Perfect shuffle

From Rosetta Code
Task
Perfect shuffle
You are encouraged to solve this task according to the task description, using any language you may know.

A perfect shuffle (or faro/weave shuffle) means splitting a deck of cards into equal halves, and perfectly interleaving them - so that you end up with the first card from the left half, followed by the first card from the right half, and so on:

7♠ 8♠ 9♠ J♠ Q♠ K♠
7♠  8♠  9♠
  J♠  Q♠  K♠
7♠ J♠ 8♠ Q♠ 9♠ K♠

When you repeatedly perform perfect shuffles on an even-sized deck of unique cards, it will at some point arrive back at its original order. How many shuffles this takes, depends solely on the number of cards in the deck - for example for a deck of eight cards it takes three shuffles:

original:

1 2 3 4 5 6 7 8

after 1st shuffle:

1 5 2 6 3 7 4 8

after 2nd shuffle:

1 3 5 7 2 4 6 8

after 3rd shuffle:

1 2 3 4 5 6 7 8

The Task

  1. Write a function that can perform a perfect shuffle on an even-sized list of values.
  2. Call this function repeatedly to count how many shuffles are needed to get a deck back to its original order, for each of the deck sizes listed under "Test Cases" below.
    • You can use a list of numbers (or anything else that's convenient) to represent a deck; just make sure that all "cards" are unique within each deck.
    • Print out the resulting shuffle counts, to demonstrate that your program passes the test-cases.

Test Cases

input (deck size) output (number of shuffles required)
8 3
24 11
52 8
100 30
1020 1018
1024 10
10000 300



11l

Translation of: Python
F flatten(lst)
   [Int] r
   L(sublst) lst
      L(i) sublst
         r [+]= i
   R r

F magic_shuffle(deck)
   V half = deck.len I/ 2
   R flatten(zip(deck[0 .< half], deck[half ..]))

F after_how_many_is_equal(start, end)
   V deck = magic_shuffle(start)
   V counter = 1
   L deck != end
      deck = magic_shuffle(deck)
      counter++
   R counter

print(‘Length of the deck of cards | Perfect shuffles needed to obtain the same deck back’)
L(length) (8, 24, 52, 100, 1020, 1024, 10000)
   V deck = Array(0 .< length)
   V shuffles_needed = after_how_many_is_equal(deck, deck)
   print(‘#<5 | #.’.format(length, shuffles_needed))
Output:
Length of the deck of cards | Perfect shuffles needed to obtain the same deck back
8     | 3
24    | 11
52    | 8
100   | 30
1020  | 1018
1024  | 10
10000 | 300

Action!

Calculations on a real Atari 8-bit computer take quite long time. It is recommended to use an emulator capable with increasing speed of Atari CPU.

DEFINE MAXDECK="5000"

PROC Order(INT ARRAY deck INT count)
  INT i

  FOR i=0 TO count-1
  DO
    deck(i)=i
  OD
RETURN

BYTE FUNC IsOrdered(INT ARRAY deck INT count)
  INT i

  FOR i=0 TO count-1
  DO
    IF deck(i)#i THEN
      RETURN (0)
    FI
  OD
RETURN (1)

PROC Shuffle(INT ARRAY src,dst INT count)
  INT i,i1,i2

  i=0 i1=0 i2=count RSH 1
  WHILE i<count
  DO
    dst(i)=src(i1) i==+1 i1==+1
    dst(i)=src(i2) i==+1 i2==+1
  OD
RETURN

PROC Test(INT ARRAY deck,deck2 INT count)
  INT ARRAY tmp
  INT n

  Order(deck,count)
  n=0
  DO
    Shuffle(deck,deck2,count)
    tmp=deck deck=deck2 deck2=tmp
    n==+1
    Poke(77,0) ;turn off the attract mode
    PrintF("%I cards -> %I iterations%E",count,n)
    Put(28) ;move cursor up
  UNTIL IsOrdered(deck,count)
  OD
  PutE()
RETURN

PROC Main()
  INT ARRAY deck(MAXDECK),deck2(MAXDECK)
  INT ARRAY counts=[8 24 52 100 1020 1024 MAXDECK]
  INT i

  FOR i=0 TO 6
  DO
    Test(deck,deck2,counts(i))
  OD
RETURN
Output:

Screenshot from Atari 8-bit computer

8 cards -> 3 iterations
24 cards -> 11 iterations
52 cards -> 8 iterations
100 cards -> 30 iterations
1020 cards -> 1018 iterations
1024 cards -> 10 iterations
5000 cards -> 357 iterations

Ada

with ada.text_io;use ada.text_io;

procedure perfect_shuffle is
  function count_shuffle (half_size : Positive) return Positive is
    subtype index is Natural range 0..2 * half_size - 1;
    subtype index_that_move is index range index'first+1..index'last-1;
    type deck is array (index) of index;
    initial, d, next : deck;
    count : Natural := 1;
  begin
    for i in index loop initial (i) := i; end loop;
    d := initial;
    loop
      for i in index_that_move loop 
        next (i) := (if d (i) mod 2 = 0 then d(i)/2 else d(i)/2 + half_size); 
      end loop;      
      exit when next (index_that_move)= initial(index_that_move);
      d := next;
      count := count + 1;
    end loop;
    return count;
  end count_shuffle;
  test : array (Positive range <>) of Positive := (8, 24, 52, 100, 1020, 1024, 10_000);
begin
  for size of test loop
    put_line ("For" & size'img & " cards, there are "& count_shuffle (size / 2)'img & " shuffles needed.");
  end loop;
end perfect_shuffle;
Output:
For 8 cards, there are  3 shuffles needed.
For 24 cards, there are  11 shuffles needed.
For 52 cards, there are  8 shuffles needed.
For 100 cards, there are  30 shuffles needed.
For 1020 cards, there are  1018 shuffles needed.
For 1024 cards, there are  10 shuffles needed.
For 10000 cards, there are  300 shuffles needed.

ALGOL 68

# returns an array of the specified length, initialised to an ascending sequence of integers #
OP   DECK = ( INT length )[]INT:
     BEGIN
         [ 1 : length ]INT result;
         FOR i TO UPB result DO result[ i ] := i OD;
        result
     END # DECK # ;

# in-place shuffles the deck as per the task requirements #
# LWB deck is assumed to be 1 #
PROC shuffle = ( REF[]INT deck )VOID:
     BEGIN
         [ 1 : UPB deck ]INT result;
         INT left pos  := 1;
         INT right pos := ( UPB deck OVER 2 ) + 1;
         FOR i FROM 2 BY 2 TO UPB result DO
             result[ left pos  ] := deck[ i - 1 ];
             result[ right pos ] := deck[ i     ];
             left pos  +:= 1;
             right pos +:= 1
         OD;
         FOR i TO UPB deck DO deck[ i ] := result[ i ] OD
     END # SHUFFLE # ;

# compares two integer arrays for equality #
OP   = = ( []INT a, b )BOOL:
     IF LWB a /= LWB b OR UPB a /= UPB b
     THEN # the arrays have different bounds #
         FALSE
     ELSE
         BOOL result := TRUE;
         FOR i FROM LWB a TO UPB a WHILE result := a[ i ] = b[ i ] DO SKIP OD;
         result
     FI # = # ;

# compares two integer arrays for inequality #
OP   /= = ( []INT a, b )BOOL: NOT ( a = b );

# returns the number of shuffles required to return a deck of the specified length #
# back to its original state #
PROC count shuffles = ( INT length )INT:
     BEGIN
         []            INT original deck  = DECK length;
         [ 1 : length ]INT shuffled deck := original deck;
         INT   count         := 1;
         WHILE shuffle( shuffled deck );
               shuffled deck /= original deck
         DO
             count +:= 1
         OD;
         count
     END # count shuffles # ;

# test the shuffling #
[]INT lengths = ( 8, 24, 52, 100, 1020, 1024, 10 000 );
FOR l FROM LWB lengths TO UPB lengths DO
    print( ( whole( lengths[ l ], -8 ) + ": " + whole( count shuffles( lengths[ l ] ), -6 ), newline ) )
OD
Output:
       8:      3
      24:     11
      52:      8
     100:     30
    1020:   1018
    1024:     10
   10000:    300

APL

Works with: Dyalog APL
faro  (2,2÷)⍴⊢
count  {  r⍺⍺ ⍵:1  1+⍺∇r}
(⊢,[1.5] (faro count )¨) 8 24 52 100 1020 1024 10000
Output:
    8    3
   24   11
   52    8
  100   30
 1020 1018
 1024   10
10000  300

Arturo

perfectShuffle: function [deckSize][
    deck: 1..deckSize
    original: new deck
    halfDeck: deckSize/2

    i: 1
    while [true][
        deck: flatten couple first.n: halfDeck deck last.n: halfDeck deck
        if deck = original -> return i
        i: i+1
    ]
]

loop [8 24 52 100 1020 1024 10000] 's ->
    print [
        pad.right join @["Perfect shuffles required for deck size " to :string s ":"] 48
        perfectShuffle s
    ]
Output:
Perfect shuffles required for deck size 8:       3 
Perfect shuffles required for deck size 24:      11 
Perfect shuffles required for deck size 52:      8 
Perfect shuffles required for deck size 100:     30 
Perfect shuffles required for deck size 1020:    1018 
Perfect shuffles required for deck size 1024:    10 
Perfect shuffles required for deck size 10000:   300

AutoHotkey

Shuffle(cards){
	n := cards.MaxIndex()/2,	res := []
	loop % n
		res.push(cards[A_Index]), res.push(cards[round(A_Index + n)])
	return res
}

Examples:

test := [8, 24, 52, 100, 1020, 1024, 10000]
for each, val in test
{
	cards := [], original:=rep:=""
	loop, % val
		cards.push(A_Index), original .= (original?", ":"") A_Index
	while (res <> original)
	{
		res := ""
		for k, v in (cards := Shuffle(cards))
			res .= (res?", ":"") v
		rep := A_Index
	}
	result .= val "`t" rep "`n"
}
MsgBox % result
return

Outputs:

8	3
24	11
52	8
100	30
1020	1018
1024	10
10000	300

C

/* ===> INCLUDES <============================================================*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/* ===> CONSTANTS <===========================================================*/
#define N_DECKS 7
const int kDecks[N_DECKS] = { 8, 24, 52, 100, 1020, 1024, 10000 };

/* ===> FUNCTION PROTOTYPES <=================================================*/
int CreateDeck( int **deck, int nCards );
void InitDeck( int *deck, int nCards );
int DuplicateDeck( int **dest, const int *orig, int nCards );
int InitedDeck( int *deck, int nCards );
int ShuffleDeck( int *deck, int nCards );
void FreeDeck( int **deck );

/* ===> FUNCTION DEFINITIONS <================================================*/

int main() {
    int i, nCards, nShuffles;
    int *deck = NULL;

    for( i=0; i<N_DECKS; ++i ) {
        nCards = kDecks[i];

        if( !CreateDeck(&deck,nCards) ) {
            fprintf( stderr, "Error: malloc() failed!\n" );
            return 1;
        }

        InitDeck( deck, nCards );
        nShuffles = 0;

        do {
            ShuffleDeck( deck, nCards );
            ++nShuffles;
        } while( !InitedDeck(deck,nCards) );

        printf( "Cards count: %d, shuffles required: %d.\n", nCards, nShuffles );

