One-dimensional cellular automata

From Rosetta Code
(Redirected from Life in one dimension)
Task
One-dimensional cellular automata
You are encouraged to solve this task according to the task description, using any language you may know.

Assume an array of cells with an initial distribution of live and dead cells, and imaginary cells off the end of the array having fixed values.

Cells in the next generation of the array are calculated based on the value of the cell and its left and right nearest neighbours in the current generation.

If, in the following table, a live cell is represented by 1 and a dead cell by 0 then to generate the value of the cell at a particular index in the array of cellular values you use the following table:

000 -> 0  # 
001 -> 0  #
010 -> 0  # Dies without enough neighbours
011 -> 1  # Needs one neighbour to survive
100 -> 0  #
101 -> 1  # Two neighbours giving birth
110 -> 1  # Needs one neighbour to survive
111 -> 0  # Starved to death.
Related tasks

11l

Translation of: Python
V gen = ‘_###_##_#_#_#_#__#__’.map(ch -> Int(ch == ‘#’))
L(n) 10
   print(gen.map(cell -> (I cell != 0 {‘#’} E ‘_’)).join(‘’))
   gen = [0] [+] gen [+] [0]
   gen = (0 .< gen.len - 2).map(m -> Int(sum(:gen[m .+ 3]) == 2))
Output:
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________

8th

\ one-dimensional automaton

\ direct map of input state to output state:
{
  "   " : 32,
  "  #" : 32,
  " # " : 32,
  " ##" : 35,
  "#  " : 32,
  "# #" : 35,
  "## " : 35,
  "###" : 32,
} var, lifemap

: transition \ s ix (r:s') -- (r:s')
    >r dup r@ n:1- 3 s:slice
    lifemap @ swap caseof
    r> swap r@ -rot s:! >r ;

\ run over 'state' and generate new state
: gen \ s -- s'
  clone >r
  dup s:len 2 n:-
  ' transition 1 rot loop
  drop r> ;

: life \ s -- s'
  dup . cr gen  ;

" ### ## # # # #  #  " ' life 10 times
bye

ACL2

(defun rc-step-r (cells)
   (if (endp (rest cells))
       nil
       (cons (if (second cells)
                 (xor (first cells) (third cells))
                 (and (first cells) (third cells)))
             (rc-step-r (rest cells)))))

(defun rc-step (cells)
   (cons (and (first cells) (second cells))
         (rc-step-r cells)))

(defun rc-steps-r (cells n prev)
   (declare (xargs :measure (nfix n)))
   (if (or (zp n) (equal cells prev))
       nil
       (let ((new (rc-step cells)))
          (cons new (rc-steps-r new (1- n) cells)))))

(defun rc-steps (cells n)
  (cons cells (rc-steps-r cells n nil)))

(defun pretty-row (row)
   (if (endp row)
       (cw "~%")
       (prog2$ (cw (if (first row) "#" "-"))
               (pretty-row (rest row)))))

(defun pretty-output (out)
   (if (endp out)
       nil
       (prog2$ (pretty-row (first out))
               (pretty-output (rest out)))))

Action!

CHAR FUNC CalcCell(CHAR prev,curr,next)
  IF prev='. AND curr='# AND next='# THEN
    RETURN ('#)
  ELSEIF prev='# AND curr='. AND next='# THEN
    RETURN ('#)
  ELSEIF prev='# AND curr='# AND next='. THEN
    RETURN ('#)
  FI
RETURN ('.)

PROC NextGeneration(CHAR ARRAY s)
  BYTE i
  CHAR prev,curr,next

  IF s(0)<4 THEN RETURN FI
  prev=s(1) curr=s(2) next=s(3)
  i=2
  DO
    s(i)=CalcCell(prev,curr,next)
    i==+1
    IF i=s(0) THEN EXIT FI
    prev=curr curr=next next=s(i+1)
  OD
RETURN

PROC Main()
  DEFINE MAXGEN="9"
  CHAR ARRAY s=".###.##.#.#.#.#..#.."
  BYTE i

  FOR i=0 TO MAXGEN
  DO
    PrintF("Generation %I: %S%E",i,s)
    IF i<MAXGEN THEN
      NextGeneration(s)
    FI
  OD
RETURN
Output:

Screenshot from Atari 8-bit computer

Generation 0: .###.##.#.#.#.#..#..
Generation 1: .#.#####.#.#.#......
Generation 2: ..##...##.#.#.......
Generation 3: ..##...###.#........
Generation 4: ..##...#.##.........
Generation 5: ..##....###.........
Generation 6: ..##....#.#.........
Generation 7: ..##.....#..........
Generation 8: ..##................
Generation 9: ..##................

Ada

with Ada.Text_IO;  use Ada.Text_IO;

procedure Cellular_Automata is
   type Petri_Dish is array (Positive range <>) of Boolean;

   procedure Step (Culture : in out Petri_Dish) is
      Left  : Boolean := False;
      This  : Boolean;
      Right : Boolean;
   begin
      for Index in Culture'First..Culture'Last - 1 loop
         Right := Culture (Index + 1);
         This  := Culture (Index);
         Culture (Index) := (This and (Left xor Right)) or (not This and Left and Right);
         Left := This;
      end loop;
      Culture (Culture'Last) := Culture (Culture'Last) and not Left;
   end Step;
   
   procedure Put (Culture : Petri_Dish) is
   begin
      for Index in Culture'Range loop
         if Culture (Index) then
            Put ('#');
         else
            Put ('_');
         end if;
      end loop;
   end Put;

   Culture : Petri_Dish :=
      (  False, True, True,  True, False, True,  True, False, True, False, True,
         False, True, False, True, False, False, True, False, False
      );
begin
   for Generation in 0..9 loop
      Put ("Generation" & Integer'Image (Generation) & ' ');
      Put (Culture);
      New_Line;
      Step (Culture);
   end loop;
end Cellular_Automata;

The implementation defines Petri dish type with Boolean items identifying whether a place is occupied by a living cell. State transition is determined by a simple Boolean expression of three arguments.

Output:
Generation 0 _###_##_#_#_#_#__#__
Generation 1 _#_#####_#_#_#______
Generation 2 __##___##_#_#_______
Generation 3 __##___###_#________
Generation 4 __##___#_##_________
Generation 5 __##____###_________
Generation 6 __##____#_#_________
Generation 7 __##_____#__________
Generation 8 __##________________
Generation 9 __##________________

ALGOL 68

Using the low level packed arrays of BITS manipulation operators

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
INT stop generation = 9;
INT universe width = 20;
FORMAT alive or dead = $b("#","_")$;
 
BITS universe := 2r01110110101010100100;
   # universe := BIN ( ENTIER ( random * max int ) ); #
INT upb universe = bits width;
INT lwb universe = bits width - universe width + 1;
 
PROC couple = (BITS parent, INT lwb, upb)BOOL: (
  SHORT INT sum := 0;
  FOR bit FROM lwb TO upb DO
    sum +:= ABS (bit ELEM parent)
  OD;
  sum = 2
);

FOR generation FROM 0 WHILE
  printf(($"Generation "d": "$, generation,
         $f(alive or dead)$, []BOOL(universe)[lwb universe:upb universe],
         $l$));
# WHILE # generation < stop generation DO
  BITS next universe := 2r0;  
  
  # process the first event horizon manually #
  IF couple(universe,lwb universe,lwb universe + 1) THEN 
    next universe := 2r10
  FI;
  
  # process the middle kingdom in a loop #
  FOR bit FROM lwb universe + 1 TO upb universe - 1 DO 
    IF couple(universe,bit-1,bit+1) THEN
      next universe := next universe OR 2r1
    FI;
    next universe := next universe SHL 1
  OD; 

  # process the last event horizon manually #
  IF couple(universe, upb universe - 1, upb universe) THEN 
    next universe := next universe OR 2r1
  FI;
  universe := next universe
OD
Output:
Generation 0: _###_##_#_#_#_#__#__
Generation 1: _#_#####_#_#_#______
Generation 2: __##___##_#_#_______
Generation 3: __##___###_#________
Generation 4: __##___#_##_________
Generation 5: __##____###_________
Generation 6: __##____#_#_________
Generation 7: __##_____#__________
Generation 8: __##________________
Generation 9: __##________________

Using high level BOOL arrays

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
INT stop generation = 9;
INT upb universe = 20;
FORMAT alive or dead = $b("#","_")$;
 
BITS bits universe := 2r01110110101010100100;
   # bits universe := BIN ( ENTIER ( random * max int ) ); #
[upb universe] BOOL universe := []BOOL(bits universe)[bits width - upb universe + 1:];
 
PROC couple = (REF[]BOOL parent)BOOL: (
  SHORT INT sum := 0;
  FOR bit FROM LWB parent TO UPB parent DO
    sum +:= ABS (parent[bit])
  OD;
  sum = 2
);

FOR generation FROM 0 WHILE
  printf(($"Generation "d": "$, generation,
         $f(alive or dead)$, universe,
         $l$));
# WHILE # generation < stop generation DO
  [UPB universe]BOOL next universe;
  
  # process the first event horizon manually #
  next universe[1] := couple(universe[:2]);
  
  # process the middle kingdom in a loop #
  FOR bit FROM LWB universe + 1 TO UPB universe - 1 DO 
    next universe[bit] := couple(universe[bit-1:bit+1])
  OD; 

  # process the last event horizon manually #
  next universe[UPB universe] := couple(universe[UPB universe - 1: ]);
  universe := next universe
OD
Output:
Generation 0: _###_##_#_#_#_#__#__
Generation 1: _#_#####_#_#_#______
Generation 2: __##___##_#_#_______
Generation 3: __##___###_#________
Generation 4: __##___#_##_________
Generation 5: __##____###_________
Generation 6: __##____#_#_________
Generation 7: __##_____#__________
Generation 8: __##________________
Generation 9: __##________________

ALGOL W

Using a string to represent the cells and stopping when the next state is th same as the previous one.

begin
    string(20) state;
    string(20) nextState;
    integer    generation;
    generation := 0;
    state := "_###_##_#_#_#_#__#__";
    while begin
        write( i_w := 1, s_w := 1, "Generation ", generation, state );
        nextState := "____________________";
        for cPos := 1 until 18 do begin
            string(3) curr;
            curr := state( cPos - 1 // 3 );
            nextState( cPos // 1 ) := if curr = "_##" or curr = "#_#" or curr = "##_" then "#" else "_"
        end for_cPos ;
        ( state not = nextState )
    end do begin
        state := nextState;
        generation := generation + 1
    end while_not_finished
end.
Output:
Generation 0 _###_##_#_#_#_#__#__
Generation 1 _#_#####_#_#_#______
Generation 2 __##___##_#_#_______
Generation 3 __##___###_#________
Generation 4 __##___#_##_________
Generation 5 __##____###_________
Generation 6 __##____#_#_________
Generation 7 __##_____#__________
Generation 8 __##________________

Amazing Hopper

Amazing Hopper flavour "BASICO", in spanish.

