Magic squares of odd order
A magic square is an NxN square matrix whose numbers (usually integers) consist of consecutive numbers arranged so that the sum of each row and column, and both long (main) diagonals are equal to the same sum (which is called the magic number or magic constant).
You are encouraged to solve this task according to the task description, using any language you may know.
The numbers are usually (but not always) the first N2 positive integers.
A magic square whose rows and columns add up to a magic number but whose main diagonals do not, is known as a semimagic square.
8 | 1 | 6 |
3 | 5 | 7 |
4 | 9 | 2 |
- Task
For any odd N, generate a magic square with the integers 1 ──► N, and show the results here.
Optionally, show the magic number.
You should demonstrate the generator by showing at least a magic square for N = 5.
- Related tasks
- See also
- MathWorld™ entry: Magic_square
- Odd Magic Squares (1728.org)
11l
F magic(n)
L(row) 1..n
print(((1..n).map(col -> @n * ((@row + col - 1 + @n I/ 2) % @n)
+ ((@row + 2 * col - 2) % @n) + 1)).map(cell -> String(cell).rjust(String(@n ^ 2).len)).join(‘ ’))
print("\nAll sum to magic number #.".format((n * n + 1) * n I/ 2))
L(n) (5, 3, 7)
print("\nOrder #.\n=======".format(n))
magic(n)
- Output:
Order 5 ======= 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 All sum to magic number 65 Order 3 ======= 8 1 6 3 5 7 4 9 2 All sum to magic number 15 Order 7 ======= 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20 All sum to magic number 175
360 Assembly
* Magic squares of odd order - 20/10/2015
MAGICS CSECT
USING MAGICS,R15 set base register
LA R6,1 i=1
LOOPI C R6,N do i=1 to n
BH ELOOPI
LR R8,R6 i
SLA R8,1 i*2
LA R9,PG pgi=@pg
LA R7,1 j=1
LOOPJ C R7,N do j=1 to n
BH ELOOPJ
LR R5,R8 i*2
SR R5,R7 -j
A R5,N +n
BCTR R5,0 -1
XR R4,R4 clear high reg
D R4,N /n
LR R5,R4 //n
M R4,N *n
LR R2,R5 (i*2-j+n-1)//n*n
LR R5,R8 i*2
AR R5,R7 -j
S R5,=F'2' -2
XR R4,R4 clear high reg
D R4,N /n
AR R2,R4 +(i*2+j-2)//n
LA R2,1(R2) +1
XDECO R2,PG+80 (i*2-j+n-1)//n*n+(i*2+j-2)//n+1
MVC 0(5,R9),PG+87 put in buffer
LA R9,5(R9) pgi=pgi+5
LA R7,1(R7) j=j+1
B LOOPJ
ELOOPJ XPRNT PG,80
LA R6,1(R6) i=i+1
B LOOPI
ELOOPI XR R15,R15 set return code
BR R14 return to caller
N DC F'9' <== input
PG DC CL92' ' buffer
YREGS
END MAGICS
- Output:
2 75 67 59 51 43 35 27 10 22 14 6 79 71 63 46 38 30 42 34 26 18 1 74 66 58 50 62 54 37 29 21 13 5 78 70 73 65 57 49 41 33 25 17 9 12 4 77 69 61 53 45 28 20 32 24 16 8 81 64 56 48 40 52 44 36 19 11 3 76 68 60 72 55 47 39 31 23 15 7 80
Ada
with Ada.Text_IO, Ada.Command_Line;
procedure Magic_Square is
N: constant Positive := Positive'Value(Ada.Command_Line.Argument(1));
subtype Constants is Natural range 1 .. N*N;
package CIO is new Ada.Text_IO.Integer_IO(Constants);
Undef: constant Natural := 0;
subtype Index is Natural range 0 .. N-1;
function Inc(I: Index) return Index is (if I = N-1 then 0 else I+1);
function Dec(I: Index) return Index is (if I = 0 then N-1 else I-1);
A: array(Index, Index) of Natural := (others => (others => Undef));
-- initially undefined; at the end holding the magic square
X: Index := 0; Y: Index := N/2; -- start position for the algorithm
begin
for I in Constants loop -- write 1, 2, ..., N*N into the magic array
A(X, Y) := I; -- write I into the magic array
if A(Dec(X), Inc(Y)) = Undef then
X := Dec(X); Y := Inc(Y); -- go right-up
else
X := Inc(X); -- go down
end if;
end loop;
for Row in Index loop -- output the magic array
for Collumn in Index loop
CIO.Put(A(Row, Collumn),
Width => (if N*N < 10 then 2 elsif N*N < 100 then 3 else 4));
end loop;
Ada.Text_IO.New_Line;
end loop;
end Magic_Square;
- Output:
>./magic_square 3 8 1 6 3 5 7 4 9 2 >./magic_square 11 68 81 94 107 120 1 14 27 40 53 66 80 93 106 119 11 13 26 39 52 65 67 92 105 118 10 12 25 38 51 64 77 79 104 117 9 22 24 37 50 63 76 78 91 116 8 21 23 36 49 62 75 88 90 103 7 20 33 35 48 61 74 87 89 102 115 19 32 34 47 60 73 86 99 101 114 6 31 44 46 59 72 85 98 100 113 5 18 43 45 58 71 84 97 110 112 4 17 30 55 57 70 83 96 109 111 3 16 29 42 56 69 82 95 108 121 2 15 28 41 54
ALGOL 68
# construct a magic square of odd order #
PROC magic square = ( INT order ) [,]INT:
IF NOT ODD order OR order < 1
THEN
# can't make a magic square of the specified order #
LOC [ 1 : 0, 1 : 0 ]INT
ELSE
# order is OK - construct the square using de la Loubère's #
# algorithm as in the wikipedia page #
[ 1 : order, 1 : order ]INT square;
FOR i TO order DO FOR j TO order DO square[ i, j ] := 0 OD OD;
# as square [ 1, 1 ] if the top-left, moving "up" reduces the row #
# operator to advance "up" the square #
OP PREV = ( INT pos )INT: IF pos = 1 THEN order ELSE pos - 1 FI;
# operator to advance "across right" or "down" the square #
OP NEXT = ( INT pos )INT: ( pos MOD order ) + 1;
# fill in the square, starting from the middle of the top row #
INT col := ( order + 1 ) OVER 2;
INT row := 1;
FOR i TO order * order DO
square[ row, col ] := i;
IF square[ PREV row, NEXT col ] /= 0
THEN
# the up/right position is already taken, move down #
row := NEXT row
ELSE
# can move up and right #
row := PREV row;
col := NEXT col
FI
OD;
square
FI # magic square # ;
# prints the magic square #
PROC print square = ( [,]INT square )VOID:
BEGIN
INT order = 1 UPB square;
# calculate print width: negative so a leading "+" is not printed #
INT width := -1;
INT mag := order * order;
WHILE mag >= 10 DO mag OVERAB 10; width MINUSAB 1 OD;
# calculate the "magic sum" #
INT sum := 0;
FOR i TO order DO sum +:= square[ 1, i ] OD;
# print the square #
print( ( "maqic square of order ", whole( order, 0 ), ": sum: ", whole( sum, 0 ), newline ) );
FOR i TO order DO
FOR j TO order DO write( ( " ", whole( square[ i, j ], width ) ) ) OD;
write( ( newline ) )
OD
END # print square # ;
# test the magic square generation #
FOR order BY 2 TO 7 DO print square( magic square( order ) ) OD
- Output:
maqic square of order 1: sum: 1 1 maqic square of order 3: sum: 15 8 1 6 3 5 7 4 9 2 maqic square of order 5: sum: 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 maqic square of order 7: sum: 175 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
ALGOL W
begin
% construct a magic square of odd order - as a procedure can't return an %
% array, the caller must supply one that is big enough %
logical procedure magicSquare( integer array square ( *, * )
; integer value order
) ;
if not odd( order ) or order < 1 then begin
% can't make a magic square of the specified order %
false
end
else begin
% order is OK - construct the square using de la Loubère's %
% algorithm as in the wikipedia page %
% ensure a row/col position is on the square %
integer procedure inSquare( integer value pos ) ;
if pos < 1 then order else if pos > order then 1 else pos;
% move "up" a row in the square %
integer procedure up ( integer value row ) ; inSquare( row - 1 );
% move "accross right" in the square %
integer procedure right( integer value col ) ; inSquare( col + 1 );
integer row, col;
% initialise square %
for i := 1 until order do for j := 1 until order do square( i, j ) := 0;
% initial position is the middle of the top row %
col := ( order + 1 ) div 2;
row := 1;
% construct square %
for i := 1 until ( order * order ) do begin
square( row, col ) := i;
if square( up( row ), right( col ) ) not = 0 then begin
% the up/right position is already taken, move down %
row := row + 1;
end
else begin
% can move up/right %
row := up( row );
col := right( col );
end
end for_i;
% sucessful result %
true
end magicSquare ;
% prints the magic square %
procedure printSquare( integer array square ( *, * )
; integer value order
) ;
begin
integer sum, w;
% set integer width to accomodate the largest number in the square %
w := ( order * order ) div 10;
i_w := s_w := 1;
while w > 0 do begin i_w := i_w + 1; w := w div 10 end;
for i := 1 until order do sum := sum + square( 1, i );
write( "maqic square of order ", order, ": sum: ", sum );
for i := 1 until order do begin
write( square( i, 1 ) );
for j := 2 until order do writeon( square( i, j ) )
end for_i
end printSquare ;
% test the magic square generation %
integer array sq ( 1 :: 11, 1 :: 11 );
for i := 1, 3, 5, 7 do begin
if magicSquare( sq, i ) then printSquare( sq, i )
else write( "can't generate square" );
end for_i
end.
- Output:
maqic square of order 1 : sum: 1 1 maqic square of order 3 : sum: 15 8 1 6 3 5 7 4 9 2 maqic square of order 5 : sum: 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 maqic square of order 7 : sum: 175 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
APL
magic←{⍵{+/1,(1 ⍺⍺)×⍺(⍺⍺|1+⊢+2×⊣)⍵,⍺⍺-⍵+1}/¨⎕IO-⍨⍳⍵ ⍵}
- Output:
magic¨ 1 3 5 7 1 2 9 4 2 23 19 15 6 2 45 39 33 27 21 8 7 5 3 14 10 1 22 18 18 12 6 49 36 30 24 6 1 8 21 17 13 9 5 34 28 15 9 3 46 40 8 4 25 16 12 43 37 31 25 19 13 7 20 11 7 3 24 10 4 47 41 35 22 16 26 20 14 1 44 38 32 42 29 23 17 11 5 48
AppleScript
Composing functions ( cycleRows . transpose . cycleRows ), and lifting AppleScript handlers into first class script objects, to allow for first class functions and closures.
---------------- MAGIC SQUARE OF ODD ORDER ---------------
-- oddMagicSquare :: Int -> [[Int]]
on oddMagicSquare(n)
if 0 < (n mod 2) then
cycleRows(transpose(cycleRows(table(n))))
else
missing value
end if
end oddMagicSquare
--------------------------- TEST -------------------------
on run
-- Orders 3, 5, 11
-- wikiTableMagic :: Int -> String
script wikiTableMagic
on |λ|(n)
formattedTable(oddMagicSquare(n))
end |λ|
end script
intercalate(linefeed & linefeed, map(wikiTableMagic, {3, 5, 11}))
end run
-- table :: Int -> [[Int]]
on table(n)
set lstTop to enumFromTo(1, n)
script cols
on |λ|(row)
script rows
on |λ|(x)
(row * n) + x
end |λ|
end script
map(rows, lstTop)
end |λ|
end script
map(cols, enumFromTo(0, n - 1))
end table
-- cycleRows :: [[a]] -> [[a]]
on cycleRows(lst)
script rotationRow
-- rotatedList :: [a] -> Int -> [a]
on rotatedList(lst, n)
if n = 0 then return lst
set lng to length of lst
set m to (n + lng) mod lng
items -m thru -1 of lst & items 1 thru (lng - m) of lst
end rotatedList
on |λ|(row, i)
rotatedList(row, (((length of row) + 1) div 2) - (i))
end |λ|
end script
map(rotationRow, lst)
end cycleRows
-------------------- GENERIC FUNCTIONS -------------------
-- intercalate :: Text -> [Text] -> Text
on intercalate(strText, lstText)
set {dlm, my text item delimiters} to {my text item delimiters, strText}
set strJoined to lstText as text
set my text item delimiters to dlm
return strJoined
end intercalate
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if m > n then
set d to -1
else
set d to 1
end if
set lst to {}
repeat with i from m to n by d
set end of lst to i
end repeat
return lst
end enumFromTo
-- splitOn :: Text -> Text -> [Text]
on splitOn(strDelim, strMain)
set {dlm, my text item delimiters} to {my text item delimiters, strDelim}
set xs to text items of strMain
set my text item delimiters to dlm
return xs
end splitOn
-- transpose :: [[a]] -> [[a]]
on transpose(xss)
script column
on |λ|(_, iCol)
script row
on |λ|(xs)
item iCol of xs
end |λ|
end script
map(row, xss)
end |λ|
end script
map(column, item 1 of xss)
end transpose
----------------------- WIKI DISPLAY ---------------------
-- formattedTable :: [[Int]] -> String
on formattedTable(lstTable)
set n to length of lstTable
set w to 2.5 * n
"magic(" & n & ")" & linefeed & linefeed & wikiTable(lstTable, ¬
false, "text-align:center;width:" & ¬
w & "em;height:" & w & "em;table-layout:fixed;")
end formattedTable
-- wikiTable :: [Text] -> Bool -> Text -> Text
on wikiTable(xs, blnHdr, strStyle)
script wikiRows
on |λ|(lstRow, iRow)
set strDelim to cond(blnHdr and (iRow = 0), "!", "|")
set strDbl to strDelim & strDelim
linefeed & "|-" & linefeed & strDelim & space & ¬
intercalate(space & strDbl & space, lstRow)
end |λ|
end script
linefeed & "{| class=\"wikitable\" " & ¬
cond(strStyle ≠ "", "style=\"" & strStyle & "\"", "") & ¬
intercalate("", ¬
map(wikiRows, xs)) & linefeed & "|}" & linefeed
end wikiTable
-- cond :: Bool -> a -> a -> a
on cond(bool, f, g)
if bool then
f
else
g
end if
end cond
- Output:
magic(3)
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
magic(5)
17 | 23 | 4 | 10 | 11 |
24 | 5 | 6 | 12 | 18 |
1 | 7 | 13 | 19 | 25 |
8 | 14 | 20 | 21 | 2 |
15 | 16 | 22 | 3 | 9 |
magic(11)
68 | 80 | 92 | 104 | 116 | 7 | 19 | 31 | 43 | 55 | 56 |
81 | 93 | 105 | 117 | 8 | 20 | 32 | 44 | 45 | 57 | 69 |
94 | 106 | 118 | 9 | 21 | 33 | 34 | 46 | 58 | 70 | 82 |
107 | 119 | 10 | 22 | 23 | 35 | 47 | 59 | 71 | 83 | 95 |
120 | 11 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 |
1 | 13 | 25 | 37 | 49 | 61 | 73 | 85 | 97 | 109 | 121 |
14 | 26 | 38 | 50 | 62 | 74 | 86 | 98 | 110 | 111 | 2 |
27 | 39 | 51 | 63 | 75 | 87 | 99 | 100 | 112 | 3 | 15 |
40 | 52 | 64 | 76 | 88 | 89 | 101 | 113 | 4 | 16 | 28 |
53 | 65 | 77 | 78 | 90 | 102 | 114 | 5 | 17 | 29 | 41 |
66 | 67 | 79 | 91 | 103 | 115 | 6 | 18 | 30 | 42 | 54 |
Arturo
oddMagicSquare: function [n][
ensure -> and? odd? n
n >= 0
map 1..n 'i [
map 1..n 'j [
(n * ((i + (j - 1) + n / 2) % n)) +
(((i - 2) + 2 * j) % n) + 1
]
]
]
loop [3 5 7] 'n [
print ["Size:" n ", Magic sum:" n*(1+n*n)/2 "\n"]
loop oddMagicSquare n 'row [
loop row 'item [
prints pad to :string item 3
]
print ""
]
print ""
]
- Output:
Size: 3 , Magic sum: 15 8 1 6 3 5 7 4 9 2 Size: 5 , Magic sum: 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 Size: 7 , Magic sum: 175 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
AutoHotkey
msgbox % OddMagicSquare(5)
msgbox % OddMagicSquare(7)
return
OddMagicSquare(oddN){
sq := oddN**2
obj := {}
loop % oddN
obj[A_Index] := {} ; dis is row
mid := Round((oddN+1)/2)
sum := Round(sq*(sq+1)/2/oddN)
obj[1][mid] := 1
cR := 1 , cC := mid
loop % sq-1
{
done := 0 , a := A_index+1
while !done {
nR := cR-1 , nC := cC+1
if !nR
nR := oddN
if (nC>oddN)
nC := 1
if obj[nR][nC] ;filled
cR += 1
else cR := nR , cC := nC
if !obj[cR][cC]
obj[cR][cC] := a , done := 1
}
}
str := "Magic Constant for " oddN "x" oddN " is " sum "`n"
for k,v in obj
{
for k2,v2 in v
str .= " " v2
str .= "`n"
}
return str
}
- Output:
Magic Constant for 5x5 is 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 Magic Constant for 7x7 is 175 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
AWK
# syntax: GAWK -f MAGIC_SQUARES_OF_ODD_ORDER.AWK
BEGIN {
build(5)
build(3,1) # verify sum
build(7)
exit(0)
}
function build(n,check, arr,i,width,x,y) {
if (n !~ /^[0-9]*[13579]$/ || n < 3) {
printf("error: %s is invalid\n",n)
return
}
printf("\nmagic constant for %dx%d is %d\n",n,n,(n*n+1)*n/2)
x = 0
y = int(n/2)
for (i=1; i<=(n*n); i++) {
arr[x,y] = i
if (arr[(x+n-1)%n,(y+n+1)%n]) {
x = (x+n+1) % n
}
else {
x = (x+n-1) % n
y = (y+n+1) % n
}
}
width = length(n*n)
for (x=0; x<n; x++) {
for (y=0; y<n; y++) {
printf("%*s ",width,arr[x,y])
}
printf("\n")
}
if (check) { verify(arr,n) }
}
function verify(arr,n, total,x,y) { # verify sum of each row, column and diagonal
print("\nverify")
# horizontal
for (x=0; x<n; x++) {
total = 0
for (y=0; y<n; y++) {
printf("%d ",arr[x,y])
total += arr[x,y]
}
printf("\t: %d row %d\n",total,x+1)
}
# vertical
for (y=0; y<n; y++) {
total = 0
for (x=0; x<n; x++) {
printf("%d ",arr[x,y])
total += arr[x,y]
}
printf("\t: %d column %d\n",total,y+1)
}
# left diagonal
total = 0
for (x=y=0; x<n; x++ y++) {
printf("%d ",arr[x,y])
total += arr[x,y]
}
printf("\t: %d diagonal top left to bottom right\n",total)
# right diagonal
x = n - 1
total = 0
for (y=0; y<n; y++ x--) {
printf("%d ",arr[x,y])
total += arr[x,y]
}
printf("\t: %d diagonal bottom left to top right\n",total)
}
- Output:
magic constant for 5x5 is 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 magic constant for 3x3 is 15 8 1 6 3 5 7 4 9 2 verify 8 1 6 : 15 row 1 3 5 7 : 15 row 2 4 9 2 : 15 row 3 8 3 4 : 15 column 1 1 5 9 : 15 column 2 6 7 2 : 15 column 3 8 5 2 : 15 diagonal top left to bottom right 4 5 6 : 15 diagonal bottom left to top right magic constant for 7x7 is 175 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
BASIC
Applesoft BASIC
Even if the code works for any odd number, N=9 is the maximum for a 40 column wide screen. Line 130
is a user defined modulo function, and 140
helps calculate the addends for the number that will go in the current position.
