Four sides of square

From Rosetta Code
Four sides of square is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task


Fill with 1's the four sides of square. The rest of the square should be filled with 0's.
If you can please use GUI
Four sides of square - image

Ada[edit]

with Ada.Text_Io;
with Ada.Command_Line;

procedure Four_Sides is

   type Matrix_Type is array (Natural range <>, Natural range <>) of Character;

   function Hollow (Length : Natural) return Matrix_Type is
   begin
      return M : Matrix_Type (1 .. Length, 1 .. Length) do
         for Row in M'Range(1) loop
            for Col in M'Range (2) loop
               M (Row, Col) := (if Row in M'First (1) | M'Last (1) or
                                  Col in M'First (2) | M'Last (2)
                                then '1' else '0');
            end loop;
         end loop;
      end return;
   end Hollow;

   procedure Put (M : Matrix_Type) is
   begin
      for Row in M'Range (1) loop
         for Col in M'Range (2) loop
            Ada.Text_Io.Put (" ");
            Ada.Text_Io.Put (M(Row,Col));
         end loop;
         Ada.Text_Io.New_Line;
      end loop;
   end Put;

begin
   Put (Hollow (Length => Natural'Value (Ada.Command_Line.Argument (1))));
exception
   when others =>
      Ada.Text_Io.Put_Line ("Usage: ./four_sides <length>");
end Four_Sides;
Output:
$ ./four_sides 4
 1 1 1 1
 1 0 0 1
 1 0 0 1
 1 1 1 1
$ ./four_sides 1
 1
$ ./four_sides 0
$ ./four_sides 2
 1 1
 1 1
$ ./four_sides -1
Usage: ./four_sides <length>


ALGOL 68[edit]

BEGIN # draw a matrix with 1s on the edges and 0s elsewhere             #
    # draws a matrix with height and width = n with 1s on the edges     #
    PROC draw square = ( INT n )VOID:
         FOR i TO n DO
             FOR j TO n DO
                 print( ( " ", whole( ABS ( i = 1 OR i = n OR j = 1 OR j = n ), 0 ) ) )
             OD;
             print( ( newline ) )
         OD # draw square # ;
    # test the draw square procedure #
    draw square( 6 );
    print( ( newline ) );
    draw square( 7 )
END
Output:
 1 1 1 1 1 1
 1 0 0 0 0 1
 1 0 0 0 0 1
 1 0 0 0 0 1
 1 0 0 0 0 1
 1 1 1 1 1 1

 1 1 1 1 1 1 1
 1 0 0 0 0 0 1
 1 0 0 0 0 0 1
 1 0 0 0 0 0 1
 1 0 0 0 0 0 1
 1 0 0 0 0 0 1
 1 1 1 1 1 1 1

Arturo[edit]

drawSquare: function [side][
    loop 1..side 'x ->
        print map 1..side 'y [
            (any? @[x=1 y=1 x=side y=side])? -> 1 -> 0
        ]
]

drawSquare 4
print ""
drawSquare 6
Output:
1 1 1 1
1 0 0 1
1 0 0 1
1 1 1 1

1 1 1 1 1 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1

AWK[edit]

# syntax: GAWK -f FOUR_SIDES_OF_SQUARE.AWK
BEGIN {
    for (n=6; n<=7; n++) {
      for (i=1; i<=n; i++) {
        for (j=1; j<=n; j++) {
          tmp = (i==1 || i==n || j==1 || j==n) ? 1 : 0
          printf("%2d",tmp)
        }
        printf("\n")
      }
      print("")
    }
    exit(0)
}
Output:
 1 1 1 1 1 1
 1 0 0 0 0 1
 1 0 0 0 0 1
 1 0 0 0 0 1
 1 0 0 0 0 1
 1 1 1 1 1 1

 1 1 1 1 1 1 1
 1 0 0 0 0 0 1
 1 0 0 0 0 0 1
 1 0 0 0 0 0 1
 1 0 0 0 0 0 1
 1 0 0 0 0 0 1
 1 1 1 1 1 1 1

C[edit]

