Jump to content

Mosaic matrix

From Rosetta Code
Mosaic matrix is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Draw a 'mosaic' matrix which, for the purposes of this task, is a square matrix which has 1's in alternate cells (both horizontally and vertically) starting with a 1 in the top-left hand cell.

Other cells can either be left blank or filled with some other character.
If you can please use GUI
Mosaic Matrix - image

See also


11l

Translation of: Python
V size = 9
L(Row) 0 .< size
   L(Col) 0 .< size
      I (Row % 2 == 1 & Col % 2 == 1) | (Row % 2 == 0 & Col % 2 == 0)
         print(‘1’, end' ‘ ’)
      E
         print(‘0’, end' ‘ ’)
   print()
Output:
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 

Action!

;;; draw a "mosaic matrix" - one with a 1 in the top-left and then
;;; alternating with another character vertically and horizontally

;;; draws a mosaic matrix with height and width = n
PROC drawMosaic( INT n )
  CARD i, j, one
  FOR i = 1 TO n DO
    one = i AND 1
    FOR j = 1 TO n DO
      Put(' )
      IF one = 1 THEN Put('1) ELSE Put('.) FI
      one = ( one + 1 ) AND 1
    OD
    PutE()
  OD
RETURN

PROC Main()
  drawMosaic( 6 )
  PutE()
  drawMosaic( 7 )
RETURN
Output:
 1 . 1 . 1 .
 . 1 . 1 . 1
 1 . 1 . 1 .
 . 1 . 1 . 1
 1 . 1 . 1 .
 . 1 . 1 . 1

 1 . 1 . 1 . 1
 . 1 . 1 . 1 .
 1 . 1 . 1 . 1
 . 1 . 1 . 1 .
 1 . 1 . 1 . 1
 . 1 . 1 . 1 .
 1 . 1 . 1 . 1

Ada

with Ada.Text_Io; use Ada.Text_Io;
with Ada.Command_Line;

procedure Mosaic_Matrix is

   type Matrix_Type is array (Positive range <>, Positive range <>) of Character;

   function Mosaic (Length : Natural) return Matrix_Type is
   begin
      return M : Matrix_Type (1 .. Length, 1 .. Length) do
         for Row in M'Range (1) loop
            for Col in M'Range (2) loop
               M (Row, Col) := (if (Row + Col) mod 2 = 0
                                then '1' else '.');
            end loop;
         end loop;
      end return;
   end Mosaic;

   procedure Put (M : Matrix_Type) is
   begin
      for Row in M'Range (1) loop
         for Col in M'Range (2) loop
            Put (' ');
            Put (M (Row, Col));
         end loop;
         New_Line;
      end loop;
   end Put;

begin
   Put (Mosaic (Length => Natural'Value (Ada.Command_Line.Argument (1))));

exception
   when others =>
      Put_Line ("Usage: ./mosaic_matrix <side-length>");

end Mosaic_Matrix;
Output:
$ ./mosaic_matrix 4
 1 . 1 .
 . 1 . 1
 1 . 1 .
 . 1 . 1
$ ./mosaic_matrix 2
 1 .
 . 1
$ ./mosaic_matrix 1
 1
$ ./mosaic_matrix 0
$ ./mosaic_matrix
Usage: ./mosaic_matrix <side-length>

ALGOL 68

BEGIN # draw a "mosaic matrix" - one with a 1 in the top-left and then  #
      # alternating with another character vertically and horiontally   #
      # horiontally                                                     #
    # draws a mosaic matrix with height and width = n using "1" and "." #
    PROC draw mosaic = ( INT n )VOID:
         FOR i TO n DO
             BOOL one := ODD i;
             TO n DO
                 print( ( " ", IF one THEN "1" ELSE "." FI ) );
                 one := NOT one
             OD;
            print( ( newline ) )
         OD # draw mosaic # ;
    # test the draw mosaic procedure #
    draw mosaic( 10 );
    print( ( newline ) );
    draw mosaic( 11 )
END
Output:
 1 . 1 . 1 . 1 . 1 .
 . 1 . 1 . 1 . 1 . 1
 1 . 1 . 1 . 1 . 1 .
 . 1 . 1 . 1 . 1 . 1
 1 . 1 . 1 . 1 . 1 .
 . 1 . 1 . 1 . 1 . 1
 1 . 1 . 1 . 1 . 1 .
 . 1 . 1 . 1 . 1 . 1
 1 . 1 . 1 . 1 . 1 .
 . 1 . 1 . 1 . 1 . 1

 1 . 1 . 1 . 1 . 1 . 1
 . 1 . 1 . 1 . 1 . 1 .
 1 . 1 . 1 . 1 . 1 . 1
 . 1 . 1 . 1 . 1 . 1 .
 1 . 1 . 1 . 1 . 1 . 1
 . 1 . 1 . 1 . 1 . 1 .
 1 . 1 . 1 . 1 . 1 . 1
 . 1 . 1 . 1 . 1 . 1 .
 1 . 1 . 1 . 1 . 1 . 1
 . 1 . 1 . 1 . 1 . 1 .
 1 . 1 . 1 . 1 . 1 . 1

