Mosaic matrix

From Rosetta Code
Mosaic matrix is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Draw a 'mosaic' matrix which, for the purposes of this task, is a square matrix which has 1's in alternate cells (both horizontally and vertically) starting with a 1 in the top-left hand cell.

Other cells can either be left blank or filled with some other character.
If you can please use GUI
Mosaic Matrix - image

Ada[edit]

with Ada.Text_Io; use Ada.Text_Io;
with Ada.Command_Line;

procedure Mosaic_Matrix is

   type Matrix_Type is array (Positive range <>, Positive range <>) of Character;

   function Mosaic (Length : Natural) return Matrix_Type is
   begin
      return M : Matrix_Type (1 .. Length, 1 .. Length) do
         for Row in M'Range (1) loop
            for Col in M'Range (2) loop
               M (Row, Col) := (if (Row + Col) mod 2 = 0
                                then '1' else '.');
            end loop;
         end loop;
      end return;
   end Mosaic;

   procedure Put (M : Matrix_Type) is
   begin
      for Row in M'Range (1) loop
         for Col in M'Range (2) loop
            Put (' ');
            Put (M (Row, Col));
         end loop;
         New_Line;
      end loop;
   end Put;

begin
   Put (Mosaic (Length => Natural'Value (Ada.Command_Line.Argument (1))));

exception
   when others =>
      Put_Line ("Usage: ./mosaic_matrix <side-length>");

end Mosaic_Matrix;
Output:
$ ./mosaic_matrix 4
 1 . 1 .
 . 1 . 1
 1 . 1 .
 . 1 . 1
$ ./mosaic_matrix 2
 1 .
 . 1
$ ./mosaic_matrix 1
 1
$ ./mosaic_matrix 0
$ ./mosaic_matrix
Usage: ./mosaic_matrix <side-length>

ALGOL 68[edit]

BEGIN # draw a "mosaic matrix" - one with a 1 in the top-left and then  #
      # alternating with another character vertically and horiontally   #
    # draws a mosaic matrix with height and width = n using "1" and "." #
    PROC draw mosaic = ( INT n )VOID:
         BEGIN
            CHAR set   = "1";
            CHAR reset = ".";
            FOR i TO n DO
                CHAR c := IF ODD i THEN set ELSE reset FI;
                FOR j TO n DO
                    print( ( " ", c ) );
                    c := IF c = set THEN reset ELSE set FI
                OD;
                print( ( newline ) )
            OD
         END # draw mosaic # ;
    # test the draw mosaic procedure #
    draw mosaic( 10 );
    print( ( newline ) );
    draw mosaic( 11 )
END
Output:
 1 . 1 . 1 . 1 . 1 .
 . 1 . 1 . 1 . 1 . 1
 1 . 1 . 1 . 1 . 1 .
 . 1 . 1 . 1 . 1 . 1
 1 . 1 . 1 . 1 . 1 .
 . 1 . 1 . 1 . 1 . 1
 1 . 1 . 1 . 1 . 1 .
 . 1 . 1 . 1 . 1 . 1
 1 . 1 . 1 . 1 . 1 .
 . 1 . 1 . 1 . 1 . 1

 1 . 1 . 1 . 1 . 1 . 1
 . 1 . 1 . 1 . 1 . 1 .
 1 . 1 . 1 . 1 . 1 . 1
 . 1 . 1 . 1 . 1 . 1 .
 1 . 1 . 1 . 1 . 1 . 1
 . 1 . 1 . 1 . 1 . 1 .
 1 . 1 . 1 . 1 . 1 . 1
 . 1 . 1 . 1 . 1 . 1 .
 1 . 1 . 1 . 1 . 1 . 1
 . 1 . 1 . 1 . 1 . 1 .
 1 . 1 . 1 . 1 . 1 . 1

Arturo[edit]

drawSquare: function [side][
    loop 1..side 'x ->
        print map 1..side 'y [
            (equal? x%2 y%2)? -> 1 -> 0
        ]
]

drawSquare 6
print ""
drawSquare 9
Output:
1 0 1 0 1 0 
0 1 0 1 0 1 
1 0 1 0 1 0 
0 1 0 1 0 1 
1 0 1 0 1 0 
0 1 0 1 0 1 

