Mersenne primes

Revision as of 17:28, 26 March 2022 by Tigerofdarkness (talk | contribs) (→‎{{header|F#}}: fix heading, as suggested on the Count examples/Full list/Tier 4 talk page)

Create code that will list (preferably calculate) all of the   Mersenne primes   until some limitation is reached.

Mersenne primes is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task


The number of   known   Mersenne primes is   51   (as of June, 2020),   and the largest known Mersenne prime contains contains   24,862,048   decimal digits.


Also see



11l

Translation of: D

<lang 11l>F is_prime(BigInt bi)

  I bi < 2 {R 0B}
  I bi % 2 == 0 {R bi == 2}
  I bi % 3 == 0 {R bi == 3}
  V test = BigInt(5)
  L test * test < bi
     I bi % test == 0
        R 0B
     test += 2
     I bi % test == 0
        R 0B
     test += 4
  R 1B

V base = BigInt(2) L(p) 1..31

  I is_prime(base - 1)
     print(‘2 ^ ’p‘ - 1’)
  base *= 2</lang>
Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1

AppleScript

<lang> on isPrime(integ) set isComposite to "" if (integ / 2) = (integ / 2 div 1) then log integ & " is composite because 2 is a factor" as string --buttons {"OK", "Cancel"} default button 1 cancel button 2

else set x to 2 set sqrtOfInteg to integ ^ 0.5 repeat until x = integ ^ 0.5 + 1 as integer if (integ / x) = integ / x div 1 then log integ & " is composite because " & x & " & " & (integ / x div 1) & " are factors" as string --buttons {"OK", "Cancel"} default button 1 cancel button 2 set isComposite to 1 set x to x + 1 else

set x to x + 1 end if


end repeat log integ & " is prime" as string --buttons {"OK", "Cancel"} default button 1 cancel button 2 if isComposite = 1 then log integ & "is composite" else display dialog integ end if end if

end isPrime set x to 2 repeat isPrime(((2 ^ x) - 1) div 1) set x to x + 1 end repeat </lang>

AWK

<lang AWK>

  1. syntax: GAWK --bignum -f MERSENNE_PRIMES.AWK

BEGIN {

   base = 2
   for (i=1; i<62; i++) {
     if (is_prime(base-1)) {
       printf("2 ^ %d - 1\n",i)
     }
     base *= 2
   }
   exit(0)

} function is_prime(n, d) {

   d = 5
   if (n < 2) { return(0) }
   if (n % 2 == 0) { return(n == 2) }
   if (n % 3 == 0) { return(n == 3) }
   while (d*d <= n) {
     if (n % d == 0) { return(0) }
     d += 2
     if (n % d == 0) { return(0) }
     d += 4
   }
   return(1)

} </lang>

Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1
2 ^ 61 - 1


BASIC

BASIC256

Translation of: FreeBASIC

<lang BASIC256>m = 0 while True m += 1 if isPrime((2^m)-1) = True then print m end while end

function isPrime(v) if v <= 1 then return False for i = 2 To int(sqr(v)) if v % i = 0 then return False next i return True end function</lang>

Output:
Igual que la entrada de FreeBASIC.

FreeBASIC

<lang freebasic>Function isPrime(Byval ValorEval As Integer) As Boolean

   If ValorEval <= 1 Then Return False
   For i As Integer = 2 To Int(Sqr(ValorEval))
       If ValorEval Mod i = 0 Then Return False
   Next i
   Return True

End Function

Dim As Integer m = 0 While True

   m += 1
   If isPrime((2^m)-1) Then Print m

Wend Sleep</lang>

Output:
2
3
5
7
13
17
19
31

Yabasic

Translation of: FreeBASIC

<lang yabasic>m = 0 while True

   m = m + 1
   if isPrime((2^m)-1) = True then print m : fi

wend end

sub isPrime(v)

   if v < 2 then return False : fi
   if mod(v, 2) = 0 then return v = 2 : fi
   if mod(v, 3) = 0 then return v = 3 : fi
   d = 5
   while d * d <= v
       if mod(v, d) = 0 then return False else d = d + 2 : fi
   end while
   return True

end sub</lang>

Output:
Igual que la entrada de FreeBASIC.


C

<lang c>#include <stdbool.h>

  1. include <stdint.h>
  2. include <stdio.h>

bool isPrime(uint64_t n) {

   uint64_t test;
   if (n < 2) return false;
   if (n % 2 == 0) return n == 2;
   if (n % 3 == 0) return n == 3;
   test = 5;
   while (test * test < n) {
       if (n % test == 0) return false;
       test += 2;
       if (n % test == 0) return false;
       test += 4;
   }
   return true;

}

int main() {

   uint64_t base = 2;
   int pow;
   for (pow = 1; pow <= 32; pow++) {
       if (isPrime(base - 1)) {
           printf("2 ^ %d - 1\n", pow);
       }
       base *= 2;
   }
   return 0;

}</lang>

Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1

C++

Translation of: C

<lang cpp>#include <iostream>

bool isPrime(uint64_t n) {

   if (n < 2) return false;
   if (n % 2 == 0) return n == 2;
   if (n % 3 == 0) return n == 3;
   uint64_t test = 5;
   while (test * test < n) {
       if (n % test == 0) return false;
       test += 2;
       if (n % test == 0) return false;
       test += 4;
   }
   return true;

}

int main() {

   uint64_t base = 2;
   for (int pow = 1; pow <= 32; pow++) {
       if (isPrime(base - 1)) {
           std::cout << "2 ^ " << pow << " - 1\n";
       }
       base *= 2;
   }
   return 0;

