Sorting algorithms/Merge sort: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 3,769: Line 3,769:
stride=. 1
stride=. 1
N=. #r=. y
N=. #r=. y
while.stride < N do.
while. stride < N do.
stride=. 2*mid=. stride
stride=. 2*mid=. stride
r=. ;(-stride) (mid&}. <@merge (mid<.#) {.])\ r
r=. ;(-stride) (mid&}. <@merge (mid<.#) {.])\ r

Revision as of 18:53, 2 June 2022

Task
Sorting algorithms/Merge sort
You are encouraged to solve this task according to the task description, using any language you may know.

The   merge sort   is a recursive sort of order   n*log(n).

It is notable for having a worst case and average complexity of   O(n*log(n)),   and a best case complexity of   O(n)   (for pre-sorted input).

The basic idea is to split the collection into smaller groups by halving it until the groups only have one element or no elements   (which are both entirely sorted groups).

Then merge the groups back together so that their elements are in order.

This is how the algorithm gets its   divide and conquer   description.


Task

Write a function to sort a collection of integers using the merge sort.


The merge sort algorithm comes in two parts:

   a sort function     and 
   a merge function 

The functions in pseudocode look like this:

function mergesort(m)
   var list left, right, result
   if length(m) ≤ 1
       return m
   else
       var middle = length(m) / 2
       for each x in m up to middle - 1
           add x to left
       for each x in m at and after middle
           add x to right
       left = mergesort(left)
       right = mergesort(right)
       if last(left) ≤ first(right) 
          append right to left
          return left
       result = merge(left, right)
       return result

function merge(left,right)
   var list result
   while length(left) > 0 and length(right) > 0
       if first(left) ≤ first(right)
           append first(left) to result
           left = rest(left)
       else
           append first(right) to result
           right = rest(right)
   if length(left) > 0 
       append rest(left) to result
   if length(right) > 0 
       append rest(right) to result
   return result


See also


Note:   better performance can be expected if, rather than recursing until   length(m) ≤ 1,   an insertion sort is used for   length(m)   smaller than some threshold larger than   1.   However, this complicates the example code, so it is not shown here.

11l

Translation of: Python

<lang 11l>F merge(left, right)

  [Int] result
  V left_idx = 0
  V right_idx = 0
  L left_idx < left.len & right_idx < right.len
     I left[left_idx] <= right[right_idx]
        result.append(left[left_idx])
        left_idx++
     E
        result.append(right[right_idx])
        right_idx++
  I left_idx < left.len
     result.extend(left[left_idx ..])
  I right_idx < right.len
     result.extend(right[right_idx ..])
  R result

F merge_sort(m)

  I m.len <= 1
     R m
  V middle = m.len I/ 2
  V left = m[0.<middle]
  V right = m[middle..]
  left = merge_sort(left)
  right = merge_sort(right)
  R Array(merge(left, right))

V arr = [7, 6, 5, 9, 8, 4, 3, 1, 2, 0] print(merge_sort(arr))</lang>

Output:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

360 Assembly

Translation of: BBC BASIC

The program uses ASM structured macros and two ASSIST macros (XDECO, XPRNT) to keep the code as short as possible. <lang 360asm>* Merge sort 19/06/2016 MAIN CSECT

      STM     R14,R12,12(R13)     save caller's registers
      LR      R12,R15             set R12 as base register
      USING   MAIN,R12            notify assembler
      LA      R11,SAVEXA          get the address of my savearea
      ST      R13,4(R11)          save caller's save area pointer
      ST      R11,8(R13)          save my save area pointer
      LR      R13,R11             set R13 to point to my save area
      LA      R1,1                1
      LA      R2,NN               hbound(a)
      BAL     R14,SPLIT           call split(1,hbound(a))
      LA      RPGI,PG             pgi=0
      LA      RI,1                i=1
      DO WHILE=(C,RI,LE,=A(NN))   do i=1 to hbound(a)
        LR    R1,RI                 i
        SLA   R1,2                  .
        L     R2,A-4(R1)            a(i)
        XDECO R2,XDEC               edit a(i)
        MVC   0(4,RPGI),XDEC+8      output a(i) 
        LA    RPGI,4(RPGI)          pgi=pgi+4
        LA    RI,1(RI)              i=i+1
      ENDDO   ,                   end do
      XPRNT   PG,80               print buffer
      L       R13,SAVEXA+4        restore caller's savearea address
      LM      R14,R12,12(R13)     restore caller's registers
      XR      R15,R15             set return code to 0
      BR      R14                 return to caller
  • split(istart,iend) ------recursive---------------------

SPLIT STM R14,R12,12(R13) save all registers

      LR      R9,R1               save R1
      LA      R1,72               amount of storage required
      GETMAIN RU,LV=(R1)          allocate storage for stack
      USING   STACK,R10           make storage addressable
      LR      R10,R1              establish stack addressability
      LA      R11,SAVEXB          get the address of my savearea
      ST      R13,4(R11)          save caller's save area pointer
      ST      R11,8(R13)          save my save area pointer
      LR      R13,R11             set R13 to point to my save area
      LR      R1,R9               restore R1
      LR      RSTART,R1           istart=R1
      LR      REND,R2             iend=R2
      IF CR,REND,EQ,RSTART THEN   if iend=istart
        B     RETURN                return
      ENDIF   ,                   end if
      BCTR    R2,0                iend-1
      IF C,R2,EQ,RSTART THEN      if iend-istart=1
        LR    R1,REND               iend
        SLA   R1,2                  .
        L     R2,A-4(R1)            a(iend)
        LR    R1,RSTART             istart
        SLA   R1,2                  .
        L     R3,A-4(R1)            a(istart)
        IF CR,R2,LT,R3 THEN         if a(iend)<a(istart)
          LR  R1,RSTART               istart
          SLA R1,2                    .
          LA  R2,A-4(R1)              @a(istart)
          LR  R1,REND                 iend
          SLA R1,2                    .
          LA  R3,A-4(R1)              @a(iend)
          MVC TEMP,0(R2)              temp=a(istart)
          MVC 0(4,R2),0(R3)           a(istart)=a(iend)
          MVC 0(4,R3),TEMP            a(iend)=temp
        ENDIF ,                     end if
        B     RETURN                return
      ENDIF   ,                   end if 
      LR      RMIDDL,REND         iend
      SR      RMIDDL,RSTART       iend-istart
      SRA     RMIDDL,1            (iend-istart)/2
      AR      RMIDDL,RSTART       imiddl=istart+(iend-istart)/2
      LR      R1,RSTART           istart
      LR      R2,RMIDDL           imiddl
      BAL     R14,SPLIT           call split(istart,imiddl)
      LA      R1,1(RMIDDL)        imiddl+1
      LR      R2,REND             iend
      BAL     R14,SPLIT           call split(imiddl+1,iend)
      LR      R1,RSTART           istart
      LR      R2,RMIDDL           imiddl
      LR      R3,REND             iend
      BAL     R14,MERGE           call merge(istart,imiddl,iend)

RETURN L R13,SAVEXB+4 restore caller's savearea address

      XR      R15,R15             set return code to 0        
      LA      R0,72               amount of storage to free
      FREEMAIN A=(R10),LV=(R0)    free allocated storage
      L       R14,12(R13)         restore caller's return address
      LM      R2,R12,28(R13)      restore registers R2 to R12
      BR      R14                 return to caller
      DROP    R10                 base no longer needed
  • merge(jstart,jmiddl,jend) ------------------------------------

MERGE STM R1,R3,JSTART jstart=r1,jmiddl=r2,jend=r3

      SR      R2,R1               jmiddl-jstart
      LA      RBS,2(R2)           bs=jmiddl-jstart+2
      LA      RI,1                i=1
      LR      R3,RBS              bs
      BCTR    R3,0                bs-1
      DO WHILE=(CR,RI,LE,R3)      do i=0 to bs-1
        L     R2,JSTART             jstart
        AR    R2,RI                 jstart+i
        SLA   R2,2                  .
        L     R2,A-8(R2)            a(jstart+i-1)
        LR    R1,RI                 i
        SLA   R1,2                  .
        ST    R2,B-4(R1)            b(i)=a(jstart+i-1)
        LA    RI,1(RI)              i=i+1
      ENDDO   ,                   end do
      LA      RI,1                i=1
      L       RJ,JMIDDL           j=jmiddl
      LA      RJ,1(RJ)            j=jmiddl+1
      L       RK,JSTART           k=jstart
      DO UNTIL=(CR,RI,EQ,RBS,OR,  do until i=bs or                    X
              C,RJ,GT,JEND)                j>jend  
        LR    R1,RI                 i
        SLA   R1,2                  .
        L     R4,B-4(R1)            r4=b(i)
        LR    R1,RJ                 j
        SLA   R1,2                  .
        L     R3,A-4(R1)            r3=a(j)
        LR    R9,RK                 k
        SLA   R9,2                  r9 for a(k)
        IF CR,R4,LE,R3 THEN         if b(i)<=a(j)
          ST  R4,A-4(R9)              a(k)=b(i)
          LA  RI,1(RI)                i=i+1 
        ELSE  ,                     else
          ST  R3,A-4(R9)              a(k)=a(j)
          LA  RJ,1(RJ)                j=j+1
        ENDIF ,                     end if
        LA    RK,1(RK)              k=k+1
      ENDDO   ,                   end do  
      DO WHILE=(CR,RI,LT,RBS)     do while i<bs 
        LR    R1,RI                 i
        SLA   R1,2                  .
        L     R2,B-4(R1)            b(i)
        LR    R1,RK                 k
        SLA   R1,2                  .
        ST    R2,A-4(R1)            a(k)=b(i)
        LA    RI,1(RI)              i=i+1
        LA    RK,1(RK)              k=k+1
      ENDDO   ,                   end do
      BR      R14                 return to caller
  • ------- ------------------ ------------------------------------
      LTORG   

SAVEXA DS 18F savearea of main NN EQU ((B-A)/L'A) number of items A DC F'4',F'65',F'2',F'-31',F'0',F'99',F'2',F'83',F'782',F'1'

      DC F'45',F'82',F'69',F'82',F'104',F'58',F'88',F'112',F'89',F'74'

B DS (NN/2+1)F merge sort static storage TEMP DS F for swap JSTART DS F jstart JMIDDL DS F jmiddl JEND DS F jend PG DC CL80' ' buffer XDEC DS CL12 for edit STACK DSECT dynamic area SAVEXB DS 18F " savearea of mergsort (72 bytes)

      YREGS

RI EQU 6 i RJ EQU 7 j RK EQU 8 k RSTART EQU 6 istart REND EQU 7 i RMIDDL EQU 8 i RPGI EQU 3 pgi RBS EQU 0 bs

      END     MAIN</lang>
Output:
 -31   0   1   2   2   4  45  58  65  69  74  82  82  83  88  89  99 104 112 782

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits

<lang AArch64 Assembly> /* ARM assembly AARCH64 Raspberry PI 3B */ /* program mergeSort64.s */

/*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeConstantesARM64.inc"

/*********************************/ /* Initialized data */ /*********************************/ .data szMessSortOk: .asciz "Table sorted.\n" szMessSortNok: .asciz "Table not sorted !!!!!.\n" sMessResult: .asciz "Value  : @ \n" szCarriageReturn: .asciz "\n"

.align 4 TableNumber: .quad 1,3,11,6,2,5,9,10,8,4,7

  1. TableNumber: .quad 10,9,8,7,6,-5,4,3,2,1
                .equ NBELEMENTS, (. - TableNumber) / 8 

/*********************************/ /* UnInitialized data */ /*********************************/ .bss sZoneConv: .skip 24 /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program

   ldr x0,qAdrTableNumber                         // address number table
   mov x1,0                                       // first element
   mov x2,NBELEMENTS                              // number of élements 
   bl mergeSort
   ldr x0,qAdrTableNumber                         // address number table
   bl displayTable

   ldr x0,qAdrTableNumber                         // address number table
   mov x1,NBELEMENTS                              // number of élements 
   bl isSorted                                    // control sort
   cmp x0,1                                       // sorted ?
   beq 1f                                    
   ldr x0,qAdrszMessSortNok                       // no !! error sort
   bl affichageMess
   b 100f

1: // yes

   ldr x0,qAdrszMessSortOk
   bl affichageMess

100: // standard end of the program

   mov x0,0                                       // return code
   mov x8,EXIT                                    // request to exit program
   svc 0                                          // perform the system call

qAdrsZoneConv: .quad sZoneConv qAdrszCarriageReturn: .quad szCarriageReturn qAdrsMessResult: .quad sMessResult qAdrTableNumber: .quad TableNumber qAdrszMessSortOk: .quad szMessSortOk qAdrszMessSortNok: .quad szMessSortNok /******************************************************************/ /* control sorted table */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the number of elements > 0 */ /* x0 return 0 if not sorted 1 if sorted */ isSorted:

   stp x2,lr,[sp,-16]!             // save  registers
   stp x3,x4,[sp,-16]!             // save  registers
   mov x2,0
   ldr x4,[x0,x2,lsl 3]

1:

   add x2,x2,1
   cmp x2,x1
   bge 99f
   ldr x3,[x0,x2, lsl 3]
   cmp x3,x4
   blt 98f
   mov x4,x3
   b 1b

98:

   mov x0,0                       // not sorted
   b 100f

99:

   mov x0,1                       // sorted

100:

   ldp x3,x4,[sp],16              // restaur  2 registers
   ldp x2,lr,[sp],16              // restaur  2 registers
   ret                            // return to address lr x30

/******************************************************************/ /* merge */ /******************************************************************/ /* r0 contains the address of table */ /* r1 contains first start index /* r2 contains second start index */ /* r3 contains the last index */ merge:

   stp x1,lr,[sp,-16]!        // save  registers
   stp x2,x3,[sp,-16]!        // save  registers
   stp x4,x5,[sp,-16]!        // save  registers
   stp x6,x7,[sp,-16]!        // save  registers
   str x8,[sp,-16]!
   mov x5,x2                  // init index x2->x5 

1: // begin loop first section

   ldr x6,[x0,x1,lsl 3]       // load value first section index r1
   ldr x7,[x0,x5,lsl 3]       // load value second section index r5
   cmp x6,x7
   ble 4f                     // <=  -> location first section OK
   str x7,[x0,x1,lsl 3]       // store value second section in first section
   add x8,x5,1
   cmp x8,x3                  // end second section ?
   ble 2f
   str x6,[x0,x5,lsl 3]
   b 4f                       // loop

2: // loop insert element part 1 into part 2

   sub x4,x8,1
   ldr x7,[x0,x8,lsl 3]       // load value 2
   cmp x6,x7                  // value < 
   bge 3f
   str x6,[x0,x4,lsl 3]       // store value 
   b 4f                       // loop

3:

   str x7,[x0,x4,lsl 3]       // store value 2
   add x8,x8,1
   cmp x8,x3                  // end second section ?
   ble 2b                     // no loop 
   sub x8,x8,1
   str x6,[x0,x8,lsl 3]       // store value 1

4:

   add x1,x1,1
   cmp x1,x2                  // end first section ?
   blt 1b

100:

   ldr x8,[sp],16             // restaur 1 register
   ldp x6,x7,[sp],16          // restaur  2 registers
   ldp x4,x5,[sp],16          // restaur  2 registers
   ldp x2,x3,[sp],16          // restaur  2 registers
   ldp x1,lr,[sp],16          // restaur  2 registers
   ret                        // return to address lr x30

/******************************************************************/ /* merge sort */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the index of first element */ /* x2 contains the number of element */ mergeSort:

   stp x3,lr,[sp,-16]!    // save  registers
   stp x4,x5,[sp,-16]!    // save  registers
   stp x6,x7,[sp,-16]!    // save  registers
   cmp x2,2               // end ?
   blt 100f
   lsr x4,x2,1            // number of element of each subset
   add x5,x4,1
   tst x2,#1              // odd ?
   csel x4,x5,x4,ne
   mov x5,x1              // save first element
   mov x6,x2              // save number of element
   mov x7,x4              // save number of element of each subset
   mov x2,x4
   bl mergeSort
   mov x1,x7              // restaur number of element of each subset
   mov x2,x6              // restaur  number of element
   sub x2,x2,x1
   mov x3,x5              // restaur first element
   add x1,x1,x3              // + 1
   bl mergeSort           // sort first subset
   mov x1,x5              // restaur first element
   mov x2,x7              // restaur number of element of each subset
   add x2,x2,x1
   mov x3,x6              // restaur  number of element
   add x3,x3,x1 
   sub x3,x3,1              // last index
   bl merge

100:

   ldp x6,x7,[sp],16          // restaur  2 registers
   ldp x4,x5,[sp],16          // restaur  2 registers
   ldp x3,lr,[sp],16          // restaur  2 registers
   ret                        // return to address lr x30

/******************************************************************/ /* Display table elements */ /******************************************************************/ /* x0 contains the address of table */ displayTable:

   stp x1,lr,[sp,-16]!              // save  registers
   stp x2,x3,[sp,-16]!              // save  registers
   mov x2,x0                        // table address
   mov x3,0

1: // loop display table

   ldr x0,[x2,x3,lsl 3]
   ldr x1,qAdrsZoneConv
   bl conversion10S                  // décimal conversion
   ldr x0,qAdrsMessResult
   ldr x1,qAdrsZoneConv
   bl strInsertAtCharInc            // insert result at // character
   bl affichageMess                 // display message
   add x3,x3,1
   cmp x3,NBELEMENTS - 1
   ble 1b
   ldr x0,qAdrszCarriageReturn
   bl affichageMess
   mov x0,x2

100:

   ldp x2,x3,[sp],16               // restaur  2 registers
   ldp x1,lr,[sp],16               // restaur  2 registers
   ret                             // return to address lr x30

/********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc" </lang>

ACL2

<lang Lisp>(defun split (xys)

  (if (endp (rest xys))
      (mv xys nil)
      (mv-let (xs ys)
              (split (rest (rest xys)))
         (mv (cons (first xys) xs)
             (cons (second xys) ys)))))

(defun mrg (xs ys)

  (declare (xargs :measure (+ (len xs) (len ys))))
  (cond ((endp xs) ys)
        ((endp ys) xs)
        ((< (first xs) (first ys))
         (cons (first xs) (mrg (rest xs) ys)))
        (t (cons (first ys) (mrg xs (rest ys))))))

(defthm split-shortens

  (implies (consp (rest xs))
           (mv-let (ys zs)
                   (split xs)
              (and (< (len ys) (len xs))
                   (< (len zs) (len xs))))))

(defun msort (xs)

    (declare (xargs
           :measure (len xs)
           :hints (("Goal"
                    :use ((:instance split-shortens))))))
  (if (endp (rest xs))
      xs
      (mv-let (ys zs)
              (split xs)
         (mrg (msort ys)
              (msort zs)))))</lang>

Action!

Action! language does not support recursion. Therefore an iterative approach has been proposed. <lang Action!>DEFINE MAX_COUNT="100"

PROC PrintArray(INT ARRAY a INT size)

 INT i
 Put('[)
 FOR i=0 TO size-1
 DO
   IF i>0 THEN Put(' ) FI
   PrintI(a(i))
 OD
 Put(']) PutE()

RETURN

PROC Merge(INT ARRAY a INT first,mid,last)

 INT ARRAY left(MAX_COUNT),right(MAX_COUNT)
 INT leftSize,rightSize,i,j,k
 
 leftSize=mid-first+1
 rightSize=last-mid

 FOR i=0 TO leftSize-1
 DO
   left(i)=a(first+i)
 OD
 FOR i=0 TO rightSize-1
 DO
   right(i)=a(mid+1+i)
 OD 
 i=0 j=0
 k=first
 WHILE i<leftSize AND j<rightSize
 DO
   IF left(i)<=right(j) THEN
     a(k)=left(i)
     i==+1
   ELSE
     a(k)=right(j)
     j==+1
   FI
   k==+1
 OD

 WHILE i<leftSize
 DO
   a(k)=left(i)
   i==+1 k==+1
 OD

 WHILE j<rightSize
 DO
   a(k)=right(j)
   j==+1 k==+1
 OD

RETURN

PROC MergeSort(INT ARRAY a INT size)

 INT currSize,first,mid,last
 currSize=1
 WHILE currSize<size
 DO
   first=0
   WHILE first<size-1
   DO
     mid=first+currSize-1
     IF mid>size-1 THEN
       mid=size-1
     FI
     last=first+2*currSize-1
     IF last>size-1 THEN
       last=size-1
     FI
     Merge(a,first,mid,last);
     first==+2*currSize
   OD
   currSize==*2
 OD

RETURN

PROC Test(INT ARRAY a INT size)

 PrintE("Array before sort:")
 PrintArray(a,size)
 MergeSort(a,size)
 PrintE("Array after sort:")
 PrintArray(a,size)
 PutE()

RETURN

PROC Main()

 INT ARRAY
   a(10)=[1 4 65535 0 3 7 4 8 20 65530],
   b(21)=[10 9 8 7 6 5 4 3 2 1 0
     65535 65534 65533 65532 65531
     65530 65529 65528 65527 65526],
   c(8)=[101 102 103 104 105 106 107 108],
   d(12)=[1 65535 1 65535 1 65535 1
     65535 1 65535 1 65535]
 
 Test(a,10)
 Test(b,21)
 Test(c,8)
 Test(d,12)

RETURN</lang>

Output:

Screenshot from Atari 8-bit computer

Array before sort:
[1 4 -1 0 3 7 4 8 20 -6]
Array after sort:
[-6 -1 0 1 3 4 4 7 8 20]

Array before sort:
[10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10]
Array after sort:
[-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10]

Array before sort:
[101 102 103 104 105 106 107 108]
Array after sort:
[101 102 103 104 105 106 107 108]

Array before sort:
[1 -1 1 -1 1 -1 1 -1 1 -1 1 -1]
Array after sort:
[-1 -1 -1 -1 -1 -1 1 1 1 1 1 1]

ActionScript

<lang ActionScript>function mergesort(a:Array) { //Arrays of length 1 and 0 are always sorted if(a.length <= 1) return a; else { var middle:uint = a.length/2; //split the array into two var left:Array = new Array(middle); var right:Array = new Array(a.length-middle); var j:uint = 0, k:uint = 0; //fill the left array for(var i:uint = 0; i < middle; i++) left[j++]=a[i]; //fill the right array for(i = middle; i< a.length; i++) right[k++]=a[i]; //sort the arrays left = mergesort(left); right = mergesort(right); //If the last element of the left array is less than or equal to the first //element of the right array, they are in order and don't need to be merged if(left[left.length-1] <= right[0]) return left.concat(right); a = merge(left, right); return a; } }

function merge(left:Array, right:Array) { var result:Array = new Array(left.length + right.length); var j:uint = 0, k:uint = 0, m:uint = 0; //merge the arrays in order while(j < left.length && k < right.length) { if(left[j] <= right[k]) result[m++] = left[j++]; else result[m++] = right[k++]; } //If one of the arrays has remaining entries that haven't been merged, they //will be greater than the rest of the numbers merged so far, so put them on the //end of the array. for(; j < left.length; j++) result[m++] = left[j]; for(; k < right.length; k++) result[m++] = right[k]; return result; }</lang>

Ada

This example creates a generic package for sorting arrays of any type. Ada allows array indices to be any discrete type, including enumerated types which are non-numeric. Furthermore, numeric array indices can start at any value, positive, negative, or zero. The following code handles all the possible variations in index types. <lang ada>generic

  type Element_Type is private;
  type Index_Type is (<>);
  type Collection_Type is array(Index_Type range <>) of Element_Type;
  with function "<"(Left, Right : Element_Type) return Boolean is <>;

package Mergesort is

  function Sort(Item : Collection_Type) return Collection_Type;

end MergeSort;</lang>

<lang ada>package body Mergesort is

  -----------
  -- Merge --
  -----------
  
  function Merge(Left, Right : Collection_Type) return Collection_Type is
     Result : Collection_Type(Left'First..Right'Last);
     Left_Index : Index_Type := Left'First;
     Right_Index : Index_Type := Right'First;
     Result_Index : Index_Type := Result'First;
  begin
     while Left_Index <= Left'Last and Right_Index <= Right'Last loop
        if Left(Left_Index) <= Right(Right_Index) then
           Result(Result_Index) := Left(Left_Index);
           Left_Index := Index_Type'Succ(Left_Index); -- increment Left_Index
        else
           Result(Result_Index) := Right(Right_Index);
           Right_Index := Index_Type'Succ(Right_Index); -- increment Right_Index
        end if;
        Result_Index := Index_Type'Succ(Result_Index); -- increment Result_Index
     end loop;
     if Left_Index <= Left'Last then
        Result(Result_Index..Result'Last) := Left(Left_Index..Left'Last);
     end if;
     if Right_Index <= Right'Last then
        Result(Result_Index..Result'Last) := Right(Right_Index..Right'Last);
     end if;
     return Result;
  end Merge;
  
  ----------
  -- Sort --
  ----------
  function Sort (Item : Collection_Type) return Collection_Type is
     Result : Collection_Type(Item'range);
     Middle : Index_Type;
  begin
     if Item'Length <= 1 then
        return Item;
     else
        Middle := Index_Type'Val((Item'Length / 2) + Index_Type'Pos(Item'First));
        declare
           Left : Collection_Type(Item'First..Index_Type'Pred(Middle));
           Right : Collection_Type(Middle..Item'Last);
        begin
           for I in Left'range loop
              Left(I) := Item(I);
           end loop;
           for I in Right'range loop
              Right(I) := Item(I);
           end loop;
           Left := Sort(Left);
           Right := Sort(Right);
           Result := Merge(Left, Right);
        end;
        return Result;
     end if;
  end Sort;

end Mergesort;</lang> The following code provides an usage example for the generic package defined above. <lang ada>with Ada.Text_Io; use Ada.Text_Io; with Mergesort;

procedure Mergesort_Test is

  type List_Type is array(Positive range <>) of Integer;
  package List_Sort is new Mergesort(Integer, Positive, List_Type);
  procedure Print(Item : List_Type) is
  begin
     for I in Item'range loop
        Put(Integer'Image(Item(I)));
     end loop;
     New_Line;
  end Print;
  
  List : List_Type := (1, 5, 2, 7, 3, 9, 4, 6);

begin

  Print(List);
  Print(List_Sort.Sort(List));

end Mergesort_Test;</lang>

Output:
 1 5 2 7 3 9 4 6
 1 2 3 4 5 6 7 9

ALGOL 68

Translation of: python

Below are two variants of the same routine. If copying the DATA type to a different memory location is expensive, then the optimised version should be used as the DATA elements are handled indirectly. <lang algol68>MODE DATA = CHAR;

PROC merge sort = ([]DATA m)[]DATA: (

   IF LWB m >= UPB m THEN
       m
   ELSE
       INT middle = ( UPB m + LWB m ) OVER 2;
       []DATA left = merge sort(m[:middle]);
       []DATA right = merge sort(m[middle+1:]);
       flex merge(left, right)[AT LWB m]
   FI

);

  1. FLEX version: A demonstration of FLEX for manipulating arrays #

PROC flex merge = ([]DATA in left, in right)[]DATA:(

   [UPB in left + UPB in right]DATA result;
   FLEX[0]DATA left := in left;
   FLEX[0]DATA right := in right;
   FOR index TO UPB result DO
       # change the direction of this comparison to change the direction of the sort #
       IF LWB right > UPB right THEN
           result[index:] := left; 
           stop iteration
       ELIF LWB left > UPB left THEN
           result[index:] := right;
           stop iteration
       ELIF left[1] <= right[1] THEN
           result[index] := left[1];
           left := left[2:]
       ELSE
           result[index] := right[1];
           right := right[2:]
       FI
   OD;

stop iteration:

   result

);

[32]CHAR char array data := "big fjords vex quick waltz nymph"; print((merge sort(char array data), new line));</lang>

Output:
     abcdefghiijklmnopqrstuvwxyz

Optimised version:

  1. avoids FLEX array copies and manipulations
  2. avoids type DATA memory copies, useful in cases where DATA is a large STRUCT

<lang algol68>PROC opt merge sort = ([]REF DATA m)[]REF DATA: (

   IF LWB m >= UPB m THEN
       m
   ELSE
       INT middle = ( UPB m + LWB m ) OVER 2;
       []REF DATA left = opt merge sort(m[:middle]);
       []REF DATA right = opt merge sort(m[middle+1:]);
       opt merge(left, right)[AT LWB m]
   FI

);

PROC opt merge = ([]REF DATA left, right)[]REF DATA:(

   [UPB left - LWB left + 1 + UPB right - LWB right + 1]REF DATA result;
   INT index left:=LWB left, index right:=LWB right;
   FOR index TO UPB result DO
       # change the direction of this comparison to change the direction of the sort #
       IF index right > UPB right THEN
           result[index:] := left[index left:]; 
           stop iteration
       ELIF index left > UPB left THEN
           result[index:] := right[index right:];
           stop iteration
       ELIF left[index left] <= right[index right] THEN
           result[index] := left[index left]; index left +:= 1
       ELSE
           result[index] := right[index right]; index right +:= 1
       FI
   OD;

stop iteration:

   result

);

  1. create an array of pointers to the data being sorted #

[UPB char array data]REF DATA data; FOR i TO UPB char array data DO data[i] := char array data[i] OD;

[]REF CHAR result = opt merge sort(data); FOR i TO UPB result DO print((result[i])) OD; print(new line)</lang>

Output:
     abcdefghiijklmnopqrstuvwxyz

AppleScript

<lang applescript>(*

   In-place, iterative binary merge sort
   Merge sort algorithm: John von Neumann, 1945.
   