ALGOL W

begin % draw a "mosaic matrix" - one with a 1 in the top-left and then  %
      % alternating with another character vertically and horiontally   %
      % horiontally                                                     %
    % draws a mosaic matrix with height and width = n using "1" and "." %
    procedure drawMosaic ( integer value n ) ;
        for i := 1 until n do begin
            logical one;
            one := odd( i );
            for j := 1 until n do begin
                writeon( s_w := 0, if one then " 1" else " ." );
                one := not one
            end for_j ;
            write()
        end drawMosaic ;
    % test the draw mosaic procedure %
    drawMosaic( 6 );
    write();
    drawMosaic( 7 )
end.
Output:
 1 . 1 . 1 .
 . 1 . 1 . 1
 1 . 1 . 1 .
 . 1 . 1 . 1
 1 . 1 . 1 .
 . 1 . 1 . 1

 1 . 1 . 1 . 1
 . 1 . 1 . 1 .
 1 . 1 . 1 . 1
 . 1 . 1 . 1 .
 1 . 1 . 1 . 1
 . 1 . 1 . 1 .
 1 . 1 . 1 . 1

Arturo

drawSquare: function [side][
    loop 1..side 'x ->
        print map 1..side 'y [
            (equal? x%2 y%2)? -> 1 -> 0
        ]
]

drawSquare 6
print ""
drawSquare 9
Output:
1 0 1 0 1 0 
0 1 0 1 0 1 
1 0 1 0 1 0 
0 1 0 1 0 1 
1 0 1 0 1 0 
0 1 0 1 0 1 

1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1

AutoHotkey

for i, v in [8, 9]
    result .= "Matrix Size: " v "*" v "`n" matrix2txt(mosaicMatrix(v)) "`n"
MsgBox % result
return

mosaicMatrix(size){
    M := []
    loop % size {
        row := A_Index
        loop % size
            M[row, A_Index] := (Toggle:=!Toggle)  ? 1 : 0
            , toggle := (A_Index = size && size/2 = floor(size/2)) ? !toggle : toggle
    }
    return M
}

matrix2txt(M){
    for row , obj in M {
        for col, v in obj
            result .= M[row, col] "  "
        result .= "`n"
    }
    return result
}
Output:
Matrix Size: 8*8
1  0  1  0  1  0  1  0  
0  1  0  1  0  1  0  1  
1  0  1  0  1  0  1  0  
0  1  0  1  0  1  0  1  
1  0  1  0  1  0  1  0  
0  1  0  1  0  1  0  1  
1  0  1  0  1  0  1  0  
0  1  0  1  0  1  0  1  

Matrix Size: 9*9
1  0  1  0  1  0  1  0  1  
0  1  0  1  0  1  0  1  0  
1  0  1  0  1  0  1  0  1  
0  1  0  1  0  1  0  1  0  
1  0  1  0  1  0  1  0  1  
0  1  0  1  0  1  0  1  0  
1  0  1  0  1  0  1  0  1  
0  1  0  1  0  1  0  1  0  
1  0  1  0  1  0  1  0  1  

AWK

# syntax: GAWK -f MOSAIC_MATRIX.AWK
BEGIN {
    for (n=6; n<=7; n++) {
      for (i=1; i<=n; i++) {
        for (j=1; j<=n; j++) {
          tmp = ((i+j) % 2 == 0) ? 1 : 0
          printf("%2d",tmp)
        }
        printf("\n")
      }
      print("")
    }
    exit(0)
}
Output:
 1 0 1 0 1 0
 0 1 0 1 0 1
 1 0 1 0 1 0
 0 1 0 1 0 1
 1 0 1 0 1 0
 0 1 0 1 0 1

 1 0 1 0 1 0 1
 0 1 0 1 0 1 0
 1 0 1 0 1 0 1
 0 1 0 1 0 1 0
 1 0 1 0 1 0 1
 0 1 0 1 0 1 0
 1 0 1 0 1 0 1

BQN

Mosaic  =⌜˜2|↕

Mosaic 6
Output:
┌─
╵ 1 0 1 0 1 0
  0 1 0 1 0 1
  1 0 1 0 1 0
  0 1 0 1 0 1
  1 0 1 0 1 0
  0 1 0 1 0 1
              ┘

C

#include <stdio.h>

void mosaicMatrix(unsigned int n) {
    int i, j;
    for (i = 0; i < n; ++i) {
        for (j = 0; j < n; ++j) {
            if ((i + j) % 2 == 0) {
                printf("%s ", "1");
            } else {
                printf("%s ", "0");
            }
        }
        printf("\n");
    }
}

int main() {
    mosaicMatrix(10);
    printf("\n");
    mosaicMatrix(11);
    return 0;
}
Output:
1 0 1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 0 1 

1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 

C++

#include <concepts>
#include <iostream>

// Print each element of a matrix according to a predicate.  It
// will print a '1' if the predicate function is true, otherwise '0'. 
void PrintMatrix(std::predicate<int, int, int> auto f, int size)
{
  for(int y = 0; y < size; y++)
  {
    for(int x = 0; x < size; x++)
    {
      std::cout << " " << f(x, y, size);
    }
    std::cout << "\n";
  }
  std::cout << "\n";
}

int main()
{
  // a lambda to create a mosaic
  auto mosaic = [](int x, int y, [[maybe_unused]]int size)
  {
    return (x + y) % 2 == 0;
  };

  PrintMatrix(mosaic, 8);
  PrintMatrix(mosaic, 9);
}
Output:
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1