VERSION 1:

#include <basico.h>

algoritmo
    tamaño de pila 65
    x = 0
    enlistar (0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,1,1,1,0,0,\
              1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,0,0,\
              1,1,0,0,0,0,0,1,0,1,0,1,1,1,1,1,1,1,0,0) mover a 'x'
    x2 = x
    decimales '0', token.separador ("")
    iterar para ( k=1, #(k<=15), ++k )
         imprimir ' #(utf8("Generación #")),k, "\t", x, NL '
         iterar para ( j=2, #(j<60), ++j )
              #(x2[j] = 0)
              cuando ( #( (x[j-1]+x[j]+x[j+1])==2 ) ){ 
                  #(x2[j]=1)
              }
         siguiente
         x = x2
    siguiente
terminar
Output:
Generación #1	001110011010110111001111110111011111010011000001010111111100
Generación #2	001010011101111101001000011101110001100011000000101100000100
Generación #3	000100010111000110000000010111010001100011000000011100000000
Generación #4	000000001101000110000000001101100001100011000000010100000000
Generación #5	000000001110000110000000001111100001100011000000001000000000
Generación #6	000000001010000110000000001000100001100011000000000000000000
Generación #7	000000000100000110000000000000000001100011000000000000000000
Generación #8	000000000000000110000000000000000001100011000000000000000000
Generación #9	000000000000000110000000000000000001100011000000000000000000
Generación #10	000000000000000110000000000000000001100011000000000000000000
Generación #11	000000000000000110000000000000000001100011000000000000000000
Generación #12	000000000000000110000000000000000001100011000000000000000000
Generación #13	000000000000000110000000000000000001100011000000000000000000
Generación #14	000000000000000110000000000000000001100011000000000000000000
Generación #15	000000000000000110000000000000000001100011000000000000000000

VERSION 2:

#include <basico.h>

algoritmo
    x={}
    '0,0,1,1,1,0,0,1,1,0,1,0,1,1,0,1,1,1,0,0' anidar en lista 'x'
    '1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,0,0' anidar en lista 'x'
    '1,1,0,0,0,0,0,1,0,1,0,1,1,1,1,1,1,1,0,0' anidar en lista 'x'

    x2 = x, k=10
    decimales '0', token.separador ("")
    iterar
         imprimir ' #(utf8("Generación #")), #(11-k), "\t", x, NL '
         iterar para ( j=2, #(j<60), ++j )
              #( x2[j] = ((x[j-1]+x[j]+x[j+1])==2) )
         siguiente
         x = x2
    mientras ' k-- '
terminar
Output:
Generación #1	001110011010110111001111110111011111010011000001010111111100
Generación #2	001010011101111101001000011101110001100011000000101100000100
Generación #3	000100010111000110000000010111010001100011000000011100000000
Generación #4	000000001101000110000000001101100001100011000000010100000000
Generación #5	000000001110000110000000001111100001100011000000001000000000
Generación #6	000000001010000110000000001000100001100011000000000000000000
Generación #7	000000000100000110000000000000000001100011000000000000000000
Generación #8	000000000000000110000000000000000001100011000000000000000000
Generación #9	000000000000000110000000000000000001100011000000000000000000
Generación #10	000000000000000110000000000000000001100011000000000000000000
Generación #11	000000000000000110000000000000000001100011000000000000000000

Arturo

evolve: function [arr][
    ary: [0] ++ arr ++ [0]
    ret: new []
    loop 1..(size ary)-2 'i [
        a: ary\[i-1]
        b: ary\[i]
        c: ary\[i+1]

        if? 2 = a+b+c -> 'ret ++ 1
        else          -> 'ret ++ 0
    ]
    ret
]

printIt: function [arr][
    print replace replace join map arr 'n -> to :string n "0" "_" "1" "#"
]

arr: [0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0]
printIt arr

newGen: evolve arr
while [newGen <> arr][
    arr: newGen
    newGen: evolve arr
    printIt newGen
]
Output:
_###_##_#_#_#_#__#__
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________

AutoHotkey

ahk discussion

n := 22, n1 := n+1, v0 := v%n1% := 0        ; set grid dimensions, and fixed cells

Loop % n {                                  ; draw a line of checkboxes
   v%A_Index% := 0
   Gui Add, CheckBox, % "y10 w17 h17 gCheck x" A_Index*17-5 " vv" A_Index
}
Gui Add, Button, x+5 y6, step               ; button to step to next generation
Gui Show
Return

Check:
   GuiControlGet %A_GuiControl%             ; set cells by the mouse
Return

ButtonStep:                                 ; move to next generation
   Loop % n
      i := A_Index-1, j := i+2, w%A_Index% := v%i%+v%A_Index%+v%j% = 2
   Loop % n
      GuiControl,,v%A_Index%, % v%A_Index% := w%A_Index%
Return

GuiClose:                                   ; exit when GUI is closed
ExitApp

AWK

#!/usr/bin/awk -f
BEGIN {
    edge = 1
    ruleNum = 104 # 01101000
    maxGen = 9
    mark = "@"
    space = "."
    initialState = ".@@@.@@.@.@.@.@..@.."
    width = length(initialState)
    delete rules
    delete state
    
    initRules(ruleNum)
    initState(initialState, mark)
    for (g = 0; g < maxGen; g++) {
        showState(g, mark, space)
        nextState()
    }
    showState(g, mark, space)
}

function nextState(    newState, i, n) {
    delete newState
    for (i = 1; i < width - 1; i++) {
        n = getRuleNum(i)
        newState[i] = rules[n]
    }
    for (i = 0; i < width; i++) { # copy, can't assign arrays
        state[i] = newState[i]
    }
}

# Convert a three cell neighborhood from binary to decimal
function getRuleNum(i,    rn, j, p) {
    rn = 0
    for (j = -1; j < 2; j++) {
        p = i + j
        rn = rn * 2 + (p < 0 || p > width ? edge : state[p])
    }
    return rn
}

function showState(gen, mark, space,    i) {
    printf("%3d: ", gen)
    for (i = 1; i <= width; i++) {
        printf(" %s", (state[i] ? mark : space))
    }
    print ""
}

# Make state transition lookup table from rule number.
function initRules(ruleNum,   i, r) {
    delete rules;
    r = ruleNum
    for (i = 0; i < 8; i++) {
        rules[i] = r % 2
        r = int(r / 2)
    }
}

function initState(init, mark,    i) {
    delete state
    srand()
    for (i = 0; i < width; i++) {
        state[i] = (substr(init, i, 1) == mark ? 1 : 0) # Given an initial string.
        # state[int(width/2)] = '@'  # middle cell
        # state[i] = int(rand() * 100) < 30 ? 1 : 0 # 30% of cells
    }
}
Output:
  0:  . @ @ @ . @ @ . @ . @ . @ . @ . . @ . .
  1:  . @ . @ @ @ @ @ . @ . @ . @ . . . . . .
  2:  . . @ @ . . . @ @ . @ . @ . . . . . . .
  3:  . . @ @ . . . @ @ @ . @ . . . . . . . .
  4:  . . @ @ . . . @ . @ @ . . . . . . . . .
  5:  . . @ @ . . . . @ @ @ . . . . . . . . .
  6:  . . @ @ . . . . @ . @ . . . . . . . . .
  7:  . . @ @ . . . . . @ . . . . . . . . . .
  8:  . . @ @ . . . . . . . . . . . . . . . .
  9:  . . @ @ . . . . . . . . . . . . . . . .
Another new solution (twice size as previous solution) :
cat automata.awk :

#!/usr/local/bin/gawk -f

# User defined functions
function ASCII_to_Binary(str_) {
	gsub("_","0",str_); gsub("@","1",str_)
	return str_
}

function Binary_to_ASCII(bit_) {
	gsub("0","_",bit_); gsub("1","@",bit_)
	return bit_
}

function automate(b1,b2,b3) {
	a = and(b1,b2,b3)
	b = or(b1,b2,b3)
	c = xor(b1,b2,b3)
	d = a + b + c
	return d == 1 ? 1 : 0
}

# For each line in input do
{
str_ = $0
gen = 0
taille = length(str_)
print "0: " str_
do {
	gen ? str_previous = str_ : str_previous = ""
	gen += 1
	str_ = ASCII_to_Binary(str_)
	split(str_,tab,"")
	str_ = and(tab[1],tab[2])
	for (i=1; i<=taille-2; i++) {
		str_ = str_ automate(tab[i],tab[i+1],tab[i+2])
		}
	str_ = str_ and(tab[taille-1],tab[taille])
	print gen ": " Binary_to_ASCII(str_)
   } while (str_ != str_previous)
}
Output:
$ echo ".@@@.@@.@.@.@.@..@.." | awk -f automata.awk
0: .@@@.@@.@.@.@.@..@..
1: _@_@@@@@_@_@_@______
2: __@@___@@_@_@_______
3: __@@___@@@_@________
4: __@@___@_@@_________
5: __@@____@@@_________
6: __@@____@_@_________
7: __@@_____@__________
8: __@@________________
9: __@@________________

BASIC

Applesoft BASIC

Translation of: Locomotive BASIC
100 HOME
110 n = 10
120 READ w : DIM x(w+1),x2(w+1) : FOR i = 1 TO w : READ x(i) : NEXT
130 FOR k = 1 TO n
140 FOR j = 1 TO w
150 IF x(j) THEN PRINT "#";
155 IF NOT x(j) THEN PRINT "_";
160 IF x(j-1)+x(j)+x(j+1) = 2 THEN x2(j) = 1
165 IF x(j-1)+x(j)+x(j+1) <> 2 THEN x2(j) = 0
170 NEXT : PRINT
180 FOR j = 1 TO w : x(j) = x2(j) : NEXT
190 NEXT
200 DATA 20,0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0

BASIC256

arraybase 1
dim start = {0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0}
dim sgtes(start[?]+1)

for k = 0 to 9
    print "Generation "; k; ": ";
    for j = 0 to start[?]-1

        if start[j] then print "#"; else print "_";
        if start[j-1] + start[j] + start[j+1] = 2 then sgtes[j] = 1 else sgtes[j] = 0
    next j
    print
    for j = 0 to start[?]-1
        start[j] = sgtes[j]
    next j
next k

BBC BASIC

      DIM rule$(7)
      rule$() = "0", "0", "0", "1", "0", "1", "1", "0"
      
      now$ = "01110110101010100100"
      
      FOR generation% = 0 TO 9
        PRINT "Generation " ; generation% ":", now$
        next$ = ""
        FOR cell% = 1 TO LEN(now$)
          next$ += rule$(EVAL("%"+MID$("0"+now$+"0", cell%, 3)))
        NEXT cell%
        SWAP now$, next$
      NEXT generation%
Output:
Generation 0:       01110110101010100100
Generation 1:       01011111010101000000
Generation 2:       00110001101010000000
Generation 3:       00110001110100000000
Generation 4:       00110001011000000000
Generation 5:       00110000111000000000
Generation 6:       00110000101000000000
Generation 7:       00110000010000000000
Generation 8:       00110000000000000000
Generation 9:       00110000000000000000

Chipmunk Basic

Works with: Chipmunk Basic version 3.6.4
Works with: BASICA
Works with: GW-BASIC
Works with: MSX BASIC
Works with: PC-BASIC version any
Works with: QBasic
Works with: QuickBasic
Works with: Quite BASIC
100 CLS
110 LET n = 10
120 READ w 
121 DIM x(w+1): DIM x2(w+1) 
122 FOR i = 1 TO w : READ x(i) : NEXT i
130 FOR k = 1 TO n
140 FOR j = 1 TO w
150 IF x(j) THEN PRINT "#"; ELSE PRINT "_";
160 IF x(j-1)+x(j)+x(j+1) = 2 THEN LET x2(j) = 1 ELSE LET x2(j) = 0
170 NEXT j
171 PRINT
180 FOR j = 1 TO w : LET x(j) = x2(j) : NEXT j
190 NEXT k
200 DATA 20,0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0
210 END