100 :
110 REM MAGIC SQUARE OF ODD ORDER
120 :
130 DEF FN MOD(A) = A - INT (A / N) * N
140 DEF FN NR(J) = FN MOD((J + 2 * I + 1))
200 INPUT "ENTER N: ";N
210 IF N < 3 OR (N - INT (N / 2) * 2) = 0 GOTO 200
220 FOR I = 0 TO (N - 1)
230 FOR J = 0 TO (N - 1): HTAB 4 * (J + 1)
240 PRINT N * FN NR(N - J - 1) + FN NR(J) + 1;
250 NEXT J: PRINT
260 NEXT I
270 PRINT "MAGIC CONSTANT: ";N * (N * N + 1) / 2
- Output:
ENTER N: 5 2 23 19 15 6 14 10 1 22 18 21 17 13 9 5 8 4 25 16 12 20 11 7 3 24 MAGIC CONSTANT: 65
BASIC256
arraybase 1
global m
call magicSquare(5)
call magicSquare(17)
end
subroutine magicSquare(n)
redim m(n,n)
inc = 1
cont = 1
row = 1
col = (n+1) / 2
while cont <= n*n
m[row,col] = cont
cont += 1
if inc < n then
inc += 1
row -= 1
col += 1
if row <> 0 then
if col > n then col = 1
else
row = n
end if
else
inc = 1
row += 1
end if
end while
call printSquare(n)
end subroutine
subroutine printSquare(n)
#Arbitrary limit to fit width of A4 paper
if n < 23 then
print
print n; " x "; n; " Magic Square --- ";
print "Magic constant is "; int((n*n+1)/2*n)
for row = 1 to n
for col = 1 to n
print rjust(string(m[row,col]),4);
next col
print
next row
else
print "Magic Square will not fit on one sheet of paper."
end if
end subroutine
- Output:
5 x 5 Magic Square --- Magic constant is 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 17 x 17 Magic Square --- Magic constant is 2465 155 174 193 212 231 250 269 288 1 20 39 58 77 96 115 134 153 173 192 211 230 249 268 287 17 19 38 57 76 95 114 133 152 154 191 210 229 248 267 286 16 18 37 56 75 94 113 132 151 170 172 209 228 247 266 285 15 34 36 55 74 93 112 131 150 169 171 190 227 246 265 284 14 33 35 54 73 92 111 130 149 168 187 189 208 245 264 283 13 32 51 53 72 91 110 129 148 167 186 188 207 226 263 282 12 31 50 52 71 90 109 128 147 166 185 204 206 225 244 281 11 30 49 68 70 89 108 127 146 165 184 203 205 224 243 262 10 29 48 67 69 88 107 126 145 164 183 202 221 223 242 261 280 28 47 66 85 87 106 125 144 163 182 201 220 222 241 260 279 9 46 65 84 86 105 124 143 162 181 200 219 238 240 259 278 8 27 64 83 102 104 123 142 161 180 199 218 237 239 258 277 7 26 45 82 101 103 122 141 160 179 198 217 236 255 257 276 6 25 44 63 100 119 121 140 159 178 197 216 235 254 256 275 5 24 43 62 81 118 120 139 158 177 196 215 234 253 272 274 4 23 42 61 80 99 136 138 157 176 195 214 233 252 271 273 3 22 41 60 79 98 117 137 156 175 194 213 232 251 270 289 2 21 40 59 78 97 116 135
Chipmunk Basic
100 cls
110 sub magicsq(size,filename$ = "")
120 if (size and 1) = 0 or size < 3 then
130 print
140 print "error: size is not odd or size is smaller then 3"
160 exit sub
170 endif
180 ' filename$ <> "" then save magic square in a file
190 ' filename$ can contain directory name
200 ' if filename$ exist it will be overwriten, no error checking
210 dim sq(size,size)' array to hold square
220 ' start in the middle of the first row
230 nr = 1
240 x = size-int(size/2)
250 y = 1
260 max = size*size
270 ' create format string for using
280 for c = 1 to len(str$(max))+1 : frmt$ = frmt$+"#" : next c
290 'main loop for creating magic square
300 do
310 if sq(x,y) = 0 then
320 sq(x,y) = nr
330 if nr mod size = 0 then
340 y = y+1
350 else
360 x = x+1
370 y = y-1
380 endif
390 nr = nr+1
400 endif
410 if x > size then
420 x = 1
430 do while sq(x,y) <> 0
440 x = x+1
450 loop
460 endif
470 if y < 1 then
480 y = size
490 do while sq(x,y) <> 0
500 y = y-1
510 loop
520 endif
530 loop until nr > max
540 ' printing square's bigger than 19 result in a wrapping of the line
550 print "Odd magic square size: ";size;"*";size
560 print "The magic sum = ";int((max+1)/2)*size
570 print
580 for y = 1 to size
590 for x = 1 to size
600 print using "####";val(sq(x,y));
610 next x
620 print
630 next y
640 print
650 ' output magic square to a file with the name provided
660 if filename$ <> "" then
670 nr = freefile
680 open filename$ for output as #1
690 print #1,"Odd magic square size: ";size;"*";size
700 print #1,"The magic sum = ";int((max+1)/2)*size
710 print #1,
720 for y = 1 to size
730 for x = 1 to size
740 print #1,using frmt$;sq(x,y);
750 next x
760 print #1,
770 next y
780 endif
790 close #1
800 end sub
810 input "Enter N: ",number
820 magicsq(number)
830 end
FreeBASIC
' version 23-06-2015
' compile with: fbc -s console
Sub magicsq(size As Integer, filename As String ="")
If (size And 1) = 0 Or size < 3 Then
Print : Beep ' alert
Print "error: size is not odd or size is smaller then 3"
Sleep 3000,1 'wait 3 seconds, ignore key press
Exit Sub
End If
' filename <> "" then save magic square in a file
' filename can contain directory name
' if filename exist it will be overwriten, no error checking
Dim As Integer sq(size,size) ' array to hold square
' start in the middle of the first row
Dim As Integer nr = 1, x = size - (size \ 2), y = 1
Dim As Integer max = size * size
' create format string for using
Dim As String frmt = String(Len(Str(max)) +1, "#")
' main loop for creating magic square
Do
If sq(x, y) = 0 Then
sq(x, y) = nr
If nr Mod size = 0 Then
y += 1
Else
x += 1
y -= 1
End If
nr += 1
End If
If x > size Then
x = 1
Do While sq(x,y) <> 0
x += 1
Loop
End If
If y < 1 Then
y = size
Do While sq(x,y) <> 0
y -= 1
Loop
EndIf
Loop Until nr > max
' printing square's bigger than 19 result in a wrapping of the line
Print "Odd magic square size:"; size; " *"; size
Print "The magic sum ="; ((max +1) \ 2) * size
Print
For y = 1 To size
For x = 1 To size
Print Using frmt; sq(x,y);
Next
Print
Next
print
' output magic square to a file with the name provided
If filename <> "" Then
nr = FreeFile
Open filename For Output As #nr
Print #nr, "Odd magic square size:"; size; " *"; size
Print #nr, "The magic sum ="; ((max +1) \ 2) * size
Print #nr,
For y = 1 To size
For x = 1 To size
Print #nr, Using frmt; sq(x,y);
Next
Print #nr,
Next
End If
Close
End Sub
' ------=< MAIN >=------
magicsq(5)
magicsq(11)
' the next line will also print the square to a file called: magic_square_19.txt
magicsq(19, "magic_square_19.txt")
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
- Output:
Odd magic square size: 5 * 5 Odd magic square size: 11 * 11 The magic sum = 65 The magic sum = 671 17 24 1 8 15 68 81 94 107 120 1 14 27 40 53 66 23 5 7 14 16 80 93 106 119 11 13 26 39 52 65 67 4 6 13 20 22 92 105 118 10 12 25 38 51 64 77 79 10 12 19 21 3 104 117 9 22 24 37 50 63 76 78 91 11 18 25 2 9 116 8 21 23 36 49 62 75 88 90 103 7 20 33 35 48 61 74 87 89 102 115 19 32 34 47 60 73 86 99 101 114 6 31 44 46 59 72 85 98 100 113 5 18 43 45 58 71 84 97 110 112 4 17 30 55 57 70 83 96 109 111 3 16 29 42 Only the first 2 square shown. 56 69 82 95 108 121 2 15 28 41 54
GW-BASIC
100 REM Magic squares of odd order
110 INPUT "The square order: ", N
115 'INPUT "The square order:"; N ' for MSX Basic
120 IF (N AND 1) = 0 OR N < 3 THEN PRINT "error: size is not odd or size is smaller then 3" : GOTO 100
130 FOR I = 1 TO N
140 FOR J = 1 TO N
150 PRINT USING " ###"; ((I*2-J+N-1) MOD N) * N + ((I*2+J-2) MOD N) + 1;
160 NEXT J
170 PRINT
180 NEXT I
190 PRINT "The magic number is: "; N * (N^2+1) / 2
IS-BASIC
100 PROGRAM "MagicN.bas"
110 DO
120 INPUT PROMPT "The square order: ":N
130 LOOP UNTIL MOD(N,2)>0 AND INT(N)=N AND N>0
140 FOR I=1 TO N
150 FOR J=1 TO N
160 PRINT USING " ###":MOD((I*2-J+N-1),N)*N+MOD(I*2+J-2,N)+1;
170 NEXT
180 PRINT
190 NEXT
200 PRINT "The magic number is:";N*(N^2+1)/2
Liberty BASIC
Dim m(1,1)
Call magicSquare 5
Call magicSquare 17
End
Sub magicSquare n
ReDim m(n,n)
inc = 1
count = 1
row = 1
col=(n+1)/2
While count <= n*n
m(row,col) = count
count = count + 1
If inc < n Then
inc = inc + 1
row = row - 1
col = col + 1
If row <> 0 Then
If col > n Then col = 1
Else
row = n
End If
Else
inc = 1
row = row + 1
End If
Wend
Call printSquare n
End Sub
Sub printSquare n
'Arbitrary limit to fit width of A4 paper
If n < 23 Then
Print n;" x ";n;" Magic Square --- ";
Print "Magic constant is ";Int((n*n+1)/2*n)
For row = 1 To n
For col = 1 To n
Print Using("####",m(row,col));
Next col
Print
Print
Next row
Else
Notice "Magic Square will not fit on one sheet of paper."
End If
End Sub
- Output:
5 x 5 Magic Square --- Magic constant is 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 17 x 17 Magic Square --- Magic constant is 2465 155 174 193 212 231 250 269 288 1 20 39 58 77 96 115 134 153 173 192 211 230 249 268 287 17 19 38 57 76 95 114 133 152 154 191 210 229 248 267 286 16 18 37 56 75 94 113 132 151 170 172 209 228 247 266 285 15 34 36 55 74 93 112 131 150 169 171 190 227 246 265 284 14 33 35 54 73 92 111 130 149 168 187 189 208 245 264 283 13 32 51 53 72 91 110 129 148 167 186 188 207 226 263 282 12 31 50 52 71 90 109 128 147 166 185 204 206 225 244 281 11 30 49 68 70 89 108 127 146 165 184 203 205 224 243 262 10 29 48 67 69 88 107 126 145 164 183 202 221 223 242 261 280 28 47 66 85 87 106 125 144 163 182 201 220 222 241 260 279 9 46 65 84 86 105 124 143 162 181 200 219 238 240 259 278 8 27 64 83 102 104 123 142 161 180 199 218 237 239 258 277 7 26 45 82 101 103 122 141 160 179 198 217 236 255 257 276 6 25 44 63 100 119 121 140 159 178 197 216 235 254 256 275 5 24 43 62 81 118 120 139 158 177 196 215 234 253 272 274 4 23 42 61 80 99 136 138 157 176 195 214 233 252 271 273 3 22 41 60 79 98 117 137 156 175 194 213 232 251 270 289 2 21 40 59 78 97 116 135
MSX Basic
100 REM Magic squares of odd order
110 INPUT "The square order:"; N
120 IF (N AND 1) = 0 OR N < 3 THEN PRINT "error: size is not odd or size is smaller then 3" : GOTO 100
130 FOR I = 1 TO N
140 FOR J = 1 TO N
150 PRINT USING " ###"; ((I*2-J+N-1) MOD N) * N + ((I*2+J-2) MOD N) + 1;
160 NEXT J
170 PRINT
180 NEXT I
190 PRINT "The magic number is:"; N * (N^2+1) / 2
PureBasic
#N=9
Define.i i,j
If OpenConsole("Magic squares")
PrintN("The square order is: "+Str(#N))
For i=1 To #N
For j=1 To #N
Print(RSet(Str((i*2-j+#N-1) % #N*#N + (i*2+j-2) % #N+1),5))
Next
PrintN("")
Next
PrintN("The magic number is: "+Str(#N*(#N*#N+1)/2))
EndIf
Input()
- Output:
The square order is: 9 2 75 67 59 51 43 35 27 10 22 14 6 79 71 63 46 38 30 42 34 26 18 1 74 66 58 50 62 54 37 29 21 13 5 78 70 73 65 57 49 41 33 25 17 9 12 4 77 69 61 53 45 28 20 32 24 16 8 81 64 56 48 40 52 44 36 19 11 3 76 68 60 72 55 47 39 31 23 15 7 80 The magic number is: 369
QB64
_Title "Magic Squares of Odd Order"
'$Dynamic
DefLng A-Z
Dim Shared As Long m(1, 1)
Call magicSquare(5)
Call magicSquare(15)
Sleep
System
Sub magicSquare (n As Integer)
Dim As Integer inc, count, row, col
If (n < 3) Or (n And 1) <> 1 Then n = 3
ReDim m(n, n)
inc = 1
count = 1
row = 1
col = (n + 1) / 2
While count <= n * n
m(row, col) = count
count = count + 1
If inc < n Then
inc = inc + 1
row = row - 1
col = col + 1
If row <> 0 Then
If col > n Then col = 1
Else
row = n
End If
Else
inc = 1
row = row + 1
End If
Wend
Call printSquare(n)
End Sub
Sub printSquare (n As Integer)
Dim As Integer row, col
'Arbitrary limit ensures a fit within console window
'Can be any size that fits within your computers memory limits
If n < 21 Then
Print "Order "; n; " Magic Square constant is "; Str$(Int((n * n + 1) / 2 * n))
For row = 1 To n
For col = 1 To n
Print Using "####"; m(row, col);
Next col
Print
' Print
Next row
End If
End Sub
- Output:
Order 5 Magic Square constant is 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 Order 15 Magic Square constant is 1695 122 139 156 173 190 207 224 1 18 35 52 69 86 103 120 138 155 172 189 206 223 15 17 34 51 68 85 102 119 121 154 171 188 205 222 14 16 33 50 67 84 101 118 135 137 170 187 204 221 13 30 32 49 66 83 100 117 134 136 153 186 203 220 12 29 31 48 65 82 99 116 133 150 152 169 202 219 11 28 45 47 64 81 98 115 132 149 151 168 185 218 10 27 44 46 63 80 97 114 131 148 165 167 184 201 9 26 43 60 62 79 96 113 130 147 164 166 183 200 217 25 42 59 61 78 95 112 129 146 163 180 182 199 216 8 41 58 75 77 94 111 128 145 162 179 181 198 215 7 24 57 74 76 93 110 127 144 161 178 195 197 214 6 23 40 73 90 92 109 126 143 160 177 194 196 213 5 22 39 56 89 91 108 125 142 159 176 193 210 212 4 21 38 55 72 105 107 124 141 158 175 192 209 211 3 20 37 54 71 88 106 123 140 157 174 191 208 225 2 19 36 53 70 87 104
uBasic/4tH
' ------=< MAIN >=------
Proc _magicsq(5)
Proc _magicsq(11)
End
_magicsq Param (1) Local (4)
' reset the array
For b@ = 0 to 255
@(b@) = 0
Next
If ((a@ % 2) = 0) + (a@ < 3) + (a@ > 15) Then
Print "error: size is not odd or size is smaller then 3 or bigger than 15"
Return
EndIf
' start in the middle of the first row
b@ = 1
c@ = a@ - (a@ / 2)
d@ = 1
e@ = a@ * a@
' main loop for creating magic square
Do
If @(c@*a@+d@) = 0 Then
@(c@*a@+d@) = b@
If (b@ % a@) = 0 Then
d@ = d@ + 1
Else
c@ = c@ + 1
d@ = d@ - 1
EndIf
b@ = b@ + 1
EndIf
If c@ > a@ Then
c@ = 1
Do While @(c@*a@+d@) # 0
c@ = c@ + 1
Loop
EndIf
If d@ < 1 Then
d@ = a@
Do While @(c@*a@+d@) # 0
d@ = d@ - 1
Loop
EndIf
Until b@ > e@
Loop
Print "Odd magic square size: "; a@; " * "; a@
Print "The magic sum = "; ((e@+1) / 2) * a@
Print
For d@ = 1 To a@
For c@ = 1 To a@
Print Using "____"; @(c@*a@+d@);
Next
Print
Next
Print
Return
- Output:
Odd magic square size: 5 * 5 The magic sum = 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 Odd magic square size: 11 * 11 The magic sum = 671 68 81 94 107 120 1 14 27 40 53 66 80 93 106 119 11 13 26 39 52 65 67 92 105 118 10 12 25 38 51 64 77 79 104 117 9 22 24 37 50 63 76 78 91 116 8 21 23 36 49 62 75 88 90 103 7 20 33 35 48 61 74 87 89 102 115 19 32 34 47 60 73 86 99 101 114 6 31 44 46 59 72 85 98 100 113 5 18 43 45 58 71 84 97 110 112 4 17 30 55 57 70 83 96 109 111 3 16 29 42 56 69 82 95 108 121 2 15 28 41 54 0 OK, 0:64
VBA
Works with Excel VBA.