   Convenience terminology used here:
       run: one of two adjacent source-list ranges containing ordered items for merging.
       block: range in the destination list to which two runs are merged.
  • )

on mergeSort(theList, l, r) -- Sort items l thru r of theList.

   set listLength to (count theList)
   if (listLength < 2) then return
   -- Convert negative and/or transposed range indices.
   if (l < 0) then set l to listLength + l + 1
   if (r < 0) then set r to listLength + r + 1
   if (l > r) then set {l, r} to {r, l}
   
   -- Script object containing the input list and the sort range indices.
   script main
       property lst : theList
       property l : missing value
       property r : missing value
   end script
   set {main's l, main's r} to {l, r}
   
   -- Just swap adjacent items as necessary on the first pass.
   -- (Short insertion sorts would be better, to create larger initial runs.)
   repeat with j from (l + 1) to r by 2
       set i to j - 1
       set lv to main's lst's item i
       set rv to main's lst's item j
       if (lv > rv) then
           set main's lst's item i to rv
           set main's lst's item j to lv
       end if
   end repeat
   set rangeLength to r - l + 1
   if (rangeLength < 3) then return -- That's all if fewer than three items to sort.
   
   -- Script object to alternate with the one above as the source and destination for the
   -- merges. Its list need only contain the items from the sort range as ordered so far.
   script aux
       property lst : main's lst's items l thru r
       property l : 1
       property r : rangeLength
   end script
   
   -- Work out how many merging passes will be needed and set the script objects' initial
   -- source and destination roles so that the final pass will merge back to the original list.
   set passesToDo to 0
   set blockSize to 2
   repeat while (blockSize < rangeLength)
       set passesToDo to passesToDo + 1
       set blockSize to blockSize + blockSize
   end repeat
   set {srce, dest} to {{main, aux}, {aux, main}}'s item (passesToDo mod 2 + 1)
   
   -- Do the remaining passes, doubling the run and block sizes on each pass.
   -- (The end set in each pass will usually be truncated.)
   set blockSize to 2
   repeat passesToDo times -- Per pass.
       set runSize to blockSize
       set blockSize to blockSize + blockSize
       set k to (dest's l) - 1 -- Destination traversal index.
       
       repeat with leftStart from srce's l to srce's r by blockSize -- Per merge.
           set blockEnd to k + blockSize
           if (blockEnd comes after dest's r) then set blockEnd to dest's r
           set i to leftStart -- Left run traversal index.
           set leftEnd to leftStart + runSize - 1
           if (leftEnd comes before srce's r) then
               set j to leftEnd + 1 -- Right run traversal index.
               set rightEnd to leftEnd + runSize
               if (rightEnd comes after srce's r) then set rightEnd to srce's r
               -- Merge process:
               set lv to srce's lst's item i
               set rv to srce's lst's item j
               repeat with k from (k + 1) to blockEnd
                   if (lv > rv) then
                       set dest's lst's item k to rv
                       if (j = rightEnd) then exit repeat -- Right run used up.
                       set j to j + 1
                       set rv to srce's lst's item j
                   else
                       set dest's lst's item k to lv
                       if (i = leftEnd) then -- Left run used up.
                           set i to j
                           exit repeat
                       end if
                       set i to i + 1
                       set lv to srce's lst's item i
                   end if
               end repeat
           end if
           -- Use up the remaining items from the not-yet-exhausted run.
           repeat with k from (k + 1) to blockEnd
               set dest's lst's item k to srce's lst's item i
               set i to i + 1
           end repeat
       end repeat -- Per merge.
       
       -- Switch source and destination scripts for the next pass.
       tell srce
           set srce to dest
           set dest to it
       end tell
   end repeat -- Per pass.
   
   return -- nothing

end mergeSort property sort : mergeSort

-- Demo: local aList set aList to {22, 15, 98, 82, 22, 4, 58, 70, 80, 38, 49, 48, 46, 54, 93, 8, 54, 2, 72, 84, 86, 76, 53, 37, 90} sort(aList, 1, -1) -- Sort items 1 thru -1 of aList. return aList</lang>

Output:

<lang applescript>{2, 4, 8, 15, 22, 22, 37, 38, 46, 48, 49, 53, 54, 54, 58, 70, 72, 76, 80, 82, 84, 86, 90, 93, 98}</lang>

ARM Assembly

Works with: as version Raspberry Pi

<lang ARM Assembly> /* ARM assembly Raspberry PI */ /* program mergeSort.s */

/* REMARK 1 : this program use routines in a include file 
  see task Include a file language arm assembly 
  for the routine affichageMess conversion10 
  see at end of this program the instruction include */

/* for constantes see task include a file in arm assembly */ /************************************/ /* Constantes */ /************************************/ .include "../constantes.inc"

/*********************************/ /* Initialized data */ /*********************************/ .data szMessSortOk: .asciz "Table sorted.\n" szMessSortNok: .asciz "Table not sorted !!!!!.\n" sMessResult: .asciz "Value  : @ \n" szCarriageReturn: .asciz "\n"

.align 4

  1. TableNumber: .int 1,11,3,6,2,5,9,10,8,4,7

TableNumber: .int 10,9,8,7,6,5,4,3,2,1

                  .equ NBELEMENTS, (. - TableNumber) / 4

/*********************************/ /* UnInitialized data */ /*********************************/ .bss sZoneConv: .skip 24 /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program

   ldr r0,iAdrTableNumber                         @ address number table
   mov r1,#0                                      @ first element
   mov r2,#NBELEMENTS                             @ number of élements 
   bl mergeSort
   ldr r0,iAdrTableNumber                         @ address number table
   bl displayTable

   ldr r0,iAdrTableNumber                         @ address number table
   mov r1,#NBELEMENTS                             @ number of élements 
   bl isSorted                                    @ control sort
   cmp r0,#1                                      @ sorted ?
   beq 1f                                    
   ldr r0,iAdrszMessSortNok                       @ no !! error sort
   bl affichageMess
   b 100f

1: @ yes

   ldr r0,iAdrszMessSortOk
   bl affichageMess

100: @ standard end of the program

   mov r0, #0                                     @ return code
   mov r7, #EXIT                                  @ request to exit program
   svc #0                                         @ perform the system call

iAdrszCarriageReturn: .int szCarriageReturn iAdrsMessResult: .int sMessResult iAdrTableNumber: .int TableNumber iAdrszMessSortOk: .int szMessSortOk iAdrszMessSortNok: .int szMessSortNok /******************************************************************/ /* control sorted table */ /******************************************************************/ /* r0 contains the address of table */ /* r1 contains the number of elements > 0 */ /* r0 return 0 if not sorted 1 if sorted */ isSorted:

   push {r2-r4,lr}                                    @ save registers
   mov r2,#0
   ldr r4,[r0,r2,lsl #2]

1:

   add r2,#1
   cmp r2,r1
   movge r0,#1
   bge 100f
   ldr r3,[r0,r2, lsl #2]
   cmp r3,r4
   movlt r0,#0
   blt 100f
   mov r4,r3
   b 1b

100:

   pop {r2-r4,lr}
   bx lr                                              @ return 
   

/******************************************************************/ /* merge */ /******************************************************************/ /* r0 contains the address of table */ /* r1 contains first start index /* r2 contains second start index */ /* r3 contains the last index */ merge:

   push {r1-r8,lr}               @ save registers
   mov r5,r2                     @ init index r2->r5 

1: @ begin loop first section

   ldr r6,[r0,r1,lsl #2]         @ load value first section index r1
   ldr r7,[r0,r5,lsl #2]         @ load value second section index r5
   cmp r6,r7
   ble 3f                        @ <=  -> location first section OK
   str r7,[r0,r1,lsl #2]         @ store value second section in first section
   add r8,r5,#1
   cmp r8,r3                     @ end second section ?
   strgt r6,[r0,r5,lsl #2]
   bgt 3f                        @ loop

2: @ loop insert element part 1 into part 2

   sub r4,r8,#1
   ldr r7,[r0,r8,lsl #2]         @ load value 2
   cmp r6,r7                     @ value < 
   strlt r6,[r0,r4,lsl #2]       @ store value 
   blt 3f
   str r7,[r0,r4,lsl #2]         @ store value 2
   add r8,#1
   cmp r8,r3                     @ end second section ?
   ble 2b                        @ no loop 
   sub r8,#1
   str r6,[r0,r8,lsl #2]         @ store value 1

3:

   add r1,#1
   cmp r1,r2                     @ end first section ?
   blt 1b

100:

   pop {r1-r8,lr}
   bx lr                          @ return 

/******************************************************************/ /* merge sort */ /******************************************************************/ /* r0 contains the address of table */ /* r1 contains the index of first element */ /* r2 contains the number of element */ mergeSort:

   push {r3-r7,lr}           @ save registers
   cmp r2,#2
   blt 100f
   lsr r4,r2,#1             @ number of element of each subset
   tst r2,#1
   addne r4,#1
   mov r5,r1              @ save first element
   mov r6,r2              @ save number of element
   mov r7,r4              @ save number of element of each subset
   mov r2,r4
   bl mergeSort
   mov r1,r7              @ restaur number of element of each subset
   mov r2,r6              @ restaur  number of element
   sub r2,r1
   mov r3,r5              @ restaur first element
   add r1,r3              @ + 1
   bl mergeSort           @ sort first subset
   mov r1,r5              @ restaur first element
   mov r2,r7              @ restaur number of element of each subset
   add r2,r1
   mov r3,r6              @ restaur  number of element
   add r3,r1 
   sub r3,#1              @ last index
   bl merge

100:

   pop {r3-r7,lr}
   bx lr                  @ return 

/******************************************************************/ /* Display table elements */ /******************************************************************/ /* r0 contains the address of table */ displayTable:

   push {r0-r3,lr}                                    @ save registers
   mov r2,r0                                          @ table address
   mov r3,#0

1: @ loop display table

   ldr r0,[r2,r3,lsl #2]
   ldr r1,iAdrsZoneConv                               @ 
   bl conversion10S                                    @ décimal conversion 
   ldr r0,iAdrsMessResult
   ldr r1,iAdrsZoneConv                               @ insert conversion
   bl strInsertAtCharInc
   bl affichageMess                                   @ display message
   add r3,#1
   cmp r3,#NBELEMENTS - 1
   ble 1b
   ldr r0,iAdrszCarriageReturn
   bl affichageMess
   mov r0,r2

100:

   pop {r0-r3,lr}
   bx lr

iAdrsZoneConv: .int sZoneConv /***************************************************/ /* ROUTINES INCLUDE */ /***************************************************/ .include "../affichage.inc" </lang>

Astro

<lang python>fun mergesort(m):

   if m.lenght <= 1: return m
   let middle = floor m.lenght / 2
   let left = merge(m[:middle])
   let right = merge(m[middle-1:]);

fun merge(left, right):

   let result = []
   while not (left.isempty or right.isempty):
       if left[1] <= right[1]:
           result.push! left.shift!()
       else:
           result.push! right.shift!()
   result.push! left.push! right

let arr = [7, 6, 5, 9, 8, 4, 3, 1, 2, 0] print mergesort arr</lang>

ATS

A mergesort for linear lists

This algorithm modifies the links in the list, rather than allocate new cons-pairs. It requires no garbage collector.

<lang ats>(*------------------------------------------------------------------*) (* Mergesort in ATS2, for linear lists. *) (*------------------------------------------------------------------*)

  1. include "share/atspre_staload.hats"

staload UN = "prelude/SATS/unsafe.sats"

  1. define NIL list_vt_nil ()
  2. define :: list_vt_cons

(*------------------------------------------------------------------*)

(* Destructive stable merge. *) extern fun {a : vt@ype} list_vt_merge {m, n : int}

             (lst1 : list_vt (a, m),
              lst2 : list_vt (a, n))
   :<!wrt> list_vt (a, m + n)

(* Order predicate for list_vt_merge. You have to implement this to

  suit your needs. *)

extern fun {a : vt@ype} list_vt_merge$lt : (&a, &a) -<> bool

(* Destructive stable mergesort. *) extern fun {a : vt@ype} list_vt_mergesort {n  : int}

                 (lst : list_vt (a, n))
   :<!wrt> list_vt (a, n)

(* Order predicate for list_vt_mergesort. You have to implement this

  to suit your needs. *)

extern fun {a : vt@ype} list_vt_mergesort$lt : (&a, &a) -<> bool

(*------------------------------------------------------------------*)

implement {a} list_vt_merge {m, n} (lst1, lst2) =

 let
   macdef lt = list_vt_merge$lt<a>
   fun
   loop {m, n       : nat} .<m + n>.
        (lst1       : list_vt (a, m),
         lst2       : list_vt (a, n),
         lst_merged : &List_vt a? >> list_vt (a, m + n))
       :<!wrt> void =
     case+ lst1 of
     | ~ NIL => lst_merged := lst2
     | @ elem1 :: tail1 =>
       begin
         case+ lst2 of
         | ~ NIL =>
           let
             prval () = fold@ lst1
           in
             lst_merged := lst1
           end
         | @ elem2 :: tail2 =>
           if ~(elem2 \lt elem1) then
             let
               val () = lst_merged := lst1
               prval () = fold@ lst2
               val () = loop (tail1, lst2, tail1)
               prval () = fold@ lst_merged
             in
             end
           else
             let
               val () = lst_merged := lst2
               prval () = fold@ lst1
               val () = loop (lst1, tail2, tail2)
               prval () = fold@ lst_merged
             in
             end
       end
   prval () = lemma_list_vt_param lst1 (* Proves 0 <= m. *)
   prval () = lemma_list_vt_param lst2 (* Proves 0 <= n. *)
   prval () = prop_verify {0 <= m} ()
   prval () = prop_verify {0 <= n} ()
   var lst_merged : List_vt a?
   val () = loop {m, n} (lst1, lst2, lst_merged)
 in
   lst_merged
 end

(*------------------------------------------------------------------*)

implement {a} list_vt_mergesort {n} lst =

 let
   implement
   list_vt_merge$lt<a> (x, y) =
     list_vt_mergesort$lt<a> (x, y)
   (* You can make SMALL larger than 1 and write small_sort as a fast
      stable sort for small lists. *)
   #define SMALL 1
   fn
   small_sort {m   : pos | m <= SMALL}
              (lst : list_vt (a, m),
               m   : int m)
       :<!wrt> list_vt (a, m) =
     lst
   fun
   recurs {m   : pos} .<m>.
          (lst : list_vt (a, m),
           m   : int m)
       :<!wrt> list_vt (a, m) =
     if m <= SMALL then
       small_sort (lst, m)
     else
       let
         prval () = prop_verify {2 <= m} ()
         val i = m / 2
         val @(lst1, lst2) = list_vt_split_at<a> (lst, i)
         val lst1 = recurs (lst1, i)
         val lst2 = recurs (lst2, m - i)
       in
         list_vt_merge<a> (lst1, lst2)
       end
   prval () = lemma_list_vt_param lst (* Proves 0 <= n. *)
   prval () = prop_verify {0 <= n} ()
 in
   case+ lst of
   | NIL => lst
   | _ :: _ => recurs (lst, length lst)
 end

(*------------------------------------------------------------------*)

extern fun list_vt_mergesort_int {n  : int}

                     (lst : list_vt (int, n))
   :<!wrt> list_vt (int, n)

implement list_vt_mergesort_int {n} lst =

 let
   implement
   list_vt_mergesort$lt<int> (x, y) =
     x < y
 in
   list_vt_mergesort<int> {n} lst
 end

implement main0 () =

 let
   val lst = $list_vt (22, 15, 98, 82, 22, 4, 58, 70, 80, 38, 49,
                       48, 46, 54, 93, 8, 54, 2, 72, 84, 86, 76,
                       53, 37, 90)
   val () = println! ("before : ", $UN.castvwtp1{List int} lst)
   val lst = list_vt_mergesort_int lst
   val () = println! ("after  : ", $UN.castvwtp1{List int} lst)
 in
   list_vt_free<int> lst
 end

(*------------------------------------------------------------------*)</lang>

Output:
$ patscc -O3 -DATS_MEMALLOC_LIBC mergesort_task_for_list_vt.dats && ./a.out
before : 22, 15, 98, 82, 22, 4, 58, 70, 80, 38, 49, 48, 46, 54, 93, 8, 54, 2, 72, 84, 86, 76, 53, 37, 90
after  : 2, 4, 8, 15, 22, 22, 37, 38, 46, 48, 49, 53, 54, 54, 58, 70, 72, 76, 80, 82, 84, 86, 90, 93, 98

Footnote: Rather than directly write a mergesort for "ordinary" non-linear lists, I would write a routine to do the following:

  • make a copy of the list;
  • cast the copy to a linear list;
  • sort the linear list;
  • cast the result to non-linear list, and return the casted result.


This way, new cons-pairs are allocated only once.

The same thing can be done in other languages, of course. An interesting thing about this ATS implementation, though, is it proves the result is of the same length as the input. It does not, however, prove that the result satisfies the order predicate.

A mergesort for non-linear lists of integers, guaranteeing a sorted result

The following program not only sorts a list of integers, but verifies that the result is sorted. It is the simplest implementation I could think of that does that. It works by having a special kind of list that can be consed only in sorted order.

The length of the result also is verified. However, there is no proof that the result contains the same data as the input.

<lang ats>//-------------------------------------------------------------------- // // A mergesort for 32-bit signed integers. // //--------------------------------------------------------------------

  1. include "share/atspre_staload.hats"

(*------------------------------------------------------------------*)

  1. define ENTIER_MAX 2147483647

(* We do not include the most negative two's-complement number. *) stadef entier (i : int) = ~ENTIER_MAX <= i && i <= ENTIER_MAX sortdef entier = {i : int | entier i}

typedef entier (i : int) = [entier i] int i typedef entier = [i : entier] entier i

datatype sorted_entier_list (int, int) = | sorted_entier_list_nil (0, ENTIER_MAX) | {n : nat}

 {i, j : entier | ~(j < i)}
 sorted_entier_list_cons (n + 1, i) of
   (entier i, sorted_entier_list (n, j))

typedef sorted_entier_list (n : int) =

 [i : entier] sorted_entier_list (n, i)

typedef sorted_entier_list =

 [n : int] sorted_entier_list n

infixr ( :: ) :::

  1. define NIL list_nil ()
  2. define :: list_cons
  3. define SNIL sorted_entier_list_nil ()
  4. define ::: sorted_entier_list_cons

(*------------------------------------------------------------------*)

extern prfn lemma_sorted_entier_list_param

         {n   : int}
         (lst : sorted_entier_list n)
   :<prf> [0 <= n] void

extern fn sorted_entier_list_length

         {n   : int}
         (lst : sorted_entier_list n)
   :<> [0 <= n] int n

extern fn sorted_entier_list_merge

         {m, n : int}
         {i, j : entier}
         (lst1 : sorted_entier_list (m, i),
          lst2 : sorted_entier_list (n, j))
   :<> sorted_entier_list (m + n, min (i, j))

extern fn entier_list_mergesort

         {n   : int}
         (lst : list (entier, n)) (* An ordinary list. *)
   :<!wrt> sorted_entier_list n

extern fn sorted_entier_list2list

         {n   : int}
         (lst : sorted_entier_list n)
   :<> list (entier, n)

overload length with sorted_entier_list_length overload merge with sorted_entier_list_merge overload mergesort with entier_list_mergesort overload to_list with sorted_entier_list2list

(*------------------------------------------------------------------*)

primplement lemma_sorted_entier_list_param {n} lst =

 case+ lst of
 | SNIL => ()
 | _ ::: _ => ()

implement sorted_entier_list_length {n} lst =

 (* This implementation is tail-recursive. *)
 let
   fun
   count {m   : nat | m <= n} .<n - m>.
         (lst : sorted_entier_list (n - m),
          m   : int m)
       :<> [0 <= n] int n =
     case+ lst of
     | SNIL => m
     | _ ::: tail => count {m + 1} (tail, succ m)
   prval () = lemma_sorted_entier_list_param lst
 in
   count (lst, 0)
 end

implement sorted_entier_list_merge (lst1, lst2) =

 (* This implementation is *NOT* tail recursive. It will use O(m+n)
    stack space. *)
 let
   fun
   recurs {m, n : nat}
          {i, j : entier} .<m + n>.
          (lst1 : sorted_entier_list (m, i),
           lst2 : sorted_entier_list (n, j))
       :<> sorted_entier_list (m + n, min (i, j)) =
     case+ lst1 of
     | SNIL => lst2
     | i ::: tail1 =>
       begin
         case+ lst2 of
         | SNIL => lst1
         | j ::: tail2 =>
           if ~(j < i) then
             i ::: recurs (tail1, lst2)
           else
             j ::: recurs (lst1, tail2)
       end
   prval () = lemma_sorted_entier_list_param lst1
   prval () = lemma_sorted_entier_list_param lst2
 in
   recurs (lst1, lst2)
 end

implement entier_list_mergesort lst =

 let
   fun
   recurs {m   : nat} .<m>.
          (lst : list (entier, m),
           m   : int m)
       :<!wrt> sorted_entier_list m =
     if m = 1 then
       let
         val+ head :: NIL = lst
       in
         head ::: SNIL
       end
     else if m = 0 then
       SNIL
     else
       let
         val m_left = m \g1int_ndiv 2
         val m_right = m - m_left
         val @(left, right) = list_split_at (lst, m_left)
         val left = recurs (list_vt2t left, m_left)
         and right = recurs (right, m_right)
       in
         left \merge right
       end
   prval () = lemma_list_param lst
 in
   recurs (lst, length lst)
 end

implement sorted_entier_list2list lst =

 (* This implementation is *NOT* tail recursive. It will use O(n)
    stack space. *)
 let
   fun
   recurs {n   : nat} .<n>.
          (lst : sorted_entier_list n)
       :<> list (entier, n) =
     case+ lst of
     | SNIL => NIL
     | head ::: tail => head :: recurs tail
   prval () = lemma_sorted_entier_list_param lst
 in
   recurs lst
 end

(*------------------------------------------------------------------*)

fn print_Int_list

         {n   : int}
         (lst : list (Int, n))
   : void =
 let
   fun
   loop {n   : nat} .<n>.
        (lst : list (Int, n))
       : void =
     case+ lst of
     | NIL => ()
     | head :: tail =>
       begin
         print! (" ");
         print! (head);
         loop tail
       end
   prval () = lemma_list_param lst
 in
   loop lst
 end

implement main0 () =

 let
   val example_list =
     $list (22, 15, 98, 82, 22, 4, 58, 70, 80, 38, 49, 48, 46, 54,
            93, 8, 54, 2, 72, 84, 86, 76, 53, 37, 90)
   val sorted_list = mergesort example_list
 in
   print! ("unsorted  ");
   print_Int_list example_list;
   println! ();
   print! ("sorted    ");
   print_Int_list (to_list sorted_list);
   println! ()
 end

(*------------------------------------------------------------------*)</lang>

Output:
patscc -O3 -DATS_MEMALLOC_GCBDW mergesort_task_verified.dats -lgc && ./a.out
unsorted   22 15 98 82 22 4 58 70 80 38 49 48 46 54 93 8 54 2 72 84 86 76 53 37 90
sorted     2 4 8 15 22 22 37 38 46 48 49 53 54 54 58 70 72 76 80 82 84 86 90 93 98

Postscript. One might try adding a line such as

val x = 3 ::: 2 ::: SNIL

to the program and see that the compiler will report it as erroneous, on grounds that "2 is not less than 3" is unsatisfied.