}</lang>

Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1

C#

Needs a better primality checking algorithm to do really large prime numbers. <lang csharp>using System; using System.Numerics;

namespace MersennePrimes {

   class Program {
       static BigInteger Sqrt(BigInteger x) {
           if (x < 0) throw new ArgumentException("Negative argument.");
           if (x < 2) return x;
           BigInteger y = x / 2;
           while (y > x / y) {
               y = ((x / y) + y) / 2;
           }
           return y;
       }
       static bool IsPrime(BigInteger bi) {
           if (bi < 2) return false;
           if (bi % 2 == 0) return bi == 2;
           if (bi % 3 == 0) return bi == 3;
           if (bi % 5 == 0) return bi == 5;
           if (bi % 7 == 0) return bi == 7;
           if (bi % 11 == 0) return bi == 11;
           if (bi % 13 == 0) return bi == 13;
           if (bi % 17 == 0) return bi == 17;
           if (bi % 19 == 0) return bi == 19;
           BigInteger limit = Sqrt(bi);
           BigInteger test = 23;
           while (test < limit) {
               if (bi % test == 0) return false;
               test += 2;
               if (bi % test == 0) return false;
               test += 4;
           }
           return true;
       }
       static void Main(string[] args) {
           const int MAX = 9;
           int pow = 2;
           int count = 0;
           while (true) {
               if (IsPrime(pow)) {
                   BigInteger p = BigInteger.Pow(2, pow) - 1;
                   if (IsPrime(p)) {
                       Console.WriteLine("2 ^ {0} - 1", pow);
                       if (++count >= MAX) {
                           break;
                       }
                   }
               }
               pow++;
           }
       }
   }

}</lang>

Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1
2 ^ 61 - 1

D

Simplest thing that could possibly work. Using better primality tests will allow for more results to be calculated in a reasonable amount of time. <lang D>import std.bigint; import std.stdio;

bool isPrime(BigInt bi) {

   if (bi < 2) return false;
   if (bi % 2 == 0) return bi == 2;
   if (bi % 3 == 0) return bi == 3;
   
   auto test = BigInt(5);
   while (test * test < bi) {
       if (bi % test == 0) return false;
       test += 2;
       if (bi % test == 0) return false;
       test += 4;
   }
   return true;

}

void main() {

   auto base = BigInt(2);
   for (int pow=1; pow<32; pow++) {
       if (isPrime(base-1)) {
           writeln("2 ^ ", pow, " - 1");
       }
       base *= 2;
   }

}</lang>

Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1

F#

Translation of: C#

<lang fsharp>open System open System.Numerics

let Sqrt (n:BigInteger) =

   if n < (BigInteger 0) then raise (ArgumentException "Negative argument.")
   if n < (BigInteger 2) then n
   else
       let rec H v r s =
           if v < s then
               r
           else
               H (v - s) (r + (BigInteger 1)) (s + (BigInteger 2))
       H n (BigInteger 0) (BigInteger 1)

let IsPrime (n:BigInteger) =

   if n < (BigInteger 2) then false
   elif n % (BigInteger 2) = (BigInteger 0) then n = (BigInteger 2)
   elif n % (BigInteger 3) = (BigInteger 0) then n = (BigInteger 3)
   elif n % (BigInteger 5) = (BigInteger 0) then n = (BigInteger 5)
   elif n % (BigInteger 7) = (BigInteger 0) then n = (BigInteger 7)
   elif n % (BigInteger 11) = (BigInteger 0) then n = (BigInteger 11)
   elif n % (BigInteger 13) = (BigInteger 0) then n = (BigInteger 13)
   elif n % (BigInteger 17) = (BigInteger 0) then n = (BigInteger 17)
   elif n % (BigInteger 19) = (BigInteger 0) then n = (BigInteger 19)
   else
       let limit = (Sqrt n)
       let rec H t =
           if t <= limit then
               if n % t = (BigInteger 0) then false
               else
                   let t2 = t + (BigInteger 2)
                   if n % t2 = (BigInteger 0) then false
                   else H (t2 + (BigInteger 4))
           else
               true
       H (BigInteger 23)

[<EntryPoint>] let main _ =

   let MAX = BigInteger 9
   let rec loop (pow:int) (count:int) =
       if IsPrime (BigInteger pow) then
           let p = BigInteger.Pow((BigInteger 2), pow) - (BigInteger 1)
           if IsPrime p then
               printfn "2 ^ %A - 1" pow
               if (BigInteger (count + 1)) >= MAX then count
               else loop (pow + 1) (count + 1)
           else loop (pow + 1) count
       else loop (pow + 1) count
   loop 2 0 |> ignore
   0 // return an integer exit code</lang>
Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1
2 ^ 61 - 1

Factor

Factor comes with a Lucas-Lehmer primality test. <lang factor>USING: formatting math.primes.lucas-lehmer math.ranges sequences ;

mersennes-upto ( n -- seq ) [1,b] [ lucas-lehmer ] filter ;

3500 mersennes-upto [ "2 ^ %d - 1\n" printf ] each</lang>

Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1
2 ^ 61 - 1
2 ^ 89 - 1
2 ^ 107 - 1
2 ^ 127 - 1
2 ^ 521 - 1
2 ^ 607 - 1
2 ^ 1279 - 1
2 ^ 2203 - 1
2 ^ 2281 - 1
2 ^ 3217 - 1

Fortran

Translation of: C

<lang fortran> program mersenne

   use iso_fortran_env, only: output_unit, INT64
   implicit none
   integer, parameter  :: l=INT64
   integer(kind=l)     :: base
   integer             :: pow
   base = 2
   do pow = 1, 32
       if (is_prime(base-1)) then
           write(output_unit,'(A2,x,I0,x,A3)') "2^", pow, "- 1"
       end if
       base = base * 2
   end do

contains

   pure function is_prime(n)
       integer(kind=l), intent(in) :: n
       logical                     :: is_prime
       integer(kind=l)             :: test
       is_prime = .false.
       if (n < 2) return
       if (modulo(n, 2) == 0) then
           is_prime = n==2
           return
       end if
       if (modulo(n, 3) == 0) then
           is_prime = n==3
           return
       end if
       test = 5
       do
           if (test**2 >= n) then
               is_prime = .true.
               return
           end if
           if (modulo(n, test) == 0) return
           test = test + 2
           if (modulo(n, test) == 0) return
           test = test + 4
       end do
   end function is_prime

end program mersenne </lang>

Output:
2^ 2 - 1
2^ 3 - 1
2^ 5 - 1
2^ 7 - 1
2^ 13 - 1
2^ 17 - 1
2^ 19 - 1
2^ 31 - 1

Frink

Frink has built-in routines for iterating through prime numbers. Frink's isPrime[n] function automatically detects numbers of the form 2n-1 and performs a more efficient Lucas-Lehmer primality test on the number. This works with arbitrarily large numbers.