Sub magicsquare()
'Magic squares of odd order
Const n = 9
Dim i As Integer, j As Integer, v As Integer
Debug.Print "The square order is: " & n
For i = 1 To n
For j = 1 To n
Cells(i, j) = ((i * 2 - j + n - 1) Mod n) * n + ((i * 2 + j - 2) Mod n) + 1
Next j
Next i
Debug.Print "The magic number of"; n; "x"; n; "square is:"; n * (n * n + 1) \ 2
End Sub 'magicsquare
Visual Basic
Sub magicsquare()
'Magic squares of odd order
Const n = 9
Dim i As Integer, j As Integer, v As Integer
Debug.Print "The square order is: " & n
For i = 1 To n
For j = 1 To n
v = ((i * 2 - j + n - 1) Mod n) * n + ((i * 2 + j - 2) Mod n) + 1
Debug.Print Right(Space(5) & v, 5);
Next j
Debug.Print
Next i
Debug.Print "The magic number is: " & n * (n * n + 1) \ 2
End Sub 'magicsquare
- Output:
The square order is: 9 2 75 67 59 51 43 35 27 10 22 14 6 79 71 63 46 38 30 42 34 26 18 1 74 66 58 50 62 54 37 29 21 13 5 78 70 73 65 57 49 41 33 25 17 9 12 4 77 69 61 53 45 28 20 32 24 16 8 81 64 56 48 40 52 44 36 19 11 3 76 68 60 72 55 47 39 31 23 15 7 80 The magic number is: 369
Visual Basic .NET
Sub magicsquare()
'Magic squares of odd order
Const n = 9
Dim i, j, v As Integer
Console.WriteLine("The square order is: " & n)
For i = 1 To n
For j = 1 To n
v = ((i * 2 - j + n - 1) Mod n) * n + ((i * 2 + j - 2) Mod n) + 1
Console.Write(" " & Right(Space(5) & v, 5))
Next j
Console.WriteLine("")
Next i
Console.WriteLine("The magic number is: " & n * (n * n + 1) \ 2)
End Sub 'magicsquare
- Output:
The square order is: 9 2 75 67 59 51 43 35 27 10 22 14 6 79 71 63 46 38 30 42 34 26 18 1 74 66 58 50 62 54 37 29 21 13 5 78 70 73 65 57 49 41 33 25 17 9 12 4 77 69 61 53 45 28 20 32 24 16 8 81 64 56 48 40 52 44 36 19 11 3 76 68 60 72 55 47 39 31 23 15 7 80 The magic number is: 369
Yabasic
magicSquare(5)
magicSquare(17)
end
sub magicSquare(n)
redim m(n,n)
inc = 1
cont = 1
row = 1
col = (n+1) / 2
while cont <= n*n
m(row,col) = cont
cont = cont + 1
if inc < n then
inc = inc + 1
row = row - 1
col = col + 1
if row <> 0 then
if col > n col = 1
else
row = n
end if
else
inc = 1
row = row + 1
end if
end while
printSquare(n)
end sub
sub printSquare(n)
//Arbitrary limit to fit width of A4 paper
if n < 23 then
print "\n", n, " x ", n, " Magic Square --- ";
print "Magic constant is ", int((n*n+1)/2*n)
for row = 1 to n
for col = 1 to n
print m(row,col) using("####");
next col
print
next row
else
print "Magic Square will not fit on one sheet of paper."
end if
end sub
- Output:
5 x 5 Magic Square --- Magic constant is 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 17 x 17 Magic Square --- Magic constant is 2465 155 174 193 212 231 250 269 288 1 20 39 58 77 96 115 134 153 173 192 211 230 249 268 287 17 19 38 57 76 95 114 133 152 154 191 210 229 248 267 286 16 18 37 56 75 94 113 132 151 170 172 209 228 247 266 285 15 34 36 55 74 93 112 131 150 169 171 190 227 246 265 284 14 33 35 54 73 92 111 130 149 168 187 189 208 245 264 283 13 32 51 53 72 91 110 129 148 167 186 188 207 226 263 282 12 31 50 52 71 90 109 128 147 166 185 204 206 225 244 281 11 30 49 68 70 89 108 127 146 165 184 203 205 224 243 262 10 29 48 67 69 88 107 126 145 164 183 202 221 223 242 261 280 28 47 66 85 87 106 125 144 163 182 201 220 222 241 260 279 9 46 65 84 86 105 124 143 162 181 200 219 238 240 259 278 8 27 64 83 102 104 123 142 161 180 199 218 237 239 258 277 7 26 45 82 101 103 122 141 160 179 198 217 236 255 257 276 6 25 44 63 100 119 121 140 159 178 197 216 235 254 256 275 5 24 43 62 81 118 120 139 158 177 196 215 234 253 272 274 4 23 42 61 80 99 136 138 157 176 195 214 233 252 271 273 3 22 41 60 79 98 117 137 156 175 194 213 232 251 270 289 2 21 40 59 78 97 116 135
Batch File
@echo off
rem Magic squares of odd order
setlocal EnableDelayedExpansion
set n=9
echo The square order is: %n%
for /l %%i in (1,1,%n%) do (
set w=
for /l %%j in (1,1,%n%) do (
set /a v1=%%i*2-%%j+n-1
set /a v1=v1%%n*n
set /a v2=%%i*2+%%j+n-2
set /a v2=v2%%n
set /a v=v1+v2+1
set v= !v!
set w=!w!!v:~-5!)
echo !w!)
set /a w=n*(n*n+1)/2
echo The magic number is: %w%
pause
- Output:
The square order is: 9 2 75 67 59 51 43 35 27 10 22 14 6 79 71 63 46 38 30 42 34 26 18 1 74 66 58 50 62 54 37 29 21 13 5 78 70 73 65 57 49 41 33 25 17 9 12 4 77 69 61 53 45 28 20 32 24 16 8 81 64 56 48 40 52 44 36 19 11 3 76 68 60 72 55 47 39 31 23 15 7 80 The magic number is: 369 Press any key to continue ...
bc
define magic_constant(n) {
return(((n * n + 1) / 2) * n)
}
define print_magic_square(n) {
auto i, x, col, row, len, old_scale
old_scale = scale
scale = 0
len = length(n * n)
print "Magic constant for n=", n, ": ", magic_constant(n), "\n"
for (row = 1; row <= n; row++) {
for (col = 1; col <= n; col++) {
x = n * ((row + col - 1 + (n / 2)) % n) + \
((row + 2 * col - 2) % n) + 1
for (i = 0; i < len - length(x); i++) {
print " "
}
print x
if (col != n) print " "
}
print "\n"
}
scale = old_scale
}
temp = print_magic_square(5)
- Output:
Magic constant for n=5: 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9
BCPL
get "libhdr"
let cell(n, x, y) = f(n, n-x-1, y)*n + f(n, x, y) + 1
and f(n, x, y) = (x + y*2 + 1) rem n
let magic(n) be
$( writef("Magic square of order %N with constant %N:*N", n, (n*n+1)/2*n)
for y = 0 to n-1
$( for x = 0 to n-1 do writed(cell(n, x, y), 4)
wrch('*N')
$)
wrch('*N')
$)
let start() be for n = 1 to 7 by 2 do magic(n)
- Output:
Magic square of order 1 with constant 1: 1 Magic square of order 3 with constant 15: 2 9 4 7 5 3 6 1 8 Magic square of order 5 with constant 65: 2 23 19 15 6 14 10 1 22 18 21 17 13 9 5 8 4 25 16 12 20 11 7 3 24 Magic square of order 7 with constant 175: 2 45 39 33 27 21 8 18 12 6 49 36 30 24 34 28 15 9 3 46 40 43 37 31 25 19 13 7 10 4 47 41 35 22 16 26 20 14 1 44 38 32 42 29 23 17 11 5 48
Befunge
The size, n, is specified by the first value on the stack.
500p0>:::00g%00g\-1-\00g/2*+1+00g%00g*\:00g%v
@<$<_^#!-*:g00:,+9!%g00:+1.+1+%g00+1+*2/g00\<
- Output:
2 23 19 15 6 14 10 1 22 18 21 17 13 9 5 8 4 25 16 12 20 11 7 3 24
BQN
Magic ← {𝕏{+´1∾1‿𝕗×𝕨(𝕗|1+⊢+2×⊣)𝕩∾𝕗-𝕩+1}´¨↕2⥊𝕩}
Magic¨ ⟨1,3,5,7⟩
- Output:
┌─ · ┌─ ┌─ ┌─ ┌─ ╵ 1 ╵ 2 9 4 ╵ 2 23 19 15 6 ╵ 2 45 39 33 27 21 8 ┘ 7 5 3 14 10 1 22 18 18 12 6 49 36 30 24 6 1 8 21 17 13 9 5 34 28 15 9 3 46 40 ┘ 8 4 25 16 12 43 37 31 25 19 13 7 20 11 7 3 24 10 4 47 41 35 22 16 ┘ 26 20 14 1 44 38 32 42 29 23 17 11 5 48 ┘ ┘
C
Generates an associative magic square. If the size is larger than 3, the square is also panmagic.
#include <stdio.h>
#include <stdlib.h>
int f(int n, int x, int y)
{
return (x + y*2 + 1)%n;
}
int main(int argc, char **argv)
{
int i, j, n;
//Edit: Add argument checking
if(argc!=2) return 1;
//Edit: Input must be odd and not less than 3.
n = atoi(argv[1]);
if (n < 3 || (n%2) == 0) return 2;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)
printf("% 4d", f(n, n - j - 1, i)*n + f(n, j, i) + 1);
putchar('\n');
}
printf("\n Magic Constant: %d.\n", (n*n+1)/2*n);
return 0;
}
- Output:
$ ./magic 5 2 23 19 15 6 14 10 1 22 18 21 17 13 9 5 8 4 25 16 12 20 11 7 3 24 Magic Constant: 65.
C++
#include <iostream>
#include <sstream>
#include <iomanip>
#include <cassert>
#include <vector>
using namespace std;
class MagicSquare
{
public:
MagicSquare(int d) : sqr(d*d,0), sz(d)
{
assert(d&1);
fillSqr();
}
void display()
{
cout << "Odd Magic Square: " << sz << " x " << sz << "\n";
cout << "It's Magic Sum is: " << magicNumber() << "\n\n";
ostringstream cvr;
cvr << sz * sz;
int l = cvr.str().size();
for( int y = 0; y < sz; y++ )
{
int yy = y * sz;
for( int x = 0; x < sz; x++ )
cout << setw( l + 2 ) << sqr[yy + x];
cout << "\n";
}
cout << "\n\n";
}
private:
void fillSqr()
{
int sx = sz / 2, sy = 0, c = 0;
while( c < sz * sz )
{
if( !sqr[sx + sy * sz] )
{
sqr[sx + sy * sz]= c + 1;
inc( sx ); dec( sy );
c++;
}
else
{
dec( sx ); inc( sy ); inc( sy );
}
}
}
int magicNumber()
{ return sz * ( ( sz * sz ) + 1 ) / 2; }
void inc( int& a )
{ if( ++a == sz ) a = 0; }
void dec( int& a )
{ if( --a < 0 ) a = sz - 1; }
bool checkPos( int x, int y )
{ return( isInside( x ) && isInside( y ) && !sqr[sz * y + x] ); }
bool isInside( int s )
{ return ( s < sz && s > -1 ); }
vector<int> sqr;
int sz;
};
int main()
{
MagicSquare s(7);
s.display();
return 0;
}
- Output:
Odd Magic Square: 7 x 7 It's Magic Sum is: 175 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
CLU
magic_square = cluster is create, unparse, magic_number
rep = array[array[int]]
create = proc (order: int) returns (cvt) signals (invalid)
if order<1 cor order//2 = 0 then signal invalid end
sq: rep := rep$fill_copy(1, order, array[int]$fill(1, order, 0))
x: int := (order+1)/2
y: int := 1
for i: int in int$from_to(1, order**2) do
sq[y][x] := i
next_x: int := inc(sq,x)
next_y: int := dec(sq,y)
if sq[next_y][next_x]=0
then x, y := next_x, next_y
else y := inc(sq,y)
end
end
return(sq)
end create
inc = proc (sq: rep, co: int) returns (int)
order: int := rep$size(sq)
if co=order then return(1) else return(co+1) end
end inc
dec = proc (sq: rep, co: int) returns (int)
order: int := rep$size(sq)
if co=1 then return(order) else return(co-1) end
end dec
unparse = proc (sq: cvt) returns (string)
order: int := rep$size(sq)
col_size: int := string$size(int$unparse(order ** 2)) + 1
ss: stream := stream$create_output()
for y: int in int$from_to(1, order) do
for x: int in int$from_to(1, order) do
stream$putright(ss, int$unparse(sq[y][x]), col_size)
end
stream$putl(ss, "")
end
return(stream$get_contents(ss))
end unparse
magic_number = proc (sq: cvt) returns (int)
order: int := rep$size(sq)
n: int := 0
for x: int in int$from_to(1, order) do n := n + sq[1][x] end
return(n)
end magic_number
end magic_square
print_magic_square = proc (order: int)
po: stream := stream$primary_output()
ms: magic_square := magic_square$create(order)
stream$putl(po, "Magic square of order "
|| int$unparse(order)
|| " with magic number "
|| int$unparse(magic_square$magic_number(ms))
|| ": ")
stream$putl(po, magic_square$unparse(ms))
end print_magic_square
start_up = proc ()
for n: int in int$from_to_by(1, 7, 2) do
print_magic_square(n)
end
end start_up
- Output:
Magic square of order 1 with magic number 1: 1 Magic square of order 3 with magic number 15: 8 1 6 3 5 7 4 9 2 Magic square of order 5 with magic number 65: 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 Magic square of order 7 with magic number 175: 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
Common Lisp
(defun magic-square (n)
(loop for i from 1 to n
collect
(loop for j from 1 to n
collect
(+ (* n (mod (+ i j (floor n 2) -1)
n))
(mod (+ i (* 2 j) -2)
n)
1))))
(defun magic-constant (n)
(* n
(/ (1+ (* n n))
2)))
(defun output (n)
(format T "Magic constant for n=~a: ~a~%" n (magic-constant n))
(let* ((size (length (write-to-string (* n n))))
(format-str (format NIL "~~{~~{~~~ad~~^ ~~}~~%~~}~~%" size)))
(format T format-str (magic-square n))))
- Output:
> (output 5) Magic constant for n=5: 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9
Cowgol
include "cowgol.coh";
sub magic(n: uint16) is
sub f(x: uint16, y: uint16): (r: uint16) is
r := (x + y*2 + 1) % n;
end sub;
sub cell(x: uint16, y: uint16): (c: uint16) is
c := f(n-x-1, y)*n + f(x, y) + 1;
end sub;
var y: uint16 := 0;
while y < n loop
var x: uint16 := 0;
loop
print_i16(cell(x, y));
x := x + 1;
if x == n then
print_nl();
break;
else
print_char('\t');
end if;
end loop;
y := y + 1;
end loop;
print_nl();
end sub;
var n: uint16 := 1;
while n <= 7 loop
print("Magic square of order ");
print_i16(n);
print(" with constant ");
print_i16((n*n+1)/2*n);
print(":\n");
magic(n);
n := n + 2;
end loop;
- Output:
Magic square of order 1 with constant 1: 1 Magic square of order 3 with constant 15: 2 9 4 7 5 3 6 1 8 Magic square of order 5 with constant 65: 2 23 19 15 6 14 10 1 22 18 21 17 13 9 5 8 4 25 16 12 20 11 7 3 24 Magic square of order 7 with constant 175: 2 45 39 33 27 21 8 18 12 6 49 36 30 24 34 28 15 9 3 46 40 43 37 31 25 19 13 7 10 4 47 41 35 22 16 26 20 14 1 44 38 32 42 29 23 17 11 5 48
D
void main(in string[] args)
{
import std.stdio, std.conv, std.range, std.algorithm, std.exception;
immutable n = args.length == 2 ? args[1].to!uint : 5;
enforce(n > 0 && n % 2 == 1, "Only odd n > 1");
immutable len = text(n ^^ 2).length.text;
// writeln(len);
foreach (immutable r; 1 .. n + 1)
{
foreach (immutable c; 1 .. n + 1)
{
auto a = (n * ((r + c - 1 + (n / 2)) % n)) + ((r + (2 * c) - 2) % n) + 1;
// n(( I + J - 1 + ( n / 2 ) ) mod n ) + (( I + 2J - 2 ) mod n ) + 1
// writeln("n = ",n, " r = ",r," c = ",c, " a = ",a );
writef("%" ~ len ~ "d%s",a, " ");
}
writeln("");
}
;
writeln("\nMagic constant: ", ((n * n + 1) * n) / 2);
}}
- Output:
17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 Magic constant: 65
Alternative Version
import std.stdio, std.conv, std.string, std.range, std.algorithm;
uint[][] magicSquare(immutable uint n) pure nothrow @safe
in {
assert(n > 0 && n % 2 == 1);
} out(mat) {
// mat is square of the right size.
assert(mat.length == n);
assert(mat.all!(row => row.length == n));
immutable magic = mat[0].sum;
// The sum of all rows is the same magic number.
assert(mat.all!(row => row.sum == magic));
// The sum of all columns is the same magic number.
//assert(mat.transposed.all!(col => col.sum == magic));
assert(mat.dup.transposed.all!(col => col.sum == magic));
// The sum of the main diagonals is the same magic number.
assert(mat.enumerate.map!(ir => ir[1][ir[0]]).sum == magic);
//assert(mat.enumerate.map!({i, r} => r[i]).sum == magic);
assert(mat.enumerate.map!(ir => ir[1][ir[0]]).sum == magic);
} body {
enum M = (in uint x) pure nothrow @safe @nogc => (x + n - 1) % n;
auto m = new uint[][](n, n);
uint i = 0;
uint j = n / 2;
foreach (immutable uint k; 1 .. n ^^ 2 + 1) {
m[i][j] = k;
if (m[M(i)][M(j)]) {
i = (i + 1) % n;
} else {
i = M(i);
j = M(j);
}
}
return m;
}
void showSquare(in uint[][] m)
in {
assert(m.all!(row => row.length == m[0].length));
} body {
immutable maxLen = text(m.length ^^ 2).length.text;
writefln("%(%(%" ~ maxLen ~ "d %)\n%)", m);
writeln("\nMagic constant: ", m[0].sum);
}
int main(in string[] args) {
if (args.length == 1) {
5.magicSquare.showSquare;
return 0;
} else if (args.length == 2) {
immutable n = args[1].to!uint;
if (n > 0 && n % 2 == 1) {
n.magicSquare.showSquare;
return 0;
}
}
stderr.writefln("Requires n odd and larger than 0.");
return 1;
}
- Output:
15 8 1 24 17 16 14 7 5 23 22 20 13 6 4 3 21 19 12 10 9 2 25 18 11 Magic constant: 65
Delphi
See Pascal.
Draco
proc inc(word n, order) word: if n=order-1 then 0 else n+1 fi corp
proc dec(word n, order) word: if n=0 then order-1 else n-1 fi corp
proc odd_magic_square([*,*]word square) void:
word order, x, nx, y, ny, i;
order := dim(square,1);
for x from 0 upto order-1 do
for y from 0 upto order-1 do
square[x,y] := 0
od
od;
x := order/2;
y := 0;
for i from 1 upto order*order do
square[x,y] := i;
nx := inc(x,order);
ny := dec(y,order);
if square[nx,ny] = 0 then
x := nx;
y := ny
else
y := inc(y,order)
fi
od
corp
proc digit_count(word n) word:
word count;
count := 0;
while n > 0 do
count := count + 1;
n := n / 10
od;
count
corp
proc print_magic_square([*,*]word square) void:
word order, max, col_size, magic, x, y;
order := dim(square,1);
max := order*order;
col_size := digit_count(max) + 1;
magic := 0;
for x from 0 upto order-1 do magic := magic + square[x,0] od;
writeln("Magic square of order ",order," with magic number ",magic,":");
for y from 0 upto order-1 do
for x from 0 upto order-1 do write(square[x,y]:col_size) od;
writeln()
od;
writeln()
corp
proc main() void:
[1,1]word sq1;
[3,3]word sq3;
[5,5]word sq5;
[7,7]word sq7;
odd_magic_square(sq1);
odd_magic_square(sq3);
odd_magic_square(sq5);
odd_magic_square(sq7);
print_magic_square(sq1);
print_magic_square(sq3);
print_magic_square(sq5);
print_magic_square(sq7)
corp
- Output:
Magic square of order 1 with magic number 1: 1 Magic square of order 3 with magic number 15: 8 1 6 3 5 7 4 9 2 Magic square of order 5 with magic number 65: 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 Magic square of order 7 with magic number 175: 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
EasyLang
func f n x y .
return (x + y * 2 + 1) mod n
.
numfmt 0 3
proc msqr n . .
for i = 0 to n - 1
for j = 0 to n - 1
write f n (n - j - 1) i * n + f n j i + 1
.
print ""
.