1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1

AutoHotkey[edit]

for i, v in [8, 9]
    result .= "Matrix Size: " v "*" v "`n" matrix2txt(mosaicMatrix(v)) "`n"
MsgBox % result
return

mosaicMatrix(size){
    M := []
    loop % size {
        row := A_Index
        loop % size
            M[row, A_Index] := (Toggle:=!Toggle)  ? 1 : 0
            , toggle := (A_Index = size && size/2 = floor(size/2)) ? !toggle : toggle
    }
    return M
}

matrix2txt(M){
    for row , obj in M {
        for col, v in obj
            result .= M[row, col] "  "
        result .= "`n"
    }
    return result
}
Output:
Matrix Size: 8*8
1  0  1  0  1  0  1  0  
0  1  0  1  0  1  0  1  
1  0  1  0  1  0  1  0  
0  1  0  1  0  1  0  1  
1  0  1  0  1  0  1  0  
0  1  0  1  0  1  0  1  
1  0  1  0  1  0  1  0  
0  1  0  1  0  1  0  1  

Matrix Size: 9*9
1  0  1  0  1  0  1  0  1  
0  1  0  1  0  1  0  1  0  
1  0  1  0  1  0  1  0  1  
0  1  0  1  0  1  0  1  0  
1  0  1  0  1  0  1  0  1  
0  1  0  1  0  1  0  1  0  
1  0  1  0  1  0  1  0  1  
0  1  0  1  0  1  0  1  0  
1  0  1  0  1  0  1  0  1  

AWK[edit]

# syntax: GAWK -f MOSAIC_MATRIX.AWK
BEGIN {
    for (n=6; n<=7; n++) {
      for (i=1; i<=n; i++) {
        for (j=1; j<=n; j++) {
          tmp = ((i+j) % 2 == 0) ? 1 : 0
          printf("%2d",tmp)
        }
        printf("\n")
      }
      print("")
    }
    exit(0)
}
Output:
 1 0 1 0 1 0
 0 1 0 1 0 1
 1 0 1 0 1 0
 0 1 0 1 0 1
 1 0 1 0 1 0
 0 1 0 1 0 1

 1 0 1 0 1 0 1
 0 1 0 1 0 1 0
 1 0 1 0 1 0 1
 0 1 0 1 0 1 0
 1 0 1 0 1 0 1
 0 1 0 1 0 1 0
 1 0 1 0 1 0 1

C[edit]

#include <stdio.h>

void mosaicMatrix(unsigned int n) {
    int i, j;
    for (i = 0; i < n; ++i) {
        for (j = 0; j < n; ++j) {
            if ((i + j) % 2 == 0) {
                printf("%s ", "1");
            } else {
                printf("%s ", "0");
            }
        }
        printf("\n");
    }
}

int main() {
    mosaicMatrix(10);
    printf("\n");
    mosaicMatrix(11);
    return 0;
}
Output:
1 0 1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 0 1 

1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 

C++[edit]

#include <concepts>
#include <iostream>

// Print each element of a matrix according to a predicate.  It
// will print a '1' if the predicate function is true, otherwise '0'. 
void PrintMatrix(std::predicate<int, int, int> auto f, int size)
{
  for(int y = 0; y < size; y++)
  {
    for(int x = 0; x < size; x++)
    {
      std::cout << " " << f(x, y, size);
    }
    std::cout << "\n";
  }
  std::cout << "\n";
}

int main()
{
  // a lambda to create a mosaic
  auto mosaic = [](int x, int y, [[maybe_unused]]int size)
  {
    return (x + y) % 2 == 0;
  };

  PrintMatrix(mosaic, 8);
  PrintMatrix(mosaic, 9);
}
Output:
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1

 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0 1

F#[edit]

// Mosaic matrix. Nigel Galloway: February 18th., 2022
let m11 m=Array2D.init m m (fun n g->if (n+g)%2=0 then 1 else 0)
printfn "%A\n\n%A" (m11 5) (m11 6)
Output:
[[1; 0; 1; 0; 1]
 [0; 1; 0; 1; 0]
 [1; 0; 1; 0; 1]
 [0; 1; 0; 1; 0]
 [1; 0; 1; 0; 1]]

[[1; 0; 1; 0; 1; 0]
 [0; 1; 0; 1; 0; 1]
 [1; 0; 1; 0; 1; 0]
 [0; 1; 0; 1; 0; 1]
 [1; 0; 1; 0; 1; 0]
 [0; 1; 0; 1; 0; 1]]