FreeBASIC

#define SIZE 640

randomize timer

dim as ubyte arr(0 to SIZE-1, 0 to 1)
dim as uinteger i
for i = 0 to SIZE - 1   'initialise array with zeroes and ones
    arr(i, 0)=int(rnd+0.5)
next i

screen 12    'display graphically

dim as string ch=" "
dim as uinteger j = 0, cur = 0, nxt, prv, neigh
while not ch = "q" or ch = "Q"
    for i = 0 to SIZE - 1
        pset(i, j), 8+7*arr(i,cur)   'print off cells as grey, on cells as bright white
        nxt = (i + 1) mod SIZE
        prv = (i - 1)
        if prv < 0 then prv = SIZE - 1   'let's have a wrap-around array for fun
        neigh = arr(prv, cur) + arr(nxt, cur)
        if arr(i, cur) = 0 then    'evolution rules
            if neigh = 2 then
                arr(i, 1-cur) = 1
            else
                arr(i, 1-cur) = 0
            end if
        else
            if neigh = 0 or neigh = 2 then
                arr(i, 1-cur) = 0
            else
                arr(i, 1-cur) = 1
            end if
        end if
    next i
    j = j + 1
    cur = 1 - cur
    do
        ch = inkey
        if ch <> "" then exit do   'press any key to advance the sim
                                   'or Q to exit
    loop
wend

GFA Basic

'
' One Dimensional Cellular Automaton
'
start$="01110110101010100100"
max_cycles%=20 ! give a maximum depth
'
' Global variables hold the world, with two rows
' world! is set up with 2 extra cells width, so there is a FALSE on either side
' cur% gives the row for current world,
' new% gives the row for the next world.
'
size%=LEN(start$)
DIM world!(size%+2,2)
cur%=0
new%=1
clock%=0
'
@setup_world(start$)
OPENW 1
CLEARW 1
DO
  @display_world
  @update_world
  EXIT IF @same_state
  clock%=clock%+1
  EXIT IF clock%>max_cycles% ! safety net
LOOP
~INP(2)
CLOSEW 1
'
' parse given string to set up initial states in world
' -- assumes world! is of correct size
'
PROCEDURE setup_world(defn$)
  LOCAL i%
  ' clear out the array
  ARRAYFILL world!(),FALSE
  ' for each 1 in string, set cell to true
  FOR i%=1 TO LEN(defn$)
    IF MID$(defn$,i%,1)="1"
      world!(i%,0)=TRUE
    ENDIF
  NEXT i%
  ' set references to cur and new
  cur%=0
  new%=1
RETURN
'
' Display the world
'
PROCEDURE display_world
  LOCAL i%
  FOR i%=1 TO size%
    IF world!(i%,cur%)
      PRINT "#";
    ELSE
      PRINT ".";
    ENDIF
  NEXT i%
  PRINT ""
RETURN
'
' Create new version of world
'
PROCEDURE update_world
  LOCAL i%
  FOR i%=1 TO size%
    world!(i%,new%)=@new_state(@get_value(i%))
  NEXT i%
  ' reverse cur/new
  cur%=1-cur%
  new%=1-new%
RETURN
'
' Test if cur/new states are the same
'
FUNCTION same_state
  LOCAL i%
  FOR i%=1 TO size%
    IF world!(i%,cur%)<>world!(i%,new%)
      RETURN FALSE
    ENDIF
  NEXT i%
  RETURN TRUE
ENDFUNC
'
' Return new state of cell given value
'
FUNCTION new_state(value%)
  SELECT value%
  CASE 0,1,2,4,7
    RETURN FALSE
  CASE 3,5,6
    RETURN TRUE
  ENDSELECT
ENDFUNC
'
' Compute value for cell + neighbours
'
FUNCTION get_value(cell%)
  LOCAL result%
  result%=0
  IF world!(cell%-1,cur%)
    result%=result%+4
  ENDIF
  IF world!(cell%,cur%)
    result%=result%+2
  ENDIF
  IF world!(cell%+1,cur%)
    result%=result%+1
  ENDIF
  RETURN result%
ENDFUNC

GW-BASIC

The Chipmunk Basic solution works without any changes.

Liberty BASIC

Works with: Just BASIC
Works with: Run BASIC
'   [RC] 'One-dimensional cellular automata'

'    does not wrap so fails for some rules
rule$ ="00010110"   '   Rule 22 decimal

state$ ="0011101101010101001000"

for j =1 to 20
    print state$
    oldState$ =state$
    state$ ="0"
    for k =2 to len( oldState$) -1
        NHood$ =mid$( oldState$, k -1, 3)  '   pick 3 char neighbourhood and turn binary string to decimal
        vNHood =0
        for kk =3 to 1 step -1
            vNHood =vNHood +val( mid$( NHood$, kk, 1)) *2^( 3 -kk)
        next kk
                                        '  .... & use it to index into rule$ to find appropriate new value
        state$ =state$ +mid$( rule$, vNHood +1, 1)
    next k
    state$ =state$ +"0" 

next j

end

Locomotive Basic

10 MODE 1:n=10:READ w:DIM x(w+1),x2(w+1):FOR i=1 to w:READ x(i):NEXT
20 FOR k=1 TO n
30 FOR j=1 TO w
40 IF x(j) THEN PRINT "#"; ELSE PRINT "_";
50 IF x(j-1)+x(j)+x(j+1)=2 THEN x2(j)=1 ELSE x2(j)=0
60 NEXT:PRINT
70 FOR j=1 TO w:x(j)=x2(j):NEXT
80 NEXT
90 DATA 20,0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0
Output:

MSX Basic

The Chipmunk Basic solution works without any changes.

PureBasic

EnableExplicit
Dim cG.i(21) 
Dim nG.i(21)
Define.i n, Gen
 
DataSection
  Data.i 0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0
EndDataSection
For n=1 To 20
  Read.i cG(n)
Next
 
OpenConsole()
Repeat
  Print("Generation "+Str(Gen)+": ")
  For n=1 To 20
    Print(Chr(95-cG(n)*60))
  Next
  Gen +1
  PrintN("")
  For n=1 To 20
    If (cG(n) And (cG(n-1) XOr cg(n+1))) Or (Not cG(n) And (cG(n-1) And cg(n+1)))
     nG(n)=1
   Else
     nG(n)=0   
   EndIf    
  Next 
  CopyArray(nG(), cG())
Until Gen > 9
 
PrintN("Press any key to exit"): Repeat: Until Inkey() <> ""
Output:
Generation 0: _###_##_#_#_#_#__#__
Generation 1: _#_#####_#_#_#______
Generation 2: __##___##_#_#_______
Generation 3: __##___###_#________
Generation 4: __##___#_##_________
Generation 5: __##____###_________
Generation 6: __##____#_#_________
Generation 7: __##_____#__________
Generation 8: __##________________
Generation 9: __##________________

QBasic

Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
Translation of: Java
DECLARE FUNCTION life$ (lastGen$)
DECLARE FUNCTION getNeighbors! (group$)
CLS
start$ = "_###_##_#_#_#_#__#__"
numGens = 10
FOR i = 0 TO numGens - 1
	PRINT "Generation"; i; ": "; start$
	start$ = life$(start$)
NEXT i

FUNCTION getNeighbors (group$)
		ans = 0
		IF (MID$(group$, 1, 1) = "#") THEN ans = ans + 1
		IF (MID$(group$, 3, 1) = "#") THEN ans = ans + 1
		getNeighbors = ans
END FUNCTION

FUNCTION life$ (lastGen$)
		newGen$ = ""
		FOR i = 1 TO LEN(lastGen$)
			neighbors = 0
			IF (i = 1) THEN 'left edge
				IF MID$(lastGen$, 2, 1) = "#" THEN
					neighbors = 1
				ELSE
					neighbors = 0
				END IF
			ELSEIF (i = LEN(lastGen$)) THEN 'right edge
				IF MID$(lastGen$, LEN(lastGen$) - 1, 1) = "#" THEN
					neighbors = 1
				ELSE
					neighbors = 0
				END IF
			ELSE 'middle
				neighbors = getNeighbors(MID$(lastGen$, i - 1, 3))
			END IF
 
			IF (neighbors = 0) THEN 'dies or stays dead with no neighbors
				newGen$ = newGen$ + "_"
			END IF
			IF (neighbors = 1) THEN 'stays with one neighbor
				newGen$ = newGen$ + MID$(lastGen$, i, 1)
			END IF
			IF (neighbors = 2) THEN 'flips with two neighbors
				IF MID$(lastGen$, i, 1) = "#" THEN
					newGen$ = newGen$ + "_"
				ELSE
					newGen$ = newGen$ + "#"
				END IF
			END IF
		NEXT i
		life$ = newGen$
END FUNCTION
Output:
Generation 0 : _###_##_#_#_#_#__#__
Generation 1 : _#_#####_#_#_#______
Generation 2 : __##___##_#_#_______
Generation 3 : __##___###_#________
Generation 4 : __##___#_##_________
Generation 5 : __##____###_________
Generation 6 : __##____#_#_________
Generation 7 : __##_____#__________
Generation 8 : __##________________
Generation 9 : __##________________

Quite BASIC

The Chipmunk Basic solution works without any changes.

Run BASIC

The Liberty BASIC solution works without any changes.

Sinclair ZX81 BASIC

Works with the unexpanded (1k RAM) ZX81.

 10 LET N$="01110110101010100100"
 20 LET G=1
 30 PRINT N$
 40 LET O$=N$
 50 LET N$=""
 60 PRINT AT 0,28;G
 70 LET N=0
 80 FOR I=1 TO LEN O$
 90 IF I=1 THEN GOTO 120
100 LET N=VAL O$(I-1)
110 IF I=LEN O$ THEN GOTO 130
120 LET N=N+VAL O$(I+1)
130 IF N=0 THEN LET N$=N$+"0"
140 IF N=1 THEN LET N$=N$+O$(I)
150 IF N=2 THEN LET N$=N$+STR$ NOT VAL O$(I)
160 PRINT AT 0,I-1;N$(I)
170 NEXT I
180 LET G=G+1
190 IF N$<>O$ THEN GOTO 40
Output:

The program overwrites each cell on the screen as it updates it (which it does quite slowly—there is no difficulty about watching what it is doing), with a counter to the right showing the generation it is currently working on. When it is part of the way through, for example, the display looks like this:

00110001011000000000        5

It halts when a stable state has been reached:

00110000000000000000        9

Visual Basic .NET

This implementation is run from the command line. The command is followed by a string of either 1's or #'s for an active cell, or 0's or _'s for an inactive one.