.
msqr 5
- Output:
2 23 19 15 6 14 10 1 22 18 21 17 13 9 5 8 4 25 16 12 20 11 7 3 24
EchoLisp
The make-ms procedure allows to construct different magic squares for a same n, by modifying the grid filling moves. (see MathWorld reference)
(lib 'matrix)
;; compute next i,j = f(move,i,j)
(define-syntax-rule (path imove jmove)
(begin (set! i (imove i n)) (set! j (jmove j n))))
;; We define the ordinary and break moves
;; (1 , -1), (0, 1) King's move
(define (inext i n) (modulo (1+ i) n))
(define (jnext j n) (modulo (1- j) n))
(define (ibreak i n) i)
(define (jbreak j n) (modulo (1+ j) n))
(define (make-ms n)
(define n2+1 (1+ (* n n)))
(define ms (make-array n n))
(define i (quotient n 2))
(define j 0)
(array-set! ms i j 1)
(for ((ns (in-range 2 n2+1)))
(if (zero? (array-ref ms (inext i n ) (jnext j n )))
(path inext jnext) ;; ordinary move if empty target
(path ibreak jbreak)) ;; else break move
(if (zero? (array-ref ms i j))
(array-set! ms i j ns)
(error ns "illegal path"))
)
(writeln 'order n 'magic-number (/ ( * n n2+1) 2))
(array-print ms))
- Output:
(make-ms 7) order 7 magic-number 175 30 38 46 5 13 21 22 39 47 6 14 15 23 31 48 7 8 16 24 32 40 1 9 17 25 33 41 49 10 18 26 34 42 43 2 19 27 35 36 44 3 11 28 29 37 45 4 12 20 ;; Changing the moves allow to generate other magic squares ;; (2 ,1) (1,-2) Knight's move ! (define (inext i n) (modulo (+ 2 i) n)) (define (jnext j n) (modulo (1+ j) n)) (define (ibreak i n) (modulo (1+ i) n)) (define (jbreak j n) (modulo (- j 2) n)) (make-ms 7) order 7 magic-number 175 37 48 3 14 18 22 33 11 15 26 30 41 45 7 34 38 49 4 8 19 23 1 12 16 27 31 42 46 24 35 39 43 5 9 20 47 2 13 17 28 32 36 21 25 29 40 44 6 10 ;; (2 ,1) (1,-1) (define (inext i n) (modulo (+ 2 i) n)) (define (jnext j n) (modulo (1+ j) n)) (define (ibreak i n) (modulo (1+ i) n)) (define (jbreak j n) (modulo (1- j) n)) (make-ms 7) order 7 magic-number 175 48 22 3 33 14 37 18 30 11 41 15 45 26 7 19 49 23 4 34 8 38 1 31 12 42 16 46 27 39 20 43 24 5 35 9 28 2 32 13 36 17 47 10 40 21 44 25 6 29
EDSAC order code
[Magic squares of odd order, for Rosetta Code.
EDSAC program, Initial Orders 2.]
[The entries in a magic square of side n can be written as n*u + v + 1,
where u and v range independently over 0, ..., n - 1.
Let the cells be labelled by (x, y) coordinates, where
x = column (left = 0), y = row (bottom = 0).
If n is odd then magic squares can be constructed by setting
u = c*x + d*y + h (mod n)
v = e*x + f*y + k (mod n)
where c, d, e, f, h, k are suitable constants.
Define m = (n - 1)/2. The values of c, ..., k for various methods
of construction are as follows:
c, d, e, f, h, k
Bachet: m + 1, m, m + 1, m + 1, m, 0
De la Loubere: 1, 2m, 2, 2m, m, 0
Conway (lozenge): 1, 2m, 1, 1, m, m + 1
Rosetta Code C: 2m, 2m - 1, 1, 2m - 1, 2m - 1, 2m
------------------------------------------------------------------------------]
[Arrange the storage]
T45K P56F [H parameter: subroutine to print string]
T46K P100F [N parameter: subroutine to print number]
T47K P200F [M parameter: main routine + high-level subroutine]
[Main routine + non-library subroutine]
E25K TM GK
[Rows are printed in the order y = n - 1 (top) to y = 0 (bottom).
Row y = n is a fictitious row used during initialization.]
[Locations set up by main routine; some are changed by subroutine]
[0] PF [m]
[1] PF [n]
[2] PF [n^2]
[3] PF [n * 2^11]
[4] PF [c, changed to n*(n - c) = dec to n*u on inc(x)]
[5] PF [d, changed to n*d = dec to n*u on dec(y)]
[6] PF [e, changed to n - e = dec to v on inc(x)]
[7] PF [f = dec to v when dec(y)]
[8] PF [h, changed to n*u for start of current row]
[9] PF [k, changed to v for start of current row]
[Locations used only by subroutine]
[10] PF [n*u]
[11] PF [v]
[12] PF [x count]
[13] PF [y count]
[Subroutine to print magic square, using parameters set up by main routine.]
[14] A3F T77@ [plant return link as usual]
A80@ T1F [set to print leading zeros as spaces]
A1@ S6@ T6@ [replace e by n - e]
A1@ S4@ T4@ [replace c by n - c]
[Multiply certain values by n. To maintain the integer scaling,
products have to be shifted 16 left before storing.]
H3@ V8@ [acc := (n << 11)*h]
L8F T8@ [shift 5 more left and store n*h]
V5@ L8F T5@ [similarly n*d]
V4@ L8F T4@ [similarly n*(n - c)]
[Loop round rows y := n - 1 down to 0. At the moment y = n.]
S1@ T13@ [initialize negative count of rows (y values)]
[Start of a row. Here acc = 0]
[36] S1@ T12@ [inititialize negative count of columns (x values)]
A8@ S5@ [decrement n*u by n*d]
E42@ [skip if n*u >= 0]
A2@ [else inc n*u by n^2]
[42] U8@ [store updated n*u for next time]
T10@ [also copy to initialize this row]
A9@ S7@ [decrement v by f]
E48@ [skip if v >= 0]
A1@ [else inc v by n]
[48] U9@ [store updated v at for next time]
U11@ [also copy to initialize this row]
[Next column. Here acc = v]
[50] A10@ A78@ TF [cell value v + n*u + 1 to 0F for printing]
[53] A53@ GN [call subroutine to print cell value]
A12@ A78@ [increment negative column count]
E70@ [jump if row is complete]
T12@ [else update count]
A10@ S4@ [dec n*u by n*n - c)]
E63@ [skip if n*U >= 0]
A2@ [else inc n*u by n^2]
[63] T10@ [store updated n*u for next time]
A11@ S6@ [dec v by n - e]
E68@ [skip if v >= 0]
A1@ [else inc v by n]
[68] U11@ [store updated v, keep v in acc]
E50@ [loop back for next cell in row]
[Row finished]
[70] O81@ O82@ [print CR LF]
A13@ A78@ [inc negative row count]
E77@ [exit if done all rows]
T13@ E36@ [else update count and loop back]
[77] ZF [(planted) jump back to caller]
[Constants]
[78] PD [17-bit 1]
[79] K4096F [null]
[80] !F [space]
[81] @F [carriage return]
[82] &F [line feed]
[83] P10F [for testing number of phone pulses]
[Strings for printing. K2048F sets letters mode; K4096F is EDSAC null.]
[84] K2048FMFAFGFIFCF!FSFQFUFAFRFEF!FOFFF!FOFRFDFEFRF!F#FWF*FMF#FZFQF@F&FK4096F
[117] K2048FDFIFAFLF!FMF!F#FKFPF!F*FTFOF!FCFAFNFCFEFLF#FLF@F&FK4096F
[144] K2048FBFAFCFHFEFTF#FCF@F&FK4096F
[156] K2048FDFEF!FLFAF!FLFOFUFBFEFRFEF#FCF@F&FK4096F
[175] K2048FCFOFNFWFAFYF#FCF@F&FK4096F
[187] K2048FRFOFSFEFTFTFAF!FCFOFDFEF!FCF#FCF@F&FK4096F
[Enter with acc = 0]
[207] A207@ GH A84@ [print heading]
[210] A210@ GH A117@ [prompt user to dial m, where n = 2m + 1]
ZF [halt program; restarts when user dials]
[Here acc holds number of pulses in address field.
Number of pulses = 10 if user dialled '0', else = number that user dialled.]
S83@ E292@ [test for '0', jump to exit if so]
A83@ [restore acc after test]
L512F [shift m to top 5 bits for printing]
UF [temp to 0F]
OF O81@ O82@ [print digit m, plus CR LF]
R512F [restore m in address field, same as 2m right-justified]
A78@ U1@ [make and store n = 2m + 1, right justified]
RD T@ [make and store m right-justified]
A1@ L512F T3@ [make and store n << 11]
H3@ V1@ [acc := (n << 11)*n]
L8F [shift 5 left for integer scaling]
T2@ [store n^2]
[Bachet's method]
[234] A234@ GH A144@ [print name of method]
A@ U5@ U8@ [d, h := m]
A78@ U4@ U6@ T7@ [c, e, f := m + 1]
T9@ [k := 0]
[245] A245@ G14@ [call s/r to print square]
[De la Loubere's (miscalled Siamese) method]
[247] A247@ GH A156@ [print name of method]
A78@ U4@ [c := 1]
LD T6@ [e := 2]
A@ U8@ [h := m]
LD U5@ T7@ [d, f := 2m]
T9@ [k := 0 ]
[260] A260@ G14@ [call s/r to print square]
[Conway's lozenge method turns out to be of this type]
[262] A262@ GH A175@ [print name of method]
A78@ U4@ U6@ U7@ [c, e, f := 1]
A@ T9@ [k := m + 1]
A@ U8@ [h := m]
LD T5@ [d := 2m]
[275] A275@ G14@ [call s/r to print square]
[C solution on Rosetta Code website]
[277] A277@ GH A187@ [print name of method]
A78@ T6@ [e := 1]
A@ LD U4@ U9@ [c, k := 2m]
S78@ U5@ U7@ T8@ [d, f, h := 2m - 1]
[290] A290@
G14@ [call s/r to print square]
[292] O79@ [done; print null to flush teleprinter buffer]
ZF [halt the machine]
E25K TH
[Subroutine to print a string.
Input: A order for first character must follow subroutine call (G order).
String is terminated with EDSAC null, which is sent to the teleprinter.]
GKA18@U17@S19@T4@AFT6@AFUFOFE12@A20@G16@TFA6@A2FG5@TFZFU3FU1FK2048F
E25K TN
[Subroutine to print non-negative 17-bit integer.
Parameters: 0F = integer to be printed (not preserved)
1F = character for leading zero (preserved)
Workspace: 4F..7F, 38 locations]
GKA3FT34@A1FT7FS35@T6FT4#FAFT4FH36@V4FRDA4#FR1024FH37@E23@O7FA2F
T6FT5FV4#FYFL8FT4#FA5FL1024FUFA6FG16@OFTFT7FA6FG17@ZFP4FZ219DTF
[================ M parameter again ================]
E25K TM GK
E207Z [define entry point]
PF [acc = 0 on entry]
- Output:
MAGIC SQUARE OF ORDER 2M+1 DIAL M (0 TO CANCEL) 2 BACHET: 3 16 9 22 15 20 8 21 14 2 7 25 13 1 19 24 12 5 18 6 11 4 17 10 23 DE LA LOUBERE: 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 CONWAY: 18 24 5 6 12 22 3 9 15 16 1 7 13 19 25 10 11 17 23 4 14 20 21 2 8 ROSETTA CODE C: 2 23 19 15 6 14 10 1 22 18 21 17 13 9 5 8 4 25 16 12 20 11 7 3 24
Elixir
defmodule RC do
def odd_magic_square(n) when rem(n,2)==1 do
for i <- 0..n-1 do
for j <- 0..n-1, do: n * rem(i+j+1+div(n,2),n) + rem(i+2*j+2*n-5,n) + 1
end
end
def print_square(sq) do
width = List.flatten(sq) |> Enum.max |> to_char_list |> length
fmt = String.duplicate(" ~#{width}w", length(sq)) <> "~n"
Enum.each(sq, fn row -> :io.format fmt, row end)
end
end
Enum.each([3,5,11], fn n ->
IO.puts "\nSize #{n}, magic sum #{div(n*n+1,2)*n}"
RC.odd_magic_square(n) |> RC.print_square
end)
- Output:
Size 3, magic sum 15 8 1 6 3 5 7 4 9 2 Size 5, magic sum 65 16 23 5 7 14 22 4 6 13 20 3 10 12 19 21 9 11 18 25 2 15 17 24 1 8 Size 11, magic sum 671 73 86 99 101 114 6 19 32 34 47 60 85 98 100 113 5 18 31 44 46 59 72 97 110 112 4 17 30 43 45 58 71 84 109 111 3 16 29 42 55 57 70 83 96 121 2 15 28 41 54 56 69 82 95 108 1 14 27 40 53 66 68 81 94 107 120 13 26 39 52 65 67 80 93 106 119 11 25 38 51 64 77 79 92 105 118 10 12 37 50 63 76 78 91 104 117 9 22 24 49 62 75 88 90 103 116 8 21 23 36 61 74 87 89 102 115 7 20 33 35 48
ERRE
PROGRAM MAGIC_SQUARE
!$INTEGER
PROCEDURE Magicsq(size,filename$)
LOCAL DIM sq[25,25] ! array to hold square
IF (size AND 1)=0 OR size<3 THEN
PRINT PRINT(CHR$(7)) ! beep
PRINT("error: size is not odd or size is smaller then 3")
PAUSE(3)
EXIT PROCEDURE
END IF
! filename$ <> "" then save magic square in a file
! filename$ can contain directory name
! if filename$ exist it will be overwriten, no error checking
! start in the middle of the first row
nr=1 x=size-(size DIV 2) y=1
max=size*size
! create format string for using
frmt$=STRING$(LEN(STR$(max)),"#")
! main loop for creating magic square
REPEAT
IF sq[x,y]=0 THEN
sq[x,y]=nr
IF nr MOD size=0 THEN
y=y+1
ELSE
x=x+1
y=y-1
END IF
nr=nr+1
END IF
IF x>size THEN
x=1
WHILE sq[x,y]<>0 DO
x=x+1
END WHILE
END IF
IF y<1 THEN
y=size
WHILE sq[x,y]<>0 DO
y=y-1
END WHILE
END IF
UNTIL nr>max
! printing square's bigger than 19 result in a wrapping of the line
PRINT("Odd magic square size:";size;"*";size)
PRINT("The magic sum =";((max+1) DIV 2)*size)
PRINT
FOR y=1 TO size DO
FOR x=1 TO size DO
WRITE(frmt$;sq[x,y];)
END FOR
PRINT
END FOR
! output magic square to a file with the name provided
IF filename$<>"" THEN
OPEN("O",1,filename$)
PRINT(#1,"Odd magic square size:";size;" *";size)
PRINT(#1,"The magic sum =";((max+1) DIV 2)*size)
PRINT(#1,)
FOR y=1 TO size DO
FOR x=1 TO size DO
WRITE(#1,frmt$;sq[x,y];)
END FOR
PRINT(#1,)
END FOR
END IF
CLOSE(1)
END PROCEDURE
BEGIN
PRINT(CHR$(12);) ! CLS
Magicsq(5,"")
Magicsq(11,"")
!----------------------------------------------------
! the next line will also print the square to a file
! called 'magic_square_19txt'
!----------------------------------------------------
Magicsq(19,"msq_19.txt")
END PROGRAM
- Output:
Same as FreeBasic version
Odd magic square size: 5 * 5 Odd magic square size: 11 * 11 The magic sum = 65 The magic sum = 671 17 24 1 8 15 68 81 94 107 120 1 14 27 40 53 66 23 5 7 14 16 80 93 106 119 11 13 26 39 52 65 67 4 6 13 20 22 92 105 118 10 12 25 38 51 64 77 79 10 12 19 21 3 104 117 9 22 24 37 50 63 76 78 91 11 18 25 2 9 116 8 21 23 36 49 62 75 88 90 103 7 20 33 35 48 61 74 87 89 102 115 19 32 34 47 60 73 86 99 101 114 6 31 44 46 59 72 85 98 100 113 5 18 43 45 58 71 84 97 110 112 4 17 30 55 57 70 83 96 109 111 3 16 29 42 Only the first 2 square shown. 56 69 82 95 108 121 2 15 28 41 54
Factor
This solution uses the method from the paper linked in the J entry: http://www.jsoftware.com/papers/eem/magicsq.htm
USING: formatting io kernel math math.matrices math.ranges
sequences sequences.extras ;
IN: rosetta-code.magic-squares-odd
: inc-matrix ( n -- matrix )
[ 0 ] dip dup [ 1 + dup ] make-matrix nip ;
: rotator ( n -- seq ) 2/ dup [ neg ] dip [a,b] ;
: odd-magic-square ( n -- matrix )
[ inc-matrix ] [ rotator [ rotate ] 2map flip ] dup tri ;
: show-square ( n -- )
dup "Order: %d\n" printf odd-magic-square dup
[ [ "%4d" printf ] each nl ] each first sum
"Magic number: %d\n\n" printf ;
3 5 11 [ show-square ] tri@
- Output:
Order: 3 8 1 6 3 5 7 4 9 2 Magic number: 15 Order: 5 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 Magic number: 65 Order: 11 68 81 94 107 120 1 14 27 40 53 66 80 93 106 119 11 13 26 39 52 65 67 92 105 118 10 12 25 38 51 64 77 79 104 117 9 22 24 37 50 63 76 78 91 116 8 21 23 36 49 62 75 88 90 103 7 20 33 35 48 61 74 87 89 102 115 19 32 34 47 60 73 86 99 101 114 6 31 44 46 59 72 85 98 100 113 5 18 43 45 58 71 84 97 110 112 4 17 30 55 57 70 83 96 109 111 3 16 29 42 56 69 82 95 108 121 2 15 28 41 54 Magic number: 671
Fortran
program Magic_Square
implicit none
integer, parameter :: order = 15
integer :: i, j
write(*, "(a, i0)") "Magic Square Order: ", order
write(*, "(a)") "----------------------"
do i = 1, order
do j = 1, order
write(*, "(i4)", advance = "no") f1(order, i, j)
end do
write(*,*)
end do
write(*, "(a, i0)") "Magic number = ", f2(order)
contains
integer function f1(n, x, y)
integer, intent(in) :: n, x, y
f1 = n * mod(x + y - 1 + n/2, n) + mod(x + 2*y - 2, n) + 1
end function
integer function f2(n)
integer, intent(in) :: n
f2 = n * (1 + n * n) / 2
end function
end program
Output:
Magic Square Order: 15 ---------------------- 122 139 156 173 190 207 224 1 18 35 52 69 86 103 120 138 155 172 189 206 223 15 17 34 51 68 85 102 119 121 154 171 188 205 222 14 16 33 50 67 84 101 118 135 137 170 187 204 221 13 30 32 49 66 83 100 117 134 136 153 186 203 220 12 29 31 48 65 82 99 116 133 150 152 169 202 219 11 28 45 47 64 81 98 115 132 149 151 168 185 218 10 27 44 46 63 80 97 114 131 148 165 167 184 201 9 26 43 60 62 79 96 113 130 147 164 166 183 200 217 25 42 59 61 78 95 112 129 146 163 180 182 199 216 8 41 58 75 77 94 111 128 145 162 179 181 198 215 7 24 57 74 76 93 110 127 144 161 178 195 197 214 6 23 40 73 90 92 109 126 143 160 177 194 196 213 5 22 39 56 89 91 108 125 142 159 176 193 210 212 4 21 38 55 72 105 107 124 141 158 175 192 209 211 3 20 37 54 71 88 106 123 140 157 174 191 208 225 2 19 36 53 70 87 104 Magic number = 1695
Frink
This program takes an order from command-line or requests an odd order from the user. It uses an algorithm from Dr. Crypton's column in Science Digest in the 1980s which the developer of Frink remembered and used to use by hand to create giant magic squares until his English teacher told him "don't do that in class."