Did you know that all Java-based JVM languages are many many orders of magnitude faster because Frink's developer contributed vastly faster BigInteger algorithms to Java? It took the Java developers 11 years to integrate them but they became part of 1.8 and later! Operations that used to take days now can be done in seconds thanks to Frink's contributions to Java. <lang frink>for n = primes[]

  if isPrime[2^n - 1]
     println["2^$n - 1"]</lang>
Output:
2^2 - 1
2^3 - 1
2^5 - 1
2^7 - 1
2^13 - 1
2^17 - 1
2^19 - 1
2^31 - 1
2^61 - 1
2^89 - 1
2^107 - 1
2^127 - 1
2^521 - 1
2^607 - 1
2^1279 - 1
2^2203 - 1
2^2281 - 1
2^3217 - 1
2^4253 - 1
2^4423 - 1
2^9689 - 1
2^9941 - 1
2^11213 - 1
2^19937 - 1
2^21701 - 1
...

Go

The github.com/ncw/gmp package is a drop-in replacement for Go's math/big package. It's a CGo wrapper around the C GMP library and under these circumstances is two to four times as fast as the native Go package. Editing just the import line you can use whichever is more convenient for you (CGo has drawbacks, including limited portability). Normally build tags would be used to control this instead of editing imports in the source, but this keeps the example simpler.

Note that the use of ProbablyPrime(0) requires Go 1.8 or later. When using the math/big package, passing a parameter of zero to this method forces it to apply only the Baillie-PSW test to check for primality. This is 100% accurate for numbers up to 2^64 and at the time of writing (June 2018) no known composite number above that bound passes the test. <lang go>package main

import ( "fmt" "time"

// Use one or the other of these: "math/big" //big "github.com/ncw/gmp" )

func main() { start := time.Now() one := big.NewInt(1) mp := big.NewInt(0) bp := big.NewInt(0) const max = 22 for count, p := 0, uint(2); count < max; { mp.Lsh(one, p) mp.Sub(mp, one) if mp.ProbablyPrime(0) { elapsed := time.Since(start).Seconds() if elapsed >= 0.01 { fmt.Printf("2 ^ %-4d - 1 took %6.2f secs\n", p, elapsed) } else { fmt.Printf("2 ^ %-4d - 1\n", p) } count++ } for { if p > 2 { p += 2 } else { p = 3 } bp.SetUint64(uint64(p)) if bp.ProbablyPrime(0) { break } } } }</lang>

Output using the GMP package on a 3.4 GHz Xeon E3-1245:
2 ^ 2    - 1
2 ^ 3    - 1
2 ^ 5    - 1
2 ^ 7    - 1
2 ^ 13   - 1
2 ^ 17   - 1
2 ^ 19   - 1
2 ^ 31   - 1
2 ^ 61   - 1
2 ^ 89   - 1
2 ^ 107  - 1
2 ^ 127  - 1
2 ^ 521  - 1
2 ^ 607  - 1
2 ^ 1279 - 1 took   0.05 secs
2 ^ 2203 - 1 took   0.38 secs
2 ^ 2281 - 1 took   0.44 secs
2 ^ 3217 - 1 took   1.53 secs
2 ^ 4253 - 1 took   4.39 secs
2 ^ 4423 - 1 took   5.02 secs
2 ^ 9689 - 1 took  73.78 secs
2 ^ 9941 - 1 took  81.24 secs

(A previous run on more modest hardware - Celeron N3050 @ 1.60GHz × 2 - was ~365 seconds for M9941.)

This can be sped up quite a bit for modern multi-core CPUs by some simple changes to use goroutines. <lang Go>package main

import ( "fmt" "runtime" "time"

// Use one or the other of these: "math/big" //big "github.com/ncw/gmp" )

func main() { start := time.Now()

nworkers := runtime.GOMAXPROCS(0) fmt.Println("Using", nworkers, "workers.") workC := make(chan uint, 1) resultC := make(chan uint, nworkers)

// Generate possible Mersenne exponents and send them to workC. go func() { workC <- 2 bp := big.NewInt(0) for p := uint(3); ; p += 2 { // Possible exponents must be prime. bp.SetUint64(uint64(p)) if bp.ProbablyPrime(0) { workC <- p } } }()

// Start up worker go routines, each takes // possible Mersenne exponents from workC as `p` // and if 2^p-1 is prime sends `p` to resultC. one := big.NewInt(1) for i := 0; i < nworkers; i++ { go func() { mp := big.NewInt(0) for p := range workC { mp.Lsh(one, p) mp.Sub(mp, one) if mp.ProbablyPrime(0) { resultC <- p } } }() }

// Receive some maximum number of Mersenne prime exponents // from resultC and show the Mersenne primes. const max = 24 for count := 0; count < max; count++ { // Note: these could come back out of order, although usually // only the first few. If that is an issue, correcting it is // left as an excercise to the reader :). p := <-resultC elapsed := time.Since(start).Seconds() if elapsed >= 0.01 { fmt.Printf("2 ^ %-5d - 1 took %6.2f secs\n", p, elapsed) } else { fmt.Printf("2 ^ %-5d - 1\n", p) } } }</lang>

Output using the GMP package on the same 3.4 GHz Xeon E3-1245 (4 core × 2 SMT threads) as above:
Using 8 workers.
2 ^ 2     - 1
2 ^ 5     - 1
2 ^ 3     - 1
2 ^ 7     - 1
2 ^ 13    - 1
2 ^ 19    - 1
2 ^ 61    - 1
2 ^ 31    - 1
2 ^ 107   - 1
2 ^ 17    - 1
2 ^ 127   - 1
2 ^ 89    - 1
2 ^ 521   - 1
2 ^ 607   - 1
2 ^ 1279  - 1 took   0.01 secs
2 ^ 2203  - 1 took   0.09 secs
2 ^ 2281  - 1 took   0.12 secs
2 ^ 3217  - 1 took   0.36 secs
2 ^ 4253  - 1 took   0.94 secs
2 ^ 4423  - 1 took   1.06 secs
2 ^ 9689  - 1 took  16.28 secs
2 ^ 9941  - 1 took  18.02 secs
2 ^ 11213 - 1 took  26.76 secs
2 ^ 19937 - 1 took 194.16 secs

Using this approach, the Celeron machine (dual core) takes ~180 seconds to reach M9941 and ~270 seconds to reach M11213.