 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0 1

Delphi

Works with: Delphi version 6.0

Another example of modular code and saving time by reusing subroutines and structures. Most of the code from is take from this previously worked example:

[Matrix with two Diagonals]

{Define a matrix}

type TMatrix = array of array of double;

procedure DisplayMatrix(Memo: TMemo; Mat: TMatrix);
{Display specified matrix}
var X,Y: integer;
var S: string;
begin
S:='';
for Y:=0 to High(Mat) do
	begin
	S:=S+'[';
	for X:=0 to High(Mat[0]) do
	  if X=0 then S:=S+Format('%0.0f',[Mat[X,Y]])
	  else S:=S+Format('%2.0f',[Mat[X,Y]]);
	S:=S+']'+#$0D#$0A;
	end;
Memo.Lines.Add(S);
end;


procedure ClearMatrix(var Mat: TMatrix; Value: double);
{Set all elements of the matrix to specified value}
var X,Y: integer;
begin
for Y:=0 to High(Mat) do
 for X:=0 to High(Mat[0]) do Mat[X,Y]:=0;
end;

procedure SetMosaicMatrix(var Mat: TMatrix);
{Set matrix to mosaic pattern}
var X,Y: integer;
begin
{Set every other cell to one or zero}
for Y:=0 to High(Mat) do
 for X:=0 to High(Mat) do Mat[X,Y]:=(X+Y+1) mod 2;
end;


procedure BuildMosaicMatrix(var Mat: TMatrix; Size: integer);
{Build a matrix with diagonals of the specified size }
var X,Y: integer;
begin
SetLength(Mat,Size,Size);
ClearMatrix(Mat,0);
SetMosaicMatrix(Mat);
end;

procedure BuildShowMosaicMatrix(Memo: TMemo; var Mat: TMatrix; Size: integer);
{Build and show a matrix of specific size}
begin
Memo.Lines.Add(Format('Matrix = %2d X %2d',[Size,Size]));
BuildMosaicMatrix(Mat,Size);
DisplayMatrix(Memo,Mat);
end;


procedure DisplayMosaicMatrices(Memo: TMemo);
{Build and display matrices of various sizes}
var Mat: TMatrix;
var I: integer;
begin
for I:=3 to 10 do BuildShowMosaicMatrix(Memo,Mat,I);
end;
Output:
Matrix =  3 X  3
[1 0 1]
[0 1 0]
[1 0 1]

Matrix =  4 X  4
[1 0 1 0]
[0 1 0 1]
[1 0 1 0]
[0 1 0 1]

Matrix =  5 X  5
[1 0 1 0 1]
[0 1 0 1 0]
[1 0 1 0 1]
[0 1 0 1 0]
[1 0 1 0 1]

Matrix =  6 X  6
[1 0 1 0 1 0]
[0 1 0 1 0 1]
[1 0 1 0 1 0]
[0 1 0 1 0 1]
[1 0 1 0 1 0]
[0 1 0 1 0 1]

Matrix =  7 X  7
[1 0 1 0 1 0 1]
[0 1 0 1 0 1 0]
[1 0 1 0 1 0 1]
[0 1 0 1 0 1 0]
[1 0 1 0 1 0 1]
[0 1 0 1 0 1 0]
[1 0 1 0 1 0 1]

Matrix =  8 X  8
[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1]

Matrix =  9 X  9
[1 0 1 0 1 0 1 0 1]
[0 1 0 1 0 1 0 1 0]
[1 0 1 0 1 0 1 0 1]
[0 1 0 1 0 1 0 1 0]
[1 0 1 0 1 0 1 0 1]
[0 1 0 1 0 1 0 1 0]
[1 0 1 0 1 0 1 0 1]
[0 1 0 1 0 1 0 1 0]
[1 0 1 0 1 0 1 0 1]

Matrix = 10 X 10
[1 0 1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1 0 1]

EasyLang

Translation of: Nim
proc mosaic side . .
   start = 1
   for i to side
      c = start
      for j to side
         write c & " "
         c = 1 - c
      .
      print ""
      start = 1 - start
   .
.
mosaic 6
Output:
1 0 1 0 1 0 
0 1 0 1 0 1 
1 0 1 0 1 0 
0 1 0 1 0 1 
1 0 1 0 1 0 
0 1 0 1 0 1 

F#

// Mosaic matrix. Nigel Galloway: February 18th., 2022
let m11 m=Array2D.init m m (fun n g->if (n+g)%2=0 then 1 else 0)
printfn "%A\n\n%A" (m11 5) (m11 6)
Output:
[[1; 0; 1; 0; 1]
 [0; 1; 0; 1; 0]
 [1; 0; 1; 0; 1]
 [0; 1; 0; 1; 0]
 [1; 0; 1; 0; 1]]

[[1; 0; 1; 0; 1; 0]
 [0; 1; 0; 1; 0; 1]
 [1; 0; 1; 0; 1; 0]
 [0; 1; 0; 1; 0; 1]
 [1; 0; 1; 0; 1; 0]
 [0; 1; 0; 1; 0; 1]]

Factor

Works with: Factor version 0.99
USING: accessors colors kernel math math.matrices ui
ui.gadgets.grid-lines ui.gadgets.grids ui.gadgets.labels
ui.pens.solid ;
IN: mosaic