        FreeDeck( &deck );
    }

    return 0;
}

int CreateDeck( int **deck, int nCards ) {
    int *tmp = NULL;

    if( deck != NULL )
        tmp = malloc( nCards*sizeof(*tmp) );

    return tmp!=NULL ? (*deck=tmp)!=NULL : 0; /* (?success) (:failure) */
}

void InitDeck( int *deck, int nCards ) {
    if( deck != NULL ) {
        int i;

        for( i=0; i<nCards; ++i )
            deck[i] = i;
    }
}

int DuplicateDeck( int **dest, const int *orig, int nCards ) {
    if( orig != NULL && CreateDeck(dest,nCards) ) {
        memcpy( *dest, orig, nCards*sizeof(*orig) );
        return 1; /* success */
    }
    else {
        return 0; /* failure */
    }
}

int InitedDeck( int *deck, int nCards ) {
    int i;

    for( i=0; i<nCards; ++i )
        if( deck[i] != i )
            return 0; /* not inited */

    return 1; /* inited */
}

int ShuffleDeck( int *deck, int nCards ) {
    int *copy = NULL;

    if( DuplicateDeck(&copy,deck,nCards) ) {
        int i, j;

        for( i=j=0; i<nCards/2; ++i, j+=2 ) {
            deck[j] = copy[i];
            deck[j+1] = copy[i+nCards/2];
        }

        FreeDeck( &copy );
        return 1; /* success */
    }
    else {
        return 0; /* failure */
    }
}

void FreeDeck( int **deck ) {
    if( *deck != NULL ) {
        free( *deck );
        *deck = NULL;
    }
}
Output:
Cards count: 8, shuffles required: 3.
Cards count: 24, shuffles required: 11.
Cards count: 52, shuffles required: 8.
Cards count: 100, shuffles required: 30.
Cards count: 1020, shuffles required: 1018.
Cards count: 1024, shuffles required: 10.
Cards count: 10000, shuffles required: 300.


Press "Enter" to quit...

C#

Works with: C sharp version 6
using System;
using System.Collections.Generic;
using System.Linq;

public static class PerfectShuffle
{
    static void Main()
    {
        foreach (int input in new [] {8, 24, 52, 100, 1020, 1024, 10000}) {
            int[] numbers = Enumerable.Range(1, input).ToArray();
            Console.WriteLine($"{input} cards: {ShuffleThrough(numbers).Count()}");
        }

        IEnumerable<T[]> ShuffleThrough<T>(T[] original) {
            T[] copy = (T[])original.Clone();
            do {
                yield return copy = Shuffle(copy);
            } while (!Enumerable.SequenceEqual(original, copy));
        }
    }

    public static T[] Shuffle<T>(T[] array) {
        if (array.Length % 2 != 0) throw new ArgumentException("Length must be even.");
        int half = array.Length / 2;
        T[] result = new T[array.Length];
        for (int t = 0, l = 0, r = half; l < half; t+=2, l++, r++) {
            result[t] = array[l];
            result[t+1] = array[r];
        }
        return result;
    }
    
}
Output:
8 cards: 3
24 cards: 11
52 cards: 8
100 cards: 30
1020 cards: 1018
1024 cards: 10
10000 cards: 300

C++

#include <iostream>
#include <algorithm>
#include <vector>

int pShuffle( int t ) {
    std::vector<int> v, o, r;

    for( int x = 0; x < t; x++ ) {
        o.push_back( x + 1 );
    }

    r = o;
    int t2 = t / 2 - 1, c = 1;

    while( true ) {
        v = r;
        r.clear();

        for( int x = t2; x > -1; x-- ) {
            r.push_back( v[x + t2 + 1] );
            r.push_back( v[x] );
        }

        std::reverse( r.begin(), r.end() );

        if( std::equal( o.begin(), o.end(), r.begin() ) ) return c;
        c++;
    }
}

int main() {
    int s[] = { 8, 24, 52, 100, 1020, 1024, 10000 };
    for( int x = 0; x < 7; x++ ) {
        std::cout << "Cards count: " << s[x] << ", shuffles required: ";
        std::cout << pShuffle( s[x] ) << ".\n";
    }
    return 0;
}
Output:
Cards count: 8, shuffles required: 3.
Cards count: 24, shuffles required: 11.
Cards count: 52, shuffles required: 8.
Cards count: 100, shuffles required: 30.
Cards count: 1020, shuffles required: 1018.
Cards count: 1024, shuffles required: 10.
Cards count: 10000, shuffles required: 300.

Clojure

(defn perfect-shuffle [deck]
  (let [half (split-at (/ (count deck) 2) deck)]
    (interleave (first half) (last half))))

(defn solve [deck-size]
  (let [original (range deck-size) 
        trials (drop 1 (iterate perfect-shuffle original))
        predicate #(= original %)]
    (println (format "%5s: %s" deck-size
      (inc (some identity (map-indexed (fn [i x] (when (predicate x) i)) trials)))))))

(map solve [8 24 52 100 1020 1024 10000])
Output:
    8: 3
   24: 11
   52: 8
  100: 30
 1020: 1018
 1024: 10
10000: 300

Common Lisp

(defun perfect-shuffle (deck)
  (let* ((half (floor (length deck) 2))
         (left (subseq deck 0 half))
         (right (nthcdr half deck)))
    (mapcan #'list left right)))

(defun solve (deck-size)
  (loop with original = (loop for n from 1 to deck-size collect n)
        for trials from 1
        for deck = original then shuffled
        for shuffled = (perfect-shuffle deck)
        until (equal shuffled original)
        finally (format t "~5D: ~4D~%" deck-size trials)))

(solve 8)
(solve 24)
(solve 52)
(solve 100)
(solve 1020)
(solve 1024)
(solve 10000)
Output:
    8:    3
   24:   11
   52:    8
  100:   30
 1020: 1018
 1024:   10
10000:  300

D

Translation of: Java
import std.stdio;

void main() {
    auto sizes = [8, 24, 52, 100, 1020, 1024, 10_000];
    foreach(s; sizes) {
        writefln("%5s : %5s", s, perfectShuffle(s));
    }
}

int perfectShuffle(int size) {
    import std.exception : enforce;
    enforce(size%2==0);

    import std.algorithm : copy, equal;
    import std.range;
    int[] orig = iota(0, size).array;

    int[] process;
    process.length = size;
    copy(orig, process);

    for(int count=1; true; count++) {
        process = roundRobin(process[0..$/2], process[$/2..$]).array;

        if (equal(orig, process)) {
            return count;
        }
    }

    assert(false, "How did this get here?");
}
Output:
    8 :     3
   24 :    11
   52 :     8
  100 :    30
 1020 :  1018
 1024 :    10
10000 :   300

Delphi

Translation of: Go
program Perfect_shuffle;

{$APPTYPE CONSOLE}

uses
  System.SysUtils;

type
  TDeck = record
    Cards: TArray<Integer>;
    Len: Integer;
    constructor Create(deckSize: Integer); overload;
    constructor Create(deck: TDeck); overload;
    procedure shuffleDeck();
    class operator Equal(a, b: TDeck): boolean;
    function ShufflesRequired: Integer;
    procedure Assign(a: TDeck);
  end;

{ TDeck }

procedure TDeck.Assign(a: TDeck);
begin
  Len := a.Len;
  Cards := copy(a.Cards, 0, len);
end;

constructor TDeck.Create(deckSize: Integer);
begin
  if deckSize < 1 then
    raise Exception.Create('Error: Deck size must have above zero');

  if Odd(deckSize) then
    raise Exception.Create('Error: Deck size must be even');

  SetLength(Cards, deckSize);
  Len := deckSize;

  for var i := 0 to High(Cards) do
    Cards[i] := i;
end;

constructor TDeck.Create(deck: TDeck);
begin
  Assign(deck);
end;

class operator TDeck.Equal(a, b: TDeck): boolean;
begin
  if a.len <> b.len then
    raise Exception.Create('Error: Decks aren''t equally sized');

  if a.Len = 0 then
    exit(True);

  for var i := 0 to a.Len - 1 do
    if a.Cards[i] <> b.Cards[i] then
      exit(False);

  Result := True;
end;

procedure TDeck.shuffleDeck;
var
  tmp: TArray<Integer>;
begin
  SetLength(tmp, len);
  for var i := 0 to len div 2 - 1 do
  begin
    tmp[i * 2] := Cards[i];
    tmp[i * 2 + 1] := Cards[len div 2 + i];
  end;
  Cards := copy(tmp, 0, len);
end;

function TDeck.ShufflesRequired: Integer;
var
  ref: TDeck;
begin
  Result := 1;
  ref := TDeck.Create(self);
  shuffleDeck;
  while not (self = ref) do
  begin
    shuffleDeck;
    inc(Result);
  end;
end;

const
  cases: TArray<Integer> = [8, 24, 52, 100, 1020, 1024, 10000];

begin
  for var size in cases do
  begin
    var deck := TDeck.Create(size);
    writeln(format('Cards count: %d, shuffles required: %d', [size, deck.ShufflesRequired]));
  end;
  readln;
end.

Dyalect

Translation of: C#
func shuffle(arr) {
    if arr.Length() % 2 != 0 {
        throw @InvalidValue(arr.Length())
    }
    var half = arr.Length() / 2
    var result = Array.Empty(arr.Length())
    var (t, l, r) = (0, 0, half)
 
    while l < half {
        result[t] = arr[l]
        result[t+1] = arr[r]
        l += 1
        r += 1
        t += 2
    }
    result
}
 
func arrayEqual(xs, ys) {
    if xs.Length() != ys.Length() {
        return false
    }
    for i in xs.Indices() {
        if xs[i] != ys[i] {
            return false
        }
    }
    return true
}
 
func shuffleThrough(original) {
    var copy = original.Clone()
 
    while true {
        copy = shuffle(copy)
        yield copy
        if arrayEqual(original, copy) {
            break
        }
    }
}
 
for input in yields { 8, 24, 52, 100, 1020, 1024, 10000} {
    var numbers = [1..input]
    print("\(input) cards: \(shuffleThrough(numbers).Length())")
}
Output:
8 cards: 3
24 cards: 11
52 cards: 8
100 cards: 30
1020 cards: 1018
1024 cards: 10
10000 cards: 300

EasyLang

Translation of: Phix
proc pshuffle . deck[] .
   mp = len deck[] / 2
   in[] = deck[]
   for i = 1 to mp
      deck[2 * i - 1] = in[i]
      deck[2 * i] = in[i + mp]
   .
.
proc test size . .
   for i to size
      deck0[] &= i
   .
   deck[] = deck0[]
   repeat
      pshuffle deck[]
      cnt += 1
      until deck[] = deck0[]
   .
   print cnt
.
for size in [ 8 24 52 100 1020 1024 10000 ]
   test size
.