Haskell

<lang haskell>import Data.Numbers.Primes (primes) import Text.Printf (printf)

lucasLehmer :: Int -> Bool lucasLehmer p = iterate f 4 !! p-2 == 0

where
 f b = (b^2 - 2) `mod` m
 m = 2^p - 1

main = mapM_ (printf "M %d\n") $ take 20 mersenne

where
 mersenne = filter lucasLehmer primes</lang>
Output:
M 3
M 5
M 7
M 13
M 17
M 19
M 31
M 61
M 89
M 107
M 127
M 521
M 607
M 1279
M 2203
M 2281
M 3217
M 4253
M 4423
M 9689

Java

Translation of: Kotlin

<lang Java>import java.math.BigInteger;

public class MersennePrimes {

   private static final int MAX = 20;
   private static final BigInteger ONE = BigInteger.ONE;
   private static final BigInteger TWO = BigInteger.valueOf(2);
   private static boolean isPrime(int n) {
       if (n < 2) return false;
       if (n % 2 == 0) return n == 2;
       if (n % 3 == 0) return n == 3;
       int d = 5;
       while (d * d <= n) {
           if (n % d == 0) return false;
           d += 2;
           if (n % d == 0) return false;
           d += 4;
       }
       return true;
   }
   public static void main(String[] args) {
       int count = 0;
       int p = 2;
       while (true) {
           BigInteger m = TWO.shiftLeft(p - 1).subtract(ONE);
           if (m.isProbablePrime(10)) {
               System.out.printf("2 ^ %d - 1\n", p);
               if (++count == MAX) break;
           }
           // obtain next prime, p
           do {
               p = (p > 2) ? p + 2 : 3;
           } while (!isPrime(p));
       }
   }

}</lang>

Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1
2 ^ 61 - 1
2 ^ 89 - 1
2 ^ 107 - 1
2 ^ 127 - 1
2 ^ 521 - 1
2 ^ 607 - 1
2 ^ 1279 - 1
2 ^ 2203 - 1
2 ^ 2281 - 1
2 ^ 3217 - 1
2 ^ 4253 - 1
2 ^ 4423 - 1

Julia

Works with: Julia version 0.6

Julia module Primes uses Miller-Rabin primality test.

<lang julia>using Primes

mersenne(n::Integer) = convert(typeof(n), 2) ^ n - one(n) function main(nmax::Integer)

   n = ith = zero(nmax)
   while ith ≤ nmax
       if isprime(mersenne(n))
           println("M$n")
           ith += 1
       end
       n += 1
   end

end

main(big(20))</lang>

Output:
M2
M3
M5
M7
M13
M17
M19
M31
M61
M89
M107
M127
M521
M607
M1279
M2203
M2281
M3217
M4253
M4423
M9689

Kotlin

This task is similar to the Lucas-Lehmer test task except that you can use whatever method you like to test the primality of the Mersenne numbers. Here, I've chosen to use the JDK's BigInteger.isProbablePrime(certainty) method. The exact algorithm is implementation dependent --- GNU classpath uses only Miller-Rabin, while Oracle JDK uses Miller-Rabin and sometimes adds a Lucas test (this is not the Lucas-Lehmer test).

A 'certainty' parameter of 10 is enough to find the first 20 Mersenne primes but as even this takes about 90 seconds on my modest machine I've not bothered going beyond that. <lang scala>// version 1.2.10

import java.math.BigInteger

const val MAX = 20

val bigOne = BigInteger.ONE val bigTwo = 2.toBigInteger()

/* for checking 'small' primes */ fun isPrime(n: Int): Boolean {

   if (n < 2) return false
   if (n % 2 == 0) return n == 2
   if (n % 3 == 0) return n == 3
   var d : Int = 5
   while (d * d <= n) {
       if (n % d == 0) return false
       d += 2
       if (n % d == 0) return false
       d += 4
   }
   return true

}

fun main(args: Array<String>) {

   var count = 0
   var p = 2
   while (true) {
       val m = (bigTwo shl (p - 1)) - bigOne
       if (m.isProbablePrime(10)) {
           println("2 ^ $p - 1")
           if (++count == MAX) break
       }
       // obtain next prime, p
       while(true) {
           p = if (p > 2) p + 2 else 3
           if (isPrime(p)) break
       }
   }

}</lang>

Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1
2 ^ 61 - 1
2 ^ 89 - 1
2 ^ 107 - 1
2 ^ 127 - 1
2 ^ 521 - 1
2 ^ 607 - 1
2 ^ 1279 - 1
2 ^ 2203 - 1
2 ^ 2281 - 1
2 ^ 3217 - 1
2 ^ 4253 - 1
2 ^ 4423 - 1

Lua

This checks for primality using a trial division function. The limitation is 'until p == p + 1', meaning that the program will halt when Lua's number type (a 64-bit floating point value) no longer has enough precision to distiguish between one integer and the next. <lang lua>-- Returns a boolean to show whether x is prime function isPrime (x)

 if x < 2 then return false end
 if x < 4 then return true end
 if x % 2 == 0 then return false end
 for d = 3, math.sqrt(x), 2 do
   if x % d == 0 then return false end
 end
 return true

end

-- Main procedure local i, p = 0 repeat

 i = i + 1
 p = 2 ^ i - 1
 if isPrime(p) then
   print("2 ^ " .. i .. " - 1 = " .. p)
 end

until p == p + 1</lang>

Output:
2 ^ 2 - 1 = 3
2 ^ 3 - 1 = 7
2 ^ 5 - 1 = 31
2 ^ 7 - 1 = 127
2 ^ 13 - 1 = 8191
2 ^ 17 - 1 = 131071
2 ^ 19 - 1 = 524287
2 ^ 31 - 1 = 2147483647