Imports System.Text

Module CellularAutomata

    Private Enum PetriStatus
        Active
        Stable
        Dead
    End Enum

    Function Main(ByVal cmdArgs() As String) As Integer
        If cmdArgs.Length = 0 Or cmdArgs.Length > 1 Then
            Console.WriteLine("Command requires string of either 1s and 0s or #s and _s.")
            Return 1
        End If

        Dim petriDish As BitArray

        Try
            petriDish = InitialisePetriDish(cmdArgs(0))
        Catch ex As Exception
            Console.WriteLine(ex.Message)
            Return 1
        End Try

        Dim generation As Integer = 0
        Dim ps As PetriStatus = PetriStatus.Active

        Do While True
            If ps = PetriStatus.Stable Then
                Console.WriteLine("Sample stable after {0} generations.", generation - 1)
                Exit Do
            Else
                Console.WriteLine("{0}: {1}", generation.ToString("D3"), BuildDishString(petriDish))
                If ps = PetriStatus.Dead Then
                    Console.WriteLine("Sample dead after {0} generations.", generation)
                    Exit Do
                End If
            End If

            ps = GetNextGeneration(petriDish)
            generation += 1
        Loop

        Return 0
    End Function

    Private Function InitialisePetriDish(ByVal Sample As String) As BitArray
        Dim PetriDish As New BitArray(Sample.Length)
        Dim dead As Boolean = True

        For i As Integer = 0 To Sample.Length - 1
            Select Case Sample.Substring(i, 1)
                Case "1", "#"
                    PetriDish(i) = True
                    dead = False
                Case "0", "_"
                    PetriDish(i) = False
                Case Else
                    Throw New Exception("Illegal value in string position " & i)
                    Return Nothing
            End Select
        Next

        If dead Then
            Throw New Exception("Entered sample is dead.")
            Return Nothing
        End If

        Return PetriDish
    End Function

    Private Function GetNextGeneration(ByRef PetriDish As BitArray) As PetriStatus
        Dim petriCache = New BitArray(PetriDish.Length)
        Dim neighbours As Integer
        Dim stable As Boolean = True
        Dim dead As Boolean = True

        For i As Integer = 0 To PetriDish.Length - 1
            neighbours = 0
            If i > 0 AndAlso PetriDish(i - 1) Then neighbours += 1
            If i < PetriDish.Length - 1 AndAlso PetriDish(i + 1) Then neighbours += 1

            petriCache(i) = (PetriDish(i) And neighbours = 1) OrElse (Not PetriDish(i) And neighbours = 2)
            If PetriDish(i) <> petriCache(i) Then stable = False
            If petriCache(i) Then dead = False
        Next

        PetriDish = petriCache

        If dead Then Return PetriStatus.Dead
        If stable Then Return PetriStatus.Stable
        Return PetriStatus.Active

    End Function

    Private Function BuildDishString(ByVal PetriDish As BitArray) As String
        Dim sw As New StringBuilder()
        For Each b As Boolean In PetriDish
            sw.Append(IIf(b, "#", "_"))
        Next

        Return sw.ToString()
    End Function
End Module

Output:

C:\>CellularAutomata _###_##_#_#_#_#__#__
000: _###_##_#_#_#_#__#__
001: _#_#####_#_#_#______
002: __##___##_#_#_______
003: __##___###_#________
004: __##___#_##_________
005: __##____###_________
006: __##____#_#_________
007: __##_____#__________
008: __##________________
Sample stable after 8 generations.

Yabasic

Translation of: Locomotive_Basic
10 n=10:READ w:DIM x(w+1),x2(w+1):FOR i=1 to w:READ x(i):NEXT
20 FOR k=1 TO n
30 FOR j=1 TO w
40 IF x(j) THEN PRINT "#"; ELSE PRINT "_"; END IF
50 IF x(j-1)+x(j)+x(j+1)=2 THEN x2(j)=1 ELSE x2(j)=0 END IF
60 NEXT:PRINT
70 FOR j=1 TO w:x(j)=x2(j):NEXT
80 NEXT
90 DATA 20,0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0

Other solution

start$ = "0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0"

dim x$(1)

for k = 1 to 10
    n = token(start$, x$(), ",")
    redim x$(n+1)
    start$ = ""
    for j = 1 to n
        if val(x$(j)) then print "#"; else print "_"; end if
        test = abs(val(x$(j-1)) + val(x$(j)) + val(x$(j+1)) = 2)
        start$ = start$ + str$(test) + ","
    next j
    print
next k

Batch File

This implementation will not stop showing generations, unless the cellular automata is already stable.

@echo off
setlocal enabledelayedexpansion

::THE MAIN THING
call :one-dca __###__##_#_##_###__######_###_#####_#__##_____#_#_#######__
pause>nul
exit /b
::/THE MAIN THING

::THE PROCESSOR
:one-dca
echo.&set numchars=0&set proc=%1

::COUNT THE NUMBER OF CHARS
set bef=%proc:_=_,%
set bef=%bef:#=#,%
set bef=%bef:~0,-1%
for %%x in (%bef%) do set /a numchars+=1

set /a endchar=%numchars%-1
:nextgen
echo.   ^| %proc% ^|
set currnum=0
set newgen=
:editeachchar
	set neigh=0
	set /a testnum2=%currnum%+1
	set /a testnum1=%currnum%-1
	if %currnum%==%endchar% (
		set testchar=!proc:~%testnum1%,1!
		if !testchar!==# (set neigh=1)
	) else (
		if %currnum%==0 (
			set testchar=%proc:~1,1%
			if !testchar!==# (set neigh=1)
		) else (
			set testchar1=!proc:~%testnum1%,1!
			set testchar2=!proc:~%testnum2%,1!
			if !testchar1!==# (set /a neigh+=1)
			if !testchar2!==# (set /a neigh+=1)
		)
	)
	if %neigh%==0 (set newgen=%newgen%_)
	if %neigh%==1 (
		set testchar=!proc:~%currnum%,1!
		set newgen=%newgen%!testchar!
	)
	if %neigh%==2 (
		set testchar=!proc:~%currnum%,1!
		if !testchar!==# (set newgen=%newgen%_) else (set newgen=%newgen%#)
	)
if %currnum%==%endchar% (goto :cond) else (set /a currnum+=1&goto :editeachchar)

:cond
if %proc%==%newgen% (echo.&echo          ...The sample is now stable.&goto :EOF)
set proc=%newgen%
goto :nextgen
::/THE (LLLLLLOOOOOOOOOOOOONNNNNNNNGGGGGG.....) PROCESSOR
Output:
   | __###__##_#_##_###__######_###_#####_#__##_____#_#_#######__ |
   | __#_#__###_#####_#__#____###_###___##___##______#_##_____#__ |
   | ___#___#_###___##________#_###_#___##___##_______###________ |
   | ________##_#___##_________##_##____##___##_______#_#________ |
   | ________###____##_________#####____##___##________#_________ |
   | ________#_#____##_________#___#____##___##__________________ |
   | _________#_____##__________________##___##__________________ |
   | _______________##__________________##___##__________________ |

         ...The sample is now stable.

Befunge

v                                                                                                         
 " !!! !! ! ! ! !  !  "                                                          ,*25                    <v
 "                    "                                                           ,*25,,,,,,,,,,,,,,,,,,,,<v
 "                    "                                                            ,*25,,,,,,,,,,,,,,,,,,,,<v
 "                    "                                                             ,*25,,,,,,,,,,,,,,,,,,,,<v
 "                    "                                                              ,*25,,,,,,,,,,,,,,,,,,,,<v
 "                    "                                                               ,*25,,,,,,,,,,,,,,,,,,,,<v
 "                    "                                                                ,*25,,,,,,,,,,,,,,,,,,,,<v
 "                    "                                                                 ,*25,,,,,,,,,,,,,,,,,,,,<v
 "                    "                                                                  ,*25,,,,,,,,,,,,,,,,,,,,<v
                                                                      v$<                @,*25,,,,,,,,,,,,,,,,,,,,<
>110p3>:1-10gg" "-4* \:10gg" "-2* \:1+10gg" "-\:54*1+`#v_20p++ :2`#v_ >:4`#v_> >$" "v                     
                                                                   >:3`#^_v>:6`|                          
      ^                                                >$$$$320p10g1+:9`v >    >$"!"> 20g10g1+p 20g1+:20p 
      ^                                                                v_10p10g                           
                                                                       >                                 ^

Bracmat

  ( ( evolve
    =   n z
      .   @( !arg
           : %?n ? @?z
           :   ?
               ( (   ( 000
                     | 001
                     | 010
                     | 100
                     | 111
                     )
                   & 0 !n:?n
                 |   (011|101|110)
                   & 1 !n:?n
                 )
               & ~`
               )
               ?
           )
        | rev$(str$(!z !n))
    )
  & 11101101010101001001:?S
  & :?seen
  &   whl
    ' ( ~(!seen:? !S ?)
      & out$!S
      & !S !seen:?seen
      & evolve$!S:?S
      )
  );
Output:
11101101010101001001
10111110101010000001
11100011010100000001
10100011101000000001
11000010110000000001
11000001110000000001
11000001010000000001
11000000100000000001
11000000000000000001

C

#include <stdio.h>
#include <string.h>

char trans[] = "___#_##_";

#define v(i) (cell[i] != '_')
int evolve(char cell[], char backup[], int len)
{
	int i, diff = 0;

	for (i = 0; i < len; i++) {
		/* use left, self, right as binary number bits for table index */
		backup[i] = trans[ v(i-1) * 4 + v(i) * 2 + v(i + 1) ];
		diff += (backup[i] != cell[i]);
	}

	strcpy(cell, backup);
	return diff;
}

int main()
{
	char	c[] = "_###_##_#_#_#_#__#__\n",
		b[] = "____________________\n";

	do { printf(c + 1); } while (evolve(c + 1, b + 1, sizeof(c) - 3));
	return 0;
}
Output:
###_##_#_#_#_#__#__
#_#####_#_#_#______
_##___##_#_#_______
_##___###_#________
_##___#_##_________
_##____###_________
_##____#_#_________
_##_____#__________
_##________________

Similar to above, but without a backup string:

#include <stdio.h>
 
char trans[] = "___#_##_";
 
int evolve(char c[], int len)
{
	int i, diff = 0;
#	define v(i) ((c[i] & 15) == 1)
#	define each for (i = 0; i < len; i++)

	each c[i]  = (c[i] == '#');
	each c[i] |= (trans[(v(i-1)*4 + v(i)*2 + v(i+1))] == '#') << 4;
	each diff += (c[i] & 0xf) ^ (c[i] >> 4);
	each c[i]  = (c[i] >> 4) ? '#' : '_';

#	undef each
#	undef v
	return diff;
}
 
int main()
{
	char c[] = "_###_##_#_#_#_#__#__\n";
 
	do { printf(c + 1); } while (evolve(c + 1, sizeof(c) - 3));
	return 0;
}

This version uses the rule where a cell is alive in the next generation if the sum of itself and its neighbors is exactly 2.

#include <stdio.h>
#include <string.h>

#define SIZE 21

void print_gen(int gen[], int size) {
    for (int i = 0; i < size; i++) {
        printf("%c", gen[i] ? '#' : '_');
    }
    printf("\n");
}

void evolve(int gen[], int size) {
    int next_gen[size + 2];
    next_gen[0] = next_gen[size + 1] = 0;

    for (int i = 0; i < size; i++) {
        next_gen[i + 1] = gen[i];
    }

    for (int i = 0; i < size; i++) {
        gen[i] = (next_gen[i] + next_gen[i + 1] + next_gen[i + 2]) == 2;
    }
}

int main() {
    char initial[] = "_###_##_#_#_#_#__#__";
    int gen[SIZE];
    
    for (int i = 0; i < SIZE; i++) {
        gen[i] = initial[i] == '#';
    }

    for (int n = 0; n < 10; n++) {
        print_gen(gen, SIZE);
        evolve(gen, SIZE);
    }

    return 0;
}
Output:
_###_##_#_#_#_#__#___
_#_#####_#_#_#_______
__##___##_#_#________
__##___###_#_________
__##___#_##__________
__##____###__________
__##____#_#__________
__##_____#___________
__##_________________
__##_________________

C#

using System;
using System.Collections.Generic;

namespace prog
{
	class MainClass
	{	
		const int n_iter = 10;
		static int[] f = { 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0 };
		
		public static void Main (string[] args)
		{
			for( int i=0; i<f.Length; i++ )
				Console.Write( f[i]==0 ? "-" : "#" );
			Console.WriteLine("");			
			
			int[] g = new int[f.Length];
			for( int n=n_iter; n!=0; n-- )
			{
				for( int i=1; i<f.Length-1; i++ )
				{
					if ( (f[i-1] ^ f[i+1]) == 1 ) g[i] = f[i];
					else if ( f[i] == 0 && (f[i-1] & f[i+1]) == 1 ) g[i] = 1;
					else g[i] = 0;
				}
				g[0] = ( (f[0] & f[1]) == 1 ) ? 1 : 0;
				g[g.Length-1] = ( (f[f.Length-1] & f[f.Length-2]) == 1 ) ? 1 : 0;
				
				int[] tmp = f;
				f = g;
				g = tmp;
				
				for( int i=0; i<f.Length; i++ )
					Console.Write( f[i]==0 ? "-" : "#" );
				Console.WriteLine("");
			}			
		}
	}
}

C++

Uses std::bitset for efficient packing of bit values.