#include <stdio.h>

void hollowMatrix(unsigned int n) {
    int i, j;
    for (i = 0; i < n; ++i) {
        for (j = 0; j < n; ++j) {
            if (i == 0 || i == n - 1 || j == 0 || j == n - 1) {
                printf("%d ", 1);
            } else {
                printf("%d ", 0);
            }
        }
        printf("\n");
    }
}

int main() {
    hollowMatrix(10);
    printf("\n");
    hollowMatrix(11);
    return 0;
}
Output:
1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 1 1 

C++[edit]

#include <concepts>
#include <iostream>

// Print each element of a matrix according to a predicate.  It
// will print a '1' if the predicate function is true, otherwise '0'. 
void PrintMatrix(std::predicate<int, int, int> auto f, int size)
{
  for(int y = 0; y < size; y++)
  {
    for(int x = 0; x < size; x++)
    {
      std::cout << " " << f(x, y, size);
    }
    std::cout << "\n";
  }
  std::cout << "\n";
}

int main()
{
  // a lambda to show the sides
  auto fourSides = [](int x, int y, int size)
  {
    return x == 0 || (y == 0) || (x == size - 1) || (y == size - 1);
  };

  PrintMatrix(fourSides, 8);
  PrintMatrix(fourSides, 9);
}
Output:
 1 1 1 1 1 1 1 1
 1 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 1
 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1
 1 0 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 0 1
 1 1 1 1 1 1 1 1 1

F#[edit]

// Four sides of square. Nigel Galloway: February 18th., 2022
let m11 m=Array2D.init m m (fun n g->if n=0 || g=0 || g=m-1 || n=m-1 then 1 else 0)
printfn "%A\n\n%A" (m11 5) (m11 6)
Output:
[[1; 1; 1; 1; 1]
 [1; 0; 0; 0; 1]
 [1; 0; 0; 0; 1]
 [1; 0; 0; 0; 1]
 [1; 1; 1; 1; 1]]

[[1; 1; 1; 1; 1; 1]
 [1; 0; 0; 0; 0; 1]
 [1; 0; 0; 0; 0; 1]
 [1; 0; 0; 0; 0; 1]
 [1; 0; 0; 0; 0; 1]
 [1; 1; 1; 1; 1; 1]]


FreeBASIC[edit]

Text based[edit]

Sub hollowMatrix(n As Integer)
    For i As Integer = 0 To n
        For j As Integer = 0 To n
            Print Iif((i = 0) Or (i = n) Or (j = 0) Or (j = n), "1 ", "0 ");
        Next j
        Print
    Next i
End Sub

hollowMatrix(9)
Sleep
Output:
1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 

Graphical[edit]

Dim As Integer n = 9, size = 60 * n + 70
Screenres size, size, 24
Cls
Windowtitle "Four sides of square"

Dim As Integer beige = Rgb(245, 245, 220), brown = Rgb(171, 82, 54)

For x As Integer = 0 To n
    For y As Integer = 0 To n
        Dim As Integer cx = x*60 + 10
        Dim As Integer cy = y*60 + 10
        If (x = 0) Or (x = n) Or (y = 0) Or (y = n) Then
            Line (cx,cy) - (cx+50, cy+50), brown, BF
            Draw String (cx + 22, cy + 22), "1", 0
        Else
            Line (cx,cy) - (cx+50, cy+50), beige, BF
            Draw String (cx + 22, cy + 22), "0", 0
        End If
    Next y
Next x
Bsave "hollowMatrix.bmp",0
Sleep
Output:

https://www.dropbox.com/s/9g5ahfzw1muuzgm/hollowMatrix.bmp?dl=0


Go[edit]

package main

import "fmt"

func hollowMatrix(n uint) {
    for i := uint(0); i < n; i++ {
        for j := uint(0); j < n; j++ {
            if i == 0 || i == n-1 || j == 0 || j == n-1 {
                fmt.Printf("%d ", 1)
            } else {
                fmt.Printf("%d ", 0)
            }
        }
        fmt.Println()
    }
}

func main() {
    hollowMatrix(8)
    fmt.Println()
    hollowMatrix(9)
}
Output:
1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 