AutoHotkey_L

AutoHotkey_L has true array support and can dynamically grow and shrink its arrays at run time. This version of Merge Sort only needs n locations to sort. AHK forum post <lang AutoHotkey>#NoEnv

Test := [] Loop 100 {

   Random n, 0, 999
   Test.Insert(n)

} Result := MergeSort(Test) Loop % Result.MaxIndex() {

   MsgBox, 1, , % Result[A_Index]
   IfMsgBox Cancel
       Break

} Return


/*

   Function MergeSort
       Sorts an array by first recursively splitting it down to its
       individual elements and then merging those elements in their
       correct order.
      
   Parameters
       Array   The array to be sorted
      
   Returns
       The sorted array
  • /

MergeSort(Array)

   {
       ; Return single element arrays
       If (! Array.HasKey(2))
           Return Array
       ; Split array into Left and Right halfs
       Left := [], Right := [], Middle := Array.MaxIndex() // 2
       Loop % Middle
           Right.Insert(Array.Remove(Middle-- + 1)), Left.Insert(Array.Remove(1))
       If (Array.MaxIndex())
           Right.Insert(Array.Remove(1))
      
       Left := MergeSort(Left), Right := MergeSort(Right)
       ; If all the Right values are greater than all the
       ; Left values, just append Right at the end of Left.
       If (Left[Left.MaxIndex()] <= Right[1]) {
           Loop % Right.MaxIndex()
               Left.Insert(Right.Remove(1))
           Return Left
       }
       ; Loop until one of the arrays is empty
       While(Left.MaxIndex() and Right.MaxIndex())
           Left[1] <= Right[1] ? Array.Insert(Left.Remove(1))
                               : Array.Insert(Right.Remove(1))
       Loop % Left.MaxIndex()
           Array.Insert(Left.Remove(1))
       Loop % Right.MaxIndex()
           Array.Insert(Right.Remove(1))
          
       Return Array
   }</lang>

AutoHotkey

Contributed by Laszlo on the ahk forum <lang AutoHotkey>MsgBox % MSort("") MsgBox % MSort("xxx") MsgBox % MSort("3,2,1") MsgBox % MSort("dog,000000,cat,pile,abcde,1,zz,xx,z")

MSort(x) {  ; Merge-sort of a comma separated list

  If (2 > L:=Len(x))
      Return x                                             ; empty or single item lists are sorted
  StringGetPos p, x, `,, % "L" L//2                        ; Find middle comma
  Return Merge(MSort(SubStr(x,1,p)), MSort(SubStr(x,p+2))) ; Split, Sort, Merge

}

Len(list) {

  StringReplace t, list,`,,,UseErrorLevel                  ; #commas -> ErrorLevel
  Return list="" ? 0 : ErrorLevel+1

}

Item(list,ByRef p) {  ; item at position p, p <- next position

  Return (p := InStr(list,",",0,i:=p+1)) ? SubStr(list,i,p-i) : SubStr(list,i)

}

Merge(list0,list1) {  ; Merge 2 sorted lists

  IfEqual list0,, Return list1
  IfEqual list1,, Return list0
  i0 := Item(list0,p0:=0)
  i1 := Item(list1,p1:=0)
  Loop  {
     i := i0>i1
     list .= "," i%i%                                      ; output smaller
     If (p%i%)
        i%i% := Item(list%i%,p%i%)                         ; get next item from processed list
     Else {
        i ^= 1                                             ; list is exhausted: attach rest of other
        Return SubStr(list "," i%i% (p%i% ? "," SubStr(list%i%,p%i%+1) : ""), 2)
     }
  }

}</lang>

BBC BASIC

<lang BBCBASIC>DEFPROC_MergeSort(Start%,End%) REM ***************************************************************** REM This procedure Merge Sorts the chunk of data% bounded by REM Start% & End%. REM *****************************************************************

LOCAL Middle% IF End%=Start% ENDPROC

IF End%-Start%=1 THEN

  IF data%(End%)<data%(Start%) THEN
     SWAP data%(Start%),data%(End%)
  ENDIF
  ENDPROC

ENDIF

Middle%=Start%+(End%-Start%)/2

PROC_MergeSort(Start%,Middle%) PROC_MergeSort(Middle%+1,End%) PROC_Merge(Start%,Middle%,End%)

ENDPROC

DEF PROC_Merge(Start%,Middle%,End%)

LOCAL fh_size% fh_size% = Middle%-Start%+1

FOR I%=0 TO fh_size%-1

 fh%(I%)=data%(Start%+I%)

NEXT I%

I%=0 J%=Middle%+1 K%=Start%

REPEAT

 IF fh%(I%) <= data%(J%) THEN
   data%(K%)=fh%(I%)
   I%+=1
   K%+=1
 ELSE
   data%(K%)=data%(J%)
   J%+=1
   K%+=1
 ENDIF

UNTIL I%=fh_size% OR J%>End%

WHILE I% < fh_size%

 data%(K%)=fh%(I%)
 I%+=1
 K%+=1

ENDWHILE

ENDPROC</lang> Usage would look something like this example which sorts a series of 1000 random integers: <lang BBCBASIC>REM Example of merge sort usage. Size%=1000

S1%=Size%/2

DIM data%(Size%) DIM fh%(S1%)

FOR I%=1 TO Size%

 data%(I%)=RND(100000)

NEXT

PROC_MergeSort(1,Size%)

END</lang>

BCPL

<lang bcpl>get "libhdr"

let mergesort(A, n) be if n >= 2 $( let m = n / 2

   mergesort(A, m)
   mergesort(A+m, n-m)
   merge(A, n, m)

$) and merge(A, n, m) be $( let i, j = 0, m

   let x = getvec(n)
   for k=0 to n-1
       x!k := A!valof
           test j~=n & (i=m | A!j < A!i)
           $(  j := j + 1
               resultis j - 1
           $)
           else 
           $(  i := i + 1
               resultis i - 1
           $)
   for i=0 to n-1 do a!i := x!i
   freevec(x)

$)

let write(s, A, len) be $( writes(s)

   for i=0 to len-1 do writed(A!i, 4)
   wrch('*N')

$)

let start() be $( let array = table 4,65,2,-31,0,99,2,83,782,1

   let length = 10    
   write("Before: ", array, length)
   mergesort(array, length)
   write("After:  ", array, length)

$)</lang>

Output:
Before:    4  65   2 -31   0  99   2  83 782   1
After:   -31   0   1   2   2   4  65  83  99 782

C

<lang c>#include <stdio.h>

  1. include <stdlib.h>

void merge (int *a, int n, int m) {

   int i, j, k;
   int *x = malloc(n * sizeof (int));
   for (i = 0, j = m, k = 0; k < n; k++) {
       x[k] = j == n      ? a[i++]
            : i == m      ? a[j++]
            : a[j] < a[i] ? a[j++]
            :               a[i++];
   }
   for (i = 0; i < n; i++) {
       a[i] = x[i];
   }
   free(x);

}

void merge_sort (int *a, int n) {

   if (n < 2)
       return;
   int m = n / 2;
   merge_sort(a, m);
   merge_sort(a + m, n - m);
   merge(a, n, m);

}

int main () {

   int a[] = {4, 65, 2, -31, 0, 99, 2, 83, 782, 1};
   int n = sizeof a / sizeof a[0];
   int i;
   for (i = 0; i < n; i++)
       printf("%d%s", a[i], i == n - 1 ? "\n" : " ");
   merge_sort(a, n);
   for (i = 0; i < n; i++)
       printf("%d%s", a[i], i == n - 1 ? "\n" : " ");
   return 0;

}</lang>

Output:
4 65 2 -31 0 99 2 83 782 1
-31 0 1 2 2 4 65 83 99 782

C#

Works with: C# version 3.0+

<lang csharp>namespace RosettaCode {

 using System;
 public class MergeSort<T> where T : IComparable {
   #region Constants
   public const UInt32 INSERTION_LIMIT_DEFAULT = 12;
   public const Int32 MERGES_DEFAULT = 6;
   #endregion
   #region Properties
   public UInt32 InsertionLimit { get; }
   protected UInt32[] Positions { get; set; }
   private Int32 merges;
   public Int32 Merges {
     get { return merges; }
     set {
       // A minimum of 2 merges are required
       if (value > 1)
         merges = value;
       else
         throw new ArgumentOutOfRangeException($"value = {value} must be greater than one", nameof(Merges));
       if (Positions == null || Positions.Length != merges)
         Positions = new UInt32[merges];
     }
   }
   #endregion
   #region Constructors
   public MergeSort(UInt32 insertionLimit, Int32 merges) {
     InsertionLimit = insertionLimit;
     Merges = merges;
   }
   public MergeSort()
     : this(INSERTION_LIMIT_DEFAULT, MERGES_DEFAULT) {
   }
   #endregion
   #region Sort Methods
   public void Sort(T[] entries) {
     // Allocate merge buffer
     var entries2 = new T[entries.Length];
     Sort(entries, entries2, 0, entries.Length - 1);
   }
   // Top-Down K-way Merge Sort
   public void Sort(T[] entries1, T[] entries2, Int32 first, Int32 last) {
     var length = last + 1 - first;
     if (length < 2) return;      
     if (length < Merges || length < InsertionLimit) {
       InsertionSort<T>.Sort(entries1, first, last);
       return;
     }
     var left = first;
     var size = ceiling(length, Merges);
     for (var remaining = length; remaining > 0; remaining -= size, left += size) {
       var right = left + Math.Min(remaining, size) - 1;
       Sort(entries1, entries2, left, right);
     }
     Merge(entries1, entries2, first, last);
     Array.Copy(entries2, first, entries1, first, length);
   }
   #endregion
   #region Merge Methods
   public void Merge(T[] entries1, T[] entries2, Int32 first, Int32 last) {
     Array.Clear(Positions, 0, Merges);
     // This implementation has a quadratic time dependency on the number of merges
     for (var index = first; index <= last; index++)
       entries2[index] = remove(entries1, first, last);
   }
   private T remove(T[] entries, Int32 first, Int32 last) {
     T entry = default;
     Int32? found = default;
     var length = last + 1 - first;
     var index = 0;
     var left = first;
     var size = ceiling(length, Merges);
     for (var remaining = length; remaining > 0; remaining -= size, left += size, index++) {
       var position = Positions[index];
       if (position < Math.Min(remaining, size)) {
         var next = entries[left + position];
         if (!found.HasValue || entry.CompareTo(next) > 0) {
           found = index;
           entry = next;
         }
       }
     }
     // Remove entry
     Positions[found.Value]++;
     return entry;
   }
   #endregion
   #region Math Methods
   private static Int32 ceiling(Int32 numerator, Int32 denominator) {
     return (numerator + denominator - 1) / denominator;
   }
   #endregion
 }
 #region Insertion Sort
 static class InsertionSort<T> where T : IComparable {
   public static void Sort(T[] entries, Int32 first, Int32 last) {
     for (var next = first + 1; next <= last; next++)
       insert(entries, first, next);
   }
   /// <summary>Bubble next entry up to its sorted location, assuming entries[first:next - 1] are already sorted.</summary>
   private static void insert(T[] entries, Int32 first, Int32 next) {
     var entry = entries[next];
     while (next > first && entries[next - 1].CompareTo(entry) > 0)
       entries[next] = entries[--next];
     entries[next] = entry;
   }
 }
 #endregion

}</lang> Example: <lang csharp> using Sort;

 using System;
 class Program {
   static void Main(String[] args) {
     var entries = new Int32[] { 7, 5, 2, 6, 1, 4, 2, 6, 3 };
     var sorter = new MergeSort<Int32>();
     sorter.Sort(entries);
     Console.WriteLine(String.Join(" ", entries));
   }
 }</lang>
Output:
1 2 2 3 4 5 6 6 7

C++

<lang cpp>#include <iterator>

  1. include <algorithm> // for std::inplace_merge
  2. include <functional> // for std::less

template<typename RandomAccessIterator, typename Order>

void mergesort(RandomAccessIterator first, RandomAccessIterator last, Order order)

{

 if (last - first > 1)
 {
   RandomAccessIterator middle = first + (last - first) / 2;
   mergesort(first, middle, order);
   mergesort(middle, last, order);
   std::inplace_merge(first, middle, last, order);
 }

}

template<typename RandomAccessIterator>

void mergesort(RandomAccessIterator first, RandomAccessIterator last)

{

 mergesort(first, last, std::less<typename std::iterator_traits<RandomAccessIterator>::value_type>());

}</lang>

Clojure

Translation of: Haskell

<lang lisp> (defn merge [left right]

 (cond (nil? left) right
       (nil? right) left
       :else (let [[l & *left] left
                   [r & *right] right]
               (if (<= l r) (cons l (merge *left right))
                            (cons r (merge left *right))))))

(defn merge-sort [list]

 (if (< (count list) 2)
   list
   (let [[left right] (split-at (/ (count list) 2) list)]
     (merge (merge-sort left) (merge-sort right)))))

</lang>

COBOL

Cobol cannot do recursion, so this version simulates recursion. The working storage is therefore pretty complex, so I have shown the whole program, not just the working procedure division parts. <lang COBOL> IDENTIFICATION DIVISION.

      PROGRAM-ID.                      MERGESORT.
      AUTHOR.                          DAVE STRATFORD.
      DATE-WRITTEN.                    APRIL 2010.
      INSTALLATION.                    HEXAGON SYSTEMS LIMITED.
     ******************************************************************
     *                            MERGE SORT                          *
     *  The Merge sort uses a completely different paradigm, one of   *
     * divide and conquer, to many of the other sorts. The data set   *
     * is split into smaller sub sets upon which are sorted and then  *
     * merged together to form the final sorted data set.             *
     *  This version uses the recursive method. Split the data set in *
     * half and perform a merge sort on each half. This in turn splits*
     * each half again and again until each set is just one or 2 items*
     * long. A set of one item is already sorted so is ignored, a set *
     * of two is compared and swapped as necessary. The smaller data  *
     * sets are then repeatedly merged together to eventually form the*
     * full, sorted, set.                                             *
     *  Since cobol cannot do recursion this module only simulates it *
     * so is not as fast as a normal recursive version would be.      *
     *  Scales very well to larger data sets, its relative complexity *
     * means it is not suited to sorting smaller data sets: use an    *
     * Insertion sort instead as the Merge sort is a stable sort.     *
     ******************************************************************
      ENVIRONMENT DIVISION.
      CONFIGURATION SECTION.
      SOURCE-COMPUTER.                 ICL VME.
      OBJECT-COMPUTER.                 ICL VME.
      INPUT-OUTPUT SECTION.
      FILE-CONTROL.
          SELECT FA-INPUT-FILE  ASSIGN FL01.
          SELECT FB-OUTPUT-FILE ASSIGN FL02.
      DATA DIVISION.
      FILE SECTION.
      FD  FA-INPUT-FILE.
      01  FA-INPUT-REC.
        03  FA-DATA                    PIC 9(6).
      FD  FB-OUTPUT-FILE.
      01  FB-OUTPUT-REC                PIC 9(6).
      WORKING-STORAGE SECTION.
      01  WA-IDENTITY.
        03  WA-PROGNAME                PIC X(10) VALUE "MERGESORT".
        03  WA-VERSION                 PIC X(6) VALUE "000001".
      01  WB-TABLE.
        03  WB-ENTRY                   PIC 9(8) COMP SYNC OCCURS 100000
                                                INDEXED BY WB-IX-1
                                                           WB-IX-2.
      01  WC-VARS.
        03  WC-SIZE                    PIC S9(8) COMP SYNC.
        03  WC-TEMP                    PIC S9(8) COMP SYNC.
        03  WC-START                   PIC S9(8) COMP SYNC.
        03  WC-MIDDLE                  PIC S9(8) COMP SYNC.
        03  WC-END                     PIC S9(8) COMP SYNC.
      01  WD-FIRST-HALF.
        03  WD-FH-MAX                  PIC S9(8) COMP SYNC.
        03  WD-ENTRY                   PIC 9(8) COMP SYNC OCCURS 50000
                                                INDEXED BY WD-IX.
      01  WF-CONDITION-FLAGS.
        03  WF-EOF-FLAG                PIC X.
          88  END-OF-FILE              VALUE "Y".
        03  WF-EMPTY-FILE-FLAG         PIC X.
          88  EMPTY-FILE               VALUE "Y".
      01  WS-STACK.
     * This stack is big enough to sort a list of 1million items.
        03  WS-STACK-ENTRY OCCURS 20 INDEXED BY WS-STACK-TOP.
          05  WS-START                 PIC S9(8) COMP SYNC.
          05  WS-MIDDLE                PIC S9(8) COMP SYNC.
          05  WS-END                   PIC S9(8) COMP SYNC.
          05  WS-FS-FLAG               PIC X.
            88  FIRST-HALF             VALUE "F".
            88  SECOND-HALF            VALUE "S".
            88  WS-ALL                 VALUE "A".
          05  WS-IO-FLAG               PIC X.
            88  WS-IN                  VALUE "I".
            88  WS-OUT                 VALUE "O".
      PROCEDURE DIVISION.
      A-MAIN SECTION.
      A-000.
          PERFORM B-INITIALISE.
          IF NOT EMPTY-FILE
             PERFORM C-PROCESS.
          PERFORM D-FINISH.
      A-999.
          STOP RUN.
      B-INITIALISE SECTION.
      B-000.
          DISPLAY "*** " WA-PROGNAME " VERSION "
                         WA-VERSION " STARTING ***".
          MOVE ALL "N" TO WF-CONDITION-FLAGS.
          OPEN INPUT FA-INPUT-FILE.
          SET WB-IX-1 TO 0.
          READ FA-INPUT-FILE AT END MOVE "Y" TO WF-EOF-FLAG
                                                WF-EMPTY-FILE-FLAG.
          PERFORM BA-READ-INPUT UNTIL END-OF-FILE.
          CLOSE FA-INPUT-FILE.
          SET WC-SIZE TO WB-IX-1.
      B-999.
          EXIT.
      BA-READ-INPUT SECTION.
      BA-000.
          SET WB-IX-1 UP BY 1.
          MOVE FA-DATA TO WB-ENTRY(WB-IX-1).
          READ FA-INPUT-FILE AT END MOVE "Y" TO WF-EOF-FLAG.
      BA-999.
          EXIT.
      C-PROCESS SECTION.
      C-000.
          DISPLAY "SORT STARTING".
          MOVE 1           TO WS-START(1).
          MOVE WC-SIZE     TO WS-END(1).
          MOVE "F"         TO WS-FS-FLAG(1).
          MOVE "I"         TO WS-IO-FLAG(1).
          SET WS-STACK-TOP TO 2.
          PERFORM E-MERGE-SORT UNTIL WS-OUT(1).
          DISPLAY "SORT FINISHED".
      C-999.
          EXIT.
      D-FINISH SECTION.
      D-000.
          OPEN OUTPUT FB-OUTPUT-FILE.
          SET WB-IX-1 TO 1.
          PERFORM DA-WRITE-OUTPUT UNTIL WB-IX-1 > WC-SIZE.
          CLOSE FB-OUTPUT-FILE.
          DISPLAY "*** " WA-PROGNAME " FINISHED ***".
      D-999.
          EXIT.
      DA-WRITE-OUTPUT SECTION.
      DA-000.
          WRITE FB-OUTPUT-REC FROM WB-ENTRY(WB-IX-1).
          SET WB-IX-1 UP BY 1.
      DA-999.
          EXIT.
     ******************************************************************
      E-MERGE-SORT SECTION.
     *=====================                                           *
     * This section controls the simulated recursion.                 *
     ******************************************************************
      E-000.
          IF WS-OUT(WS-STACK-TOP - 1)
             GO TO E-010. 
          MOVE WS-START(WS-STACK-TOP - 1) TO WC-START.
          MOVE WS-END(WS-STACK-TOP - 1)   TO WC-END.
     * First check size of part we are dealing with.
          IF WC-END - WC-START = 0
     * Only 1 number in range, so simply set for output, and move on
             MOVE "O" TO WS-IO-FLAG(WS-STACK-TOP - 1)
             GO TO E-010.
          IF WC-END - WC-START = 1
     * 2 numbers, so compare and swap as necessary. Set for output
             MOVE "O" TO WS-IO-FLAG(WS-STACK-TOP - 1)
             IF WB-ENTRY(WC-START) > WB-ENTRY(WC-END)
                MOVE WB-ENTRY(WC-START) TO WC-TEMP
                MOVE WB-ENTRY(WC-END) TO WB-ENTRY(WC-START)
                MOVE WC-TEMP TO WB-ENTRY(WC-END)
                GO TO E-010
             ELSE
                GO TO E-010.
     * More than 2, so split and carry on down
          COMPUTE WC-MIDDLE = ( WC-START + WC-END ) / 2.
          MOVE WC-START  TO WS-START(WS-STACK-TOP).
          MOVE WC-MIDDLE TO WS-END(WS-STACK-TOP).
          MOVE "F"       TO WS-FS-FLAG(WS-STACK-TOP).
          MOVE "I"       TO WS-IO-FLAG(WS-STACK-TOP).
          SET WS-STACK-TOP UP BY 1.
          GO TO E-999.
      E-010.
          SET WS-STACK-TOP DOWN BY 1.
          IF SECOND-HALF(WS-STACK-TOP)
             GO TO E-020.
          MOVE WS-START(WS-STACK-TOP - 1) TO WC-START.
          MOVE WS-END(WS-STACK-TOP - 1)   TO WC-END.
          COMPUTE WC-MIDDLE = ( WC-START + WC-END ) / 2 + 1.
          MOVE WC-MIDDLE TO WS-START(WS-STACK-TOP).
          MOVE WC-END    TO WS-END(WS-STACK-TOP).
          MOVE "S"       TO WS-FS-FLAG(WS-STACK-TOP).
          MOVE "I"       TO WS-IO-FLAG(WS-STACK-TOP).
          SET WS-STACK-TOP UP BY 1.
          GO TO E-999.
      E-020.
          MOVE WS-START(WS-STACK-TOP - 1) TO WC-START.
          MOVE WS-END(WS-STACK-TOP - 1)   TO WC-END.
          COMPUTE WC-MIDDLE = ( WC-START + WC-END ) / 2.
          PERFORM H-PROCESS-MERGE.
          MOVE "O" TO WS-IO-FLAG(WS-STACK-TOP - 1).
      E-999.
          EXIT.
     ******************************************************************
      H-PROCESS-MERGE SECTION.
     *========================                                        *
     * This section identifies which data is to be merged, and then   *
     * merges the two data streams into a single larger data stream.  *
     ******************************************************************
      H-000.
          INITIALISE WD-FIRST-HALF.
          COMPUTE WD-FH-MAX = WC-MIDDLE - WC-START + 1.
          SET WD-IX                        TO 1.
          PERFORM HA-COPY-OUT VARYING WB-IX-1 FROM WC-START BY 1
                              UNTIL WB-IX-1 > WC-MIDDLE.
          SET WB-IX-1 TO WC-START.
          SET WB-IX-2 TO WC-MIDDLE.
          SET WB-IX-2 UP BY 1.
          SET WD-IX   TO 1.
         
          PERFORM HB-MERGE UNTIL WD-IX > WD-FH-MAX OR WB-IX-2 > WC-END.
          PERFORM HC-COPY-BACK UNTIL WD-IX > WD-FH-MAX.
      H-999.
          EXIT.
      HA-COPY-OUT SECTION.
      HA-000.
          MOVE WB-ENTRY(WB-IX-1) TO WD-ENTRY(WD-IX).
          SET WD-IX UP BY 1.
      HA-999.
          EXIT.
      HB-MERGE SECTION.
      HB-000.
          IF WB-ENTRY(WB-IX-2) < WD-ENTRY(WD-IX)
             MOVE WB-ENTRY(WB-IX-2) TO WB-ENTRY(WB-IX-1)
             SET WB-IX-2            UP BY 1
          ELSE
             MOVE WD-ENTRY(WD-IX) TO WB-ENTRY(WB-IX-1)
             SET WD-IX            UP BY 1.
          SET WB-IX-1 UP BY 1.
      HB-999.
          EXIT.
      HC-COPY-BACK SECTION.
      HC-000.
          MOVE WD-ENTRY(WD-IX) TO WB-ENTRY(WB-IX-1).
          SET WD-IX            UP BY 1.
          SET WB-IX-1          UP BY 1.
      HC-999.
          EXIT.</lang>

CoffeeScript

<lang coffeescript># This is a simple version of mergesort that returns brand-new arrays.

  1. A more sophisticated version would do more in-place optimizations.

merge_sort = (arr) ->

 if arr.length <= 1
   return (elem for elem in arr)
 m = Math.floor(arr.length / 2)
 arr1 = merge_sort(arr.slice 0, m)
 arr2 = merge_sort(arr.slice m)
 result = []
 p1 = p2 = 0
 while true
   if p1 >= arr1.length
     if p2 >= arr2.length
       return result 
     result.push arr2[p2]
     p2 += 1
   else if p2 >= arr2.length or arr1[p1] < arr2[p2]
     result.push arr1[p1]
     p1 += 1
   else
     result.push arr2[p2]
     p2 += 1

do ->

 console.log merge_sort [2,4,6,8,1,3,5,7,9,10,11,0,13,12]</lang>
Output:
> coffee mergesort.coffee 
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ]

Common Lisp

<lang lisp>(defun merge-sort (result-type sequence predicate)

  (let ((split (floor (length sequence) 2)))
    (if (zerop split)
      (copy-seq sequence)
      (merge result-type (merge-sort result-type (subseq sequence 0 split) predicate)
                         (merge-sort result-type (subseq sequence split)   predicate)
                         predicate))))</lang>

merge is a standard Common Lisp function.

