Arithmetic-geometric mean

Arithmetic-geometric mean
You are encouraged to solve this task according to the task description, using any language you may know.
 This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)

Write a function to compute the arithmetic-geometric mean of two numbers. [1] The arithmetic-geometric mean of two numbers can be (usefully) denoted as ${\displaystyle \mathrm {agm} (a,g)}$, and is equal to the limit of the sequence:

${\displaystyle a_{0}=a;\qquad g_{0}=g}$
${\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.}$

Since the limit of ${\displaystyle a_{n}-g_{n}}$ tends (rapidly) to zero with iterations, this is an efficient method.

Demonstrate the function by calculating:

${\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})}$

Also see

360 Assembly

For maximum compatibility, this program uses only the basic instruction set. <lang 360asm>AGM CSECT

        USING  AGM,R13


SAVEAREA B STM-SAVEAREA(R15)

        DC     17F'0'
DC     CL8'AGM'


STM STM R14,R12,12(R13)

        ST     R13,4(R15)
ST     R15,8(R13)
LR     R13,R15
ZAP    A,K                a=1
ZAP    PWL8,K
MP     PWL8,K
DP     PWL8,=P'2'
ZAP    PWL8,PWL8(7)
BAL    R14,SQRT
ZAP    G,PWL8             g=sqrt(1/2)


WHILE1 EQU * while a!=g

        ZAP    PWL8,A
SP     PWL8,G
CP     PWL8,=P'0'         (a-g)!=0
BE     EWHILE1
ZAP    PWL8,A
AP     PWL8,G
DP     PWL8,=P'2'
ZAP    AN,PWL8(7)         an=(a+g)/2
ZAP    PWL8,A
MP     PWL8,G
BAL    R14,SQRT
ZAP    G,PWL8             g=sqrt(a*g)
ZAP    A,AN               a=an
B      WHILE1


EWHILE1 EQU *

        ZAP    PWL8,A
UNPK   ZWL16,PWL8
MVC    CWL16,ZWL16
OI     CWL16+15,X'F0'
MVI    CWL16,C'+'
CP     PWL8,=P'0'
BNM    *+8
MVI    CWL16,C'-'
MVC    CWL80+0(15),CWL16
MVC    CWL80+9(1),=C'.'   /k  (15-6=9)
XPRNT  CWL80,80           display a
L      R13,4(0,R13)
LM     R14,R12,12(R13)
XR     R15,R15
BR     R14
DS     0F


K DC PL8'1000000' 10^6 A DS PL8 G DS PL8 AN DS PL8

• ****** SQRT *******************

SQRT CNOP 0,4 function sqrt(x)

        ZAP    X,PWL8
ZAP    X0,=P'0'           x0=0
ZAP    X1,=P'1'           x1=1


WHILE2 EQU * while x0!=x1

        ZAP    PWL8,X0
SP     PWL8,X1
CP     PWL8,=P'0'         (x0-x1)!=0
BE     EWHILE2
ZAP    X0,X1              x0=x1
ZAP    PWL16,X
DP     PWL16,X1
ZAP    XW,PWL16(8)        xw=x/x1
ZAP    PWL8,X1
AP     PWL8,XW
DP     PWL8,=P'2'
ZAP    PWL8,PWL8(7)
ZAP    X2,PWL8            x2=(x1+xw)/2
ZAP    X1,X2              x1=x2
B      WHILE2


EWHILE2 EQU *

        ZAP    PWL8,X1            return x1
BR     R14
DS     0F


X DS PL8 X0 DS PL8 X1 DS PL8 X2 DS PL8 XW DS PL8

• end SQRT

PWL8 DC PL8'0' PWL16 DC PL16'0' CWL80 DC CL80' ' CWL16 DS CL16 ZWL16 DS ZL16

        LTORG
YREGS
END    AGM</lang>

Output:
+00000000.84721


8th

<lang 8th>: epsilon 1.0e-12 ;

with: n

iter \ n1 n2 -- n1 n2
   2dup * sqrt >r + 2 / r> ;

agn \ n1 n2 -- n
   repeat  iter  2dup epsilon ~= not while!  drop ;


"agn(1, 1/sqrt(2)) = " . 1 1 2 sqrt / agn "%.10f" s:strfmt . cr

with

bye </lang>

Output:
agn(1, 1/sqrt(2)) = 0.8472130848


procedure Arith_Geom_Mean is

  type Num is digits 18; -- the largest value gnat/gcc allows

  function AGM(A, G: Num) return Num is
Old_G: Num;
New_G: Num := G;
New_A: Num := A;
begin
loop
Old_G := New_G;
New_G := Math.Sqrt(New_A*New_G);
New_A := (Old_G + New_A) * 0.5;
exit when (New_A - New_G) <= Num'Epsilon;
-- Num'Epsilon denotes the relative error when performing arithmetic over Num
end loop;
return New_G;
end AGM;


begin

  N_IO.Put(AGM(1.0, 1.0/Math.Sqrt(2.0)), Fore => 1, Aft => 17, Exp => 0);


end Arith_Geom_Mean;</lang>

Output:
0.84721308479397909

ALGOL 68

Algol 68 Genie gives IEEE double precision for REAL quantities, 28 decimal digits for LONG REALs and, by default, 63 decimal digits for LONG LONG REAL though this can be made arbitrarily greater with a pragmat.

Printing out the difference between the means at each iteration nicely demonstrates the quadratic convergence. <lang algol68> BEGIN

  PROC agm = (LONG REAL x, y) LONG REAL :
BEGIN
IF x < LONG 0.0 OR y < LONG 0.0 THEN -LONG 1.0
ELIF x + y = LONG 0.0 THEN LONG 0.0		CO Edge cases CO
ELSE


LONG REAL a := x, g := y; LONG REAL epsilon := a + g; LONG REAL next a := (a + g) / LONG 2.0, next g := long sqrt (a * g); LONG REAL next epsilon := ABS (a - g); WHILE next epsilon < epsilon DO print ((epsilon, " ", next epsilon, newline)); epsilon := next epsilon; a := next a; g := next g; next a := (a + g) / LONG 2.0; next g := long sqrt (a * g); next epsilon := ABS (a - g) OD; a

     FI
END;
printf (($l(-35,33)l$, agm (LONG 1.0, LONG 1.0 / long sqrt (LONG 2.0))))


END </lang>

Output:
+1.707106781186547524400844362e  +0   +2.928932188134524755991556379e  -1
+2.928932188134524755991556379e  -1   +1.265697533955921916929670477e  -2
+1.265697533955921916929670477e  -2   +2.363617660269221214237489508e  -5
+2.363617660269221214237489508e  -5   +8.242743980540458935740117000e -11
+8.242743980540458935740117000e -11   +1.002445937606580000000000000e -21
+1.002445937606580000000000000e -21   +4.595001000000000000000000000e -29
+4.595001000000000000000000000e -29   +4.595000000000000000000000000e -29

0.847213084793979086606499123550000


APL

<lang APL> agd←{(⍺-⍵)<10*¯8:⍺⋄((⍺+⍵)÷2)∇(⍺×⍵)*÷2} 1 agd ÷2*÷2 </lang>

Output:
0.8472130848

AppleScript

By functional composition:

<lang AppleScript>-- ARITHMETIC GEOMETRIC MEAN -------------------------------------------------

property tolerance : 1.0E-5

-- agm :: Num a => a -> a -> a on agm(a, g)

   script withinTolerance
on |λ|(m)
tell m to ((its an) - (its gn)) < tolerance
end |λ|
end script

script nextRefinement
on |λ|(m)
tell m
set {an, gn} to {its an, its gn}
{an:(an + gn) / 2, gn:(an * gn) ^ 0.5}
end tell
end |λ|
end script

an of |until|(withinTolerance, ¬
nextRefinement, {an:(a + g) / 2, gn:(a * g) ^ 0.5})


end agm

-- TEST ---------------------------------------------------------------------- on run

   agm(1, 1 / (2 ^ 0.5))

--> 0.847213084835



end run

-- GENERIC FUNCTIONS ---------------------------------------------------------

-- until :: (a -> Bool) -> (a -> a) -> a -> a on |until|(p, f, x)

   set mp to mReturn(p)
set v to x
tell mReturn(f)
repeat until mp's |λ|(v)
set v to |λ|(v)
end repeat
end tell
return v


end |until|

-- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Script on mReturn(f)

   if class of f is script then
f
else
script
property |λ| : f
end script
end if


end mReturn</lang>

Output:
0.847213084835

AutoHotkey

<lang AHK>agm(a, g, tolerance=1.0e-15){ While abs(a-g) > tolerance { an := .5 * (a + g) g  := sqrt(a*g) a  := an } return a } SetFormat, FloatFast, 0.15 MsgBox % agm(1, 1/sqrt(2))</lang> Output:

0.847213084793979

AWK

<lang AWK>#!/usr/bin/awk -f BEGIN { printf "%.16g\n", agm(1.0,sqrt(0.5)) } function agm(a,g) { while (1) { a0=a a=(a0+g)/2 g=sqrt(a0*g) if (abs(a0-a) < abs(a)*1e-15) break } return a } function abs(x) { return (x<0 ? -x : x) } </lang> Output

0.8472130847939792

BASIC

Commodore BASIC

<lang commodorebasic>10 A = 1 20 G = 1/SQR(2) 30 GOSUB 100 40 PRINT A 50 END 100 TA = A 110 A = (A+G)/2 120 G = SQR(TA*G) 130 IF A<TA THEN 100 140 RETURN</lang>

BBC BASIC

<lang bbcbasic> *FLOAT 64

     @% = &1010
PRINT FNagm(1, 1/SQR(2))
END

DEF FNagm(a,g)
LOCAL ta
REPEAT
ta = a
a = (a+g)/2
g = SQR(ta*g)
UNTIL a = ta
= a


</lang> Produces this output:

0.8472130847939792


bc

<lang bc>/* Calculate the arithmethic-geometric mean of two positive

* numbers x and y.
* Result will have d digits after the decimal point.
*/


define m(x, y, d) {

   auto a, g, o

   o = scale
scale = d
d = 1 / 10 ^ d

   a = (x + y) / 2
g = sqrt(x * y)
while ((a - g) > d) {
x = (a + g) / 2
g = sqrt(a * g)
a = x
}

   scale = o
return(a)


}

scale = 20 m(1, 1 / sqrt(2), 20)</lang>

Output:
.84721308479397908659

C

Basic

<lang c>#include<math.h>

1. include<stdio.h>
2. include<stdlib.h>

double agm( double a, double g ) {

  /* arithmetic-geometric mean */
double iota = 1.0E-16;
double a1, g1;

if( a*g < 0.0 ) {
printf( "arithmetic-geometric mean undefined when x*y<0\n" );
exit(1);
}

  while( fabs(a-g)>iota ) {
a1 = (a + g) / 2.0;
g1 = sqrt(a * g);

     a = a1;
g = g1;
}

return a;


}

int main( void ) {

  double x, y;
printf( "Enter two numbers: " );
scanf( "%lf%lf", &x, &y );
printf( "The arithmetic-geometric mean is %lf\n", agm(x, y) );
return 0;


} </lang>

Original output:

Enter two numbers: 1.0 2.0
The arithmetic-geometric mean is 1.456791


Task output, the second input (0.707) is 1/sqrt(2) correct to 3 decimal places:

Enter two numbers: 1 0.707
The arithmetic-geometric mean is 0.847155


GMP

<lang cpp>/*Arithmetic Geometric Mean of 1 and 1/sqrt(2)

 Nigel_Galloway
February 7th., 2012.