: <square> ( m n -- gadget )
    + 2 mod 0 = [
        " 1 " <label> COLOR: AntiqueWhite2 <solid> >>interior
        [ 50 >>size ] change-font
    ] [ "" <label> ] if ;

: <checkerboard> ( n -- gadget )
    dup [ <square> ] <matrix-by-indices> <grid>
    COLOR: gray <grid-lines> >>boundary ;

MAIN: [ 8 <checkerboard> "Mosaic" open-window ]
Output:
File:Factor-mosaic.png

FreeBASIC

Text based

Sub mosaicMatrix(n As Integer)
    For i As Integer = 1 To n
        For j As Integer = 1 To n
            Print Iif((i + j) Mod 2 = 0, "1 ", ". ");
        Next j
        Print
    Next i
End Sub

mosaicMatrix(9)
Sleep
Output:
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1

Graphical

Dim As Integer n = 9, size = 60 * n + 70
Screenres size, size, 24
Cls
Windowtitle "Mosaic matrix"

Dim As Integer beige = Rgb(245, 245, 220), brown = Rgb(171, 82, 54)
For x As Integer = 0 To n
    For y As Integer = 0 To n
        Dim As Integer cx = x*60 + 10
        Dim As Integer cy = y*60 + 10
        If (x + y) Mod 2 = 0 Then
            Line (cx,cy) - (cx+50, cy+50), brown, BF
            Draw String (cx + 20, cy + 20), "1", beige
        Else
            Line (cx,cy) - (cx+50, cy+50), beige, BF
        End If
    Next y
Next x
Bsave "mosaic_matrix.bmp",0
Sleep
Output:

https://www.dropbox.com/s/nbxrttz0j99usos/mosaic_matrix.bmp?dl=0

FutureBasic

Text based

Courtesy Jay

void local fn MosaicMatrix( n as unsigned int )
  NSInteger i, j
  for i = 0 to n - 1
    for j = 1 to n    // So that grid will start with 1
      print " ";(i+j) and 1;
    next
    print
  next
end fn

fn MosaicMatrix( 11 )

HandleEvents
Output:
 1 0 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0 1 0 1

Graphical

Short version courtesy Jay

void local fn MosaicMatrix( n as unsigned int )
window 1, @"Mosaic Matrix Graphic", (0, 0, n*21 + 40, n*21 + 40)
NSInteger x , y
text @"Arial bold", 16
for y = 20 to n * 21 step 21
for x = 21 to n * 21 step 21
rect fill (x, y, 20, 20), fn colorYellow
print %(x + 5, y + 2 )((x + y) and 1)
next
next
end fn

fn MosaicMatrix( 15 )

HandleEvents

Longer graphical version

_window = 1

begin globals
short gValue
end globals

void local fn MosaicMatrixGraphic( gridRectSize as int, gridSize as int )
CFStringRef valueStr
int i = 1, wndStyle
wndStyle  = NSWindowStyleMaskTitled
wndStyle += NSWindowStyleMaskClosable
wndStyle += NSWindowStyleMaskMiniaturizable

CGRect r = fn CGRectMake( 0, 0, 480, 500 )
window _window, @"Mosaic Matrix Graphic", r, wndStyle

gValue = 1
r = fn CGRectMake( gridRectSize, 420, gridRectSize, gridRectSize )
for i = 1 to gridSize * gridSize
if gValue = 1 then valueStr = @"1" : gValue = 0 else valueStr = @"0" : gValue =  1
textlabel i, valueStr, r, _window
TextFieldSetBordered( i, YES )
ControlSetAlignment( i, NSTextAlignmentCenter )
ControlSetFontWithName( i, @"Times", (double)gridRectSize - 10 )
TextFieldSetBackgroundColor( i, fn ColorWithRGB( 0.996, 1.000, 0.111, 1.0 ) )
TextFieldSetTextColor( i, fn ColorBlack )
TextFieldSetDrawsBackground( i, YES )
r = fn CGRectOffset( r, gridRectSize, 0 )
if ( i mod gridSize == 0 )
r = fn CGRectMake( gridRectSize, r.origin.y - gridRectSize, gridRectSize, gridRectSize )
if gValue = 1 then gValue = 0 else gValue = 1 : continue
end if
next
end fn

void local fn DoDialog( ev as long, tag as long, wnd as long )
select ( ev )
case _windowWillClose : end
end select
end fn

on dialog fn DoDialog

fn MosaicMatrixGraphic( 40, 10 )
HandleEvents

Go

package main

import "fmt"

func mosaicMatrix(n uint) {
    for i := uint(0); i < n; i++ {
        for j := uint(0); j < n; j++ {
            if (i+j)%2 == 0 {
                fmt.Printf("%s ", "1")
            } else {
                fmt.Printf("%s ", ".")
            }
        }
        fmt.Println()
    }
}

func main() {
    mosaicMatrix(7)
    fmt.Println()
    mosaicMatrix(8)
}
Output:
1 . 1 . 1 . 1 
. 1 . 1 . 1 . 
1 . 1 . 1 . 1 
. 1 . 1 . 1 . 
1 . 1 . 1 . 1 
. 1 . 1 . 1 . 
1 . 1 . 1 . 1 

