Matrix with two diagonals
- Task
Draw a square matrix which has 1's on both diagonals but 0's elsewhere.
If you can please use GUI
See also
11l
F two_diagonal_matrix(n)
L(i) 0 .< n
L(j) 0 .< n
print(I i == j | i + j == n - 1 {1} E 0, end' ‘ ’)
print()
two_diagonal_matrix(6)
print()
two_diagonal_matrix(7)
- Output:
1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
Action!
;;; draw a matrix with 1s on the diagonals and 0s elsewhere
;;; draws a matrix with height and width = n with 1s on the diagonals
PROC drawDiagonals( INT n )
CARD i, j, r
r = n
FOR i = 1 TO n DO
FOR j = 1 TO n DO
Put(' )
IF j = i OR j = r THEN Put('1) ELSE Put('0) FI
OD
PutE()
r ==- 1
OD
RETURN
PROC Main()
drawDiagonals( 6 )
PutE()
drawDiagonals( 7 )
RETURN
- Output:
1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
Ada
with Ada.Text_Io; use Ada.Text_Io;
with Ada.Command_Line;
procedure Matrix_With_Diagonals is
type Matrix_Type is array (Positive range <>, Positive range <>) of Character;
function Matrix_X (Length : Natural) return Matrix_Type is
begin
return M : Matrix_Type (1 .. Length, 1 .. Length) do
for Row in M'Range (1) loop
for Col in M'Range (2) loop
M (Row, Col) := (if
Row = Col or else
Row = M'Last (2) - (Col - M'First (1))
then '1' else '0');
end loop;
end loop;
end return;
end Matrix_X;
procedure Put (M : Matrix_Type) is
begin
for Row in M'Range (1) loop
for Col in M'Range (2) loop
Put (' ');
Put (M (Row, Col));
end loop;
New_Line;
end loop;
end Put;
begin
Put (Matrix_X (Length => Natural'Value (Ada.Command_Line.Argument (1))));
exception
when others =>
Put_Line ("Usage: ./matrix_with_diagonals <side-length>");
end Matrix_With_Diagonals;
ALGOL 68
BEGIN # draw a matrix with 1s on the diagonals and 0s elsewhere #
# draws a matrix with height and width = n with 1s on the diagonals #
PROC draw 2 diagonals = ( INT n )VOID:
BEGIN
INT l pos := 1;
INT r pos := n;
TO n DO
FOR j TO n DO
print( ( " ", whole( ABS ( j = l pos OR j = rpos ), 0 ) ) )
OD;
print( ( newline ) );
l pos +:= 1;
r pos -:= 1
OD
END # draw 2 diagonals # ;
# test the draw 2 diagonals procedure #
draw 2 diagonals( 10 );
print( ( newline ) );
draw 2 diagonals( 11 )
END
- Output:
1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
ALGOL W
begin % draw a matrix with 1s on the diagonals and 0s elsewhere %
% draws a matrix with height and width = n with 1s on the diagonals %
procedure draw2Diagonals ( integer value n ) ;
begin
integer lPos, rPos;
lPos := 1;
rPos := n;
for i := 1 until n do begin
for j := 1 until n do writeon( s_w := 0, if j = lPos or j = rPos then " 1" else " 0" );
write();
lPos := lPos + 1;
rPos := rPos - 1
end for_i
end draw2Diagonals ;
% test the draw 2 diagonals procedure %
draw2Diagonals( 10 );
write();
draw2Diagonals( 11 )
end.
- Output:
1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
APL
twoDiagonals ← (⌽∨⊢)∘.=⍨∘⍳
twoDiagonals¨ 10 11
- Output:
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
AppleScript
Procedural
on twoDiagonalMatrix(n)
if (n < 2) then error "twoDiagonalMatrix() handler: parameter must be > 1."
set digits to {}
set oddness to n mod 2
repeat (n - 1 + oddness) times
set end of digits to 0
end repeat
set m to n div 2 + oddness -- Middle index of digit source list.
set item m of digits to 1
set matrix to {}
set leftLen to m - 1 -- Length of left end of each row - 1.
set rightLen to leftLen - oddness -- Length of right end ditto.
-- Assemble the first m rows from the relevant sections of 'digits'.
repeat with i from m to 1 by -1
set end of matrix to items i thru (i + leftLen) of digits & items -(i + rightLen) thru -i of digits
end repeat
-- The remaining rows are the reverse of these, not repeating the mth where n is odd.
return matrix & reverse of items 1 thru (m - oddness) of matrix
end twoDiagonalMatrix
-- Task code.
on matrixToText(matrix, separator)
copy matrix to matrix
set astid to AppleScript's text item delimiters
set AppleScript's text item delimiters to separator
repeat with thisLine in matrix
set thisLine's contents to thisLine as text
end repeat
set AppleScript's text item delimiters to linefeed
set matrix to matrix as text
set AppleScript's text item delimiters to astid
return matrix
end matrixToText
return linefeed & matrixToText(twoDiagonalMatrix(7), space) & ¬
(linefeed & linefeed & matrixToText(twoDiagonalMatrix(8), space))
- Output:
"
1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1
1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1"
Functional
---------------- MATRIX WITH TWO DIAGONALS ---------------
-- bothDiagonals :: Int -> [[Int]]
on bothDiagonals(n)
-- A square matrix of dimension n with ones
-- along both diagonals, and zeros elsewhere.
script idOrReflection
on |λ|(x, y)
({y, 1 + n - y} contains x) as integer
end |λ|
end script
matrix(n, n, idOrReflection)
end bothDiagonals
--------------------------- TEST -------------------------
on run
-- Two diagonal matrices of dimensions 7 and 8
unlines(map(compose(showMatrix, bothDiagonals), ¬
{7, 8}))
end run
------------------------- GENERIC ------------------------
-- compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
on compose(f, g)
script
property mf : mReturn(f)
property mg : mReturn(g)
on |λ|(x)
mf's |λ|(mg's |λ|(x))
end |λ|
end script
end compose
-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if m ≤ n then
set xs to {}
repeat with i from m to n
set end of xs to i
end repeat
xs
else
{}
end if
end enumFromTo
-- matrix :: Int -> Int -> ((Int, Int) -> a) -> [[a]]
on matrix(nRows, nCols, f)
-- A matrix of a given number of columns and rows,
-- in which each value is a given function of its
-- (zero-based) column and row indices.
script go
property g : mReturn(f)'s |λ|
on |λ|(iRow)
set xs to {}
repeat with iCol from 1 to nCols
set end of xs to g(iRow, iCol)
end repeat
xs
end |λ|
end script
map(go, enumFromTo(1, nRows))
end matrix
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
-- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- showMatrix :: [[a]] -> String
on showMatrix(rows)
-- String representation of a matrix.