• /
1. include "gmp.h"

void agm (const mpf_t in1, const mpf_t in2, mpf_t out1, mpf_t out2) { mpf_add (out1, in1, in2); mpf_div_ui (out1, out1, 2); mpf_mul (out2, in1, in2); mpf_sqrt (out2, out2); }

int main (void) { mpf_set_default_prec (65568); mpf_t x0, y0, resA, resB;

mpf_init_set_ui (y0, 1); mpf_init_set_d (x0, 0.5); mpf_sqrt (x0, x0); mpf_init (resA); mpf_init (resB);

for(int i=0; i<7; i++){ agm(x0, y0, resA, resB); agm(resA, resB, x0, y0); } gmp_printf ("%.20000Ff\n", x0); gmp_printf ("%.20000Ff\n\n", y0);

return 0; }</lang>

The first couple of iterations produces:

0.853
0.840


Then 7 iterations produces:

0.84721308479397908660649912348219163648144591032694218506057937265973400483413475972320029399461122994212228562523341096309796266583087105969971363598338425117632681428906038970676860161665004828118872189771330941176746201994439296290216728919449950723167789734686394760667105798055785217314034939830420042211921603983955359509819364129371634064602959996797059943435160203184264875695024217486385540598195458160174241788785419275880416271901208558768564832683414043121840080403580920455949431387781512092652225457439712428682076634095473367459962179266553534862568611854330862628728728756301083556319357066871478563908898211510883635214769697961262183294322841786811376844517001814602191369402702094599668351359632788080427434548174458736322002515395293626580661419836561649162625960743472370661690235308001737531284785255843063190745427493415268579065526940600314759102033274671968612479632551055464890282085529743965124994009662552866067580448735389218570140116771697653501408495247684899325732133702898466893919466586187375296638756226604591477704420468108925658440838032040910619003153706734119594101007474331059905505820524326009951692792417478216976781061683697714110739273343921550143022007087367365962272149258776192851052380367026890463909621907663644235538085902945234065190013342345105838341712180514255003923701111325411144612628906254133550526643653595824552156293397518251470650134641047056979355681306606329373345038710977097294875917179015817320281578288487149931340815493342367797044712785937618595085146677364554679201615934223997142984070788882279032656751596528435817795727284808356489963504404140734226110183383546975962663330422084999852300742703930277243474979717973264552546543019831694968461098690743905068013766119252919770938441299707015889493166661161994592265011311183966352502530561646431587208454522988775475177272747656721648982918239238895207207642839710884705960356921992921831901548141280766592698294464457149239666329973075813904957622438962423175209507319018424462442370986427281149511180822826053862484617675180140983127497257651983756492356902800216174905531427208153439540595563576371127281657059737337442970039056040156388663072225700389230159112376960121580081779077863351240862431073571583765926504546652787337874444834406310244757039681255453982266430353416413035613801634165575265589752944521166873451220191227466733191571240763753821106968141076926390074833175743396752319660330864973571383874196098983832202882694882191302819366949954422240697276168621369511657838885012199096160655454611543253148164249332694797004159491476323112920593516518997943350045976288217292625918089405508431466393782548335139550190653370872062064024077056075848796499843651592728264534428636615419142585777106756185017278033287175195189305031805505245426022335522900771418128798654351187918006356279593624768267786412249460338126082628254098895312527677534656243279214511229555516031818433133692961723041783855157125567404983416665926969580008953724573057694542275372160209687191470398878466367243262706191127071716590824640041679941120405657103640830002419294398553073994656539677810492701055410359513339432199925066676202078394695553760551796401009749218856311301017813888578793813172095948062539201300983650287917695827985905279947721941797997024943062158419468885328115497721579960194409623477686144085075739284298823759396823223670580334134774623112897625859324376631778974911077261909704489522204509630725515590093824904021364807792034767215048568446022554409992826163174312642285787628983380650722023010371753149263504631060188573772567006618381290580638954508127031311371043716135833488065833955431217901348398833216413057635244712511539472066670330101348716516324113828817639839629526121141263219795965098656786755250760760424095907517523021946104532564333249614901253533329223723868948127885020135966305376055849358928391630469403887854960027471487197801457659579049585802260066099524967364324966833461760106608156706975142381866503610838852209761655002516073114992161294775790199729248689638220603808760276281672370166819106633585775154650381334236722347642026558565588464160102105404898556187114735884976378406486426798186504486319077470382286711435151123003607086574298864771466747337501143458188527970060562117246921748471806948662511994728934442703783046207073549380528727206215606307188286858056452111069670802856990698257691772209986719599685077906814434949328049768115436804632599386930762350709995182951295811212357072453833548261907523951582730982481805496658979091688679840717077937059590457758409104734131096041941113577566207273377978332037973011376726585357477102797814097213096121423938547374627696150413079528373728820506587191522597650840277969917611753930067254924912298450823629755687227110658494355338504945326387364898046066559799543601695030927900924500578564772358761988489860344121953407953690029964119745490607416009788595376607229051607724285900709011566391383642990412208267696297978676490323564999819907659974398705486487690910249119270999682756970113687622440464029603837000662127345776647097113263746568115029858630322603373834213584239378961146171920830719539156437820936414967803341524645073966831731983633627433925553117120194541468448808956224178980318943412312840278583782890096242095413450021010727363232852725762096468519944682405506293917420533017064619172151788442967053143355037723107097160802851453141441061050231173108777799332489320877272298978213301208340743056049981599632026877933071569403024391561189267675172495117665262485470960419914731136579206973309960888972867897807355875785006235751571237716530420636310027031292966940254219678771688466557275808983064676620070146795856930822206209053308277822265031125202787335125191599188939002843192181666865484348796219722117639049598957936073309436974576289432003841175529415947547471839363811441256103510234595810807685589856570074453089094286692511901017181228266893492695282610525185567360458777022881478214469685009183472197414205461280723479500598117663645261501907885454711938035571459307446356562607527875188243864095069646498151311705914579906193765608586501756168645019240983272357243336888130800221863687002096411197243036035586497937733149167495931511886735350255059823030470602847404584566768496209345063963029094416325164086928898145072478777276733780338289295049783843429437665667372975874305751410364174768616396241989419047309961002284280794449200269048452541391882460015590891319432556103657693623641617846466931414561099840383122655041152514944453800420904287181824684316246105526376775209701040639446878373750174360897516934868876512834536775527865470902315420294538730761411966497675219198089021057726334723979589687229233577690412444586822978062098870898160181795214549203709562528507330232550600966113294791484434166874298726542040835520564564044211741240650419323628312966431263307687154504449507335544182007936697013312446388243600624398167124093468063221697717015635904176098412619778010525869566346541447025111353828410102785795430618023572755009305139556377710439227995971141182782033581183989523387201196266668287812153433311933530198006525119241035943150724272515897742269014313251497752206211486532095282917841726788527918259501894283066454533808294385484913906600901526463156669408130516898577384457161101347735284395586639180314771289972489772326950830959208603163908601794221468048925371471356694906475975663504050761059303001534536134468346141362848404730639095800648624822113995399621221079927740532030597569871315014292389418219892184458614968453063460782870588642625603497671133853907530473607475205697255326635179640594881381276485191302328261295517207475944988639251110497859774101046472588317449694892733322810684089494759787067690122169518696581944061366943103234116196131605543816087283055435048190711597527426659173636930019809887976272186626285433119060860342806191518452978237036398984494144178890086027822209983902274728379674114295789243465456404028551674783725388313861547805080352368935833328873558797948868049809714068689367194167115043074025751022690817073859285358373909764249759224210618323725170214283209867537445071332189636669085656349633060774556830118371494002584049977661135255328476656188705929782127298997295927947818204287198071022786461838070064010831389756771127541362211274445345355849597692525757583129990395369598932499513241067842656115567436600887374842740382348117849110021235371080153344077081752815794229285487316898639800718962686849857790619425820001731784737979758156092690872878502700244147412819535788739647458594598995355434128016535530490585287946743982206062303866888527005052189049277821975141155954355491253261150874322804356095631761163218117941648842069284743156991336777879569137055927049598939111007862241124499317195398903082153071269718073528142944373740581805897842871015663258737266000122961804037804290931751604739799312368824663145245907925120889169747654302457053206386704684110540342014376644422132127507998462991570101471065529461467463922495745306196822034254448162475459772696534302506868242052880996924489236521714038177492829359173154812849196214333040809043068672336820607162912893985174062559042822475581595091023242061608163635114409532679679744662146581218973837257052018318006785051812332707432360517602365653046059197282467620464979507571243323062106152366172293244682862511105778328547123718579064823024291991297534773406188123932244051237932292486982393020946057994685022093564580188647372057989508199682850879081206451754647928466570299934961463545338169898790120739595342994580518846829188356311361388796313161734422075062182129450475034337306401403566141064033208676214431839284389699942682868360825355912427514883833922646682229633236574889815991049023745712780770628532368956900284697429547742484223355238590492992254533182706939660886035184911668751085520062653409664126112200692905563690527440648936400870151716629293565299214744207938737106473991364534021859315182015761100594055566001663181909163482128186430684182569911943162667158985886736504889805808329721451958115258329743580644326982892093642849596169753399275023838326958011096089547864572561097853782973070749181687447357311890498494907816322101271109193983576388927531317499783213682809328943493309300878688841270920763590076480651183013174408131381707764785620869834568499576963332415566990859371495284373037821741667810126247377548449594082775980428578137754484461929295371533597418713555566780286064849179748275590223773761897037703324897743492353765235571390764314889671441330995396798710462847477217721858658519859712821657391485744943283203084641639560963010473704739884503079369569286834641137642263085686956881520537491962945628810859870159107649550192726673782765172374500136624210511467091848989522697276562069762630550949389320992163775294153350600271094300189773392218453903373510079427646652325090453779404782123556204886389696402910291826730243688880139827500496556889555403627397541183592770090942918399583962985359521234655737077516804320238724010087862923625584849202212960559482323176352142071176504276997478012902491509148733472049812083534865212462335388584717004701205923945825415223129676013072682802320446336442341000264743415683991238810480498194912009402448957203018812206409969973408437360958124499459132317933593338191973602488533756410304356437323020013283599906152983949167106879976939266990335220640837295869943043576709171697966984423326568307325500003213129027067191063424283113900494781793073045562199439120722094954719165471096054049199441860517249814718129940631192901737381011766173569764956366756202788955920995046861634403052506586817358402694287366334311678329038374756580509907839853849260647212465651306604876736085857902183866432416271982103787727963377367426929456639854705293777458546922070020463303573435055175370140503103555265780827298970492305475455890092754109445040141571253576828010749151746279285337830995706319528768382378063681778416611863347477894201661901861433888045148841743616814548103623210376432745956533646293972952940499526616911816577400181161464976544075891509125575991008552731077337032136035056194073504052234145332243066047436002572125901272025171469526054624392158151517326614548122436198603573869224654036885597877500832683869306742537593493769726913825327805701356834418623150103189551287054940385947609492785905200098814477158397147139718137205549603311916422391953132302138759927174019046224139259148006201715618158893529451219781937047457085386954279002330804105880072509475123189307968446372241711705946061976147519773238961013155564063723093102794769739382294763468939337559468936650940499102526121635380720056442410264711646398004909985355702820593960545544792555586249187092321801304541029363328936193265963508514136372072931427677632678178400667800895586548777826308228184465081585096256950206977978896641405511014211855334440159488802847016579044649263092161202380685664726316113269955335854143205474428967281732917140106437305939602224827339697208658091942888039633443448764675833855973513333306284397863570621963822177055006726076075702023055483284393359373696240854049573444151418891438122060768323290633843326859359282266483616228768156709313037896783277414878452878382324740383408934494278060455890181836731336022711672853044271945073157409136000663560891812190403050193190281639721357906960252119295624559528358504426277879932144682210413256122712903024696103748551345991066626060821435461264637908469523386805592378228286103613864160137539204268883711926027420874745077827301808826482979914892334346533639303279918164769955294688929040603354702651883178258213919150731170223368395649453356304141924428385039542090733375111170537908197680613788461570042923922647881382284866725434155806944211935068360004884655615990833391847242631836989281306956549491531650103132163612240182987115172224015233681014762461698964172597488387271895987656023503248287097414687934153787088145731903279204532192316858527351083720559424566015456479446754495668591429979882331798190595741253686810321947980826038762410448487302089050658719342641740920079366698836014623097627598441130715257589162880105817093530725888876543862532018486249319236385682165626031104345283130307049722913348730332409337369563479748898249300174158056591821232883438581012501715373053984620434324557214820885475234947304677614292829153914858526885054230744505481926191669759750315034472082118453139076834860069087727520772464857065976367409361731434369903994989083757102465456508149620159888052044833794917070408483039094175124262758698686686442934982424196674036270760323992014071830712707598371320007124471595236427821624884729339137136340461389740888941783993200900515436084216188913289577403543844561076450160104627095790986524953420147660163304582935376534545234386674137987312550170295545828095478975424973671090385982646068956222412573032081408906070252061404578152823685045057657100438042285920327207291902221346518359302559429408753069947011011534164767856235435750239937364145328957734998761675022409197941218931880590179774443294036240385510824919547518411770141508205549991488032865000650690301650284556165335148907119741941723100296632479366408253645421048976404451080811239063681885949086604183400256315626612115063653092972195806871776320514613555813095008145638261124165214871635936435536462688727462766803686306800882312499705727064962653352854242737234497574827760613008180634196390830978822494789229495258916657826100444244401103267485396201200233971298346242423632837110742673099021260291100381090507518405232662739050319348560154855106326243187789708788951981680730963542230960055362677359050994734087443710248167279700094945897076301853449526801067309842468288488837600166958871373559692445552385363961787881342093093764848484068429404997314946635784558266882458253566353932897293167000662381283685196706276978897699290095978380695574407690809500695946595783253660660602130005250129981452150996293071107006157960047599188298274727518774924726747707554136792657750601495283368598380853534208742156827588012599928559034100979630199437410013949755918229188467057410106349315945279547420320572953565968695868630973284883811742438270584417356596674853152028861911921252863987395609281275132232141197542293430923755693396146727405175695293766990610523654483440786104255766945418734863793560708612404736883567734371401263501208237651763905620506040768947294002931620797603428968468976398678305539415152307137255605029146711751234519321319625717919409117289511239481135988605880624240378357519964870883301506792101754290605314188369786110278968306896668518684104701823647807006155298831498831116019499658150386743904671052471759937267092033810519847770061227523026980385376199177319071331058167790086514801724404464037647206737845833953828893809029412739879104752542584865616980485432967822810404539976611651232907291616199926287510865193417311165133056591829817625847694287084548190293442221860279774055192912661889487080105159228601492383934908897821669651094997616731795835221057913587243550297821114252805843809597704721778938273829164718826714378658214613260112635165542805164184221882641418906866191864927517189847350374966026860336719613049159226094421467730920744767947119178202099132268721849475483780038487261488727428812655791747946341514445451055994645676144782933879680154128864180982848855259596173991776576352670819899854089307445641992969024592754051436475256486619329599030683238667575184797410153429114165087535728924796842802484402202118983902434301907465924705639919100242258143990683914578574580953440968261584897316158220398376910051716543905900933268275864197534394837719059730794650292103636419726159238721878760956871976819344819558525670241414336715908896942047817989365563517751015910050265859472794486423173118927271535250460340818962273831146005468524063988554718596840882777221622505863684193799641126463210706398187737943696502521044386223206715172284114754334828030417076754385554475843212718463962813919258849725090510409441344504298453460718488756542407096901385926116455196765637084297106764946357662012853819267912041109778058573520627375104669435915920749043789661298087162743223850390320074778542110638995449541859976414281163951972397080789860487582641265448251499232272861765713896973345378359636039627090380026689213243891590093752250336511719377706572262953412570689809077931988799970767832633036706673426579253958499505823639986104928784799761858913840247447907423559817960132549606526849887335183972871912518993883243416026083561644966709023900422732162219315679399440012151599100543810845200811331032075534924844873692683144444666107802758917774683693445850459499632371560438002582276189086030745508199318928997032855495073302401217663495153158278308977864322545562217443057528251437080871843144708110045101086121226999313969693610665236087211263590123448282622844271912819731872697619747403980717783781881605198018622572329702247624947679129326840201880617952362291746013985766042335790944077230173530153379744356437385842482505380615471930752244293091172074476771495221419193909742017160269705578258369237072978115455525707880049556669154779018307195916635166870579843369516111891537519123967141163781970007849531153863267663692691720169784090403969698048618284364177768040884492084399010959512057513408610603753534081557370871883138983376563225336509460103086861119012415417949006598353669263835150584020260982595703854291458650256921579873098070645970823263771382355857377042256281442627934977694293588040208827420282637864436159358179308178583062657122634794521740652164107980293335739611374043019282943678846268324324490788126847872819886762029310625102649485865494639647891543662406355703466884777848152714124704306460406156142773201070035758550339952793775297161566283811185180855234141875772560252179951036627714775522910368395398000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000