EchoLisp

;; shuffler : a permutation vector which interleaves both halves of deck
(define (make-shuffler n) 
	(let ((s (make-vector n)))
		(for ((i (in-range 0 n 2))) (vector-set! s i (/ i 2))) 
		(for ((i (in-range 0 n 2))) (vector-set! s (1+ i) (+ (/ n 2) (vector-ref s i))))
	 s))
	 
;; output : (n . # of shuffles needed to go back)
(define (magic-shuffle n)
		(when (odd? n) (error "magic-shuffle:odd input" n))
		(let [(deck (list->vector (iota n))) ;; (0 1 ... n-1)
			(dock (list->vector (iota n))) ;; keep trace or init deck
			(shuffler (make-shuffler n))]
		
		(cons n (1+ 
		(for/sum ((i Infinity)) ; (in-naturals missing  in EchoLisp v2.9)
			(vector-permute! deck shuffler) ;; permutes in place
		    #:break (eqv? deck dock) ;; compare to first
			1)))))
Output:
map magic-shuffle '(8 24 52 100 1020 1024 10000))
     ((8 . 3) (24 . 11) (52 . 8) (100 . 30) (1020 . 1018) (1024 . 10) (10000 . 300))

;; Let's look in the On-line Encyclopedia of Integer Sequences
;; Given a list of numbers, the (oeis ...) function looks for a sequence

(lib 'web)
Lib: web.lib loaded.
map magic-shuffle (range 2 18 2))
     ((2 . 1) (4 . 2) (6 . 4) (8 . 3) (10 . 6) (12 . 10) (14 . 12) (16 . 4))
(oeis '(1 2 4 3 6 10 12 4))
 Sequence A002326 found

Elixir

Translation of: Ruby
defmodule Perfect do
  def shuffle(n) do
    start = Enum.to_list(1..n)
    m = div(n, 2)
    shuffle(start, magic_shuffle(start, m), m, 1)
  end
  
  defp shuffle(start, start, _, step), do: step
  defp shuffle(start, deck, m, step) do
    shuffle(start, magic_shuffle(deck, m), m, step+1)
  end
  
  defp magic_shuffle(deck, len) do
    {left, right} = Enum.split(deck, len)
    Enum.zip(left, right)
    |> Enum.map(&Tuple.to_list/1)
    |> List.flatten
  end
end

Enum.each([8, 24, 52, 100, 1020, 1024, 10000], fn n ->
  step = Perfect.shuffle(n)
  IO.puts "#{n} : #{step}"
end)
Output:
8 : 3
24 : 11
52 : 8
100 : 30
1020 : 1018
1024 : 10
10000 : 300

F#

let perfectShuffle xs =
  let h = (List.length xs) / 2
  xs
  |> List.mapi (fun i x->(if i<h then i * 2 else ((i-h) * 2) + 1), x)
  |> List.sortBy fst
  |> List.map snd

let orderCount n =
  let xs = [1..n]
  let rec spin count ys =
    if xs=ys then count
    else ys |> perfectShuffle |> spin (count + 1)
  xs |> perfectShuffle |> spin 1

[ 8; 24; 52; 100; 1020; 1024; 10000 ] |> List.iter (fun n->n |> orderCount |> printfn "%d %d" n)
Output:
8 3
24 11
52 8
100 30
1020 1018
1024 10
10000 300

Factor

USING: arrays formatting kernel math prettyprint sequences
sequences.merged ;
IN: rosetta-code.perfect-shuffle

CONSTANT: test-cases { 8 24 52 100 1020 1024 10000 }

: shuffle ( seq -- seq' ) halves 2merge ;

: shuffle-count ( n -- m )
    <iota> >array 0 swap dup [ 2dup = ] [ shuffle [ 1 + ] 2dip ]
    do until 2drop ;

"Deck size" "Number of shuffles required" "%-11s %-11s\n" printf
test-cases [ dup shuffle-count "%-11d %-11d\n" printf ] each
Output:
Deck size   Number of shuffles required
8           3          
24          11         
52          8          
100         30         
1020        1018       
1024        10         
10000       300        

Fortran

MODULE PERFECT_SHUFFLE
     IMPLICIT NONE

     CONTAINS

     ! Shuffle the deck/array of integers
     FUNCTION SHUFFLE(NUM_ARR)
          INTEGER, DIMENSION(:), INTENT(IN) :: NUM_ARR
          INTEGER, DIMENSION(SIZE(NUM_ARR)) :: SHUFFLE
          INTEGER :: I, IDX

          IF (MOD(SIZE(NUM_ARR), 2) .NE. 0) THEN
              WRITE(*,*) "ERROR: SIZE OF DECK MUST BE EVEN NUMBER"
              CALL EXIT(1)
          END IF

          IDX = 1

          DO I=1, SIZE(NUM_ARR)/2
              SHUFFLE(IDX) = NUM_ARR(I)
              SHUFFLE(IDX+1) = NUM_ARR(SIZE(NUM_ARR)/2+I)
              IDX = IDX + 2
          END DO

    END FUNCTION SHUFFLE

    ! Compare two arrays element by element
    FUNCTION COMPARE_ARRAYS(ARRAY_1, ARRAY_2)
        INTEGER, DIMENSION(:) :: ARRAY_1, ARRAY_2
        LOGICAL :: COMPARE_ARRAYS
        INTEGER :: I

        DO I=1,SIZE(ARRAY_1)
            IF (ARRAY_1(I) .NE. ARRAY_2(I)) THEN
                COMPARE_ARRAYS = .FALSE.
                RETURN
            END IF
        END DO

        COMPARE_ARRAYS = .TRUE.
    END FUNCTION COMPARE_ARRAYS

    ! Generate a deck/array of consecutive integers
    FUNCTION GEN_DECK(DECK_SIZE)
        INTEGER, INTENT(IN) :: DECK_SIZE
        INTEGER, DIMENSION(DECK_SIZE) :: GEN_DECK
        INTEGER :: I

        GEN_DECK = (/(I, I=1,DECK_SIZE)/)
    END FUNCTION GEN_DECK
END MODULE PERFECT_SHUFFLE

! Program to demonstrate the perfect shuffle algorithm
! for various deck sizes
PROGRAM DEMO_PERFECT_SHUFFLE
    USE PERFECT_SHUFFLE
    IMPLICIT NONE

    INTEGER, PARAMETER, DIMENSION(7) :: DECK_SIZES = (/8, 24, 52, 100, 1020, 1024, 10000/)
    INTEGER, DIMENSION(:), ALLOCATABLE :: DECK, SHUFFLED
    INTEGER :: I, COUNTER

    WRITE(*,'(A, A, A)') "input (deck size)", " | ", "output (number of shuffles required)"
    WRITE(*,*) REPEAT("-", 55)

    DO I=1, SIZE(DECK_SIZES)
        IF (I .GT. 1) THEN
            DEALLOCATE(DECK)
            DEALLOCATE(SHUFFLED)
        END IF
        ALLOCATE(DECK(DECK_SIZES(I)))
        ALLOCATE(SHUFFLED(DECK_SIZES(I)))
        DECK = GEN_DECK(DECK_SIZES(I))
        SHUFFLED = SHUFFLE(DECK)
        COUNTER = 1
        DO WHILE (.NOT. COMPARE_ARRAYS(DECK, SHUFFLED))
            SHUFFLED = SHUFFLE(SHUFFLED)
            COUNTER = COUNTER + 1
        END DO

        WRITE(*,'(I17, A, I35)') DECK_SIZES(I), " | ", COUNTER
   END DO
END PROGRAM DEMO_PERFECT_SHUFFLE
input (deck size) | output (number of shuffles required)
 -------------------------------------------------------
                8 |                                   3
               24 |                                  11
               52 |                                   8
              100 |                                  30
             1020 |                                1018
             1024 |                                  10
            10000 |                                 300

FreeBASIC

function is_in_order( d() as uinteger ) as boolean
    'tests if a deck is in order
    for i as uinteger = lbound(d) to ubound(d)-1
        if d(i) > d(i+1) then return false
    next i
    return true
end function

sub init_deck( d() as uinteger )
    for i as uinteger = 1 to ubound(d)
        d(i) = i
    next i
    return
end sub

sub shuffle( d() as uinteger )
    'does a faro shuffle of the deck
    dim as integer n = ubound(d), i
    dim as integer b( 1 to n )
    for i = 1 to n/2
        b(2*i-1) = d(i)
        b(2*i)   = d(n/2+i)
    next i
    for i = 1 to n
        d(i) = b(i)
    next i
    return
end sub

function shufs_needed( size as integer ) as uinteger
    dim as uinteger d(1 to size), s = 0
    init_deck(d())
    do
        shuffle(d())
        s+=1
        if is_in_order(d()) then exit do
    loop
    return s
end function

dim as uinteger tests(1 to 7) = {8, 24, 52, 100, 1020, 1024, 10000}, i
for i = 1 to 7
    print tests(i);" cards require "; shufs_needed(tests(i)); " shuffles."
next i
Output:

8 cards require 3 shuffles. 24 cards require 11 shuffles. 52 cards require 8 shuffles. 100 cards require 30 shuffles. 1020 cards require 1018 shuffles. 1024 cards require 10 shuffles. 10000 cards require 300 shuffles.

Go

package main

import "fmt"

type Deck struct {
	Cards []int
	length int
}

func NewDeck(deckSize int) (res *Deck){
	if deckSize % 2 != 0{
		panic("Deck size must be even")
	}
	res = new(Deck)
	res.Cards = make([]int, deckSize)
	res.length = deckSize
	for i,_ := range  res.Cards{
		res.Cards[i] = i
	}
	return
}
func (d *Deck)shuffleDeck(){
	tmp := make([]int,d.length)
	for i := 0;i <d.length/2;i++  {
		tmp[i*2] = d.Cards[i]
		tmp[i*2+1] = d.Cards[d.length / 2 + i]
	}
	d.Cards = tmp
}
func (d *Deck) isEqualTo(c Deck) (res bool) {
	if d.length != c.length {
		panic("Decks aren't equally sized")
	}
	res = true
	for i, v := range d.Cards{
		if v != c.Cards[i] {
			res = false
		}
	}
	return
}


func main(){
	for _,v := range []int{8,24,52,100,1020,1024,10000} {
		fmt.Printf("Cards count: %d, shuffles required: %d\n",v,ShufflesRequired(v))
	}
}

func ShufflesRequired(deckSize int)(res int){
	deck := NewDeck(deckSize)
	Ref := *deck
	deck.shuffleDeck()
	res++
	for ;!deck.isEqualTo(Ref);deck.shuffleDeck(){
		res++
	}
	return
}
Output:
Cards count: 8, shuffles required: 3
Cards count: 24, shuffles required: 11
Cards count: 52, shuffles required: 8
Cards count: 100, shuffles required: 30
Cards count: 1020, shuffles required: 1018
Cards count: 1024, shuffles required: 10
Cards count: 10000, shuffles required: 300 

Haskell

shuffle :: [a] -> [a]   
shuffle lst = let (a,b) = splitAt (length lst `div` 2) lst
              in foldMap (\(x,y) -> [x,y]) $ zip a b

findCycle :: Eq a => (a -> a) -> a -> [a]
findCycle f x = takeWhile (/= x) $ iterate f (f x)

main = mapM_ report [ 8, 24, 52, 100, 1020, 1024, 10000 ]
  where
    report n = putStrLn ("deck of " ++ show n ++ " cards: "
                         ++ show (countSuffles n) ++ " shuffles!")
    countSuffles n = 1 + length (findCycle shuffle [1..n])
Output:
deck of 8 cards: 3 shuffles!
deck of 24 cards: 11 shuffles!
deck of 52 cards: 8 shuffles!
deck of 100 cards: 30 shuffles!
deck of 1020 cards: 1018 shuffles!
deck of 1024 cards: 10 shuffles!
deck of 10000 cards: 300 shuffles!