script
on |λ|(cells)
unwords(map(my str, cells))
end |λ|
end script
unlines(map(result, rows)) & linefeed
end showMatrix
-- str :: a -> String
on str(x)
x as string
end str
-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set s to xs as text
set my text item delimiters to dlm
s
end unlines
-- unwords :: [String] -> String
on unwords(xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, space}
set s to xs as text
set my text item delimiters to dlm
return s
end unwords
- Output:
1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
Arturo
drawSquare: function [side][
loop 1..side 'x ->
print map 1..side 'y [
(any? @[x=y side=x+y-1])? -> 1 -> 0
]
]
drawSquare 6
print ""
drawSquare 9
- Output:
1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
AutoHotkey
for i, v in [8, 9]
result .= "Matrix Size: " v "*" v "`n" matrix2txt(diagonalMatrix(v)) "`n"
MsgBox % result
return
diagonalMatrix(size){
M := []
loop % size {
row := A_Index
loop % size
M[row, A_Index] := (row = A_Index || row = size-A_Index+1) ? 1 : 0
}
return M
}
matrix2txt(M){
for row , obj in M {
for col, v in obj
result .= M[row, col] " "
result .= "`n"
}
return result
}
- Output:
Matrix Size: 8*8 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 Matrix Size: 9*9 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
AWK
# syntax: GAWK -f MATRIX_WITH_TWO_DIAGONALS.AWK
BEGIN {
for (n=6; n<=7; n++) {
for (i=1; i<=n; i++) {
for (j=1; j<=n; j++) {
tmp = (i==j || i+j==n+1) ? 1 : 0
printf("%2d",tmp)
}
printf("\n")
}
print("")
}
exit(0)
}
- Output:
1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
Basic
100 REM
110 REM DIAGONAL-DIAGONAL MATRIX
120 REM
130 LET N = 7
140 DIM A(N,N)
150 FOR I=1 TO N
150 FOR J=1 TO N
160 LET A(I,J) = 0
170 NEXT J
180 LET J1 = I
190 LET J2 = N - I + 1
200 LET A(I,J1) = 1
210 LET A(I,J2) = 1
220 NEXT I
230 REM
240 FOR I=1 TO N
250 FOR J=1 TO N
260 PRINT " ";A(I,J);
270 NEXT J
280 PRINT
290 NEXT I
300 END
- Output:
1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
BCPL
get "libhdr"
let diagonals(size) be
for y = 1 to size
for x = 1 to size
do writef("%C%C",
x=y | size-x=y-1 -> '1', '0',
x=size -> '*N', ' ')
let start() be
$( diagonals(9)
wrch('*N')
diagonals(10)
$)
- Output:
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1
BQN
D2 ← =⌜˜⌊⟜⌽∘↕
D2 7
- Output:
┌─ ╵ 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 ┘
C
#include <stdio.h>
void specialMatrix(unsigned int n) {
int i, j;
for (i = 0; i < n; ++i) {
for (j = 0; j < n; ++j) {
if (i == j || i + j == n - 1) {
printf("%d ", 1);
} else {
printf("%d ", 0);
}
}
printf("\n");
}
}
int main() {
specialMatrix(10); // even n
printf("\n");
specialMatrix(11); // odd n
return 0;
}
- Output:
1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
C++
#include <concepts>
#include <iostream>
// Print each element of a matrix according to a predicate. It
// will print a '1' if the predicate function is true, otherwise '0'.
void PrintMatrix(std::predicate<int, int, int> auto f, int size)
{
for(int y = 0; y < size; y++)
{
for(int x = 0; x < size; x++)
{
std::cout << " " << f(x, y, size);
}
std::cout << "\n";
}
std::cout << "\n";
}
int main()
{
// a lambda to create diagonals
auto diagonals = [](int x, int y, int size)
{
return x == y || ((size - x - 1) == y);
};
PrintMatrix(diagonals, 8);
PrintMatrix(diagonals, 9);
}
- Output:
1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
CLU
matrix = array[array[int]]
diagonals = proc (size: int) returns (matrix)
mat: matrix := matrix$new()
for y: int in int$from_to(1, size) do
line: array[int] := array[int]$new()
for x: int in int$from_to(1, size) do
n: int
if x=y cor size-x=y-1
then n := 1
else n := 0
end
array[int]$addh(line, n)
end
matrix$addh(mat, line)
end
return(mat)
end diagonals
print_matrix = proc (s: stream, mat: matrix)
for line: array[int] in matrix$elements(mat) do
for elem: int in array[int]$elements(line) do
stream$puts(s, " " || int$unparse(elem))
end
stream$putl(s, "")
end
end print_matrix
start_up = proc ()
po: stream := stream$primary_output()
print_matrix(po, diagonals(9))
stream$putl(po, "")
print_matrix(po, diagonals(10))
end start_up
- Output:
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1
Delphi
It seems to me you should actually build the matricies, not just draw a bunch of numbers on the screen. Consequently, this code actually builds general purpose matrices to solve the problem. Once again, notice how the code is modular, breaking the operations down into separate subroutines that can be reused in other situations. This is how you build libraries and simplify your code when working on larger problems.