The limit (19,740) is imposed by the accuracy (65568). Using 6 iterations would produce a less accurate result. At 7 iterations increasing the 65568 would mean we already have 38,000 or so digits accurate.

C++

<lang c++>

1. include<bits/stdc++.h>

using namespace std;

1. define _cin ios_base::sync_with_stdio(0); cin.tie(0);
2. define rep(a, b) for(ll i =a;i<=b;++i)

double agm(double a, double g) //ARITHMETIC GEOMETRIC MEAN { double epsilon = 1.0E-16,a1,g1; if(a*g<0.0) { cout<<"Couldn't find arithmetic-geometric mean of these numbers\n"; exit(1); } while(fabs(a-g)>epsilon) { a1 = (a+g)/2.0; g1 = sqrt(a*g); a = a1; g = g1; } return a; }

int main() { _cin; //fast input-output double x, y; cout<<"Enter X and Y: "; //Enter two numbers cin>>x>>y; cout<<"\nThe Arithmetic-Geometric Mean of "<<x<<" and "<<y<<" is "<<agm(x, y); return 0; } </lang>

Enter X and Y: 1.0 2.0
The Arithmetic-Geometric Mean of 1.0 and 2.0 is 1.45679103104690677028543177584651857614517211914062


C#

<lang csharp>namespace RosettaCode.ArithmeticGeometricMean {

   using System;
using System.Collections.Generic;
using System.Globalization;

   internal static class Program
{
private static double ArithmeticGeometricMean(double number,
double otherNumber,
IEqualityComparer<double>
comparer)
{
return comparer.Equals(number, otherNumber)
? number
: ArithmeticGeometricMean(
ArithmeticMean(number, otherNumber),
GeometricMean(number, otherNumber), comparer);
}

       private static double ArithmeticMean(double number, double otherNumber)
{
return 0.5 * (number + otherNumber);
}

       private static double GeometricMean(double number, double otherNumber)
{
return Math.Sqrt(number * otherNumber);
}

       private static void Main()
{
Console.WriteLine(
ArithmeticGeometricMean(1, 0.5 * Math.Sqrt(2),
new RelativeDifferenceComparer(1e-5)).
ToString(CultureInfo.InvariantCulture));
}

       private class RelativeDifferenceComparer : IEqualityComparer<double>
{

           internal RelativeDifferenceComparer(double maximumRelativeDifference)
{
_maximumRelativeDifference = maximumRelativeDifference;
}

           public bool Equals(double number, double otherNumber)
{
return RelativeDifference(number, otherNumber) <=
_maximumRelativeDifference;
}

           public int GetHashCode(double number)
{
return number.GetHashCode();
}

           private static double RelativeDifference(double number,
double otherNumber)
{
return AbsoluteDifference(number, otherNumber) /
Norm(number, otherNumber);
}

           private static double AbsoluteDifference(double number,
double otherNumber)
{
return Math.Abs(number - otherNumber);
}

           private static double Norm(double number, double otherNumber)
{
return 0.5 * (Math.Abs(number) + Math.Abs(otherNumber));
}
}
}


}</lang> Output:

0.847213084835193

Clojure

<lang lisp>(ns agmcompute

 (:gen-class))

Java Arbitray Precision Library

(import '(org.apfloat Apfloat ApfloatMath))

(def precision 70) (def one (Apfloat. 1M precision)) (def two (Apfloat. 2M precision)) (def half (Apfloat. 0.5M precision)) (def isqrt2 (.divide one (ApfloatMath/pow two half))) (def TOLERANCE (Apfloat. 0.000000M precision))

(defn agm [a g]

 " Simple AGM Loop calculation "
(let [THRESH 1e-65                 ; done when error less than threshold or we exceed max loops
MAX-LOOPS 1000000]
(loop [[an gn] [a g], cnt 0]
(if (or (< (ApfloatMath/abs (.subtract an gn)) THRESH)
(> cnt MAX-LOOPS))
an
(recur [(.multiply (.add an gn) half) (ApfloatMath/pow (.multiply an gn) half)]
(inc cnt))))))


(println (agm one isqrt2)) </lang>

Output:
8.47213084793979086606499123482191636481445910326942185060579372659734e-1


COBOL

<lang cobol>IDENTIFICATION DIVISION. PROGRAM-ID. ARITHMETIC-GEOMETRIC-MEAN-PROG. DATA DIVISION. WORKING-STORAGE SECTION. 01 AGM-VARS.