J

The shuffle routine:

   shuf=: /: $ /:@$ 0 1"_

Here, the phrase ($ $ 0 1"_) would generate a sequence of 0s and 1s the same length as the argument sequence:

   ($ $ 0 1"_) 'abcdef'
0 1 0 1 0 1

And we can use grade up (/:) to find the indices which would sort the argument sequence so that the values in the positions corresponding to our generated zeros would come before the values in the positions corresponding to our ones.

   /: ($ $ 0 1"_) 'abcdef'
0 2 4 1 3 5

But we can use grade up again to find what would have been the original permutation (grade up is a self inverting function for this domain).

   /:/: ($ $ 0 1"_) 'abcdef'
0 3 1 4 2 5

And, that means it can also sort the original sequence into that order:

   shuf 'abcdef'
adbecf
   shuf 'abcdefgh'
aebfcgdh

And this will work for sequences of arbitrary length.

(The rest of the implementation of shuf is pure syntactic sugar - you can use J's dissect and trace facilities to see the details if you are trying to learn the language.)

Meanwhile, the cycle length routine could look like this:

   shuflen=:  [: *./ #@>@C.@shuf@i.

Here, we first generate a list of integers of the required length in their natural order. We then reorder them using our shuf function, find the cycles which result, find the lengths of each of these cycles then find the least common multiple of those lengths.

So here is the task example (with most of the middle trimmed out to avoid crashing the rosettacode wiki implementation):

   shuflen"0 }.2*i.5000
1 2 4 3 6 10 12 4 8 18 6 11 20 18 28 5 10 12 36 12 20 14 12 23 21 8 52 20 18 ... 4278 816 222 1332 384

Task example:

  ('deck size';'required shuffles'),(; shuflen)&> 8 24 52 100 1020 1024 10000
┌─────────┬─────────────────┐
deck sizerequired shuffles
├─────────┼─────────────────┤
8        3                
├─────────┼─────────────────┤
24       11               
├─────────┼─────────────────┤
52       8                
├─────────┼─────────────────┤
100      30               
├─────────┼─────────────────┤
1020     1018             
├─────────┼─────────────────┤
1024     10               
├─────────┼─────────────────┤
10000    300              
└─────────┴─────────────────┘

Note that the implementation of shuf defines a behavior for odd length "decks". Experimentation shows that cycle length for an odd length deck is often the same as the cycle length for an even length deck which is one "card" longer.

Java

Works with: Java version 8
import java.util.Arrays;
import java.util.stream.IntStream;

public class PerfectShuffle {

    public static void main(String[] args) {
        int[] sizes = {8, 24, 52, 100, 1020, 1024, 10_000};
        for (int size : sizes)
            System.out.printf("%5d : %5d%n", size, perfectShuffle(size));
    }

    static int perfectShuffle(int size) {
        if (size % 2 != 0)
            throw new IllegalArgumentException("size must be even");

        int half = size / 2;
        int[] a = IntStream.range(0, size).toArray();
        int[] original = a.clone();
        int[] aa = new int[size];

        for (int count = 1; true; count++) {
            System.arraycopy(a, 0, aa, 0, size);

            for (int i = 0; i < half; i++) {
                a[2 * i] = aa[i];
                a[2 * i + 1] = aa[i + half];
            }

            if (Arrays.equals(a, original))
                return count;
        }
    }
}
    8 :     3
   24 :    11
   52 :     8
  100 :    30
 1020 :  1018
 1024 :    10
10000 :   300

JavaScript

ES6

(() => {
    'use strict';

    // shuffleCycleLength :: Int -> Int
    const shuffleCycleLength = deckSize =>
        firstCycle(shuffle, range(1, deckSize))
        .all.length;

    // shuffle :: [a] -> [a]
    const shuffle = xs =>
        concat(zip.apply(null, splitAt(div(length(xs), 2), xs)));

    // firstycle :: Eq a => (a -> a) -> a -> [a]
    const firstCycle = (f, x) =>
        until(
            m => EqArray(x, m.current),
            m => {
                const fx = f(m.current);
                return {
                    current: fx,
                    all: m.all.concat([fx])
                };
            }, {
                current: f(x),
                all: [x]
            }
        );

    // Two arrays equal ?
    // EqArray :: [a] -> [b] -> Bool
    const EqArray = (xs, ys) => {
        const [nx, ny] = [xs.length, ys.length];
        return nx === ny ? (
            nx > 0 ? (
                xs[0] === ys[0] && EqArray(xs.slice(1), ys.slice(1))
            ) : true
        ) : false;
    };

    // GENERIC FUNCTIONS

    // zip :: [a] -> [b] -> [(a,b)]
    const zip = (xs, ys) =>
        xs.slice(0, Math.min(xs.length, ys.length))
        .map((x, i) => [x, ys[i]]);

    // concat :: [[a]] -> [a]
    const concat = xs => [].concat.apply([], xs);

    // splitAt :: Int -> [a] -> ([a],[a])
    const splitAt = (n, xs) => [xs.slice(0, n), xs.slice(n)];

    // div :: Num -> Num -> Int
    const div = (x, y) => Math.floor(x / y);

    // until :: (a -> Bool) -> (a -> a) -> a -> a
    const until = (p, f, x) => {
        const go = x => p(x) ? x : go(f(x));
        return go(x);
    }

    // range :: Int -> Int -> [Int]
    const range = (m, n) =>
        Array.from({
            length: Math.floor(n - m) + 1
        }, (_, i) => m + i);

    // length :: [a] -> Int
    // length :: Text -> Int
    const length = xs => xs.length;

    // maximumBy :: (a -> a -> Ordering) -> [a] -> a
    const maximumBy = (f, xs) =>
        xs.reduce((a, x) => a === undefined ? x : (
            f(x, a) > 0 ? x : a
        ), undefined);

    // transpose :: [[a]] -> [[a]]
    const transpose = xs =>
        xs[0].map((_, iCol) => xs.map((row) => row[iCol]));

    // show :: a -> String
    const show = x => JSON.stringify(x, null, 2);

    // replicateS :: Int -> String -> String
    const replicateS = (n, s) => {
        let v = s,
            o = '';
        if (n < 1) return o;
        while (n > 1) {
            if (n & 1) o = o.concat(v);
            n >>= 1;
            v = v.concat(v);
        }
        return o.concat(v);
    };

    // justifyRight :: Int -> Char -> Text -> Text
    const justifyRight = (n, cFiller, strText) =>
        n > strText.length ? (
            (replicateS(n, cFiller) + strText)
            .slice(-n)
        ) : strText;

    // TEST
    return transpose(transpose([
                ['Deck', 'Shuffles']
            ].concat(
                [8, 24, 52, 100, 1020, 1024, 10000]
                .map(n => [n.toString(), shuffleCycleLength(n)
                    .toString()
                ])))
            .map(col => { // Right-justified number columns
                const width = length(
                    maximumBy((a, b) => length(a) - length(b), col)
                ) + 2;

                return col.map(x => justifyRight(width, ' ', x));
            }))
        .map(row => row.join(''))
        .join('\n');
})();
Output:
   Deck  Shuffles
      8         3
     24        11
     52         8
    100        30
   1020      1018
   1024        10
  10000       300

jq

Works with: jq

A small point of interest in the following is the `recurrence` function as it is generic.

def perfect_shuffle:
  . as $a
  | if (length % 2) == 1 then "cannot perform perfect shuffle on odd-length array" | error
    else (length / 2) as $mid
    | reduce range(0; $mid) as $i (null;
       .[2*$i] = $a[$i]
       | .[2*$i + 1] =  $a[$mid+$i] )
    end;

# How many iterations of f are required to get back to . ?
def recurrence(f):
  def r:
    # input: [$init, $current, $count]
    (.[1]|f) as $next
    | if .[0] == $next then .[-1] + 1
      else [.[0], $next, .[-1]+1] | r
      end;
   [., ., 0] | r;
   
def count_perfect_shuffles:
  [range(0;.)] | recurrence(perfect_shuffle);

(8, 24, 52, 100, 1020, 1024, 10000, 100000)
| [., count_perfect_shuffles]
Output:

[8,3]
[24,11]
[52,8]
[100,30]
[1020,1018]
[1024,10]
[10000,300]
[100000,540]

Julia

using Printf

function perfect_shuffle(a::Array)::Array
    if isodd(length(a)) error("cannot perform perfect shuffle on odd-length array") end

    rst = zeros(a)
    mid = div(length(a), 2)
    for i in 1:mid
        rst[2i-1], rst[2i] = a[i], a[mid+i]
    end
    return rst
end

function count_perfect_shuffles(decksize::Int)::Int
    a = collect(1:decksize)
    b, c = perfect_shuffle(a), 1
    while a != b
        b = perfect_shuffle(b)
        c += 1
    end
    return c
end

println("    Deck  n.Shuffles")
for i in (8, 24, 52, 100, 1020, 1024, 10000, 100000)
    count = count_perfect_shuffles(i)
    @printf("%7i%7i\n", i, count)
end
Output:
    Deck  n.Shuffles
      8      3
     24     11
     52      8
    100     30
   1020   1018
   1024     10
  10000    300
 100000    540

Kotlin

// version 1.1.2

fun areSame(a: IntArray, b: IntArray): Boolean {
    for (i in 0 until a.size) if (a[i] != b[i]) return false
    return true
}

fun perfectShuffle(a: IntArray): IntArray {
    var b = IntArray(a.size)
    val hSize = a.size / 2
    for (i in 0 until hSize) b[i * 2] = a[i]
    var j = 1
    for (i in hSize until a.size) {
        b[j] = a[i]
        j += 2
    }
    return b
}

fun countShuffles(a: IntArray): Int {
    require(a.size >= 2 && a.size % 2 == 0)
    var b = a
    var count = 0
    while (true) {
        val c = perfectShuffle(b)
        count++
        if (areSame(a, c)) return count
        b = c
    }
}

fun main(args: Array<String>) {
    println("Deck size  Num shuffles")
    println("---------  ------------")
    val sizes = intArrayOf(8, 24, 52, 100, 1020, 1024, 10000)
    for (size in sizes) {
        val a = IntArray(size) { it }
        val count = countShuffles(a)
        println("${"%-9d".format(size)}     $count")
    }
}
Output:
Deck size  Num shuffles
---------  ------------
8             3
24            11
52            8
100           30
1020          1018
1024          10
10000         300

Lua

-- Perform weave shuffle
function shuffle (cards)
    local pile1, pile2 = {}, {}
    for card = 1, #cards / 2 do table.insert(pile1, cards[card]) end
    for card = (#cards / 2) + 1, #cards do table.insert(pile2, cards[card]) end
    cards = {}
    for card = 1, #pile1 do
        table.insert(cards, pile1[card])
        table.insert(cards, pile2[card])
    end
    return cards
end

-- Return boolean indicating whether or not the cards are in order
function inOrder (cards)
    for k, v in pairs(cards) do
        if k ~= v then return false end
    end
    return true
end

-- Count the number of shuffles needed before the cards are in order again
function countShuffles (deckSize)
    local deck, count = {}, 0
    for i = 1, deckSize do deck[i] = i end
    repeat
        deck = shuffle(deck)
        count = count + 1
    until inOrder(deck)
    return count
end

-- Main procedure
local testCases = {8, 24, 52, 100, 1020, 1024, 10000}
print("Input", "Output")
for _, case in pairs(testCases) do print(case, countShuffles(case)) end
Output:
Input   Output
8       3
24      11
52      8
100     30
1020    1018
1024    10
10000   300

