: NativeUint); Begin

 writeln(n:12,' ',WholeIntToBin(n));

end; BEGIN

 IntBinTest(5);IntBinTest(50);IntBinTest(5000);
 IntBinTest(0);IntBinTest(NativeUint(-1));

end.</lang> Output:

           5 101
          50 110010
        5000 1001110001000
           0 0
18446744073709551615 1111111111111111111111111111111111111111111111111111111111111111

alternative 4 chars at a time

using pchar like C insert one nibble at a time. Beware of the endianess of the constant. I check performance with random Data. <lang pascal> program IntToPcharTest; uses

 sysutils;//for timing

const {$ifdef CPU64}

 cBitcnt = 64;

{$ELSE}

 cBitcnt = 32;

{$ENDIF}

procedure IntToBinPchar(AInt : NativeUInt;s:pChar); //create the Bin-String //!Beware of endianess ! this is for little endian const

 IO : array[0..1] of char = ('0','1');//('_','X'); as you like
 IO4 : array[0..15] of LongWord = // '0000','1000' as LongWord

($30303030,$31303030,$30313030,$31313030,

$30303130,$31303130,$30313130,$31313130,
$30303031,$31303031,$30313031,$31313031,
$30303131,$31303131,$30313131,$31313131);

var

 i : NativeInt;

begin

 IF AInt > 0 then
 Begin
 // Get the index of highest set bit

{$ifdef CPU64}

   i := BSRQWord(NativeInt(Aint))+1;

{$ELSE}

   i := BSRDWord(NativeInt(Aint))+1;

{$ENDIF}

   s[i] := #0;
   //get 4 characters at once
   dec(i);
   while i >= 3 do
   Begin
     pLongInt(@s[i-3])^ := IO4[Aint AND 15];
     Aint := Aint SHR 4;
     dec(i,4)
   end;
   //the rest one by one
   while i >= 0 do
   Begin
     s[i] := IO[Aint AND 1];
     AInt := Aint shr 1;
     dec(i);
   end;
 end
 else
 Begin
   s[0] := IO[0];
   s[1] := #0;
 end;

end;

procedure Binary_Digits; var

s: pCHar;

begin

 GetMem(s,cBitcnt+4);
 fillchar(s[0],cBitcnt+4,#0);
 IntToBinPchar(   5,s);writeln('   5: ',s);
 IntToBinPchar(  50,s);writeln('  50: ',s);
 IntToBinPchar(9000,s);writeln('9000: ',s);
 IntToBinPchar(NativeUInt(-1),s);writeln('  -1: ',s);
 FreeMem(s);

end;

const

 rounds = 10*1000*1000;

var

 s: pChar;
 t :TDateTime;
 i,l,cnt: NativeInt;
 Testfield : array[0..rounds-1] of NativeUint;

Begin

 randomize;
 cnt := 0;
 For i := rounds downto  1 do
 Begin
   l := random(High(NativeInt));
   Testfield[i] := l;
 {$ifdef CPU64}
   inc(cnt,BSRQWord(l));
 {$ELSE}
   inc(cnt,BSRQWord(l));
 {$ENDIF}
 end;
 Binary_Digits;
 GetMem(s,cBitcnt+4);
 fillchar(s[0],cBitcnt+4,#0);
 //warm up
 For i := 0 to rounds-1 do
   IntToBinPchar(Testfield[i],s);
 //speed test
 t := time;
 For i := 1 to rounds do
   IntToBinPchar(Testfield[i],s);
 t := time-t;
 Write(' Time ',t*86400.0:6:3,' secs, average stringlength ');
 Writeln(cnt/rounds+1:6:3);
 FreeMem(s);

end.</lang> output:

//32-Bit fpc 3.1.1 -O3 -XX -Xs  Cpu i4330 @3.5 Ghz
   5: 101
  50: 110010
9000: 10001100101000
  -1: 11111111111111111111111111111111
 Time  0.133 secs, average stringlength 30.000
  //64-Bit fpc 3.1.1 -O3 -XX -Xs
...
  -1: 1111111111111111111111111111111111111111111111111111111111111111
 Time  0.175 secs, average stringlength 62.000
..the obvious version takes about 1.1 secs generating the string takes most of the time..