   05 A       PIC 9V9(16).
05 A-ZERO  PIC 9V9(16).
05 G       PIC 9V9(16).
05 DIFF    PIC 9V9(16) VALUE 1.

• Initialize DIFF with a non-zero value, otherwise AGM-PARAGRAPH
• is never performed at all.

PROCEDURE DIVISION. TEST-PARAGRAPH.

   MOVE    1 TO A.
COMPUTE G = 1 / FUNCTION SQRT(2).

• The program will run with the test values. If you would rather
• calculate the AGM of numbers input at the console, comment out
• TEST-PARAGRAPH and un-comment-out INPUT-A-AND-G-PARAGRAPH.
• INPUT-A-AND-G-PARAGRAPH.
• DISPLAY 'Enter two numbers.'
• ACCEPT A.
• ACCEPT G.

CONTROL-PARAGRAPH.

   PERFORM AGM-PARAGRAPH UNTIL DIFF IS LESS THAN 0.000000000000001.
DISPLAY A.
STOP RUN.


AGM-PARAGRAPH.

   MOVE     A TO A-ZERO.
COMPUTE  A = (A-ZERO + G) / 2.
MULTIPLY A-ZERO BY G GIVING G.
COMPUTE  G = FUNCTION SQRT(G).
SUBTRACT A FROM G GIVING DIFF.
COMPUTE  DIFF = FUNCTION ABS(DIFF).</lang>

Output:
0.8472130847939792

Common Lisp

<lang lisp>(defun agm (a0 g0 &optional (tolerance 1d-8))

 (loop for a = a0 then (* (+ a g) 5d-1)
and g = g0 then (sqrt (* a g))
until (< (abs (- a g)) tolerance)
finally (return a)))


</lang>

Output:
CL-USER> (agm 1d0 (/ 1d0 (sqrt 2d0)))
0.8472130848351929d0
CL-USER> (agm 1d0 (/ 1d0 (sqrt 2d0)) 1d-10)
0.8472130848351929d0
CL-USER> (agm 1d0 (/ 1d0 (sqrt 2d0)) 1d-12)
0.8472130847939792d0

D

<lang d>import std.stdio, std.math, std.meta, std.typecons;

real agm(real a, real g, in int bitPrecision=60) pure nothrow @nogc @safe {

   do {
//{a, g} = {(a + g) / 2.0, sqrt(a * g)};
AliasSeq!(a, g) = tuple((a + g) / 2.0, sqrt(a * g));
} while (feqrel(a, g) < bitPrecision);
return a;


}

void main() @safe {

   writefln("%0.19f", agm(1, 1 / sqrt(2.0)));


}</lang>

Output:
0.8472130847939790866

All the digits shown are exact.

EchoLisp

We use the (~= a b) operator which tests for |a - b| < ε = (math-precision). <lang scheme> (lib 'math)

(define (agm a g)

   (if (~= a g) a
(agm (// (+ a g ) 2) (sqrt (* a g)))))


(math-precision)

   → 0.000001 ;; default


(agm 1 (/ 1 (sqrt 2)))

   → 0.8472130848351929


(math-precision 1.e-15)

   → 1e-15


(agm 1 (/ 1 (sqrt 2)))

   → 0.8472130847939792


</lang>

Elixir

<lang Elixir>defmodule ArithhGeom do

 def mean(a,g,tol) when abs(a-g) <= tol, do: a
def mean(a,g,tol) do
mean((a+g)/2,:math.pow(a*g, 0.5),tol)
end


end

IO.puts ArithhGeom.mean(1,1/:math.sqrt(2),0.0000000001)</lang>

Output:
0.8472130848351929


Erlang

<lang Erlang>%% Arithmetic Geometric Mean of 1 and 1 / sqrt(2) %% Author: Abhay Jain

-module(agm_calculator). -export([find_agm/0]). -define(TOLERANCE, 0.0000000001).

find_agm() ->

   A = 1,
B = 1 / (math:pow(2, 0.5)),
AGM = agm(A, B),
io:format("AGM = ~p", [AGM]).



agm (A, B) when abs(A-B) =< ?TOLERANCE ->

   A;


agm (A, B) ->

   A1 = (A+B) / 2,
B1 = math:pow(A*B, 0.5),
agm(A1, B1).</lang>


Output: <lang Erlang>AGM = 0.8472130848351929</lang>

ERRE

<lang> PROGRAM AGM

! ! for rosettacode.org !

!$DOUBLE PROCEDURE AGM(A,G->A)  LOCAL TA REPEAT TA=A A=(A+G)/2 G=SQR(TA*G) UNTIL A=TA  END PROCEDURE BEGIN  AGM(1.0,1/SQR(2)->A) PRINT(A)  END PROGRAM </lang> F# Translation of: OCaml <lang fsharp>let rec agm a g precision =  if precision > abs(a - g) then a else agm (0.5 * (a + g)) (sqrt (a * g)) precision  printfn "%g" (agm 1. (sqrt(0.5)) 1e-15)</lang> Output 0.847213 Factor <lang factor>USING: kernel math math.functions prettyprint ; IN: rosetta-code.arithmetic-geometric-mean agm ( a g -- a' g' ) 2dup [ + 0.5 * ] 2dip * sqrt ; 1 1 2 sqrt / [ 2dup - 1e-15 > ] [ agm ] while drop .</lang> Output: 0.8472130847939792  Forth <lang forth>: agm ( a g -- m )  begin fover fover f+ 2e f/ frot frot f* fsqrt fover fover 1e-15 f~ until fdrop ;  1e 2e -0.5e f** agm f. \ 0.847213084793979</lang> Fortran A Fortran 77 implementation <lang fortran> function agm(a,b)  implicit none double precision agm,a,b,eps,c parameter(eps=1.0d-15) 10 c=0.5d0*(a+b) b=sqrt(a*b) a=c if(a-b.gt.eps*a) go to 10 agm=0.5d0*(a+b) end program test implicit none double precision agm print*,agm(1.0d0,1.0d0/sqrt(2.0d0)) end</lang>  FreeBASIC <lang freebasic>' version 16-09-2015 ' compile with: fbc -s console Function agm(a As Double, g As Double) As Double  Dim As Double t_a Do t_a = (a + g) / 2 g = Sqr(a * g) Swap a, t_a Loop Until a = t_a Return a  End Function ' ------=< MAIN >=------ Print agm(1, 1 / Sqr(2) ) ' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang> Output:  0.8472130847939792 Futhark <lang Futhark> import "futlib/math" fun agm(a: f64, g: f64): f64 =  let eps = 1.0E-16 loop ((a,g)) = while f64.abs(a-g) > eps do ((a+g) / 2.0, f64.sqrt (a*g)) in a  fun main(x: f64, y: f64): f64 =  agm(x,y)  </lang> Go <lang go>package main import (  "fmt" "math"  ) const ε = 1e-14 func agm(a, g float64) float64 {  for math.Abs(a-g) > math.Abs(a)*ε { a, g = (a+g)*.5, math.Sqrt(a*g) } return a  } func main() {  fmt.Println(agm(1, 1/math.Sqrt2))  }</lang> Output: 0.8472130847939792  Groovy Translation of: Java Solution: <lang groovy>double agm (double a, double g) {  double an = a, gn = g while ((an-gn).abs() >= 10.0**-14) { (an, gn) = [(an+gn)*0.5, (an*gn)**0.5] } an  }</lang> Test: <lang groovy>println "agm(1, 0.5**0.5) = agm(1,${0.5**0.5}) = ${agm(1, 0.5**0.5)}" assert (0.8472130847939792 - agm(1, 0.5**0.5)).abs() <= 10.0**-14</lang> Output: agm(1, 0.5**0.5) = agm(1, 0.7071067811865476) = 0.8472130847939792 Haskell <lang haskell>-- Return an approximation to the arithmetic-geometric mean of two numbers. -- The result is considered accurate when two successive approximations are -- sufficiently close, as determined by "eq". agm :: (Floating a) => a -> a -> ((a, a) -> Bool) -> a agm a g eq = snd . head . dropWhile (not . eq)$ iterate step (a, g)

 where step (a, g) = ((a + g) / 2, sqrt (a * g))