Mathematica /Wolfram Language

shuffle[deck_] := Apply[Riffle, TakeDrop[deck, Length[deck]/2]];
shuffleCount[n_] := Block[{count=0}, NestWhile[shuffle, shuffle[Range[n]], (count++; OrderedQ[#] )&];count];
Map[shuffleCount, {8, 24, 52, 100, 1020, 1024, 10000}]
Output:
{3, 11, 8, 30, 1018, 10, 300}

MATLAB

PerfectShuffle.m:

function [New]=PerfectShuffle(Nitems, Nturns)
    if mod(Nitems,2)==0 %only if even number
        X=1:Nitems; %define deck
        for c=1:Nturns %defines one shuffle
            X=reshape(X,Nitems/2,2)'; %split the deck in two and stack halves
            X=X(:)'; %mix the halves
        end
        New=X; %result of multiple shufflings
    end

Main:

Result=[]; %vector to store results 
Q=[8, 24, 52, 100, 1020, 1024, 10000]; %queries
for n=Q %for each query
    Same=0; %initialize comparison
    T=0; %initialize number of shuffles
    while ~Same %while the result is not the original query
        T=T+1; %one more shuffle
        R=PerfectShuffle(n,T); %result of shuffling the query
        Same=~(any(R-(1:n))); %same vector as the query
    end %when getting the same vector
    Result=[Result;T]; %collect results
end
disp([Q', Result])
Output:
           8           3
          24          11
          52           8
         100          30
        1020        1018
        1024          10
       10000         300

Modula-2

Translation of: C
MODULE PerfectShuffle;
FROM FormatString IMPORT FormatString;
FROM Storage IMPORT ALLOCATE,DEALLOCATE;
FROM SYSTEM IMPORT ADDRESS,TSIZE;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;

PROCEDURE WriteCard(c : CARDINAL);
VAR buf : ARRAY[0..15] OF CHAR;
BEGIN
    FormatString("%c", buf, c);
    WriteString(buf)
END WriteCard;

PROCEDURE Init(VAR arr : ARRAY OF INTEGER);
VAR i : CARDINAL;
BEGIN
    FOR i:=0 TO HIGH(arr) DO
        arr[i] := i + 1
    END
END Init;

PROCEDURE PerfectShuffle(VAR arr : ARRAY OF INTEGER);
    PROCEDURE Inner(ti : CARDINAL);
    VAR
        tv : INTEGER;
        tp,tn,n : CARDINAL;
    BEGIN
        n := HIGH(arr);
        tn := ti;      
        tv := arr[ti];
        REPEAT    
            tp := tn;
            IF tp MOD 2 = 0 THEN
                tn := tp / 2
            ELSE
                tn := (n+1)/2+tp/2
            END;
            arr[tp] := arr[tn];
        UNTIL tn = ti;
        arr[tp] := tv
    END Inner;
VAR
    done : BOOLEAN;
    i,c : CARDINAL;
BEGIN
    c := 0;
    Init(arr);

    REPEAT
        i := 1;
        WHILE i <= (HIGH(arr)/2) DO
            Inner(i);
            INC(i,2)
        END;
        INC(c);
        
        done := TRUE;
        FOR i:=0 TO HIGH(arr) DO
            IF arr[i] # INT(i+1) THEN
                done := FALSE;
                BREAK
            END
        END
    UNTIL done;

    WriteCard(HIGH(arr)+1);
    WriteString(": ");
    WriteCard(c);
    WriteLn
END PerfectShuffle;

(* Main *)
VAR
        v8 : ARRAY[1..8] OF INTEGER;
       v24 : ARRAY[1..24] OF INTEGER;
       v52 : ARRAY[1..52] OF INTEGER;
      v100 : ARRAY[1..100] OF INTEGER;
     v1020 : ARRAY[1..1020] OF INTEGER;
     v1024 : ARRAY[1..1024] OF INTEGER;
    v10000 : ARRAY[1..10000] OF INTEGER;
BEGIN
    PerfectShuffle(v8);
    PerfectShuffle(v24);
    PerfectShuffle(v52);
    PerfectShuffle(v100);
    PerfectShuffle(v1020);
    PerfectShuffle(v1024);
    PerfectShuffle(v10000);

    ReadChar
END PerfectShuffle.
Output:
8: 3
24: 11
52: 8
100: 30
1020: 1018
1024: 10
10000: 300

Nim

import sequtils, strutils

proc newValList(size: Positive): seq[int] =
  if (size and 1) != 0:
    raise newException(ValueError, "size must be even.")
  result = toSeq(1..size)


func shuffled(list: seq[int]): seq[int] =
  result.setLen(list.len)
  let half = list.len div 2
  for i in 0..<half:
    result[2 * i] = list[i]
    result[2 * i + 1] = list[half + i]


for size in [8, 24, 52, 100, 1020, 1024, 10000]:
  let initList = newValList(size)
  var valList = initList
  var count = 0
  while true:
    inc count
    valList = shuffled(valList)
    if valList == initList:
      break
  echo ($size).align(5), ": ", ($count).align(4)


Output:
    8:    3
   24:   11
   52:    8
  100:   30
 1020: 1018
 1024:   10
10000:  300

Oforth

: shuffle(l)     l size 2 / dup l left swap l right zip expand ;
: nbShuffles(l)  1 l while( shuffle dup l <> ) [ 1 under+ ] drop ;
Output:
>[ 8, 24, 52, 100, 1020, 1024, 10000 ] map(#[ seq nbShuffles ]) .
[3, 11, 8, 30, 1018, 10, 300] ok

PARI/GP

This example is in need of improvement:

The task description was updated; please update this solution accordingly and then remove this template.

magic(v)=vector(#v,i,v[if(i%2,1,#v/2)+i\2]);
shuffles_slow(n)=my(v=[1..n],o=v,s=1);while((v=magic(v))!=o,s++);s;
shuffles(n)=znorder(Mod(2,n-1));
vector(5000,n,shuffles_slow(2*n))
Output:
%1 = [1, 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 28, 5, 10, 12, 36, 12,
 20, 14, 12, 23, 21, 8, 52, 20, 18, 58, 60, 6, 12, 66, 22, 35, 9, 20, 30, 39, 54
, 82, 8, 28, 11, 12, 10, 36, 48, 30, 100, 51, 12, 106, 36, 36, 28, 44, 12, 24, 1
10, 20, 100, 7, 14, 130, 18, 36, 68, 138, 46, 60, 28, 42, 148, 15, 24, 20, 52, 5
2, 33, 162, 20, 83, 156, 18, 172, 60, 58, 178, 180, 60, 36, 40, 18, 95, 96, 12,
196, 99, 66, 84, 20, 66, 90, 210, 70, 28, 15, 18, 24, 37, 60, 226, 76, 30, 29, 9
2, 78, 119, 24, 162, 84, 36, 82, 50, 110, 8, 16, 36, 84, 131, 52, 22, 268, 135,
12, 20, 92, 30, 70, 94, 36, 60, 136, 48, 292, 116, 90, 132, 42, 100, 60, 102, 10
2, 155, 156, 12, 316, 140, 106, 72, 60, 36, 69, 30, 36, 132, 21, 28, 10, 147, 44
, 346, 348, 36, 88, 140, 24, 179, 342, 110, 36, 183, 60, 156, 372, 100, 84, 378,
 14, 191, 60, 42, 388, 88, 130, 156, 44, 18, 200, 60, 108, 180, 204, 68, 174, 16
4, 138, 418, 420, 138, 40, 60, 60, 43, 72, 28, 198, 73, 42, 442, 44, 148, 224, 2
0, 30, 12, 76, 72, 460, 231, 20, 466, 66, 52, 70, 180, 156, 239, 36, 66, 48, 243
, 162, 490, 56, 60, 105, 166, 166, 251, 100, 156, 508, 9, 18, 204, 230, 172, 260
, 522, 60, 40, 253, 174, 60, 212, 178, 210, 540, 180, 36, 546, 60, 252, 39, 36,
556, 84, 40, 562, 28, 54, 284, 114, 190, 220, 144, 96, 246, 260, 12, 586, 90, 19
6, 148, 24, 198, 299, 25, 66, 220, 303, 84, 276, 612, 20, 154, 618, 198, 33, 500
, 90, 72, 45, 210, 28, 84, 210, 64, 214, 28, 323, 290, 30, 652, 260, 18, 658, 66
0, 24, 36, 308, 74, 60, 48, 180, 676, 48, 226, 22, 68, 76, 156, 230, 30, 276, 40
, 58, 700, 36, 92, 300, 708, 78, 55, 60, 238, 359, 51, 24, 140, 121, 486, 56, 24
4, 84, 330, 246, 36, 371, 148, 246, 318, 375, 50, 60, 756, 110, 380, 36, 24, 348
, 384, 16, 772, 20, 36, 180, 70, 252, 52, 786, 262, 84, 60, 52, 796, 184, 66, 90
, 132, 268, 404, 270, 270, 324, 126, 12, 820, 411, 20, 826, 828, 92, 168, 332, 9
0, 419, 812, 70, 156, 330, 94, 396, 852, 36, 428, 858, 60, 431, 172, 136, 390, 1
32, 48, 300, 876, 292, 55, 882, 116, 443, 21, 270, 414, 356, 132, 140, 104,[+++]

(By default gp won't show more than 25 lines of output, though an arbitrary amount can be printed or written to a file; use print, write, or default(lines, 100) to show more.)

Perl

use v5.36;
use List::Util 'all';

sub perfect_shuffle (@deck) {
   my $middle = @deck / 2;
   map { @deck[$_, $_ + $middle] } 0..$middle-1;
}

for my $size (8, 24, 52, 100, 1020, 1024, 10000) {
    my @shuffled = my @deck = 1..$size;
    my $n;
    do { $n++; @shuffled = perfect_shuffle @shuffled }
        until all { $shuffled[$_] == $deck[$_] } 0..$#shuffled;
    printf "%5d cards: %4d\n", $size, $n;
}
Output:
    8 cards:    3
   24 cards:   11
   52 cards:    8
  100 cards:   30
 1020 cards: 1018
 1024 cards:   10
10000 cards:  300

Phix

with javascript_semantics
function perfect_shuffle(sequence deck)
    integer l = length(deck), mp = l/2, k = 1
    sequence res = repeat(0,l)
    for i=1 to mp do
        res[k] = deck[i]        k += 1
        res[k] = deck[i+mp]     k += 1
    end for
    return res
end function
 
constant testsizes = {8, 24, 52, 100, 1020, 1024, 10000}
for i=1 to length(testsizes) do
    sequence deck = tagset(testsizes[i])
    sequence work = perfect_shuffle(deck)
    integer count = 1
    while work!=deck do
        work = perfect_shuffle(work)
        count += 1
    end while
    printf(1,"%5d cards: %4d\n", {testsizes[i],count})
end for
Output:
    8 cards:    3
   24 cards:   11
   52 cards:    8
  100 cards:   30
 1020 cards: 1018
 1024 cards:   10
10000 cards:  300

Picat

A perfect shuffle can be done in two ways:

  • in: first card in top half is the first card in the new deck
  • out: first card in bottom half is the first card in the new deck

The method used here supports both shuffle types. The task states an out shuffling.