Peloton

<lang sgml><@ defbaslit>2</@>

<@ saybaslit>0</@> <@ saybaslit>5</@> <@ saybaslit>50</@> <@ saybaslit>9000</@> </lang>

Perl

<lang perl>for (5, 50, 9000) {

 printf "%b\n", $_;

}</lang>

101
110010
10001100101000

Perl 6

Works with: Rakudo version 2015.12

<lang perl6>say .fmt("%b") for 5, 50, 9000;</lang>

101
110010
10001100101000

Phix

<lang Phix>printf(1,"%b\n",5) printf(1,"%b\n",50) printf(1,"%b\n",9000)</lang>

Output:
101
110010
10001100101000

PHP

<lang php><?php echo decbin(5); echo decbin(50); echo decbin(9000);</lang> Output:

101
110010
10001100101000

PicoLisp

<lang PicoLisp>: (bin 5) -> "101"

(bin 50)

-> "110010"

(bin 9000)

-> "10001100101000"</lang>

Piet

Rendered as wikitable, because image upload is not possible:

ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww
ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww
ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww
ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww
ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww
ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww
ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww ww

Examples:

   ? 5
   101
   ? 50
   110010
   ? 9000
   10001100101000


Explanation of program flow and image download link on my user page: [3]

PL/I

Displays binary output trivially, but with leading zeros: <lang pli>put edit (25) (B);</lang>

Output: 0011001

With leading zero suppression: <lang pli> declare text character (50) initial (' ');

  put string(text) edit (25) (b);
  put skip list (trim(text, '0'));
  put string(text) edit (2147483647) (b);
  put skip list (trim(text, '0'));</lang>
Output:
11001
1111111111111111111111111111111

PowerShell

<lang PowerShell>@(5,50,900) | foreach-object { [Convert]::ToString($_,2) }</lang> Output:

101
110010
1110000100

Prolog

Works with: SWI Prolog
Works with: GNU Prolog

<lang prolog> binary(X) :- format('~2r~n', [X]). main :- maplist(binary, [5,50,9000]), halt. </lang>Sample output:

101
110010
10001100101000

PureBasic

<lang PureBasic>If OpenConsole()

 PrintN(Bin(5))    ;101
 PrintN(Bin(50))   ;110010
 PrintN(Bin(9000)) ;10001100101000
 
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
 CloseConsole()

EndIf</lang> Sample output:

101
110010
10001100101000

Python

Works with: Python version 3.X and 2.6+

<lang python>>>> for i in range(16): print('{0:b}'.format(i))

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111</lang>

Works with: Python version 3.X and 2.6+

<lang python>>>> for i in range(16): print(bin(i))

0b0 0b1 0b10 0b11 0b100 0b101 0b110 0b111 0b1000 0b1001 0b1010 0b1011 0b1100 0b1101 0b1110 0b1111</lang> Pre-Python 2.6: <lang python>>>> oct2bin = {'0': '000', '1': '001', '2': '010', '3': '011', '4': '100', '5': '101', '6': '110', '7': '111'} >>> bin = lambda n: .join(oct2bin[octdigit] for octdigit in '%o' % n).lstrip('0') or '0' >>> for i in range(16): print(bin(i))

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111</lang>

Racket

<lang racket>

  1. lang racket
Option 1
binary formatter

(for ([i 16]) (printf "~b\n" i))

Option 2
explicit conversion

(for ([i 16]) (displayln (number->string i 2))) </lang>


RapidQ

<lang vb> 'Convert Integer to binary string Print "bin 5 = ", bin$(5) Print "bin 50 = ",bin$(50) Print "bin 9000 = ",bin$(9000) sleep 10 </lang>

Retro

<lang Retro>9000 50 5 3 [ binary putn cr decimal ] times</lang>

REXX

This version handles the special case of zero simply.