{Define a matrix}
type TMatrix = array of array of double;
procedure DisplayMatrix(Memo: TMemo; Mat: TMatrix);
{Display specified matrix}
var X,Y: integer;
var S: string;
begin
S:='';
for Y:=0 to High(Mat) do
begin
S:=S+'[';
for X:=0 to High(Mat[0]) do
if X=0 then S:=S+Format('%0.0f',[Mat[X,Y]])
else S:=S+Format('%2.0f',[Mat[X,Y]]);
S:=S+']'+#$0D#$0A;
end;
Memo.Lines.Add(S);
end;
procedure ClearMatrix(var Mat: TMatrix; Value: double);
{Set all elements of the matrix to specified value}
var X,Y: integer;
begin
for Y:=0 to High(Mat) do
for X:=0 to High(Mat[0]) do Mat[X,Y]:=0;
end;
procedure SetMatrixDiagonals(var Mat: TMatrix);
{Set both diagonals to one}
var X,Y: integer;
begin
{Set diagonals to one}
for X:=0 to High(Mat) do Mat[X,X]:=1;
for X:=0 to High(Mat) do Mat[X,High(Mat)-X]:=1
end;
procedure BuildDiagionalMatrix(var Mat: TMatrix; Size: integer);
{Build a matrix with diagonals of the specified size }
var X,Y: integer;
begin
SetLength(Mat,Size,Size);
ClearMatrix(Mat,0);
SetMatrixDiagonals(Mat);
end;
procedure BuildAndShowMatrix(Memo: TMemo; var Mat: TMatrix; Size: integer);
{Build and show a matrix of specific size}
begin
Memo.Lines.Add(Format('Matrix = %2d X %2d',[Size,Size]));
BuildDiagionalMatrix(Mat,Size);
DisplayMatrix(Memo,Mat);
end;
procedure DisplayDiagonalMatrices(Memo: TMemo);
{Build and display matrices of various sizes}
var Mat: TMatrix;
var I: integer;
begin
for I:=3 to 10 do BuildAndShowMatrix(Memo,Mat,I);
end;
- Output:
Matrix = 3 X 3 [1 0 1] [0 1 0] [1 0 1] Matrix = 4 X 4 [1 0 0 1] [0 1 1 0] [0 1 1 0] [1 0 0 1] Matrix = 5 X 5 [1 0 0 0 1] [0 1 0 1 0] [0 0 1 0 0] [0 1 0 1 0] [1 0 0 0 1] Matrix = 6 X 6 [1 0 0 0 0 1] [0 1 0 0 1 0] [0 0 1 1 0 0] [0 0 1 1 0 0] [0 1 0 0 1 0] [1 0 0 0 0 1] Matrix = 7 X 7 [1 0 0 0 0 0 1] [0 1 0 0 0 1 0] [0 0 1 0 1 0 0] [0 0 0 1 0 0 0] [0 0 1 0 1 0 0] [0 1 0 0 0 1 0] [1 0 0 0 0 0 1] Matrix = 8 X 8 [1 0 0 0 0 0 0 1] [0 1 0 0 0 0 1 0] [0 0 1 0 0 1 0 0] [0 0 0 1 1 0 0 0] [0 0 0 1 1 0 0 0] [0 0 1 0 0 1 0 0] [0 1 0 0 0 0 1 0] [1 0 0 0 0 0 0 1] Matrix = 9 X 9 [1 0 0 0 0 0 0 0 1] [0 1 0 0 0 0 0 1 0] [0 0 1 0 0 0 1 0 0] [0 0 0 1 0 1 0 0 0] [0 0 0 0 1 0 0 0 0] [0 0 0 1 0 1 0 0 0] [0 0 1 0 0 0 1 0 0] [0 1 0 0 0 0 0 1 0] [1 0 0 0 0 0 0 0 1] Matrix = 10 X 10 [1 0 0 0 0 0 0 0 0 1] [0 1 0 0 0 0 0 0 1 0] [0 0 1 0 0 0 0 1 0 0] [0 0 0 1 0 0 1 0 0 0] [0 0 0 0 1 1 0 0 0 0] [0 0 0 0 1 1 0 0 0 0] [0 0 0 1 0 0 1 0 0 0] [0 0 1 0 0 0 0 1 0 0] [0 1 0 0 0 0 0 0 1 0] [1 0 0 0 0 0 0 0 0 1]
Draco
proc setDiagonals([*,*] byte matrix) void:
word x, y, width, height;
width := dim(matrix, 1);
height := dim(matrix, 2);
for x from 0 upto width-1 do
for y from 0 upto height-1 do
matrix[x,y] :=
if x = y or width - x - 1 = y
then 1
else 0
fi
od
od
corp
proc printMatrix([*,*] byte matrix) void:
word x, y, width, height;
width := dim(matrix, 1);
height := dim(matrix, 2);
for y from 0 upto height-1 do
for x from 0 upto width-1 do
write(' ', matrix[x,y]:1)
od;
writeln()
od
corp
proc main() void:
[9,9] byte m_odd;
[10,10] byte m_even;
setDiagonals(m_odd);
printMatrix(m_odd);
writeln();
setDiagonals(m_even);
printMatrix(m_even)
corp
- Output:
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1
EasyLang
proc matrix side . .
for i to side
for j to side
if i = j or i = side - j + 1
write "1 "
else
write "0 "
.
.
print ""
.
.
matrix 6
- Output:
1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1
Excel
LAMBDA
Excel can lift functions over scalar values to functions over two-dimensional arrays.
Here we bind the name TwoDiagonalMatrix to a lambda expression in the Name Manager of the Excel WorkBook:
(See LAMBDA: The ultimate Excel worksheet function)
TwoDiagonalMatrix
=LAMBDA(n,
LET(
ixs, SEQUENCE(n, n, 0, 1),
x, MOD(ixs, n),
y, QUOTIENT(ixs, n),
IF(x = y,
1,
IF(x = (n - y) - 1, 1, 0)
)
)
)
- Output:
The formulae in cells A2 and B2 populate the whole of each adjacent matrix.
fx | =TwoDiagonalMatrix(A2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | ||
1 | N | Matrix | ||||||||
2 | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | ||
3 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | |||
4 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | |||
5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | |||
6 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | |||
7 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | |||
8 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | |||
9 | ||||||||||
10 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
11 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | ||
12 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | ||
13 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | ||
14 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | ||
15 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | ||
16 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | ||
17 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Recent builds of Excel have also introduced a MAKEARRAY function, which takes a lambda expression as an argument.
Binding the name bothDiagonalMatrix in the Excel Name Manager:
bothDiagonalMatrix
=LAMBDA(n,
MAKEARRAY(
n, n,
LAMBDA(
x, y,
INT(OR(
x = y,
x = (1 + n - y)
))
)
)
)
- Output:
fx | =bothDiagonalMatrix(A2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | ||
1 | N | Matrix | ||||||||
2 | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | ||
3 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | |||
4 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | |||
5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | |||
6 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | |||
7 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | |||
8 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | |||
9 | ||||||||||
10 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
11 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | ||
12 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | ||
13 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | ||
14 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | ||
15 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | ||
16 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | ||
17 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
F#
// Matrix with two diagonals. Nigel Galloway: February 17th., 2022
let m11 m=Array2D.init m m (fun n g->if n=g || n+g=m-1 then 1 else 0)
printfn "%A\n\n%A" (m11 5) (m11 6)
- Output:
[[1; 0; 0; 0; 1] [0; 1; 0; 1; 0] [0; 0; 1; 0; 0] [0; 1; 0; 1; 0] [1; 0; 0; 0; 1]] [[1; 0; 0; 0; 0; 1] [0; 1; 0; 0; 1; 0] [0; 0; 1; 1; 0; 0] [0; 0; 1; 1; 0; 0] [0; 1; 0; 0; 1; 0] [1; 0; 0; 0; 0; 1]]
Factor
USING: io kernel math math.matrices prettyprint ;
: <x-matrix> ( n -- matrix )
dup dup 1 - '[ 2dup = -rot + _ = or 1 0 ? ] <matrix-by-indices> ;
6 <x-matrix> simple-table. nl
7 <x-matrix> simple-table.