#include <iostream>
#include <bitset>
#include <string>

const int ArraySize = 20;
const int NumGenerations = 10;
const std::string Initial = "0011101101010101001000";

int main()
{
    // + 2 for the fixed ends of the array
    std::bitset<ArraySize + 2> array(Initial);

    for(int j = 0; j < NumGenerations; ++j)
    {
        std::bitset<ArraySize + 2> tmpArray(array);
        for(int i = ArraySize; i >= 1 ; --i)
        {
            if(array[i])
                std::cout << "#";
            else
                std::cout << "_";
            int val = (int)array[i-1] << 2 | (int)array[i] << 1 | (int)array[i+1];
            tmpArray[i] = (val == 3 || val == 5 || val == 6);
        }
        array = tmpArray;
        std::cout << std::endl;
    }
}
Output:
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________

Ceylon

shared abstract class Cell(character) of alive | dead {
	shared Character character;
	string => character.string;
	shared formal Cell opposite;
}

shared object alive extends Cell('#') {
	opposite => dead;
}
shared object dead extends Cell('_') {
	opposite => alive;
}

shared Map<Character, Cell> cellsByCharacter = map { for (cell in `Cell`.caseValues) cell.character->cell };

shared class Automata1D({Cell*} initialCells) {
	
	
	value permanentFirstCell = initialCells.first else dead;
	value permanentLastCell = initialCells.last else dead;
	
	value cells = Array { *initialCells.rest.exceptLast };
	
	shared Boolean evolve() {
		
		value newCells = Array {
			for (index->cell in cells.indexed)
			let (left = cells[index - 1] else permanentFirstCell, 
				right = cells[index + 1] else permanentLastCell,
				neighbours = [left, right], 
				bothAlive = neighbours.every(alive.equals),
				bothDead = neighbours.every(dead.equals))
			if (bothAlive)
			then cell.opposite
			else if (cell == alive && bothDead)
			then dead
			else cell
		};
		
		if (newCells == cells) {
			return false;
		}
		
		newCells.copyTo(cells);
		return true;
	}
	
	string => permanentFirstCell.string + "".join(cells) + permanentLastCell.string;
}

shared Automata1D? automata1d(String string) => 
		let (cells = string.map((Character element) => cellsByCharacter[element]))
		if (cells.every((Cell? element) => element exists)) 
		then Automata1D(cells.coalesced) 
		else null;

shared void run() {

	assert (exists automata = automata1d("__###__##_#_##_###__######_###_#####_#__##_____#_#_#######__"));
	
	variable value generation = 0;
	print("generation ``generation`` ``automata``");
	while (automata.evolve() && generation<10) {
		print("generation `` ++generation `` ``automata``");
	}
}

Clojure

(ns one-dimensional-cellular-automata
  (:require (clojure.contrib (string :as s))))

(defn next-gen [cells]
  (loop [cs cells ncs (s/take 1 cells)]
    (let [f3 (s/take 3 cs)]
      (if (= 3 (count f3))
        (recur (s/drop 1 cs)
               (str ncs (if (= 2 (count (filter #(= \# %) f3))) "#" "_")))
        (str ncs (s/drop 1 cs))))))

(defn generate [n cells]
  (if (= n 0)
    '()
    (cons cells (generate (dec n) (next-gen cells)))))
one-dimensional-cellular-automata> (doseq [cells (generate 9 "_###_##_#_#_#_#__#__")]
  (println cells))
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
nil

Another way:

#!/usr/bin/env lein-exec

(require '[clojure.string :as str])

(def first-genr "_###_##_#_#_#_#__#__")

(def hospitable #{"_##"
                  "##_"
                  "#_#"})

(defn compute-next-genr
  [genr]
  (let [genr      (str "_" genr "_")
        groups    (map str/join (partition 3 1 genr))
        next-genr (for [g groups]
                    (if (hospitable g) \# \_))]
    (str/join next-genr)))

;; ---------------- main -----------------
(loop [g  first-genr
       i  0]
  (if (not= i 10)
    (do (println g)
        (recur (compute-next-genr g)
               (inc i)))))

Yet another way, easier to understand

(def rules
 {
    [0 0 0] 0
    [0 0 1] 0
    [0 1 0] 0
    [0 1 1] 1
    [1 0 0] 0
    [1 0 1] 1
    [1 1 0] 1
    [1 1 1] 0
  })

(defn nextgen [gen]
  (concat [0] 
          (->> gen
               (partition 3 1)
               (map vec)
               (map rules))
          [0]))

; Output time!
(doseq [g (take 10 (iterate nextgen [0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0]))]
  (println g))

COBOL

 Identification division.                                        
 Program-id. rc-1d-cell.                                         
 
 Data division.                                                  
 Working-storage section.                                        
 
*> "Constants."                                                  
 01 max-gens            pic  999  value   9.                     
 01 state-width         pic   99  value  20.                     
 01 state-table-init    pic x(20) value ".@@@.@@.@.@.@.@..@..".  
 01 alive               pic    x  value "@".                     
 01 dead                pic    x  value ".".                     
 
*> The current state.                                            
 01 state-gen           pic  999  value   0.                     
 01 state-row.                                                  
    05 state-row-gen   pic zz9.                                
    05 filler          pic  xx   value ": ".                   
    05 state-table.                                            
        10 state-cells pic   x   occurs 20 times.              
 
*> The new state.                                               
 01 new-state-table.                                            
    05 new-state-cells pic   x   occurs 20 times.              
 
*> Pointer into cell table during generational production.      
 01 cell-index          pic   99.                               
    88 at-beginning    value  1.                               
    88 is-inside       values 2 thru 19.                       
    88 at-end          value 20.                               
 
*> The cell's neighborhood.                         
 01 neighbor-count-def.                          
   03 neighbor-count      pic   9.
     88 is-comfy        value 1.                    
     88 is-ripe         value 2.                    
 
 Procedure division.                                
     Perform Init-state-table.                      
     Perform max-gens times                         
         perform Display-row                        
         perform Next-state                         
     end-perform.                                   
     Perform Display-row.                           
     Stop run.                                      
 
 Display-row.                                       
     Move state-gen to state-row-gen.     
     Display state-row.                   
 
*> Determine who lives and who dies.      
 Next-state.                              
     Add 1 to state-gen.                  
     Move state-table to new-state-table. 
 
     Perform with test after              
         varying cell-index from 1 by 1   
         until at-end                     
         perform Count-neighbors          
         perform Die-off                             
         perform New-births                          
     end-perform                                     
 
     move new-state-table to state-table.            
 
*> Living cell with wrong number of neighbors...     
 Die-off.                                            
     if state-cells(cell-index) =                    
     alive and not is-comfy    
         then move dead to new-state-cells(cell-index)           
     end-if                                                      
     .                                                           
 
*> Empty cell with exactly two neighbors are...                  
 New-births.                                                     
     if state-cells(cell-index) = dead and is-ripe
         then move alive to new-state-cells(cell-index)          
     end-if                                                      
    .                                                           
*> How many living neighbors does a cell have?                   
 Count-neighbors.                                                
     Move 0 to neighbor-count                        
     if at-beginning or at-end then                              
         add 1 to neighbor-count                      
     else                                                        
       if is-inside and state-cells(cell-index - 1) = alive        
       then                                                        
           add 1 to neighbor-count                     
       end-if                                                      
       if is-inside and state-cells(cell-index + 1) = alive        
       then                                                        
           add 1 to neighbor-count                     
       end-if                                                       
     end-if                                                        
     .                                                             
 
*> String is easier to enter, but table is easier to work with,    
*> so move each character of the initialization string to the      
*> state table.                                                    
 
 Init-state-table.                                                 
     Perform with test after                    
         varying cell-index from 1 by 1         
         until at-end                           
         move state-table-init(cell-index:1)    
           to state-cells(cell-index)           
      end-perform
      .
Output:
  0: .@@@.@@.@.@.@.@..@..
  1: .@.@@@@@.@.@.@......
  2: ..@@...@@.@.@.......
  3: ..@@...@@@.@........
  4: ..@@...@.@@.........
  5: ..@@....@@@.........
  6: ..@@....@.@.........
  7: ..@@.....@..........
  8: ..@@................
  9: ..@@................

=pre>###_##_#_#_#_#__#__

  1. _#####_#_#_#______

_##___##_#_#_______ _##___###_#________ _##___#_##_________ _##____###_________ _##____#_#_________ _##_____#__________ _##________________=CoffeeScript ==

# We could cheat and count the bits, but let's keep this general.
# . = dead, # = alive, middle cells survives iff one of the configurations
# below is satisified.
survival_scenarios = [
  '.##' # happy neighbors
  '#.#' # birth
  '##.' # happy neighbors
]

b2c = (b) -> if b then '#' else '.'

cell_next_gen = (left_alive, me_alive, right_alive) ->
  fingerprint = b2c(left_alive) + b2c(me_alive) + b2c(right_alive)
  fingerprint in survival_scenarios
  
cells_for_next_gen = (cells) ->
  # This function assumes a finite array, i.e. cells can't be born outside
  # the original array.
  (cell_next_gen(cells[i-1], cells[i], cells[i+1]) for i in [0...cells.length])
  
display = (cells) ->
  (b2c(is_alive) for is_alive in cells).join ''
    
simulate = (cells) ->
  while true
    console.log display cells
    new_cells = cells_for_next_gen cells
    break if display(cells) == display(new_cells)
    cells = new_cells
  console.log "equilibrium achieved"
    
simulate (c == '#' for c in ".###.##.#.#.#.#..#..")
Output:
> coffee cellular_automata.coffee 
.###.##.#.#.#.#..#..
.#.#####.#.#.#......
..##...##.#.#.......
..##...###.#........
..##...#.##.........
..##....###.........
..##....#.#.........
..##.....#..........
..##................
equilibrium achieved


Common Lisp

Based upon the Ruby version.

(defun value (x)
  (assert (> (length x) 1))
  (coerce x 'simple-bit-vector))

(defun count-neighbors-and-self (value i)
  (flet ((ref (i)
           (if (array-in-bounds-p value i)
               (bit value i)
               0)))
    (declare (inline ref))
    (+ (ref (1- i))
       (ref i)
       (ref (1+ i)))))

(defun next-cycle (value)
  (let ((new-value (make-array (length value) :element-type 'bit)))
    (loop for i below (length value)
          do (setf (bit new-value i)
                   (if (= 2 (count-neighbors-and-self value i))
                       1
                       0)))
    new-value))

(defun print-world (value &optional (stream *standard-output*))
  (loop for i below (length value)
        do (princ (if (zerop (bit value i)) #\. #\#)
                  stream))
  (terpri stream))
CL-USER> (loop for previous-value = nil then value
               for value = #*01110110101010100100 then (next-cycle value)
               until (equalp value previous-value)
               do (print-world value))
.###.##.#.#.#.#..#..
.#.#####.#.#.#......
..##...##.#.#.......
..##...###.#........
..##...#.##.........
..##....###.........
..##....#.#.........
..##.....#..........
..##................