1 . 1 . 1 . 1 . 
. 1 . 1 . 1 . 1 
1 . 1 . 1 . 1 . 
. 1 . 1 . 1 . 1 
1 . 1 . 1 . 1 . 
. 1 . 1 . 1 . 1 
1 . 1 . 1 . 1 . 
. 1 . 1 . 1 . 1 

Haskell

import Data.Matrix (Matrix, matrix)

mosaic :: Int -> Matrix Int
mosaic n =
  matrix n n ((`rem` 2) . succ . uncurry (+))

main :: IO ()
main = mapM_ (print . mosaic) [7, 8]
Output:
┌               ┐
│ 1 0 1 0 1 0 1 │
│ 0 1 0 1 0 1 0 │
│ 1 0 1 0 1 0 1 │
│ 0 1 0 1 0 1 0 │
│ 1 0 1 0 1 0 1 │
│ 0 1 0 1 0 1 0 │
│ 1 0 1 0 1 0 1 │
└               ┘
┌                 ┐
│ 1 0 1 0 1 0 1 0 │
│ 0 1 0 1 0 1 0 1 │
│ 1 0 1 0 1 0 1 0 │
│ 0 1 0 1 0 1 0 1 │
│ 1 0 1 0 1 0 1 0 │
│ 0 1 0 1 0 1 0 1 │
│ 1 0 1 0 1 0 1 0 │
│ 0 1 0 1 0 1 0 1 │
└                 ┘

J

Implementation:

mosq=: [: =/~ 2 | i.

Examples:

   mosq 4
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
   mosq 5
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

JavaScript

(() => {
    "use strict";

    // ------------------ MOSAIC MATRIX ------------------

    // mosaic :: Int -> [[Int]]
    const mosaic = n => matrix(n)(n)(
        row => col => (1 + row + col) % 2
    );


    // ---------------------- TEST -----------------------
    // main :: IO ()
    const main = () =>
        // Matrices of dimensions 7 and 8.
        [7, 8].map(
            compose(
                showMatrix(String),
                mosaic
            )
        ).join("\n\n");


    // --------------------- GENERIC ---------------------

    // compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
    const compose = (...fs) =>
        // A function defined by the right-to-left
        // composition of all the functions in fs.
        fs.reduce(
            (f, g) => x => f(g(x)),
            x => x
        );


    // matrix Int -> Int -> (Int -> Int -> a) -> [[a]]
    const matrix = nRows => nCols =>
        // A matrix of a given number of columns and rows,
        // in which each value is a given function of its
        // (zero-based) column and row indices.
        f => Array.from({
            length: nRows
        }, (_, iRow) => Array.from({
            length: nCols
        }, (__, iCol) => f(iRow)(iCol)));


    // showMatrix :: (a -> String) -> [[a]] -> String
    const showMatrix = fShow =>
        rows => 0 < rows.length ? (() => {
            const w = fShow(Math.max(...rows.flat())).length;

            return rows.map(
                cells => cells.map(
                    x => fShow(x).padStart(w, " ")
                ).join(" ")
            ).join("\n");
        })() : "";

    // main
    return main();
})();
Output:
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

jq

Works with: jq

Works with gojq, the Go implementation of jq

def mosaicMatrix:
    [range(0;.) | . % 2] as $one
  | [range(0;.) | (. + 1) % 2] as $two
  | [range(0;.) | if .%2 == 1 then $one else $two end];

Example:

def display:
  map(join(" ")) | join("\n");

9|mosaicMatrix|display
Output:
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1

Julia

julia> mosaicmat(n) = (m = n + iseven(n); reshape([Int(isodd(i)) for i in 1:m^2], m, m)[1:n, 1:n])
mosaicmat (generic function with 1 method)

julia> mosaicmat(1)
1×1 Matrix{Int64}:
 1

julia> mosaicmat(2)
2×2 Matrix{Int64}:
 1  0
 0  1

julia> mosaicmat(3)
3×3 Matrix{Int64}:
 1  0  1
 0  1  0
 1  0  1

julia> mosaicmat(4)
4×4 Matrix{Int64}:
 1  0  1  0
 0  1  0  1
 1  0  1  0
 0  1  0  1

julia> mosaicmat(5)
5×5 Matrix{Int64}:
 1  0  1  0  1
 0  1  0  1  0
 1  0  1  0  1
 0  1  0  1  0
 1  0  1  0  1

K

K6

mosaic: {x=/:x}2!!:

mosaic 6
Output:
(1 0 1 0 1 0
 0 1 0 1 0 1
 1 0 1 0 1 0
 0 1 0 1 0 1
 1 0 1 0 1 0
 0 1 0 1 0 1)

Maxima

/* Function that returns a mosaic matrix */
mosaic(n):=genmatrix(lambda([i,j],charfun(evenp(abs(i-j)))),n,n)$

/* Alternative fumction */
altern_mosaic(n):=genmatrix(lambda([i,j],if evenp(abs(i-j)) then 1 else 0),n,n)$

/* Examples */
mosaic(3);
mosaic(4);
Output:
matrix(
		[1,	0,	1],
		[0,	1,	0],
		[1,	0,	1]
	)
matrix(
		[1,	0,	1,	0],
		[0,	1,	0,	1],
		[1,	0,	1,	0],
		[0,	1,	0,	1]
	)