-- Return the relative difference of the pair. We assume that at least one of -- the values is far enough from 0 to not cause problems. relDiff :: (Fractional a) => (a, a) -> a relDiff (x, y) = let n = abs (x - y)

                    d = ((abs x) + (abs y)) / 2
in n / d


main = do

 let equal = (< 0.000000001) . relDiff
print $agm 1 (1 / sqrt 2) equal</lang>  Output: 0.8472130847527654 Icon and Unicon <lang>procedure main(A)  a := real(A[1]) | 1.0 g := real(A[2]) | (1 / 2^0.5) epsilon := real(A[3]) write("agm(",a,",",g,") = ",agm(a,g,epsilon))  end procedure agm(an, gn, e)  /e := 1e-15 while abs(an-gn) > e do { ap := (an+gn)/2.0 gn := (an*gn)^0.5 an := ap } return an  end</lang> Output: ->agm agm(1.0,0.7071067811865475) = 0.8472130847939792 ->  J This one is probably worth not naming, in J, because there are so many interesting variations. First, the basic approach (with display precision set to 16 digits, which slightly exceeds the accuracy of 64 bit IEEE floating point arithmetic): <lang j>mean=: +/ % #  (mean , */ %:~ #)^:_] 1,%%:2  0.8472130847939792 0.8472130847939791</lang> This is the limit -- it stops when values are within a small epsilon of previous calculations. We can ask J for unique values (which also means -- unless we specify otherwise -- values within a small epsilon of each other, for floating point values): <lang j> ~.(mean , */ %:~ #)^:_] 1,%%:2 0.8472130847939792</lang> Another variation would be to show intermediate values, in the limit process: <lang j> (mean, */ %:~ #)^:a: 1,%%:2  1 0.7071067811865475  0.8535533905932737 0.8408964152537145 0.8472249029234942 0.8472012667468915 0.8472130848351929 0.8472130847527654 0.8472130847939792 0.8472130847939791</lang> Arbitrary Precision Another variation would be to use arbitrary precision arithmetic in place of floating point arithmetic. Borrowing routines from that page, but going with a default of approximately 100 digits of precision: <lang J>DP=:101 round=: DP&$: : (4 : 0)

b %~ <.1r2+y*b=. 10x^x


)

sqrt=: DP&$: : (4 : 0) " 0 assert. 0<:y %/ <.@%: (2 x: (2*x) round y)*10x^2*x+0>.>.10^.y  ) ln=: DP&$: : (4 : 0) " 0

assert. 0<y
m=. <.0.5+2^.y
t=. (<:%>:) (x:!.0 y)%2x^m
if. x<-:#":t do. t=. (1+x) round t end.
ln2=. 2*+/1r3 (^%]) 1+2*i.>.0.5*(%3)^.0.5*0.1^x+>.10^.1>.m
lnr=. 2*+/t   (^%]) 1+2*i.>.0.5*(|t)^.0.5*0.1^x
lnr + m * ln2


)

exp=: DP&$: : (4 : 0) " 0 m=. <.0.5+y%^.2 xm=. x+>.m*10^.2 d=. (x:!.0 y)-m*xm ln 2 if. xm<-:#":d do. d=. xm round d end. e=. 0.1^xm n=. e (>i.1:) a (^%!@]) i.>.a^.e [ a=. |y-m*^.2 (2x^m) * 1++/*/\d%1+i.n  )</lang> We are also going to want a routine to display numbers with this precision, and we are going to need to manage epsilon manually, and we are going to need an arbitrary root routine: <lang J>fmt=:[: ;:inv DP&$: : (4 :0)&.>

 x{.deb (x*2j1)":y


)

root=: ln@] exp@% [

epsilon=: 1r9^DP</lang>

Some example uses:

<lang J> fmt sqrt 2 1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641572

  fmt *~sqrt 2


2.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

  fmt epsilon


0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000418

  fmt 2 root 2


1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641572</lang>

Note that 2 root 2 is considerably slower than sqrt 2. The price of generality. So, while we could define geometric mean generally, a desire for good performance pushes us to use a routine specialized for two numbers:

<lang J>geomean=: */ root~ # geomean2=: [: sqrt */</lang>

A quick test to make sure these can be equivalent:

<lang J> fmt geomean 3 5 3.872983346207416885179265399782399610832921705291590826587573766113483091936979033519287376858673517

  fmt geomean2 3 5


3.872983346207416885179265399782399610832921705291590826587573766113483091936979033519287376858673517</lang>

<lang J> fmt (mean, geomean2)^:(epsilon <&| -/)^:a: 1,%sqrt 2 1.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0.707106781186547524400844362104849039284835937688474036588339868995366239231053519425193767163820786 0.853553390593273762200422181052424519642417968844237018294169934497683119615526759712596883581910393 0.840896415253714543031125476233214895040034262356784510813226085974924754953902239814324004199292536 0.847224902923494152615773828642819707341226115600510764553698010236303937284714499763460443890601464 0.847201266746891460403631453693352397963981013612000500823295747923488191871327668107581434542353536 0.847213084835192806509702641168086052652603564606255632688496879079896064578021083935520939216477500 0.847213084752765366704298051779902070392110656059452583317776227659438896688518556753569298762449381 0.847213084793979086607000346473994061522357110332854108003136553369667480633269820344545118989463440 0.847213084793979086605997900490389211440534858586261300461413929971399281619068666682569108141224710 0.847213084793979086606499123482191636481445984459557704232275241670533381126169243513557113565344075 0.847213084793979086606499123482191636481445836194326665888883503648934628542100275932846717790147361 0.847213084793979086606499123482191636481445910326942185060579372659734004834134759723201915677745718 0.847213084793979086606499123482191636481445910326942185060579372659734004834134759723198672311476741 0.847213084793979086606499123482191636481445910326942185060579372659734004834134759723200293994611229 0.847213084793979086606499123482191636481445910326942185060579372659734004834134759723200293994611229</lang>

We could of course extract out only a representative final value, but it's obvious enough, and showing how rapidly this converges is fun.

Java

<lang Java>/*

* Arithmetic-Geometric Mean of 1 & 1/sqrt(2)
* Brendan Shaklovitz
* 5/29/12
*/


public class ArithmeticGeometricMean {

   public static double agm(double a, double g) {
double a1 = a;
double g1 = g;
while (Math.abs(a1 - g1) >= 1.0e-14) {
double arith = (a1 + g1) / 2.0;
double geom = Math.sqrt(a1 * g1);
a1 = arith;
g1 = geom;
}
return a1;
}

   public static void main(String[] args) {
System.out.println(agm(1.0, 1.0 / Math.sqrt(2.0)));
}


}</lang>

Output:
0.8472130847939792

JavaScript

ES5

<lang JavaScript>function agm(a0, g0) {

   var an = (a0 + g0) / 2,
gn = Math.sqrt(a0 * g0);
while (Math.abs(an - gn) > tolerance) {
an = (an + gn) / 2, gn = Math.sqrt(an * gn)
}
return an;


}

agm(1, 1 / Math.sqrt(2));</lang>

ES6

<lang JavaScript>(() => {

   'use strict';

   // ARITHMETIC-GEOMETRIC MEAN

   // agm :: Num a => a -> a -> a
let agm = (a, g) => {
let abs = Math.abs,
sqrt = Math.sqrt;

           return until(
m => abs(m.an - m.gn) < tolerance,
m => {
return {
an: (m.an + m.gn) / 2,
gn: sqrt(m.an * m.gn)
};
}, {
an: (a + g) / 2,
gn: sqrt(a * g)
}
)
.an;
},

       // GENERIC

       // until :: (a -> Bool) -> (a -> a) -> a -> a
until = (p, f, x) => {
let v = x;
while (!p(v)) v = f(v);
return v;
};


   // TEST

   let tolerance = 0.000001;


   return agm(1, 1 / Math.sqrt(2));


})();</lang>

Output:

<lang JavaScript>0.8472130848351929</lang>

jq

Works with: jq version 1.4

Naive version that assumes tolerance is appropriately specified: <lang jq>def naive_agm(a; g; tolerance):

 def abs: if . < 0 then -. else . end;
def _agm:
# state [an,gn]
if ((.[0] - .[1])|abs) > tolerance
then [add/2, ((.[0] * .[1])|sqrt)] | _agm
else .
end;
[a, g] | _agm | .[0] ;</lang>


This version avoids an infinite loop if the requested tolerance is too small: <lang jq>def agm(a; g; tolerance):

 def abs: if . < 0 then -. else . end;
def _agm:
# state [an,gn, delta]
((.[0] - .[1])|abs) as $delta | if$delta == .[2] and $delta < 10e-16 then . elif$delta > tolerance
then [ .[0:2]|add / 2, ((.[0] * .[1])|sqrt), $delta] | _agm else . end; if tolerance <= 0 then error("specified tolerance must be > 0") else [a, g, 0] | _agm | .[0] end ;  1. Example: agm(1; 1/(2|sqrt); 1e-100)</lang> Output: $ jq -n -f Arithmetic-geometric_mean.jq
0.8472130847939792


Julia

<lang Julia>function agm(x::T, y::T, e::Real = 5) where T<:AbstractFloat

   if x ≤ 0 || y ≤ 0 || e ≤ 0 throw(DomainError("x, y must be strictly positive")) end
err = e * eps(x)
g, a = minmax(x, y)
while err < (a - g)
a, g = (a + g) / 2, sqrt(a * g)
end
return a


end

x = 1.0 y = 1 / √2

println("# Using literal-precision float numbers:") @show agm(x, y) println("# Using half-precision float numbers:") x, y = Float32(x), Float32(y) @show agm(x, y) println("# Using ", precision(BigFloat), "-bit float numbers:") x, y = big(1.0), 1 / √big(2.0) @show agm(x, y)</lang> This version of agm accepts only x and y of matching floating point types. A more permissive version could be created by removing the type parametrization or by creating mixed type versions of the function. The ε for this calculation is given as a positive integer multiple of the machine ε for x.

Output:
# Using literal-precision float numbers:
agm(x, y) = 0.8472130847939792
# Using half-precision float numbers:
agm(x, y) = 0.84721315f0
# Using 256-bit float numbers:
agm(x, y) = 8.472130847939790866064991234821916364814459103269421850605793726597340048341323e-01

Kotlin

<lang scala>// version 1.0.5-2

fun agm(a: Double, g: Double): Double {

   var aa = a             // mutable 'a'
var gg = g             // mutable 'g'
var ta: Double         // temporary variable to hold next iteration of 'aa'
val epsilon = 1.0e-16  // tolerance for checking if limit has been reached

   while (true) {
ta = (aa + gg) / 2.0
if (Math.abs(aa - ta) <= epsilon) return ta
gg = Math.sqrt(aa * gg)
aa = ta
}


}

fun main(args: Array<String>) {

   println(agm(1.0, 1.0 / Math.sqrt(2.0)))


}</lang>

Output:
0.8472130847939792


LFE

<lang lisp> (defun agm (a g)

 (agm a g 1.0e-15))


(defun agm (a g tol)

 (if (=< (- a g) tol)
a
(agm (next-a a g)
(next-g a g)
tol)))


(defun next-a (a g)

 (/ (+ a g) 2))


(defun next-g (a g)

 (math:sqrt (* a g)))


</lang>

Usage:

> (agm 1 (/ 1 (math:sqrt 2)))
0.8472130847939792


Liberty BASIC

<lang lb> print agm(1, 1/sqr(2)) print using("#.#################",agm(1, 1/sqr(2)))

function agm(a,g)

   do
absdiff = abs(a-g)
an=(a+g)/2
gn=sqr(a*g)
a=an
g=gn
loop while abs(an-gn)< absdiff
agm = a


end function

</lang>

LiveCode

<lang LiveCode>function agm aa,g

   put abs(aa-g) into absdiff
put (aa+g)/2 into aan
put sqrt(aa*g) into gn
repeat while abs(aan - gn) < absdiff
put abs(aa-g) into absdiff
put (aa+g)/2 into aan
put sqrt(aa*g) into gn
put aan into aa
put gn into g
end repeat
return aa


end agm</lang> Example <lang LiveCode>put agm(1, 1/sqrt(2)) -- ouput -- 0.847213</lang>

Logo

 output and [:a - :b < 1e-15] [:a - :b > -1e-15]


end to agm :arith :geom

 if about :arith :geom [output :arith]
output agm (:arith + :geom)/2  sqrt (:arith * :geom)


end

show agm 1 1/sqrt 2 </lang>

Lua

<lang lua>function agm(a, b, tolerance)

   if not tolerance or tolerance < 1e-15 then
tolerance = 1e-15
end
repeat
a, b = (a + b) / 2, math.sqrt(a * b)
until math.abs(a-b) < tolerance
return a


end

print(string.format("%.15f", agm(1, 1 / math.sqrt(2))))</lang>

Output:

   0.847213084793979


Maple

Maple provides this function under the name GaussAGM. To compute a floating point approximation, use evalf. <lang Maple> > evalf( GaussAGM( 1, 1 / sqrt( 2 ) ) ); # default precision is 10 digits

                             0.8472130847


> evalf[100]( GaussAGM( 1, 1 / sqrt( 2 ) ) ); # to 100 digits 0.847213084793979086606499123482191636481445910326942185060579372659\

   7340048341347597232002939946112300


</lang> Alternatively, if one or both arguments is already a float, Maple will compute a floating point approximation automatically. <lang Maple> > GaussAGM( 1.0, 1 / sqrt( 2 ) );

                             0.8472130847


</lang>

Mathematica

To any arbitrary precision, just increase PrecisionDigits <lang Mathematica>PrecisionDigits = 85; AGMean[a_, b_] := FixedPoint[{ Tr@#/2, Sqrt[Times@@#] }&, N[{a,b}, PrecisionDigits]]〚1〛</lang>

AGMean[1, 1/Sqrt[2]]
0.8472130847939790866064991234821916364814459103269421850605793726597340048341347597232

MATLAB / Octave

<lang MATLAB>function [a,g]=agm(a,g) %%arithmetic_geometric_mean(a,g) while (1) a0=a; a=(a0+g)/2; g=sqrt(a0*g); if (abs(a0-a) < a*eps) break; end; end; end</lang>

octave:26> agm(1,1/sqrt(2))
ans =  0.84721


<lang maxima>agm(a, b) := %pi/4*(a + b)/elliptic_kc(((a - b)/(a + b))^2)$agm(1, 1/sqrt(2)), bfloat, fpprec: 85; /* 8.472130847939790866064991234821916364814459103269421850605793726597340048341347597232b-1 */</lang> МК-61/52 <lang>П1 <-> П0 1 ВП 8 /-/ П2 ИП0 ИП1 - ИП2 - /-/ x<0 31 ИП1 П3 ИП0 ИП1 • КвКор П1 ИП0 ИП3 + 2 / П0 БП 08 ИП0 С/П</lang> NetRexx Translation of: Java <lang NetRexx>/* NetRexx */ options replace format comments java crossref symbols nobinary numeric digits 18 parse arg a_ g_ . if a_ = | a_ = '.' then a0 = 1  else a0 = a_  if g_ = | g_ = '.' then g0 = 1 / Math.sqrt(2)  else g0 = g_  say agm(a0, g0) return -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method agm(a0, g0) public static returns Rexx  a1 = a0 g1 = g0 loop while (a1 - g1).abs() >= Math.pow(10, -14) temp = (a1 + g1) / 2 g1 = Math.sqrt(a1 * g1) a1 = temp end return a1 + 0  </lang> Output: 0.8472130847939792  Nim <lang nim>import math proc agm(a, g: float,delta: float = 1.0e-15): float =  var aNew: float = 0 aOld: float = a gOld: float = g while (abs(aOld - gOld) > delta): aNew = 0.5 * (aOld + gOld) gOld = sqrt(aOld * gOld) aOld = aNew result = aOld  echo$agm(1.0,1.0/sqrt(2.0))</lang>

Output:

8.4721308479397917e-01


See first 24 iterations:

<lang nim>from math import sqrt from strutils import parseFloat, formatFloat, ffDecimal

proc agm(x,y: float): tuple[resA,resG: float] =

 var
a,g: array[0 .. 23,float]

 a[0] = x
g[0] = y

 for n in 1 .. 23:
a[n] = 0.5 * (a[n - 1] + g[n - 1])
g[n] = sqrt(a[n - 1] * g[n - 1])

 (a[23], g[23])


var t = agm(1, 1/sqrt(2.0))

echo("Result A: " & formatFloat(t.resA, ffDecimal, 24)) echo("Result G: " & formatFloat(t.resG, ffDecimal, 24))</lang>

Oberon-2

Works with: oo2c

<lang oberon2> MODULE Agm; IMPORT

 Math := LRealMath,
Out;


CONST

 epsilon = 1.0E-15;


PROCEDURE Of*(a,g: LONGREAL): LONGREAL; VAR

 na,ng,og: LONGREAL;


BEGIN

 na := a; ng := g;
LOOP
og := ng;
ng := Math.sqrt(na * ng);
na := (na + og) * 0.5;
IF na - ng <= epsilon THEN EXIT END
END;
RETURN ng;


END Of;

BEGIN

 Out.LongReal(Of(1,1 / Math.sqrt(2)),0,0);Out.Ln


END Agm. </lang>

Output:
8.4721308479397905E-1


Objeck

Translation of: Java

<lang objeck> class ArithmeticMean {

 function : Amg(a : Float, g : Float) ~ Nil {
a1 := a;
g1 := g;
while((a1-g1)->Abs() >= Float->Power(10, -14)) {
tmp := (a1+g1)/2.0;
g1 := Float->SquareRoot(a1*g1);
a1 := tmp;
};
a1->PrintLine();
}

function : Main(args : String[]) ~ Nil {
Amg(1,1/Float->SquareRoot(2));
}


} </lang>

Output:

0.847213085

OCaml

<lang ocaml>let rec agm a g tol =

 if tol > abs_float (a -. g) then a else
agm (0.5*.(a+.g)) (sqrt (a*.g)) tol


let _ = Printf.printf "%.16f\n" (agm 1.0 (sqrt 0.5) 1e-15)</lang> Output

0.8472130847939792

Oforth

<lang Oforth>: agm \ a b -- m

  while( 2dup <> ) [ 2dup + 2 / -rot * sqrt ] drop ;</lang>


Usage : <lang Oforth>1 2 sqrt inv agm</lang>

Output:
0.847213084793979


OOC

<lang ooc> import math // import for sqrt() function

amean: func (x: Double, y: Double) -> Double {

 (x + y) / 2.


} gmean: func (x: Double, y: Double) -> Double {

 sqrt(x * y)


} agm: func (a: Double, g: Double) -> Double {

 while ((a - g) abs() > pow(10, -12)) {
(a1, g1) := (amean(a, g), gmean(a, g))
(a, g) = (a1, g1)
}
a


}

main: func {

 "%.16f" printfln(agm(1., sqrt(0.5)))


} </lang> Output

0.8472130847939792

ooRexx

<lang ooRexx> say agm(1, 1/rxcalcsqrt(2))

routine agm
 use strict arg a, g
numeric digits 20

 a1 = a
g1 = g

 loop while abs(a1 - g1) >= 1e-14
temp = (a1 + g1)/2
g1 = rxcalcsqrt(a1 * g1)
a1 = temp
end
numeric digits 9
return a1+0

requires rxmath LIBRARY

</lang>

PARI/GP

Built-in: <lang parigp>agm(1,1/sqrt(2))</lang>

Iteration: <lang parigp>agm2(x,y)=if(x==y,x,agm2((x+y)/2,sqrt(x*y))</lang>

Pascal

Works with: Free_Pascal
Library: GMP

Port of the C example: <lang pascal>Program ArithmeticGeometricMean;

uses

 gmp;



procedure agm (in1, in2: mpf_t; var out1, out2: mpf_t); begin

 mpf_add (out1, in1, in2);
mpf_div_ui (out1, out1, 2);
mpf_mul (out2, in1, in2);
mpf_sqrt (out2, out2);


end;

const

 nl = chr(13)+chr(10);


var

 x0, y0, resA, resB: mpf_t;
i: integer;


begin

 mpf_set_default_prec (65568);

 mpf_init_set_ui (y0, 1);
mpf_init_set_d (x0, 0.5);
mpf_sqrt (x0, x0);
mpf_init (resA);
mpf_init (resB);

 for i := 0 to 6 do
begin
agm(x0, y0, resA, resB);
agm(resA, resB, x0, y0);
end;
mp_printf ('%.20000Ff'+nl, @x0);
mp_printf ('%.20000Ff'+nl+nl, @y0);


end.</lang> Output is as long as the C example.