Out shuffle

go => 
   member(N,[8,24,52,100,1020,1024,10_000]),
   println(n=N),
   InOut = out, % in/out shuffling
   println(inOut=InOut),
   Print = cond(N < 100, true,false),
   if Print then
     println(1..N),
   end,
   Count = show_all_shuffles(N,InOut,Print),
   println(count=Count),
   nl,
   fail,
   nl.

%
% Show all the shuffles
%
show_all_shuffles(N,InOut) = show_all_shuffles(N,InOut,false).
show_all_shuffles(N,InOut,Print) = Count =>
   Order = 1..N,
   Perfect1 = perfect_shuffle(1..N,InOut),   
   Perfect = copy_term(Perfect1),
   if Print == true then
     println(Perfect)
   end,
   Count = 1,
   while (Perfect != Order) 
     Perfect := [Perfect1[Perfect[I]] : I in 1..N],
     if Print == true then
       println(Perfect)
     end,
     Count := Count + 1
   end.

%
% Perfect shuffle a list
%
% InOut = in|out
%  in: first card in Top half is the first card in the new deck
%  out: first card in Bottom half is the first card in the new deck
%
perfect_shuffle(List,InOut) = Perfect =>
   [Top,Bottom] = split_deck(List,InOut),
   if InOut = out then
     Perfect = zip2(Top,Bottom)
   else
     Perfect = zip2(Bottom,Top)
   end.

%
% split the deck in two "halves"
% 
% For odd out shuffles, we have to adjust the
% range of the top and bottom.
%
split_deck(L,InOut) = [Top,Bottom] => 
  N = L.len,
  if InOut = out, N mod 2 = 1 then 
    Top = 1..(N div 2)+1,
    Bottom = (N div 2)+2..N
  else
    Top = 1..(N div 2),
    Bottom = (N div 2)+1..N
  end.

%
% If L1 and L2 has uneven lengths, we add the odd element last 
% in the resulting list.
%
zip2(L1,L2) = R => 
  L1Len = L1.len,
  L2Len = L2.len,
  R1 = [],
  foreach(I in 1..min(L1Len,L2Len))
    R1 := R1 ++ [L1[I],L2[I]]
  end,
  if L1Len < L2Len then
    R1 := R1 ++ [L2[L2Len]]
  elseif L1Len > L2Len then
    R1 := R1 ++ [L1[L1Len]]
  end,
  R = R1.
Output:
n = 8
inOut = out
[1,2,3,4,5,6,7,8]
[1,5,2,6,3,7,4,8]
[1,3,5,7,2,4,6,8]
[1,2,3,4,5,6,7,8]
count = 3

n = 24
inOut = out
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]
[1,13,2,14,3,15,4,16,5,17,6,18,7,19,8,20,9,21,10,22,11,23,12,24]
[1,7,13,19,2,8,14,20,3,9,15,21,4,10,16,22,5,11,17,23,6,12,18,24]
[1,4,7,10,13,16,19,22,2,5,8,11,14,17,20,23,3,6,9,12,15,18,21,24]
[1,14,4,17,7,20,10,23,13,3,16,6,19,9,22,12,2,15,5,18,8,21,11,24]
[1,19,14,9,4,22,17,12,7,2,20,15,10,5,23,18,13,8,3,21,16,11,6,24]
[1,10,19,5,14,23,9,18,4,13,22,8,17,3,12,21,7,16,2,11,20,6,15,24]
[1,17,10,3,19,12,5,21,14,7,23,16,9,2,18,11,4,20,13,6,22,15,8,24]
[1,9,17,2,10,18,3,11,19,4,12,20,5,13,21,6,14,22,7,15,23,8,16,24]
[1,5,9,13,17,21,2,6,10,14,18,22,3,7,11,15,19,23,4,8,12,16,20,24]
[1,3,5,7,9,11,13,15,17,19,21,23,2,4,6,8,10,12,14,16,18,20,22,24]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]
count = 11

n = 52
inOut = out
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52]
[1,27,2,28,3,29,4,30,5,31,6,32,7,33,8,34,9,35,10,36,11,37,12,38,13,39,14,40,15,41,16,42,17,43,18,44,19,45,20,46,21,47,22,48,23,49,24,50,25,51,26,52]
[1,14,27,40,2,15,28,41,3,16,29,42,4,17,30,43,5,18,31,44,6,19,32,45,7,20,33,46,8,21,34,47,9,22,35,48,10,23,36,49,11,24,37,50,12,25,38,51,13,26,39,52]
[1,33,14,46,27,8,40,21,2,34,15,47,28,9,41,22,3,35,16,48,29,10,42,23,4,36,17,49,30,11,43,24,5,37,18,50,31,12,44,25,6,38,19,51,32,13,45,26,7,39,20,52]
[1,17,33,49,14,30,46,11,27,43,8,24,40,5,21,37,2,18,34,50,15,31,47,12,28,44,9,25,41,6,22,38,3,19,35,51,16,32,48,13,29,45,10,26,42,7,23,39,4,20,36,52]
[1,9,17,25,33,41,49,6,14,22,30,38,46,3,11,19,27,35,43,51,8,16,24,32,40,48,5,13,21,29,37,45,2,10,18,26,34,42,50,7,15,23,31,39,47,4,12,20,28,36,44,52]
[1,5,9,13,17,21,25,29,33,37,41,45,49,2,6,10,14,18,22,26,30,34,38,42,46,50,3,7,11,15,19,23,27,31,35,39,43,47,51,4,8,12,16,20,24,28,32,36,40,44,48,52]
[1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52]
count = 8

n = 100
inOut = out
count = 30

n = 1020
inOut = out
count = 1018

n = 1024
inOut = out
count = 10

n = 10000
inOut = out
count = 300

In shuffle

Here's an example of an in shuffle. It takes 6 shuffles to get an 8 card deck back to its original order (compare with 3 for an out shuffle).

main => 
   N = 8,
   println(1..N),
   InOut = in, % in shuffling
   Count = show_all_shuffles(N,InOut,true),
   println(count=Count),
   nl.
Output:
[1,2,3,4,5,6,7,8]
[5,1,6,2,7,3,8,4]
[7,5,3,1,8,6,4,2]
[8,7,6,5,4,3,2,1]
[4,8,3,7,2,6,1,5]
[2,4,6,8,1,3,5,7]
[1,2,3,4,5,6,7,8]
count = 6

Uneven decks

The method supports decks of uneven lengths, here size 11 (using an out shuffle).

main => 
   N = 11,
   println(1..N),
   InOut = out, % in/out shuffling
   Count = show_all_shuffles(N,InOut,true),
   println(count=Count),
   nl.
Output:
[1,2,3,4,5,6,7,8,9,10,11]
[1,7,2,8,3,9,4,10,5,11,6]
[1,4,7,10,2,5,8,11,3,6,9]
[1,8,4,11,7,3,10,6,2,9,5]
[1,10,8,6,4,2,11,9,7,5,3]
[1,11,10,9,8,7,6,5,4,3,2]
[1,6,11,5,10,4,9,3,8,2,7]
[1,9,6,3,11,8,5,2,10,7,4]
[1,5,9,2,6,10,3,7,11,4,8]
[1,3,5,7,9,11,2,4,6,8,10]
[1,2,3,4,5,6,7,8,9,10,11]
count = 10


PicoLisp

(de perfectShuffle (Lst)
   (mapcan '((B A) (list A B))
      (cdr (nth Lst (/ (length Lst) 2)))
      Lst ) )

(for N (8 24 52 100 1020 1024 10000)
   (let (Lst (range 1 N)  L Lst  Cnt 1)
      (until (= Lst (setq L (perfectShuffle L)))
         (inc 'Cnt) )
      (tab (5 6) N Cnt) ) )

Output:

    8     3
   24    11
   52     8
  100    30
 1020  1018
 1024    10
10000   300

Python

import doctest
import random


def flatten(lst):
    """
    >>> flatten([[3,2],[1,2]])
    [3, 2, 1, 2]
    """
    return [i for sublst in lst for i in sublst]

def magic_shuffle(deck):
    """
    >>> magic_shuffle([1,2,3,4])
    [1, 3, 2, 4]
    """
    half = len(deck) // 2 
    return flatten(zip(deck[:half], deck[half:]))

def after_how_many_is_equal(shuffle_type,start,end):
    """
    >>> after_how_many_is_equal(magic_shuffle,[1,2,3,4],[1,2,3,4])
    2
    """

    start = shuffle_type(start)
    counter = 1
    while start != end:
        start = shuffle_type(start)
        counter += 1
    return counter

def main():
    doctest.testmod()

    print("Length of the deck of cards | Perfect shuffles needed to obtain the same deck back")
    for length in (8, 24, 52, 100, 1020, 1024, 10000):
        deck = list(range(length))
        shuffles_needed = after_how_many_is_equal(magic_shuffle,deck,deck)
        print("{} | {}".format(length,shuffles_needed))


if __name__ == "__main__":
    main()

More functional version of the same code:

"""
Brute force solution for the Perfect Shuffle problem.
See http://oeis.org/A002326 for possible improvements
"""
from functools import partial
from itertools import chain
from operator import eq
from typing import (Callable,
                    Iterable,
                    Iterator,
                    List,
                    TypeVar)

T = TypeVar('T')


def main():
    print("Deck length | Shuffles ")
    for length in (8, 24, 52, 100, 1020, 1024, 10000):
        deck = list(range(length))
        shuffles_needed = spin_number(deck, shuffle)
        print(f"{length:<11} | {shuffles_needed}")


def shuffle(deck: List[T]) -> List[T]:
    """[1, 2, 3, 4] -> [1, 3, 2, 4]"""
    half = len(deck) // 2
    return list(chain.from_iterable(zip(deck[:half], deck[half:])))


def spin_number(source: T,
                function: Callable[[T], T]) -> int:
    """
    Applies given function to the source
    until the result becomes equal to it,
    returns the number of calls 
    """
    is_equal_source = partial(eq, source)
    spins = repeat_call(function, source)
    return next_index(is_equal_source,
                      spins,
                      start=1)


def repeat_call(function: Callable[[T], T],
                value: T) -> Iterator[T]:
    """(f, x) -> f(x), f(f(x)), f(f(f(x))), ..."""
    while True:
        value = function(value)
        yield value


def next_index(predicate: Callable[[T], bool],
               iterable: Iterable[T],
               start: int = 0) -> int:
    """
    Returns index of the first element of the iterable
    satisfying given condition
    """
    for index, item in enumerate(iterable, start=start):
        if predicate(item):
            return index


if __name__ == "__main__":
    main()
Output:
Deck length | Shuffles 
8           | 3
24          | 11
52          | 8
100         | 30
1020        | 1018
1024        | 10
10000       | 300

Reversed shuffle or just calculate how many shuffles are needed:

def mul_ord2(n):
	# directly calculate how many shuffles are needed to restore
	# initial order: 2^o mod(n-1) == 1
	if n == 2: return 1

	n,t,o = n-1,2,1
	while t != 1:
		t,o = (t*2)%n,o+1
	return o

def shuffles(n):
	a,c = list(range(n)), 0
	b = a

	while True:
		# Reverse shuffle; a[i] can be taken as the current
		# position of the card with value i.  This is faster.
		a = a[0:n:2] + a[1:n:2]
		c += 1
		if b == a: break
	return c

for n in range(2, 10000, 2):
	#print(n, mul_ord2(n))
	print(n, shuffles(n))

Quackery

  [ [] swap 
    times [ i^ join ] ]       is deck     ( n --> [ )

  [ dup size 2 / split swap
    witheach 
      [ swap i^ 2 * stuff ] ] is weave    ( [ --> [ )

  [ 0 swap 
    deck dup 
    [ rot 1+ unrot
      weave 2dup = until ]
    2drop ]                   is shuffles ( n --> n )

' [ 8 24 52 100 1020 1024 10000 ] 

witheach 
  [ say "A deck of "
    dup echo say " cards needs " 
    shuffles echo say " shuffles." 
    cr ]
Output:
A deck of 8 cards needs 3 shuffles.
A deck of 24 cards needs 11 shuffles.
A deck of 52 cards needs 8 shuffles.
A deck of 100 cards needs 30 shuffles.
A deck of 1020 cards needs 1018 shuffles.
A deck of 1024 cards needs 10 shuffles.
A deck of 10000 cards needs 300 shuffles.