Nim

Using only standard library

If we want to use only the standard library, we are limited to 64 bits. So we used a simple primality test. <lang Nim>func isOddPrime(n: uint64): bool =

 if n == 1: return false
 if n mod 3 == 0: return n == 3
 var d = 5u
 while d * d <= n:
   if n mod d == 0: return false
   inc d, 2
   if n mod d == 0: return false
   inc d, 4
 result = true

var p = 2u64 for e in 1..63:

 if isOddPrime(p - 1):
   echo "2^", e, " - 1"
 p *= 2</lang>
Output:
2^2 - 1
2^3 - 1
2^5 - 1
2^7 - 1
2^13 - 1
2^17 - 1
2^19 - 1
2^31 - 1
2^61 - 1

Using big integers

Library: bignum

The module bignum provides big integers and a probabilistic primality test. We searched the Mersenne numbers for exponents between 1 and 10_000. <lang Nim>import bignum

var p = newInt(2) for e in 1..10_000:

 if probablyPrime(p - 1, 25) != 0:
   echo "2^", e, " - 1"
 p *= 2</lang>
Output:
2^2 - 1
2^3 - 1
2^5 - 1
2^7 - 1
2^13 - 1
2^17 - 1
2^19 - 1
2^31 - 1
2^61 - 1
2^89 - 1
2^107 - 1
2^127 - 1
2^521 - 1
2^607 - 1
2^1279 - 1
2^2203 - 1
2^2281 - 1
2^3217 - 1
2^4253 - 1
2^4423 - 1
2^9689 - 1
2^9941 - 1

PARI/GP

<lang parigp>LL(p)={

 my(m=Mod(4,1<<p-1));
 for(i=3,p,m=m^2-2);
 m==0

}; forprime(p=2,, if(LL(p), print("2^"p"-1")))</lang>

Perl

Since GIMPS went to the trouble of dedicating thousands of CPU years to finding Mersenne primes, we should be kind enough to use the results. The ntheory module front end does this, so the results up to 43 million is extremely fast (4 seconds), and we can reduce this another 10x by only checking primes. After the GIMPS double-checked mark, a Lucas-Lehmer test is done using code similar to Rosetta Code Lucas-Lehmer in C+GMP.

If this is too contrived, we can use Math::Prime::Util::GMP::is_mersenne_prime instead, which will run the Lucas-Lehmer test on each input. The first 23 Mersenne primes are found in under 15 seconds.

Library: ntheory

<lang perl>use ntheory qw/forprimes is_mersenne_prime/; forprimes { is_mersenne_prime($_) && say } 1e9;</lang>

Output:
2
3
5
7
13
17
19
31
61
...

Phix

Library: Phix/mpfr
with javascript_semantics
include mpfr.e
atom t0 = time()
mpz mp = mpz_init(),
    bp = mpz_init()
integer p = 0, count = 0
constant lim = iff(platform()=JS?14:17)
while true do
    mpz_ui_pow_ui(mp,2,p)
    mpz_sub_ui(mp,mp,1)
    if mpz_prime(mp) then
        string s = iff(time()-t0<1?"":", "&elapsed(time()-t0))
        printf(1, "2^%d-1%s\n",{p,s})
        count += 1
        if count>=lim then exit end if
    end if
    while true do
        p = iff(p>2?p+2:3)
        mpz_set_si(bp,p)
        if mpz_prime(bp) then exit end if
    end while   
end while
{mp,bp} = mpz_free({mp,bp})
Output:
2^3-1
2^5-1
2^7-1
2^13-1
2^17-1
2^19-1
2^31-1
2^61-1
2^89-1
2^107-1
2^127-1
2^521-1
2^607-1
2^1279-1
2^2203-1, 2.5s
2^2281-1, 2.9s
2^3217-1, 9.5s

PHP

<lang PHP><?php

function is_prime($n) {

   if ($n <= 3) {
       return $n > 1;
   } elseif (($n % 2 == 0) or ($n % 3 == 0)) {
       return false;
   }
   $i = 5;
   while ($i * $i <= $n) {
       if ($n % $i == 0) {
           return false;
       }
       $i += 2;
       if ($n % $i == 0) {
           return false;
       }
       $i += 4;
   }
   return true;

}

for ($i = 0 ; $i <= 63 ; $i++) {

   $pow = pow(2, $i) - 1;
   $mersenne = is_prime($pow);
   if ($mersenne) {
       echo '2 ^ ', $i, ' - 1', PHP_EOL;
   }

}</lang>

Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1
2 ^ 61 - 1

PicoLisp

<lang PicoLisp>(de **Mod (X Y N)

  (let M 1
     (loop
        (when (bit? 1 Y)
           (setq M (% (* M X) N)) )
        (T (=0 (setq Y (>> 1 Y)))
           M )
        (setq X (% (* X X) N)) ) ) )

(de isprime (N)

  (cache '(NIL) N
     (if (== N 2)
        T
        (and
           (> N 1)
           (bit? 1 N)
           (let (Q (dec N)  N1 (dec N)  K 0  X)
              (until (bit? 1 Q)
                 (setq
                    Q (>> 1 Q)
                    K (inc K) ) )
              (catch 'composite
                 (do 16
                    (loop
                       (setq X
                          (**Mod
                             (rand 2 (min (dec N) 1000000000000))
                             Q
                             N ) )
                       (T (or (=1 X) (= X N1)))
                       (T
                          (do K
                             (setq X (**Mod X 2 N))
                             (when (=1 X) (throw 'composite))
                             (T (= X N1) T) ) )
                       (throw 'composite) ) )
                 (throw 'composite T) ) ) ) ) ) )

(for N 1000

  (and
     (isprime (dec (** 2 N)))
     (prinl "2 \^ " N " - 1") ) )</lang>
Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1
2 ^ 61 - 1
2 ^ 89 - 1
2 ^ 107 - 1
2 ^ 127 - 1
2 ^ 521 - 1
2 ^ 607 - 1

Pike

<lang Pike>int power = 1; while(power++) {

   int candidate = 2->pow(power)-1;
   if( candidate->probably_prime_p() )
       write("2 ^ %d - 1\n", power);

}</lang> Output:

2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1
2 ^ 61 - 1

Prolog

Lucas-Lehmer test, works with SWI Prolog <lang prolog> lucas_lehmer_seq(M, L) :-

   lazy_list(ll_iter, 4-M, L).

ll_iter(S-M, T-M, T) :-

   T is ((S*S) - 2) mod M.

drop(N, Lz1, Lz2) :-

   append(Pfx, Lz2, Lz1), length(Pfx, N), !.

mersenne_prime(2). mersenne_prime(P) :-

   P > 2,
   M is (1 << P) - 1,
   lucas_lehmer_seq(M, Residues),
   Skip is P - 3, drop(Skip, Residues, [R|_]),
   R =:= 0.