Perl

<lang perl>#!/usr/bin/perl -w

my ($a0,$g0, $a1,$g1);

sub agm() {

   $a0 = shift;$g0 = shift;
do {
$a1 = ($a0 + $g0)/2;$g1 = sqrt($a0 *$g0);
$a0 = ($a1 + $g1)/2;$g0 = sqrt($a1 *$g1);
} while ($a0 !=$a1);
return $a0;  } print agm(1, 1/sqrt(2))."\n";</lang> Output: 0.847213084793979 Perl 6 <lang perl6>sub agm($a is copy, $g is copy ) {  ($a, $g) = ($a + $g)/2, sqrt$a * $g until$a ≅ $g; return$a;


}

say agm 1, 1/sqrt 2;</lang>

Output:
0.84721308479397917

It's also possible to write it recursively: <lang Perl 6>sub agm( $a,$g ) {

   $a ≅$g ?? $a !! agm(|@$_)
given ($a +$g)/2, sqrt $a *$g;


}

say agm 1, 1/sqrt 2;</lang>

Phix

<lang Phix>function agm(atom a, atom g, atom tolerance=1.0e-15)

   while abs(a-g)>tolerance do
{a,g} = {(a + g)/2,sqrt(a*g)}
printf(1,"%0.15g\n",a)
end while
return a


end function ?agm(1,1/sqrt(2)) -- (rounds to 10 d.p.)</lang>

Output:
0.853553390593274
0.847224902923494
0.847213084835193
0.847213084793979
0.8472130848


PHP

<lang php> define('PRECISION', 13);

function agm($a0,$g0, $tolerance = 1e-10) {  // the bc extension deals in strings and cannot convert // floats in scientific notation by itself - hence // this manual conversion to a string$limit = number_format($tolerance, PRECISION, '.', );$an    = $a0;$gn    = $g0; do { list($an, $gn) = array( bcdiv(bcadd($an, $gn), 2), bcsqrt(bcmul($an, $gn)), ); } while (bccomp(bcsub($an, $gn),$limit) > 0);

   return $an;  } bcscale(PRECISION); echo agm(1, 1 / bcsqrt(2)); </lang> Output: 0.8472130848350  PicoLisp <lang PicoLisp>(scl 80) (de agm (A G)  (do 7 (prog1 (/ (+ A G) 2) (setq G (sqrt A G) A @) ) ) )  (round  (agm 1.0 (*/ 1.0 1.0 (sqrt 2.0 1.0))) 70 )</lang>  Output: -> "0.8472130847939790866064991234821916364814459103269421850605793726597340" PL/I <lang PL/I> arithmetic_geometric_mean: /* 31 August 2012 */  procedure options (main); declare (a, g, t) float (18);   a = 1; g = 1/sqrt(2.0q0); put skip list ('The arithmetic-geometric mean of ' || a || ' and ' || g || ':'); do until (abs(a-g) < 1e-15*a); t = (a + g)/2; g = sqrt(a*g); a = t; put skip data (a, g); end; put skip list ('The result is:', a);  end arithmetic_geometric_mean; </lang> Results: The arithmetic-geometric mean of 1.00000000000000000E+0000 and 7.07106781186547524E-0001: A= 8.53553390593273762E-0001 G= 8.40896415253714543E-0001; A= 8.47224902923494153E-0001 G= 8.47201266746891460E-0001; A= 8.47213084835192807E-0001 G= 8.47213084752765367E-0001; A= 8.47213084793979087E-0001 G= 8.47213084793979087E-0001; The result is: 8.47213084793979087E-0001  Potion Input values should be floating point <lang potion>sqrt = (x) :  xi = 1 7 times : xi = (xi + x / xi) / 2 . xi  . agm = (x, y) :  7 times : a = (x + y) / 2 g = sqrt(x * y) x = a y = g . x  .</lang> PowerShell <lang PowerShell> function agm ([Double]$a, [Double]$g) {  [Double]$eps = 1E-15
[Double]$a1 = [Double]$g1 = 0
while([Math]::Abs($a -$g) -gt $eps) {$a1, $g1 =$a, $g$a = ($a1 +$g1)/2
$g = [Math]::Sqrt($a1*$g1) } [pscustomobject]@{ a = "$a"
g = "$g" }  } agm 1 (1/[Math]::Sqrt(2)) </lang> Output: a g - - 0.847213084793979 0.847213084793979  Prolog <lang Prolog> agm(A,G,A) :- abs(A-G) < 1.0e-15, !. agm(A,G,Res) :- A1 is (A+G)/2.0, G1 is sqrt(A*G),!, agm(A1,G1,Res). ?- agm(1,1/sqrt(2),Res). Res = 0.8472130847939792. </lang> PureBasic <lang purebasic>Procedure.d AGM(a.d, g.d, ErrLim.d=1e-15)  Protected.d ta=a+1, tg While ta <> a ta=a: tg=g a=(ta+tg)*0.5 g=Sqr(ta*tg) Wend ProcedureReturn a  EndProcedure If OpenConsole()  PrintN(StrD(AGM(1, 1/Sqr(2)), 16)) Input() CloseConsole()  EndIf</lang> 0.8472130847939792  Python The calculation generates two new values from two existing values which is the classic example for the use of assignment to a list of values in the one statement, so ensuring an gn are only calculated from an-1 gn-1. Basic Version <lang python>from math import sqrt def agm(a0, g0, tolerance=1e-10):  """ Calculating the arithmetic-geometric mean of two numbers a0, g0.   tolerance the tolerance for the converged value of the arithmetic-geometric mean (default value = 1e-10) """ an, gn = (a0 + g0) / 2.0, sqrt(a0 * g0) while abs(an - gn) > tolerance: an, gn = (an + gn) / 2.0, sqrt(an * gn) return an  print agm(1, 1 / sqrt(2))</lang> Output:  0.847213084835 Multi-Precision Version <lang python>from decimal import Decimal, getcontext def agm(a, g, tolerance=Decimal("1e-65")):  while True: a, g = (a + g) / 2, (a * g).sqrt() if abs(a - g) < tolerance: return a  getcontext().prec = 70 print agm(Decimal(1), 1 / Decimal(2).sqrt())</lang> Output: 0.847213084793979086606499123482191636481445910326942185060579372659734 All the digits shown are correct. R <lang r>arithmeticMean <- function(a, b) { (a + b)/2 } geometricMean <- function(a, b) { sqrt(a * b) } arithmeticGeometricMean <- function(a, b) {  rel_error <- abs(a - b) / pmax(a, b) if (all(rel_error < .Machine$double.eps, na.rm=TRUE)) {
agm <- a
return(data.frame(agm, rel_error));
}
Recall(arithmeticMean(a, b), geometricMean(a, b))


}

agm <- arithmeticGeometricMean(1, 1/sqrt(2)) print(format(agm, digits=16))</lang>

Output:
                 agm             rel_error
1 0.8472130847939792 1.310441309927519e-16

This function also works on vectors a and b (following the spirit of R): <lang r>a <- c(1, 1, 1) b <- c(1/sqrt(2), 1/sqrt(3), 1/2) agm <- arithmeticGeometricMean(a, b) print(format(agm, digits=16))</lang>

Output:
                 agm             rel_error
1 0.8472130847939792 1.310441309927519e-16
2 0.7741882646460426 0.000000000000000e+00
3 0.7283955155234534 0.000000000000000e+00

Racket

This version uses Racket's normal numbers: <lang racket>

1. lang racket

(define (agm a g [ε 1e-15])

 (if (<= (- a g) ε)
a
(agm (/ (+ a g) 2) (sqrt (* a g)) ε)))


(agm 1 (/ 1 (sqrt 2))) </lang> Output:

0.8472130847939792


This alternative version uses arbitrary precision floats: <lang racket>

1. lang racket

(require math/bigfloat) (bf-precision 200) (bfagm 1.bf (bf/ (bfsqrt 2.bf))) </lang> Output:

(bf #e0.84721308479397908660649912348219163648144591032694218506057918)


Raven

<lang Raven>define agm use $a,$g, $errlim  #$errlim $g$a "%d %g %d\n" print
$a 1.0 + as$t
repeat $a 1.0 *$g - abs -15 exp10 $a * > while$a $g + 2 / as$t
$a$g * sqrt  as $g$t as $a$g $a$t  "t: %g a: %g g: %g\n" print
$a  16 1 2 sqrt / 1 agm "agm: %.15g\n" print</lang> Output: t: 0.853553 a: 0.853553 g: 0.840896 t: 0.847225 a: 0.847225 g: 0.847201 t: 0.847213 a: 0.847213 g: 0.847213 t: 0.847213 a: 0.847213 g: 0.847213 agm: 0.847213084793979 REXX Also, this version of the AGM REXX program has three short circuits within it for an equality case and for two zero cases. REXX supports arbitrary precision, so the default digits can be changed if desired. <lang rexx>/*REXX program calculates the AGM (arithmetic─geometric mean) of two (real) numbers. */ parse arg a b digs . /*obtain optional numbers from the C.L.*/ if digs== | digs=="," then digs=110 /*No DIGS specified? Then use default.*/ numeric digits digs /*REXX will use lots of decimal digits.*/ if a== | a=="," then a=1 /*No A specified? Then use the default*/ if b== | b=="," then b=1 / sqrt(2) /* " B " " " " " */ call AGM a,b /*invoke the AGM function. */ say '1st # =' a /*display the A value. */ say '2nd # =' b /* " " B " */ say ' AGM =' agm(a, b) /* " " AGM " */ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ agm: procedure: parse arg x,y; if x=y then return x /*is this an equality case?*/  if y=0 then return 0 /*is Y equal to zero ? */ if x=0 then return y / 2 /* " X " " " */ d=digits(); numeric digits d+5 /*add 5 more digs to ensure convergence*/ tiny='1e-' || (digits() - 1) /*construct a pretty tiny REXX number. */ ox=x + 1 do #=1 while ox\=x & abs(ox)>tiny; ox=x; oy=y x=(ox+oy)/2; y=sqrt(ox*oy) end /*#*/ numeric digits d; return x / 1 /*restore digs, normalize X to new digs*/  /*──────────────────────────────────────────────────────────────────────────────────────*/ sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); m.=9; numeric form; h=d+6  numeric digits; parse value format(x,2,1,,0) 'E0' with g 'E' _ .; g=g *.5'e'_ % 2 do j=0 while h>9; m.j=h; h=h % 2 + 1; end /*j*/ do k=j+5 to 0 by -1; numeric digits m.k; g=(g+x/g)*.5; end /*k*/; return g</lang>  output when using the default input: 1st # = 1 2nd # = 0.70710678118654752440084436210484903928483593768847403658833986899536623923105351942519376716382078636750692312 AGM = 0.84721308479397908660649912348219163648144591032694218506057937265973400483413475972320029399461122994212228563  Ring <lang ring> decimals(9) see agm(1, 1/sqrt(2)) + nl see agm(1,1/pow(2,0.5)) + nl func agm agm,g  while agm an = (agm + g)/2 gn = sqrt(agm*g) if fabs(agm-g) <= fabs(an-gn) exit ok agm = an g = gn end return gn  </lang> Ruby Flt Version The thing to note about this implementation is that it uses the Flt library for high-precision math. This lets you adapt context (including precision and epsilon) to a ridiculous-in-real-life degree. <lang ruby># The flt package (http://flt.rubyforge.org/) is useful for high-precision floating-point math. 1. It lets us control 'context' of numbers, individually or collectively -- including precision 2. (which adjusts the context's value of epsilon accordingly). require 'flt' include Flt BinNum.Context.precision = 512 # default 53 (bits) def agm(a,g)  new_a = BinNum a new_g = BinNum g while new_a - new_g > new_a.class.Context.epsilon do old_g = new_g new_g = (new_a * new_g).sqrt new_a = (old_g + new_a) * 0.5 end new_g  end puts agm(1, 1 / BinNum(2).sqrt)</lang> Output: 0.84721308479397908660649912348219163648144591032694218506057937265973400483413475972320029399461122994212228562523341096309796266583087105969971363598338426 Adjusting the precision setting (at about line 9) will of course affect this. :-) BigDecimal Version Ruby has a BigDecimal class in standard library <lang ruby>require 'bigdecimal' PRECISION = 100 EPSILON = 0.1 ** (PRECISION/2) BigDecimal::limit(PRECISION) def agm(a,g)  while a - g > EPSILON a, g = (a+g)/2, (a*g).sqrt(PRECISION) end [a, g]  end a = BigDecimal(1) g = 1 / BigDecimal(2).sqrt(PRECISION) puts agm(a, g)</lang> Output: 0.847213084793979086606499123482191636481445910326942185060579372659734004834134759723201915677745718E0 0.8472130847939790866064991234821916364814459103269421850605793726597340048341347597231986723114767413E0  Run BASIC <lang runbasic>print agm(1, 1/sqr(2)) print agm(1,1/2^.5) print using("#.############################",agm(1, 1/sqr(2))) function agm(agm,g) while agm an = (agm + g)/2 gn = sqr(agm*g) if abs(agm-g) <= abs(an-gn) then exit while agm = an g = gn wend  end function</lang>Output: 0.847213085 0.847213085 0.8472130847939791165772005376 Rust <lang rust>// Accepts two command line arguments // cargo run --name agm arg1 arg2 fn main () {  let mut args = std::env::args();   let x = args.nth(1).expect("First argument not specified.").parse::<f32>().unwrap(); let y = args.next().expect("Second argument not specified.").parse::<f32>().unwrap();   let result = agm(x,y); println!("The arithmetic-geometric mean is {}", result);  } fn agm (x: f32, y: f32) -> f32 {  let e: f32 = 0.000001; let mut a = x; let mut g = y; let mut a1: f32; let mut g1: f32;   if a * g < 0f32 { panic!("The arithmetric-geometric mean is undefined for numbers less than zero!"); } else { loop { a1 = (a + g) / 2.; g1 = (a * g).sqrt(); a = a1; g = g1; if (a - g).abs() < e { return a; } } }  }</lang> Output: Output of running with arguments 1, 0.70710678: The arithmetic-geometric mean is 1.456791  Scala <lang scala>  def agm(a: Double, g: Double, eps: Double): Double = { if (math.abs(a - g) < eps) (a + g) / 2 else agm((a + g) / 2, math.sqrt(a * g), eps) }   agm(1, math.sqrt(2)/2, 1e-15)  </lang> Scheme <lang scheme> (define agm  (case-lambda ((a0 g0) ; call again with default value for tolerance (agm a0 g0 1e-8)) ((a0 g0 tolerance) ; called with three arguments (do ((a a0 (* (+ a g) 1/2)) (g g0 (sqrt (* a g)))) ((< (abs (- a g)) tolerance) a)))))  (display (agm 1 (/ 1 (sqrt 2)))) (newline) </lang> Output: 0.8472130848351929  Seed7 <lang seed7>$ include "seed7_05.s7i";