> (merge-sort 'list (list 1 3 5 7 9 8 6 4 2) #'<)
(1 2 3 4 5 6 7 8 9)

Crystal

Translation of: Ruby

<lang ruby>def merge_sort(a : Array(Int32)) : Array(Int32)

 return a if a.size <= 1
 m = a.size // 2
 lt = merge_sort(a[0 ... m])
 rt = merge_sort(a[m .. -1])
 return merge(lt, rt)

end

def merge(lt : Array(Int32), rt : Array(Int32)) : Array(Int32)

 result = Array(Int32).new
 until lt.empty? || rt.empty?
   result << (lt.first < rt.first ? lt.shift : rt.shift)
 end
 return result + lt + rt

end

a = [7, 6, 5, 9, 8, 4, 3, 1, 2, 0] puts merge_sort(a) # => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]</lang>

Curry

Copied from Curry: Example Programs <lang curry>-- merge sort: sorting two lists by merging the sorted first -- and second half of the list

sort :: ([a] -> [a] -> [a] -> Success) -> [a] -> [a] -> Success

sort merge xs ys =

  if length xs < 2 then ys =:= xs
  else sort merge (firsthalf xs) us
       & sort merge (secondhalf xs) vs
       & merge us vs ys
  where us,vs free


intMerge :: [Int] -> [Int] -> [Int] -> Success

intMerge [] ys zs = zs =:= ys intMerge (x:xs) [] zs = zs =:= x:xs intMerge (x:xs) (y:ys) zs =

  if (x > y) then intMerge (x:xs) ys us & zs =:= y:us
             else intMerge xs (y:ys) vs & zs =:= x:vs
  where us,vs free
 

firsthalf xs = take (length xs `div` 2) xs secondhalf xs = drop (length xs `div` 2) xs


goal1 xs = sort intMerge [3,1,2] xs goal2 xs = sort intMerge [3,1,2,5,4,8] xs goal3 xs = sort intMerge [3,1,2,5,4,8,6,7,2,9,1,4,3] xs</lang>

D

Arrays only, not in-place. <lang d>import std.stdio, std.algorithm, std.array, std.range;

T[] mergeSorted(T)(in T[] D) /*pure nothrow @safe*/ {

   if (D.length < 2)
       return D.dup;
   return [D[0 .. $ / 2].mergeSorted, D[$ / 2 .. $].mergeSorted]
          .nWayUnion.array;

}

void main() {

   [3, 4, 2, 5, 1, 6].mergeSorted.writeln;

}</lang>

Alternative Version

This in-place version allocates the auxiliary memory on the stack, making life easier for the garbage collector, but with risk of stack overflow (same output): <lang d>import std.stdio, std.algorithm, core.stdc.stdlib, std.exception,

      std.range;

void mergeSort(T)(T[] data) if (hasSwappableElements!(typeof(data))) {

   immutable L = data.length;
   if (L < 2) return;
   T* ptr = cast(T*)alloca(L * T.sizeof);
   enforce(ptr != null);
   ptr[0 .. L] = data[];
   mergeSort(ptr[0 .. L/2]);
   mergeSort(ptr[L/2 .. L]);
   [ptr[0 .. L/2], ptr[L/2 .. L]].nWayUnion().copy(data);

}

void main() {

   auto a = [3, 4, 2, 5, 1, 6];
   a.mergeSort();
   writeln(a);

}</lang>

Dart

<lang dart>void main() {

 MergeSortInDart sampleSort = MergeSortInDart();
 List<int> theResultingList = sampleSort.sortTheList([54, 89, 125, 47899, 32, 61, 42, 895647, 215, 345, 6, 21, 2, 78]);
 print('Here\'s the sorted list: ${theResultingList}');

}

/////////////////////////////////////

class MergeSortInDart {

 List<int> sortedList;
 // In Dart we often put helper functions at the bottom.
 // You could put them anywhere, we just like it this way
 // for organizational purposes. It's nice to be able to
 // read them in the order they're called.
 // Start here
 List<int> sortTheList(List<int> sortThis){
   // My parameters are listed vertically for readability. Dart
   // doesn't care how you list them, vertically or horizontally.
   sortedList = mSort(
     sortThis,
     sortThis.sublist(0, sortThis.length),
     sortThis.length,
   );
   return sortThis;
 }
 mSort(
   List<int> sortThisList,
   List<int> tempList,
   int thisListLength) {
   if (thisListLength == 1) {
     return;
   }
   // In Dart using ~/ is more efficient than using .floor()
   int middle = (thisListLength ~/ 2);
   // If you use something in a try/on/catch/finally block then
   // be sure to declare it outside the block (for scope)
   List<int> tempLeftList;
   // This was used for troubleshooting. It was left here to show
   // how a basic block try/on can be better than a debugPrint since
   // it won't print unless there's a problem.
   try {
     tempLeftList = tempList.sublist(0, middle);
   } on RangeError {
     print(
         'tempLeftList length = ${tempList.length}, thisListLength '
           'was supposedly $thisListLength and Middle was $middle');
   }
   // If you see "myList.getRange(x,y)" that's a sign the code is
   // from Dart 1 and needs to be updated. It's "myList.sublist" in Dart 2
   List<int> tempRightList = tempList.sublist(middle);
   // Left side.
   mSort(
     tempLeftList,
     sortThisList.sublist(0, middle),
     middle,
   );
   // Right side.
   mSort(
     tempRightList,
     sortThisList.sublist(middle),
     sortThisList.length - middle,
   );
   // Merge it.
   dartMerge(
     tempLeftList,
     tempRightList,
     sortThisList,
   );
 }
 dartMerge(
   List<int> leftSide,
   List<int> rightSide,
   List<int> sortThisList,
   ) {
   int index = 0;
   int elementValue;
   // This should be human readable.
   while (leftSide.isNotEmpty && rightSide.isNotEmpty) {
     if (rightSide[0] < leftSide[0]) {
       elementValue = rightSide[0];
       rightSide.removeRange(0, 1);
     } else {
       elementValue = leftSide[0];
       leftSide.removeRange(0, 1);
     }
     sortThisList[index++] = elementValue;
   }
   while (leftSide.isNotEmpty) {
     elementValue = leftSide[0];
     leftSide.removeRange(0, 1);
     sortThisList[index++] = elementValue;
   }
   while (rightSide.isNotEmpty) {
     elementValue = rightSide[0];
     rightSide.removeRange(0, 1);
     sortThisList[index++] = elementValue;
   }
   sortedList = sortThisList;
 }

}</lang>

Delphi

See Pascal.

E

<lang e>def merge(var xs :List, var ys :List) {

   var result := []
   while (xs =~ [x] + xr && ys =~ [y] + yr) {
       if (x <= y) {
           result with= x
           xs := xr
       } else {
           result with= y
           ys := yr
       }
   }
   return result + xs + ys

}

def sort(list :List) {

   if (list.size() <= 1) { return list }
   def split := list.size() // 2
   return merge(sort(list.run(0, split)),
                sort(list.run(split)))

}</lang>

EasyLang

<lang>subr merge

 mid = left + sz
 if mid > sz_data
   mid = sz_data
 .
 right = mid + sz
 if right > sz_data
   right = sz_data
 .
 l = left
 r = mid
 for i = left to right - 1
   if r = right or l < mid and tmp[l] < tmp[r]
     data[i] = tmp[l]
     l += 1
   else
     data[i] = tmp[r]
     r += 1
   .
 .

. subr sort

 sz_data = len data[]
 len tmp[] sz_data
 sz = 1
 while sz < sz_data
   swap tmp[] data[]
   left = 0
   while left < sz_data
     call merge
     left += sz + sz
   .
   sz += sz
 .

. data[] = [ 29 4 72 44 55 26 27 77 92 5 ] call sort print data[]</lang>

Eiffel

<lang Eiffel> class MERGE_SORT [G -> COMPARABLE]

create sort

feature

sort (ar: ARRAY [G]) -- Sorted array in ascending order. require ar_not_empty: not ar.is_empty do create sorted_array.make_empty mergesort (ar, 1, ar.count) sorted_array := ar ensure sorted_array_not_empty: not sorted_array.is_empty sorted: is_sorted (sorted_array, 1, sorted_array.count) end

sorted_array: ARRAY [G]

feature {NONE}

mergesort (ar: ARRAY [G]; l, r: INTEGER) -- Sorting part of mergesort. local m: INTEGER do if l < r then m := (l + r) // 2 mergesort (ar, l, m) mergesort (ar, m + 1, r) merge (ar, l, m, r) end end

merge (ar: ARRAY [G]; l, m, r: INTEGER) -- Merge part of mergesort. require positive_index_l: l >= 1 positive_index_m: m >= 1 positive_index_r: r >= 1 ar_not_empty: not ar.is_empty local merged: ARRAY [G] h, i, j, k: INTEGER do i := l j := m + 1 k := l create merged.make_filled (ar [1], 1, ar.count) from until i > m or j > r loop if ar.item (i) <= ar.item (j) then merged.force (ar.item (i), k) i := i + 1 elseif ar.item (i) > ar.item (j) then merged.force (ar.item (j), k) j := j + 1 end k := k + 1 end if i > m then from h := j until h > r loop merged.force (ar.item (h), k + h - j) h := h + 1 end elseif j > m then from h := i until h > m loop merged.force (ar.item (h), k + h - i) h := h + 1 end end from h := l until h > r loop ar.item (h) := merged.item (h) h := h + 1 end ensure is_partially_sorted: is_sorted (ar, l, r) end

is_sorted (ar: ARRAY [G]; l, r: INTEGER): BOOLEAN -- Is 'ar' sorted in ascending order? require ar_not_empty: not ar.is_empty l_in_range: l >= 1 r_in_range: r <= ar.count local i: INTEGER do Result := True from i := l until i = r loop if ar [i] > ar [i + 1] then Result := False end i := i + 1 end end

end </lang> Test: <lang Eiffel> class APPLICATION

create make

feature

make do test := <<2, 5, 66, -2, 0, 7>> io.put_string ("unsorted" + "%N") across test as ar loop io.put_string (ar.item.out + "%T") end io.put_string ("%N" + "sorted" + "%N") create merge.sort (test) across merge.sorted_array as ar loop io.put_string (ar.item.out + "%T") end end

test: ARRAY [INTEGER]

merge: MERGE_SORT [INTEGER]

end </lang>

Output:
unsorted
2 5 66 -2 0 7
sorted
-2 0 2 5 7 66

Elixir

<lang elixir>defmodule Sort do

 def merge_sort(list) when length(list) <= 1, do: list
 def merge_sort(list) do
   {left, right} = Enum.split(list, div(length(list), 2))
   :lists.merge( merge_sort(left), merge_sort(right))
 end

end</lang> Example:

iex(10)> Sort.merge_sort([5,3,9,4,1,6,8,2,7])
[1, 2, 3, 4, 5, 6, 7, 8, 9]

Erlang

Below are two versions. Both take advantage of built-in Erlang functions, lists:split and list:merge. The multi-process version spawns a new process each time it splits. This was slightly faster on a test system with only two cores, so it may not be the best implementation, however it does illustrate how easy it can be to add multi-threaded/process capabilities to a program.

Single-threaded version: <lang erlang>mergeSort(L) when length(L) == 1 -> L; mergeSort(L) when length(L) > 1 ->

   {L1, L2} = lists:split(length(L) div 2, L),
   lists:merge(mergeSort(L1), mergeSort(L2)).</lang>

Multi-process version: <lang erlang>pMergeSort(L) when length(L) == 1 -> L; pMergeSort(L) when length(L) > 1 ->

   {L1, L2} = lists:split(length(L) div 2, L),
   spawn(mergesort, pMergeSort2, [L1, self()]),
   spawn(mergesort, pMergeSort2, [L2, self()]),
   mergeResults([]).

pMergeSort2(L, Parent) when length(L) == 1 -> Parent ! L; pMergeSort2(L, Parent) when length(L) > 1 ->

   {L1, L2} = lists:split(length(L) div 2, L),
   spawn(mergesort, pMergeSort2, [L1, self()]),
   spawn(mergesort, pMergeSort2, [L2, self()]),
   Parent ! mergeResults([]).</lang>


another multi-process version (number of processes == number of processor cores): <lang erlang> merge_sort(List) -> m(List, erlang:system_info(schedulers)).

m([L],_) -> [L]; m(L, N) when N > 1 ->

   {L1,L2} = lists:split(length(L) div 2, L),
   {Parent, Ref} = {self(), make_ref()},
   spawn(fun()-> Parent ! {l1, Ref, m(L1, N-2)} end), 
   spawn(fun()-> Parent ! {l2, Ref, m(L2, N-2)} end), 
   {L1R, L2R} = receive_results(Ref, undefined, undefined),
   lists:merge(L1R, L2R);

m(L, _) -> {L1,L2} = lists:split(length(L) div 2, L), lists:merge(m(L1, 0), m(L2, 0)).

receive_results(Ref, L1, L2) ->

   receive
       {l1, Ref, L1R} when L2 == undefined -> receive_results(Ref, L1R, L2);
       {l2, Ref, L2R} when L1 == undefined -> receive_results(Ref, L1, L2R);
       {l1, Ref, L1R} -> {L1R, L2};
       {l2, Ref, L2R} -> {L1, L2R}
   after 5000 -> receive_results(Ref, L1, L2)
   end.

</lang>

ERRE

<lang ERRE> PROGRAM MERGESORT_DEMO

! Example of merge sort usage.

CONST SIZE%=100,S1%=50

DIM DTA%[SIZE%],FH%[S1%],STACK%[20,2]


PROCEDURE MERGE(START%,MIDDLE%,ENDS%)

LOCAL FHSIZE%

 FHSIZE%=MIDDLE%-START%+1
 FOR I%=0 TO FHSIZE%-1 DO
    FH%[I%]=DTA%[START%+I%]
 END FOR
 I%=0
 J%=MIDDLE%+1
 K%=START%
 REPEAT
   IF FH%[I%]<=DTA%[J%] THEN
       DTA%[K%]=FH%[I%]
       I%=I%+1
       K%=K%+1
     ELSE
       DTA%[K%]=DTA%[J%]
       J%=J%+1
       K%=K%+1
   END IF
 UNTIL I%=FHSIZE% OR J%>ENDS%
 WHILE I%<FHSIZE% DO
    DTA%[K%]=FH%[I%]
    I%=I%+1
    K%=K%+1
 END WHILE

END PROCEDURE

PROCEDURE MERGE_SORT(LEV->LEV)

! ***************************************************************** ! This procedure Merge Sorts the chunk of DTA% bounded by ! Start% & Ends%. ! *****************************************************************

  LOCAL MIDDLE%
  IF ENDS%=START% THEN LEV=LEV-1 EXIT PROCEDURE END IF
  IF ENDS%-START%=1 THEN
     IF DTA%[ENDS%]<DTA%[START%] THEN
        SWAP(DTA%[START%],DTA%[ENDS%])
     END IF
     LEV=LEV-1
     EXIT PROCEDURE
  END IF
  MIDDLE%=START%+(ENDS%-START%)/2
  STACK%[LEV,0]=START%  STACK%[LEV,1]=ENDS%  STACK%[LEV,2]=MIDDLE%
  START%=START%  ENDS%=MIDDLE%
  MERGE_SORT(LEV+1->LEV)
  START%=STACK%[LEV,0]  ENDS%=STACK%[LEV,1]  MIDDLE%=STACK%[LEV,2]
  STACK%[LEV,0]=START%  STACK%[LEV,1]=ENDS%  STACK%[LEV,2]=MIDDLE%
  START%=MIDDLE%+1  ENDS%=ENDS%
  MERGE_SORT(LEV+1->LEV)
  START%=STACK%[LEV,0]  ENDS%=STACK%[LEV,1]  MIDDLE%=STACK%[LEV,2]
  MERGE(START%,MIDDLE%,ENDS%)
  LEV=LEV-1

END PROCEDURE

BEGIN

 FOR I%=1 TO SIZE% DO
    DTA%[I%]=RND(1)*10000
 END FOR
 START%=1  ENDS%=SIZE%
 MERGE_SORT(0->LEV)
 FOR I%=1 TO SIZE% DO
    WRITE("#####";DTA%[I%];)
 END FOR
 PRINT

END PROGRAM </lang>

Euphoria

<lang euphoria>function merge(sequence left, sequence right)

   sequence result
   result = {}
   while length(left) > 0 and length(right) > 0 do
       if compare(left[1], right[1]) <= 0 then
           result = append(result, left[1])
           left = left[2..$]
       else
           result = append(result, right[1])
           right = right[2..$]
       end if
   end while
   return result & left & right

end function

function mergesort(sequence m)

   sequence left, right
   integer middle
   if length(m) <= 1 then
       return m
   else
       middle = floor(length(m)/2)
       left = mergesort(m[1..middle])
       right = mergesort(m[middle+1..$])
       if compare(left[$], right[1]) <= 0 then
           return left & right
       elsif compare(right[$], left[1]) <= 0 then
           return right & left
       else
           return merge(left, right)
       end if
   end if

end function

constant s = rand(repeat(1000,10)) ? s ? mergesort(s)</lang>

Output:
{385,599,284,650,457,804,724,300,434,722}
{284,300,385,434,457,599,650,722,724,804}

F#

<lang fsharp>let split list =

   let rec aux l acc1 acc2 =
       match l with
           | [] -> (acc1,acc2)
           | [x] -> (x::acc1,acc2)
           | x::y::tail ->
               aux tail (x::acc1) (y::acc2)
   in aux list [] []

let rec merge l1 l2 =

   match (l1,l2) with
       | (x,[]) -> x
       | ([],y) -> y
       | (x::tx,y::ty) ->
           if x <= y then x::merge tx l2
           else y::merge l1 ty

let rec mergesort list =

   match list with
       | [] -> []
       | [x] -> [x]
       | _ -> let (l1,l2) = split list
              in merge (mergesort l1) (mergesort l2)</lang>

Factor

<lang factor>: mergestep ( accum seq1 seq2 -- accum seq1 seq2 ) 2dup [ first ] bi@ < [ [ [ first ] [ rest-slice ] bi [ suffix ] dip ] dip ] [ [ first ] [ rest-slice ] bi [ swap [ suffix ] dip ] dip ] if ;

merge ( seq1 seq2 -- merged )

[ { } ] 2dip [ 2dup [ length 0 > ] bi@ and ] [ mergestep ] while append append ;

mergesort ( seq -- sorted )

dup length 1 > [ dup length 2 / floor [ head ] [ tail ] 2bi [ mergesort ] bi@ merge ] [ ] if ;</lang>

<lang factor>( scratchpad ) { 4 2 6 5 7 1 3 } mergesort . { 1 2 3 4 5 6 7 }</lang>

Forth

This is an in-place mergesort which works on arrays of integers. <lang forth>: merge-step ( right mid left -- right mid+ left+ )

 over @ over @ < if
   over @ >r
   2dup - over dup cell+ rot move
   r> over !
   >r cell+ 2dup = if rdrop dup else r> then
 then cell+ ;
merge ( right mid left -- right left )
 dup >r begin 2dup > while merge-step repeat 2drop r> ;
mid ( l r -- mid ) over - 2/ cell negate and + ;
mergesort ( right left -- right left )
 2dup cell+ <= if exit then
 swap 2dup mid recurse rot recurse merge ;
 
sort ( addr len -- ) cells over + swap mergesort 2drop ;

create test 8 , 1 , 5 , 3 , 9 , 0 , 2 , 7 , 6 , 4 ,

.array ( addr len -- ) 0 do dup i cells + @ . loop drop ;

test 10 2dup sort .array \ 0 1 2 3 4 5 6 7 8 9</lang>

Fortran

Works with: Fortran version 95 and later and with both free or fixed form syntax.

<lang fortran> program TestMergeSort

       implicit none
       integer, parameter :: N = 8
       integer :: A(N) = (/ 1, 5, 2, 7, 3, 9, 4, 6 /)
       integer :: work((size(A) + 1) / 2)
       write(*,'(A,/,10I3)')'Unsorted array :',A
       call MergeSort(A, work)
       write(*,'(A,/,10I3)')'Sorted array :',A
     contains
     subroutine merge(A, B, C)
       implicit none

! The targe attribute is necessary, because A .or. B might overlap with C.

       integer, target, intent(in) :: A(:), B(:)
       integer, target, intent(inout) :: C(:)
       integer :: i, j, k
       if (size(A) + size(B) > size(C)) stop(1)
       i = 1; j = 1
       do k = 1, size(C)
         if (i <= size(A) .and. j <= size(B)) then
           if (A(i) <= B(j)) then
             C(k) = A(i)
             i = i + 1
           else
             C(k) = B(j)
             j = j + 1
           end if
         else if (i <= size(A)) then
           C(k) = A(i)
           i = i + 1
         else if (j <= size(B)) then
           C(k) = B(j)
           j = j + 1
         end if
       end do
     end subroutine merge
     subroutine swap(x, y)
       implicit none
       integer, intent(inout) :: x, y
       integer :: tmp
       tmp = x; x = y; y = tmp
     end subroutine
     recursive subroutine MergeSort(A, work)
       implicit none
       integer, intent(inout) :: A(:)
       integer, intent(inout) :: work(:)
       integer :: half
       half = (size(A) + 1) / 2
       if (size(A) < 2) then
         continue
       else if (size(A) == 2) then
         if (A(1) > A(2)) then
           call swap(A(1), A(2))
         end if
       else
         call MergeSort(A( : half), work)
         call MergeSort(A(half + 1 :), work)
         if (A(half) > A(half + 1)) then
           work(1 : half) = A(1 : half)
           call merge(work(1 : half), A(half + 1:), A)
         endif
       end if
     end subroutine MergeSort
     end program TestMergeSort

</lang>

FreeBASIC

Uses 'top down' C-like algorithm in Wikipedia article: <lang freebasic>' FB 1.05.0 Win64

Sub copyArray(a() As Integer, iBegin As Integer, iEnd As Integer, b() As Integer)

 Redim b(iBegin To iEnd - 1) As Integer
 For k As Integer = iBegin To iEnd - 1
   b(k) = a(k)
 Next

End Sub

' Left source half is a(iBegin To iMiddle-1). ' Right source half is a(iMiddle To iEnd-1). ' Result is b(iBegin To iEnd-1). Sub topDownMerge(a() As Integer, iBegin As Integer, iMiddle As Integer, iEnd As Integer, b() As Integer)

 Dim i As Integer = iBegin
 Dim j As Integer = iMiddle
   
 ' While there are elements in the left or right runs...
 For k As Integer = iBegin To iEnd - 1 
 ' If left run head exists and is <= existing right run head.
   If i < iMiddle AndAlso (j >= iEnd OrElse a(i) <= a(j)) Then
     b(k) = a(i)
     i += 1
   Else
     b(k) = a(j)
     j += 1    
   End If
 Next 

End Sub

' Sort the given run of array a() using array b() as a source. ' iBegin is inclusive; iEnd is exclusive (a(iEnd) is not in the set). Sub topDownSplitMerge(b() As Integer, iBegin As Integer, iEnd As Integer, a() As Integer)

 If (iEnd - iBegin) < 2 Then Return   If run size = 1, consider it sorted
 ' split the run longer than 1 item into halves
 Dim iMiddle As Integer = (iEnd + iBegin) \ 2   iMiddle = mid point
 ' recursively sort both runs from array a() into b()
 topDownSplitMerge(a(), iBegin,  iMiddle, b())   sort the left  run
 topDownSplitMerge(a(), iMiddle, iEnd, b())      sort the right run
 ' merge the resulting runs from array b() into a()
 topDownMerge(b(), iBegin, iMiddle, iEnd, a())

End Sub

' Array a() has the items to sort; array b() is a work array (empty initially). Sub topDownMergeSort(a() As Integer, b() As Integer, n As Integer)

 copyArray(a(), 0, n, b())   duplicate array a() into b()           
 topDownSplitMerge(b(), 0, n, a())   sort data from b() into a()

End Sub

Sub printArray(a() As Integer)

 For i As Integer = LBound(a) To UBound(a)
   Print Using "####"; a(i);
 Next
 Print

End Sub

Dim a(0 To 9) As Integer = {4, 65, 2, -31, 0, 99, 2, 83, 782, 1}

Dim b() As Integer Print "Unsorted : "; printArray(a()) topDownMergeSort a(), b(), 10 Print "Sorted  : "; printArray(a()) Print Dim a2(0 To 8) As Integer = {7, 5, 2, 6, 1, 4, 2, 6, 3} Erase b Print "Unsorted : "; printArray(a2()) topDownMergeSort a2(), b(), 9 Print "Sorted  : "; printArray(a2()) Print Print "Press any key to quit" Sleep</lang>

Output:
Unsorted :    4  65   2 -31   0  99   2  83 782   1
Sorted   :  -31   0   1   2   2   4  65  83  99 782

Unsorted :    7   5   2   6   1   4   2   6   3
Sorted   :    1   2   2   3   4   5   6   6   7

FunL

<lang funl>def

 sort( [] )          =  []
 sort( [x] )         =  [x]
 sort( xs )          =
   val (l, r) = xs.splitAt( xs.length()\2 )
   merge( sort(l), sort(r) )
 merge( [], xs )     =  xs
 merge( xs, [] )     =  xs
 merge( x:xs, y:ys )
   | x <= y          =  x : merge( xs, y:ys )
   | otherwise       =  y : merge( x:xs, ys )
   

println( sort([94, 37, 16, 56, 72, 48, 17, 27, 58, 67]) ) println( sort(['Sofía', 'Alysha', 'Sophia', 'Maya', 'Emma', 'Olivia', 'Emily']) )</lang>

Output:
[16, 17, 27, 37, 48, 56, 58, 67, 72, 94]
[Alysha, Emily, Emma, Maya, Olivia, Sofía, Sophia]

Go

<lang go>package main

import "fmt"

var a = []int{170, 45, 75, -90, -802, 24, 2, 66} var s = make([]int, len(a)/2+1) // scratch space for merge step

func main() {

   fmt.Println("before:", a)
   mergeSort(a)
   fmt.Println("after: ", a)

}

func mergeSort(a []int) {

   if len(a) < 2 {
       return
   }
   mid := len(a) / 2
   mergeSort(a[:mid])
   mergeSort(a[mid:])
   if a[mid-1] <= a[mid] {
       return
   }
   // merge step, with the copy-half optimization
   copy(s, a[:mid])
   l, r := 0, mid
   for i := 0; ; i++ {
       if s[l] <= a[r] {
           a[i] = s[l]
           l++
           if l == mid {
               break
           }
       } else {
           a[i] = a[r]
           r++
           if r == len(a) {
               copy(a[i+1:], s[l:mid])
               break
           }
       }
   }
   return

}</lang>

Groovy

This is the standard algorithm, except that in the looping phase of the merge we work backwards through the left and right lists to construct the merged list, to take advantage of the Groovy List.pop() method. However, this results in a partially merged list in reverse sort order; so we then reverse it to put in back into correct order. This could play havoc with the sort stability, but we compensate by picking aggressively from the right list (ties go to the right), rather than aggressively from the left as is done in the standard algorithm. <lang groovy>def merge = { List left, List right ->

   List mergeList = []
   while (left && right) {
       print "."
       mergeList << ((left[-1] > right[-1]) ? left.pop() : right.pop())
   }
   mergeList = mergeList.reverse()
   mergeList = left + right + mergeList

}

def mergeSort; mergeSort = { List list ->

   def n = list.size()
   if (n < 2) return list
   
   def middle = n.intdiv(2)
   def left = [] + list[0..<middle]
   def right = [] + list[middle..<n]
   left = mergeSort(left)
   right = mergeSort(right)
   
   if (left[-1] <= right[0]) return left + right
   
   merge(left, right)

}</lang> Test: <lang groovy>println (mergeSort([23,76,99,58,97,57,35,89,51,38,95,92,24,46,31,24,14,12,57,78,4])) println (mergeSort([88,18,31,44,4,0,8,81,14,78,20,76,84,33,73,75,82,5,62,70,12,7,1])) println () println (mergeSort([10, 10.0, 10.00, 1])) println (mergeSort([10, 10.00, 10.0, 1])) println (mergeSort([10.0, 10, 10.00, 1])) println (mergeSort([10.0, 10.00, 10, 1])) println (mergeSort([10.00, 10, 10.0, 1])) println (mergeSort([10.00, 10.0, 10, 1]))</lang> The presence of decimal and integer versions of the same numbers, demonstrates, but of course does not prove, that the sort remains stable.