Haskell[edit]

import Data.List (intercalate, intersperse)
import Data.List.Split (chunksOf)
import System.Environment (getArgs)

-- An n by n square of characters, having 1s on the borders and 0s in the
-- interior.  We assume n ≥ 0.
square :: Int -> String
square n = intercalate "\n" $ map (intersperse ' ') $ chunksOf n sq
  where sq = [sqChar r c | r <- [0..n-1], c <- [0..n-1]]
        sqChar r c = if isBorder r c then '1' else '0'
        isBorder r c = r == 0 || r == n-1 || c == 0 || c == n-1

main :: IO ()
main = do
  sizes <- map read <$> getArgs
  putStrLn $ intercalate "\n\n" $ map square sizes
Output:
$ four_sides 0 1 2 3 4 5


1

1 1
1 1

1 1 1
1 0 1
1 1 1

1 1 1 1
1 0 0 1
1 0 0 1
1 1 1 1

1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1

J[edit]

Implementation:

fsosq=: {{+./~(+.|.)y{.1}}

Some examples:

   fsosq 0
   fsosq 1
1
   fsosq 2
1 1
1 1
   fsosq 3
1 1 1
1 0 1
1 1 1
   fsosq 4
1 1 1 1
1 0 0 1
1 0 0 1
1 1 1 1
   fsosq 10
1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1

Gui examples are not visible here, but, for example:

   require'viewmat'
   viewmat fsosq 20
   viewmat fsosq 5

jq[edit]

Works with: jq

Works with gojq, the Go implementation of jq

def square_perimeter_matrix:
  [range(0; .) | 1] as $top
  | [1, (range(0; .-2) | 0), 1] as $two
  | [$top, (range(0; .-2)|$two), $top];

def display:
  map(join(" ")) | join("\n");

Example:

9|square_perimeter_matrix|display
Output:
1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1

Julia[edit]

Gtk graphical version.

using Gtk

function set_gtk_style!(widget::Gtk.GtkWidget, style::String, value::Int)
    sc = Gtk.GAccessor.style_context(widget)
    pr = Gtk.CssProviderLeaf(data=" button {$style}")
    push!(sc, Gtk.StyleProvider(pr), value)
end

function squareonesapp(N)
    win = GtkWindow("Ones Square", 700, 700)
    grid = GtkGrid()
    buttons = [GtkButton(i == 1 || j == 1 || i == N || j == N ? " 1 " : " 0 ") for i in 1:N, j in 1:N]
    for i in 1:N, j in 1:N
        grid[i, j] = buttons[i, j]
        set_gtk_property!(buttons[i, j], :expand, true)
        c = i == 1 || j == 1 || i == N || j == N ? "red" : "navy"
        set_gtk_style!(buttons[i, j], " font-size: 32px; background-color: $c ; ", 600)
    end
    push!(win, grid)
    condition = Condition()
    endit(w) = notify(condition)
    signal_connect(endit, win, :destroy)
    showall(win)
    wait(condition)
end

squareonesapp(8)

Mathematica/Wolfram Language[edit]

Manipulate[ArrayPad[ConstantArray[0, {1, 1} n - 1], 1, 1] // Grid, {n, 2, 20, 1}]

Perl[edit]

use strict;
use warnings;
use feature 'say';

my $n = 5;
say join ' ', @$_ for ([(1)x$n], (map { [1, (0)x($n-2), 1] } 0..$n-3), [(1)x$n]);
Output:
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1

Phix[edit]

See Matrix_with_two_diagonals#Phix and press 'O'.

Processing[edit]

//Aamrun, 27th June 2022

size(1000,1000);

textSize(50);

for(int i=0;i<10;i++){
  for(int j=0;j<10;j++){
    noFill();
    square(i*100,j*100,100);
    fill(#000000);
    if(i==0||i==9||j==0||j==9){
      text("1",i*100+50,j*100+50);
    }
    else{
      text("0",i*100+50,j*100+50);
    } 
  }
}

Python[edit]

Procedural[edit]

size = 9
for row in range(size):
    for col in range(size):
        if row == 0 or row == size-1 or col == 0 or col == size-1:
            print("1", end=" ")
        else:
            print("0", end=" ")
    print()
Output:

See Raku output.