order = length[ARGS] > 0 ? eval[ARGS@0] : undef
until isInteger[order] and order mod 2 == 1
order = eval[input["Enter order (must be odd): ", 3]]
a = new array[[order, order], undef]
x = order div 2
y = 0
for i = 1 to order^2
{
ny = (y - 1) mod order
nx = (x + 1) mod order
if a@ny@nx != undef
{
nx = x
ny = (y + 1) mod order
}
a@y@x = i
y = ny
x = nx
}
println[formatTable[a]]
println["Magic number is " + sum[a@0]]
- Output:
17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 Magic number is 65
Go
package main
import (
"fmt"
"log"
)
func ms(n int) (int, []int) {
M := func(x int) int { return (x + n - 1) % n }
if n <= 0 || n&1 == 0 {
n = 5
log.Println("forcing size", n)
}
m := make([]int, n*n)
i, j := 0, n/2
for k := 1; k <= n*n; k++ {
m[i*n+j] = k
if m[M(i)*n+M(j)] != 0 {
i = (i + 1) % n
} else {
i, j = M(i), M(j)
}
}
return n, m
}
func main() {
n, m := ms(5)
i := 2
for j := 1; j <= n*n; j *= 10 {
i++
}
f := fmt.Sprintf("%%%dd", i)
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
fmt.Printf(f, m[i*n+j])
}
fmt.Println()
}
}
- Output:
15 8 1 24 17 16 14 7 5 23 22 20 13 6 4 3 21 19 12 10 9 2 25 18 11
Haskell
Translating imperative code
-- as a translation from imperative code, this is probably not a "good" implementation
import Data.List
type Var = (Int, Int, Int, Int) -- sx sy sz c
magicSum :: Int -> Int
magicSum x = ((x * x + 1) `div` 2) * x
wrapInc :: Int -> Int -> Int
wrapInc max x
| x + 1 == max = 0
| otherwise = x + 1
wrapDec :: Int -> Int -> Int
wrapDec max x
| x == 0 = max - 1
| otherwise = x - 1
isZero :: [[Int]] -> Int -> Int -> Bool
isZero m x y = m !! x !! y == 0
setAt :: (Int,Int) -> Int -> [[Int]] -> [[Int]]
setAt (x, y) val table
| (upper, current : lower) <- splitAt x table,
(left, this : right) <- splitAt y current
= upper ++ (left ++ val : right) : lower
| otherwise = error "Outside"
create :: Int -> [[Int]]
create x = replicate x $ replicate x 0
cells :: [[Int]] -> Int
cells m = x*x where x = length m
fill :: Var -> [[Int]] -> [[Int]]
fill (sx, sy, sz, c) m
| c < cells m =
if isZero m sx sy
then fill ((wrapInc sz sx), (wrapDec sz sy), sz, c + 1) (setAt (sx, sy) (c + 1) m)
else fill ((wrapDec sz sx), (wrapInc sz(wrapInc sz sy)), sz, c) m
| otherwise = m
magicNumber :: Int -> [[Int]]
magicNumber d = transpose $ fill (d `div` 2, 0, d, 0) (create d)
display :: [[Int]] -> String
display (x:xs)
| null xs = vdisplay x
| otherwise = vdisplay x ++ ('\n' : display xs)
vdisplay :: [Int] -> String
vdisplay (x:xs)
| null xs = show x
| otherwise = show x ++ " " ++ vdisplay xs
magicSquare x = do
putStr "Magic Square of "
putStr $ show x
putStr " = "
putStrLn $ show $ magicSum x
putStrLn $ display $ magicNumber x
Transpose . cycled
Defining the magic square as two applications of (transpose . cycled) to a simply ordered square.
import Control.Monad (join)
import Data.List (maximumBy, transpose)
import Data.List.Split (chunksOf)
import Data.Ord (comparing)
magicSquare :: Int -> [[Int]]
magicSquare n
| 1 == mod n 2 =
applyN 2 (transpose . cycled) $
plainSquare n
| otherwise = []
plainSquare :: Int -> [[Int]]
plainSquare = chunksOf <*> enumFromTo 1 . (^ 2)
-------------------------- TEST ---------------------------
main :: IO ()
main =
mapM_ putStrLn $
showSquare . magicSquare <$> [3, 5, 7]
------------------------- GENERIC -------------------------
applyN :: Int -> (a -> a) -> a -> a
applyN n f = foldr (.) id (replicate n f)
cycled :: [[Int]] -> [[Int]]
cycled rows =
let n = length rows
d = quot n 2
in zipWith
(\d xs -> take n $ drop (n - d) (cycle xs))
[d, subtract 1 d .. - d]
rows
------------------------ FORMATTING ----------------------
justifyRight :: Int -> a -> [a] -> [a]
justifyRight n c = (drop . length) <*> (replicate n c <>)
showSquare :: Show a => [[a]] -> String
showSquare rows =
( (\xs w -> unlines ((justifyRight w ' ' =<<) <$> xs))
<*> succ . maximum . fmap length . join
)
$ fmap show <$> rows
- Output:
8 1 6 3 5 7 4 9 2 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
Siamese method
Encoding the traditional 'Siamese' method
{-# LANGUAGE TupleSections #-}
import Control.Monad (forM_)
import Data.List (intercalate, transpose)
import qualified Data.Map.Strict as M
import Data.Maybe (fromJust, isJust)
magic :: Int -> [[Int]]
magic = mapAsTable <*> siamMap
----------------- SIAMESE METHOD FUNCTIONS ---------------
-- Highest zero-based index of grid ->
-- 'Siamese' indices keyed by coordinates
siamMap :: Int -> M.Map (Int, Int) Int
siamMap n
| odd n = go n
| otherwise = M.fromList []
where
go n = sPath uBound (M.fromList []) (quot uBound 2, 0) 1
where
h = quot n 2
uBound = n - 1
sPath uBound sMap (x, y) h =
let newMap = M.insert (x, y) h sMap
in if y == uBound && x == quot uBound 2
then newMap
else
sPath
uBound
newMap
(nextSiam uBound sMap (x, y))
(succ h)
-- Highest index of square -> Siam xys so far -> xy ->
-- next xy coordinate
nextSiam :: Int -> M.Map (Int, Int) Int -> (Int, Int) -> (Int, Int)
nextSiam uBound sMap (x, y) =
let alt (a, b)
-- Top right corner ?
| a > uBound && b < 0 = (uBound, 1)
-- beyond right edge ?
| a > uBound = (0, b)
-- above top edge ?
| b < 0 = (a, uBound)
-- already filled ?
| isJust (M.lookup (a, b) sMap) = (a - 1, b + 2)
| otherwise = (a, b) -- Up one, right one.
in alt (x + 1, y - 1)
---------------- DISPLAY AND TEST FUNCTIONS --------------
-- Size of square -> integers keyed by coordinates
-- -> rows of integers
mapAsTable :: Int -> M.Map (Int, Int) Int -> [[Int]]
mapAsTable nCols xyMap =
let axis = [0 .. nCols - 1]
in fmap (fromJust . flip M.lookup xyMap)
<$> (axis >>= \y -> [(,y) <$> axis])
checked :: [[Int]] -> (Int, Bool)
checked square =
let diagonals =
fmap (flip (zipWith (!!)) [0 ..])
. ( (:)
<*> (return . reverse)
)
h : t =
sum <$> square
<> transpose square
<> diagonals square
in (h, all (h ==) t)
table :: String -> [[String]] -> [String]
table delim rows =
let justifyRight c n s =
drop
(length s)
(replicate n c <> s)
in intercalate delim
<$> transpose
( (fmap =<< justifyRight ' ' . maximum . fmap length)
<$> transpose rows
)
main :: IO ()
main =
forM_ [3, 5, 7] $
\n -> do
let test = magic n
putStrLn $ unlines (table " " (fmap show <$> test))
print $ checked test
putStrLn ""
- Output:
8 1 6 3 5 7 4 9 2 (15,True) 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 (65,True) 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20 (175,True)
Icon and Unicon
This is a Unicon-specific solution because of the use of the [: ... :] construct.
procedure main(A)
n := integer(!A) | 3
write("Magic number: ",n*(n*n+1)/2)
sq := buildSquare(n)
showSquare(sq)
end
procedure buildSquare(n)
sq := [: |list(n)\n :]
r := 0
c := n/2
every i := !(n*n) do {
/sq[r+1,c+1] := i
nr := (n+r-1)%n
nc := (c+1)%n
if /sq[nr+1,nc+1] then (r := nr,c := nc) else r := (r+1)%n
}
return sq
end
procedure showSquare(sq)
n := *sq
s := *(n*n)+2
every r := !sq do every writes(right(!r,s)|"\n")
end
- Output:
->ms 5 Magic number: 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 ->
J
Based on http://www.jsoftware.com/papers/eem/magicsq.htm
ms=: i:@<.@-: |."_1&|:^:2 >:@i.@,~
In other words, generate a square of counting integers, like this:
>:@i.@,~ 3
1 2 3
4 5 6
7 8 9
Then generate a list of integers centering on 0 up to half of that value, like this:
i:@<.@-: 3
_1 0 1
Finally, rotate each corresponding row and column of the table by the corresponding value in the list. We can use the same instructions to rotate both rows and columns if we transpose the matrix before rotating (and perform this transpose+rotate twice).
Example use:
ms 5
9 15 16 22 3
20 21 2 8 14
1 7 13 19 25
12 18 24 5 6
23 4 10 11 17
~.+/ms 5
65
~.+/ms 101
515201
Note also that an important feature of magic squares is that their diagonals sum the same way:
9+21+13+5+17 65 3+8+13+18+23 65
Java
public class MagicSquare {
public static void main(String[] args) {
int n = 5;
for (int[] row : magicSquareOdd(n)) {
for (int x : row)
System.out.format("%2s ", x);
System.out.println();
}
System.out.printf("\nMagic constant: %d ", (n * n + 1) * n / 2);
}
public static int[][] magicSquareOdd(final int base) {
if (base % 2 == 0 || base < 3)
throw new IllegalArgumentException("base must be odd and > 2");
int[][] grid = new int[base][base];
int r = 0, number = 0;
int size = base * base;
int c = base / 2;
while (number++ < size) {
grid[r][c] = number;
if (r == 0) {
if (c == base - 1) {
r++;
} else {
r = base - 1;
c++;
}
} else {
if (c == base - 1) {
r--;
c = 0;
} else {
if (grid[r - 1][c + 1] == 0) {
r--;
c++;
} else {
r++;
}
}
}
}
return grid;
}
}
- Output:
17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 Magic constant: 65
JavaScript
ES5
( and referring to http://www.jsoftware.com/papers/eem/magicsq.htm )
(function () {
// n -> [[n]]
function magic(n) {
return n % 2 ? rotation(
transposed(
rotation(
table(n)
)
)
) : null;
}
// [[a]] -> [[a]]
function rotation(lst) {
return lst.map(function (row, i) {
return rotated(
row, ((row.length + 1) / 2) - (i + 1)
);
})
}
// [[a]] -> [[a]]
function transposed(lst) {
return lst[0].map(function (col, i) {
return lst.map(function (row) {
return row[i];
})
});
}
// [a] -> n -> [a]
function rotated(lst, n) {
var lng = lst.length,
m = (typeof n === 'undefined') ? 1 : (
n < 0 ? lng + n : (n > lng ? n % lng : n)
);
return m ? (
lst.slice(-m).concat(lst.slice(0, lng - m))
) : lst;
}
// n -> [[n]]
function table(n) {
var rngTop = rng(1, n);
return rng(0, n - 1).map(function (row) {
return rngTop.map(function (x) {
return row * n + x;
});
});
}
// [m..n]
function rng(m, n) {
return Array.apply(null, Array(n - m + 1)).map(
function (x, i) {
return m + i;
});
}
/******************** TEST WITH 3, 5, 11 ***************************/
// Results as right-aligned wiki tables
function wikiTable(lstRows, blnHeaderRow, strStyle) {
var css = strStyle ? 'style="' + strStyle + '"' : '';
return '{| class="wikitable" ' + css + lstRows.map(
function (lstRow, iRow) {
var strDelim = ((blnHeaderRow && !iRow) ? '!' : '|'),
strDbl = strDelim + strDelim;
return '\n|-\n' + strDelim + ' ' + lstRow.join(' ' + strDbl + ' ');
}).join('') + '\n|}';
}
return [3, 5, 11].map(
function (n) {
var w = 2.5 * n;
return 'magic(' + n + ')\n\n' + wikiTable(
magic(n), false, 'text-align:center;width:' + w + 'em;height:' + w + 'em;table-layout:fixed;'
)
}
).join('\n\n')
})();
Output:
magic(3)
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
magic(5)
17 | 23 | 4 | 10 | 11 |
24 | 5 | 6 | 12 | 18 |
1 | 7 | 13 | 19 | 25 |
8 | 14 | 20 | 21 | 2 |
15 | 16 | 22 | 3 | 9 |
magic(11)
68 | 80 | 92 | 104 | 116 | 7 | 19 | 31 | 43 | 55 | 56 |
81 | 93 | 105 | 117 | 8 | 20 | 32 | 44 | 45 | 57 | 69 |
94 | 106 | 118 | 9 | 21 | 33 | 34 | 46 | 58 | 70 | 82 |
107 | 119 | 10 | 22 | 23 | 35 | 47 | 59 | 71 | 83 | 95 |
120 | 11 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 |
1 | 13 | 25 | 37 | 49 | 61 | 73 | 85 | 97 | 109 | 121 |
14 | 26 | 38 | 50 | 62 | 74 | 86 | 98 | 110 | 111 | 2 |
27 | 39 | 51 | 63 | 75 | 87 | 99 | 100 | 112 | 3 | 15 |
40 | 52 | 64 | 76 | 88 | 89 | 101 | 113 | 4 | 16 | 28 |
53 | 65 | 77 | 78 | 90 | 102 | 114 | 5 | 17 | 29 | 41 |
66 | 67 | 79 | 91 | 103 | 115 | 6 | 18 | 30 | 42 | 54 |
ES6
Cycled . transposed . cycled
(2nd Haskell version: cycledRows . transpose . cycledRows)
(() => {
// magicSquare :: Int -> [[Int]]
const magicSquare = n =>
n % 2 !== 0 ? (
compose([transpose, cycled, transpose, cycled, enumSquare])(n)
) : [];
// Size of square -> rows containing integers [1..]
// enumSquare :: Int -> [[Int]]
const enumSquare = n =>
chunksOf(n, enumFromTo(1, n * n));
// Table of integers -> Table with rows rotated by descending deltas
// cycled :: [[Int]] -> [[Int]]
const cycled = rows => {
const d = Math.floor(rows.length / 2);
return zipWith(listCycle, enumFromTo(d, -d), rows)
};
// Number of positions to shift to right -> List -> Wrap-cycled list
// listCycle :: Int -> [a] -> [a]
const listCycle = (n, xs) => {
const d = -(n % xs.length);
return (d !== 0 ? xs.slice(d)
.concat(xs.slice(0, d)) : xs);
};
// GENERIC FUNCTIONS ------------------------------------------------------
// chunksOf :: Int -> [a] -> [[a]]
const chunksOf = (n, xs) =>
xs.reduce((a, _, i, xs) =>
i % n ? a : a.concat([xs.slice(i, i + n)]), []);
// compose :: [(a -> a)] -> (a -> a)
const compose = fs => x => fs.reduceRight((a, f) => f(a), x);
// enumFromTo :: Int -> Int -> Maybe Int -> [Int]
const enumFromTo = (m, n, step) => {
const d = (step || 1) * (n >= m ? 1 : -1);
return Array.from({
length: Math.floor((n - m) / d) + 1
}, (_, i) => m + (i * d));
};
// intercalate :: String -> [a] -> String
const intercalate = (s, xs) => xs.join(s);
// min :: Ord a => a -> a -> a
const min = (a, b) => b < a ? b : a;
// show :: a -> String
const show = JSON.stringify;
// transpose :: [[a]] -> [[a]]
const transpose = xs =>
xs[0].map((_, iCol) => xs.map(row => row[iCol]));
// unlines :: [String] -> String
const unlines = xs => xs.join('\n');
// zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
const zipWith = (f, xs, ys) =>
Array.from({
length: min(xs.length, ys.length)
}, (_, i) => f(xs[i], ys[i]));
// TEST -------------------------------------------------------------------
return intercalate('\n\n', [3, 5, 7]
.map(magicSquare)
.map(xs => unlines(xs.map(show))));
})();
- Output:
[8,1,6] [3,5,7] [4,9,2] [17,24,1,8,15] [23,5,7,14,16] [4,6,13,20,22] [10,12,19,21,3] [11,18,25,2,9] [30,39,48,1,10,19,28] [38,47,7,9,18,27,29] [46,6,8,17,26,35,37] [5,14,16,25,34,36,45] [13,15,24,33,42,44,4] [21,23,32,41,43,3,12] [22,31,40,49,2,11,20]
Traditional 'Siamese' method
Encoding the traditional 'Siamese' method
(() => {
// Number of rows -> n rows of integers
// oddMagicTable :: Int -> [[Int]]
const oddMagicTable = n =>
mapAsTable(n, siamMap(quot(n, 2)));
// Highest index of square -> Siam xys so far -> xy -> next xy coordinate
// nextSiam :: Int -> M.Map (Int, Int) Int -> (Int, Int) -> (Int, Int)
const nextSiam = (uBound, sMap, [x, y]) => {
const [a, b] = [x + 1, y - 1];
return (a > uBound && b < 0) ? (
[uBound, 1] // Move down if obstructed by corner
) : a > uBound ? (
[0, b] // Wrap at right edge
) : b < 0 ? (
[a, uBound] // Wrap at upper edge
) : mapLookup(sMap, [a, b])
.nothing ? ( // Unimpeded default: one up one right
[a, b]
) : [a - 1, b + 2]; // Position occupied: move down
};
// Order of table -> Siamese indices keyed by coordinates
// siamMap :: Int -> M.Map (Int, Int) Int
const siamMap = n => {
const
uBound = 2 * n,
sPath = (uBound, sMap, xy, n) => {
const [x, y] = xy,
newMap = mapInsert(sMap, xy, n);
return (y == uBound && x == quot(uBound, 2) ? (
newMap
) : sPath(
uBound, newMap, nextSiam(uBound, newMap, [x, y]), n + 1));
};
return sPath(uBound, {}, [n, 0], 1);
};
// Size of square -> integers keyed by coordinates -> rows of integers
// mapAsTable :: Int -> M.Map (Int, Int) Int -> [[Int]]
const mapAsTable = (nCols, dct) => {
const axis = enumFromTo(0, nCols - 1);
return map(row => map(k => fromJust(mapLookup(dct, k)), row),
bind(axis, y => [bind(axis, x => [
[x, y]
])]));
};
// GENERIC FUNCTIONS ------------------------------------------------------
// bind :: [a] -> (a -> [b]) -> [b]
const bind = (xs, f) => [].concat.apply([], xs.map(f));
// curry :: Function -> Function
const curry = (f, ...args) => {
const go = xs => xs.length >= f.length ? (f.apply(null, xs)) :
function () {
return go(xs.concat(Array.from(arguments)));
};
return go([].slice.call(args, 1));
};
// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = (m, n) =>
Array.from({
length: Math.floor(n - m) + 1
}, (_, i) => m + i);
// fromJust :: M a -> a
const fromJust = m => m.nothing ? {} : m.just;
// fst :: [a, b] -> a
const fst = pair => pair.length === 2 ? pair[0] : undefined;
// intercalate :: String -> [a] -> String
const intercalate = (s, xs) => xs.join(s);
// justifyRight :: Int -> Char -> Text -> Text
const justifyRight = (n, cFiller, strText) =>
n > strText.length ? (
(cFiller.repeat(n) + strText)
.slice(-n)
) : strText;
// length :: [a] -> Int
const length = xs => xs.length;
// log :: a -> IO ()
const log = (...args) =>
console.log(
args
.map(show)
.join(' -> ')
);
// map :: (a -> b) -> [a] -> [b]
const map = (f, xs) => xs.map(f);
// mapInsert :: Dictionary -> k -> v -> Dictionary
const mapInsert = (dct, k, v) =>
(dct[(typeof k === 'string' && k) || show(k)] = v, dct);
// mapKeys :: Map k a -> [k]
const mapKeys = dct =>
sortBy(mappendComparing([snd, fst]),
map(JSON.parse, Object.keys(dct)));
// mapLookup :: Dictionary -> k -> Maybe v
const mapLookup = (dct, k) => {
const
v = dct[(typeof k === 'string' && k) || show(k)],
blnJust = (typeof v !== 'undefined');
return {
nothing: !blnJust,
just: v
};
};
// mappendComparing :: [(a -> b)] -> (a -> a -> Ordering)
const mappendComparing = fs => (x, y) =>
fs.reduce((ord, f) => {
if (ord !== 0) return ord;
const
a = f(x),
b = f(y);
return a < b ? -1 : a > b ? 1 : 0
}, 0);
// maximum :: [a] -> a
const maximum = xs =>
xs.reduce((a, x) => (x > a || a === undefined ? x : a), undefined);
// Integral a => a -> a -> a
const quot = (n, m) => Math.floor(n / m);
// show :: a -> String
const show = x => JSON.stringify(x);
//
// snd :: (a, b) -> b
const snd = tpl => Array.isArray(tpl) ? tpl[1] : undefined;
//
// sortBy :: (a -> a -> Ordering) -> [a] -> [a]
const sortBy = (f, xs) => xs.slice()
.sort(f);
// table :: String -> [[String]] -> [String]
const table = (delim, rows) =>
map(curry(intercalate)(delim),
transpose(map(col =>
map(curry(justifyRight)(maximum(map(length, col)))(' '), col),
transpose(rows))));
// transpose :: [[a]] -> [[a]]
const transpose = xs =>
xs[0].map((_, col) => xs.map(row => row[col]));
// unlines :: [String] -> String
const unlines = xs => xs.join('\n');
// TEST -------------------------------------------------------------------
return intercalate('\n\n',
bind([3, 5, 7],
n => unlines(table(" ",
map(xs => map(show, xs), oddMagicTable(n))))));
})();
- Output:
8 1 6 3 5 7 4 9 2 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
jq
Adapted from #AWK
def odd_magic_square:
if type != "number" or . % 2 == 0 or . <= 0
then error("odd_magic_square requires an odd positive integer")
else
. as $n
| reduce range(1; 1 + ($n*$n)) as $i
( [0, (($n-1)/2), []];
.[0] as $x | .[1] as $y
| .[2]
| setpath([$x, $y]; $i )
| if getpath([(($x+$n-1) % $n), (($y+$n+1) % $n)])
then [(($x+$n+1) % $n), $y, .]