Output:
.............................................................[4, 12, 14, 23, 24, 24, 31, 35, 38, 46, 51, 57, 57, 58, 76, 78, 89, 92, 95, 97, 99]
....................................................................[0, 1, 4, 5, 7, 8, 12, 14, 18, 20, 31, 33, 44, 62, 70, 73, 75, 76, 78, 81, 82, 84, 88]

....[1, 10, 10.0, 10.00]
....[1, 10, 10.00, 10.0]
....[1, 10.0, 10, 10.00]
....[1, 10.0, 10.00, 10]
....[1, 10.00, 10, 10.0]
....[1, 10.00, 10.0, 10]

Tail recursion version

It is possible to write a version based on tail recursion, similar to that written in Haskell, OCaml or F#. This version also takes into account stack overflow problems induced by recursion for large lists using closure trampolines: <lang groovy>split = { list ->

   list.collate((list.size()+1)/2 as int)

}

merge = { left, right, headBuffer=[] ->

   if(left.size() == 0) headBuffer+right
   else if(right.size() == 0) headBuffer+left
   else if(left.head() <= right.head()) merge.trampoline(left.tail(), right, headBuffer+left.head())
   else merge.trampoline(right.tail(), left, headBuffer+right.head())

}.trampoline()

mergesort = { List list ->

   if(list.size() < 2) list
   else merge(split(list).collect {mergesort it})

}

assert mergesort((500..1)) == (1..500) assert mergesort([5,4,6,3,1,2]) == [1,2,3,4,5,6] assert mergesort([3,3,1,4,6,78,9,1,3,5]) == [1,1,3,3,3,4,5,6,9,78] </lang>

which uses List.collate(), alternatively one could write a purely recursive split() closure as: <lang groovy> split = { list, left=[], right=[] ->

   if(list.size() <2) [list+left, right]
   else split.trampoline(list.tail().tail(), [list.head()]+left,[list.tail().head()]+right)

}.trampoline() </lang>

Haskell

Splitting in half in the middle like the normal merge sort does would be inefficient on the singly-linked lists used in Haskell (since you would have to do one pass just to determine the length, and then another half-pass to do the splitting). Instead, the algorithm here splits the list in half in a different way -- by alternately assigning elements to one list and the other. That way we (lazily) construct both sublists in parallel as we traverse the original list. Unfortunately, under this way of splitting we cannot do a stable sort. <lang haskell>merge [] ys = ys merge xs [] = xs merge xs@(x:xt) ys@(y:yt) | x <= y = x : merge xt ys

                         | otherwise = y : merge xs yt

split (x:y:zs) = let (xs,ys) = split zs in (x:xs,y:ys) split [x] = ([x],[]) split [] = ([],[])

mergeSort [] = [] mergeSort [x] = [x] mergeSort xs = let (as,bs) = split xs

               in merge (mergeSort as) (mergeSort bs)</lang>

Alternatively, we can use bottom-up mergesort. This starts with lots of tiny sorted lists, and repeatedly merges pairs of them, building a larger and larger sorted list <lang haskell>mergePairs (sorted1 : sorted2 : sorteds) = merge sorted1 sorted2 : mergePairs sorteds mergePairs sorteds = sorteds

mergeSortBottomUp list = mergeAll (map (\x -> [x]) list)

mergeAll [sorted] = sorted mergeAll sorteds = mergeAll (mergePairs sorteds)</lang> The standard library's sort function in GHC takes a similar approach to the bottom-up code, the differece being that, instead of starting with lists of size one, which are sorted by default, it detects runs in original list and uses those: <lang haskell>sort = sortBy compare sortBy cmp = mergeAll . sequences

 where
   sequences (a:b:xs)
     | a `cmp` b == GT = descending b [a]  xs
     | otherwise       = ascending  b (a:) xs
   sequences xs = [xs]
   descending a as (b:bs)
     | a `cmp` b == GT = descending b (a:as) bs
   descending a as bs  = (a:as): sequences bs
   ascending a as (b:bs)
     | a `cmp` b /= GT = ascending b (\ys -> as (a:ys)) bs
   ascending a as bs   = as [a]: sequences bs</lang>

In this code, mergeAll, mergePairs, and merge are as above, except using the specialized cmp function in merge.

Icon and Unicon

<lang Icon>procedure main() #: demonstrate various ways to sort a list and string

  demosort(mergesort,[3, 14, 1, 5, 9, 2, 6, 3],"qwerty")

end

procedure mergesort(X,op,lower,upper) #: return sorted list ascending(or descending) local middle

  if /lower := 1 then {                                                 # top level call setup
     upper := *X   
     op := sortop(op,X)                                                 # select how and what we sort
     }
  if upper ~= lower then {                                              # sort all sections with 2 or more elements
     X := mergesort(X,op,lower,middle := lower + (upper - lower) / 2)
     X := mergesort(X,op,middle+1,upper)
  
     if op(X[middle+1],X[middle]) then                                  # @middle+1 < @middle merge if halves reversed
        X := merge(X,op,lower,middle,upper)
  }	  
  return X                                                              

end

procedure merge(X,op,lower,middle,upper) # merge two list sections within a larger list local p1,p2,add

  p1 := lower
  p2 := middle + 1
  add := if type(X) ~== "string" then put else "||"                     # extend X, strings require X := add (until ||:= is invocable)

  while p1 <= middle & p2 <= upper do 
     if op(X[p1],X[p2]) then {                                          # @p1 < @p2
        X := add(X,X[p1])                                               # extend X temporarily (rather than use a separate temporary list)
        p1 +:= 1
        }
     else {
        X := add(X,X[p2])                                               # extend X temporarily
        p2 +:= 1
        }
  while X := add(X,X[middle >= p1]) do p1 +:= 1                         # and rest of lower or ...
  while X := add(X,X[upper  >= p2]) do p2 +:= 1                         # ... upper trailers if any 
  
  if type(X) ~== "string" then                                          # pull section's sorted elements from extension
     every X[upper to lower by -1] := pull(X)
  else	  
     (X[lower+:(upper-lower+1)] := X[0-:(upper-lower+1)])[0-:(upper-lower+1)] := ""
  
  return X 

end</lang>

Note: This example relies on the supporting procedures 'sortop', and 'demosort' in Bubble Sort. The full demosort exercises the named sort of a list with op = "numeric", "string", ">>" (lexically gt, descending),">" (numerically gt, descending), a custom comparator, and also a string.

Output:

Abbreviated sample

Sorting Demo using procedure mergesort
  on list : [ 3 14 1 5 9 2 6 3 ]
    with op = &null:         [ 1 2 3 3 5 6 9 14 ]   (0 ms)
  ...
  on string : "qwerty"
    with op = &null:         "eqrtwy"   (0 ms)

Io

<lang io>List do (

   merge := method(lst1, lst2,
       result := list()
       while(lst1 isNotEmpty or lst2 isNotEmpty,
           if(lst1 first <= lst2 first) then(
               result append(lst1 removeFirst)
           ) else (
               result append(lst2 removeFirst)
           )
       )
   result)
   mergeSort := method(
       if (size > 1) then(
           half_size := (size / 2) ceil
           return merge(slice(0, half_size) mergeSort,
                        slice(half_size, size) mergeSort)
       ) else (return self)
   )
   mergeSortInPlace := method(
       copy(mergeSort)
   )

)

lst := list(9, 5, 3, -1, 15, -2) lst mergeSort println # ==> list(-2, -1, 3, 5, 9, 15) lst mergeSortInPlace println # ==> list(-2, -1, 3, 5, 9, 15)</lang>

Isabelle

<lang Isabelle>theory Mergesort   imports Main begin

fun merge :: "int list ⇒ int list ⇒ int list" where   "merge [] ys = ys" | "merge xs [] = xs" | "merge (x#xs) (y#ys) = (if x ≤ y                           then x # merge xs (y#ys)                           else y # merge (x # xs) ys)"

text‹example:› lemma "merge [1,3,6] [1,2,5,8] = [1,1,2,3,5,6,8]" by simp

lemma merge_set: "set (merge xs ys) = set xs ∪ set ys"   by(induction xs ys rule: merge.induct) auto

lemma merge_sorted:   "sorted xs ⟹ sorted ys ⟹ sorted (merge xs ys)" proof(induction xs ys rule: merge.induct)   case (1 ys)   then show "sorted (merge [] ys)" by simp next   case (2 x xs)   then show "sorted (merge (x # xs) [])" by simp next   case (3 x xs y ys)   assume premx: "sorted (x # xs)"      and premy: "sorted (y # ys)"      and IHx: "x ≤ y ⟹ sorted xs ⟹ sorted (y # ys) ⟹                  sorted (merge xs (y # ys))"      and IHy: "¬ x ≤ y ⟹ sorted (x # xs) ⟹ sorted ys ⟹                  sorted (merge (x # xs) ys)"   then show "sorted (merge (x # xs) (y # ys))"   proof(cases "x ≤ y")     case True     with premx IHx premy have IH: "sorted (merge xs (y # ys))" by simp     from ‹x ≤ y› premx premy merge_set have       "∀z ∈ set (merge xs (y # ys)). x ≤ z" by fastforce     with ‹x ≤ y› IH show "sorted (merge (x # xs) (y # ys))" by(simp)   next     case False     with premy IHy premx have IH: "sorted (merge (x # xs) ys)" by simp     from ‹¬x ≤ y› premx premy merge_set have       "∀z ∈ set (merge (x # xs) ys). y ≤ z" by fastforce     with ‹¬x ≤ y› IH show "sorted (merge (x # xs) (y # ys))" by(simp)   qed qed

fun mergesort :: "int list ⇒ int list" where   "mergesort [] = []" | "mergesort [x] = [x]" | "mergesort xs = merge (mergesort (take (length xs div 2) xs))                         (mergesort (drop (length xs div 2) xs))"

theorem mergesort_set: "set xs = set (mergesort xs)" proof(induction xs rule: mergesort.induct)   case 1   show "set [] = set (mergesort [])" by simp next   case (2 x)   show "set [x] = set (mergesort [x])" by simp next   case (3 x1 x2 xs)   from 3 have IH_simplified_take:     "set (mergesort (x1 # take (length xs div 2) (x2 # xs))) =      insert x1 (set (take (length xs div 2) (x2 # xs)))"   and IH_simplified_drop:     "set (mergesort (drop (length xs div 2) (x2 # xs))) =      set (drop (length xs div 2) (x2 # xs))" by simp+

  have "(set (take n as) ∪ set (drop n as)) = set as"     for n and as::"int list"   proof -     from set_append[of "take n as" "drop n as"] have       "(set (take n as) ∪ set (drop n as)) =        set (take n as @ drop n as)" by simp     moreover have       "set (take n as @ drop n as) =        set as" using append_take_drop_id by simp     ultimately show ?thesis by simp   qed   hence "(set (take (length xs div 2) (x2 # xs)) ∪         set (drop (length xs div 2) (x2 # xs))) =         set (x2 # xs)"by(simp)   with IH_simplified_take IH_simplified_drop show     "set (x1 # x2 # xs) = set (mergesort (x1 # x2 # xs))"     by(simp add: merge_set) qed

theorem mergesort_sorted: "sorted (mergesort xs)"   by(induction xs rule: mergesort.induct) (simp add: merge_sorted)+

text‹example:› lemma "mergesort [42, 5, 1, 3, 67, 3, 9, 0, 33, 32] =                  [0, 1, 3, 3, 5, 9, 32, 33, 42, 67]" by simp end </lang>

J

Generally, this task should be accomplished in J using /:~. Here we take an approach that's more comparable with the other examples on this page.

Recursive Solution <lang j>mergesort=: {{

 if. 2>#y do. y return.end.
 middle=. <.-:#y
 X=. mergesort middle{.y
 Y=. mergesort middle}.y
 X merge Y

}}

merge=: Template:R=. y</lang>

Non-Recursive Solution

(This uses the same merge):

<lang J>mergesort=: {{

 stride=. 1
 N=. #r=. y
 while. stride < N do.
   stride=. 2*mid=. stride
   r=. ;(-stride) (mid&}. <@merge (mid<.#) {.])\ r
 end.

}}</lang>

Example use: <lang J> mergesort 18 2 8 1 5 14 9 19 11 13 16 0 3 10 17 15 12 4 7 6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19</lang>

But don't forget to use J's primitives /: or \: if you really need a sort-function.

Java

Works with: Java version 1.5+

<lang java5>import java.util.List; import java.util.ArrayList; import java.util.Iterator;

public class Merge{

   public static <E extends Comparable<? super E>> List<E> mergeSort(List<E> m){
       if(m.size() <= 1) return m;
       int middle = m.size() / 2;
       List<E> left = m.subList(0, middle);
       List<E> right = m.subList(middle, m.size());
       right = mergeSort(right);
       left = mergeSort(left);
       List<E> result = merge(left, right);
       return result;
   }
   public static <E extends Comparable<? super E>> List<E> merge(List<E> left, List<E> right){
       List<E> result = new ArrayList<E>();
       Iterator<E> it1 = left.iterator();
       Iterator<E> it2 = right.iterator();

E x = it1.next(); E y = it2.next();

       while (true){
           //change the direction of this comparison to change the direction of the sort
           if(x.compareTo(y) <= 0){

result.add(x); if(it1.hasNext()){ x = it1.next(); }else{ result.add(y); while(it2.hasNext()){ result.add(it2.next()); } break; } }else{ result.add(y); if(it2.hasNext()){ y = it2.next(); }else{ result.add(x); while (it1.hasNext()){ result.add(it1.next()); } break; } }

       }
       return result;
   }

}</lang>

JavaScript

<lang javascript>function merge(left, right, arr) {

 var a = 0;
 while (left.length && right.length) {
   arr[a++] = (right[0] < left[0]) ? right.shift() : left.shift();
 }
 while (left.length) {
   arr[a++] = left.shift();
 }
 while (right.length) {
   arr[a++] = right.shift();
 }

}

function mergeSort(arr) {

 var len = arr.length;
 if (len === 1) { return; }
 var mid = Math.floor(len / 2),
     left = arr.slice(0, mid),
     right = arr.slice(mid);
 mergeSort(left);
 mergeSort(right);
 merge(left, right, arr);

}

var arr = [1, 5, 2, 7, 3, 9, 4, 6, 8]; mergeSort(arr); // arr will now: 1, 2, 3, 4, 5, 6, 7, 8, 9

// here is improved faster version, also often faster than QuickSort!

function mergeSort2(a) {

 if (a.length <= 1) return
 const mid = Math.floor(a.length / 2), left = a.slice(0, mid), right = a.slice(mid)
 mergeSort2(left)
 mergeSort2(right)
 let ia = 0, il = 0, ir = 0
 while (il < left.length && ir < right.length)
   a[ia++] = left[il] < right[ir] ? left[il++] : right[ir++]
 while (il < left.length)
   a[ia++] = left[il++]
 while (ir < right.length)
   a[ia++] = right[ir++]

} </lang>

jq

The sort function defined here will sort any JSON array. <lang jq># Input: [x,y] -- the two arrays to be merged

  1. If x and y are sorted as by "sort", then the result will also be sorted:

def merge:

 def m:  # state: [x, y, array]  (array being the answer)
   .[0] as $x
   | .[1] as $y
   | if   0 == ($x|length) then .[2] + $y
     elif 0 == ($y|length) then .[2] + $x
     else
       (if $x[0] <= $y[0] then [$x[1:], $y,     .[2] + [$x[0] ]] 
        else                   [$x,     $y[1:], .[2] + [$y[0] ]]
        end) | m
     end;
  [.[0], .[1], []] | m;

def merge_sort:

 if length <= 1 then .
 else
   (length/2 |floor) as $len
   | . as $in
   | [ ($in[0:$len] | merge_sort), ($in[$len:] | merge_sort) ] | merge
 end;</lang>

Example: <lang jq> ( [1, 3, 8, 9, 0, 0, 8, 7, 1, 6],

 [170, 45, 75, 90, 2, 24, 802, 66],
 [170, 45, 75, 90, 2, 24, -802, -66] )

| (merge_sort == sort)</lang>

Output:
true
true
true

Julia

Works with: Julia version 0.6

<lang julia>function mergesort(arr::Vector)

   if length(arr) ≤ 1 return arr end
   mid = length(arr) ÷ 2
   lpart = mergesort(arr[1:mid])
   rpart = mergesort(arr[mid+1:end])
   rst = similar(arr)
   i = ri = li = 1
   @inbounds while li ≤ length(lpart) && ri ≤ length(rpart)
       if lpart[li] ≤ rpart[ri]
           rst[i] = lpart[li]
           li += 1
       else
           rst[i] = rpart[ri]
           ri += 1
       end
       i += 1
   end
   if li ≤ length(lpart)
       copy!(rst, i, lpart, li)
   else
       copy!(rst, i, rpart, ri)
   end
   return rst

end

v = rand(-10:10, 10) println("# unordered: $v\n -> ordered: ", mergesort(v))</lang>

Output:
# unordered: [8, 6, 7, 1, -1, 0, -4, 7, -7, 0]
 -> ordered: [-7, -4, -1, 0, 0, 1, 6, 7, 7, 8]

Kotlin

<lang kotlin>fun mergeSort(list: List<Int>): List<Int> {

   if (list.size <= 1) {
       return list
   }
   val left = mutableListOf<Int>()
   val right = mutableListOf<Int>()
   val middle = list.size / 2
   list.forEachIndexed { index, number ->
       if (index < middle) {
           left.add(number)
       } else {
           right.add(number)
       }
   }
   fun merge(left: List<Int>, right: List<Int>): List<Int> = mutableListOf<Int>().apply {
       var indexLeft = 0
       var indexRight = 0
       while (indexLeft < left.size && indexRight < right.size) {
           if (left[indexLeft] <= right[indexRight]) {
               add(left[indexLeft])
               indexLeft++
           } else {
               add(right[indexRight])
               indexRight++
           }
       }
       while (indexLeft < left.size) {
           add(left[indexLeft])
           indexLeft++
       }
       while (indexRight < right.size) {
           add(right[indexRight])
           indexRight++
       }
   }
   return merge(mergeSort(left), mergeSort(right))

}

fun main(args: Array<String>) {

   val numbers = listOf(5, 2, 3, 17, 12, 1, 8, 3, 4, 9, 7)
   println("Unsorted: $numbers")
   println("Sorted: ${mergeSort(numbers)}")

}</lang>

Output:
Unsorted: [5, 2, 3, 17, 12, 1, 8, 3, 4, 9, 7]
Sorted:   [1, 2, 3, 3, 4, 5, 7, 8, 9, 12, 17]

Lambdatalk

A close translation from Picolisp. In lambdatalk lists are implemented as dynamical arrays with list-like functions, cons is A.addfirst!, car is A.first, cdr is A.rest, nil is A.new and so on.

<lang scheme> {def alt

{lambda {:list}
 {if {A.empty? :list}
  then {A.new}
  else {A.addfirst! {A.first :list}
                    {alt {A.rest {A.rest :list}}}} }}}

-> alt

{def merge

{lambda {:l1 :l2}
 {if {A.empty? :l2}
  then :l1
  else {if {< {A.first :l1} {A.first :l2}}
  then {A.addfirst! {A.first :l1} {merge :l2 {A.rest :l1}}}
  else {A.addfirst! {A.first :l2} {merge :l1 {A.rest :l2}}} }}}}

-> merge

{def mergesort

{lambda {:list}
 {if {A.empty? {A.rest :list}}
  then :list
  else {merge {mergesort {alt :list}}
              {mergesort {alt {A.rest :list}}}} }}}

-> mergesort

{mergesort {A.new 8 1 5 3 9 0 2 7 6 4}} -> [0,1,2,3,4,5,6,7,8,9] </lang>

Liberty BASIC

<lang lb> itemCount = 20

   dim A(itemCount)
   dim tmp(itemCount)    'merge sort needs additionally same amount of storage
   for i = 1 to itemCount
       A(i) = int(rnd(1) * 100)
   next i
   print "Before Sort"
   call printArray itemCount
   call mergeSort 1,itemCount
   print "After Sort"
   call printArray itemCount

end

'------------------------------------------ sub mergeSort start, theEnd

   if theEnd-start < 1 then exit sub
   if theEnd-start = 1 then
       if A(start)>A(theEnd) then
           tmp=A(start)
           A(start)=A(theEnd)
           A(theEnd)=tmp
       end if
       exit sub
   end if
   middle = int((start+theEnd)/2)
   call mergeSort start, middle
   call mergeSort middle+1, theEnd
   call merge start, middle, theEnd

end sub

sub merge start, middle, theEnd

   i = start: j = middle+1: k = start
   while i<=middle OR j<=theEnd
       select case
       case i<=middle AND j<=theEnd
           if A(i)<=A(j) then
               tmp(k)=A(i)
               i=i+1
           else
               tmp(k)=A(j)
               j=j+1
           end if
           k=k+1
       case i<=middle
           tmp(k)=A(i)
           i=i+1
           k=k+1
       case else    'j<=theEnd
           tmp(k)=A(j)
           j=j+1
           k=k+1
       end select
   wend
   for i = start to theEnd
       A(i)=tmp(i)
   next

end sub

'=========================================== sub printArray itemCount

   for i = 1 to itemCount
       print using("###", A(i));
   next i
   print

end sub</lang>

Works with: UCB Logo

<lang logo>to split :size :front :list

 if :size < 1 [output list :front :list]
 output split :size-1 (lput first :list :front) (butfirst :list)

end

to merge :small :large

 if empty? :small [output :large]
 ifelse lessequal? first :small first :large ~
   [output fput first :small merge butfirst :small :large] ~
   [output fput first :large merge butfirst :large :small]

end

to mergesort :list

 localmake "half split (count :list) / 2 [] :list
 if empty? first :half [output :list]
 output merge mergesort first :half mergesort last :half

end</lang>

Logtalk

<lang logtalk>msort([], []) :- !. msort([X], [X]) :- !. msort([X, Y| Xs], Ys) :-

   split([X, Y| Xs], X1s, X2s),
   msort(X1s, Y1s),
   msort(X2s, Y2s),
   merge(Y1s, Y2s, Ys).

split([], [], []). split([X| Xs], [X| Ys], Zs) :-

   split(Xs, Zs, Ys).

merge([X| Xs], [Y| Ys], [X| Zs]) :-

   X @=< Y, !,
   merge(Xs, [Y| Ys], Zs).

merge([X| Xs], [Y| Ys], [Y| Zs]) :-

   X @> Y, !,
   merge([X | Xs], Ys, Zs).

merge([], Xs, Xs) :- !. merge(Xs, [], Xs).</lang>

Lua

<lang Lua>local function merge(left_container, left_container_begin, left_container_end, right_container, right_container_begin, right_container_end, result_container, result_container_begin, comparator) while left_container_begin <= left_container_end do if right_container_begin > right_container_end then for i = left_container_begin, left_container_end do result_container[result_container_begin] = left_container[i] result_container_begin = result_container_begin + 1 end

return end

if comparator(right_container[right_container_begin], left_container[left_container_begin]) then result_container[result_container_begin] = right_container[right_container_begin] right_container_begin = right_container_begin + 1 else result_container[result_container_begin] = left_container[left_container_begin] left_container_begin = left_container_begin + 1 end

result_container_begin = result_container_begin + 1 end

for i = right_container_begin, right_container_end do result_container[result_container_begin] = right_container[i] result_container_begin = result_container_begin + 1 end end

local function mergesort_impl(container, container_begin, container_end, comparator) local range_length = (container_end - container_begin) + 1 if range_length < 2 then return end local copy = {} local copy_len = 0

for it = container_begin, container_end do copy_len = copy_len + 1 copy[copy_len] = container[it] end

local middle = bit.rshift(range_length, 1) -- or math.floor(range_length / 2) mergesort_impl(copy, 1, middle, comparator) mergesort_impl(copy, middle + 1, copy_len, comparator) merge(copy, 1, middle, copy, middle + 1, copy_len, container, container_begin, comparator) end

local function mergesort_default_comparator(a, b) return a < b end

function table.mergesort(container, comparator) if not comparator then comparator = mergesort_default_comparator end

mergesort_impl(container, 1, #container, comparator) end</lang>

<lang Lua>function getLower(a,b)

 local i,j=1,1
 return function() 
   if not b[j] or a[i] and a[i]<b[j] then
     i=i+1; return a[i-1]
   else
     j=j+1; return b[j-1]
   end
 end  

end

function merge(a,b)

 local res={}
 for v in getLower(a,b) do res[#res+1]=v end
 return res

end

function mergesort(list)

 if #list<=1 then return list end
 local s=math.floor(#list/2)
 return merge(mergesort{unpack(list,1,s)}, mergesort{unpack(list,s+1)})

end</lang>

Lucid

[1] <lang lucid>msort(a) = if iseod(first next a) then a else merge(msort(b0),msort(b1)) fi

 where
  p = false fby not p;
  b0 = a whenever p;
  b1 = a whenever not p;
  just(a) = ja
     where
        ja = a fby if iseod ja then eod else next a fi;
     end;
  merge(x,y) = if takexx then xx else yy fi
    where
     xx = (x) upon takexx;
     yy = (y) upon not takexx;
     takexx = if iseod(yy) then true elseif
                 iseod(xx) then false else xx <= yy fi;
    end;
 end;</lang>