Elaborate procedural[edit]

The following version illustrates several features of Python, such as default arguments, nested functions with lexical scoping, generators, and convenient syntax for creating sets and performing set operations such as intersection.

def square(size=9):

    def is_at_border(row, col):
        # `&` is set intersection: if the set {row, col} intersects the set
        # {0, size-1}, then at least one of (row, col) is either 0 or size-1
        return {row, col} & {0, size-1}

    for row in range(size):
        print(' '.join(
            '1' if is_at_border(row, col) else '0'
            for col in range(size)
        ))

suqare()

Functional[edit]

'''Four sides of a square'''


# fourSides :: Int -> [[Int]]
def fourSides(n):
    '''A square grid with ones in all edge values
       and zeros elsewhere.
    '''
    edge = [1, n]
    return matrix(
        n, n, lambda row, col: int(
            row in edge or col in edge
        )
    )


# ------------------------- TEST -------------------------
# main :: IO ()
def main():
    '''Square grids of dimension 7 and 10'''
    for n in [7, 10]:
        print(
            showMatrix(
                fourSides(n)
            ) + '\n'
        )


# ----------------------- GENERIC ------------------------

# matrix :: Int -> Int -> ((Int, Int) -> a) -> [[a]]
def matrix(nRows, nCols, f):
    '''A matrix of a given number of columns and rows,
       in which each value is a given function over the
       tuple of its (one-based) row and column indices.
    '''
    return [
        [f(y, x) for x in range(1, 1 + nCols)]
        for y in range(1, 1 + nRows)
    ]


# showMatrix :: [[a]] -> String
def showMatrix(rows):
    '''String representation of a matrix'''
    return '\n'.join([
        ' '.join([str(x) for x in y]) for y in rows
    ])


# MAIN ---
if __name__ == '__main__':
    main()
Output:
1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1

Quackery[edit]

  [ 0 over 2 - of
    1 tuck join join nested
    over 2 - of
    1 rot of
    nested tuck join join ] is four-sides ( n --> [ )

  8 four-sides
  witheach
    [ witheach [ echo sp ] cr ]
  cr
  9 four-sides
  witheach
    [ witheach [ echo sp ] cr ]
Output:
1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 

Raku[edit]

This isn't a matrix, especially if it is supposed to be graphical; it's a very small (or extremely low resolution) bitmap.

sub hollow ($n) { [1 xx $n], |(0 ^..^ $n).map( { [flat 1, 0 xx $n - 2, 1] } ), [1 xx $n] }

.put for hollow 7;
put '';
.put for hollow 10;
Output:
1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1

Red[edit]

Red[]

view-square: function [size][
    matrix: copy [
        title "Four sides of a square"
        style cell: base 50x50 font-size 20
        style one: cell brown font-color beige "1"  ; I am not an artist. Please have mercy!
        style zero: cell beige font-color brown "0"
    ]
    repeat i size [
        either any [i = 1 i = size] [
            append matrix append/dup copy [] 'one size
        ][
            row: append/dup copy [] 'zero size
            row/1: row/:size: 'one
            append matrix row
        ]
        append matrix 'return
    ]
    view matrix
]

view-square 9
Output:

https://commons.wikimedia.org/wiki/File:Hollow_matrix_gui.png

Ring[edit]

# Project : Identity Matrix
# Date    : 2022/16/02
# Author  : Gal Zsolt (~ CalmoSoft ~)
# Email   : <calmosoft@gmail.com>

load "stdlib.ring"
load "guilib.ring"

size = 9
C_Spacing = 1

C_ButtonBlueStyle   = 'border-radius:6px;color:black; background-color: blue'
C_ButtonOrangeStyle = 'border-radius:6px;color:black; background-color: orange'

Button = newlist(size,size)
LayoutButtonRow = list(size)

app = new qApp 
{
      win = new qWidget() {
	    setWindowTitle('Identity Matrix')
	    move(500,100)
	    reSize(600,600)
	    winheight = win.height()
	    fontSize = 18 + (winheight / 100)