else [ (($x+$n-1) % $n), (($y+$n+1) % $n), .]
end ) | .[2]
end ;
Examples
def task:
def pp: if length == 0 then empty
else "\(.[0])", (.[1:] | pp )
end;
"The magic sum for a square of size \(.) is \( (.*. + 1)*./2 ):",
(odd_magic_square | pp)
;
(3, 5, 9) | task
- Output:
$ jq -n -r -M -c -f odd_magic_square.jq
The magic sum for a square of size 3 is 15:
[8,1,6]
[3,5,7]
[4,9,2]
The magic sum for a square of size 5 is 65:
[17,24,1,8,15]
[23,5,7,14,16]
[4,6,13,20,22]
[10,12,19,21,3]
[11,18,25,2,9]
The magic sum for a square of size 9 is 369:
[47,58,69,80,1,12,23,34,45]
[57,68,79,9,11,22,33,44,46]
[67,78,8,10,21,32,43,54,56]
[77,7,18,20,31,42,53,55,66]
[6,17,19,30,41,52,63,65,76]
[16,27,29,40,51,62,64,75,5]
[26,28,39,50,61,72,74,4,15]
[36,38,49,60,71,73,3,14,25]
[37,48,59,70,81,2,13,24,35]
Julia
# v0.6.0
function magicsquareodd(base::Int)
if base & 1 == 0 || base < 3; error("base must be odd and >3") end
square = fill(0, base, base)
r, number = 1, 1
size = base * base
c = div(base, 2) + 1
while number ≤ size
square[r, c] = number
fr = r == 1 ? base : r - 1
fc = c == base ? 1 : c + 1
if square[fr, fc] != 0
fr = r == base ? 1 : r + 1
fc = c
end
r, c = fr, fc
number += 1
end
return square
end
for n in 3:2:7
println("Magic square with size $n - magic constant = ", div(n ^ 3 + n, 2))
println("----------------------------------------------------")
square = magicsquareodd(n)
for i in 1:n
println(square[i, :])
end
println()
end
- Output:
Magic square with size 3 - magic constant = 15 ---------------------------------------------------- [8, 1, 6] [3, 5, 7] [4, 9, 2] Magic square with size 5 - magic constant = 65 ---------------------------------------------------- [17, 24, 1, 8, 15] [23, 5, 7, 14, 16] [4, 6, 13, 20, 22] [10, 12, 19, 21, 3] [11, 18, 25, 2, 9] Magic square with size 7 - magic constant = 175 ---------------------------------------------------- [30, 39, 48, 1, 10, 19, 28] [38, 47, 7, 9, 18, 27, 29] [46, 6, 8, 17, 26, 35, 37] [5, 14, 16, 25, 34, 36, 45] [13, 15, 24, 33, 42, 44, 4] [21, 23, 32, 41, 43, 3, 12] [22, 31, 40, 49, 2, 11, 20]
Kotlin
// version 1.0.6
fun f(n: Int, x: Int, y: Int) = (x + y * 2 + 1) % n
fun main(args: Array<String>) {
var n: Int
while (true) {
print("Enter the order of the magic square : ")
n = readLine()!!.toInt()
if (n < 1 || n % 2 == 0) println("Must be odd and >= 1, try again")
else break
}
println()
for (i in 0 until n) {
for (j in 0 until n) print("%4d".format(f(n, n - j - 1, i) * n + f(n, j, i) + 1))
println()
}
println("\nThe magic constant is ${(n * n + 1) / 2 * n}")
}
Sample input/output:
- Output:
Enter the order of the magic square : 9 2 75 67 59 51 43 35 27 10 22 14 6 79 71 63 46 38 30 42 34 26 18 1 74 66 58 50 62 54 37 29 21 13 5 78 70 73 65 57 49 41 33 25 17 9 12 4 77 69 61 53 45 28 20 32 24 16 8 81 64 56 48 40 52 44 36 19 11 3 76 68 60 72 55 47 39 31 23 15 7 80 The magic constant is 369
Lua
For all three kinds of Magic Squares(Odd, singly and doubly even)
See Magic_squares/Lua.
Mathematica /Wolfram Language
Rotate rows and columns of the initial matrix with rows filled in order 1 2 3 .... N^2 Method from http://www.jsoftware.com/papers/eem/magicsq.htm
rp[v_, pos_] := RotateRight[v, (Length[v] + 1)/2 - pos];
rho[m_] := MapIndexed[rp, m];
magic[n_] :=
rho[Transpose[rho[Table[i*n + j, {i, 0, n - 1}, {j, 1, n}]]]];
square = magic[11] // Grid
Print["Magic number is ", Total[square[[1, 1]]]]
- Output:
(alignment lost in translation to text):
{68, 80, 92, 104, 116, 7, 19, 31, 43, 55, 56}, {81, 93, 105, 117, 8, 20, 32, 44, 45, 57, 69}, {94, 106, 118, 9, 21, 33, 34, 46, 58, 70, 82}, {107, 119, 10, 22, 23, 35, 47, 59, 71, 83, 95}, {120, 11, 12, 24, 36, 48, 60, 72, 84, 96, 108}, {1, 13, 25, 37, 49, 61, 73, 85, 97, 109, 121}, {14, 26, 38, 50, 62, 74, 86, 98, 110, 111, 2}, {27, 39, 51, 63, 75, 87, 99, 100, 112, 3, 15}, {40, 52, 64, 76, 88, 89, 101, 113, 4, 16, 28}, {53, 65, 77, 78, 90, 102, 114, 5, 17, 29, 41}, {66, 67, 79, 91, 103, 115, 6, 18, 30, 42, 54} Magic number is 671
Output from code that checks the results Rows
{671,671,671,671,671,671,671,671,671,671,671}
Columns
{671,671,671,671,671,671,671,671,671,671,671}
Diagonals
671
671
Maxima
wrap1(i):= if i>%n% then 1 else if i<1 then %n% else i;
wrap(P):=maplist('wrap1, P);
uprigth(P):= wrap(P + [-1, 1]);
down(P):= wrap(P + [1, 0]);
magic(n):=block([%n%: n,
M: zeromatrix (n, n),
P: [1, (n + 1)/2],
m: 1, Pc],
do (
M[P[1],P[2]]: m,
m: m + 1,
if m>n^2 then return(M),
Pc: uprigth(P),
if M[Pc[1],Pc[2]]=0 then P: Pc
else while(M[P[1],P[2]]#0) do P: down(P)));
Usage:
(%i6) magic(3);
[ 8 1 6 ]
[ ]
(%o6) [ 3 5 7 ]
[ ]
[ 4 9 2 ]
(%i7) magic(5);
[ 17 24 1 8 15 ]
[ ]
[ 23 5 7 14 16 ]
[ ]
(%o7) [ 4 6 13 20 22 ]
[ ]
[ 10 12 19 21 3 ]
[ ]
[ 11 18 25 2 9 ]
(%i8) magic(7);
[ 30 39 48 1 10 19 28 ]
[ ]
[ 38 47 7 9 18 27 29 ]
[ ]
[ 46 6 8 17 26 35 37 ]
[ ]
(%o8) [ 5 14 16 25 34 36 45 ]
[ ]
[ 13 15 24 33 42 44 4 ]
[ ]
[ 21 23 32 41 43 3 12 ]
[ ]
[ 22 31 40 49 2 11 20 ]
/* magic number for n=7 */
(%i9) lsum(q, q, first(magic(7)));
(%o9) 175
Nim
import strutils
proc magic(n: int) =
let length = len($(n * n))
for row in 1 .. n:
for col in 1 .. n:
let cell = (n * ((row + col - 1 + n div 2) mod n) +
((row + 2 * col - 2) mod n) + 1)
stdout.write ($cell).align(length), ' '
echo ""
echo "\nAll sum to magic number ", (n * n + 1) * n div 2
for n in [3, 5, 7]:
echo "\nOrder ", n, "\n======="
magic(n)
- Output:
Order 3 ======= 8 1 6 3 5 7 4 9 2 All sum to magic number 15 Order 5 ======= 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 All sum to magic number 65 Order 7 ======= 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20 All sum to magic number 175
Oforth
: magicSquare(n)
| i j wd |
n sq log asInteger 1+ ->wd
n loop: i [
n loop: j [
i j + 1- n 2 / + n mod n *
i j + j + 2 - n mod 1 + +
System.Out swap <<w(wd) " " << drop
]
printcr
]
System.Out "Magic constant is : " << n sq 1 + 2 / n * << cr ;
- Output:
5 magicSquare 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 Magic constant is : 65
PARI/GP
The index-fiddling differs from Perl since GP vectors start at 1.
magicSquare(n)={
my(M=matrix(n,n),j=n\2+1,i=1);
for(l=1,n^2,
M[i,j]=l;
if(M[(i-2)%n+1,j%n+1],
i=i%n+1
,
i=(i-2)%n+1;
j=j%n+1
)
);
M;
}
magicSquare(7)
- Output:
[30 39 48 1 10 19 28] [38 47 7 9 18 27 29] [46 6 8 17 26 35 37] [ 5 14 16 25 34 36 45] [13 15 24 33 42 44 4] [21 23 32 41 43 3 12] [22 31 40 49 2 11 20]
Pascal
PROGRAM magic;
(* Magic squares of odd order *)
CONST
n=9;
VAR
i,j :INTEGER;
BEGIN (*magic*)
WRITELN('The square order is: ',n);
FOR i:=1 TO n DO
BEGIN
FOR j:=1 TO n DO
WRITE((i*2-j+n-1) MOD n*n + (i*2+j-2) MOD n+1:5);
WRITELN
END;
WRITELN('The magic number is: ',n*(n*n+1) DIV 2)
END (*magic*).
- Output:
The square order is: 9 2 75 67 59 51 43 35 27 10 22 14 6 79 71 63 46 38 30 42 34 26 18 1 74 66 58 50 62 54 37 29 21 13 5 78 70 73 65 57 49 41 33 25 17 9 12 4 77 69 61 53 45 28 20 32 24 16 8 81 64 56 48 40 52 44 36 19 11 3 76 68 60 72 55 47 39 31 23 15 7 80 The magic number is: 369
improved
shuffles columns and rows and changed col<-> row to get different looks. n! x n! * 2 different arrangements. See last column of version before moved to the top row.
PROGRAM magic;
{$IFDEF FPC }{$MODE DELPHI}{$ELSE}{$APPTYPE CONSOLE}{$ENDIF}
uses
sysutils;
(* Magic squares of odd order *)
type
tsquare = array of array of LongInt;
trowcol = array of NativeInt;
function GenShuffleRowCol(n: nativeInt):trowcol;
var
i,j,tmp: NativeInt;
begin
setlength(result,0);
IF n > 0 then
Begin
setlength(result,n);
For i := 0 to n-1 do
result[i] := i;
//shuffle
For i := n-1 downto 1 do
Begin
j := random(i+1);//j == [0..i]
tmp := result[i];result[i]:= result[j];result[j]:= tmp;
end;
end;
end;
function MagicSqrOdd(n:nativeInt;SwapColRoW:boolean):tsquare;
VAR
rowIdx,colIdx,row,col,num :NativeInt;
cols,rows :trowcol;
BEGIN
rows:= GenShuffleRowCol(n);
cols:= GenShuffleRowCol(n);
setlength(result,n,n);
FOR rowIdx:= 0 TO n-1 DO
BEGIN
row := rows[rowIdx];
FOR colIdx:=0 TO n-1 DO
Begin
col := cols[colIdx];
//corrected formula cause row :0..n*1-> corrected to 1..n
num := (row*2-col+n+2) MOD n*n + (row*2+col+1) MOD n+1;
IF SwapColRoW then
result[colIdx,rowIdx] := num
else
result[rowIdx,colIdx] := num;
end;
END;
END;
function MagicSqrCheck(const Mq:tsquare):boolean;
var
row,col,rowsum,mn,n,itm: NativeInt;
colSum:trowcol;
begin
n := length(Mq[0]);
mn := n*(n*n+1) DIV 2;
setlength(colsum,n);//automatic initialised to zero
For row := n-1 downto 0 do
Begin
//check one row
rowsum := 0;
For col := n-1 downto 0 do
Begin
itm := Mq[row,col];
write(itm:4);
inc(rowsum,itm);
//sum up the columns too, for I'm just here
inc(colSum[col],itm);
end;
writeln;
result := (rowsum=mn);
IF Not(result) then begin writeln(row:4,col:4,rowsum:10);EXIT;end;
end;
//check columns
For col := n-1 downto 0 do
Begin
result := (colSum[col]=mn);
IF Not(result) then begin writeln(col:4,colSum[col]:10);EXIT;end;
end;
writeln;
end;
var
n,mn : nativeInt;
Mq : tsquare;
Begin
randomize;
n := 9;
mn := n*(n*n+1) DIV 2;
WRITELN('The square order is: ',n);
WRITELN('The magic number is: ',mn);
Mq := MagicSqrOdd(n,random(2)=0);
writeln(MagicSqrCheck(Mq));
end.
- Output:
The square order is: 9 The magic number is: 369 70 30 20 9 40 50 10 80 60 13 63 53 33 64 74 43 23 3 54 14 4 65 24 34 75 55 44 5 46 45 25 56 66 35 15 76 37 6 77 57 16 26 67 47 36 29 79 69 49 8 18 59 39 19 78 38 28 17 48 58 27 7 68 62 22 12 73 32 42 2 72 52 21 71 61 41 81 1 51 31 11 TRUE
Perl
See Magic squares/Perl for a general magic square generator.
Phix
with javascript_semantics function magic_square(integer n) if mod(n,2)!=1 or n<1 then return false end if sequence square = repeat(repeat(0,n),n) for i=1 to n do for j=1 to n do square[i,j] = n*mod(2*i-j+n-1,n) + mod(2*i+j-2,n) + 1 end for end for return square end function procedure check(sequence sq) integer n = length(sq) integer magic = n*(n*n+1)/2 integer bd=0, fd=0 for i=1 to length(sq) do if sum(sq[i])!=magic then ?9/0 end if if sum(columnize(sq,i))!=magic then ?9/0 end if bd += sq[i,i] fd += sq[n-i+1,n-i+1] end for if bd!=magic or fd!=magic then ?9/0 end if end procedure for i=1 to 7 by 2 do sequence square = magic_square(i) printf(1,"maqic square of order %d, sum: %d\n", {i,sum(square[i])}) string fmt = sprintf("%%%dd",length(sprintf("%d",i*i))) pp(square,{pp_Nest,1,pp_IntFmt,fmt,pp_StrFmt,3,pp_IntCh,false,pp_Pause,0}) check(square) end for
- Output:
maqic square of order 1, sum: 1 {{1}} maqic square of order 3, sum: 15 {{2,9,4}, {7,5,3}, {6,1,8}} maqic square of order 5, sum: 65 {{ 2,23,19,15, 6}, {14,10, 1,22,18}, {21,17,13, 9, 5}, { 8, 4,25,16,12}, {20,11, 7, 3,24}} maqic square of order 7, sum: 175 {{ 2,45,39,33,27,21, 8}, {18,12, 6,49,36,30,24}, {34,28,15, 9, 3,46,40}, {43,37,31,25,19,13, 7}, {10, 4,47,41,35,22,16}, {26,20,14, 1,44,38,32}, {42,29,23,17,11, 5,48}}
Picat
import util.
go =>
foreach(N in [3,5,17])
M=magic_square(N),
print_matrix(M),
check(M),
nl
end,
nl.
%
% Not as nice as the J solution.
% But I like the chaining of the functions.
%
magic_square(N) = MS =>
if N mod 2 = 0 then
printf("N (%d) is not odd!\n", N),
halt
end,
R = make_rotate_list(N), % the rotate indices
MS = make_square(N).transpose().rotate_matrix(R).transpose().rotate_matrix(R).
%
% make a square matrix of size N (containing the numbers 1..N*N)
%
make_square(N) = [[I*N+J : J in 1..N]: I in 0..N-1].
%
% rotate list:
% rotate_list(11) = [-5,-4,-3,-2,-1,0,1,2,3,4,5]
%
make_rotate_list(N) = [I - ceiling(N / 2) : I in 1..N].
%
% rotate the matrix M according to rotate list R
%
rotate_matrix(M, R) = [rotate_n(Row,N) : {Row,N} in zip(M,R)].
%
% Rotate the list L N steps (either positive or negative N)
% rotate(1..10,3) -> [4,5,6,7,8,9,10,1,2,3]
% rotate(1..10,-3) -> [8,9,10,1,2,3,4,5,6,7]
%
rotate_n(L,N) = Rot =>
Len = L.length,
R = cond(N < 0, Len + N, N),
Rot = [L[I] : I in (R+1..Len) ++ 1..R].
%
% Check if M is a magic square
%
check(M) =>
N = M.length,
Sum = N*(N*N+1) // 2, % The correct sum.
println(sum=Sum),
Rows = [sum(Row) : Row in M],
Cols = [sum(Col) : Col in M.transpose()],
Diag1 = sum([M[I,I] : I in 1..N]),
Diag2 = sum([M[I,N-I+1] : I in 1..N]),
All = Rows ++ Cols ++ [Diag1, Diag2],
OK = true,
foreach(X in All)
if X != Sum then
printf("%d != %d\n", X, Sum),
OK := false
end
end,
if OK then
println(ok)
else
println(not_ok)
end,
nl.
% Print the matrix
print_matrix(M) =>
N = M.len,
printf("N=%d\n",N),
Format = to_fstring("%%%dd",max(flatten(M)).to_string().length+1),
foreach(Row in M)
foreach(X in Row)
printf(Format, X)
end,
nl
end,
nl.