R

Matrix solution

wave.shuffle <- function(n) {
  deck <- 1:n ## create the original deck
  new.deck <- c(matrix(data = deck, ncol = 2, byrow = TRUE)) ## shuffle the deck once
  counter <- 1 ## track the number of loops
  ## defining a loop that shuffles the new deck until identical with the original one 
  ## and in the same time increses the counter with 1 per loop
  while (!identical(deck, new.deck)) { ## logical condition
    new.deck <- c(matrix(data = new.deck, ncol = 2, byrow = TRUE)) ## shuffle
    counter <- counter + 1 ## add 1 to the number of loops
  }
  return(counter) ## final result - total number of loops until the condition is met
}
test.values <- c(8, 24, 52, 100, 1020, 1024, 10000) ## the set of the test values
test <- sapply(test.values, wave.shuffle) ## apply the wave.shuffle function on each element
names(test) <- test.values ## name the result
test ## print the result out
Output:
> test
    8    24    52   100  1020  1024 10000 
    3    11     8    30  1018    10   300

Sequence solution

The previous solution exploits R's matrix construction; This solution exploits its array indexing.

#A strict reading of the task description says that we need a function that does exactly one shuffle.
pShuffle <- function(deck)
{
  n <- length(deck)#Assumed even (as in task description).
  shuffled <- array(n)#Maybe not as general as it could be, but the task said to use whatever was convenient.
  shuffled[seq(from = 1, to = n, by = 2)] <- deck[seq(from = 1, to = n/2, by = 1)]
  shuffled[seq(from = 2, to = n, by = 2)] <- deck[seq(from = 1 + n/2, to = n, by = 1)]
  shuffled
}

task2 <- function(deck)
{
  shuffled <- deck
  count <- 0
  repeat
  {
    shuffled <- pShuffle(shuffled)
    count <- count + 1
    if(all(shuffled == deck)) break
  }
  cat("It takes", count, "shuffles of a deck of size", length(deck), "to return to the original deck.","\n")
  invisible(count)#For the unit tests. The task wanted this printed so we only return it invisibly.
}

#Tests - All done in one line.
mapply(function(x, y) task2(1:x) == y, c(8, 24, 52, 100, 1020, 1024, 10000), c(3, 11, 8, 30, 1018, 10, 300))
Output:
> mapply(function(x, y) task2(1:x) == y, c(8, 24, 52, 100, 1020, 1024, 10000), c(3, 11, 8, 30, 1018, 10, 300))
It takes 3 shuffles of a deck of size 8 to return to the original deck. 
It takes 11 shuffles of a deck of size 24 to return to the original deck. 
It takes 8 shuffles of a deck of size 52 to return to the original deck. 
It takes 30 shuffles of a deck of size 100 to return to the original deck. 
It takes 1018 shuffles of a deck of size 1020 to return to the original deck. 
It takes 10 shuffles of a deck of size 1024 to return to the original deck. 
It takes 300 shuffles of a deck of size 10000 to return to the original deck. 
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Racket

#lang racket/base
(require racket/list)

(define (perfect-shuffle l)
  (define-values (as bs) (split-at l (/ (length l) 2)))
  (foldr (λ (a b d) (list* a b d)) null as bs))

(define (perfect-shuffles-needed n)
  (define-values (_ rv)
    (for/fold ((d (perfect-shuffle (range n))) (i 1))
              ((_ (in-naturals))
               #:break (apply < d))
      (values (perfect-shuffle d) (add1 i))))
  rv)

(module+ test
  (require rackunit)
  (check-equal? (perfect-shuffle '(1 2 3 4)) '(1 3 2 4))
  
  (define (test-perfect-shuffles-needed n e)
    (define psn (perfect-shuffles-needed n))
    (printf "Deck size:\t~a\tShuffles needed:\t~a\t(~a)~%" n psn e)
    (check-equal? psn e))

  (for-each test-perfect-shuffles-needed
            '(8 24 52 100 1020 1024 10000)
            '(3 11  8  30 1018   10   300)))
Output:
Deck size:	8	Shuffles needed:	3	(3)
Deck size:	24	Shuffles needed:	11	(11)
Deck size:	52	Shuffles needed:	8	(8)
Deck size:	100	Shuffles needed:	30	(30)
Deck size:	1020	Shuffles needed:	1018	(1018)
Deck size:	1024	Shuffles needed:	10	(10)
Deck size:	10000	Shuffles needed:	300	(300)

Raku

(formerly Perl 6)

for 8, 24, 52, 100, 1020, 1024, 10000 -> $size {
    my ($n, @deck) = 1, |^$size;
    $n++ until [<] @deck = flat [Z] @deck.rotor: @deck/2;
    printf "%5d cards: %4d\n", $size, $n;
}
Output:
    8 cards:    3
   24 cards:   11
   52 cards:    8
  100 cards:   30
 1020 cards: 1018
 1024 cards:   10
10000 cards:  300

REXX

unoptimized

/*REXX program performs a  "perfect shuffle"  for a number of  even numbered  decks.    */
parse arg X                                      /*optional list of test cases from C.L.*/
if X=''  then X=8 24 52 100 1020 1024 10000      /*Not specified?  Then use the default.*/
w=length(word(X, words(X)))                      /*used for right─aligning the numbers. */

    do j=1  for words(X);  y=word(X,j)           /*use numbers in the test suite (list).*/

      do k=1  for y;       @.k=k;      end /*k*/ /*generate a deck to be used (shuffled)*/
      do t=1  until eq();  call magic; end /*t*/ /*shuffle until  before  equals  after.*/

    say 'deck size:'    right(y,w)","       right(t,w)      'perfect shuffles.'
    end   /*j*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
eq:    do ?=1  for y;   if @.?\==?  then return 0;   end;           return 1
/*──────────────────────────────────────────────────────────────────────────────────────*/
magic: z=0                                       /*set the  Z  pointer  (used as index).*/
       h=y%2                                     /*get the half─way (midpoint) pointer. */
                do s=1  for h;  z=z+1;  h=h+1    /*traipse through the card deck pips.  */
                !.z=@.s;        z=z+1            /*assign left half; then bump pointer. */
                !.z=@.h                          /*   "   right  "                      */
                end   /*s*/                      /*perform a perfect shuffle of the deck*/

                do r=1  for y;  @.r=!.r;  end    /*re─assign to the original card deck. */
       return

output   (abbreviated)   when using the default input:

deck size:     8,     3 perfect shuffles.
deck size:    24,    11 perfect shuffles.
deck size:    52,     8 perfect shuffles.
deck size:   100,    30 perfect shuffles.
deck size:  1020,  1018 perfect shuffles.
deck size:  1024,    10 perfect shuffles.
deck size: 10000,   300 perfect shuffles.

optimized

This REXX version takes advantage that the 1st and last cards of the deck don't change.

/*REXX program does a  "perfect shuffle"  for a number of  even  numbered  decks.       */
parse arg X                                      /*optional list of test cases from C.L.*/
if X=''  then X=8 24 52 100 1020 1024 10000      /*Not specified?  Use default.*/
w=length(word(X, words(X)))                      /*used for right─aligning the numbers. */

    do j=1  for words(X);  y=word(X,j)           /*use numbers in the test suite (list).*/

      do k=1  for y;       @.k=k;       end      /*generate a deck to be shuffled (used)*/
      do t=1  until eq();  call magic;  end      /*shuffle until  before  equals  after.*/

    say 'deck size:'    right(y,w)","       right(t,w)      'perfect shuffles.'
    end     /*j*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
eq:           do ?=1  for y;    if @.?\==?  then return 0;    end;            return 1
/*──────────────────────────────────────────────────────────────────────────────────────*/
magic: z=1;                     h=y%2                        /*H  is (half─way) pointer.*/
              do L=3  by 2  for h-1; z=z+1; !.L=@.z; end     /*assign left half of deck.*/
              do R=2  by 2  for h-1; h=h+1; !.R=@.h; end     /*   "   right  "   "   "  */
              do a=2        for y-2;        @.a=!.a; end     /*re─assign──►original deck*/
       return

output   is the same as the 1st version.

Ruby

def perfect_shuffle(deck_size = 52)
  deck     = (1..deck_size).to_a
  original = deck.dup
  half     = deck_size / 2
  1.step do |i|
    deck = deck.first(half).zip(deck.last(half)).flatten
    return i if deck == original 
  end
end

[8, 24, 52, 100, 1020, 1024, 10000].each {|i| puts "Perfect shuffles required for deck size #{i}: #{perfect_shuffle(i)}"}
Output:
Perfect shuffles required for deck size 8: 3
Perfect shuffles required for deck size 24: 11
Perfect shuffles required for deck size 52: 8
Perfect shuffles required for deck size 100: 30
Perfect shuffles required for deck size 1020: 1018
Perfect shuffles required for deck size 1024: 10
Perfect shuffles required for deck size 10000: 300

Rust

extern crate itertools;

fn shuffle<T>(mut deck: Vec<T>) -> Vec<T> {
    let index = deck.len() / 2;
    let right_half = deck.split_off(index);
    itertools::interleave(deck, right_half).collect()
}

fn main() {
    for &size in &[8, 24, 52, 100, 1020, 1024, 10_000] {
        let original_deck: Vec<_> = (0..size).collect();
        let mut deck = original_deck.clone();
        let mut iterations = 0;
        loop {
            deck = shuffle(deck);
            iterations += 1;
            if deck == original_deck {
                break;
            }
        }
        println!("{: >5}: {: >4}", size, iterations);
    }
}
Output:
    8:    3
   24:   11
   52:    8
  100:   30
 1020: 1018
 1024:   10
10000:  300

Scala

Imperative, Quick, dirty and ugly

Translation of: Java
Output:

Best seen running in your browser either by ScalaFiddle (ES aka JavaScript, non JVM) or Scastie (remote JVM).

object PerfectShuffle extends App {
  private def sizes = Seq(8, 24, 52, 100, 1020, 1024, 10000)

  private def perfectShuffle(size: Int): Int = {
    require(size % 2 == 0, "Card deck must be even")

    val (half, a) = (size / 2, Array.range(0, size))
    val original = a.clone
    var count = 1
    while (true) {
      val aa = a.clone
      for (i <- 0 until half) {
        a(2 * i) = aa(i)
        a(2 * i + 1) = aa(i + half)
      }
      if (a.deep == original.deep) return count
      count += 1
    }
    0
  }

  for (size <- sizes) println(f"$size%5d : ${perfectShuffle(size)}%5d")

}

Scilab

Translation of: MATLAB
function New=PerfectShuffle(Nitems,Nturns)
    if modulo(Nitems,2)==0 then
        X=1:Nitems;
        for c=1:Nturns
            X=matrix(X,Nitems/2,2)';
            X=X(:);
        end
        New=X';
    end
endfunction

Result=[];
Q=[8, 24, 52, 100, 1020, 1024, 10000];
for n=Q
    Same=0;
    T=0;
    Compare=[];
    while ~Same
        T=T+1;
        R=PerfectShuffle(n,T);
        Compare = find(R-(1:n));
        if Compare == [] then
            Same = 1;
        end
    end
    Result=[Result;T];
end
disp([Q', Result])
Output:
   8.       3.   
   24.      11.  
   52.      8.   
   100.     30.  
   1020.    1018.
   1024.    10.  
   10000.   300.