</lang>

Output:
?- findall(X, (between(1, 1000, X), mersenne_prime(X)), L), write(L).
[2,3,5,7,13,17,19,31,61,89,107,127,521,607]
L = [2, 3, 5, 7, 13, 17, 19, 31, 61|...].

Python

Translation of: Java

<lang python>import random

  1. Take from https://www.codeproject.com/Articles/691200/%2FArticles%2F691200%2FPrimality-test-algorithms-Prime-test-The-fastest-w

def MillerRabinPrimalityTest(number):

   
   because the algorithm input is ODD number than if we get
   even and it is the number 2 we return TRUE ( spcial case )
   if we get the number 1 we return false and any other even 
   number we will return false.
   
   if number == 2:
       return True
   elif number == 1 or number % 2 == 0:
       return False
   
    first we want to express n as : 2^s * r ( were r is odd ) 
   
    the odd part of the number 
   oddPartOfNumber = number - 1
   
    The number of time that the number is divided by two 
   timesTwoDividNumber = 0
   
    while r is even divid by 2 to find the odd part 
   while oddPartOfNumber % 2 == 0:
       oddPartOfNumber = oddPartOfNumber / 2
       timesTwoDividNumber = timesTwoDividNumber + 1 
    
   
   since there are number that are cases of "strong liar" we 
   need to check more then one number
   
   for time in range(3):
       
        choose "Good" random number 
       while True:
            Draw a RANDOM number in range of number ( Z_number )  
           randomNumber = random.randint(2, number)-1
           if randomNumber != 0 and randomNumber != 1:
               break
       
        randomNumberWithPower = randomNumber^oddPartOfNumber mod number 
       randomNumberWithPower = pow(randomNumber, oddPartOfNumber, number)
       
        if random number is not 1 and not -1 ( in mod n ) 
       if (randomNumberWithPower != 1) and (randomNumberWithPower != number - 1):
           # number of iteration
           iterationNumber = 1
           
            while we can squre the number and the squered number is not -1 mod number
           while (iterationNumber <= timesTwoDividNumber - 1) and (randomNumberWithPower != number - 1):
                squre the number 
               randomNumberWithPower = pow(randomNumberWithPower, 2, number)
               
               # inc the number of iteration
               iterationNumber = iterationNumber + 1
                
           if x != -1 mod number then it because we did not found strong witnesses
           hence 1 have more then two roots in mod n ==>
           n is composite ==> return false for primality
           
           if (randomNumberWithPower != (number - 1)):
               return False
           
    well the number pass the tests ==> it is probably prime ==> return true for primality 
   return True
  1. Main

MAX = 20 p = 2 count = 0 while True:

   m = (2 << (p - 1)) - 1
   if MillerRabinPrimalityTest(m):
       print "2 ^ {} - 1".format(p)
       count = count + 1
       if count == MAX:
           break
   # obtain next prime, p
   while True:
       p = p + 2 if (p > 2) else 3
       if MillerRabinPrimalityTest(p):
           break

print "done"</lang>

Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1
2 ^ 61 - 1
2 ^ 89 - 1
2 ^ 107 - 1
2 ^ 127 - 1
2 ^ 521 - 1
2 ^ 607 - 1
2 ^ 1279 - 1
2 ^ 2203 - 1
2 ^ 2281 - 1
2 ^ 3217 - 1
2 ^ 4253 - 1
2 ^ 4423 - 1
done

Raku

(formerly Perl 6)

Works with: Rakudo version 2018.01

We already have a multitude of tasks that demonstrate how to find Mersenne primes; Prime decomposition, Primality by trial division, Trial factoring of a Mersenne number, Lucas-Lehmer test, Miller–Rabin primality_test, etc. that all have Raku entries. I'm not sure what I could add here that would be useful.

Hmmm.

Create code that will list all of the Mersenne primes until some limitation is reached.

It doesn't specify to calculate them, only to list them; why throw away all of the computer millenia of processing power that the GIMPS has invested?

<lang perl6>use HTTP::UserAgent; use Gumbo;

my $table = parse-html(HTTP::UserAgent.new.get('https://www.mersenne.org/primes/').content, :TAG