FreeBASIC[edit]

Text based[edit]

Sub mosaicMatrix(n As Integer)
    For i As Integer = 1 To n
        For j As Integer = 1 To n
            Print Iif((i + j) Mod 2 = 0, "1 ", ". ");
        Next j
        Print
    Next i
End Sub

mosaicMatrix(9)
Sleep
Output:
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1

Graphical[edit]

Dim As Integer n = 9, size = 60 * n + 70
Screenres size, size, 24
Cls
Windowtitle "Mosaic matrix"

Dim As Integer beige = Rgb(245, 245, 220), brown = Rgb(171, 82, 54)
For x As Integer = 0 To n
    For y As Integer = 0 To n
        Dim As Integer cx = x*60 + 10
        Dim As Integer cy = y*60 + 10
        If (x + y) Mod 2 = 0 Then
            Line (cx,cy) - (cx+50, cy+50), brown, BF
            Draw String (cx + 20, cy + 20), "1", beige
        Else
            Line (cx,cy) - (cx+50, cy+50), beige, BF
        End If
    Next y
Next x
Bsave "mosaic_matrix.bmp",0
Sleep
Output:

https://www.dropbox.com/s/nbxrttz0j99usos/mosaic_matrix.bmp?dl=0


Go[edit]

package main

import "fmt"

func mosaicMatrix(n uint) {
    for i := uint(0); i < n; i++ {
        for j := uint(0); j < n; j++ {
            if (i+j)%2 == 0 {
                fmt.Printf("%s ", "1")
            } else {
                fmt.Printf("%s ", ".")
            }
        }
        fmt.Println()
    }
}

func main() {
    mosaicMatrix(7)
    fmt.Println()
    mosaicMatrix(8)
}
Output:
1 . 1 . 1 . 1 
. 1 . 1 . 1 . 
1 . 1 . 1 . 1 
. 1 . 1 . 1 . 
1 . 1 . 1 . 1 
. 1 . 1 . 1 . 
1 . 1 . 1 . 1 

1 . 1 . 1 . 1 . 
. 1 . 1 . 1 . 1 
1 . 1 . 1 . 1 . 
. 1 . 1 . 1 . 1 
1 . 1 . 1 . 1 . 
. 1 . 1 . 1 . 1 
1 . 1 . 1 . 1 . 
. 1 . 1 . 1 . 1 

Haskell[edit]

import Data.Matrix (Matrix, matrix)

mosaic :: Int -> Matrix Int
mosaic n =
  matrix n n ((`rem` 2) . succ . uncurry (+))

main :: IO ()
main = mapM_ (print . mosaic) [7, 8]
Output:
┌               ┐
│ 1 0 1 0 1 0 1 │
│ 0 1 0 1 0 1 0 │
│ 1 0 1 0 1 0 1 │
│ 0 1 0 1 0 1 0 │
│ 1 0 1 0 1 0 1 │
│ 0 1 0 1 0 1 0 │
│ 1 0 1 0 1 0 1 │
└               ┘
┌                 ┐
│ 1 0 1 0 1 0 1 0 │
│ 0 1 0 1 0 1 0 1 │
│ 1 0 1 0 1 0 1 0 │
│ 0 1 0 1 0 1 0 1 │
│ 1 0 1 0 1 0 1 0 │
│ 0 1 0 1 0 1 0 1 │
│ 1 0 1 0 1 0 1 0 │
│ 0 1 0 1 0 1 0 1 │
└                 ┘

J[edit]

Implementation:

mosq=:{{0=2|+/~i.y}}

Examples:

   mosq 4
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
   mosq 5
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

JavaScript[edit]

(() => {
    "use strict";

    // ------------------ MOSAIC MATRIX ------------------

    // mosaic :: Int -> [[Int]]
    const mosaic = n => matrix(n)(n)(
        row => col => (1 + row + col) % 2
    );


    // ---------------------- TEST -----------------------
    // main :: IO ()
    const main = () =>
        // Matrices of dimensions 7 and 8.
        [7, 8].map(
            compose(
                showMatrix(String),
                mosaic
            )
        ).join("\n\n");


    // --------------------- GENERIC ---------------------

    // compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
    const compose = (...fs) =>
        // A function defined by the right-to-left
        // composition of all the functions in fs.
        fs.reduce(
            (f, g) => x => f(g(x)),
            x => x
        );