- Output:
1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
FreeBASIC
Text based
Sub twoDiagonalMatrix(n As Integer)
For i As Integer = 1 To n
For j As Integer = 1 To n
Print Iif((i = j) Or (i + j = n + 1), "1 ", "0 ");
Next j
Print
Next i
End Sub
twoDiagonalMatrix(6)
Print
twoDiagonalMatrix(7)
Sleep
- Output:
1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
Graphical
Dim As Integer n = 8, size = 60 * n + 70
Screenres size, size, 24
Cls
Windowtitle "Matrix with two diagonals"
Dim As Integer beige = Rgb(245, 245, 220), brown = Rgb(171, 82, 54)
For x As Integer = 0 To n
For y As Integer = 0 To n
Dim As Integer cx = x*60 + 10
Dim As Integer cy = y*60 + 10
'If (x + y) Mod 2 = 0 Then
If (x = y) Or (x + y = n) Then
Line (cx,cy) - (cx+50, cy+50), brown, BF
Draw String (cx + 20, cy + 20), "1", beige
Else
Line (cx,cy) - (cx+50, cy+50), beige, BF
End If
Next y
Next x
Bsave "twoDiagonalMatrix.bmp",0
Sleep
- Output:
https://www.dropbox.com/s/ph9r28gpkp8ao8n/twoDiagonalMatrix.bmp?dl=0
Fortran
Free form
Fortran stores data in columns. Therefore, it should be checked whether instead of filling the matrix row by row (as below) it would be better to do it column by column. The profit would be cache hit optimization, better communication between CPU and RAM. Fortran allows you to zero the entire array, such as the a array below, simply by substituting a = 0. Unfortunately, an array 100x100 (that is, the choosen maximum size) would be filled with zeros even if, as in the example, we would need a much smaller array. You can also eliminate the variables j1 and j2 by replacing them with i and n - i + 1 respectively, but the source code would be slightly less readable.
program prog
dimension a(100, 100)
n = 7
j1 = 1
j2 = n
do i = 1, n
do j = 1, n
a(i, j) = 0.
end do
a(i, j1) = 1
a(i, j2) = 1
j1 = j1 + 1
j2 = j2 - 1
end do
do i = 1, n
print *, (a(i, j), j=1,n)
end do
end
- Output:
1.00000000 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 1.00000000 0.00000000E+00 1.00000000 0.00000000E+00 0.00000000E+00 0.00000000E+00 1.00000000 0.00000000E+00 0.00000000E+00 0.00000000E+00 1.00000000 0.00000000E+00 1.00000000 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 1.00000000 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 1.00000000 0.00000000E+00 1.00000000 0.00000000E+00 0.00000000E+00 0.00000000E+00 1.00000000 0.00000000E+00 0.00000000E+00 0.00000000E+00 1.00000000 0.00000000E+00 1.00000000 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 1.00000000
Fixed form
Fortran is the oldest high-level programming language. It is constantly evolving and unfortunately there are no longer (or at least I do not have) computers on which to test whether the program works in the old Fortran IV or an even older dialect. The example below should be in Fortran IV, but unfortunately it was tested with a modern Fortran 2018 compiler, so even in legacy mode it is not Fortran IV but Fortran 77. However, it seems that it should work on CDC6000 mainframe ... if someone obviously has CDC6000.
C DIAGONAL-DIAGONAL MATRIX IN FORTRAN 77
PROGRAM PROG
DIMENSION A(100, 100)
N = 7
A = 0.
DO 10 I = 1, N
A(I, I) = 1.
10 A(I, N - I + 1) = 1.
DO 20 I = 1, N
20 PRINT *, (A(I, J), J=1,N)
END
Go
package main
import "fmt"
func specialMatrix(n uint) {
for i := uint(0); i < n; i++ {
for j := uint(0); j < n; j++ {
if i == j || i+j == n-1 {
fmt.Printf("%d ", 1)
} else {
fmt.Printf("%d ", 0)
}
}
fmt.Println()
}
}
func main() {
specialMatrix(8) // even n
fmt.Println()
specialMatrix(9) // odd n
}
- Output:
1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
Haskell
---------------- MATRIX WITH TWO DIAGONALS ---------------
twoDiagonalMatrix :: Int -> [[Int]]
twoDiagonalMatrix n = flip (fmap . go) xs <$> xs
where
xs = [1 .. n]
go x y
| y == x = 1
| y == succ (subtract x n) = 1
| otherwise = 0
--------------------------- TEST -------------------------
main :: IO ()
main =
mapM_ putStrLn $
unlines . fmap (((' ' :) . show) =<<)
. twoDiagonalMatrix
<$> [7, 8]
Or, in the form of a list comprehension:
-------------- MATRIX WITH TWO DIAGONALS ---------------
twoDiagonalMatrix :: Int -> [[Int]]
twoDiagonalMatrix n =
let xs = [1 .. n]
in [ [ fromEnum $ x `elem` [y, succ (n - y)]
| x <- xs
]
| y <- xs
]
--------------------------- TEST -------------------------
main :: IO ()
main =
mapM_ putStrLn $
unlines . fmap (((' ' :) . show) =<<)
. twoDiagonalMatrix
<$> [7, 8]
- Output:
1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
and in terms of the Data.Matrix library:
import Data.Matrix
twoDiagonals :: Int -> Matrix Int
twoDiagonals n =
matrix
n
n
(\(a, b) -> fromEnum $ a `elem` [b, succ (n - b)])
main :: IO ()
main =
mapM_ print $ twoDiagonals <$> [7, 8]
- Output:
┌ ┐ │ 1 0 0 0 0 0 1 │ │ 0 1 0 0 0 1 0 │ │ 0 0 1 0 1 0 0 │ │ 0 0 0 1 0 0 0 │ │ 0 0 1 0 1 0 0 │ │ 0 1 0 0 0 1 0 │ │ 1 0 0 0 0 0 1 │ └ ┘ ┌ ┐ │ 1 0 0 0 0 0 0 1 │ │ 0 1 0 0 0 0 1 0 │ │ 0 0 1 0 0 1 0 0 │ │ 0 0 0 1 1 0 0 0 │ │ 0 0 0 1 1 0 0 0 │ │ 0 0 1 0 0 1 0 0 │ │ 0 1 0 0 0 0 1 0 │ │ 1 0 0 0 0 0 0 1 │ └ ┘
J
Implementation:
task=: {{(+.|.)=i.y}}
In other words, generate an order n identity matrix, flip it and (treating it as a bit matrix) OR the two matrices.