); say 'All known Mersenne primes as of ', Date(now); say 'M', ++$, ": 2$_ - 1" for $table[1]».[*][0][*].comb(/'exp_lo='\d+/)».subst(/\D/, ,:g) .trans([<0123456789>.comb] => [<⁰¹²³⁴⁵⁶⁷⁸⁹>.comb]).words; </lang>
Output:
All known Mersenne primes as of 2018-12-21
M1: 2² - 1
M2: 2³ - 1
M3: 2⁵ - 1
M4: 2⁷ - 1
M5: 2¹³ - 1
M6: 2¹⁷ - 1
M7: 2¹⁹ - 1
M8: 2³¹ - 1
M9: 2⁶¹ - 1
M10: 2⁸⁹ - 1
M11: 2¹⁰⁷ - 1
M12: 2¹²⁷ - 1
M13: 2⁵²¹ - 1
M14: 2⁶⁰⁷ - 1
M15: 2¹²⁷⁹ - 1
M16: 2²²⁰³ - 1
M17: 2²²⁸¹ - 1
M18: 2³²¹⁷ - 1
M19: 2⁴²⁵³ - 1
M20: 2⁴⁴²³ - 1
M21: 2⁹⁶⁸⁹ - 1
M22: 2⁹⁹⁴¹ - 1
M23: 2¹¹²¹³ - 1
M24: 2¹⁹⁹³⁷ - 1
M25: 2²¹⁷⁰¹ - 1
M26: 2²³²⁰⁹ - 1
M27: 2⁴⁴⁴⁹⁷ - 1
M28: 2⁸⁶²⁴³ - 1
M29: 2¹¹⁰⁵⁰³ - 1
M30: 2¹³²⁰⁴⁹ - 1
M31: 2²¹⁶⁰⁹¹ - 1
M32: 2⁷⁵⁶⁸³⁹ - 1
M33: 2⁸⁵⁹⁴³³ - 1
M34: 2¹²⁵⁷⁷⁸⁷ - 1
M35: 2¹³⁹⁸²⁶⁹ - 1
M36: 2²⁹⁷⁶²²¹ - 1
M37: 2³⁰²¹³⁷⁷ - 1
M38: 2⁶⁹⁷²⁵⁹³ - 1
M39: 2¹³⁴⁶⁶⁹¹⁷ - 1
M40: 2²⁰⁹⁹⁶⁰¹¹ - 1
M41: 2²⁴⁰³⁶⁵⁸³ - 1
M42: 2²⁵⁹⁶⁴⁹⁵¹ - 1
M43: 2³⁰⁴⁰²⁴⁵⁷ - 1
M44: 2³²⁵⁸²⁶⁵⁷ - 1
M45: 2³⁷¹⁵⁶⁶⁶⁷ - 1
M46: 2⁴²⁶⁴³⁸⁰¹ - 1
M47: 2⁴³¹¹²⁶⁰⁹ - 1
M48: 2⁵⁷⁸⁸⁵¹⁶¹ - 1
M49: 2⁷⁴²⁰⁷²⁸¹ - 1
M50: 2⁷⁷²³²⁹¹⁷ - 1
M51: 2⁸²⁵⁸⁹⁹³³ - 1

REXX

This REXX version   (using a 32-bit Regina REXX interpreter)   will find those Mersenne primes which are less than
8 million decimal digits   (which would be M43). <lang rexx>/*REXX program uses exponent─and─mod operator to test possible Mersenne numbers. */

     do j=1;                                    /*process a range,  or run out of time.*/
     if \isPrime(j)  then iterate               /*if  J  isn't a prime,  keep plugging.*/
     r= testMer(j)                              /*If J is prime, give J the 3rd degree.*/
     if r==0   then  say right('M'j, 10)     "──────── is a Mersenne prime."
               else  say right('M'j, 50)     "is composite, a factor:"   r
     end   /*j*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ isPrime: procedure; parse arg x; if wordpos(x, '2 3 5 7') \== 0 then return 1

        if x<11  then return 0;             if x//2 == 0 | x//3       == 0  then return 0
             do j=5  by 6;                  if x//j == 0 | x//(j+2)   == 0  then return 0
             if j*j>x   then return 1                 /*◄─┐         ___                */
             end   /*j*/                              /*  └─◄ Is j>√ x ?  Then return 1*/

/*──────────────────────────────────────────────────────────────────────────────────────*/ iSqrt: procedure; parse arg x; #= 1; r= 0; do while #<=x; #=#*4; end

          do while #>1;  #=#%4;  _= x-r-#;  r= r%2;  if _>=0  then do;  x=_;  r=r+#;  end
          end   /*while*/                             /*iSqrt ≡    integer square root.*/
        return r                                      /*─────      ─       ──     ─  ─ */

/*──────────────────────────────────────────────────────────────────────────────────────*/ testMer: procedure; parse arg x; p =2**x /* [↓] do we have enough digits?*/

        $$=x2b( d2x(x) ) + 0
        if pos('E',p)\==0  then do; parse var p "E" _;  numeric digits _+2;  p=2**x;  end
        !.=1;  !.1=0;  !.7=0                          /*array used for a quicker test. */
        R=iSqrt(p)                                    /*obtain integer square root of P*/
                   do k=2  by 2;        q=k*x  +  1   /*(shortcut) compute value of Q. */
                   m=q // 8                           /*obtain the remainder when ÷ 8. */
                   if !.m               then iterate  /*M  must be either one or seven.*/
                   parse var q  -1 _; if _==5  then iterate      /*last digit a five?*/
                   if q// 3==0  then iterate                       /*    ÷   by three? */
                   if q// 7==0  then iterate                       /*    "    " seven? */
                   if q//11==0  then iterate                       /*    "    " eleven?*/
                                                      /*      ____                     */
                   if q>R               then return 0 /*Is q>√2**x ?   A Mersenne prime*/
                   sq=1;         $=$$                 /*obtain binary version from  $. */
                       do  until $==;      sq=sq*sq
                       parse var $  _  2  $           /*obtain 1st digit and the rest. */
                       if _  then sq=(sq+sq) // q
                       end   /*until*/
                   if sq==1  then return q            /*Not a prime?   Return a factor.*/
                   end   /*k*/</lang>



Ring

<lang ring>

  1. Project : Mersenne primes

n = 0 while true

       n = n +1
       if isprime(pow(2,n)-1) = 1
          see n + nl
       ok

end

func isprime num

      if (num <= 1) return 0 ok
      if (num % 2 = 0) and num != 2 return 0 ok
      for i = 3 to floor(num / 2) -1 step 2
           if (num % i = 0) return 0 ok
      next
      return 1

</lang> Output:

2
3
5
7
13
17
19

Scala

<lang Scala> object MersennePrimes extends App {

 val primes = primeSieve(LazyList.from(2))
 val upbPrime = 9941
 def primeSieve(s: LazyList[Int]): LazyList[Int] =
   s.head #:: primeSieve(s.tail filter {
     _ % s.head != 0
   })
 def mersenne(p: Int): BigInt = (BigInt(2) pow p) - 1
 def s(mp: BigInt, p: Int): BigInt = {
   if (p == 1) 4 else ((s(mp, p - 1) pow 2) - 2) % mp
 }
 println(s"Finding Mersenne primes in M[2..$upbPrime]")
 ((primes takeWhile (_ <= upbPrime)).map { p => (p, mersenne(p)) }
   map { p => if (p._1 == 2) (p, 0) else (p, s(p._2, p._1 - 1)) } filter {
   _._2 == 0
 })
   .foreach { p =>
     println(s"prime M${(p._1)._1}: " + {
       if ((p._1)._1 < 200) (p._1)._2 else s"(${(p._1)._2.toString.length} digits)"
     })
   }
 println("That's All Folks!")