    // matrix Int -> Int -> (Int -> Int -> a) -> [[a]]
    const matrix = nRows => nCols =>
        // A matrix of a given number of columns and rows,
        // in which each value is a given function of its
        // (zero-based) column and row indices.
        f => Array.from({
            length: nRows
        }, (_, iRow) => Array.from({
            length: nCols
        }, (__, iCol) => f(iRow)(iCol)));


    // showMatrix :: (a -> String) -> [[a]] -> String
    const showMatrix = fShow =>
        rows => 0 < rows.length ? (() => {
            const w = fShow(Math.max(...rows.flat())).length;

            return rows.map(
                cells => cells.map(
                    x => fShow(x).padStart(w, " ")
                ).join(" ")
            ).join("\n");
        })() : "";

    // main
    return main();
})();
Output:
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

jq[edit]

Works with: jq

Works with gojq, the Go implementation of jq

def mosaicMatrix:
    [range(0;.) | . % 2] as $one
  | [range(0;.) | (. + 1) % 2] as $two
  | [range(0;.) | if .%2 == 1 then $one else $two end];

Example:

def display:
  map(join(" ")) | join("\n");

9|mosaicMatrix|display
Output:
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1

Julia[edit]

julia> mosaicmat(n) = (m = n + iseven(n); reshape([Int(isodd(i)) for i in 1:m^2], m, m)[1:n, 1:n])
mosaicmat (generic function with 1 method)

julia> mosaicmat(1)
1×1 Matrix{Int64}:
 1

julia> mosaicmat(2)
2×2 Matrix{Int64}:
 1  0
 0  1

julia> mosaicmat(3)
3×3 Matrix{Int64}:
 1  0  1
 0  1  0
 1  0  1

julia> mosaicmat(4)
4×4 Matrix{Int64}:
 1  0  1  0
 0  1  0  1
 1  0  1  0
 0  1  0  1

julia> mosaicmat(5)
5×5 Matrix{Int64}:
 1  0  1  0  1
 0  1  0  1  0
 1  0  1  0  1
 0  1  0  1  0
 1  0  1  0  1

Pascal[edit]

program mosaicMatrix(output);

const
	filledCell = '1';
	emptyCell = '⋅';

procedure printMosaicMatrix(dimension: integer);
var
	line: integer;
begin
	{ NB: In Pascal, `for`-loop-limits are evaluated exactly once. }
	for line := 1 to dimension do
	begin
		for dimension := 1 to dimension do
		begin
			{ `ord(odd(line))` is either zero or one. }
			if odd(dimension + ord(odd(line))) then
			begin
				{ `write(emptyCell)` is shorthand for `write(output, emptyCell)`. }
				write(emptyCell)
			end
			else
			begin
				write(filledCell)
			end
		end;
		writeLn
	end
end; 

begin
	printMosaicMatrix(9)
end.
Output:
1⋅1⋅1⋅1⋅1
⋅1⋅1⋅1⋅1⋅
1⋅1⋅1⋅1⋅1
⋅1⋅1⋅1⋅1⋅
1⋅1⋅1⋅1⋅1
⋅1⋅1⋅1⋅1⋅
1⋅1⋅1⋅1⋅1
⋅1⋅1⋅1⋅1⋅
1⋅1⋅1⋅1⋅1


Perl[edit]

use strict;
use warnings;
use feature 'say';

my $n = 5;
say join ' ', @$_ for map { $_%2 ? [map { $_%2 ? 1 : 0 } 1..$n] : [map { $_%2 ? 0 : 1 } 1..$n] } 1..$n;
Output:
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

Phix[edit]

See Matrix_with_two_diagonals#Phix and press 'M'.