Some examples:
task 2
1 1
1 1
task 3
1 0 1
0 1 0
1 0 1
task 4
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1
task 5
1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
task 6
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1
Java
The "Java philosophy" is the object-oriented paradigm. The example solution given below is therefore somewhat incomplete. We should first declare the matrix as an interface (or abstract class), then create a whole hierarchy of subclasses where DiagonalDiagonalMatrix would be a subclass of SquareMatrix or something like that. Of course, it's a gigantic job, but as a result we would have a library competing with Matlab / Octave etc., compliant with SOLID principles.
package example.diagdiag;
public class Program {
public static void main(String[] args) {
DiagonalDiagonalMatrix A = new DiagonalDiagonalMatrix(7);
System.out.println(A);
}
}
class DiagonalDiagonalMatrix {
final int n;
private double[][] a = null;
public Matrix(int n) {
this.n = n;
}
public double get(int i, int j) {
if (a == null) {
return (i == j || i == n - j + 1) ? 1.0 : 0.0;
} else {
return a[i - 1][j - 1];
}
}
// Not necessary for the task: a lazy creation of the dense matrix.
//
// public void put(int i, int j, double value) {
// if (a == null) {
// a = new double[n][n];
// for (int p = 1; p <= n; i++) {
// for (int q = 1; q <= n; j++) {
// a[p - 1][q - 1] = get(p, q);
// }
// }
// }
// a[i - 1][j - 1] = value;
// }
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
sb.append('\t');
sb.append(get(i, j));
}
sb.append('\n');
}
return sb.toString();
}
}
- Output:
1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0
JavaScript
(() => {
"use strict";
// ------------ MATRIX WITH TWO DIAGONALS ------------
// doubleDiagonal :: Int -> [[Int]]
const doubleDiagonal = n => {
// A square matrix of dimension n with ones
// along both diagonals, and zeros elsewhere.
const xs = enumFromTo(1)(n);
return xs.map(
y => xs.map(
x => Number(
[y, 1 + n - y].includes(x)
)
)
);
};
// ---------------------- TEST -----------------------
const main = () => [7, 8].map(
n => showMatrix(
doubleDiagonal(n)
)
).join("\n\n");
// --------------------- GENERIC ---------------------
// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = m =>
n => Array.from({
length: 1 + n - m
}, (_, i) => m + i);
// showMatrix :: [[a]] -> String
const showMatrix = rows =>
// String representation of a matrix.
rows.map(
row => row.map(String).join(" ")
).join("\n");
// MAIN --
return main();
})();
Or, in terms of a more general matrix function:
(() => {
"use strict";
// ------------ MATRIX WITH TWO DIAGONALS ------------
// bothDiagonals :: Int -> [[Int]]
const bothDiagonals = n =>
matrix(n)(n)(
y => x => Number(
[y, (n - y) - 1].includes(x)
)
);
// ---------------------- TEST -----------------------
const main = () => [7, 8].map(
compose(
showMatrix,
bothDiagonals
)
).join("\n\n");
// --------------------- GENERIC ---------------------
// compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
const compose = (...fs) =>
// A function defined by the right-to-left
// composition of all the functions in fs.
fs.reduce(
(f, g) => x => f(g(x)),
x => x
);
// matrix Int -> Int -> (Int -> Int -> a) -> [[a]]
const matrix = nRows => nCols =>
// A matrix of a given number of columns and rows,
// in which each value is a given function of its
// (zero-based) column and row indices.
f => Array.from({
length: nRows
}, (_, iRow) => Array.from({
length: nCols
}, (__, iCol) => f(iRow)(iCol)));
// showMatrix :: [[a]] -> String
const showMatrix = rows =>
// String representation of a matrix.
rows.map(
row => row.map(String).join(" ")
).join("\n");
// MAIN ---
return main();
})();
- Output:
1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
jq
Works with gojq, the Go implementation of jq
def bidiagonal_matrix:
. as $n
| [range(0; $n) | 0] as $z
| reduce range(0; $n) as $i ([];
. + [$z | .[$i] = 1 | .[$n-$i-1] = 1] );
def display:
map(join(" ")) | join("\n");
Example
9|bidiagonal_matrix|display
- Output:
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
Julia
julia> twodiagonalmat(n) = [Int(i == j || i == n - j + 1) for j in 1:n, i in 1:n]
twodiagonalmat (generic function with 1 method)
julia> twodiagonalmat(1)
1×1 Matrix{Int64}:
1
julia> twodiagonalmat(2)
2×2 Matrix{Int64}:
1 1
1 1
julia> twodiagonalmat(3)
3×3 Matrix{Int64}:
1 0 1
0 1 0
1 0 1
julia> twodiagonalmat(4)
4×4 Matrix{Int64}:
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1
julia> twodiagonalmat(5)
5×5 Matrix{Int64}:
1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
Sparse matrix version
julia> using LinearAlgebra
julia> twodiagonalsparse(n) = I(n) .| rotl90(I(n))
twodiagonalsparse (generic function with 1 method)
julia> twodiagonalsparse(7)
7×7 SparseArrays.SparseMatrixCSC{Bool, Int64} with 13 stored entries:
1 ⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ 1 ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ 1 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ 1 ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ 1 ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅ 1
julia> twodiagonalsparse(8)
8×8 SparseArrays.SparseMatrixCSC{Bool, Int64} with 16 stored entries:
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ 1 ⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ 1 ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ 1 ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅ 1 ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
K
K6
diag2: {x||x}@=:
diag2 5
- Output:
(1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1)
Mathematica /Wolfram Language
ClearAll[CreateMatrixWithTwoDiagonals];
CreateMatrixWithTwoDiagonals[n_Integer] :=
IdentityMatrix[n] + Reverse[IdentityMatrix[n]] -
If[OddQ[n], SparseArray[{{(n + 1)/2, (n + 1)/2} -> 1}, {n, n}], 0];
CreateMatrixWithTwoDiagonals[7] // MatrixForm
- Output:
MATLAB
function A = diagdiag(N, sparse)
% Create an diagonal-diagonal square matrix.
%
% Parameters:
%
% N -- number of rows (columns);
% sparse -- should be true to create a sparse matrix,
% default false (dense matrix).
%
% Return:
%
% A matrix where all elements A(i, j) are zero except
% elements on the diagonal or on the back-diagonal.