 include "float.s7i";
include "math.s7i";


const func float: agm (in var float: a, in var float: g) is func

 result
var float: agm is 0.0;
local
const float: iota is 1.0E-7;
var float: a1 is 0.0;
var float: g1 is 0.0;
begin
if a * g < 0.0 then
raise RANGE_ERROR;
else
while abs(a - g) > iota do
a1 := (a + g) / 2.0;
g1 := sqrt(a * g);
a := a1;
g := g1;
end while;
agm := a;
end if;
end func;



const proc: main is func

 begin
writeln(agm(1.0, 2.0) digits 6);
writeln(agm(1.0, 1.0 / sqrt(2.0)) digits 6);
end func;</lang>

Output:
1.456791
0.847213


SequenceL

<lang sequencel>import <Utilities/Math.sl>;

agm(a, g) :=

   let
iota := 1.0e-15;
arithmeticMean := 0.5 * (a + g);
geometricMean := sqrt(a * g);
in
a when abs(a-g) < iota
else
agm(arithmeticMean, geometricMean);


main := agm(1.0, 1.0 / sqrt(2));</lang>

Output:
0.847213


Sidef

<lang ruby>func agm(a, g) {

   loop {
var (a1, g1) = ((a+g)/2, sqrt(a*g))
[a1,g1] == [a,g] && return a
(a, g) = (a1, g1)
}


}

say agm(1, 1/sqrt(2))</lang>

Output:
0.8472130847939790866064991234821916364814

Sinclair ZX81 BASIC

Translation of: COBOL

Works with 1k of RAM.

The specification calls for a function. Sadly that is not available to us, so this program uses a subroutine: pass the arguments in the global variables A and G, and the result will be returned in AGM. The performance is quite acceptable. Note that the subroutine clobbers A and G, so you should save them if you want to use them again.

Better precision than this is not easily obtainable on the ZX81, unfortunately. <lang basic> 10 LET A=1

20 LET G=1/SQR 2
30 GOSUB 100
40 PRINT AGM
50 STOP


100 LET A0=A 110 LET A=(A+G)/2 120 LET G=SQR (A0*G) 130 IF ABS(A-G)>.00000001 THEN GOTO 100 140 LET AGM=A 150 RETURN</lang>

Output:
0.84721309

Stata

<lang stata>mata

real scalar agm(real scalar a, real scalar b) { real scalar c do { c=0.5*(a+b) b=sqrt(a*b) a=c } while (a-b>1e-15*a) return(0.5*(a+b)) }

agm(1,1/sqrt(2)) end</lang>

Output:
.8472130848

Swift

<lang Swift>import Darwin

enum AGRError : Error { case undefined }

func agm(_ a: Double, _ g: Double, _ iota: Double = 1e-8) throws -> Double { var a = a var g = g var a1: Double = 0 var g1: Double = 0

guard a * g >= 0 else { throw AGRError.undefined }

while abs(a - g) > iota { a1 = (a + g) / 2 g1 = sqrt(a * g) a = a1 g = g1 }

return a }

do { try print(agm(1, 1 / sqrt(2))) } catch { print("agr is undefined when a * g < 0") }</lang>

Output:
0.847213084835193

Tcl

The tricky thing about this implementation is that despite the finite precision available to IEEE doubles (which Tcl uses in its implementation of floating point arithmetic, in common with many other languages) the sequence of values does not quite converge to a single value; it gets to within a ULP and then errors prevent it from getting closer. This means that an additional termination condition is required: once a value does not change (hence the old_b variable) we have got as close as we can. Note also that we are using exact equality with floating point; this is reasonable because this is a rapidly converging sequence (it only takes 4 iterations in this case). <lang tcl>proc agm {a b} {

   set old_b [expr {$b<0?inf:-inf}] while {$a != $b &&$b != $old_b} {  set old_b$b lassign [list [expr {0.5*($a+$b)}] [expr {sqrt($a*$b)}]] a b

   }
return $a  } puts [agm 1 [expr 1/sqrt(2)]]</lang> Output: 0.8472130847939792 TI-83 BASIC <lang ti83b>1→A:1/sqrt(2)→G While abs(A-G)>e-15 (A+G)/2→B sqrt(AG)→G:B→A End A</lang> Output: .8472130848 UNIX Shell Works with: ksh93 ksh is one of the few unix shells that can do floating point arithmetic (bash does not). <lang bash>function agm {  float a=$1 g=$2 eps=${3:-1e-11} tmp
while (( abs(a-g) > eps )); do
print "debug: a=$a\tg=$g"
tmp=$(( (a+g)/2.0 )) g=$(( sqrt(a*g) ))
a=$tmp done echo$a


}

agm $((1/sqrt(2))) 1</lang> Output: debug: a=0.7071067812 g=1 debug: a=0.8535533906 g=0.8408964153 debug: a=0.8472249029 g=0.8472012668 debug: a=0.8472130848 g=0.8472130847 debug: a=0.8472130848 g=0.8472130848 debug: a=0.8472130848 g=0.8472130848 0.8472130848 You can get a more approximate convergence by changing the while condition to compare the numbers as strings: change <lang bash>while (( abs(a-g) > eps ))</lang> to <lang bash>while$a != \$g </lang>

VBScript

Translation of: BBC BASIC

<lang vb> Function agm(a,g) Do Until a = tmp_a tmp_a = a a = (a + g)/2 g = Sqr(tmp_a * g) Loop agm = a End Function

WScript.Echo agm(1,1/Sqr(2)) </lang>

Output:
0.847213084793979

XPL0

<lang XPL0>include c:\cxpl\codesi; real A, A1, G; [Format(0, 16); A:= 1.0; G:= 1.0/sqrt(2.0); repeat A1:= (A+G)/2.0; G:= sqrt(A*G); A:= A1; RlOut(0, A); RlOut(0, G); RlOut(0, A-G); CrLf(0); until A=G; ]</lang>

Output:

 8.5355339059327400E-001 8.4089641525371500E-001 1.2656975339559100E-002
8.4722490292349400E-001 8.4720126674689100E-001 2.3636176602726000E-005
8.4721308483519300E-001 8.4721308475276500E-001 8.2427509262572600E-011
8.4721308479397900E-001 8.4721308479397900E-001 0.0000000000000000E+000


zkl

Translation of: XPL0

<lang zkl>a:=1.0; g:=1.0/(2.0).sqrt(); while(not a.closeTo(g,1.0e-15)){

  a1:=(a+g)/2.0; g=(a*g).sqrt(); a=a1;
println(a,"  ",g," ",a-g);


}</lang>

Output:
0.853553  0.840896 0.012657
0.847225  0.847201 2.36362e-05
0.847213  0.847213 8.24275e-11
0.847213  0.847213 1.11022e-16


Or, using tail recursion <lang zkl>fcn(a=1.0, g=1.0/(2.0).sqrt()){ println(a," ",g," ",a-g);

  if(a.closeTo(g,1.0e-15)) return(a) else return(self.fcn((a+g)/2.0, (a*g).sqrt()));


}()</lang>

Output:
1 0.707107 0.292893
0.853553 0.840896 0.012657
0.847225 0.847201 2.36362e-05
0.847213 0.847213 8.24275e-11
0.847213 0.847213 1.11022e-16


ZX Spectrum Basic

Translation of: ERRE

<lang zxbasic>10 LET a=1: LET g=1/SQR 2 20 LET ta=a 30 LET a=(a+g)/2 40 LET g=SQR (ta*g) 50 IF a<ta THEN GO TO 20 60 PRINT a </lang>

Output:
0.84721309