- Output:
N=3 6 7 2 1 5 9 8 3 4 sum = 15 ok N=5 9 15 16 22 3 20 21 2 8 14 1 7 13 19 25 12 18 24 5 6 23 4 10 11 17 sum = 65 ok N=17 27 45 63 81 99 117 135 153 154 172 190 208 226 244 262 280 9 62 80 98 116 134 152 170 171 189 207 225 243 261 279 8 26 44 97 115 133 151 169 187 188 206 224 242 260 278 7 25 43 61 79 132 150 168 186 204 205 223 241 259 277 6 24 42 60 78 96 114 167 185 203 221 222 240 258 276 5 23 41 59 77 95 113 131 149 202 220 238 239 257 275 4 22 40 58 76 94 112 130 148 166 184 237 255 256 274 3 21 39 57 75 93 111 129 147 165 183 201 219 272 273 2 20 38 56 74 92 110 128 146 164 182 200 218 236 254 1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 17 18 71 89 107 125 143 161 179 197 215 233 251 269 287 16 34 35 53 106 124 142 160 178 196 214 232 250 268 286 15 33 51 52 70 88 141 159 177 195 213 231 249 267 285 14 32 50 68 69 87 105 123 176 194 212 230 248 266 284 13 31 49 67 85 86 104 122 140 158 211 229 247 265 283 12 30 48 66 84 102 103 121 139 157 175 193 246 264 282 11 29 47 65 83 101 119 120 138 156 174 192 210 228 281 10 28 46 64 82 100 118 136 137 155 173 191 209 227 245 263 sum = 2465 ok
Testing a larger instance
go2 =>
N = 313,
M = magic_square(N),
check(M),
nl.
- Output:
sum = 15332305 ok
PicoLisp
(load "@lib/simul.l")
(de magic (A)
(let
(Grid (grid A A T T)
Sum (/ (* A (inc (** A 2))) 2))
(println 'N A 'Sum Sum)
# cut one important edge
(with (last (last Grid)) (con (: 0 1)))
(with (get Grid (inc (/ A 2)) A)
(for N (* A A)
(=: V N)
(setq This
(if
(with (setq @@ (north (east This)))
(not (: V)) )
@@
(south This) ) ) ) )
# display
(mapc
'((L)
(for This L
(prin (align 4 (: V))) )
(prinl) )
Grid )
# clean
(mapc '((L) (mapc zap L)) Grid) ) )
(magic 5)
(prinl)
(magic 7)
- Output:
N 5 Sum 65 11 10 4 23 17 18 12 6 5 24 25 19 13 7 1 2 21 20 14 8 9 3 22 16 15 N 7 Sum 175 22 21 13 5 46 38 30 31 23 15 14 6 47 39 40 32 24 16 8 7 48 49 41 33 25 17 9 1 2 43 42 34 26 18 10 11 3 44 36 35 27 19 20 12 4 45 37 29 28
PL/I
magic: procedure options (main); /* 18 April 2014 */
declare n fixed binary;
put skip list ('What is the order of the magic square?');
get list (n);
if n < 3 | iand(n, 1) = 0 then
do; put skip list ('The value is out of range'); stop; end;
put skip list ('The order is ' || trim(n));
begin;
declare m(n, n) fixed, (i, j, k) fixed binary;
on subrg snap put data (i, j, k);
m = 0;
i = 1; j = (n+1)/2;
do k = 1 to n*n;
if m(i,j) = 0 then
m(i,j) = k;
else
do;
i = i + 2; j = j + 1;
if i > n then i = mod(i,n);
if j > n then j = 1;
m(i,j) = k;
end;
i = i - 1; j = j - 1;
if i < 1 then i = n;
if j < 1 then j = n;
end;
do i = 1 to n;
put skip edit (m(i, *)) (f(4));
end;
put skip list ('The magic number is' || sum(m(1,*)));
end;
end magic;
- Output:
What is the order of the magic square? The order is 5 15 8 1 24 17 16 14 7 5 23 22 20 13 6 4 3 21 19 12 10 9 2 25 18 11 The magic number is 65 What is the order of the magic square? The order is 7 28 19 10 1 48 39 30 29 27 18 9 7 47 38 37 35 26 17 8 6 46 45 36 34 25 16 14 5 4 44 42 33 24 15 13 12 3 43 41 32 23 21 20 11 2 49 40 31 22 The magic number is 175
Python
Procedural
>>> def magic(n):
for row in range(1, n + 1):
print(' '.join('%*i' % (len(str(n**2)), cell) for cell in
(n * ((row + col - 1 + n // 2) % n) +
((row + 2 * col - 2) % n) + 1
for col in range(1, n + 1))))
print('\nAll sum to magic number %i' % ((n * n + 1) * n // 2))
>>> for n in (5, 3, 7):
print('\nOrder %i\n=======' % n)
magic(n)
Order 5
=======
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
All sum to magic number 65
Order 3
=======
8 1 6
3 5 7
4 9 2
All sum to magic number 15
Order 7
=======
30 39 48 1 10 19 28
38 47 7 9 18 27 29
46 6 8 17 26 35 37
5 14 16 25 34 36 45
13 15 24 33 42 44 4
21 23 32 41 43 3 12
22 31 40 49 2 11 20
All sum to magic number 175
>>>
Composition of pure functions
Two applications of (transposed . cycled) to a sequentially ordered square:
'''Magic squares of odd order N'''
from itertools import cycle, islice, repeat
from functools import reduce
# magicSquare :: Int -> [[Int]]
def magicSquare(n):
'''Magic square of odd order n.'''
return applyN(2)(
compose(transposed)(cycled)
)(plainSquare(n)) if 1 == n % 2 else []
# plainSquare :: Int -> [[Int]]
def plainSquare(n):
'''The sequence of integers from 1 to N^2,
subdivided into N sub-lists of equal length,
forming N rows, each of N integers.
'''
return chunksOf(n)(
enumFromTo(1)(n ** 2)
)
# cycled :: [[Int]] -> [[Int]]
def cycled(rows):
'''A table in which the rows are
rotated by descending deltas.
'''
n = len(rows)
d = n // 2
return list(map(
lambda d, xs: take(n)(
drop(n - d)(cycle(xs))
),
enumFromThenTo(d)(d - 1)(-d),
rows
))
# TEST ----------------------------------------------------
# main :: IO ()
def main():
'''Magic squares of order 3, 5, 7'''
print(
fTable(__doc__ + ':')(lambda x: '\n' + repr(x))(
showSquare
)(magicSquare)([3, 5, 7])
)
# GENERIC -------------------------------------------------
# applyN :: Int -> (a -> a) -> a -> a
def applyN(n):
'''n applications of f.
(Church numeral n).
'''
def go(f):
return lambda x: reduce(
lambda a, g: g(a), repeat(f, n), x
)
return lambda f: go(f)
# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
'''A series of lists of length n,
subdividing the contents of xs.
Where the length of xs is not evenly divible,
the final list will be shorter than n.'''
return lambda xs: reduce(
lambda a, i: a + [xs[i:n + i]],
range(0, len(xs), n), []
) if 0 < n else []
# compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
def compose(g):
'''Right to left function composition.'''
return lambda f: lambda x: g(f(x))
# drop :: Int -> [a] -> [a]
# drop :: Int -> String -> String
def drop(n):
'''The sublist of xs beginning at
(zero-based) index n.'''
def go(xs):
if isinstance(xs, (list, tuple, str)):
return xs[n:]
else:
take(n)(xs)
return xs
return lambda xs: go(xs)
# enumFromThenTo :: Int -> Int -> Int -> [Int]
def enumFromThenTo(m):
'''Integer values enumerated from m to n
with a step defined by nxt-m.
'''
def go(nxt, n):
d = nxt - m
return range(m, n - 1 if d < 0 else 1 + n, d)
return lambda nxt: lambda n: list(go(nxt, n))
# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
'''Integer enumeration from m to n.'''
return lambda n: list(range(m, 1 + n))
# take :: Int -> [a] -> [a]
# take :: Int -> String -> String
def take(n):
'''The prefix of xs of length n,
or xs itself if n > length xs.
'''
return lambda xs: (
xs[0:n]
if isinstance(xs, (list, tuple))
else list(islice(xs, n))
)
# transposed :: Matrix a -> Matrix a
def transposed(m):
'''The rows and columns of the argument transposed.
(The matrix containers and rows can be lists or tuples).
'''
if m:
inner = type(m[0])
z = zip(*m)
return (type(m))(
map(inner, z) if tuple != inner else z
)
else:
return m
# DISPLAY -------------------------------------------------
# fTable :: String -> (a -> String) ->
# (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
'''Heading -> x display function -> fx display function ->
f -> xs -> tabular string.
'''
def go(xShow, fxShow, f, xs):
ys = [xShow(x) for x in xs]
w = max(map(len, ys))
return s + '\n' + '\n'.join(map(
lambda x, y: y.rjust(w, ' ') + ' -> ' + fxShow(f(x)),
xs, ys
))
return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
xShow, fxShow, f, xs
)
# indented :: Int -> String -> String
def indented(n):
'''String indented by n multiples
of four spaces
'''
return lambda s: (n * 4 * ' ') + s
# showSquare :: [[Int]] -> String
def showSquare(rows):
'''Lines representing rows of lists.'''
w = 1 + len(str(reduce(max, map(max, rows), 0)))
return '\n' + '\n'.join(
map(
lambda row: indented(1)(''.join(
map(lambda x: str(x).rjust(w, ' '), row)
)),
rows
)
)
# MAIN ---
if __name__ == '__main__':
main()
- Output:
Magic squares of odd order N: 3 -> 8 1 6 3 5 7 4 9 2 5 -> 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 7 -> 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
R
See here for the solution for all three cases.
Example
> magic(5) [,1] [,2] [,3] [,4] [,5] [1,] 17 24 1 8 15 [2,] 23 5 7 14 16 [3,] 4 6 13 20 22 [4,] 10 12 19 21 3 [5,] 11 18 25 2 9
Racket
#lang racket
;; Using "helpful formulae" in:
;; http://en.wikipedia.org/wiki/Magic_square#Method_for_constructing_a_magic_square_of_odd_order
(define (squares n) n)
(define (last-no n) (sqr n))
(define (middle-no n) (/ (add1 (sqr n)) 2))
(define (M n) (* n (middle-no n)))
(define ((Ith-row-Jth-col n) I J)
(+ (* (modulo (+ I J -1 (exact-floor (/ n 2))) n) n)
(modulo (+ I (* 2 J) -2) n)
1))
(define (magic-square n)
(define IrJc (Ith-row-Jth-col n))
(for/list ((I (in-range 1 (add1 n)))) (for/list ((J (in-range 1 (add1 n)))) (IrJc I J))))
(define (fmt-list-of-lists l-o-l width)
(string-join
(for/list ((row l-o-l))
(string-join (map (λ (x) (~a #:align 'right #:width width x)) row) " "))
"\n"))
(define (show-magic-square n)
(format "MAGIC SQUARE ORDER:~a~%~a~%MAGIC NUMBER:~a~%"
n (fmt-list-of-lists (magic-square n) (+ (order-of-magnitude (last-no n)) 1)) (M n)))
(displayln (show-magic-square 3))
(displayln (show-magic-square 5))
(displayln (show-magic-square 9))
- Output:
MAGIC SQUARE ORDER:3 8 1 6 3 5 7 4 9 2 Magic Number:15 MAGIC SQUARE ORDER:5 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 Magic Number:65 MAGIC SQUARE ORDER:9 47 58 69 80 1 12 23 34 45 57 68 79 9 11 22 33 44 46 67 78 8 10 21 32 43 54 56 77 7 18 20 31 42 53 55 66 6 17 19 30 41 52 63 65 76 16 27 29 40 51 62 64 75 5 26 28 39 50 61 72 74 4 15 36 38 49 60 71 73 3 14 25 37 48 59 70 81 2 13 24 35 Magic Number:369
Raku
(formerly Perl 6)
See Magic squares/Raku for a general magic square generator.
- Output:
With a parameter of 5:
17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 The magic number is 65
With a parameter of 19:
192 213 234 255 276 297 318 339 360 1 22 43 64 85 106 127 148 169 190 212 233 254 275 296 317 338 359 19 21 42 63 84 105 126 147 168 189 191 232 253 274 295 316 337 358 18 20 41 62 83 104 125 146 167 188 209 211 252 273 294 315 336 357 17 38 40 61 82 103 124 145 166 187 208 210 231 272 293 314 335 356 16 37 39 60 81 102 123 144 165 186 207 228 230 251 292 313 334 355 15 36 57 59 80 101 122 143 164 185 206 227 229 250 271 312 333 354 14 35 56 58 79 100 121 142 163 184 205 226 247 249 270 291 332 353 13 34 55 76 78 99 120 141 162 183 204 225 246 248 269 290 311 352 12 33 54 75 77 98 119 140 161 182 203 224 245 266 268 289 310 331 11 32 53 74 95 97 118 139 160 181 202 223 244 265 267 288 309 330 351 31 52 73 94 96 117 138 159 180 201 222 243 264 285 287 308 329 350 10 51 72 93 114 116 137 158 179 200 221 242 263 284 286 307 328 349 9 30 71 92 113 115 136 157 178 199 220 241 262 283 304 306 327 348 8 29 50 91 112 133 135 156 177 198 219 240 261 282 303 305 326 347 7 28 49 70 111 132 134 155 176 197 218 239 260 281 302 323 325 346 6 27 48 69 90 131 152 154 175 196 217 238 259 280 301 322 324 345 5 26 47 68 89 110 151 153 174 195 216 237 258 279 300 321 342 344 4 25 46 67 88 109 130 171 173 194 215 236 257 278 299 320 341 343 3 24 45 66 87 108 129 150 172 193 214 235 256 277 298 319 340 361 2 23 44 65 86 107 128 149 170 The magic number is 3439
REXX
This REXX version will also generate a square of an even order, but it'll not be a magic square.
/*REXX program generates and displays magic squares (odd N will be a true magic square).*/
parse arg N . /*obtain the optional argument from CL.*/
if N=='' | N=="," then N=5 /*Not specified? Then use the default.*/
NN=N*N; w=length(NN) /*W: width of largest number (output).*/
r=1; c=(n+1) % 2 /*define the initial row and column.*/
@.=. /*assign a default value for entire @.*/
do j=1 for NN /* [↓] filling uses the Siamese method*/
if r<1 & c>N then do; r=r+2; c=c-1; end /*the row is under, column is over.*/
if r<1 then r=N /* " " " " make row=last. */
if r>N then r=1 /* " " " over, " " first.*/
if c>N then c=1 /* " column " over, " col=first.*/
if @.r.c\==. then do; r=min(N,r+2); c=max(1,c-1); end /*at the previous cell? */
@.r.c=j; r=r-1; c=c+1 /*assign # ───► cell; next row & column*/
end /*j*/
/* [↓] display square with aligned #'s*/
do r=1 for N; _= /*display one matrix row at a time. */
do c=1 for N; _=_ right(@.r.c, w) /*construct a row of the magic square. */
end /*c*/
say substr(_, 2) /*display a row of the magic square. */
end /*r*/
say /* [↓] If an odd square, show magic #.*/
if N//2 then say 'The magic number (or magic constant is): ' N * (NN+1) % 2
/*stick a fork in it, we're all done. */
- output when using the default input of: 5
17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 The magic number (or magic constant is): 65
output when using the input of: 3
8 1 6 3 5 7 4 9 2 The magic number (or magic constant is): 15
output when using the input of: 19
192 213 234 255 276 297 318 339 360 1 22 43 64 85 106 127 148 169 190 212 233 254 275 296 317 338 359 19 21 42 63 84 105 126 147 168 189 191 232 253 274 295 316 337 358 18 20 41 62 83 104 125 146 167 188 209 211 252 273 294 315 336 357 17 38 40 61 82 103 124 145 166 187 208 210 231 272 293 314 335 356 16 37 39 60 81 102 123 144 165 186 207 228 230 251 292 313 334 355 15 36 57 59 80 101 122 143 164 185 206 227 229 250 271 312 333 354 14 35 56 58 79 100 121 142 163 184 205 226 247 249 270 291 332 353 13 34 55 76 78 99 120 141 162 183 204 225 246 248 269 290 311 352 12 33 54 75 77 98 119 140 161 182 203 224 245 266 268 289 310 331 11 32 53 74 95 97 118 139 160 181 202 223 244 265 267 288 309 330 351 31 52 73 94 96 117 138 159 180 201 222 243 264 285 287 308 329 350 10 51 72 93 114 116 137 158 179 200 221 242 263 284 286 307 328 349 9 30 71 92 113 115 136 157 178 199 220 241 262 283 304 306 327 348 8 29 50 91 112 133 135 156 177 198 219 240 261 282 303 305 326 347 7 28 49 70 111 132 134 155 176 197 218 239 260 281 302 323 325 346 6 27 48 69 90 131 152 154 175 196 217 238 259 280 301 322 324 345 5 26 47 68 89 110 151 153 174 195 216 237 258 279 300 321 342 344 4 25 46 67 88 109 130 171 173 194 215 236 257 278 299 320 341 343 3 24 45 66 87 108 129 150 172 193 214 235 256 277 298 319 340 361 2 23 44 65 86 107 128 149 170 The magic number (or magic constant is): 3439
Ring
n=9
see "the square order is : " + n + nl
for i=1 to n
for j = 1 to n
x = (i*2-j+n-1) % n*n + (i*2+j-2) % n + 1
see "" + x + " "
next
see nl
next
see "the magic number is : " + n*(n*n+1) / 2 + nl
Output:
the square order is : 9 2 75 67 59 51 43 35 27 10 22 14 6 79 71 63 46 38 30 42 34 26 18 1 74 66 58 50 62 54 37 29 21 13 5 78 70 73 65 57 49 41 33 25 17 9 12 4 77 69 61 53 45 28 20 32 24 16 8 81 64 56 48 40 52 44 36 19 11 3 76 68 60 72 55 47 39 31 23 15 7 80 the magic number is : 369
RPL
≪ → n
≪ n DUP 2 →LIST 0 CON
1 n FOR j
1 n FOR k
j k 2 →LIST
j 2 * k - n + 1 - n MOD n *
j 2 * k + 2 - n MOD 1 +
+ PUT
NEXT NEXT
n DUP SQ 1 + * 2 /
≫ ≫ 'ODDMAGIC' STO
5 ODDMAGIC
- Output:
2: [[2 23 19 15 6] [14 10 1 22 18] [21 17 13 9 5] [8 4 25 16 12] [20 11 7 3 24]] 1: 65
Ruby
def odd_magic_square(n)
raise ArgumentError "Need odd positive number" if n.even? || n <= 0
n.times.map{|i| n.times.map{|j| n*((i+j+1+n/2)%n) + ((i+2*j-5)%n) + 1} }
end
[3, 5, 9].each do |n|
puts "\nSize #{n}, magic sum #{(n*n+1)/2*n}"
fmt = "%#{(n*n).to_s.size + 1}d" * n
odd_magic_square(n).each{|row| puts fmt % row}
end
- Output:
Size 3, magic sum 15 8 1 6 3 5 7 4 9 2 Size 5, magic sum 65 16 23 5 7 14 22 4 6 13 20 3 10 12 19 21 9 11 18 25 2 15 17 24 1 8 Size 9, magic sum 369 50 61 72 74 4 15 26 28 39 60 71 73 3 14 25 36 38 49 70 81 2 13 24 35 37 48 59 80 1 12 23 34 45 47 58 69 9 11 22 33 44 46 57 68 79 10 21 32 43 54 56 67 78 8 20 31 42 53 55 66 77 7 18 30 41 52 63 65 76 6 17 19 40 51 62 64 75 5 16 27 29
Rust
fn main() {
let n = 9;
let mut square = vec![vec![0; n]; n];
for (i, row) in square.iter_mut().enumerate() {
for (j, e) in row.iter_mut().enumerate() {
*e = n * (((i + 1) + (j + 1) - 1 + (n >> 1)) % n) + (((i + 1) + (2 * (j + 1)) - 2) % n) + 1;
print!("{:3} ", e);
}
println!("");
}
let sum = n * (((n * n) + 1) / 2);
println!("The sum of the square is {}.", sum);
}
- Output:
47 58 69 80 1 12 23 34 45 57 68 79 9 11 22 33 44 46 67 78 8 10 21 32 43 54 56 77 7 18 20 31 42 53 55 66 6 17 19 30 41 52 63 65 76 16 27 29 40 51 62 64 75 5 26 28 39 50 61 72 74 4 15 36 38 49 60 71 73 3 14 25 37 48 59 70 81 2 13 24 35 The sum of the square is 369.