M2000 Interpreter

<lang M2000 Interpreter> module checkit { \\ merge sort group merge { function sort(right as stack) { if len(right)<=1 then =right : exit left=.sort(stack up right, len(right) div 2 ) right=.sort(right) \\ stackitem(right) is same as stackitem(right,1) if stackitem(left, len(left))<=stackitem(right) then \\ !left take items from left for merging \\ so after this left and right became empty stacks =stack:=!left, !right exit end if =.merge(left, right) } function sortdown(right as stack) { if len(right)<=1 then =right : exit left=.sortdown(stack up right, len(right) div 2 ) right=.sortdown(right) if stackitem(left, len(left))>stackitem(right) then =stack:=!left, !right : exit end if =.mergedown(left, right) } \\ left and right are pointers to stack objects \\ here we pass by value the pointer not the data function merge(left as stack, right as stack) { result=stack while len(left) > 0 and len(right) > 0 if stackitem(left,1) <= stackitem(right) then result=stack:=!result, !(stack up left, 1) else result=stack:=!result, !(stack up right, 1) end if end while if len(right) > 0 then result=stack:= !result,!right if len(left) > 0 then result=stack:= !result,!left =result } function mergedown(left as stack, right as stack) { result=stack while len(left) > 0 and len(right) > 0 if stackitem(left,1) > stackitem(right) then result=stack:=!result, !(stack up left, 1) else result=stack:=!result, !(stack up right, 1) end if end while if len(right) > 0 then result=stack:= !result,!right if len(left) > 0 then result=stack:= !result,!left =result } } k=stack:=7, 5, 2, 6, 1, 4, 2, 6, 3 print merge.sort(k) print len(k)=0 ' we have to use merge.sort(stack(k)) to pass a copy of k

\\ input array (arr is a pointer to array) arr=(10,8,9,7,5,6,2,3,0,1) \\ stack(array pointer) return a stack with a copy of array items \\ array(stack pointer) return an array, empty the stack

arr2=array(merge.sort(stack(arr))) Print type$(arr2) Dim a() \\ a() is an array as a value, so we just copy arr2 to a() a()=arr2 \\ to prove we add 1 to each element of arr2 arr2++ Print a() ' 0,1,2,3,4,5,6,7,8,9 Print arr2 ' 1,2,3,4,5,6,7,8,9,11 p=a() ' we get a pointer \\ a() has a double pointer inside \\ so a() get just the inner pointer a()=array(merge.sortdown(stack(p))) \\ so now p (which use the outer pointer) \\ still points to a() print p ' p point to a()

} checkit </lang>

Maple

<lang>merge := proc(arr, left, mid, right) local i, j, k, n1, n2, L, R; n1 := mid-left+1: n2 := right-mid: L := Array(1..n1): R := Array(1..n2): for i from 0 to n1-1 do L(i+1) :=arr(left+i): end do: for j from 0 to n2-1 do R(j+1) := arr(mid+j+1): end do: i := 1: j := 1: k := left: while(i <= n1 and j <= n2) do if (L[i] <= R[j]) then arr[k] := L[i]: i++: else arr[k] := R[j]: j++: end if: k++: end do: while(i <= n1) do arr[k] := L[i]: i++: k++: end do: while(j <= n2) do arr[k] := R[j]: j++: k++: end do: end proc: arr := Array([17,3,72,0,36,2,3,8,40,0]); mergeSort(arr,1,numelems(arr)): arr;</lang>

Output:
[0,0,2,3,3,8,17,36,40,72]

Mathematica / Wolfram Language

Works with: Mathematica version 7.0

<lang Mathematica>MergeSort[m_List] := Module[{middle},

 If[Length[m] >= 2,
  middle = Ceiling[Length[m]/2];
  Apply[Merge, 
   Map[MergeSort, Partition[m, middle, middle, {1, 1}, {}]]],
  m
  ]
 ]
 

Merge[left_List, right_List] := Module[

 {leftIndex = 1, rightIndex = 1},
 Table[
  Which[
   leftIndex > Length[left], rightrightIndex++,
   rightIndex > Length[right], leftleftIndex++,
   leftleftIndex <= rightrightIndex, leftleftIndex++,
   True, rightrightIndex++],
  {Length[left] + Length[right]}]
 ]</lang>

MATLAB

<lang MATLAB>function list = mergeSort(list)

   if numel(list) <= 1
       return
   else
       middle = ceil(numel(list) / 2);
       left = list(1:middle);
       right = list(middle+1:end);
       
       left = mergeSort(left);
       right = mergeSort(right);
       
       if left(end) <= right(1)
           list = [left right];
           return
       end
       
       %merge(left,right)
       counter = 1;
       while (numel(left) > 0) && (numel(right) > 0)
           if(left(1) <= right(1))
               list(counter) = left(1);
               left(1) = [];
           else
               list(counter) = right(1);
               right(1) = [];
           end           
           counter = counter + 1;   
       end
       if numel(left) > 0
           list(counter:end) = left;
       elseif numel(right) > 0
           list(counter:end) = right;
       end
       %end merge        
   end %if

end %mergeSort</lang> Sample Usage: <lang MATLAB>>> mergeSort([4 3 1 5 6 2])

ans =

    1     2     3     4     5     6</lang>

Maxima

<lang maxima>merge(a, b) := block(

  [c: [ ], i: 1, j: 1, p: length(a), q: length(b)],
  while i <= p and j <= q do (
     if a[i] < b[j] then (
        c: endcons(a[i], c),
        i: i + 1
     ) else (
        c: endcons(b[j], c),
        j: j + 1
     )
  ),
  if i > p then append(c, rest(b, j - 1)) else append(c, rest(a, i - 1))

)$

mergesort(u) := block(

  [n: length(u), k, a, b],
  if n <= 1 then u else (
     a: rest(u, k: quotient(n, 2)),
     b: rest(u, k - n),
     merge(mergesort(a), mergesort(b))
  )

)$</lang>

MAXScript

<lang MAXScript>fn mergesort arr = ( local left = #() local right = #() local result = #() if arr.count < 2 then return arr else ( local mid = arr.count/2 for i = 1 to mid do ( append left arr[i] ) for i = (mid+1) to arr.count do ( append right arr[i] ) left = mergesort left right = mergesort right if left[left.count] <= right[1] do ( join left right return left ) result = _merge left right return result ) )

fn _merge a b = ( local result = #() while a.count > 0 and b.count > 0 do ( if a[1] <= b[1] then ( append result a[1] a = for i in 2 to a.count collect a[i] ) else ( append result b[1] b = for i in 2 to b.count collect b[i] ) ) if a.count > 0 do ( join result a ) if b.count > 0 do ( join result b ) return result )</lang> Output: <lang MAXScript> a = for i in 1 to 15 collect random -5 20

  1. (-3, 13, 2, -2, 13, 9, 17, 7, 16, 19, 0, 0, 20, 18, 1)

mergeSort a

  1. (-3, -2, 0, 0, 1, 2, 7, 9, 13, 13, 16, 17, 18, 19, 20)

</lang>

Mercury

This version of a sort will sort a list of any type for which there is an ordering predicate defined. Both a function form and a predicate form are defined here with the function implemented in terms of the predicate. Some of the ceremony has been elided. <lang mercury>

- module merge_sort.
- interface.
- import_module list.
- type split_error ---> split_error.
- func merge_sort(list(T)) = list(T).
- pred merge_sort(list(T)::in, list(T)::out) is det.
- implementation.
- import_module int, exception.

merge_sort(U) = S :- merge_sort(U, S).

merge_sort(U, S) :- merge_sort(list.length(U), U, S).

- pred merge_sort(int::in, list(T)::in, list(T)::out) is det.

merge_sort(L, U, S) :-

   ( L > 1 ->
       H = L // 2,
       ( split(H, U, F, B) ->
           merge_sort(H, F, SF),
           merge_sort(L - H, B, SB),
           merge_sort.merge(SF, SB, S)
       ; throw(split_error) )
   ; S = U ).

- pred split(int::in, list(T)::in, list(T)::out, list(T)::out) is semidet.

split(N, L, S, E) :-

   ( N = 0 -> S = [], E = L
   ; N > 0, L = [H | L1], S = [H | S1],
     split(N - 1, L1, S1, E) ).

- pred merge(list(T)::in, list(T)::in, list(T)::out) is det.

merge([], [], []). merge([X|Xs], [], [X|Xs]). merge([], [Y|Ys], [Y|Ys]). merge([X|Xs], [Y|Ys], M) :-

   ( compare(>, X, Y) ->
       merge_sort.merge([X|Xs], Ys, M0),
       M = [Y|M0]
   ; merge_sort.merge(Xs, [Y|Ys], M0),
       M = [X|M0] ).

</lang>

Modula-2

Iterative

Divides the input into blocks of 2 entries, and sorts each block by swapping if necessary. Then merges blocks of 2 into blocks of 4, blocks of 4 into blocks of 8, and so on. <lang modula2> DEFINITION MODULE MSIterat;

PROCEDURE IterativeMergeSort( VAR a : ARRAY OF INTEGER);

END MSIterat. </lang> <lang modula2> IMPLEMENTATION MODULE MSIterat;

IMPORT Storage;

PROCEDURE IterativeMergeSort( VAR a : ARRAY OF INTEGER); VAR

 n, bufLen, len, endBuf : CARDINAL;
 k, nL, nR, b, h, i, j, startR, endR: CARDINAL;
 temp : INTEGER; (* array element *)
 pbuf : POINTER TO ARRAY CARDINAL OF INTEGER;

BEGIN

 n := HIGH(a) + 1; (* length of array *)
 IF (n < 2) THEN RETURN; END;
 (* Sort blocks of length 2 by swapping elements if necessary.
    Start at high end of array; ignore a[0] if n is odd.*)
 k := n;
 REPEAT
   DEC(k, 2);
   IF (a[k] > a[k + 1]) THEN
     temp := a[k]; a[k] := a[k + 1]; a[k + 1] := temp;
   END;
 UNTIL (k < 2);
 IF (n = 2) THEN RETURN; END;
 (* Set up a buffer for temporary storage when merging. *)
 (* TopSpeed Modula-2 doesn't seem to have dynamic arrays,
    so we use a workaround *)
 bufLen := n DIV 2;
 Storage.ALLOCATE( pbuf, bufLen*SIZE(INTEGER));
 nR := 2; (* length of right-hand block when merging *)
 REPEAT
   len := 2*nR; (* maximum length of a merged block in this iteration *)
   k := n; (* start at the high end of the array *)
   WHILE (k > nR) DO
     IF (k >= len) THEN
       nL := nR; DEC(k, len);
     ELSE
       nL := k - nR; k := 0; END;
     (* Merging 2 adjacent blocks, already sorted.
        k = start index of left block;
        nL, nR = lengths of left and right blocks *)
     startR := k + nL;  endR := startR + nR;
     (* Skip elements in left block that are already in correct place *)
     temp := a[startR]; (* first (smallest) element in right block *)
     j := k;
     WHILE (j < startR) AND (a[j] <= temp) DO INC(j); END;
     endBuf := startR - j; (* length of buffer actually used *)
     IF (endBuf > 0) THEN (* if endBuf = 0 then already sorted *)
       (* Copy from left block to buffer, omitting elements
          that are already in correct place *)
       h := j;
       FOR b := 0 TO endBuf - 1 DO
         pbuf^[b] := a[h]; INC(h);
       END;
       (* Fill in values from right block or buffer *)
       b := 0;
       i := startR;
    (* j = startR - endBuf from above *)
       WHILE (b < endBuf) AND (i < endR) DO
         IF (pbuf^[b] <= a[i]) THEN
           a[j] := pbuf^[b]; INC(b)
         ELSE
           a[j] := a[i]; INC(i); END;
         INC(j);
       END;
       (* If now b = endBuf then the merge is complete.
          Else just copy the remaining elements in the buffer. *)
       WHILE (b < endBuf) DO
         a[j] := pbuf^[b]; INC(j); INC(b);
       END;
     END;
   END;
   nR := len;
 UNTIL (nR >= n);
 Storage.DEALLOCATE( pbuf, bufLen*SIZE(INTEGER));

END IterativeMergeSort;

END MSIterat. </lang> <lang modula2> MODULE MSItDemo; (* Demo of iterative merge sort *)

IMPORT IO, Lib; FROM MSIterat IMPORT IterativeMergeSort;

(* Procedure to display the values in the demo array *) PROCEDURE Display( VAR a : ARRAY OF INTEGER); VAR

 j, nrInLine : CARDINAL;

BEGIN

 nrInLine := 0;
 FOR j := 0 TO HIGH(a) DO
   IO.WrCard( a[j], 5); INC( nrInLine);
   IF (nrInLine = 10) THEN IO.WrLn; nrInLine := 0; END;
 END;
 IF (nrInLine > 0) THEN IO.WrLn; END;

END Display;

(* Main routine *) CONST

 ArrayLength = 50;

VAR

 arr : ARRAY [0..ArrayLength - 1] OF INTEGER;
 m : CARDINAL;

BEGIN

 Lib.RANDOMIZE;
 FOR m := 0 TO ArrayLength - 1 DO arr[m] := Lib.RANDOM( 1000); END;
 IO.WrStr( 'Before:'); IO.WrLn; Display( arr);
 IterativeMergeSort( arr);
 IO.WrStr( 'After:'); IO.WrLn; Display( arr);

END MSItDemo. </lang>

Output:
Before:
  236  542  526  549  869  632  446  518  909  270
  826  562  469  258  681  604  921  772  548  328
  147  679   71  239  772  106  477  556  451   64
  941  207   87  486  280  206  380  689  964  376
  298  635  552  887  387   70  287   77  610  605
After:
   64   70   71   77   87  106  147  206  207  236
  239  258  270  280  287  298  328  376  380  387
  446  451  469  477  486  518  526  542  548  549
  552  556  562  604  605  610  632  635  679  681
  689  772  772  826  869  887  909  921  941  964

Recursive on linked list

According to Wikipedia, "merge sort is often the best choice for sorting a linked list". The code below shows a general procedure for merge-sorting a linked list. As in the improved Delphi version, only the pointers are moved. To carry out the Rosetta Code task, the demo program sorts an array of records on an integer-valued field.

The method for splitting a linked list is taken from "Merge sort algorithm for a singly linked list" on Techie Delight. Two pointers step through the list, one at twice the speed of the other. When the fast pointer reaches the end, the slow pointer marks the halfway point. <lang modula2> DEFINITION MODULE MergSort;

TYPE MSCompare = PROCEDURE( ADDRESS, ADDRESS) : INTEGER; TYPE MSGetNext = PROCEDURE( ADDRESS) : ADDRESS; TYPE MSSetNext = PROCEDURE( ADDRESS, ADDRESS);

PROCEDURE DoMergeSort( VAR start : ADDRESS;

                      Compare : MSCompare;
                      GetNext : MSGetNext;
                      SetNext : MSSetNext);

(*

 Procedures to be supplied by the caller:
 Compare(a1, a2) returns -1 if a1^ is to be placed before a2^;
   +1 if after; 0 if no priority.
 GetNext(a) returns address of next item after a^.
 SetNext(a, n) sets address of next item after a^ to n.
 If a^ is last item, then address of next item is NIL.
 It can be assumed that a, a1, a2 are not NIL.
  • )

END MergSort. </lang> <lang modula2> IMPLEMENTATION MODULE MergSort;

PROCEDURE DoMergeSort( VAR start : ADDRESS;

                      Compare : MSCompare;
                      GetNext : MSGetNext;
                      SetNext : MSSetNext);

VAR

 p1, p2, q : ADDRESS;

BEGIN

 (* If list has < 2 items, do nothing *)
 IF (start = NIL) THEN RETURN; END;
 p1 := GetNext( start); IF (p1 = NIL) THEN RETURN; END;
 (* If list has only 2 items, we'll not use recursion *)
 p2 := GetNext( p1);
 IF (p2 = NIL) THEN
   IF (Compare( start, p1) > 0) THEN
     q := start; SetNext( p1, q); SetNext( q, NIL);
     start := p1;
   END;
   RETURN;
 END;
 (* List has > 2 items: split list in half *)
 p1 := start;
 REPEAT
   p1 := GetNext( p1);
   p2 := GetNext( p2);
   IF (p2 <> NIL) THEN p2 := GetNext( p2); END;
 UNTIL (p2 = NIL);
 (* Now p1 points to last item in first half of list *)
 p2 := GetNext( p1); SetNext( p1, NIL);
 p1 := start;
 (* Recursive calls to sort each half; p1 and p2 will be updated *)
 DoMergeSort( p1, Compare, GetNext, SetNext);
 DoMergeSort( p2, Compare, GetNext, SetNext);
 (* Merge the sorted halves *)
 IF Compare( p1, p2) < 0 THEN
   start := p1; p1 := GetNext( p1);
 ELSE
   start := p2; p2 := GetNext( p2);
 END;
 q := start;
 WHILE (p1 <> NIL) AND (p2 <> NIL) DO
   IF Compare( p1, p2) < 0 THEN
     SetNext( q, p1); q := p1; p1 := GetNext( p1);
   ELSE
     SetNext( q, p2); q := p2; p2 := GetNext( p2);
   END;
 END;
 IF (p1 = NIL) THEN SetNext( q, p2) ELSE SetNext( q, p1) END;

END DoMergeSort; END MergSort. </lang> <lang modula2> MODULE MergDemo;

IMPORT IO, Lib, MergSort;

TYPE PTestRec = POINTER TO TestRec; TYPE TestRec = RECORD

 Value : INTEGER;
 Next : PTestRec;

END;

PROCEDURE Compare( a1, a2 : ADDRESS) : INTEGER; VAR

 p1, p2 : PTestRec;

BEGIN

 p1 := a1; p2 := a2;
 IF (p1^.Value < p2^.Value) THEN RETURN -1
 ELSIF (p1^.Value > p2^.Value) THEN RETURN 1
 ELSE RETURN 0; END;

END Compare;

PROCEDURE GetNext( a : ADDRESS) : ADDRESS; VAR

 p : PTestRec;

BEGIN

 p := a; RETURN p^.Next;

END GetNext;

PROCEDURE SetNext( a, n : ADDRESS); VAR

 p : PTestRec;

BEGIN

 p := a; p^.Next := n;

END SetNext;

(* Display the values in the linked list *) PROCEDURE Display( p : PTestRec); VAR

 nrInLine : CARDINAL;

BEGIN

 nrInLine := 0;
 WHILE (p <> NIL) DO
   IO.WrCard( p^.Value, 5);
   p := p^.Next;
   INC( nrInLine);
   IF (nrInLine = 10) THEN IO.WrLn; nrInLine := 0; END;
 END;
 IF (nrInLine > 0) THEN IO.WrLn; END;

END Display;

(* Main routine *) CONST ArraySize = 50; VAR

 arr : ARRAY [0..ArraySize - 1] OF TestRec;
 j : CARDINAL;
 start, p : PTestRec;

BEGIN

 (* Fill values with random integers *)
 FOR j := 0 TO ArraySize - 1 DO
   arr[j].Value := Lib.RANDOM( 1000);
 END;
 (* Set up the links *)
 IF (ArraySize > 1) THEN (* FOR loop 0 TO -1 crashes program *)
   FOR j := 0 TO ArraySize - 2 DO
     arr[j].Next := ADR( arr[j + 1]);
   END;
 END;
 arr[ArraySize - 1].Next := NIL;
 (* Demonstrate merge sort on the linked list *)
 start := ADR( arr[0]);
 IO.WrStr( 'Before:'); IO.WrLn;
 Display( start);
 MergSort.DoMergeSort( start, Compare, GetNext, SetNext);
 IO.WrStr( 'After:'); IO.WrLn;
 Display( start);

END MergDemo. </lang>

Output:
Before:
  683   68  458  645  223  801  485  101  255  590
  381  149   29  298  226  937  866  130  297  153
  551  159  760  403  380  770  296  701  399  775
  236  758  249  314  230  106  626  804  956  149
  706  625  651  727  323   38   66  534   85  663
After:
   29   38   66   68   85  101  106  130  149  149
  153  159  223  226  230  236  249  255  296  297
  298  314  323  380  381  399  403  458  485  534
  551  590  625  626  645  651  663  683  701  706
  727  758  760  770  775  801  804  866  937  956

Nemerle

This is a translation of a Standard ML example from Wikipedia. <lang Nemerle>using System; using System.Console; using Nemerle.Collections;

module Mergesort {

   MergeSort[TEnu, TItem] (sort_me : TEnu) : list[TItem]
     where TEnu  : Seq[TItem]
     where TItem : IComparable
   {
       def split(xs) {
           def loop (zs, xs, ys) {
               |(x::y::zs, xs, ys) => loop(zs, x::xs, y::ys)
               |(x::[], xs, ys) => (x::xs, ys)
               |([], xs, ys) => (xs, ys)
           }
           
           loop(xs, [], [])
       }
       
       def merge(xs, ys) {
           def loop(res, xs, ys) {
               |(res, [], []) => res.Reverse()
               |(res, x::xs, []) => loop(x::res, xs, [])
               |(res, [], y::ys) => loop(y::res, [], ys)
               |(res, x::xs, y::ys) => if (x.CompareTo(y) < 0) loop(x::res, xs, y::ys)
                                       else loop(y::res, x::xs, ys)
           }
           loop ([], xs, ys)
       }
       
       def ms(xs) {
           |[] => []
           |[x] => [x]
           |_ => { def (left, right) = split(xs); merge(ms(left), ms(right)) }
       }
       
       ms(sort_me.NToList())
   }
   
   Main() : void
   {
       def test1 = MergeSort([1, 5, 9, 2, 7, 8, 4, 6, 3]);
       def test2 = MergeSort(array['a', 't', 'w', 'f', 'c', 'y', 'l']);
       WriteLine(test1);
       WriteLine(test2);
   }

}</lang>

Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[a, c, f, l, t, w, y]

NetRexx

<lang NetRexx>/* NetRexx */ options replace format comments java crossref savelog symbols binary

import java.util.List

placesList = [String -

   "UK  London",     "US  New York",   "US  Boston",     "US  Washington" -
 , "UK  Washington", "US  Birmingham", "UK  Birmingham", "UK  Boston"     -

]

lists = [ -

   placesList -
 , mergeSort(String[] Arrays.copyOf(placesList, placesList.length)) -

]

loop ln = 0 to lists.length - 1

 cl = lists[ln]
 loop ct = 0 to cl.length - 1
   say cl[ct]
   end ct
   say
 end ln

return

method mergeSort(m = String[]) public constant binary returns String[]

 rl = String[m.length]
 al = List mergeSort(Arrays.asList(m))
 al.toArray(rl)
 return rl

method mergeSort(m = List) public constant binary returns ArrayList

 result = ArrayList(m.size)
 left   = ArrayList()
 right  = ArrayList()
 if m.size > 1 then do
   middle = m.size % 2
   loop x_ = 0 to middle - 1
     left.add(m.get(x_))
     end x_
   loop x_ = middle to m.size - 1
     right.add(m.get(x_))
     end x_
   left  = mergeSort(left)
   right = mergeSort(right)
   if (Comparable left.get(left.size - 1)).compareTo(Comparable right.get(0)) <= 0 then do
     left.addAll(right)
     result.addAll(m)
     end
   else do
     result = merge(left, right)
     end
   end
 else do
   result.addAll(m)
   end
 return result

method merge(left = List, right = List) public constant binary returns ArrayList

 result = ArrayList()
 loop label mx while left.size > 0 & right.size > 0
   if (Comparable left.get(0)).compareTo(Comparable right.get(0)) <= 0 then do
     result.add(left.get(0))
     left.remove(0)
     end
   else do
     result.add(right.get(0))
     right.remove(0)
     end
   end mx
   if left.size > 0 then do
     result.addAll(left)
     end
   if right.size > 0 then do
     result.addAll(right)
     end
 return result

</lang>

Output:
UK  London
US  New York
US  Boston
US  Washington
UK  Washington
US  Birmingham
UK  Birmingham
UK  Boston

UK  Birmingham
UK  Boston
UK  London
UK  Washington
US  Birmingham
US  Boston
US  New York
US  Washington

Nim

<lang nim>proc merge[T](a, b: var openarray[T]; left, middle, right: int) =

 let
   leftLen = middle - left
   rightLen = right - middle
 var
   l = 0
   r = leftLen

 for i in left ..< middle:
   b[l] = a[i]
   inc l
 for i in middle ..< right:
   b[r] = a[i]
   inc r

 l = 0
 r = leftLen
 var i = left

 while l < leftLen and r < leftLen + rightLen:
   if b[l] < b[r]:
     a[i] = b[l]
     inc l
   else:
     a[i] = b[r]
     inc r
   inc i

 while l < leftLen:
   a[i] = b[l]
   inc l
   inc i
 while r < leftLen + rightLen:
   a[i] = b[r]
   inc r
   inc i

proc mergeSort[T](a, b: var openarray[T]; left, right: int) =

 if right - left <= 1: return

 let middle = (left + right) div 2
 mergeSort(a, b, left, middle)
 mergeSort(a, b, middle, right)
 merge(a, b, left, middle, right)

proc mergeSort[T](a: var openarray[T]) =

 var b = newSeq[T](a.len)
 mergeSort(a, b, 0, a.len)

var a = @[4, 65, 2, -31, 0, 99, 2, 83, 782] mergeSort a echo a</lang>

Output:
@[-31, 0, 2, 2, 4, 65, 83, 99, 782]

OCaml

<lang ocaml>let rec split_at n xs =

 match n, xs with
     0, xs ->
       [], xs
   | _, [] ->
       failwith "index too large"
   | n, x::xs when n > 0 ->
       let xs', xs = split_at (pred n) xs in
         x::xs', xs
   | _, _ ->
       invalid_arg "negative argument"

let rec merge_sort cmp = function

   [] -> []
 | [x] -> [x]
 | xs ->
     let xs, ys = split_at (List.length xs / 2) xs in
       List.merge cmp (merge_sort cmp xs) (merge_sort cmp ys)

let _ =

 merge_sort compare [8;6;4;2;1;3;5;7;9]</lang>

Oz

<lang oz>declare

 fun {MergeSort Xs}
    case Xs
    of nil then nil
    [] [X] then [X]
    else
       Middle = {Length Xs} div 2
       Left Right
       {List.takeDrop Xs Middle ?Left ?Right}
    in
       {List.merge {MergeSort Left} {MergeSort Right} Value.'<'}
    end
 end

in

 {Show {MergeSort [3 1 4 1 5 9 2 6 5]}}</lang>

PARI/GP

Note also that the built-in vecsort and listsort use a merge sort internally. <lang parigp>mergeSort(v)={

 if(#v<2, return(v));
 my(m=#v\2,left=vector(m,i,v[i]),right=vector(#v-m,i,v[m+i]));
 left=mergeSort(left);
 right=mergeSort(right);
 merge(left, right)

}; merge(u,v)={ my(ret=vector(#u+#v),i=1,j=1); for(k=1,#ret, if(i<=#u & (j>#v | u[i]<v[j]), ret[k]=u[i]; i++ , ret[k]=v[j]; j++ ) ); ret };</lang>

Pascal

<lang pascal>program MergeSortDemo;

{$IFDEF FPC}

 {$MODE DELPHI}

{$ENDIF}

type

 TIntArray = array of integer;

function merge(left, right: TIntArray): TIntArray;

 var
   i, j: integer;
 begin
   j := 0;
   setlength(Result, length(left) + length(right));
   while (length(left) > 0) and (length(right) > 0) do
   begin
     if left[0] <= right[0] then
     begin

Result[j] := left[0]; inc(j); for i := low(left) to high(left) - 1 do left[i] := left[i+1]; setlength(left, length(left) - 1);

     end
     else
     begin

Result[j] := right[0]; inc(j); for i := low(right) to high(right) - 1 do right[i] := right[i+1]; setlength(right, length(right) - 1);

     end;
   end;
   if length(left) > 0 then
     for i := low(left) to high(left) do

Result[j + i] := left[i];

   j := j + length(left);
   if length(right) > 0 then
     for i := low(right) to high(right) do

Result[j + i] := right[i];

 end;

function mergeSort(m: TIntArray): TIntArray;

 var
   left, right: TIntArray;
   i, middle: integer;
 begin
   setlength(Result, length(m));
   if length(m) = 1 then
     Result[0] := m[0]
   else if length(m) > 1 then
   begin
     middle := length(m) div 2;
     setlength(left, middle);
     setlength(right, length(m)-middle);
     for i := low(left) to high(left) do
       left[i] := m[i];
     for i := low(right) to high(right) do
       right[i] := m[middle+i];
     left  := mergeSort(left);
     right := mergeSort(right);
     Result := merge(left, right);
   end;
 end;

var

 data: TIntArray;
 i: integer;

begin

 setlength(data, 8);
 Randomize;
 writeln('The data before sorting:');
 for i := low(data) to high(data) do
 begin
   data[i] := Random(high(data));
   write(data[i]:4);
 end;
 writeln;
 data := mergeSort(data);
 writeln('The data after sorting:');
 for i := low(data) to high(data) do
 begin
   write(data[i]:4);
 end;
 writeln;

end.</lang>

Output:
./MergeSort
The data before sorting:
   6   1   2   1   5   2   1   5
The data after sorting:
   1   1   1   2   2   5   5   6

improvement

uses "only" one halfsized temporary array for merging, which are set to the right size in before. small sized fields are sorted via insertion sort. Only an array of Pointers is sorted, so no complex data transfers are needed.Sort for X,Y or whatever is easy to implement.