Picat[edit]

Imperative[edit]

go =>
  N = 6,
  A = new_array(N,N),
  bind_vars(A,"."),
  foreach(I in 1..N)
    foreach(J in 1..N, I mod 2 == J mod 2)
      A[I,J] := "1"
    end,
    println(A[I].to_list.join(" "))
  end.
Output:
1 . 1 . 1 .
. 1 . 1 . 1
1 . 1 . 1 .
. 1 . 1 . 1
1 . 1 . 1 .
. 1 . 1 . 1

List comprehension[edit]

main =>
  N=11,
  [[((1+I^J)/\1).to_string:J in 1..N].join:I in 1..N].join("\n").println.
Output:
1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1


Processing[edit]

//Aamrun, 27th June 2022

size(1000,1000);

textSize(50);

for(int i=0;i<10;i++){
  for(int j=0;j<10;j++){
    noFill();
    square(i*100,j*100,100);
    fill(#000000);
    if((i+j)%2==0){
      text("1",i*100+50,j*100+50);
    }
    else{
      text("0",i*100+50,j*100+50);
    } 
  }
}

Python[edit]

Procedural[edit]

size = 9
for Row in range(size):
    for Col in range(size):
        if (Row % 2 == 1 and Col % 2 == 1) or (Row % 2 == 0 and Col % 2 == 0):
            print("1", end=" ")
        else:
            print("0", end=" ")
    print()

Output:
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1

Functional[edit]

No need for nested conditionals here.

'''Mosaic grid'''


# mosaic :: Int -> [[Int]]
def mosaic(n):
    '''Grid of alternating ones and zeroes, 
       starting with one at top left.
    '''
    return matrix(
        n, n,
        lambda y, x: (1 + y + x) % 2
    )


# ------------------------- TEST -------------------------
# main :: IO ()
def main():
    '''Test'''
    for n in [7, 8]:
        print(
            showMatrix(
                mosaic(n)
            ) + '\n'
        )


# ----------------------- GENERIC ------------------------

# matrix :: Int -> Int -> ((Int, Int) -> a) -> [[a]]
def matrix(nRows, nCols, f):
    '''A matrix of a given number of columns and rows,
       in which each value is a given function over the
       tuple of its (one-based) row and column indices.
    '''
    return [
        [f(y, x) for x in range(1, 1 + nCols)]
        for y in range(1, 1 + nRows)
    ]


# showMatrix :: [[a]] -> String
def showMatrix(rows):
    '''String representation of a matrix'''
    return '\n'.join([
        ' '.join([str(x) for x in y]) for y in rows
    ])


# MAIN ---
if __name__ == '__main__':
    main()
Output:
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

Quackery[edit]

  [ 1 & not ]                  is even     (   n --> b )

  [ dip [ temp put [] ]
    temp share times
       [ temp share split
         dip
           [ nested join ] ]
    drop temp release ]       is matrixify ( n [ --> [ )

  [ dup 2dup * 1+ 1 >>
    ' [ 1 0 ] swap of
    matrixify
    swap even if
      [ [] swap witheach
          [ i even if
              [ behead join ]
            nested join ] ] ] is mosaic    (   n --> [ )

  8 mosaic
  witheach
    [ witheach [ echo sp ] cr ]
  cr
  9 mosaic
  witheach
    [ witheach [ echo sp ] cr ]
Output:
1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 

1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 

Raku[edit]

This isn't a matrix, especially if it is supposed to be graphical; it's a very small (or extremely low resolution) bitmap.

sub checker ($n) { (^$n).map: { 1 xx $n Z× (flat ($_ %% 2, $_ % 2) xx *) } }

.put for checker 7;
put '';
.put for checker 8;
Output:
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

Red[edit]

Red[]

mosaic: function [size][
    matrix: copy [
        title "Mosaic matrix"
        style cell: base 50x50 font-size 20
        style one: cell brown font-color beige "1"
        style zero: cell beige
    ]
    repeat i size [
        repeat j size [
            append matrix either even? i + j ['one] ['zero]
        ]
        append matrix 'return
    ]
    view matrix
]

mosaic 8
Output:

Similar to graphical Wren entry

Ring[edit]

# Project : Mosaic matrix
# Date    : 2022/18/02
# Author  : Gal Zsolt (~ CalmoSoft ~)
# Email   : <calmosoft@gmail.com>

load "stdlib.ring"
load "guilib.ring"

size = 8
C_Spacing = 1

C_ButtonBlueStyle   = 'border-radius:6px;color:black; background-color: blue'
C_ButtonOrangeStyle = 'border-radius:6px;color:black; background-color: orange'

Button = newlist(size,size)
LayoutButtonRow = list(size)

app = new qApp 
{
      win = new qWidget() {
	    setWindowTitle('Identity Matrix')
	    move(500,100)
	    reSize(600,600)
	    winheight = win.height()
	    fontSize = 18 + (winheight / 100)