simple version

Note:   some REXX interpreters have a   D2B   [Decimal to Binary]   BIF (built-in function).
Programming note:   this REXX version depends on   numeric digits   being large enough to handle leading zeroes in this manner (by adding a zero (to the binary version) to force superfluous leading zero suppression). <lang REXX>/*REXX program to convert several decimal numbers to binary (or base 2). */

                           numeric digits 1000  /*ensure we can handle larger numbers. */

@.=; @.1= 0

                @.2=    5
                @.3=   50
                @.4= 9000
 do j=1  while  @.j\==                        /*compute until a  NULL value is found.*/
 y=x2b( d2x(@.j) )     + 0                      /*force removal of extra leading zeroes*/
 say right(@.j,20) 'decimal, and in binary:' y  /*display the number to the terminal.  */
 end   /*j*/                                    /*stick a fork in it,  we're all done. */</lang>

output

                   0 decimal, and in binary: 0
                   5 decimal, and in binary: 101
                  50 decimal, and in binary: 110010
                9000 decimal, and in binary: 10001100101000

elegant version

This version handles the case of zero as a special case more elegantly.
The following versions depend on the setting of   numeric digits   such that the number in decimal can be expressed as a whole number. <lang REXX>/*REXX program to convert several decimal numbers to binary (or base 2). */ @.=; @.1= 0

                @.2=    5
                @.3=   50
                @.4= 9000
 do j=1  while  @.j\==                        /*compute until a  NULL value is found.*/
 y=strip( x2b( d2x( @.j )), 'L', 0)             /*force removal of  all leading zeroes.*/
 if y==  then y=0                             /*handle the special case of  0 (zero).*/
 say right(@.j,20) 'decimal, and in binary:' y  /*display the number to the terminal.  */
 end   /*j*/                                    /*stick a fork in it,  we're all done. */</lang>

output is identical to the 1st REXX version.

concise version

This version handles the case of zero a bit more obtusely, but concisely. <lang REXX>/*REXX program to convert several decimal numbers to binary (or base 2). */ @.=; @.1= 0

                @.2=    5
                @.3=   50
                @.4= 9000
 do j=1  while  @.j\==                        /*compute until a  NULL value is found.*/
 y=word( strip( x2b( d2x( @.j )), 'L', 0) 0, 1) /*elides all leading 0s, if null, use 0*/
 say right(@.j,20) 'decimal, and in binary:' y  /*display the number to the terminal.  */
 end   /*j*/                                    /*stick a fork in it,  we're all done. */</lang>

output is identical to the 1st REXX version.

conforming version

This REXX version conforms to the strict output requirements of this task (just show the binary output without any blanks). <lang REXX>/*REXX program to convert several decimal numbers to binary (or base 2). */

                           numeric digits 200   /*ensure we can handle larger numbers. */

@.=; @.1= 0

                @.2=    5
                @.3=   50
                @.4= 9000
                @.5=423785674235000123456789
                @.6=         1e138              /*one quinquaquadragintillion      ugh.*/
 do j=1  while  @.j\==                        /*compute until a  NULL value is found.*/
 y=strip( x2b( d2x( @.j )), 'L', 0)             /*force removal of  all leading zeroes.*/
 if y==  then y=0                             /*handle the special case of  0 (zero).*/
 say right(@.j,20) 'decimal, and in binary:' y  /*display the number to the terminal.  */
 end   /*j*/                                    /*stick a fork in it,  we're all done. */</lang>

output

0
101
110010
10001100101000
1011001101111010111011110101001101111000000000000110001100000100111110100010101
101010111111101001000101110110100000111011011011110111100110100100000100100001111101101110011101000101110110001101101000100100100110000111001010101011110010001111100011110100010101011011111111000110101110111100001011100111110000000010101100110101001010001001001011000000110000010010010100010010000001110100101000011111001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Ring

<lang ring> see "Number to convert : " give a n = 0 while pow(2,n+1) < a

     n = n + 1

end

for i = n to 0 step -1

   x = pow(2,i)
   if a >= x see 1 a = a - x
   else see 0 ok

next </lang>

Ruby

<lang ruby>[5,50,9000].each do |n|

 puts "%b" % n

end</lang> or <lang ruby>for n in [5,50,9000]

 puts n.to_s(2)

end</lang> Output:

101
110010
10001100101000

Run BASIC

<lang runbasic>input "Number to convert:";a while 2^(n+1) < a

n = n + 1

wend

for i = n to 0 step -1

 x = 2^i
 if a >= x then 
   print 1;
   a = a - x
  else 
   print 0;
 end if

next</lang> Output:

Number to convert:?9000
10001100101000

Rust

<lang rust>fn main() {

   for i in 0..8 {
       println!("{:b}", i)
   }

}</lang> Outputs:

0
1
10
11
100
101
110
111


S-lang

<lang S-lang>define int_to_bin(d) {

 variable m = 0x40000000, prn = 0, bs = "";
 do {
   if (d & m) {
     bs += "1";
     prn = 1;
   }
   else if (prn)
     bs += "0";
   m = m shr 1;
 } while (m);
 if (bs == "") bs = "0";
 return bs;

}

() = printf("%s\n", int_to_bin(5)); () = printf("%s\n", int_to_bin(50)); () = printf("%s\n", int_to_bin(9000));</lang>

Output:
101
110010
10001100101000

Scala

Scala has an implicit conversion from Int to RichInt which has a method toBinaryString. <lang scala>scala> (5 toBinaryString) res0: String = 101

scala> (50 toBinaryString) res1: String = 110010

scala> (9000 toBinaryString) res2: String = 10001100101000</lang>

Scheme

<lang scheme>(display (number->string 5 2)) (newline) (display (number->string 50 2)) (newline) (display (number->string 9000 2)) (newline)</lang>

Seed7

This example uses the radix operator to write a number in binary.

<lang seed7>$ include "seed7_05.s7i";

const proc: main is func

 local
   var integer: number is 0;
 begin
   for number range 0 to 16 do
     writeln(number radix 2);
   end for;
 end func;</lang>

Output:

0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111
10000

Sidef

<lang ruby>[5, 50, 9000].each { |n|

   say n.as_bin;

}</lang>

Output:
101
110010
10001100101000

SequenceL

<lang sequencel>main := toBinaryString([5, 50, 9000]);

toBinaryString(number(0)) :=

   let
       val := "1" when number mod 2 = 1 else "0";
   in
       toBinaryString(floor(number/2)) ++ val when floor(number/2) > 0
   else
       val;</lang>
Output:
["101","110010","10001100101000"]


SkookumScript

<lang javascript>println(5.binary) println(50.binary) println(9000.binary)</lang> Or looping over a list of numbers: <lang javascript>{5 50 9000}.do[println(item.binary)]</lang>

Output:
101
110010
10001100101000

Smalltalk

<lang smalltalk>5 printOn: Stdout radix:2 50 printOn: Stdout radix:2 9000 printOn: Stdout radix:2</lang> or: <lang smalltalk>#(5 50 9000) do:[:each | each printOn: Stdout radix:2. Stdout cr]</lang>

SNUSP

<lang SNUSP>

        /recurse\

$,binary!\@\>?!\@/<@\.#

          !   \=/  \=itoa=@@@+@+++++#
          /<+>- \    div2
          \?!#-?/+#  mod2

</lang>

Standard ML

<lang sml>print (Int.fmt StringCvt.BIN 5 ^ "\n"); print (Int.fmt StringCvt.BIN 50 ^ "\n"); print (Int.fmt StringCvt.BIN 9000 ^ "\n");</lang>

Swift

<lang Swift>for num in [5, 50, 9000] {

   println(String(num, radix: 2))

}</lang>

Output:
101
110010
10001100101000

Tcl

<lang tcl>proc num2bin num {

   # Convert to _fixed width_ big-endian 32-bit binary
   binary scan [binary format "I" $num] "B*" binval
   # Strip useless leading zeros by reinterpreting as a big decimal integer
   scan $binval "%lld"

}</lang> Demonstrating: <lang tcl>for {set x 0} {$x < 16} {incr x} {

   puts [num2bin $x]

} puts "--------------" puts [num2bin 5] puts [num2bin 50] puts [num2bin 9000]</lang> Output:

0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111
--------------
101
110010
10001100101000

TI-83 BASIC

Using Standard TI-83 BASIC <lang ti83b>PROGRAM:BINARY

Disp "NUMBER TO"
Disp "CONVERT:"
Input A
0→N
0→B
While 2^(N+1)≤A
N+1→N
End
While N≥0
iPart(A/2^N)→C
10^(N)*C+B→B
If C=1
Then
A-2^N→A
End
N-1→N
End
Disp B</lang>

Alternate using a string to display larger numbers. <lang ti83b>PROGRAM:BINARY

Input X
" "→Str1
Repeat X=0
  :X/2→X
  :sub("01",2fPart(X)+1,1)+Str1→Str1
  :iPart(X)→X
End
Str1</lang>

Using the baseInput() "real(25," function from Omnicalc <lang ti83b>PROGRAM:BINARY

Disp "NUMBER TO"
Disp "CONVERT"
Input "Str1"
Disp real(25,Str1,10,2)</lang>

More compact version: <lang ti83b>:Input "DEC: ",D

" →Str1
If not(D:"0→Str1
While D>0
If not(fPart(D/2:Then
"0"+Str1→Str1
Else
"1"+Str1→Str1
End
iPart(D/2→D
End
Disp Str1

</lang>

uBasic/4tH

This will convert any decimal number to any base between 2 and 16. <lang>Do

 Input "Enter base (1<X<17): "; b
 While (b < 2) + (b > 16)

Loop

Input "Enter number: "; n s = (n < 0) ' save the sign n = Abs(n) ' make number unsigned

For x = 0 Step 1 Until n = 0 ' calculate all the digits

   @(x) = n % b
   n = n / b

Next x

If s Then Print "-"; ' reapply the sign

For y = x - 1 To 0 Step -1 ' print all the digits

   If @(y) > 9 Then                   ' take care of hexadecimal digits
      Gosub @(y) * 10
   Else
      Print @(y);                     ' print "decimal" digits
   Endif

Next y

Print ' finish the string End

100 Print "A"; : Return ' print hexadecimal digit 110 Print "B"; : Return 120 Print "C"; : Return 130 Print "D"; : Return 140 Print "E"; : Return 150 Print "F"; : Return</lang>

Output:
Enter base (1<X<17): 2
Enter number: 9000
10001100101000

0 OK, 0:775

UNIX Shell

<lang sh># Define a function to output binary digits tobinary() {

 # We use the bench calculator for our conversion
 echo "obase=2;$1"|bc

}

  1. Call the function with each of our values

tobinary 5 tobinary 50</lang>

Vedit macro language

This implementation reads the numeric values from user input and writes the converted binary values in the edit buffer. <lang vedit>repeat (ALL) {

   #10 = Get_Num("Give a numeric value, -1 to end: ", STATLINE)
   if (#10 < 0) { break }
   Call("BINARY")
   Update()

} return

BINARY:

do {

   Num_Ins(#10 & 1, LEFT+NOCR)
   #10 = #10 >> 1
   Char(-1)

} while (#10 > 0) EOL Ins_Newline Return </lang> Example output when values 0, 1, 5, 50 and 9000 were entered:

0
1
101
110010
10001100101000

Vim Script

<lang vim>function Num2Bin(n)

   let n = a:n
   let s = ""
   if n == 0
       let s = "0"
   else
       while n
           if n % 2 == 0
               let s = "0" . s
           else
               let s = "1" . s
           endif
           let n = n / 2
       endwhile
   endif
   return s

endfunction

echo Num2Bin(5) echo Num2Bin(50) echo Num2Bin(9000)</lang>

Output:
101                                                                             
110010                                                                          
10001100101000

Visual Basic .NET

<lang vbnet>Sub Main()

   Console.WriteLine("5: " & Convert.ToString(5, 2))
   Console.WriteLine("50: " & Convert.ToString(50, 2))
   Console.WriteLine("9000: " & Convert.ToString(9000, 2))

End Sub</lang> Output:

5: 101
50: 110010
9000: 10001100101000

Visual FoxPro

<lang vfp>

  • !* Binary Digits

CLEAR k = CAST(5 As I) ? NToBin(k) k = CAST(50 As I) ? NToBin(k) k = CAST(9000 As I) ? NToBin(k)

FUNCTION NTOBin(n As Integer) As String LOCAL i As Integer, b As String, v As Integer b = "" v = HiBit(n) FOR i = 0 TO v

   b = IIF(BITTEST(n, i), "1", "0") + b

ENDFOR RETURN b ENDFUNC

FUNCTION HiBit(n As Double) As Integer

  • !* Find the highest power of 2 in n

LOCAL v As Double v = LOG(n)/LOG(2) RETURN FLOOR(v) ENDFUNC </lang>

Output:
101
110010
10001100101000

Whitespace

This program prints binary numbers until the internal representation of the current integer overflows to -1; it will never do so on some interpreters. It is almost an exact duplicate of Count in octal#Whitespace.

<lang Whitespace>




















</lang>

It was generated from the following pseudo-Assembly.

<lang asm>push 0

Increment indefinitely.

0:

   push -1 ; Sentinel value so the printer knows when to stop.
   copy 1
   call 1
   push 10
   ochr
   push 1
   add
   jump 0
Get the binary digits on the stack in reverse order.

1:

   dup
   push 2
   mod
   swap
   push 2
   div
   push 0
   copy 1
   sub
   jn 1
   pop
Print them.

2:

   dup
   jn 3 ; Stop at the sentinel.
   onum
   jump 2

3:

   pop
   ret</lang>

Wortel

Using JavaScripts buildin toString method on the Number object, the following function takes a number and returns a string with the binary representation: <lang wortel>\.toString 2

the following function also casts the string to a number

^(@+ \.toString 2)</lang> To output to the console: <lang wortel>@each ^(console.log \.toString 2) [5 50 900]</lang>

Outputs:

101
110010
1110000100

X86 Assembly

Translation of XPL0. Assemble with tasm, tlink /t <lang asm> .model tiny

       .code
       .486
       org     100h

start: mov ax, 5

       call    binout
       call    crlf
       mov     ax, 50
       call    binout
       call    crlf
       mov     ax, 9000
       call    binout

crlf: mov al, 0Dh ;new line

       int     29h
       mov     al, 0Ah
       int     29h
       ret

binout: push ax

       shr     ax, 1
       je      bo10
        call   binout

bo10: pop ax

       and     al, 01h
       or      al, '0'
       int     29h             ;display character
       ret
       end     start</lang>

Output:

101
110010
10001100101000

XPL0

<lang XPL0>include c:\cxpl\codes; \intrinsic code declarations

proc BinOut(N); \Output N in binary int N; int R; [R:= N&1; N:= N>>1; if N then BinOut(N); ChOut(0, R+^0); ];

int I; [I:= 0; repeat BinOut(I); CrLf(0);

       I:= I+1;

until KeyHit or I=0; ]</lang>

Example output:

0
1
10
11
100
101
110
111
1000
...
100000010011110
100000010011111
100000010100000
100000010100001

zkl

<lang zkl>(9000).toString(2)</lang> <lang zkl>T(5,50,9000).apply("toString",2) //--> L("101","110010","10001100101000")</lang> <lang zkl>"%.2B".fmt(9000)</lang>

ZX Spectrum Basic

<lang zxbasic>10 LET n=5: GO SUB 1000: PRINT s$ 20 LET n=50: GO SUB 1000: PRINT s$ 30 LET n=9000: GO SUB 1000: PRINT s$ 999 STOP 1000 REM convert to binary 1010 LET t=n: REM temporary variable 1020 LET s$="": REM this will contain our binary digits 1030 LET sf=0: REM output has not started yet 1040 FOR l=126 TO 0 STEP -1 1050 LET d$="0": REM assume next digit is zero 1060 IF t>=(2^l) THEN LET d$="1": LET t=t-(2^l): LET sf=1 1070 IF (sf <> 0) THEN LET s$=s$+d$ 1080 NEXT l 1090 RETURN</lang>