Nim

proc drawMosaicMatrix(side: Positive) =
  var start = 1
  for i in 0..<side:
    var c = start
    for j in 0..<side:
      stdout.write c
      c = 1 - c
    echo()
    start = 1 - start

echo "6x6 matrix:\n"
drawMosaicMatrix(6)

echo "\n7x7 matrix:\n"
drawMosaicMatrix(7)
Output:
6x6 matrix:

101010
010101
101010
010101
101010
010101

7x7 matrix:

1010101
0101010
1010101
0101010
1010101
0101010
1010101

Nu

Works with: Nushell version 0.97.1
def mosaic [n] {
  0..<$n | each {|i| seq 1 $n | bits xor $i | bits and 1 | str join ' ' } | str join "\n"
}

..5 | each { { k: $in v: (mosaic $in) } } | transpose -r
Output:
╭───┬───┬───┬─────┬───────┬─────────┬───────────╮
│ # │ 0 │ 1 │  2  │   3   │    4    │     5     │
├───┼───┼───┼─────┼───────┼─────────┼───────────┤
│ 0 │   │ 1 │ 1 0 │ 1 0 1 │ 1 0 1 0 │ 1 0 1 0 1 │
│   │   │   │ 0 1 │ 0 1 0 │ 0 1 0 1 │ 0 1 0 1 0 │
│   │   │   │     │ 1 0 1 │ 1 0 1 0 │ 1 0 1 0 1 │
│   │   │   │     │       │ 0 1 0 1 │ 0 1 0 1 0 │
│   │   │   │     │       │         │ 1 0 1 0 1 │
╰───┴───┴───┴─────┴───────┴─────────┴───────────╯

Pascal

program mosaicMatrix(output);

const
	filledCell = '1';
	emptyCell = '⋅';

procedure printMosaicMatrix(dimension: integer);
var
	line: integer;
begin
	{ NB: In Pascal, `for`-loop-limits are evaluated exactly once. }
	for line := 1 to dimension do
	begin
		for dimension := 1 to dimension do
		begin
			{ `ord(odd(line))` is either zero or one. }
			if odd(dimension + ord(odd(line))) then
			begin
				{ `write(emptyCell)` is shorthand for `write(output, emptyCell)`. }
				write(emptyCell)
			end
			else
			begin
				write(filledCell)
			end
		end;
		writeLn
	end
end; 

begin
	printMosaicMatrix(9)
end.
Output:
1⋅1⋅1⋅1⋅1
⋅1⋅1⋅1⋅1⋅
1⋅1⋅1⋅1⋅1
⋅1⋅1⋅1⋅1⋅
1⋅1⋅1⋅1⋅1
⋅1⋅1⋅1⋅1⋅
1⋅1⋅1⋅1⋅1
⋅1⋅1⋅1⋅1⋅
1⋅1⋅1⋅1⋅1


Perl

use strict;
use warnings;
use feature 'say';

my $n = 5;
say join ' ', @$_ for map { $_%2 ? [map { $_%2 ? 1 : 0 } 1..$n] : [map { $_%2 ? 0 : 1 } 1..$n] } 1..$n;
Output:
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

Phix

See Matrix_with_two_diagonals#Phix and press 'M'.

Picat

Imperative

go =>
  N = 6,
  A = new_array(N,N),
  bind_vars(A,"."),
  foreach(I in 1..N)
    foreach(J in 1..N, I mod 2 == J mod 2)
      A[I,J] := "1"
    end,
    println(A[I].to_list.join(" "))
  end.
Output:
1 . 1 . 1 .
. 1 . 1 . 1
1 . 1 . 1 .
. 1 . 1 . 1
1 . 1 . 1 .
. 1 . 1 . 1

List comprehension

main =>
  N=11,
  [[((1+I^J)/\1).to_string:J in 1..N].join:I in 1..N].join("\n").println.
Output:
1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1

PL/M

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

100H: /* DRAW SOME MOSAIC MATRICES WITH ALTERNATING 1S and .S                */

   /* CP/M SYSTEM CALL AND I/O ROUTINES                                      */
   BDOS:      PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
   PR$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C );  END;
   PR$NL:     PROCEDURE;   CALL PR$CHAR( 0DH ); CALL PR$CHAR( 0AH ); END;

   /* TASK                                                                   */

   DRAW$MOSAIC: PROCEDURE( N );
      DECLARE N BYTE;
      DECLARE ( I, J, ONE ) BYTE;
      DO I = 1 TO N;
         ONE = I;            /* EVEN NUMBERS ARE FALSE, ODD ARE TRUE IN PL/M */
         DO J = 1 TO N;
            CALL PR$CHAR( ' ' );
            IF ONE THEN CALL PR$CHAR( '1' ); ELSE CALL PR$CHAR( '0' );
            ONE = NOT ONE;
         END;
         CALL PR$NL;
      END;
   END DRAW$MOSAIC ;

   CALL DRAW$MOSAIC( 6 );
   CALL PR$NL;
   CALL DRAW$MOSAIC( 7 );

EOF
Output:
 1 0 1 0 1 0
 0 1 0 1 0 1
 1 0 1 0 1 0
 0 1 0 1 0 1
 1 0 1 0 1 0
 0 1 0 1 0 1

 1 0 1 0 1 0 1
 0 1 0 1 0 1 0
 1 0 1 0 1 0 1
 0 1 0 1 0 1 0
 1 0 1 0 1 0 1
 0 1 0 1 0 1 0
 1 0 1 0 1 0 1