D

void main() {
   import std.stdio, std.algorithm;

   enum nGenerations = 10;
   enum initial = "0011101101010101001000";
   enum table = "00010110";

   char[initial.length + 2] A = '0', B = '0';
   A[1 .. $-1] = initial;
   foreach (immutable _; 0 .. nGenerations) {
      foreach (immutable i; 1 .. A.length - 1) {
         write(A[i] == '0' ? '_' : '#');
         const val = (A[i-1]-'0' << 2) | (A[i]-'0' << 1) | (A[i+1]-'0');
         B[i] = table[val];
      }
      A.swap(B);
      writeln;
   }
}
Output:
__###_##_#_#_#_#__#___
__#_#####_#_#_#_______
___##___##_#_#________
___##___###_#_________
___##___#_##__________
___##____###__________
___##____#_#__________
___##_____#___________
___##_________________
___##_________________

Alternative Version

Translation of: Raku
void main() {
    import std.stdio, std.algorithm, std.range;

    auto A = "_###_##_#_#_#_#__#__".map!q{a == '#'}.array;
    auto B = A.dup;

    do {
        A.map!q{ "_#"[a] }.writeln;
        A.zip(A.cycle.drop(1), A.cycle.drop(A.length - 1))
        .map!(t => [t[]].sum == 2).copy(B);
        A.swap(B);
    } while (A != B);
}
Output:
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________

Alternative Version II

This version saves memory representing the state in an array of bits. For a higher performance a SWAR approach should be tried.

Translation of: C++
void main() {
    import std.stdio, std.algorithm, std.range, std.bitmanip;

    immutable initial = "__###_##_#_#_#_#__#___";
    enum nGenerations = 10;
    BitArray A, B;
    A.init(initial.map!(c => c == '#').array);
    B.length = initial.length;

    foreach (immutable _; 0 .. nGenerations) {
        //A.map!(b => b ? '#' : '_').writeln;
        //foreach (immutable i, immutable b; A) {
        foreach (immutable i; 1 .. A.length - 1) {
            "_#"[A[i]].write;
            immutable val = (uint(A[i - 1]) << 2) |
                            (uint(A[i])     << 1) |
                             uint(A[i + 1]);
            B[i] = val == 3 || val == 5 || val == 6;
        }

        writeln;
        A.swap(B);
    }
}

The output is the same as the second version.

DWScript

const ngenerations = 10;
const table = [0, 0, 0, 1, 0, 1, 1, 0];

var a := [0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0];
var b := a;

var i, j : Integer;
for i := 1 to ngenerations do begin
   for j := a.low+1 to a.high-1 do begin
      if a[j] = 0 then
         Print('_')
      else Print('#');
      var val := (a[j-1] shl 2) or (a[j] shl 1) or a[j+1];
      b[j] := table[val];
   end;
   var tmp := a;
   a := b;
   b := tmp;
   PrintLn('');
end;
Output:
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________

Déjà Vu

new-state size:
	0 ]
	repeat size:
		random-range 0 2
	[ 0

update s1 s2:
	for i range 1 - len s1 2:
		s1! -- i
		s1!    i
		s1! ++ i
		+ +
		set-to s2 i = 2
	s2 s1

print-state s:
	for i range 1 - len s 2:
		!print\ s! i
	!print ""

same-state s1 s2:
	for i range 1 - len s1 2:
		if /= s1! i s2! i:
			return false
	true

run size:
	new-state size
	new-state size
	while true:
		update
		print-state over
		if same-state over over:
			return print-state drop

run 60
Output:
001110011010110111001111110111011111010011000001010111111100
001010011101111101001000011101110001100011000000101100000100
000100010111000110000000010111010001100011000000011100000000
000000001101000110000000001101100001100011000000010100000000
000000001110000110000000001111100001100011000000001000000000
000000001010000110000000001000100001100011000000000000000000
000000000100000110000000000000000001100011000000000000000000
000000000000000110000000000000000001100011000000000000000000
000000000000000110000000000000000001100011000000000000000000


Delphi

Works with: Delphi version 6.0


type TGame = string[20];
type TPattern = string[3];

function GetSubPattern(Game: TGame; Inx: integer): TPattern;
{Get the pattern of three cells adjacent to Inx}
var I: integer;
begin
Result:='';
{Cells off the ends of the array are consider empty}
for I:=Inx-1 to Inx+1 do
 if (I<1) or (I>Length(Game)) then Result:=Result+' '
 else Result:=Result+Game[I];
end;

function GetNewValue(P: TPattern): char;
{Calculate the new value for a cell based}
{the pattern of neighboring cells}
begin
if      P='   ' then Result:=' '	{ No change}
else if P='  #' then Result:=' '	{ No change}
else if P=' # ' then Result:=' '	{ Dies without enough neighbours}
else if P=' ##' then Result:='#'	{ Needs one neighbour to survive}
else if P='#  ' then Result:=' '	{ No change}
else if P='# #' then Result:='#'	{ Two neighbours giving birth}
else if P='## ' then Result:='#'	{ Needs one neighbour to survive}
else if P='###' then Result:=' ';	{ Starved to death.}
end;


procedure CellularlAutoGame(Memo: TMemo);
{Iterate through steps of evolution of cellular automaton}
var GameArray,NextArray: TGame;
var P: string [3];
var I,G: integer;
begin
{Start arrangement}
GameArray:=' ### ## # # # #  #  ';
for G:=1 to 10 do
	begin
	{Display current game situation}
	Memo.Lines.Add(GameArray);
	{Evolve each cell in the array}
	for I:=1 to Length(GameArray) do
		begin
		P:=GetSubPattern(GameArray,I);
	   	NextArray[I]:=GetNewValue(P);
	   	end;
	GameArray:=NextArray;
	end;
end;
Output:
 ### ## # # # #  #  
 # ##### # # #      
  ##   ## # #       
  ##   ### #        
  ##   # ##         
  ##    ###         
  ##    # #         
  ##     #          
  ##                
  ##                
Elapsed Time: 9.784 ms.

E

def step(state, rule) {
    var result := state(0, 1) # fixed left cell
    for i in 1..(state.size() - 2) {
        # Rule function receives the substring which is the neighborhood
        result += E.toString(rule(state(i-1, i+2)))
    }
    result += state(state.size() - 1) # fixed right cell
    return result
}

def play(var state, rule, count, out) {
    out.print(`0 | $state$\n`)
    for i in 1..count {
        state := step(state, rosettaRule)
        out.print(`$i | $state$\n`)
    }
    return state
}
def rosettaRule := [
    "   " => " ",
    "  #" => " ",
    " # " => " ",
    " ##" => "#",
    "#  " => " ",
    "# #" => "#",
    "## " => "#",
    "###" => " ",
].get

? play("  ### ## # # # #  #   ", rosettaRule, 9, stdout)
0 |   ### ## # # # #  #   
1 |   # ##### # # #       
2 |    ##   ## # #        
3 |    ##   ### #         
4 |    ##   # ##          
5 |    ##    ###          
6 |    ##    # #          
7 |    ##     #           
8 |    ##                 
9 |    ##                 
# value: "   ##                 "

EasyLang

map[] = [ 0 0 0 1 0 1 1 0 ]
cell[] = [ 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 ]
len celln[] len cell[]
proc evolve . .
   for i = 2 to len cell[] - 1
      ind = cell[i - 1] + 2 * cell[i] + 4 * cell[i + 1] + 1
      celln[i] = map[ind]
   .
   swap celln[] cell[]
.
proc show . .
   for v in cell[]
      if v = 1
         write "#"
      else
         write "."
      .
   .
   print ""
.
show
for i to 9
   evolve
   show
.
Output:
.###.##.#.#.#.#..#..
.#.#####.#.#.#......
..##...##.#.#.......
..##...###.#........
..##...#.##.........
..##....###.........
..##....#.#.........
..##.....#..........
..##................
..##................

Eiffel

class
	APPLICATION

create
	make

feature

	make
			-- First 10 states of the cellular automata.
		local
			r: RANDOM
			automata: STRING
		do
			create r.make
			create automata.make_empty
			across
				1 |..| 10 as c
			loop
				if r.double_item < 0.5 then
					automata.append ("0")
				else
					automata.append ("1")
				end
				r.forth
			end
			across
				1 |..| 10 as c
			loop
				io.put_string (automata + "%N")
				automata := update (automata)
			end
		end

	update (s: STRING): STRING
			-- Next state of the cellular automata 's'.
		require
			enough_states: s.count > 1
		local
			i: INTEGER
		do
			create Result.make_empty
				-- Dealing with the left border.
			if s [1] = '1' and s [2] = '1' then
				Result.append ("1")
			else
				Result.append ("0")
			end
				-- Dealing with the middle cells.
			from
				i := 2
			until
				i = s.count
			loop
				if (s [i] = '0' and (s [i - 1] = '0' or (s [i - 1] = '1' and s [i + 1] = '0'))) or ((s [i] = '1') and ((s [i - 1] = '1' and s [i + 1] = '1') or (s [i - 1] = '0' and s [i + 1] = '0'))) then
					Result.append ("0")
				else
					Result.append ("1")
				end
				i := i + 1
			end
				-- Dealing with the right border.
			if s [s.count] = '1' and s [s.count - 1] = '1' then
				Result.append ("1")
			else
				Result.append ("0")
			end
		ensure
			has_same_length: s.count = Result.count
		end

end
Output:
1011101110
0110111010
0111101100
0100111100
0000100100
0000000000
0000000000
0000000000
0000000000
0000000000

Elixir

Translation of: Ruby
defmodule RC do
  def run(list, gen \\ 0) do
    print(list, gen)
    next = evolve(list)
    if next == list, do: print(next, gen+1), else: run(next, gen+1)
  end
  
  defp evolve(list), do: evolve(Enum.concat([[0], list, [0]]), [])
  
  defp evolve([a,b,c],      next), do: Enum.reverse([life(a,b,c) | next])
  defp evolve([a,b,c|rest], next), do: evolve([b,c|rest], [life(a,b,c) | next])
  
  defp life(a,b,c), do: (if a+b+c == 2, do: 1, else: 0)
  
  defp print(list, gen) do
    str = "Generation #{gen}: "
    IO.puts Enum.reduce(list, str, fn x,s -> s <> if x==0, do: ".", else: "#" end)
  end
end

RC.run([0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0])
Output:
Generation 0: .###.##.#.#.#.#..#..
Generation 1: .#.#####.#.#.#......
Generation 2: ..##...##.#.#.......
Generation 3: ..##...###.#........
Generation 4: ..##...#.##.........
Generation 5: ..##....###.........
Generation 6: ..##....#.#.........
Generation 7: ..##.....#..........
Generation 8: ..##................
Generation 9: ..##................