SETL

program faro_shuffle;
    loop for test in [8, 24, 52, 100, 1020, 1024, 10000] do
        print(lpad(str test, 5) + " cards: " + lpad(str cycle [1..test], 4));
    end loop;

    op cycle(l);
        start := l;
        loop until l = start do
            l := shuffle l;
            n +:= 1;
        end loop;
        return n;
    end op;

    op shuffle(l);
        return [l(mapindex(i,#l)) : i in [1..#l]];
    end op;

    proc mapindex(i, size);
        return if odd i then i div 2+1 else (i+size) div 2 end;
    end proc;
end program;
Output:
    8 cards:    3
   24 cards:   11
   52 cards:    8
  100 cards:   30
 1020 cards: 1018
 1024 cards:   10
10000 cards:  300

Sidef

Translation of: Perl
func perfect_shuffle(deck) {
     deck/2 -> zip.flat
}

[8, 24, 52, 100, 1020, 1024, 10000].each { |size|
    var deck = @(1..size)
    var shuffled = deck

    var n = (1..Inf -> lazy.first {
        (shuffled = perfect_shuffle(shuffled)) == deck
    })

    printf("%5d cards: %4d\n", size, n)
}
Output:
    8 cards:    3
   24 cards:   11
   52 cards:    8
  100 cards:   30
 1020 cards: 1018
 1024 cards:   10
10000 cards:  300

Swift

func perfectShuffle<T>(_ arr: [T]) -> [T]? {
  guard arr.count & 1 == 0 else {
    return nil
  }

  let half = arr.count / 2
  var res = [T]()

  for i in 0..<half {
    res.append(arr[i])
    res.append(arr[i + half])
  }

  return res
}

let decks = [
  Array(1...8),
  Array(1...24),
  Array(1...52),
  Array(1...100),
  Array(1...1020),
  Array(1...1024),
  Array(1...10000)
]

for deck in decks {
  var shuffled = deck
  var shuffles = 0

  repeat {
    shuffled = perfectShuffle(shuffled)!
    shuffles += 1
  } while shuffled != deck

  print("Deck of \(shuffled.count) took \(shuffles) shuffles to get back to original order")
}
Output:
Deck of 8 took 3 shuffles to get back to original order
Deck of 24 took 11 shuffles to get back to original order
Deck of 52 took 8 shuffles to get back to original order
Deck of 100 took 30 shuffles to get back to original order
Deck of 1020 took 1018 shuffles to get back to original order
Deck of 1024 took 10 shuffles to get back to original order
Deck of 10000 took 300 shuffles to get back to original order

Tcl

Using tcltest to include an executable test case ..

namespace eval shuffle {

    proc perfect {deck} {
        if {[llength $deck]%2} {
            return -code error "Deck must be of even length!"
        }
        set split [expr {[llength $deck]/2}]
        set top [lrange $deck 0 $split-1]
        set btm [lrange $deck $split end]
        foreach a $top b $btm {
            lappend res $a $b
        }
        return $res
    }

    proc cycle_length {transform deck} {
        set d $deck
        while 1 {
            set d [$transform $d]
            incr i
            if {$d eq $deck} {return $i}
        }
        return $i
    }

    proc range {a {b ""}} {
        if {$b eq ""} {
            set b $a; set a 0
        }
        set res {}
        while {$a < $b} {
            lappend res $a
            incr a
        }
        return $res
    }

}

set ::argv {}
package require tcltest
tcltest::test "Test perfect shuffle cycles" {} -body {
    lmap size {8 24 52 100 1020 1024 10000} {
        shuffle::cycle_length perfect [range $size]
    }
} -result {3 11 8 30 1018 10 300}

UNIX Shell

Works with: Bourne Again SHell
Works with: Korn Shell
Works with: Zsh
function faro {
   if (( $# % 2 )); then
     printf >&2 'Can only shuffle an even number of elements!\n'
     return 1
   fi
   typeset -i half=$(($#/2)) i
   typeset argv=("$@")
   for (( i=0; i<half; ++i )); do
     printf '%s\n%s\n' "${argv[i${ZSH_VERSION:++1}]}" "${argv[i+half${ZSH_VERSION:++1}]}"
   done
}

function count_faros {
  typeset argv=("$@")
  typeset -i count=0
  argv=($(faro "${argv[@]}"))
  (( count += 1 ))
  while [[ "${argv[*]}" != "$*" ]]; do
    argv=($(faro "${argv[@]}"))
    (( count += 1 ))
  done
  printf '%d\n' "$count"
}

# Include time taken, which is combined from the three shells in the output below
printf '%s\t%s\t%s\n' Size Shuffles Seconds
for size in 8 24 52 100 1020 1024 10000; do
    eval "array=({1..$size})"
    start=$(date +%s)
    count=$(count_faros "${array[@]}")
    taken=$(( $(date +%s) - start ))
    printf '%d\t%d\t%d\n' "$size" "$count" "$taken"
done
Output:
Size   Shuffles Seconds (Bash/Ksh/Zsh)
8       3       0/0/0
24      11      0/0/0
52      8       0/0/0
100     30      0/0/0
1020    1018    20/4/8
1024    10      0/0/0
10000   300     87/12/29

VBA

Option Explicit

Sub Main()
Dim T, Arr, X As Long, C As Long
   Arr = Array(8, 24, 52, 100, 1020, 1024, 10000)
   For X = LBound(Arr) To UBound(Arr)
      C = 0
      Call PerfectShuffle(T, CLng(Arr(X)), C)
      Debug.Print Right(String(19, " ") & "For " & Arr(X) & " cards => ", 19) & C & " shuffles needed."
      Erase T
   Next
End Sub

Private Sub PerfectShuffle(tb, NbCards As Long, Count As Long)
Dim arr1, arr2, StrInit As String, StrTest As String

   tb = CreateArray(1, NbCards)
   StrInit = Join(tb, " ")
   Do
      Count = Count + 1
      Call DivideArr(tb, arr1, arr2)
      tb = RemakeArray(arr1, arr2)
      StrTest = Join(tb, " ")
   Loop While StrTest <> StrInit
End Sub

Private Function CreateArray(First As Long, Length As Long) As String()
Dim i As Long, T() As String, C As Long
   If IsEven(Length) Then
      ReDim T(Length - 1)
      For i = First To First + Length - 1
         T(C) = i
         C = C + 1
      Next i
      CreateArray = T
   End If
End Function

Private Sub DivideArr(A, B, C)
Dim i As Long
   B = A
   ReDim Preserve B(UBound(A) \ 2)
   ReDim C(UBound(B))
   For i = LBound(C) To UBound(C)
      C(i) = A(i + UBound(B) + 1)
   Next
End Sub

Private Function RemakeArray(A1, A2) As String()
Dim i As Long, T() As String, C As Long
   ReDim T((UBound(A2) * 2) + 1)
   For i = LBound(T) To UBound(T) - 1 Step 2
      T(i) = A1(C)
      T(i + 1) = A2(C)
      C = C + 1
   Next
   RemakeArray = T
End Function

Private Function IsEven(Number As Long) As Boolean
    IsEven = (Number Mod 2 = 0)
End Function
Output:
    For 8 cards => 3 shuffles needed.
   For 24 cards => 11 shuffles needed.
   For 52 cards => 8 shuffles needed.
  For 100 cards => 30 shuffles needed.
 For 1020 cards => 1018 shuffles needed.
 For 1024 cards => 10 shuffles needed.
For 10000 cards => 300 shuffles needed.

Wren

Translation of: Kotlin
Library: Wren-fmt
import "./fmt" for Fmt

var areSame = Fn.new { |a, b|
    for (i in 0...a.count) if (a[i] != b[i]) return false
    return true
}

var perfectShuffle = Fn.new { |a|
    var n = a.count
    var b = List.filled(n, 0)
    var hSize = (n/2).floor
    for (i in 0...hSize) b[i * 2] = a[i]
    var j = 1
    for (i in hSize...n) {
        b[j] = a[i]
        j = j + 2
    }
    return b
}

var countShuffles = Fn.new { |a|
    var n = a.count
    if (n < 2 || n % 2 == 1) Fiber.abort("Array must be even-sized and non-empty.")
    var b = a
    var count = 0
    while (true) {
        var c = perfectShuffle.call(b)
        count = count + 1
        if (areSame.call(a, c)) return count
        b = c
    }
}

System.print("Deck size  Num shuffles")
System.print("---------  ------------")
var sizes = [8, 24, 52, 100, 1020, 1024, 10000]
for (size in sizes) {
    var a = List.filled(size, 0)
    for (i in 1...size) a[i] = i
    var count = countShuffles.call(a)
    Fmt.print("$-9d     $d", size, count)
}
Output:
Deck size  Num shuffles
---------  ------------
8             3
24            11
52            8
100           30
1020          1018
1024          10
10000         300

XPL0

int     Deck(10000), Deck0(10000);
int     Cases, Count, Test, Size, I;

proc    Shuffle;                \Do perfect shuffle of Deck0 into Deck
int     DeckLeft, DeckRight;
int     I;
[DeckLeft:= Deck0;
DeckRight:= Deck0 + Size*4/2;   \4 bytes per integer
for I:= 0 to Size-1 do
        Deck(I):= if I&1 then DeckRight(I/2)
                         else DeckLeft(I/2);
];

[Cases:= [8, 24, 52, 100, 1020, 1024, 10000];
for Test:= 0 to 7-1 do
        [Size:= Cases(Test);
        for I:= 0 to Size-1 do Deck(I):= I;
        Count:= 0;
        repeat  for I:= 0 to Size-1 do Deck0(I):= Deck(I);
                Shuffle;
                Count:= Count+1;
                for I:= 0 to Size-1 do
                        if Deck(I) # I then I:= Size;
        until   I = Size;       \equal starting configuration
        IntOut(0, Size);  ChOut(0, 9\tab\);  IntOut(0, Count);  CrLf(0);
        ];
]
Output:
8       3
24      11
52      8
100     30
1020    1018
1024    10
10000   300

zkl

fcn perfectShuffle(numCards){
   deck,shuffle,n,N:=numCards.pump(List),deck,0,numCards/2;
   do{ shuffle=shuffle[0,N].zip(shuffle[N,*]).flatten(); n+=1 }
   while(deck!=shuffle);
   n
}
foreach n in (T(8,24,52,100,1020,1024,10000)){
   println("%5d : %d".fmt(n,perfectShuffle(n)));
}
Output:
    8 : 3
   24 : 11
   52 : 8
  100 : 30
 1020 : 1018
 1024 : 10
10000 : 300