 	    LayoutButtonMain = new QVBoxLayout()			
	    LayoutButtonMain.setSpacing(C_Spacing)
	    LayoutButtonMain.setContentsmargins(0,0,0,0)

	    for Row = 1 to size
		LayoutButtonRow[Row] = new QHBoxLayout() {
				       setSpacing(C_Spacing)
				       setContentsmargins(0,0,0,0)
				       } 
         	 for Col = 1 to size
		     Button[Row][Col] = new QPushButton(win) {
                                        setSizePolicy(1,1)                                                
					}
					
		     LayoutButtonRow[Row].AddWidget(Button[Row][Col])	
		 next
		 LayoutButtonMain.AddLayout(LayoutButtonRow[Row])			
	      next
              LayoutDataRow1 = new QHBoxLayout() { setSpacing(C_Spacing) setContentsMargins(0,0,0,0) }
              LayoutButtonMain.AddLayout(LayoutDataRow1)
              setLayout(LayoutButtonMain)
              show()
   }
   pBegin()
   exec()
   }

func pBegin()
     for Row = 1 to size
         for Col = 1 to size 
             if Row = 1 or row = size or Col = 1 or Col = size
                Button[Row][Col].setStyleSheet(C_ButtonOrangeStyle)
                Button[Row][Col].settext("1")
             else
                Button[Row][Col].setStyleSheet(C_ButtonBlueStyle)
                Button[Row][Col].settext("0")
             ok
	 next
     next

Output image:
Four sides of square

Sidef[edit]

var n = 5

[n.of(1), (n-2).of([1, (n-2).of(0)..., 1])..., n.of(1)].each {|row|
    say row.join(' ')
}
Output:
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1

Wren[edit]

Text based[edit]

var hollowMatrix = Fn.new { |n|
    for (i in 0...n) {
        for (j in 0...n) {
            System.write((i == 0 || i == n-1 || j == 0 || j == n-1) ? "1 " : "0 ")
        }
        System.print()
    }
}

hollowMatrix.call(9)
Output:
1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 1 

Graphical[edit]

Library: DOME
Library: Go-fonts

This is designed to look as close as possible to the Red entry's image so that we don't have to fill up Wikimedia Commons with similar looking images.

import "dome" for Window
import "graphics" for Canvas, Color, Font
class Main {
    construct new(n) {
        var size = 60 * n + 10
        Window.resize(size, size)
        Canvas.resize(size, size)
        Window.title = "Four sides of a square"
        // see Go-fonts page
        Font.load("Go-Regular20", "Go-Regular.ttf", 20)
        Canvas.font = "Go-Regular20"
        var beige = Color.new(245, 245, 220)
        Canvas.cls(Color.lightgray)
        for (x in 0...n) {
            for (y in 0...n) {
                var cx = x*60 + 10
                var cy = y*60 + 10
                if (x == 0 || x == n-1 || y == 0 || y == n-1) {
                    Canvas.rectfill(cx, cy, 50, 50, Color.brown)
                    Canvas.print("1", cx + 20, cy + 15, beige)
                 } else {
                    Canvas.rectfill(cx, cy, 50, 50, beige)
                    Canvas.print("0", cx + 20, cy + 15, Color.brown)
                 }
            }
        }
    }

    init() {}

    update() {}

    draw(alpha) {}
}

var Game = Main.new(9)
Output:
Similar to Red entry image.

XPL0[edit]

proc DrawMat(S);
int  S, I, J;
[for I:= 0 to S-1 do
    [for J:= 0 to S-1 do
        Text(0, if I>0 & I<S-1 & J>0 & J<S-1 then "0 " else "1 ");
    CrLf(0);
    ];
];
[DrawMat(6);  CrLf(0);
 DrawMat(7);  CrLf(0);
]
Output:
1 1 1 1 1 1 
1 0 0 0 0 1 
1 0 0 0 0 1 
1 0 0 0 0 1 
1 0 0 0 0 1 
1 1 1 1 1 1 

1 1 1 1 1 1 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 1 1 1 1 1