Scala
def magicSquare( n:Int ) : Option[Array[Array[Int]]] = {
require(n % 2 != 0, "n must be an odd number")
val a = Array.ofDim[Int](n,n)
// Make the horizontal by starting in the middle of the row and then taking a step back every n steps
val ii = Iterator.continually(0 to n-1).flatten.drop(n/2).sliding(n,n-1).take(n*n*2).toList.flatten
// Make the vertical component by moving up (subtracting 1) but every n-th step, step down (add 1)
val jj = Iterator.continually(n-1 to 0 by -1).flatten.drop(n-1).sliding(n,n-2).take(n*n*2).toList.flatten
// Combine the horizontal and vertical components to create the path
val path = (ii zip jj) take (n*n)
// Fill the array by following the path
for( i<-1 to (n*n); p=path(i-1) ) { a(p._1)(p._2) = i }
Some(a)
}
def output() : Unit = {
def printMagicSquare(n: Int): Unit = {
val ms = magicSquare(n)
val magicsum = (n * n + 1) / 2
assert(
if( ms.isDefined ) {
val a = ms.get
a.forall(_.sum == magicsum) &&
a.transpose.forall(_.sum == magicsum) &&
(for(i<-0 until n) yield { a(i)(i) }).sum == magicsum
}
else { false }
)
if( ms.isDefined ) {
val a = ms.get
for (y <- 0 to n * 2; x <- 0 until n) (x, y) match {
case (0, 0) => print("╔════╤")
case (i, 0) if i == n - 1 => print("════╗\n")
case (i, 0) => print("════╤")
case (0, j) if j % 2 != 0 => print("║ " + f"${ a(0)((j - 1) / 2) }%2d" + " │")
case (i, j) if j % 2 != 0 && i == n - 1 => print(" " + f"${ a(i)((j - 1) / 2) }%2d" + " ║\n")
case (i, j) if j % 2 != 0 => print(" " + f"${ a(i)((j - 1) / 2) }%2d" + " │")
case (0, j) if j == (n * 2) => print("╚════╧")
case (i, j) if j == (n * 2) && i == n - 1 => print("════╝\n")
case (i, j) if j == (n * 2) => print("════╧")
case (0, _) => print("╟────┼")
case (i, _) if i == n - 1 => print("────╢\n")
case (i, _) => print("────┼")
}
}
}
printMagicSquare(7)
}
- Output:
╔════╤════╤════╤════╤════╤════╤════╗ ║ 30 │ 39 │ 48 │ 1 │ 10 │ 19 │ 28 ║ ╟────┼────┼────┼────┼────┼────┼────╢ ║ 38 │ 47 │ 7 │ 9 │ 18 │ 27 │ 29 ║ ╟────┼────┼────┼────┼────┼────┼────╢ ║ 46 │ 6 │ 8 │ 17 │ 26 │ 35 │ 37 ║ ╟────┼────┼────┼────┼────┼────┼────╢ ║ 5 │ 14 │ 16 │ 25 │ 34 │ 36 │ 45 ║ ╟────┼────┼────┼────┼────┼────┼────╢ ║ 13 │ 15 │ 24 │ 33 │ 42 │ 44 │ 4 ║ ╟────┼────┼────┼────┼────┼────┼────╢ ║ 21 │ 23 │ 32 │ 41 │ 43 │ 3 │ 12 ║ ╟────┼────┼────┼────┼────┼────┼────╢ ║ 22 │ 31 │ 40 │ 49 │ 2 │ 11 │ 20 ║ ╚════╧════╧════╧════╧════╧════╧════╝
Seed7
$ include "seed7_05.s7i";
const func integer: succ (in integer: num, in integer: max) is
return succ(num mod max);
const func integer: pred (in integer: num, in integer: max) is
return succ((num - 2) mod max);
const proc: main is func
local
var integer: size is 3;
var array array integer: magic is 0 times 0 times 0;
var integer: row is 1;
var integer: column is 1;
var integer: number is 0;
begin
if length(argv(PROGRAM)) >= 1 then
size := integer parse (argv(PROGRAM)[1]);
end if;
magic := size times size times 0;
column := succ(size div 2);
for number range 1 to size ** 2 do
magic[row][column] := number;
if magic[pred(row, size)][succ(column, size)] = 0 then
row := pred(row, size);
column := succ(column, size);
else
row := succ(row, size);
end if;
end for;
for key row range magic do
for key column range magic[row] do
write(magic[row][column] lpad 4);
end for;
writeln;
end for;
end func;
- Output:
> s7 magicSquaresOfOddOrder 7 SEED7 INTERPRETER Version 5.0.5203 Copyright (c) 1990-2014 Thomas Mertes 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
Sidef
func magic_square(n {.is_pos && .is_odd}) {
var i = 0
var j = idiv(n, 2)
var magic_square = []
for l in (1 .. n**2) {
magic_square[i][j] = l
if (magic_square[i.dec % n][j.inc % n]) {
i = (i.inc % n)
}
else {
i = (i.dec % n)
j = (j.inc % n)
}
}
return magic_square
}
func print_square(sq) {
var f = "%#{(sq.len**2).len}d";
for row in sq {
say row.map{ f % _ }.join(' ')
}
}
var(n=5) = ARGV»to_i()»...
var sq = magic_square(n)
print_square(sq)
say "\nThe magic number is: #{sq[0].sum}"
- Output:
17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 The magic number is: 65
Stata
See here for all three cases.
. mata magic(5) 1 2 3 4 5 +--------------------------+ 1 | 17 24 1 8 15 | 2 | 23 5 7 14 16 | 3 | 4 6 13 20 22 | 4 | 10 12 19 21 3 | 5 | 11 18 25 2 9 | +--------------------------+
Swift
extension String: Error {}
struct Point: CustomStringConvertible {
var x: Int
var y: Int
init(_ _x: Int,
_ _y: Int) {
self.x = _x
self.y = _y
}
var description: String {
return "(\(x), \(y))\n"
}
}
extension Point: Equatable,Comparable {
static func == (lhs: Point, rhs: Point) -> Bool {
return lhs.x == rhs.x && lhs.y == rhs.y
}
static func < (lhs: Point, rhs: Point) -> Bool {
return lhs.y != rhs.y ? lhs.y < rhs.y : lhs.x < rhs.x
}
}
class MagicSquare: CustomStringConvertible {
var grid:[Int:Point] = [:]
var number: Int = 1
init(base n:Int) {
grid = [:]
number = n
}
func createOdd() throws -> MagicSquare {
guard number < 1 || number % 2 != 0 else {
throw "Must be odd and >= 1, try again"
return self
}
var x = 0
var y = 0
let middle = Int(number/2)
x = middle
grid[1] = Point(x,y)
for i in 2 ... number*number {
let oldXY = Point(x,y)
x += 1
y -= 1
if x >= number {x -= number}
if y < 0 {y += number}
var tempCoord = Point(x,y)
if let _ = grid.firstIndex(where: { (k,v) -> Bool in
v == tempCoord
})
{
x = oldXY.x
y = oldXY.y + 1
if y >= number {y -= number}
tempCoord = Point(x,y)
}
grid[i] = tempCoord
}
print(self)
return self
}
fileprivate func gridToText(_ result: inout String) {
let sorted = sortedGrid()
let sc = sorted.count
var i = 0
for c in sorted {
result += " \(c.key)"
if c.key < 10 && sc > 10 { result += " "}
if c.key < 100 && sc > 100 { result += " "}
if c.key < 1000 && sc > 1000 { result += " "}
if i%number==(number-1) { result += "\n"}
i += 1
}
result += "\nThe magic number is \(number * (number * number + 1) / 2)"
result += "\nRows and Columns are "
result += checkRows() == checkColumns() ? "Equal" : " Not Equal!"
result += "\nRows and Columns and Diagonals are "
let allEqual = (checkDiagonals() == checkColumns() && checkDiagonals() == checkRows())
result += allEqual ? "Equal" : " Not Equal!"
result += "\n"
}
var description: String {
var result = "base \(number)\n"
gridToText(&result)
return result
}
}
extension MagicSquare {
private func sortedGrid()->[(key:Int,value:Point)] {
return grid.sorted(by: {$0.1 < $1.1})
}
private func checkRows() -> (Bool, Int?)
{
var result = Set<Int>()
var index = 0
var rowtotal = 0
for (cell, _) in sortedGrid()
{
rowtotal += cell
if index%number==(number-1)
{
result.insert(rowtotal)
rowtotal = 0
}
index += 1
}
return (result.count == 1, result.first ?? nil)
}
private func checkColumns() -> (Bool, Int?)
{
var result = Set<Int>()
var sorted = sortedGrid()
for i in 0 ..< number {
var rowtotal = 0
for cell in stride(from: i, to: sorted.count, by: number) {
rowtotal += sorted[cell].key
}
result.insert(rowtotal)
}
return (result.count == 1, result.first)
}
private func checkDiagonals() -> (Bool, Int?)
{
var result = Set<Int>()
var sorted = sortedGrid()
var rowtotal = 0
for cell in stride(from: 0, to: sorted.count, by: number+1) {
rowtotal += sorted[cell].key
}
result.insert(rowtotal)
rowtotal = 0
for cell in stride(from: number-1, to: sorted.count-(number-1), by: number-1) {
rowtotal += sorted[cell].key
}
result.insert(rowtotal)
return (result.count == 1, result.first)
}
}
try MagicSquare(base: 3).createOdd()
try MagicSquare(base: 5).createOdd()
try MagicSquare(base: 7).createOdd()
Demonstrating:
- Output:
base 3
8 1 6 3 5 7 4 9 2
The magic number is 15
Rows and Columns are Equal
Rows and Columns and Diagonals are Equal
base 5
17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9
The magic number is 65
Rows and Columns are Equal
Rows and Columns and Diagonals are Equal
base 7
30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
The magic number is 175
Rows and Columns are Equal
Rows and Columns and Diagonals are Equal
Tcl
proc magicSquare {order} {
if {!($order & 1) || $order < 0} {
error "order must be odd and positive"
}
set s [lrepeat $order [lrepeat $order 0]]
set x [expr {$order / 2}]
set y 0
for {set i 1} {$i <= $order**2} {incr i} {
lset s $y $x $i
set x [expr {($x + 1) % $order}]
set y [expr {($y - 1) % $order}]
if {[lindex $s $y $x]} {
set x [expr {($x - 1) % $order}]
set y [expr {($y + 2) % $order}]
}
}
return $s
}
Demonstrating:
package require Tcl 8.6
set square [magicSquare 5]
puts [join [lmap row $square {join [lmap n $row {format "%2s" $n}]}] "\n"]
puts "magic number = [tcl::mathop::+ {*}[lindex $square 0]]"
- Output:
17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 magic number = 65
TI-83 BASIC
9→N
DelVar [A]:{N,N}→dim([A])
For(I,1,N)
For(J,1,N)
Remainder(I*2-J+N-1,N)*N+Remainder(I*2+J-2,N)+1→[A](I,J)
End
End
[A]
- Output:
[[2 75 67 59 51 43 35 27 10] [22 14 6 79 71 63 46 38 30] [42 34 26 18 1 74 66 58 50] [62 54 37 29 21 13 5 78 70] [73 65 57 49 41 33 25 17 9 ] [12 4 77 69 61 53 45 28 20] [32 24 16 8 81 64 56 48 40] [52 44 36 19 11 3 76 68 60] [72 55 47 39 31 23 15 7 80]]
VBScript
Sub magic_square(n)
Dim ms()
ReDim ms(n-1,n-1)
inc = 0
count = 1
row = 0
col = Int(n/2)
Do While count <= n*n
ms(row,col) = count
count = count + 1
If inc < n-1 Then
inc = inc + 1
row = row - 1
col = col + 1
If row >= 0 Then
If col > n-1 Then
col = 0
End If
Else
row = n-1
End If
Else
inc = 0
row = row + 1
End If
Loop
For i = 0 To n-1
For j = 0 To n-1
If j = n-1 Then
WScript.StdOut.Write ms(i,j)
Else
WScript.StdOut.Write ms(i,j) & vbTab
End If
Next
WScript.StdOut.WriteLine
Next
End Sub
magic_square(5)
- Output:
17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9
V (Vlang)
fn main() {
mut n, mut x := 9, 0
println("the square order is : ${n}" + "\n")
for i in 1 .. n + 1 {
for j in 1 .. n + 1 {
x = (i * 2 - j + n - 1) % n * n + (i * 2 + j - 2) % n + 1
print(" ${x:2} ")
}
println("")
}
println("\n" + "the magic number is : ${n * (n * n+1) / 2}")
}
- Output:
the square order is : 9 2 75 67 59 51 43 35 27 10 22 14 6 79 71 63 46 38 30 42 34 26 18 1 74 66 58 50 62 54 37 29 21 13 5 78 70 73 65 57 49 41 33 25 17 9 12 4 77 69 61 53 45 28 20 32 24 16 8 81 64 56 48 40 52 44 36 19 11 3 76 68 60 72 55 47 39 31 23 15 7 80 the magic number is : 369
VTL-2
10 N=1
20 ?="Magic square of order ";
30 ?=N
40 ?=" with constant ";
50 ?=N*N+1/2*N
60 ?=":"
70 Y=0
80 X=0
90 ?=Y*2+N-X/N*0+%*N+(Y*2+X+1/N*0+%+1
100 $=9
110 X=X+1
120 #=X<N*90
130 ?=""
140 Y=Y+1
150 #=Y<N*80
160 ?=""
170 N=N+2
180 #=7>N*20
- Output:
Magic square of order 1 with constant 1: 1 Magic square of order 3 with constant 15: 2 9 4 7 5 3 6 1 8 Magic square of order 5 with constant 65: 2 23 19 15 6 14 10 1 22 18 21 17 13 9 5 8 4 25 16 12 20 11 7 3 24 Magic square of order 7 with constant 175: 2 45 39 33 27 21 8 18 12 6 49 36 30 24 34 28 15 9 3 46 40 43 37 31 25 19 13 7 10 4 47 41 35 22 16 26 20 14 1 44 38 32 42 29 23 17 11 5 48
Wren
import "./fmt" for Fmt
var ms = Fn.new { |n|
var M = Fn.new { |x| (x + n - 1) % n }
if (n <= 0 || n&1 == 0) {
n = 5
System.print("forcing size %(n)")
}
var m = List.filled(n * n, 0)
var i = 0
var j = (n/2).floor
for (k in 1..n*n) {
m[i*n + j] = k
if (m[M.call(i)*n + M.call(j)] != 0) {
i = (i + 1) % n
} else {
i = M.call(i)
j = M.call(j)
}
}
return [n, m]
}
var res = ms.call(5)
var n = res[0]
var m = res[1]
for (i in 0...n) {
for (j in 0...n) Fmt.write("$4d", m[i*n+j])
System.print()
}
System.print("\nMagic number : %(((n*n + 1)/2).floor * n)")
- Output:
15 8 1 24 17 16 14 7 5 23 22 20 13 6 4 3 21 19 12 10 9 2 25 18 11 Magic number : 65
XPL0
\Construct a magic square of odd order - as a procedure can't return an
\ array, the caller must supply one that is big enough.
function MagicSquare( Square, Order );
integer Square, Order;
integer Row, Col, I, J;
\Ensure a row/col position is on the square
function InSquare; int Pos ;
return if Pos < 1 then Order else if Pos > Order then 1 else Pos;
\move "up" a row in the square
function Up; int Row; return InSquare( Row - 1 );
\move "across right" in the square
function Right; int Col ; return InSquare( Col + 1 );
if (Order&1) = 0 or Order < 1 then begin
\can't make a magic square of the specified order
return false
end
else begin
\Order is OK - construct the square using de la Loubere's
\ algorithm as in the Wikipedia page
\initialise square
for I := 1 to Order do for J := 1 to Order do Square( I, J ) := 0;
\initial position is the middle of the top row
Col := ( Order + 1 ) / 2;
Row := 1;
\construct square
for I := 1 to ( Order * Order ) do begin
Square( Row, Col ) := I;
if Square( Up( Row ), Right( Col ) ) # 0 then begin
\the up/right position is already taken, move down
Row := Row + 1;
end
else begin
\can move up/right
Row := Up( Row );
Col := Right( Col );
end
end; \for_i
\sucessful result
return true
end; \magicSquare
\prints the magic square
procedure PrintSquare( Square, Order );
integer Square, Order;
integer Sum, W, I_W, I, J;
begin
\set integer width to accomodate the largest number in the square
W := ( Order * Order ) / 10;
I_W := 1;
while W > 0 do begin I_W := I_W + 1; W := W / 10 end;
Format(I_W+1, 0);
Sum:= 0;
for I := 1 to Order do Sum := Sum + Square( 1, I );
Text(0, "maqic square of order "); IntOut(0, Order);
Text(0, " : Sum: "); IntOut(0, Sum );
for I := 1 to Order do begin
CrLf(0);
RlOut(0, float(Square( I, 1 )) );
for J := 2 to Order do RlOut(0, float(Square( I, J )) )
end; \for_I
CrLf(0);
end; \printSquare
\test the magic square generation
integer Sq ( 1+11, 1+11 ), L, I;
begin
L:= [1, 3, 5, 7];
for I := 0 to 3 do begin
if MagicSquare( Sq, L(I) ) then PrintSquare( Sq, L(I) )
else Text(0, "can't generate square^m^j" );
end \for_I
end]
- Output:
maqic square of order 1 : Sum: 1 1 maqic square of order 3 : Sum: 15 8 1 6 3 5 7 4 9 2 maqic square of order 5 : Sum: 65 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 maqic square of order 7 : Sum: 175 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
zkl
fcn rmod(n,m){ n=n%m; if (n<0) n+=m; n } // Ruby: -5%3-->1
fcn odd_magic_square(n){ //-->list of n*n numbers, row order
if (n.isEven or n <= 0) throw(Exception.ValueError("Need odd positive number"));
[[(i,j); n; n; '{ n*((i+j+1+n/2):rmod(_,n)) + ((i+2*j-5):rmod(_,n)) + 1 }]]
}
T(3, 5, 9).pump(Void,fcn(n){
"\nSize %d, magic sum %d".fmt(n,(n*n+1)/2*n).println();
fmt := "%%%dd".fmt((n*n).toString().len() + 1) * n;
odd_magic_square(n).pump(Console.println,T(Void.Read,n-1),fmt.fmt);
});
- Output:
Size 3, magic sum 15 8 1 6 3 5 7 4 9 2 Size 5, magic sum 65 16 23 5 7 14 22 4 6 13 20 3 10 12 19 21 9 11 18 25 2 15 17 24 1 8 Size 9, magic sum 369 50 61 72 74 4 15 26 28 39 60 71 73 3 14 25 36 38 49 70 81 2 13 24 35 37 48 59 80 1 12 23 34 45 47 58 69 9 11 22 33 44 46 57 68 79 10 21 32 43 54 56 67 78 8 20 31 42 53 55 66 77 7 18 30 41 52 63 65 76 6 17 19 40 51 62 64 75 5 16 27 29