% The diagonal (and back-diagonal) elements are equal 1.
if nargin < 2
sparse = false;
end
if sparse
A = speye(N);
else
A = eye(N);
end
A = fliplr(A);
A(1:N+1:end) = 1;
end
- Output:
>> diagdiag(7) ans = Columns 1 through 7 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 >> diagdiag(7, true) ans = (1,1) 1 (7,1) 1 (2,2) 1 (6,2) 1 (3,3) 1 (5,3) 1 (4,4) 1 (3,5) 1 (5,5) 1 (2,6) 1 (6,6) 1 (1,7) 1 (7,7) 1
Maxima
/* Function that returns a square matrix with a diagonal and antidiagonal pattern in their entries */
diags(n):=genmatrix(lambda([x,y],if x=y or x+y=n+1 then 1 else 0),n,n)$
/* Example */
diags(6);
- Output:
matrix( [1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 1, 1, 0, 0], [0, 0, 1, 1, 0, 0], [0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1] )
Nim
proc drawMatrix(side: Positive) =
let last = side - 1
for i in 0..<side:
for j in 0..<side:
stdout.write if i == j or i == last - j: "1 " else: "0 "
echo()
drawMatrix(6)
- Output:
1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1
Nu
def diag2 [n: int] {
1..$n | zip $n..1 | each {|p| seq 1 $n | each { $in in $p | into int } | str join ' ' } | str join "\n"
}
..5 | each { {k: $in v: (diag2 $in)} } | transpose -r
- Output:
╭───┬───┬───┬─────┬───────┬─────────┬───────────╮ │ # │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ ├───┼───┼───┼─────┼───────┼─────────┼───────────┤ │ 0 │ │ 1 │ 1 1 │ 1 0 1 │ 1 0 0 1 │ 1 0 0 0 1 │ │ │ │ │ 1 1 │ 0 1 0 │ 0 1 1 0 │ 0 1 0 1 0 │ │ │ │ │ │ 1 0 1 │ 0 1 1 0 │ 0 0 1 0 0 │ │ │ │ │ │ │ 1 0 0 1 │ 0 1 0 1 0 │ │ │ │ │ │ │ │ 1 0 0 0 1 │ ╰───┴───┴───┴─────┴───────┴─────────┴───────────╯
Pascal
program diagonaldiagonal;
const N = 7;
type
index = 1..N;
var
a : array[index, index] of real;
i, j, j1, j2 : index;
begin
for i := 1 to N do
begin
for j := 1 to N do
a[i, j] := 0.0;
j1 := i;
j2 := N - i + 1;
a[i, j1] := 1.0;
a[i, j2] := 1.0;
end;
for i := 1 to N do
begin
for j := 1 to N do
write(a[i, j]:2:0);
writeln();
end
end.
- Output:
1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
Perl
Strings
#!/usr/bin/perl
use strict; #https://rosettacode.org/wiki/Matrix_with_two_diagonals
use warnings;
print diagonal($_), "\n" for 10, 11;
sub diagonal
{
my $n = shift() - 1;
local $_ = 1 . 0 x ($n - 1) . 2 . "\n" . (0 . 0 x $n . "\n") x $n;
1 while s/(?<=1...{$n})0/1/s or s/(?<=2.{$n})[01]/2/s;
return tr/2/1/r =~ s/\B/ /gr;
}
- Output:
1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
Numbers
use strict;
use warnings;
use feature 'say';
sub dual_diagonal {
my($n) = shift() - 1;
my @m;
for (0..$n) {
my @rr = reverse my @r = ( (0) x $_, 1, (0) x ($n-$_) );
push @m, [ map { $r[$_] or $rr[$_] } 0..$n ]
}
@m
}
say join ' ', @$_ for dual_diagonal(4); say '';
say join ' ', @$_ for dual_diagonal(5);
- Output:
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1
Phix
numbers
Tee hee, pick the bones out of this one. Lovely.
with javascript_semantics for n=6 to 7 do pp(apply(true,reinstate,{repeat(repeat(0,n),n),apply(true,sq_mul,{tagset(n),{{1,-1}}}),{{1,1}}}),{pp_Nest,1}) end for
- Output:
{{1,0,0,0,0,1}, {0,1,0,0,1,0}, {0,0,1,1,0,0}, {0,0,1,1,0,0}, {0,1,0,0,1,0}, {1,0,0,0,0,1}} {{1,0,0,0,0,0,1}, {0,1,0,0,0,1,0}, {0,0,1,0,1,0,0}, {0,0,0,1,0,0,0}, {0,0,1,0,1,0,0}, {0,1,0,0,0,1,0}, {1,0,0,0,0,0,1}}
Slightly saner, shows sackly same stuff:
with javascript_semantics for n=6 to 7 do sequence s = repeat(repeat(0,n),n) for i=1 to n do s[i][i] = 1 s[i][-i] = 1 end for pp(s,{pp_Nest,1}) end for
strings
with javascript_semantics for n=6 to 7 do sequence s = repeat(join(repeat('0',n),' '),n) for i=1 to n do integer j = 2*i-1 s[i][j] = '1' s[i][-j] = '1' end for printf(1,"%s\n\n",{join(s,"\n")}) end for
- Output:
1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
GUI/online
Based on 2048#Phix, and uses the same colour and font choices. You can run this online here.
with javascript_semantics include pGUI.e constant TITLE = "Strange Identity Matrices", HELPTXT = """ Press F1 to see this help text. Press +/- to increase or decrease the matrix size Press 'M' for a mosaic pattern Press 'O' for outer or four sides of a square Press 'X' for two diagonals The window can be fully resized """ function help() IupMessage(TITLE,HELPTXT,bWrap:=false) return IUP_IGNORE -- (don't open browser help!) end function Ihandle canvas, dlg cdCanvas cddbuffer, cdcanvas sequence board integer n = 5, mtype = 'X' -- (two diags) or 'O'uter or 'M'osaic function mosaic() for y=1 to n do for x=1+odd(n+y) to n by 2 do board[y][x] = "1" end for end for return "mosaic" end function function outer() for y=1 to n do integer step = iff(y=1 or y=n?1:n-1) for x=1 to n by step do board[y][x] = "1" end for end for return "four sides" end function function diag() for i=1 to n do board[i][i] = "1" board[i][-i] = "1" end for return "two diagonals" end function function redraw_cb(Ihandle /*ih*/) integer {dw,dh} = IupGetIntInt(canvas, "DRAWSIZE"), ms = n*5+5, -- margin space mx = min(dw,dh)-ms, -- max size ts = floor(mx/n), -- max tile size th = floor(ts/2), -- for text posn os = ts*n+ms, -- overall size ox = floor((dw-os)/2), -- top right x oy = floor((dh-os)/2), -- top right y font_size = floor((ts+10)/2) board = repeat(repeat("0",n),n) string title switch mtype do case 'M': title = mosaic() case 'O': title = outer() case 'X': title = diag() end switch IupSetStrAttribute(dlg,"TITLE","%s (%dx%d, %s)",{TITLE,n,n,title}) cdCanvasActivate(cddbuffer) cdCanvasSetBackground(cddbuffer, #FAF8EF) cdCanvasClear(cddbuffer) cdCanvasSetForeground(cddbuffer, #BBADA0) cdCanvasRoundedBox(cddbuffer, ox, ox+os, oy, oy+os, 10, 10) cdCanvasFont(cddbuffer, "Calibri", CD_BOLD, font_size) integer tx = ox+5 for y=1 to n do integer ty = oy+5 for x=1 to n do string bxy = board[x][y] cdCanvasSetForeground(cddbuffer, #EEE4DA) cdCanvasRoundedBox(cddbuffer, tx, tx+ts-2, ty, ty+ts-2, 5, 5) cdCanvasSetForeground(cddbuffer, #776E65) cdCanvasText(cddbuffer, tx+th, ty+th, bxy) ty += ts+5 end for tx += ts+5 end for cdCanvasFlush(cddbuffer) return IUP_DEFAULT end function function map_cb(Ihandle ih) cdcanvas = cdCreateCanvas(CD_IUP, ih) cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas) cdCanvasSetTextAlignment(cddbuffer, CD_CENTER) return IUP_DEFAULT end function function key_cb(Ihandle /*ih*/, atom c) if c=K_ESC then return IUP_CLOSE end if -- (standard practice for me) if c=K_F5 then return IUP_DEFAULT end if -- (let browser reload work) if c=K_F1 then return help() end if if c='+' then n += 1 end if if c='-' then n -= (n>1) end if c = upper(c) if find(c,"MOX") then mtype = c end if IupUpdate(canvas) return IUP_IGNORE end function IupOpen() canvas = IupCanvas("RASTERSIZE=532x532") IupSetCallbacks(canvas, {"MAP_CB", Icallback("map_cb"), "ACTION", Icallback("redraw_cb")}) dlg = IupDialog(canvas,"MINSIZE=440x450") IupSetCallback(dlg, "K_ANY", Icallback("key_cb")) IupSetAttributeHandle(NULL,"PARENTDIALOG",dlg) IupShow(dlg) IupSetAttribute(canvas, "RASTERSIZE", NULL) if platform()!=JS then IupMainLoop() IupClose() end if
PHP
<?php
$n = 9; // the number of rows
for ($i = 1; $i <= $n; $i++) {
for ($j = 1; $j <= $n; $j++) {
echo ($i == $j || $i == $n - $j + 1) ? ' 1' : ' 0';
}
echo "\n";
}
- Output:
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
PL/M
... under CP/M (or an emulator)
100H: /* DRAW SOME MATRICES WITH 1S ON THE DIAGONALS and 0S ELSEWHERE */
/* CP/M SYSTEM CALL AND I/O ROUTINES */
BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
PR$CHAR: PROCEDURE( C ); DECLARE C BYTE; CALL BDOS( 2, C ); END;
PR$NL: PROCEDURE; CALL PR$CHAR( 0DH ); CALL PR$CHAR( 0AH ); END;
/* TASK */
DRAW$DIAGONALS: PROCEDURE( N );
DECLARE N BYTE;
DECLARE ( I, J, R ) BYTE;
R = N;
DO I = 1 TO N;
DO J = 1 TO N;
CALL PR$CHAR( ' ' );
IF J = I OR J = R THEN CALL PR$CHAR( '1' );
ELSE CALL PR$CHAR( '0' );
END;
CALL PR$NL;
R = R - 1;
END;
END DRAW$DIAGONALS ;
CALL DRAW$DIAGONALS( 10 );
CALL PR$NL;
CALL DRAW$DIAGONALS( 11 );
EOF
- Output:
1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
Processing
//Aamrun, 27th June 2022
size(1000,1000);
textSize(50);
for(int i=0;i<10;i++){
for(int j=0;j<10;j++){
noFill();
square(i*100,j*100,100);
fill(#000000);
if(i==j||i+j==9){
text("1",i*100+50,j*100+50);
}
else{
text("0",i*100+50,j*100+50);
}
}
}
Python
Pure Python
'''Matrix with two diagonals'''
# twoDiagonalMatrix :: Int -> [[Int]]
def twoDiagonalMatrix(n):
'''A square matrix of dimension n with ones
along both diagonals, and zeros elsewhere.
'''
return matrix(
n, n, lambda row, col: int(
row in (col, 1 + (n - col))
)
)
# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''Matrices of dimension 7 and 8'''
for n in [7, 8]:
print(
showMatrix(
twoDiagonalMatrix(n)
) + '\n'
)
# ----------------------- GENERIC ------------------------
# matrix :: Int -> Int -> ((Int, Int) -> a) -> [[a]]
def matrix(nRows, nCols, f):
'''A matrix of a given number of columns and rows,
in which each value is a given function over the
tuple of its (one-based) row and column indices.
'''
return [
[f(y, x) for x in range(1, 1 + nCols)]
for y in range(1, 1 + nRows)
]
# showMatrix :: [[Int]] -> String
def showMatrix(rows):
'''String representation of a matrix'''
return '\n'.join([
' '.join([str(x) for x in y]) for y in rows
])
# MAIN ---
if __name__ == '__main__':
main()
- Output:
1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
NumPy
import numpy as np
def diagdiag(n):
"""
Create a diagonal-diagonal matrix
Args:
n (int): number of rows.
Returns:
a (numpy matrix): double diagonal matrix.
"""
d = np.eye(n)
a = d + np.fliplr(d)
if n % 2:
k = (n - 1) // 2
a[k, k] = 1
return a
print(diagdiag(7))
- Output:
[[1. 0. 0. 0. 0. 0. 1.] [0. 1. 0. 0. 0. 1. 0.] [0. 0. 1. 0. 1. 0. 0.] [0. 0. 0. 1. 0. 0. 0.] [0. 0. 1. 0. 1. 0. 0.] [0. 1. 0. 0. 0. 1. 0.] [1. 0. 0. 0. 0. 0. 1.]]