Elm

import Maybe exposing (withDefault)
import List exposing (length, tail, reverse, concat, head, append, map3)
import Html exposing (Html, div, h1, text)
import String exposing (join)
import Svg exposing (svg)
import Svg.Attributes exposing (version, width, height, viewBox,cx,cy, fill, r)
import Html.App exposing (program)
import Random exposing (step, initialSeed, bool, list)
import Matrix exposing (fromList, mapWithLocation, flatten)  -- chendrix/elm-matrix
import Time exposing (Time, second, every)

type alias Model = { history : List (List Bool)
                   , cols : Int
                   , rows : Int
                   }

view : Model -> Html Msg
view model = 
  let 
    circleInBox (row,col) value = 
      if value 
      then [ Svg.circle [ r "0.3"
                        , fill ("purple")
                        , cx (toString (toFloat col + 0.5))
                        , cy (toString (toFloat row + 0.5))
                        ]            
                        []  
           ]
      else []

    showHistory model = 
      model.history 
        |> reverse
        |> fromList
        |> mapWithLocation circleInBox 
        |> flatten 
        |> concat 
  in
    div []
        [ h1 [] [text "One Dimensional Cellular Automata"]
        , svg [ version "1.1"
              , width "700"
              , height "700"
              , viewBox (join " "
                           [ 0 |> toString
                           , 0 |> toString
                           , model.cols |> toString
                           , model.rows |> toString
                           ]
                        )
              ] 
              (showHistory model)
        ]

update : Msg -> Model -> (Model, Cmd Msg)
update msg model = 
  if length model.history == model.rows
  then (model, Cmd.none)
  else
    let s1 = model.history |> head |> withDefault []
        s0 = False :: s1
        s2 = append (tail s1 |> withDefault []) [False]
    
        gen d0 d1 d2 = 
          case (d0,d1,d2) of
            (False,  True,  True) -> True
            ( True, False,  True) -> True
            ( True,  True, False) -> True
            _                     -> False

        updatedHistory = map3 gen s0 s1 s2 :: model.history
        updatedModel = {model | history = updatedHistory}
    in (updatedModel, Cmd.none)
    

init : Int -> (Model, Cmd Msg)
init n = 
  let gen1 = fst (step (list n bool) (initialSeed 34))
  in ({ history = [gen1], rows = n, cols= n }, Cmd.none)

type Msg = Tick Time 

subscriptions model = every (0.2 * second) Tick

main = program 
         {  init = init 40
         ,  view = view
         ,  update = update
         ,  subscriptions = subscriptions
         }

Link to live demo: https://dc25.github.io/oneDimensionalCellularAutomataElm/

Erlang

-module(ca).
-compile(export_all).

run(N,G) ->
    run(N,G,0).

run(GN,G,GN) ->
    io:fwrite("~B: ",[GN]),
    print(G);
run(N,G,GN) ->
    io:fwrite("~B: ",[GN]),
    print(G),
    run(N,next(G),GN+1).

print([]) ->
    io:fwrite("~n");
print([0|T]) ->
    io:fwrite("_"),
    print(T);
print([1|T]) ->
    io:fwrite("#"),
    print(T).

next([]) ->
    [];
next([_]) ->
    [0];
next([H,1|_]=G) ->
    next(G,[H]);
next([_|_]=G) ->
    next(G,[0]).

next([],Acc) ->
    lists:reverse(Acc);
next([0,_],Acc) ->   
    next([],[0|Acc]);
next([1,X],Acc) ->   
    next([],[X|Acc]);
next([0,X,0|T],Acc) ->
    next([X,0|T],[0|Acc]);
next([1,X,0|T],Acc) ->
    next([X,0|T],[X|Acc]);
next([0,X,1|T],Acc) ->
    next([X,1|T],[X|Acc]);
next([1,0,1|T],Acc) ->
    next([0,1|T],[1|Acc]);
next([1,1,1|T],Acc) ->
    next([1,1|T],[0|Acc]).

Example execution:

44> ca:run(9,[0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0]).
0: __###_##_#_#_#_#__#___
1: __#_#####_#_#_#_______
2: ___##___##_#_#________
3: ___##___###_#_________
4: ___##___#_##__________
5: ___##____###__________
6: ___##____#_#__________
7: ___##_____#___________
8: ___##_________________
9: ___##_________________

ERRE

PROGRAM ONEDIM_AUTOMATA

! for rosettacode.org
!

!VAR I,J,N,W,K

!$DYNAMIC
DIM X[0],X2[0]

BEGIN

   DATA(20,0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0)

   PRINT(CHR$(12);)
   N=20      ! number of generation required
   READ(W)
   !$DIM X[W+1],X2[W+1]
   FOR I=1 TO W DO
      READ(X[I])
   END FOR
   FOR K=1 TO N DO
      PRINT("Generation";K;TAB(16);)
      FOR J=1 TO W DO
         IF X[J]=1 THEN PRINT("#";)  ELSE PRINT("_";) END IF
         IF X[J-1]+X[J]+X[J+1]=2 THEN X2[J]=1 ELSE X2[J]=0 END IF
      END FOR
      PRINT
      FOR J=1 TO W DO
         X[J]=X2[J]
      END FOR
   END FOR
END PROGRAM
Output:
Generation 1   _###_##_#_#_#_#__#__
Generation 2   _#_#####_#_#_#______
Generation 3   __##___##_#_#_______
Generation 4   __##___###_#________
Generation 5   __##___#_##_________
Generation 6   __##____###_________
Generation 7   __##____#_#_________
Generation 8   __##_____#__________
Generation 9   __##________________
Generation 10  __##________________
Generation 11  __##________________
Generation 12  __##________________
Generation 13  __##________________
Generation 14  __##________________
Generation 15  __##________________
Generation 16  __##________________
Generation 17  __##________________
Generation 18  __##________________
Generation 19  __##________________
Generation 20  __##________________

Euphoria

include machine.e

function rules(integer tri)
    return tri = 3 or tri = 5 or tri = 6
end function

function next_gen(atom gen)
    atom new, bit
    new = rules(and_bits(gen,3)*2) -- work with the first bit separately
    bit = 2
    while gen > 0 do
        new += bit*rules(and_bits(gen,7))
        gen = floor(gen/2) -- shift right
        bit *= 2 -- shift left
    end while
    return new
end function

constant char_clear = '_', char_filled = '#'

procedure print_gen(atom gen)
    puts(1, int_to_bits(gen,32) * (char_filled - char_clear) + char_clear)
    puts(1,'\n')
end procedure

function s_to_gen(sequence s)
    s -= char_clear
    return bits_to_int(s)
end function

atom gen, prev
integer n

n = 0
prev = 0
gen = bits_to_int(rand(repeat(2,32))-1)
while gen != prev do
    printf(1,"Generation %d: ",n)
    print_gen(gen)
    prev = gen
    gen = next_gen(gen)
    n += 1
end while

printf(1,"Generation %d: ",n)
print_gen(gen)
Output:
Generation 0: ####__#_###_#_#_#_#_##___##_##__
Generation 1: ___#___##_##_#_#_#_###___#####__
Generation 2: _______######_#_#_##_#___#___#__
Generation 3: _______#____##_#_####___________
Generation 4: ____________###_##__#___________
Generation 5: ____________#_####______________
Generation 6: _____________##__#______________
Generation 7: _____________##_________________
Generation 8: _____________##_________________

Factor

USING: bit-arrays io kernel locals math sequences ;
IN: cellular

: bool-sum ( bool1 bool2 -- sum )
    [ [ 2 ] [ 1 ] if ]
    [ [ 1 ] [ 0 ] if ] if ;
:: neighbours ( index world -- # )
    index [ 1 - ] [ 1 + ] bi [ world ?nth ] bi@ bool-sum ;
: count-neighbours ( world -- neighbours )
    [ length iota ] keep [ neighbours ] curry map ;

: life-law ( alive? neighbours -- alive? )
    swap [ 1 = ] [ 2 = ] if ;
: step ( world -- world' )
    dup count-neighbours [ life-law ] ?{ } 2map-as ;
: print-cellular ( world -- )
    [ CHAR: # CHAR: _ ? ] "" map-as print ;
: main-cellular ( -- )
    ?{ f t t t f t t f t f t f t f t f f t f f }
    10 [ dup print-cellular step ] times print-cellular ;
MAIN: main-cellular
( scratchpad ) "cellular" run
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________
__##________________

Fantom

class Automaton
{
  static Int[] evolve (Int[] array)
  {
    return array.map |Int x, Int i -> Int|
    {
      if (i == 0) 
        return ( (x + array[1] == 2) ? 1 : 0)
      else if (i == array.size-1)
        return ( (x + array[-2] == 2) ? 1 : 0)
      else if (x + array[i-1] + array[i+1] == 2)
        return 1
      else
        return 0      
    }
  }

  public static Void main () 
  {
    Int[] array := [0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
    echo (array.join(""))
    Int[] newArray := evolve(array)
    while (newArray != array)
    {
      echo (newArray.join(""))
      array = newArray
      newArray = evolve(array)
    }
  }
}

FOCAL

1.1 S OLD(2)=1; S OLD(3)=1; S OLD(4)=1; S OLD(6)=1; S OLD(7)=1
1.2 S OLD(9)=1; S OLD(11)=1; S OLD(13)=1; S OLD(15)=1; S OLD(18)=1
1.3 F N=1,10; D 2
1.4 Q

2.1 F X=1,20; D 3
2.2 F X=1,20; D 6
2.3 F X=1,20; S OLD(X)=NEW(X)
2.4 T !

3.1 I (OLD(X-1)+OLD(X)+OLD(X+1)-2)4.1,5.1,4.1

4.1 S NEW(X)=0

5.1 S NEW(X)=1

6.1 I (-OLD(X))7.1,8.1,8.1

7.1 T "#"

8.1 T "."
Output:
.###.##.#.#.#.#..#..
.#.#####.#.#.#......
..##...##.#.#.......
..##...###.#........
..##...#.##.........
..##....###.........
..##....#.#.........
..##.....#..........
..##................
..##................

Forth

: init ( bits count -- )
  0 do dup 1 and c, 2/ loop drop ;

20 constant size
create state $2556e size init 0 c,

: .state
  cr size 0 do
    state i + c@ if ." #" else space then
  loop ;

: ctable create does> + c@ ;
ctable rules $68 8 init

: gen
  state c@ ( window )
  size 0 do
    2*  state i + 1+ c@ or  7 and
    dup rules state i + c!
  loop drop ;

: life1d ( n -- )
  .state 1 do gen .state loop ;

10 life1d

ouput

 ### ## # # # #  #  
 # ##### # # #      
  ##   ## # #       
  ##   ### #        
  ##   # ##         
  ##    ###         
  ##    # #         
  ##     #          
  ##                
  ##                 ok

Fortran

Works with: Fortran version 90 and later
PROGRAM LIFE_1D
   
  IMPLICIT NONE

  LOGICAL :: cells(20) = (/ .FALSE., .TRUE., .TRUE., .TRUE., .FALSE., .TRUE., .TRUE., .FALSE., .TRUE., .FALSE., &
                            .TRUE., .FALSE., .TRUE., .FALSE., .TRUE., .FALSE., .FALSE., .TRUE., .FALSE., .FALSE. /)
  INTEGER :: i
  
  DO i = 0, 9
     WRITE(*, "(A,I0,A)", ADVANCE = "NO") "Generation ", i, ": "
     CALL Drawgen(cells)
     CALL Nextgen(cells)
  END DO

CONTAINS

  SUBROUTINE Nextgen(cells)
    LOGICAL, INTENT (IN OUT) :: cells(:)
    LOGICAL :: left, centre, right
    INTEGER :: i
   
    left = .FALSE.
    DO i = 1, SIZE(cells)-1
       centre = cells(i)
       right = cells(i+1)
       IF (left .AND. right) THEN
          cells(i) = .NOT. cells(i)
       ELSE IF (.NOT. left .AND. .NOT. right) THEN
          cells(i) = .FALSE.
       END IF
       left = centre
    END DO
    cells(SIZE(cells)) = left .AND. right
  END SUBROUTINE Nextgen