 	    LayoutButtonMain = new QVBoxLayout()			
	    LayoutButtonMain.setSpacing(C_Spacing)
	    LayoutButtonMain.setContentsmargins(0,0,0,0)

	    for Row = 1 to size
		LayoutButtonRow[Row] = new QHBoxLayout() {
				       setSpacing(C_Spacing)
				       setContentsmargins(0,0,0,0)
				       } 
         	 for Col = 1 to size
		     Button[Row][Col] = new QPushButton(win) {
                                        setSizePolicy(1,1)                                                
					}
					
		     LayoutButtonRow[Row].AddWidget(Button[Row][Col])	
		 next
		 LayoutButtonMain.AddLayout(LayoutButtonRow[Row])			
	      next
              LayoutDataRow1 = new QHBoxLayout() { setSpacing(C_Spacing) setContentsMargins(0,0,0,0) }
              LayoutButtonMain.AddLayout(LayoutDataRow1)
              setLayout(LayoutButtonMain)
              show()
   }
   pBegin()
   exec()
   }

func pBegin()
     for Row = 1 to size
         for Col = 1 to size 
             if (Row%2 = 1 and Col%2 = 1) or (Row%2 = 0 and Col%2 = 0)
                Button[Row][Col].setStyleSheet(C_ButtonOrangeStyle)
                Button[Row][Col].settext("1")
             ok
	 next
     next

Output image:
Mosaic Matrix

Sidef[edit]

func mosaic_matrix(n) {
    n.of {|k|
        var(a,b) = (k.is_even ? (1,0) : (0,1))
        n.of {|j| j.is_even ? a : b }
    }
}

mosaic_matrix(5).each { .join(' ').say }; say ''
mosaic_matrix(6).each { .join(' ').say }
Output:
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1

Wren[edit]

Text based[edit]

var mosaicMatrix = Fn.new { |n|
    for (i in 0...n) {
        for (j in 0...n) {
            System.write(((i + j) % 2 == 0) ? "1 " : ". ")
        }
        System.print()
    }
}

mosaicMatrix.call(9)
Output:
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 

Graphical[edit]

Library: DOME
Library: Go-fonts
import "dome" for Window
import "graphics" for Canvas, Color, Font, ImageData

class Main {
    construct new(n) {
        var size = 60 * n + 10
        Window.resize(size, size)
        Canvas.resize(size, size)
        Window.title = "Mosaic matrix"
        // see Go-fonts page
        Font.load("Go-Regular20", "Go-Regular.ttf", 20)
        Canvas.font = "Go-Regular20"
        var beige = Color.new(245, 245, 220)
        Canvas.cls(Color.lightgray)
        for (x in 0...n) {
            for (y in 0...n) {
                var cx = x*60 + 10
                var cy = y*60 + 10
                if ((x + y) % 2 == 0) {
                    Canvas.rectfill(cx, cy, 50, 50, Color.brown)
                    Canvas.print("1", cx + 20, cy + 15, beige)
                 } else {
                    Canvas.rectfill(cx, cy, 50, 50, beige)
                 }
            }
        }
        // save to .png file for publication
        var outputImage = ImageData.create("", size, size)
        for (x in 0...size) {
            for (y in 0...size) outputImage.pset(x, y, Canvas.pget(x, y))
        }
        outputImage.saveToFile("mosaic_matrix.png")
    }

    init() {}

    update() {}

    draw(alpha) {}
}

var Game = Main.new(9)
Output:

https://commons.wikimedia.org/wiki/File:Mosaic_matrix.png

XPL0[edit]

proc DrawMat(S);
int  S, I, J;
[for I:= 0 to S-1 do
    [for J:= 0 to S-1 do
        Text(0, if (J xor I) and 1 then "0 " else "1 ");
    CrLf(0);
    ];
];
[DrawMat(6);  CrLf(0);
 DrawMat(7);  CrLf(0);
]
Output:
1 0 1 0 1 0 
0 1 0 1 0 1 
1 0 1 0 1 0 
0 1 0 1 0 1 
1 0 1 0 1 0 
0 1 0 1 0 1 

1 0 1 0 1 0 1 
0 1 0 1 0 1 0 
1 0 1 0 1 0 1 
0 1 0 1 0 1 0 
1 0 1 0 1 0 1 
0 1 0 1 0 1 0 
1 0 1 0 1 0 1