Quackery
[ [] swap dup times
[ 0 over of
1 swap i poke
1 swap i^ poke
nested rot join swap ]
drop ] is two-diagonals ( n --> [ )
8 two-diagonals
witheach
[ witheach [ echo sp ] cr ]
cr
9 two-diagonals
witheach
[ witheach [ echo sp ] cr ]
- Output:
1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
R
two_diagonal_matrix<-function(n){
res<-diag(nrow=n)
res[n-0:(n-1)+(0:(n-1))*n]<-1
res}
print(two_diagonal_matrix(6))
print(two_diagonal_matrix(7))
Output
[,1] [,2] [,3] [,4] [,5] [,6] [1,] 1 0 0 0 0 1 [2,] 0 1 0 0 1 0 [3,] 0 0 1 1 0 0 [4,] 0 0 1 1 0 0 [5,] 0 1 0 0 1 0 [6,] 1 0 0 0 0 1 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 1 0 0 0 0 0 1 [2,] 0 1 0 0 0 1 0 [3,] 0 0 1 0 1 0 0 [4,] 0 0 0 1 0 0 0 [5,] 0 0 1 0 1 0 0 [6,] 0 1 0 0 0 1 0 [7,] 1 0 0 0 0 0 1
Raku
sub dual-diagonal($n) { ([1, |(0 xx $n-1)], *.rotate(-1) … *[*-1]).map: { [$_ Z|| .reverse] } }
.say for dual-diagonal(6);
say '';
.say for dual-diagonal(7);
- Output:
[1 0 0 0 0 1] [0 1 0 0 1 0] [0 0 1 1 0 0] [0 0 1 1 0 0] [0 1 0 0 1 0] [1 0 0 0 0 1] [1 0 0 0 0 0 1] [0 1 0 0 0 1 0] [0 0 1 0 1 0 0] [0 0 0 1 0 0 0] [0 0 1 0 1 0 0] [0 1 0 0 0 1 0] [1 0 0 0 0 0 1]
Red
Red[]
x-matrix: function [size][
repeat i size [
repeat j size [
prin either any [i = j i + j = (size + 1)] [1] [0]
prin sp
]
prin newline
]
]
x-matrix 6
prin newline
x-matrix 7
- Output:
1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
Ring
# Project : Identity Matrix
# Date : 2022/16/02
# Author : Gal Zsolt (~ CalmoSoft ~)
# Email : <calmosoft@gmail.com>
load "stdlib.ring"
load "guilib.ring"
size = 8
C_Spacing = 1
C_ButtonBlueStyle = 'border-radius:6px;color:black; background-color: blue'
C_ButtonOrangeStyle = 'border-radius:6px;color:black; background-color: orange'
Button = newlist(size,size)
LayoutButtonRow = list(size)
app = new qApp
{
win = new qWidget() {
setWindowTitle('Identity Matrix')
move(500,100)
reSize(600,600)
winheight = win.height()
fontSize = 18 + (winheight / 100)
LayoutButtonMain = new QVBoxLayout()
LayoutButtonMain.setSpacing(C_Spacing)
LayoutButtonMain.setContentsmargins(0,0,0,0)
for Row = 1 to size
LayoutButtonRow[Row] = new QHBoxLayout() {
setSpacing(C_Spacing)
setContentsmargins(0,0,0,0)
}
for Col = 1 to size
Button[Row][Col] = new QPushButton(win) {
setSizePolicy(1,1)
}
LayoutButtonRow[Row].AddWidget(Button[Row][Col])
next
LayoutButtonMain.AddLayout(LayoutButtonRow[Row])
next
LayoutDataRow1 = new QHBoxLayout() { setSpacing(C_Spacing) setContentsMargins(0,0,0,0) }
LayoutButtonMain.AddLayout(LayoutDataRow1)
setLayout(LayoutButtonMain)
show()
}
pBegin()
exec()
}
func pBegin()
for Row = 1 to size
for Col = 1 to size
if Row = Col or Row + Col = 9
Button[Row][Col].setStyleSheet(C_ButtonOrangeStyle)
Button[Row][Col].settext("1")
else
Button[Row][Col].setStyleSheet(C_ButtonBlueStyle)
Button[Row][Col].settext("0")
ok
next
next
score = 0
Outpu image:
Special identity matrix with two diagonals
RPL
The approach here is to fill the second diagonal of an identity matrix generated by the IDN
instruction, thanks to a classical FOR.. NEXT
loop.
≪ IDN LAST 1 OVER FOR line line OVER 2 →LIST ROT SWAP 1 PUT SWAP 1 - NEXT DROP ≫ ‘XDIAG’ STO
5 XDIAG 6 XDIAG
- Output:
2: [[ 1 0 0 0 1 ] [ 0 1 0 1 0 ] [ 0 0 1 0 0 ] [ 0 1 0 1 0 ] [ 1 0 0 0 1 ]] 1: [[ 1 0 0 0 0 1 ] [ 0 1 0 0 1 0 ] [ 0 0 1 1 0 0 ] [ 0 0 1 1 0 0 ] [ 0 1 0 0 1 0 ] [ 1 0 0 0 0 1 ]]
Ruby
require 'matrix'
class Matrix
def self.two_diagonals(n)
Matrix.build(n, n) do |row, col|
row == col || row == n-col-1 ? 1 : 0
end
end
end
Matrix.two_diagonals(5).row_vectors.each{|row| puts row.to_a.join(" ") }
- Output:
1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1
SETL
program matrix_with_two_diagonals;
print(fmt matrix 10);
print(fmt matrix 11);
op fmt(mat);
return "" +/[(fl := str l)(2..#fl-1) + "\n" : l in mat];
end op;
op matrix(size);
return [[if x=y or size-x+1=y then 1 else 0 end : x in [1..size]] : y in [1..size]];
end op;
end program;
- Output:
1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
Sidef
func dual_diagonal(n) {
n.of {|k|
var r = (k.of(0) + [1] + (n - k - 1).of(0))
r ~Z| r.reverse
}
}
dual_diagonal(5).each{.join(' ').say}; say ''
dual_diagonal(6).each{.join(' ').say}
- Output:
1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1
Uiua
DoubleMatrix ← ↥⇌.⊞=.⇡
DoubleMatrix 4
- Output:
╭─ ╷ 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 ╯
V (Vlang)
fn special_matrix(n int) {
for i in 0..n {
for j in 0..n {
if i == j || i+j == n-1 {
print("1 ")
} else {
print("0 ")
}
}
println('')
}
}
fn main() {
special_matrix(6) // even n
println('')
special_matrix(5) // odd n
}
- Output:
1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1
Wren
A terminal based solution as I don't like asking people to view external images.
var specialMatrix = Fn.new { |n|
for (i in 0...n) {
for (j in 0...n) {
System.write((i == j || i + j == n - 1) ? "1 " : "0 ")
}
System.print()
}
}
specialMatrix.call(6) // even n
System.print()
specialMatrix.call(7) // odd n
- Output:
1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
XPL0
proc DrawMat(S);
int S, I, J;
[for I:= 0 to S-1 do
[for J:= 0 to S-1 do
Text(0, if J=I or J=S-1-I then "1 " else "0 ");
CrLf(0);
];
];
[DrawMat(6); CrLf(0);
DrawMat(7); CrLf(0);
]
- Output:
1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
- Draft Programming Tasks
- Matrices
- 11l
- Action!
- Ada
- ALGOL 68
- ALGOL W
- APL
- AppleScript
- Arturo
- AutoHotkey
- AWK
- Basic
- BCPL
- BQN
- C
- C++
- CLU
- Delphi
- SysUtils,StdCtrls
- Draco
- EasyLang
- Excel
- F Sharp
- Factor
- FreeBASIC
- Fortran
- Go
- Haskell
- J
- Java
- JavaScript
- Jq
- Julia
- K
- Mathematica
- Wolfram Language
- MATLAB
- Maxima
- Nim
- Nu
- Pascal
- Perl
- Phix
- Phix/pGUI
- Phix/online
- PHP
- PL/M
- Processing
- Python
- Numpy
- Quackery
- R
- Raku
- Red
- Ring
- RPL
- Ruby
- SETL
- Sidef
- Uiua
- V (Vlang)
- Wren
- XPL0