Processing

//Aamrun, 27th June 2022

size(1000,1000);

textSize(50);

for(int i=0;i<10;i++){
  for(int j=0;j<10;j++){
    noFill();
    square(i*100,j*100,100);
    fill(#000000);
    if((i+j)%2==0){
      text("1",i*100+50,j*100+50);
    }
    else{
      text("0",i*100+50,j*100+50);
    } 
  }
}

Python

Procedural

size = 9
for Row in range(size):
    for Col in range(size):
        if (Row % 2 == 1 and Col % 2 == 1) or (Row % 2 == 0 and Col % 2 == 0):
            print("1", end=" ")
        else:
            print("0", end=" ")
    print()

Output:
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1

Functional

No need for nested conditionals here.

'''Mosaic grid'''


# mosaic :: Int -> [[Int]]
def mosaic(n):
    '''Grid of alternating ones and zeroes, 
       starting with one at top left.
    '''
    return matrix(
        n, n,
        lambda y, x: (1 + y + x) % 2
    )


# ------------------------- TEST -------------------------
# main :: IO ()
def main():
    '''Test'''
    for n in [7, 8]:
        print(
            showMatrix(
                mosaic(n)
            ) + '\n'
        )


# ----------------------- GENERIC ------------------------

# matrix :: Int -> Int -> ((Int, Int) -> a) -> [[a]]
def matrix(nRows, nCols, f):
    '''A matrix of a given number of columns and rows,
       in which each value is a given function over the
       tuple of its (one-based) row and column indices.
    '''
    return [
        [f(y, x) for x in range(1, 1 + nCols)]
        for y in range(1, 1 + nRows)
    ]


# showMatrix :: [[a]] -> String
def showMatrix(rows):
    '''String representation of a matrix'''
    return '\n'.join([
        ' '.join([str(x) for x in y]) for y in rows
    ])


# MAIN ---
if __name__ == '__main__':
    main()
Output:
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

Quackery

  [ 1 & not ]                  is even     (   n --> b )

  [ dip [ temp put [] ]
    temp share times
       [ temp share split
         dip
           [ nested join ] ]
    drop temp release ]       is matrixify ( n [ --> [ )

  [ dup 2dup * 1+ 1 >>
    ' [ 1 0 ] swap of
    matrixify
    swap even if
      [ [] swap witheach
          [ i even if
              [ behead join ]
            nested join ] ] ] is mosaic    (   n --> [ )

  8 mosaic
  witheach
    [ witheach [ echo sp ] cr ]
  cr
  9 mosaic
  witheach
    [ witheach [ echo sp ] cr ]
Output:
1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 

1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 

R

mosaic<-function(n){
  x<-ifelse(n%%2==0,n+1,n)
 M<-matrix(c(rep(c(1,0),times=x**2%/%2),1),nrow=x) 
 M[1:n,1:n]
}

print(mosaic(7))
print(mosaic(8))

Output

     [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,]    1    0    1    0    1    0    1
[2,]    0    1    0    1    0    1    0
[3,]    1    0    1    0    1    0    1
[4,]    0    1    0    1    0    1    0
[5,]    1    0    1    0    1    0    1
[6,]    0    1    0    1    0    1    0
[7,]    1    0    1    0    1    0    1
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,]    1    0    1    0    1    0    1    0
[2,]    0    1    0    1    0    1    0    1
[3,]    1    0    1    0    1    0    1    0
[4,]    0    1    0    1    0    1    0    1
[5,]    1    0    1    0    1    0    1    0
[6,]    0    1    0    1    0    1    0    1
[7,]    1    0    1    0    1    0    1    0
[8,]    0    1    0    1    0    1    0    1


Raku

This isn't a matrix, especially if it is supposed to be graphical; it's a very small (or extremely low resolution) bitmap.

sub checker ($n) { (^$n).map: { 1 xx $n Z× (flat ($_ %% 2, $_ % 2) xx *) } }

.put for checker 7;
put '';
.put for checker 8;
Output:
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

Red

Red[]

mosaic: function [size][
    matrix: copy [
        title "Mosaic matrix"
        style cell: base 50x50 font-size 20
        style one: cell brown font-color beige "1"
        style zero: cell beige
    ]
    repeat i size [
        repeat j size [
            append matrix either even? i + j ['one] ['zero]
        ]
        append matrix 'return
    ]
    view matrix
]

mosaic 8
Output:

Similar to graphical Wren entry

Ring

# Project : Mosaic matrix
# Date    : 2022/18/02
# Author  : Gal Zsolt (~ CalmoSoft ~)
# Email   : <calmosoft@gmail.com>

load "stdlib.ring"
load "guilib.ring"

size = 8
C_Spacing = 1

C_ButtonBlueStyle   = 'border-radius:6px;color:black; background-color: blue'
C_ButtonOrangeStyle = 'border-radius:6px;color:black; background-color: orange'

Button = newlist(size,size)
LayoutButtonRow = list(size)

app = new qApp 
{
      win = new qWidget() {
	    setWindowTitle('Identity Matrix')
	    move(500,100)
	    reSize(600,600)
	    winheight = win.height()
	    fontSize = 18 + (winheight / 100)