} </lang>

Sidef

Uses the is_mersenne_prime() function from Math::Prime::Util::GMP. <lang ruby>for p in (^Inf -> lazy.grep { .is_mersenne_prime }) {

   say "2^#{p} - 1"

}</lang>

Output:
2^2 - 1
2^3 - 1
2^5 - 1
2^7 - 1
2^13 - 1
2^17 - 1
2^19 - 1
2^31 - 1
2^61 - 1
2^89 - 1
2^107 - 1
2^127 - 1
2^521 - 1
2^607 - 1
2^1279 - 1
2^2203 - 1
2^2281 - 1
2^3217 - 1
2^4253 - 1
2^4423 - 1
2^9689 - 1
2^9941 - 1
^C
sidef mersenne.sf  12.47s user 0.02s system 99% cpu 12.495 total

Visual Basic .NET

Translation of: C#

<lang vbnet>Imports System.Numerics

Module Module1

   Function Sqrt(x As BigInteger) As BigInteger
       If x < 0 Then
           Throw New ArgumentException("Negative argument.")
       End If
       If x < 2 Then
           Return x
       End If
       Dim y = x / 2
       While y > (x / y)
           y = ((x / y) + y) / 2
       End While
       Return y
   End Function
   Function IsPrime(bi As BigInteger) As Boolean
       If bi < 2 Then
           Return False
       End If
       If bi Mod 2 = 0 Then
           Return bi = 2
       End If
       If bi Mod 3 = 0 Then
           Return bi = 3
       End If
       If bi Mod 5 = 0 Then
           Return bi = 5
       End If
       If bi Mod 7 = 0 Then
           Return bi = 7
       End If
       If bi Mod 11 = 0 Then
           Return bi = 11
       End If
       If bi Mod 13 = 0 Then
           Return bi = 13
       End If
       If bi Mod 17 = 0 Then
           Return bi = 17
       End If
       If bi Mod 19 = 0 Then
           Return bi = 19
       End If
       Dim limit = Sqrt(bi)
       Dim test As BigInteger = 23
       While test < limit
           If bi Mod test = 0 Then
               Return False
           End If
           test += 2
           If bi Mod test = 0 Then
               Return False
           End If
           test += 4
       End While
       Return True
   End Function
   Sub Main()
       Const MAX = 9
       Dim pow = 2
       Dim count = 0
       While True
           If IsPrime(pow) Then
               Dim p = BigInteger.Pow(2, pow) - 1
               If IsPrime(p) Then
                   Console.WriteLine("2 ^ {0} - 1", pow)
                   count += 1
                   If count >= MAX Then
                       Exit While
                   End If
               End If
           End If
           pow += 1
       End While
   End Sub

End Module</lang>

Output:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1
2 ^ 61 - 1

Wren

Library: Wren-math
Library: Wren-big

A bit slow so limited to first 14 Mersenne primes. <lang ecmascript>import "/math" for Int import "/big" for BigInt

var MAX = 14 System.print("The first %(MAX) Mersenne primes are:") var count = 0 var p = 2 while (true) {

   var m = (BigInt.one << p) - 1
   if (m.isProbablePrime(10)) {
       System.print("2 ^ %(p) - 1")
       count = count + 1
       if (count == MAX) break
   }
   while (true) {
       p = (p > 2) ? p + 2 : 3
       if (Int.isPrime(p)) break
   }

}</lang>

Output:
The first 14 Mersenne primes are:
2 ^ 2 - 1
2 ^ 3 - 1
2 ^ 5 - 1
2 ^ 7 - 1
2 ^ 13 - 1
2 ^ 17 - 1
2 ^ 19 - 1
2 ^ 31 - 1
2 ^ 61 - 1
2 ^ 89 - 1
2 ^ 107 - 1
2 ^ 127 - 1
2 ^ 521 - 1
2 ^ 607 - 1

XPL0

<lang XPL0>func IsPrime(N); \Return 'true' if N is prime int N, I; [if N <= 2 then return N = 2; if (N&1) = 0 then \even >2\ return false; for I:= 3 to sqrt(N) do

   [if rem(N/I) = 0 then return false;
   I:= I+1;
   ];

return true; ];

int N; [for N:= 1 to 31 do

   if IsPrime(1<<N-1) then
       [Text(0, "2^^");  IntOut(0, N);  Text(0, " - 1");
       CrLf(0);
       ];

]</lang>

Output:
2^2 - 1
2^3 - 1
2^5 - 1
2^7 - 1
2^13 - 1
2^17 - 1
2^19 - 1
2^31 - 1

zkl

Library: GMP

Uses libGMP (GNU MP Bignum Library) and its Miller-Rabin probabilistic primality testing algorithm. <lang zkl>var [const] BN=Import.lib("zklBigNum"); // libGMP fcn mprimes{

  n,m := BN(2),0;
  foreach e in ([2..]){
     n,m = n.shiftLeft(1), n-1;
     if(m.probablyPrime()) println("2^%d - 1".fmt(e));
  }

}() // gets rather slow after M(4423)</lang>

Output:
2^2 - 1
2^3 - 1
2^5 - 1
2^7 - 1
2^13 - 1
2^17 - 1
2^19 - 1
2^31 - 1
2^61 - 1
2^89 - 1
2^107 - 1
2^127 - 1
2^521 - 1
2^607 - 1
2^1279 - 1
2^2203 - 1
2^2281 - 1
2^3217 - 1
2^4253 - 1
2^4423 - 1
2^9689 - 1
2^9941 - 1
2^11213 - 1
...