Works with ( Turbo -) Delphi too. <lang pascal>{$IFDEF FPC}

 {$MODE DELPHI}
 {$OPTIMIZATION ON,Regvar,ASMCSE,CSE,PEEPHOLE}

{$ELSE}

 {$APPTYPE CONSOLE}

{$ENDIF} uses

 sysutils; //for timing

type

 tDataElem  =  record
                 myText : AnsiString;
                 myX,
                 myY : double;
                 myTag,
                 myOrgIdx : LongInt;
               end;
               
 tpDataElem = ^tDataElem;
 tData = array of tDataElem;

 tSortData = array of tpDataElem;
 tCompFunc = function(A,B:tpDataElem):integer;

var

 Data    : tData;
 Sortdata,
 tmpData : tSortData;

procedure InitData(var D:tData;cnt: LongWord); var

 i,k: LongInt;

begin

 Setlength(D,cnt);
 Setlength(SortData,cnt);
 Setlength(tmpData,cnt shr 1 +1 );
 k := 10*cnt;
 For i := cnt-1 downto 0 do
 Begin
   Sortdata[i] := @D[i];
   with D[i] do
   Begin
     myText := Format('_%.9d',[random(cnt)+1]);
     myX := Random*k;
     myY := Random*k;
     myTag := Random(k);
     myOrgIdx := i;
   end;
 end;

end;

procedure FreeData(var D:tData); begin

 Setlength(tmpData,0);
 Setlength(SortData,0);
 Setlength(D,0);

end;

function CompLowercase(A,B:tpDataElem):integer; var

 lcA,lcB: String;

Begin

 lcA := lowercase(A^.myText);
 lcB := lowercase(B^.myText);  
 result := ORD(lcA > lcB)-ORD(lcA < lcB);  

end;

function myCompText(A,B:tpDataElem):integer; {sort an array (or list) of strings in order of descending length,

 and in ascending lexicographic order for strings of equal length.}

var

 lA,lB:integer;
 

Begin

 lA := Length(A^.myText);
 lB := Length(B^.myText);
 result := ORD(lA<lB)-ORD(lA>lB);  
 IF result = 0 then
   result := CompLowercase(A,B);

end;

function myCompX(A,B:tpDataElem):integer; //same as sign without jumps in assembler code begin

 result := ORD(A^.myX > B^.myX)-ORD(A^.myX < B^.myX);

end;

function myCompY(A,B:tpDataElem):integer; Begin

 result := ORD(A^.myY > B^.myY)-ORD(A^.myY < B^.myY);

end;

function myCompTag(A,B:tpDataElem):integer; Begin

 result := ORD(A^.myTag > B^.myTag)-ORD(A^.myTag < B^.myTag);

end;

procedure InsertionSort(left,right:integer;var a: tSortData;CompFunc: tCompFunc); var

  Pivot : tpDataElem;
  i,j  : LongInt;

begin

for i:=left+1 to right do
begin
  j :=i;
  Pivot := A[j];
  while (j>left) AND (CompFunc(A[j-1],Pivot)>0) do
  begin
    A[j] := A[j-1];
    dec(j);
  end;
  A[j] :=PiVot;// s.o.
end;

end;


procedure mergesort(left,right:integer;var a: tSortData;CompFunc: tCompFunc); var

 i,j,k,mid :integer;

begin {// without insertion sort

 If right>left then

} //{ test insertion sort

 If right-left<=14 then
    InsertionSort(left,right,a,CompFunc)
 else

//}

 begin
   //recursion
   mid := (right+left) div 2;
   mergesort(left, mid,a,CompFunc);
   mergesort(mid+1, right,a,CompFunc);
   //already sorted ?
   IF CompFunc(A[Mid],A[Mid+1])<0 then
     exit;

   //##########  Merge  ##########
   //copy lower half to temporary array
   move(A[left],tmpData[0],(mid-left+1)*SizeOf(Pointer));
   i := 0;
   j := mid+1;
   k := left;
   // re-integrate
   while (k<j) AND (j<=right) do
     begin
     IF CompFunc(tmpData[i],A[j])<=0 then
       begin
       A[k] := tmpData[i];
       inc(i);
       end
     else
       begin
       A[k]:= A[j];
       inc(j);
       end;
     inc(k);
     end;
   //the rest of tmpdata a move should do too, in next life
   while (k<j) do
     begin
     A[k] := tmpData[i];
     inc(i);
     inc(k);
     end;
 end;

end;

var

 T1,T0: TDateTime;
 i : integer;

Begin

 randomize;
 InitData(Data,1*1000*1000);

 T0 := Time;
 mergesort(Low(SortData),High(SortData),SortData,@myCompText);
 T1 := Time;
 Writeln('myText ',FormatDateTime('NN:SS.ZZZ',T1-T0));

// For i := 0 to High(Data) do Write(SortData[i].myText); writeln;

 T0 := Time;
 mergesort(Low(SortData),High(SortData),SortData,@myCompX);
 T1 := Time;
 Writeln('myX    ',FormatDateTime('NN:SS.ZZZ',T1-T0));
//check
 For i := 1 to High(Data) do
   IF myCompX(SortData[i-1],SortData[i]) = 1 then
     Write(i:8);

 T0 := Time;
 mergesort(Low(SortData),High(SortData),SortData,@myCompY);
 T1 := Time;
 Writeln('myY    ',FormatDateTime('NN:SS.ZZZ',T1-T0));

 T0 := Time;
 mergesort(Low(SortData),High(SortData),SortData,@myCompTag);
 T1 := Time;
 Writeln('myTag  ',FormatDateTime('NN:SS.ZZZ',T1-T0));

 FreeData (Data);

end. </lang>

output
Free pascal 2.6.4 32bit / Win7 / i 4330 3.5 Ghz
myText 00:03.158 / nearly worst case , all strings same sized and starting with '_000..'
myX    00:00.360
myY    00:00.363
myTag  00:00.283

Perl

<lang perl>sub merge_sort {

   my @x = @_;
   return @x if @x < 2;
   my $m = int @x / 2;
   my @a = merge_sort(@x[0 .. $m - 1]);
   my @b = merge_sort(@x[$m .. $#x]);
   for (@x) {
       $_ = !@a            ? shift @b
          : !@b            ? shift @a
          : $a[0] <= $b[0] ? shift @a
          :                  shift @b;
   }
   @x;

}

my @a = (4, 65, 2, -31, 0, 99, 83, 782, 1); @a = merge_sort @a; print "@a\n";</lang> Also note, the built-in function sort uses mergesort.

Phix

with javascript_semantics

function merge(sequence left, sequence right)
sequence result = {}
    while length(left)>0 and length(right)>0 do
        if left[1]<=right[1] then
            result = append(result, left[1])
            left = left[2..$]
        else
            result = append(result, right[1])
            right = right[2..$]
        end if
    end while
    return result & left & right
end function
 
function mergesort(sequence m)
    if length(m)<=1 then return m end if
    integer middle = floor(length(m)/2)
    sequence left = mergesort(m[1..middle]),
            right = mergesort(m[middle+1..$])
    if left[$]<=right[1] then
        return left & right
    elsif right[$]<=left[1] then
        return right & left
    end if
    return merge(left, right)
end function
 
constant s = shuffle(tagset(10))
? s
? mergesort(deep_copy(s))
Output:
{8,1,2,5,10,3,9,6,7,4}
{1,2,3,4,5,6,7,8,9,10}

PHP

<lang php>function mergesort($arr){ if(count($arr) == 1 ) return $arr; $mid = count($arr) / 2;

   $left = array_slice($arr, 0, $mid);
   $right = array_slice($arr, $mid);

$left = mergesort($left); $right = mergesort($right); return merge($left, $right); }

function merge($left, $right){ $res = array(); while (count($left) > 0 && count($right) > 0){ if($left[0] > $right[0]){ $res[] = $right[0]; $right = array_slice($right , 1); }else{ $res[] = $left[0]; $left = array_slice($left, 1); } } while (count($left) > 0){ $res[] = $left[0]; $left = array_slice($left, 1); } while (count($right) > 0){ $res[] = $right[0]; $right = array_slice($right, 1); } return $res; }

$arr = array( 1, 5, 2, 7, 3, 9, 4, 6, 8); $arr = mergesort($arr); echo implode(',',$arr);</lang>

Output:
1,2,3,4,5,6,7,8,9

Picat

Translation of: Prolog

<lang Picat>% True if S is a sorted copy of L, using merge sort msort([],[]). msort([X],[X]). msort(U,S) :-

 split(U, L, R),
 msort(L, SL),
 msort(R, SR),
 merge(SL, SR, S).

% split(LIST,L,R) % Alternate elements of LIST in L and R split([],[],[]). split([X],[X],[]). split([L,R|T],[L|LT],[R|RT]) :-

 split( T, LT, RT ).

% merge( LS, RS, M ) % Assuming LS and RS are sorted, True if M is the sorted merge of the two merge([],RS,RS). merge(LS,[],LS). merge([L|LS],[R|RS],[L|T]) :-

   L @=< R, 
   merge(LS,[R|RS],T).

merge([L|LS],[R|RS],[R|T]) :-

   L @> R,
   merge([L|LS],RS,T).</lang>


PicoLisp

PicoLisp's built-in sort routine uses merge sort. This is a high level implementation. <lang lisp>(de alt (List)

  (if List (cons (car List) (alt (cddr List))) ()) )

(de merge (L1 L2)

  (cond
     ((not L2) L1)
     ((< (car L1) (car L2))
        (cons (car L1) (merge L2 (cdr L1))))
     (T (cons (car L2) (merge L1 (cdr L2)))) ) )

(de mergesort (List)

  (if (cdr List)
     (merge (mergesort (alt List)) (mergesort (alt (cdr List))))
     List) )

(mergesort (8 1 5 3 9 0 2 7 6 4))</lang>

PL/I

<lang pli>MERGE: PROCEDURE (A,LA,B,LB,C);

/* Merge A(1:LA) with B(1:LB), putting the result in C

  B and C may share the same memory, but not with A.
  • /
  DECLARE (A(*),B(*),C(*)) BYADDR POINTER;
  DECLARE (LA,LB) BYVALUE NONASGN FIXED BIN(31);
  DECLARE (I,J,K) FIXED BIN(31);
  DECLARE (SX) CHAR(58) VAR BASED (PX);
  DECLARE (SY) CHAR(58) VAR BASED (PY);
  DECLARE (PX,PY) POINTER;
  I=1; J=1; K=1;
  DO WHILE ((I <= LA) & (J <= LB));
     PX=A(I); PY=B(J);
     IF(SX <= SY) THEN
        DO; C(K)=A(I); K=K+1; I=I+1; END;
     ELSE
        DO; C(K)=B(J); K=K+1; J=J+1; END;
  END;
  DO WHILE (I <= LA);
     C(K)=A(I); I=I+1; K=K+1;
  END;
  RETURN;

END MERGE;

MERGESORT: PROCEDURE (AP,N) RECURSIVE ;

/* Sort the array AP containing N pointers to strings */

    DECLARE (AP(*))              BYADDR POINTER;
    DECLARE (N)                  BYVALUE NONASGN FIXED BINARY(31);
    DECLARE (M,I)                FIXED BINARY;
    DECLARE AMP1(1)              POINTER BASED(PAM);
    DECLARE (pX,pY,PAM) POINTER;
    DECLARE SX CHAR(58) VAR BASED(pX);
    DECLARE SY CHAR(58) VAR BASED(pY);
  IF (N=1) THEN RETURN;
  M = trunc((N+1)/2);
  IF (M>1) THEN CALL MERGESORT(AP,M);
  PAM=ADDR(AP(M+1));
  IF (N-M > 1) THEN CALL MERGESORT(AMP1,N-M);
  pX=AP(M); pY=AP(M+1);
  IF SX <= SY then return;     /* Skip Merge */
  DO I=1 to M; TP(I)=AP(I); END;
  CALL MERGE(TP,M,AMP1,N-M,AP);
  RETURN;

END MERGESORT;</lang>

PowerShell

<lang PowerShell> function MergeSort([object[]] $SortInput) { # The base case exits for minimal lists that are sorted by definition if ($SortInput.Length -le 1) {return $SortInput}

# Divide and conquer [int] $midPoint = $SortInput.Length/2 # The @() operators ensure a single result remains typed as an array [object[]] $left = @(MergeSort @($SortInput[0..($midPoint-1)])) [object[]] $right = @(MergeSort @($SortInput[$midPoint..($SortInput.Length-1)]))

# Merge [object[]] $result = @() while (($left.Length -gt 0) -and ($right.Length -gt 0)) { if ($left[0] -lt $right[0]) { $result += $left[0] # Use an if/else rather than accessing the array range as $array[1..0] if ($left.Length -gt 1){$left = $left[1..$($left.Length-1)]} else {$left = @()} } else { $result += $right[0] # Without the if/else, $array[1..0] would return the whole array when $array.Length == 1 if ($right.Length -gt 1){$right = $right[1..$($right.Length-1)]} else {$right = @()} } }

# If we get here, either $left or $right is an empty array (or both are empty!). Since the # rest of the unmerged array is already sorted, we can simply string together what we have. # This line outputs the concatenated result. An explicit 'return' statement is not needed. $result + $left + $right } </lang>

Prolog

<lang prolog>% msort( L, S ) % True if S is a sorted copy of L, using merge sort msort( [], [] ). msort( [X], [X] ). msort( U, S ) :- split(U, L, R), msort(L, SL), msort(R, SR), merge(SL, SR, S).

% split( LIST, L, R ) % Alternate elements of LIST in L and R split( [], [], [] ). split( [X], [X], [] ). split( [L,R|T], [L|LT], [R|RT] ) :- split( T, LT, RT ).

% merge( LS, RS, M ) % Assuming LS and RS are sorted, True if M is the sorted merge of the two merge( [], RS, RS ). merge( LS, [], LS ). merge( [L|LS], [R|RS], [L|T] ) :- L =< R, merge( LS, [R|RS], T). merge( [L|LS], [R|RS], [R|T] ) :- L > R, merge( [L|LS], RS, T).</lang>

PureBasic

A non-optimized version with lists. <lang PureBasic>Procedure display(List m())

 ForEach m()
   Print(LSet(Str(m()), 3," "))
 Next
 PrintN("")

EndProcedure

overwrites list m() with the merger of lists ma() and mb()

Procedure merge(List m(), List ma(), List mb())

 FirstElement(m())
 Protected ma_elementExists = FirstElement(ma())
 Protected mb_elementExists = FirstElement(mb()) 
 Repeat
   If ma() <= mb()
     m() = ma(): NextElement(m())
     ma_elementExists = NextElement(ma())
   Else
     m() = mb(): NextElement(m())
     mb_elementExists = NextElement(mb())
   EndIf
 Until Not (ma_elementExists And mb_elementExists)
 If ma_elementExists
   Repeat
     m() = ma(): NextElement(m())
   Until Not NextElement(ma())
 ElseIf mb_elementExists
   Repeat
     m() = mb(): NextElement(m())
   Until Not NextElement(mb())
 EndIf

EndProcedure

Procedure mergesort(List m())

 Protected NewList ma()
 Protected NewList mb()
 
 If ListSize(m()) > 1
   Protected current, middle = (ListSize(m()) / 2 ) - 1
   
   FirstElement(m())
   While current <= middle
     AddElement(ma())
     ma() = m()
     NextElement(m()): current + 1
   Wend
   
   PreviousElement(m())
   While NextElement(m())
     AddElement(mb())
     mb() = m()
   Wend
   
   mergesort(ma())
   mergesort(mb())
   LastElement(ma()): FirstElement(mb())
   If ma() <= mb() 
     FirstElement(m())
     FirstElement(ma())
     Repeat
       m() = ma(): NextElement(m())
     Until Not NextElement(ma())
     Repeat
       m() = mb(): NextElement(m())
     Until Not NextElement(mb())
   Else 
     merge(m(), ma(), mb())
   EndIf 
 EndIf 

EndProcedure

If OpenConsole()

 Define i
 NewList x()
 
 For i = 1 To 21: AddElement(x()): x() = Random(60): Next
 display(x())
 mergesort(x())
 display(x())
 
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
 Input()
 CloseConsole()

EndIf</lang>

Sample output:
22 51 31 59 58 45 11 2  16 56 38 42 2  10 23 41 42 25 45 28 42
2  2  10 11 16 22 23 25 28 31 38 41 42 42 42 45 45 51 56 58 59

Python

Works with: Python version 2.6+

<lang python>from heapq import merge

def merge_sort(m):

   if len(m) <= 1:
       return m
   middle = len(m) // 2
   left = m[:middle]
   right = m[middle:]
   left = merge_sort(left)
   right = merge_sort(right)
   return list(merge(left, right))</lang>

Pre-2.6, merge() could be implemented like this: <lang python>def merge(left, right):

   result = []
   left_idx, right_idx = 0, 0
   while left_idx < len(left) and right_idx < len(right):
       # change the direction of this comparison to change the direction of the sort
       if left[left_idx] <= right[right_idx]:
           result.append(left[left_idx])
           left_idx += 1
       else:
           result.append(right[right_idx])
           right_idx += 1
   if left_idx < len(left):
       result.extend(left[left_idx:])
   if right_idx < len(right):
       result.extend(right[right_idx:])
   return result</lang>

using only recursions <lang python>def merge(x, y):

   if x==[]: return y
   if y==[]: return x
   return [x[0]] + merge(x[1:], y) if x[0]<y[0] else [y[0]] + merge(x, y[1:])

def sort(a, n):

   m = n//2
   return a if n<=1 else merge(sort(a[:m], m), sort(a[m:], n-m))

a = list(map(int, input().split())) print(sort(a, len(a)))</lang>

Quackery

<lang Quackery>[ [] temp put

 [ dup  [] != while
   over [] != while
   over 0 peek
   over 0 peek
   > not if dip
     [ 1 split
       temp take
       rot join
       temp put ]
     again ]
   join
   temp take swap join ] is merge     ( [ [ --> [ )

[ dup size 2 < if done

 dup size 2 / split
 swap recurse
 swap recurse
 merge ]                 is mergesort (   [ --> [ )</lang>

R

<lang r>mergesort <- function(m) {

  merge_ <- function(left, right)
  {
     result <- c()
     while(length(left) > 0 && length(right) > 0)
     {
        if(left[1] <= right[1])
        {
           result <- c(result, left[1])
           left <- left[-1]
        } else
        {
           result <- c(result, right[1])
           right <- right[-1]
        }         
     }
     if(length(left) > 0) result <- c(result, left)
     if(length(right) > 0) result <- c(result, right)
     result
  }
  
  len <- length(m)
  if(len <= 1) m else
  {
     middle <- length(m) / 2
     left <- m[1:floor(middle)]
     right <- m[floor(middle+1):len]
     left <- mergesort(left)
     right <- mergesort(right)
     if(left[length(left)] <= right[1])
     {
        c(left, right)
     } else
     {
        merge_(left, right)
     } 
  }

} mergesort(c(4, 65, 2, -31, 0, 99, 83, 782, 1)) # -31 0 1 2 4 65 83 99 782</lang>

Racket

<lang racket>

  1. lang racket

(define (merge xs ys)

 (cond [(empty? xs) ys]
       [(empty? ys) xs]
       [(match* (xs ys)
          [((list* a as) (list* b bs))
           (cond [(<= a b) (cons a (merge as ys))]
                 [         (cons b (merge xs bs))])])]))

(define (merge-sort xs)

 (match xs
   [(or (list) (list _)) xs]
   [_ (define-values (ys zs) (split-at xs (quotient (length xs) 2)))
      (merge (merge-sort ys) (merge-sort zs))]))

</lang> This variation is bottom up: <lang racket>

  1. lang racket

(define (merge-sort xs)

 (merge* (map list xs)))

(define (merge* xss)

 (match xss
   [(list)    '()]
   [(list xs) xss]
   [(list xs ys zss ...) 
    (merge* (cons (merge xs ys) (merge* zss)))]))

(define (merge xs ys)

 (cond [(empty? xs) ys]
       [(empty? ys) xs]
       [(match* (xs ys)
          [((list* a as) (list* b bs))
           (cond [(<= a b) (cons a (merge as ys))]
                 [         (cons b (merge xs bs))])])]))

</lang>

Raku

(formerly Perl 6)

Works with: Rakudo Star version 2015.10

<lang perl6>sub merge_sort ( @a ) {

   return @a if @a <= 1;
   my $m = @a.elems div 2;
   my @l = flat merge_sort @a[  0 ..^ $m ];
   my @r = flat merge_sort @a[ $m ..^ @a ];
   return flat @l, @r if @l[*-1] !after @r[0];
   return flat gather {
       take @l[0] before @r[0] ?? @l.shift !! @r.shift
           while @l and @r;
       take @l, @r;
   }

} my @data = 6, 7, 2, 1, 8, 9, 5, 3, 4; say 'input = ' ~ @data; say 'output = ' ~ @data.&merge_sort;</lang>

Output:
input  = 6 7 2 1 8 9 5 3 4
output = 1 2 3 4 5 6 7 8 9

REBOL

msort: function [a compare] [msort-do merge] [
    if (length? a) < 2 [return a]
    ; define a recursive Msort-do function
    msort-do: function [a b l] [mid] [
        either l < 4 [
            if l = 3 [msort-do next b next a 2]
            merge a b 1 next b l - 1
        ] [
            mid: make integer! l / 2
            msort-do b a mid
            msort-do skip b mid skip a mid l - mid
            merge a b mid skip b mid l - mid
        ]
    ]
    ; function Merge is the key part of the algorithm
    merge: func [a b lb c lc] [
        until [
            either (compare first b first c) [
                change/only a first b
                b: next b
                a: next a
                zero? lb: lb - 1
            ] [
                change/only a first c
                c: next c
                a: next a
                zero? lc: lc - 1
            ]
        ]
        loop lb [
            change/only a first b
            b: next b
            a: next a
        ]
        loop lc [
            change/only a first c
            c: next c
            a: next a
        ]
    ]
    msort-do a copy a length? a
    a
]

REXX

Note:   the array elements can be anything:   integers, floating point (exponentiated), character strings ··· <lang rexx>/*REXX pgm sorts a stemmed array (numbers and/or chars) using the merge─sort algorithm.*/ call init /*sinfully initialize the @ array. */ call show 'before sort' /*show the "before" array elements. */

                           say copies('▒', 75)  /*display a separator line to the term.*/

call merge # /*invoke the merge sort for the array*/ call show ' after sort' /*show the "after" array elements. */ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ init: @.=; @.1= '---The seven deadly sins---'  ; @.4= "avarice"  ; @.7= 'gluttony'

             @.2= '==========================='  ;    @.5= "wrath"    ;   @.8= 'sloth'
             @.3= 'pride'                        ;    @.6= "envy"     ;   @.9= 'lust'
     do #=1  until @.#==; end;   #= #-1;   return      /*#:  # of entries in @ array.*/

/*──────────────────────────────────────────────────────────────────────────────────────*/ show: do j=1 for #; say right('element',20) right(j,length(#)) arg(1)":" @.j; end; return /*──────────────────────────────────────────────────────────────────────────────────────*/ merge: procedure expose @. !.; parse arg n, L; if L== then do;  !.=; L= 1; end

         if n==1  then return;     h= L + 1
         if n==2  then do; if @.L>@.h  then do; _=@.h; @.h=@.L; @.L=_; end; return;  end
         m= n % 2                                     /* [↑]  handle case of two items.*/
         call merge  n-m, L+m                         /*divide items  to the left   ···*/
         call merger m,   L,   1                      /*   "     "     "  "  right  ···*/
         i= 1;                     j= L + m
                    do k=L  while k<j                 /*whilst items on right exist ···*/
                    if j==L+n  |  !.i<=@.j  then do;     @.k= !.i;     i= i + 1;      end
                                            else do;     @.k= @.j;     j= j + 1;      end
                    end   /*k*/
         return