 	    LayoutButtonMain = new QVBoxLayout()			
	    LayoutButtonMain.setSpacing(C_Spacing)
	    LayoutButtonMain.setContentsmargins(0,0,0,0)

	    for Row = 1 to size
		LayoutButtonRow[Row] = new QHBoxLayout() {
				       setSpacing(C_Spacing)
				       setContentsmargins(0,0,0,0)
				       } 
         	 for Col = 1 to size
		     Button[Row][Col] = new QPushButton(win) {
                                        setSizePolicy(1,1)                                                
					}
					
		     LayoutButtonRow[Row].AddWidget(Button[Row][Col])	
		 next
		 LayoutButtonMain.AddLayout(LayoutButtonRow[Row])			
	      next
              LayoutDataRow1 = new QHBoxLayout() { setSpacing(C_Spacing) setContentsMargins(0,0,0,0) }
              LayoutButtonMain.AddLayout(LayoutDataRow1)
              setLayout(LayoutButtonMain)
              show()
   }
   pBegin()
   exec()
   }

func pBegin()
     for Row = 1 to size
         for Col = 1 to size 
             if (Row%2 = 1 and Col%2 = 1) or (Row%2 = 0 and Col%2 = 0)
                Button[Row][Col].setStyleSheet(C_ButtonOrangeStyle)
                Button[Row][Col].settext("1")
             ok
	 next
     next

Output image:
Mosaic Matrix

RPL

Filling a matrix

≪ → n 
  ≪ n DUP 2 →LIST 0 CON
     1 n FOR r
        1 n FOR c
           r c 2 →LIST r c + 2 MOD NOT PUT 
     NEXT NEXT
≫ ≫ 'MOZTX' STO
4 MOZTX
Output:
1: [[ 1 0 1 0 ]
    [ 0 1 0 1 ]
    [ 1 0 1 0 ]
    [ 0 1 0 1 ]]

Filling the stack

« → n
  « 1 n FOR j 
       j 2 MOD 
       2 n START DUP NOT NEXT
    NEXT 
    n DUP 2 →LIST →ARRY
» » 'MOZTX' STO

Direct approach

Latest RPL versions have a specific instruction to generate a matrix ruled by a formula.

≪ DUP 'NOT(I+J) MOD 2' LCXM →NUM ≫ 'MOZTX' STO

Sidef

func mosaic_matrix(n) {
    n.of {|k|
        var(a,b) = (k.is_even ? (1,0) : (0,1))
        n.of {|j| j.is_even ? a : b }
    }
}

mosaic_matrix(5).each { .join(' ').say }; say ''
mosaic_matrix(6).each { .join(' ').say }
Output:
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1

Wren

Text based

var mosaicMatrix = Fn.new { |n|
    for (i in 0...n) {
        for (j in 0...n) {
            System.write(((i + j) % 2 == 0) ? "1 " : ". ")
        }
        System.print()
    }
}

mosaicMatrix.call(9)
Output:
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 
. 1 . 1 . 1 . 1 . 
1 . 1 . 1 . 1 . 1 

Graphical

Library: DOME
Library: Go-fonts
import "dome" for Window
import "graphics" for Canvas, Color, Font, ImageData

class Main {
    construct new(n) {
        var size = 60 * n + 10
        Window.resize(size, size)
        Canvas.resize(size, size)
        Window.title = "Mosaic matrix"
        // see Go-fonts page
        Font.load("Go-Regular20", "Go-Regular.ttf", 20)
        Canvas.font = "Go-Regular20"
        var beige = Color.new(245, 245, 220)
        Canvas.cls(Color.lightgray)
        for (x in 0...n) {
            for (y in 0...n) {
                var cx = x*60 + 10
                var cy = y*60 + 10
                if ((x + y) % 2 == 0) {
                    Canvas.rectfill(cx, cy, 50, 50, Color.brown)
                    Canvas.print("1", cx + 20, cy + 15, beige)
                 } else {
                    Canvas.rectfill(cx, cy, 50, 50, beige)
                 }
            }
        }
        // save to .png file for publication
        var outputImage = ImageData.create("", size, size)
        for (x in 0...size) {
            for (y in 0...size) outputImage.pset(x, y, Canvas.pget(x, y))
        }
        outputImage.saveToFile("mosaic_matrix.png")
    }

    init() {}

    update() {}

    draw(alpha) {}
}

var Game = Main.new(9)
Output:

https://commons.wikimedia.org/wiki/File:Mosaic_matrix.png

XPL0

proc DrawMat(S);
int  S, I, J;
[for I:= 0 to S-1 do
    [for J:= 0 to S-1 do
        Text(0, if (J xor I) and 1 then "0 " else "1 ");
    CrLf(0);
    ];
];
[DrawMat(6);  CrLf(0);
 DrawMat(7);  CrLf(0);
]
Output:
1 0 1 0 1 0 
0 1 0 1 0 1 
1 0 1 0 1 0 
0 1 0 1 0 1 
1 0 1 0 1 0 
0 1 0 1 0 1 

1 0 1 0 1 0 1 
0 1 0 1 0 1 0 
1 0 1 0 1 0 1 
0 1 0 1 0 1 0 
1 0 1 0 1 0 1 
0 1 0 1 0 1 0 
1 0 1 0 1 0 1 
Cookies help us deliver our services. By using our services, you agree to our use of cookies.