/*──────────────────────────────────────────────────────────────────────────────────────*/ merger: procedure expose @. !.; parse arg n,L,T

          if n==1  then do;  !.T= @.L;                                       return;  end
          if n==2  then do;  h= L + 1;   q= T + 1;  !.q= @.L;    !.T= @.h;   return;  end
          m= n % 2                                    /* [↑]  handle case of two items.*/
          call merge  m,   L                          /*divide items  to the left   ···*/
          call merger n-m, L+m, m+T                   /*   "     "     "  "  right  ···*/
          i= L;                     j= m + T
                    do k=T  while k<j                 /*whilst items on left exist  ···*/
                    if j==T+n  |  @.i<=!.j  then do;     !.k= @.i;     i= i + 1;      end
                                            else do;     !.k= !.j;     j= j + 1;      end
                    end   /*k*/
          return</lang>
output   when using the default input:

(Shown at three-quarter size.)

             element 1 before sort: ---The seven deadly sins---
             element 2 before sort: ===========================
             element 3 before sort: pride
             element 4 before sort: avarice
             element 5 before sort: wrath
             element 6 before sort: envy
             element 7 before sort: gluttony
             element 8 before sort: sloth
             element 9 before sort: lust
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
             element 1  after sort: ---The seven deadly sins---
             element 2  after sort: ===========================
             element 3  after sort: avarice
             element 4  after sort: envy
             element 5  after sort: gluttony
             element 6  after sort: lust
             element 7  after sort: pride
             element 8  after sort: sloth
             element 9  after sort: wrath

Ruby

<lang ruby>def merge_sort(m)

 return m if m.length <= 1
 
 middle = m.length / 2
 left = merge_sort(m[0...middle])
 right = merge_sort(m[middle..-1])
 merge(left, right)

end

def merge(left, right)

 result = []
 until left.empty? || right.empty?
   result << (left.first<=right.first ? left.shift : right.shift)
 end
 result + left + right

end

ary = [7,6,5,9,8,4,3,1,2,0] p merge_sort(ary) # => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]</lang>

Here's a version that monkey patches the Array class, with an example that demonstrates it's a stable sort <lang ruby>class Array

 def mergesort(&comparitor)
   return self if length <= 1
   comparitor ||= proc{|a, b| a <=> b}
   middle = length / 2
   left  = self[0...middle].mergesort(&comparitor)
   right = self[middle..-1].mergesort(&comparitor)
   merge(left, right, comparitor) 
 end
 
 private
 def merge(left, right, comparitor)
   result = []
   until left.empty? || right.empty?
     # change the direction of this comparison to change the direction of the sort
     if comparitor[left.first, right.first] <= 0
       result << left.shift
     else
       result << right.shift
     end
   end
   result + left + right
 end

end

ary = [7,6,5,9,8,4,3,1,2,0] p ary.mergesort # => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] p ary.mergesort {|a, b| b <=> a} # => [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

ary = [["UK", "London"], ["US", "New York"], ["US", "Birmingham"], ["UK", "Birmingham"]] p ary.mergesort

  1. => [["UK", "Birmingham"], ["UK", "London"], ["US", "Birmingham"], ["US", "New York"]]

p ary.mergesort {|a, b| a[1] <=> b[1]}

  1. => [["US", "Birmingham"], ["UK", "Birmingham"], ["UK", "London"], ["US", "New York"]]</lang>

Rust

Works with: rustc version 1.9.0

<lang rust> fn merge<T: Copy + PartialOrd>(x1: &[T], x2: &[T], y: &mut [T]) { assert_eq!(x1.len() + x2.len(), y.len()); let mut i = 0; let mut j = 0; let mut k = 0; while i < x1.len() && j < x2.len() { if x1[i] < x2[j] { y[k] = x1[i]; k += 1; i += 1; } else { y[k] = x2[j]; k += 1; j += 1; } } if i < x1.len() { y[k..].copy_from_slice(&x1[i..]); } if j < x2.len() { y[k..].copy_from_slice(&x2[j..]); } } </lang>

The sort algorithm : <lang rust> fn merge_sort_rec<T: Copy + Ord>(x: &mut [T]) { let n = x.len(); let m = n / 2;

if n <= 1 { return; }

merge_sort_rec(&mut x[0..m]); merge_sort_rec(&mut x[m..n]);

let mut y: Vec<T> = x.to_vec();

merge(&x[0..m], &x[m..n], &mut y[..]);

x.copy_from_slice(&y); } </lang>

Version without recursion call (faster) : <lang rust> fn merge_sort<T: Copy + PartialOrd>(x: &mut [T]) { let n = x.len(); let mut y = x.to_vec(); let mut len = 1; while len < n { let mut i = 0; while i < n { if i + len >= n { y[i..].copy_from_slice(&x[i..]); } else if i + 2 * len > n { merge(&x[i..i+len], &x[i+len..], &mut y[i..]); } else { merge(&x[i..i+len], &x[i+len..i+2*len], &mut y[i..i+2*len]); } i += 2 * len; } len *= 2; if len >= n { x.copy_from_slice(&y); return; } i = 0; while i < n { if i + len >= n { x[i..].copy_from_slice(&y[i..]); } else if i + 2 * len > n { merge(&y[i..i+len], &y[i+len..], &mut x[i..]); } else { merge(&y[i..i+len], &y[i+len..i+2*len], &mut x[i..i+2*len]); } i += 2 * len; } len *= 2; } } </lang>

Scala

The use of LazyList as the merge result avoids stack overflows without resorting to tail recursion, which would typically require reversing the result, as well as being a bit more convoluted. <lang scala> import scala.language.implicitConversions

object MergeSort extends App {

 def mergeSort(input: List[Int]): List[Int] = {
   def merge(left: List[Int], right: List[Int]): LazyList[Int] = (left, right) match {
     case (x :: xs, y :: ys) if x <= y => x #:: merge(xs, right)
     case (x :: xs, y :: ys) => y #:: merge(left, ys)
     case _ => if (left.isEmpty) right.to(LazyList) else left.to(LazyList)
   }
   def sort(input: List[Int], length: Int): List[Int] = input match {
     case Nil | List(_) => input
     case _ =>
       val middle = length / 2
       val (left, right) = input splitAt middle
       merge(sort(left, middle), sort(right, middle + length % 2)).toList
   }
   sort(input, input.length)
 }

} </lang>

Scheme

<lang scheme>(define (merge-sort l gt?)

 (define (merge left right)
   (cond
    ((null? left)
     right)
    ((null? right)
     left)
    ((gt? (car left) (car right))
     (cons (car right)
           (merge left (cdr right))))
    (else
     (cons (car left)
           (merge (cdr left) right)))))
 (define (take l n)
   (if (zero? n)
     (list)
     (cons (car l)
           (take (cdr l) (- n 1)))))
 (let ((half (quotient (length l) 2)))
   (if (zero? half)
     l
     (merge (merge-sort (take      l half) gt?)
            (merge-sort (list-tail l half) gt?)))))</lang>
(merge-sort '(1 3 5 7 9 8 6 4 2) >)

Seed7

<lang seed7>const proc: mergeSort2 (inout array elemType: arr, in integer: lo, in integer: hi, inout array elemType: scratch) is func

 local
   var integer: mid is 0;
   var integer: k is 0;
   var integer: t_lo is 0;
   var integer: t_hi is 0;
 begin
   if lo < hi then
     mid := (lo + hi) div 2;
     mergeSort2(arr, lo, mid, scratch);
     mergeSort2(arr, succ(mid), hi, scratch);
     t_lo := lo;
     t_hi := succ(mid);
     for k range lo to hi do
       if t_lo <= mid and (t_hi > hi or arr[t_lo] <= arr[t_hi]) then
         scratch[k] := arr[t_lo];
         incr(t_lo);
       else
         scratch[k] := arr[t_hi];
         incr(t_hi);
       end if;
     end for;
     for k range lo to hi do
       arr[k] := scratch[k];
     end for;
   end if;
 end func;

const proc: mergeSort2 (inout array elemType: arr) is func

 local
   var array elemType: scratch is 0 times elemType.value;
 begin
   scratch := length(arr) times elemType.value;
   mergeSort2(arr, 1, length(arr), scratch);
 end func;</lang>

Original source: [2]

Sidef

<lang ruby>func merge(left, right) {

   var result = []
   while (left && right) {
       result << [right,left].min_by{.first}.shift
   }
   result + left + right

}   func mergesort(array) {

   var len = array.len
   len < 2 && return array

 

   var (left, right) = array.part(len//2)

 

   left  = __FUNC__(left)
   right = __FUNC__(right)

 

   merge(left, right)

}  

  1. Numeric sort

var nums = rand(1..100, 10) say mergesort(nums)  

  1. String sort

var strings = rand('a'..'z', 10) say mergesort(strings)</lang>

Standard ML

<lang sml>fun merge cmp ([], ys) = ys

 | merge cmp (xs, []) = xs
 | merge cmp (xs as x::xs', ys as y::ys') =
     case cmp (x, y) of GREATER => y :: merge cmp (xs, ys')
                      | _       => x :: merge cmp (xs', ys)

fun merge_sort cmp [] = []

 | merge_sort cmp [x] = [x]
 | merge_sort cmp xs = let
     val ys = List.take (xs, length xs div 2)
     val zs = List.drop (xs, length xs div 2)
   in
     merge cmp (merge_sort cmp ys, merge_sort cmp zs)
   end

merge_sort Int.compare [8,6,4,2,1,3,5,7,9]</lang>

Swift

<lang Swift>// Merge Sort in Swift 4.2 // Source: https://github.com/raywenderlich/swift-algorithm-club/tree/master/Merge%20Sort // NOTE: by use of generics you can make it sort arrays of any type that conforms to // Comparable protocol, however this is not always optimal

import Foundation

func mergeSort(_ array: [Int]) -> [Int] {

 guard array.count > 1 else { return array }
 let middleIndex = array.count / 2
 let leftPart = mergeSort(Array(array[0..<middleIndex]))
 let rightPart = mergeSort(Array(array[middleIndex..<array.count]))
 func merge(left: [Int], right: [Int]) -> [Int] {
   var leftIndex = 0
   var rightIndex = 0
 
   var merged = [Int]()
   merged.reserveCapacity(left.count + right.count)
 
   while leftIndex < left.count && rightIndex < right.count {
     if left[leftIndex] < right[rightIndex] {
       merged.append(left[leftIndex])
       leftIndex += 1
     } else if left[leftIndex] > right[rightIndex] {
       merged.append(right[rightIndex])
       rightIndex += 1
     } else {
       merged.append(left[leftIndex])
       leftIndex += 1
       merged.append(right[rightIndex])
       rightIndex += 1
     }
   }
 
   while leftIndex < left.count {
     merged.append(left[leftIndex])
     leftIndex += 1
   }
 
   while rightIndex < right.count {
     merged.append(right[rightIndex])
     rightIndex += 1
   }
 
   return merged
 }
 return merge(left: leftPart, right: rightPart)

}</lang>

Tailspin

The standard recursive merge sort <lang tailspin> templates mergesort

 templates merge
   @: $(2);
   [ $(1)... -> \(
     when <?($@merge<[](0)>)
     | ..$@merge(1)> do
       $ !
     otherwise
       ^@merge(1) !
       $ -> #
    \),
    $@...] !
 end merge
 $ -> #
 when <[](0..1)> do $!
 otherwise
   def half: $::length ~/ 2;
   [$(1..$half) -> mergesort, $($half+1..last) -> mergesort] -> merge !

end mergesort

[4,5,3,8,1,2,6,7,9,8,5] -> mergesort -> !OUT::write </lang>

Output:
[1, 2, 3, 4, 5, 5, 6, 7, 8, 8, 9]

A little different spin where the array is first split into a list of single-element lists and then merged. <lang tailspin> templates mergesort

 templates merge
   @: $(2);
   $(1)... -> \(
     when <?($@merge<[](0)>)
     | ..$@merge(1)> do
       $ !
     otherwise
       ^@merge(1) !
       $ -> #
    \) !
    $@... !
 end merge
 templates mergePairs
   when <[](1)> do
     $(1) !
   when <[](2..)> do
     [$(1..2) -> merge] !
     $(3..last) -> #
 end mergePairs
 templates mergeAll
   when <[](0)> do
     $ !
   when <[](1)> do
     $(1) !
   otherwise
     [ $ -> mergePairs ] -> #
 end mergeAll
 $ -> [ $... -> [ $ ] ] -> mergeAll !

end mergesort

[4,5,3,8,1,2,6,7,9,8,5] -> mergesort -> !OUT::write </lang>

Output:
[1, 2, 3, 4, 5, 5, 6, 7, 8, 8, 9]

Tcl

<lang tcl>package require Tcl 8.5

proc mergesort m {

   set len [llength $m]
   if {$len <= 1} {
       return $m
   }
   set middle [expr {$len / 2}]
   set left [lrange $m 0 [expr {$middle - 1}]]
   set right [lrange $m $middle end]
   return [merge [mergesort $left] [mergesort $right]]

}

proc merge {left right} {

   set result [list]
   while {[set lleft [llength $left]] > 0 && [set lright [llength $right]] > 0} {
       if {[lindex $left 0] <= [lindex $right 0]} {
           set left [lassign $left value]
       } else {
           set right [lassign $right value]
       }
       lappend result $value
   }
   if {$lleft > 0} {
       lappend result {*}$left
   }
   if {$lright > 0} {
       set result [concat $result $right] ;# another way append elements
   }
   return $result

}

puts [mergesort {8 6 4 2 1 3 5 7 9}] ;# => 1 2 3 4 5 6 7 8 9</lang> Also note that Tcl's built-in lsort command uses the mergesort algorithm.

Unison

<lang Unison>mergeSortBy : (i ->{𝕖} i ->{𝕖} Boolean) ->{𝕖} [i] ->{𝕖} [i] mergeSortBy cmp =

 merge l1 l2 =
   match (l1, l2) with
     (xs, [])           -> xs
     ([], ys)           -> ys
     (x +: xs, y +: ys) -> if cmp x y then x +: merge xs l2 else y +: merge l1 ys
     ([], [])           -> []
 cases
   []  -> []
   [x] -> [x]
   lst ->
     match halve lst with
       (left, right) -> merge (mergeSortBy cmp left) (mergeSortBy cmp right)</lang>

UnixPipes

Works with: Zsh

<lang bash>split() {

  (while read a b ; do
      echo $a > $1 ; echo $b > $2
  done)

}

mergesort() {

xargs -n 2 | (read a b; test -n "$b" && (
    lc="1.$1" ; gc="2.$1"
    (echo $a $b;cat)|split >(mergesort $lc >$lc) >( mergesort $gc >$gc)
    sort -m $lc $gc
    rm -f $lc $gc;
) || echo $a)

}

cat to.sort | mergesort</lang>

Ursala

<lang Ursala>#import std

mergesort "p" = @iNCS :-0 ~&B^?a\~&YaO "p"?abh/~&alh2faltPrXPRC ~&arh2falrtPXPRC

  1. show+

example = mergesort(lleq) <'zoh','zpb','hhh','egi','bff','cii','yid'></lang>

Output:
bff
cii
egi
hhh
yid
zoh
zpb

The mergesort function could also have been defined using the built in sorting operator, -<, because the same algorithm is used. <lang Ursala>mergesort "p" = "p"-<</lang>

V

merge uses the helper mergei to merge two lists. The mergei takes a stack of the form [mergedlist] [list1] [list2] it then extracts one element from list2, splits the list1 with it, joins the older merged list, first part of list1 and the element that was used for splitting (taken from list2) into the new merged list. the new list1 is the second part of the split on older list1. new list2 is the list remaining after the element e2 was extracted from it. <lang v>[merge

  [mergei
      uncons [swap [>] split] dip
      [[*m] e2 [*a1] b1 a2 : [*m *a1 e2] b1 a2] view].
   
  [a b : [] a b] view
  [size zero?] [pop concat]
      [mergei]
  tailrec].

[msort

 [splitat [arr a : [arr a take arr a drop]] view i].
 [splitarr dup size 2 / >int splitat].
 [small?] []
   [splitarr]
   [merge]
 binrec].</lang>
[8 7 6 5 4 2 1 3 9] msort puts

Vlang

<lang vlang>fn main() {

   mut a := [170, 45, 75, -90, -802, 24, 2, 66]
   println("before: $a")
   a = merge_sort(a)
   println("after: $a")

}

fn merge_sort(m []int) []int {

   if m.len <= 1{
       return m
   } else {
       mid := m.len / 2
       mut left := merge_sort(m[..mid])
       mut right := merge_sort(m[mid..])
       if m[mid-1] <= m[mid] {
           left << right
           return left
       }
       return merge(mut left, mut right)
   }

}

fn merge(mut left []int,mut right []int) []int {

   mut result := []int{}
   for left.len > 0 && right.len > 0 {
       if left[0] <= right[0]{
           result << left[0]
           left = left[1..]
       } else {
           result << right[0]
           right = right[1..]
       }
   }
   if left.len > 0  {
       result << left
   }
   if right.len > 0 {
       result << right
   }
   return result

}</lang>

Wren

<lang ecmascript>var merge = Fn.new { |left, right|

   var result = []
   while (left.count > 0 && right.count > 0) {
       if (left[0] <= right[0]) {
           result.add(left[0])
           left = left[1..-1]
       } else {
           result.add(right[0])
           right = right[1..-1]
       }
   }
   if (left.count > 0) result.addAll(left)
   if (right.count > 0) result.addAll(right)
   return result

}

var mergeSort // recursive mergeSort = Fn.new { |m|

   var len = m.count
   if (len <= 1) return m
   var middle = (len/2).floor
   var left = m[0...middle]
   var right = m[middle..-1]
   left = mergeSort.call(left)
   right = mergeSort.call(right)
   if (left[-1] <= right[0]) {
       left.addAll(right)
       return left
   }
   return merge.call(left, right)

}

var as = [ [4, 65, 2, -31, 0, 99, 2, 83, 782, 1], [7, 5, 2, 6, 1, 4, 2, 6, 3] ] for (a in as) {

   System.print("Before: %(a)")
   a = mergeSort.call(a)
   System.print("After : %(a)")
   System.print()

}</lang>

Output:
Before: [4, 65, 2, -31, 0, 99, 2, 83, 782, 1]
After : [-31, 0, 1, 2, 2, 4, 65, 83, 99, 782]

Before: [7, 5, 2, 6, 1, 4, 2, 6, 3]
After : [1, 2, 2, 3, 4, 5, 6, 6, 7]


Alternatively we can just call a library method.

Library: Wren-sort

<lang ecmascript>import "/sort" for Sort

var as = [ [4, 65, 2, -31, 0, 99, 2, 83, 782, 1], [7, 5, 2, 6, 1, 4, 2, 6, 3] ] for (a in as) {

   System.print("Before: %(a)")
   a = Sort.merge(a)
   System.print("After : %(a)")
   System.print()

}</lang>

Output:
As above.

XPL0

This is based on an example in "Fundamentals of Computer Algorithms" by Horowitz & Sahni. <lang XPL0>code Reserve=3, ChOut=8, IntOut=11;

proc MergeSort(A, Low, High); \Sort array A from Low to High int A, Low, High; int B, Mid, H, I, J, K; [if Low >= High then return; Mid:= (Low+High) >> 1; \split array in half (roughly) MergeSort(A, Low, Mid); \sort left half MergeSort(A, Mid+1, High); \sort right half \Merge the two halves in to sorted order B:= Reserve((High-Low+1)*4); \reserve space for working array (4 bytes/int) H:= Low; I:= Low; J:= Mid+1; while H<=Mid & J<=High do \merge while both halves have items

   if A(H) <= A(J) then [B(I):= A(H);  I:= I+1;  H:= H+1]
                   else [B(I):= A(J);  I:= I+1;  J:= J+1];

if H > Mid then \copy any remaining elements

    for K:= J to High do [B(I):= A(K);  I:= I+1]

else for K:= H to Mid do [B(I):= A(K); I:= I+1]; for K:= Low to High do A(K):= B(K); ];

int A, I; [A:= [3, 1, 4, 1, -5, 9, 2, 6, 5, 4]; MergeSort(A, 0, 10-1); for I:= 0 to 10-1 do [IntOut(0, A(I)); ChOut(0, ^ )]; ]</lang>

Output:
-5 1 1 2 3 4 4 5 6 9 


Yabasic

Translation of: FreeBASIC

<lang yabasic> dim b(9)

sub copyArray(a(), inicio, final, b())

   dim b(final - 1)
   for k = inicio to final - 1
       b(k) = a(k)
   next

end sub

// La mitad izquierda es a(inicio to mitad-1). // La mitad derecha es a(mitad to final-1). // El resultado es b(inicio to final-1). sub topDownMerge(a(), inicio, mitad, final, b())

   i = inicio
   j = mitad
   
   // Si bien hay elementos en los recorridos izquierdo o derecho ...
   for k = inicio to final - 1 
       // Si existe un inicio de recorrido izquierdo y es <= inicio de recorrido derecho existente.
       if (i < mitad) and (j >= final or a(i) <= a(j)) then
           b(k) = a(i)
           i = i + 1
       else
           b(k) = a(j)
           j = j + 1    
       end if
   next 

end sub

// Ordenar la matriz a() usando la matriz b() como fuente. // inicio es inclusivo; final es exclusivo (a(final) no está en el conjunto). sub topDownSplitMerge(b(), inicio, final, a())

   if (final - inicio) < 2 then return : fi // Si la diferencia = 1, considérelo ordenado
   // dividir la ejecución de más de 1 elemento en mitades
   mitad = int((final + inicio) / 2)  // mitad = punto medio
   // recursively sort both runs from array a() into b()
   topDownSplitMerge(a(), inicio,  mitad, b())  // ordenar la parte izquierda
   topDownSplitMerge(a(), mitad, final, b())    // ordenar la parte derecha
   // fusionar las ejecuciones resultantes de la matriz b() en a()
   topDownMerge(b(), inicio, mitad, final, a())

end sub

// El array a() tiene los elementos para ordenar; array b() es una matriz de trabajo (inicialmente vacía). sub topDownMergeSort(a(), b(), n)

   copyArray(a(), 0, n, b())          // duplicar la matriz a() en b()
   topDownSplitMerge(b(), 0, n, a())  // ordenar los datos de b() en a()

end sub

sub printArray(a())

   for i = 1 to arraysize(a(),1)
       print a(i) using "####";
   next
   print

end sub


//-------------------------- label a1 data 4, 65, 2, -31, 0, 99, 2, 83, 782, 1 label a2 data 7, 5, 2, 6, 1, 4, 2, 6, 3

dim a(9) restore a1 for i = 0 to 9

   read p 
   a(i) = p

next i

dim a2(8) restore a2 for i = 0 to 8

   read p 
   a2(i) = p  

next i

print "unsort "; printArray(a()) topDownMergeSort (a(), b(), 10) print " sort "; printArray(a()) print print "unsort "; printArray(a2()) topDownMergeSort (a2(), b(), 9) print " sort "; printArray(a2()) end </lang>


ZED

Source -> http://ideone.com/uZEPL4 Compiled -> http://ideone.com/SJ5EGu

This is a bottom up version of merge sort: <lang zed>(append) list1 list2 comment:

  1. true

(003) "append" list1 list2

(car) pair comment:

  1. true

(002) "car" pair

(cdr) pair comment:

  1. true

(002) "cdr" pair

(cons) one two comment:

  1. true

(003) "cons" one two

(map) function list comment:

  1. true

(003) "map" function list

(merge) comparator list1 list2 comment:

  1. true

(merge1) comparator list1 list2 nil

(merge1) comparator list1 list2 collect comment: (null?) list2 (append) (reverse) collect list1

(merge1) comparator list1 list2 collect comment: (null?) list1 (append) (reverse) collect list2

(merge1) comparator list1 list2 collect comment: (003) comparator (car) list2 (car) list1 (merge1) comparator list1 (cdr) list2 (cons) (car) list2 collect

(merge1) comparator list1 list2 collect comment:

  1. true

(merge1) comparator (cdr) list1 list2 (cons) (car) list1 collect

(null?) value comment:

  1. true

(002) "null?" value

(reverse) list comment:

  1. true

(002) "reverse" list

(sort) comparator jumble comment:

  1. true

(car) (sort11) comparator (sort1) jumble

(sort1) jumble comment:

  1. true

(map) "list" jumble

(sort11) comparator jumble comment: (null?) jumble nil

(sort11) comparator jumble comment: (null?) (cdr) jumble jumble

(sort11) comparator jumble comment:

  1. true

(sort11) comparator

        (cons) (merge) comparator (car) jumble (002) "cadr" jumble
               (sort11) comparator (002) "cddr" jumble</lang>

zkl

Pretty wasteful memory wise, probably not suitable for large sorts.

Translation of: Clojure

<lang zkl>fcn _merge(left,right){

  if (not left)  return(right);
  if (not right) return(left);
  l:=left[0]; r:=right[0];
  if (l<=r) return(L(l).extend(self.fcn(left[1,*],right)));
  else      return(L(r).extend(self.fcn(left,right[1,*])));

}

fcn merge_sort(L){

  if (L.len()<2) return(L);
  n:=L.len()/2;
  return(_merge(self.fcn(L[0,n]), self.fcn(L[n,*])));

}</lang> <lang zkl>merge_sort(T(1,3,5,7,9,8,6,4,2)).println(); merge_sort("big fjords vex quick waltz nymph").concat().println();</lang>

Output:
L(1,2,3,4,5,6,7,8,9)
     abcdefghiijklmnopqrstuvwxyz

Or, for lists only: <lang zkl>fcn mergeSort(L){

  if (L.len()<2) return(L.copy());
  n:=L.len()/2;
  self.fcn(L[0,n]).merge(self.fcn(L[n,*]));

}</lang> <lang zkl>mergeSort(T(1,3,5,7,9,8,6,4,2)).println(); mergeSort("big fjords vex quick waltz nymph".split("")).concat().println();</lang>

Output:
L(1,2,3,4,5,6,7,8,9)
     abcdefghiijklmnopqrstuvwxyz