  SUBROUTINE Drawgen(cells)
    LOGICAL, INTENT (IN OUT) :: cells(:)
    INTEGER :: i
   
    DO i = 1, SIZE(cells)
       IF (cells(i)) THEN
          WRITE(*, "(A)", ADVANCE = "NO") "#"
       ELSE
          WRITE(*, "(A)", ADVANCE = "NO") "_"
       END IF
    END DO
    WRITE(*,*)
  END SUBROUTINE Drawgen
  
END PROGRAM LIFE_1D
Output:
 Generation 0: _###_##_#_#_#_#__#__ 
 Generation 1: _#_#####_#_#_#______ 
 Generation 2: __##___##_#_#_______ 
 Generation 3: __##___###_#________ 
 Generation 4: __##___#_##_________ 
 Generation 5: __##____###_________ 
 Generation 6: __##____#_#_________ 
 Generation 7: __##_____#__________ 
 Generation 8: __##________________ 
 Generation 9: __##________________

Go

Sequential

package main

import "fmt"

const (
    start    = "_###_##_#_#_#_#__#__"
    offLeft  = '_'
    offRight = '_'
    dead     = '_'
)

func main() {
    fmt.Println(start)
    g := newGenerator(start, offLeft, offRight, dead)
    for i := 0; i < 10; i++ {
        fmt.Println(g())
    }
}

func newGenerator(start string, offLeft, offRight, dead byte) func() string {
    g0 := string(offLeft) + start + string(offRight)
    g1 := []byte(g0)
    last := len(g0) - 1
    return func() string {
        for i := 1; i < last; i++ {
            switch l := g0[i-1]; {
            case l != g0[i+1]:
                g1[i] = g0[i]
            case g0[i] == dead:
                g1[i] = l
            default:
                g1[i] = dead
            }
        }
        g0 = string(g1)
        return g0[1:last]
    }
}
Output:
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________
__##________________

Concurrent

Computations run on each cell concurrently. Separate read and write phases. Single array of cells.

package main

import (
    "fmt"
    "sync"
)

const (
    start    = "_###_##_#_#_#_#__#__"
    offLeft  = '_'
    offRight = '_'
    dead     = '_'
)

func main() {
    fmt.Println(start)
    a := make([]byte, len(start)+2)
    a[0] = offLeft
    copy(a[1:], start)
    a[len(a)-1] = offRight
    var read, write sync.WaitGroup
    read.Add(len(start) + 1)
    for i := 1; i <= len(start); i++ {
        go cell(a[i-1:i+2], &read, &write)
    }
    for i := 0; i < 10; i++ {
        write.Add(len(start) + 1)
        read.Done()
        read.Wait()
        read.Add(len(start) + 1)
        write.Done()
        write.Wait()
        fmt.Println(string(a[1 : len(a)-1]))
    }
}

func cell(kernel []byte, read, write *sync.WaitGroup) {
    var next byte
    for {
        l, v, r := kernel[0], kernel[1], kernel[2]
        read.Done()
        switch {
        case l != r:
            next = v
        case v == dead:
            next = l
        default:
            next = dead
        }
        read.Wait()
        kernel[1] = next
        write.Done()
        write.Wait()
    }
}

Output is same as sequential version.

Groovy

Solution:

def life1D = { self ->
    def right = self[1..-1] + [false]
    def left = [false] + self[0..-2]
    [left, self, right].transpose().collect { hood -> hood.count { it } == 2 }
}

Test:

def cells = ('_###_##_#_#_#_#__#__' as List).collect { it == '#' }
println "Generation 0: ${cells.collect { g -> g ? '#' : '_' }.join()}"
(1..9).each {
    cells = life1D(cells)
    println "Generation ${it}: ${cells.collect { g -> g ? '#' : '_' }.join()}"
}
Output:
Generation 0: _###_##_#_#_#_#__#__
Generation 1: _#_#####_#_#_#______
Generation 2: __##___##_#_#_______
Generation 3: __##___###_#________
Generation 4: __##___#_##_________
Generation 5: __##____###_________
Generation 6: __##____#_#_________
Generation 7: __##_____#__________
Generation 8: __##________________
Generation 9: __##________________

Haskell

import Data.List (unfoldr)
import System.Random (newStdGen, randomRs)

bnd :: String -> Char
bnd "_##" = '#'
bnd "#_#" = '#'
bnd "##_" = '#'
bnd _ = '_'

nxt :: String -> String
nxt = unfoldr go . ('_' :) . (<> "_")
  where
    go [_, _] = Nothing
    go xs = Just (bnd $ take 3 xs, drop 1 xs)

lahmahgaan :: String -> [String]
lahmahgaan xs =
  init
    . until
      ((==) . last <*> last . init)
      ((<>) <*> pure . nxt . last)
    $ [xs, nxt xs]

main :: IO ()
main =
  newStdGen
    >>= ( mapM_ putStrLn . lahmahgaan
            . map ("_#" !!)
            . take 36
            . randomRs (0, 1)
        )
Output:

For example:

_##_#_#__#_#_#_#_###_#######_#_#__##
_###_#____#_#_#_##_###_____##_#___##
_#_##______#_#_#####_#_____###____##
__###_______#_##___##______#_#____##
__#_#________###___##_______#_____##
___#_________#_#___##_____________##
______________#____##_____________##
___________________##_____________##

Icon and Unicon

# One dimensional Cellular automaton
record Automaton(size, cells)

procedure make_automaton (size, items)
  automaton := Automaton (size, items)
  while (*items < size) do push (automaton.cells, 0)
  return automaton
end

procedure automaton_display (automaton)
  every (write ! automaton.cells)
end

procedure automaton_evolve (automaton)
  revised := make_automaton (automaton.size, [])
  # do the left-most cell
  if ((automaton.cells[1] + automaton.cells[2]) = 2) then
    revised.cells[1] := 1
  # do the right-most cell
  if ((automaton.cells[automaton.size] + automaton.cells[automaton.size-1]) = 2) then
    revised.cells[revised.size] := 1
  # do the intermediate cells
  every (i := 2 to (automaton.size-1)) do {
    if ((automaton.cells[i-1] + automaton.cells[i] + automaton.cells[i+1]) = 2) then
      revised.cells[i] := 1
  }
  return revised
end

procedure main ()
  automaton := make_automaton (20, [0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0])
  every (1 to 10) do { # generations
    automaton_display (automaton)
    automaton := automaton_evolve (automaton)
  }
end

An alternative approach is to represent the automaton as a string. The following solution takes advantage of the implicit type coercions between string and numeric values in Icon and Unicon. It also surrounds the automaton with a border of 'dead' (always 0) cells to eliminate the need to special case the first and last cells in the automaton. Although the main procedure displays up to the first 10 generations, the evolve procedure fails if a new generation is unchanged from the previous, stopping the generation cycle early.

procedure main(A)
  A := if *A = 0 then ["01110110101010100100"]
  CA := show("0"||A[1]||"0")        # add always dead border cells
  every CA := show(|evolve(CA)\10)  # limit to max of 10 generations
end
 
procedure show(ca)
  write(ca[2:-1])                   # omit border cells
  return ca
end
 
procedure evolve(CA)
  newCA := repl("0",*CA)
  every newCA[i := 2 to (*CA-1)] := (CA[i-1]+CA[i]+CA[i+1] = 2, "1")
  return CA ~== newCA               # fail if no change
end
A couple of sample runs:
->odca
01110110101010100100
01011111010101000000
00110001101010000000
00110001110100000000
00110001011000000000
00110000111000000000
00110000101000000000
00110000010000000000
00110000000000000000
->odca 01110110
01110110
01011110
00110010
00110000
->

Insitux

(function next cells
  (... str
    (map (comp str (count ["#"]) (= 2) #(% "#" "_"))
         (str "_" cells)
         cells
         (str (skip 1 cells) "_"))))

(function generate n cells
 (join "\n" (reductions next cells (range n))))
Output:

Invoking (generate 9 "_###_##_#_#_#_#__#__")

_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________

J

life1d=: '_#'{~ (2 = 3+/\ 0,],0:)^:a:
Example use:
   life1d ? 20 # 2
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________

Alternative implementation:

Rule=:2 :0 NB. , m: number of generations, n: rule number
  '_#'{~ (3 ((|.n#:~8#2) {~ #.)\ 0,],0:)^:(i.m)
)
Example use:
   9 Rule 104 '#'='_###_##_#_#_#_#__#__'
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________

Java

This example requires a starting generation of at least length two (which is what you need for anything interesting anyway).

public class Life{
	public static void main(String[] args) throws Exception{
		String start= "_###_##_#_#_#_#__#__";
		int numGens = 10;
		for(int i= 0; i < numGens; i++){
			System.out.println("Generation " + i + ": " + start);
			start= life(start);
		}
	}

	public static String life(String lastGen){
		String newGen= "";
		for(int i= 0; i < lastGen.length(); i++){
			int neighbors= 0;
			if (i == 0){//left edge
				neighbors= lastGen.charAt(1) == '#' ? 1 : 0;
			} else if (i == lastGen.length() - 1){//right edge
				neighbors= lastGen.charAt(i - 1) == '#' ? 1 : 0;
			} else{//middle
				neighbors= getNeighbors(lastGen.substring(i - 1, i + 2));
			}

			if (neighbors == 0){//dies or stays dead with no neighbors
				newGen+= "_";
			}
			if (neighbors == 1){//stays with one neighbor
				newGen+= lastGen.charAt(i);
			}
			if (neighbors == 2){//flips with two neighbors
				newGen+= lastGen.charAt(i) == '#' ? "_" : "#";
			}
		}
		return newGen;
	}

	public static int getNeighbors(String group){
		int ans= 0;
		if (group.charAt(0) == '#') ans++;
		if (group.charAt(2) == '#') ans++;
		return ans;
	}
}
Output:
Generation 0: _###_##_#_#_#_#__#__
Generation 1: _#_#####_#_#_#______ 
Generation 2: __##___##_#_#_______
Generation 3: __##___###_#________
Generation 4: __##___#_##_________
Generation 5: __##____###_________
Generation 6: __##____#_#_________
Generation 7: __##_____#__________
Generation 8: __##________________
Generation 9: __##________________
Translation of: C

In this version, b is replaced by a backup which is local to the evolve method, and the evolve method returns a boolean.

public class Life{
	private static char[] trans = "___#_##_".toCharArray();

	private static int v(StringBuilder cell, int i){
		return (cell.charAt(i) != '_') ? 1 : 0;
	}

	public static boolean evolve(StringBuilder cell){
		boolean diff = false;
		StringBuilder backup = new StringBuilder(cell.toString());

		for(int i = 1; i < cell.length() - 3; i++){
			/* use left, self, right as binary number bits for table index */
			backup.setCharAt(i, trans[v(cell, i - 1) * 4 + v(cell, i) * 2
			      					+ v(cell, i + 1)]);
			diff = diff || (backup.charAt(i) != cell.charAt(i));
		}

		cell.delete(0, cell.length());//clear the buffer
		cell.append(backup);//replace it with the new generation
		return diff;
	}

	public static void main(String[] args){
		StringBuilder  c = new StringBuilder("_###_##_#_#_#_#__#__\n");

		do{
			System.out.printf(c.substring(1));
		}while(evolve(c));
	}
}
Output:
###_##_#_#_#_#__#__
#_#####_#_#_#______
_##___##_#_#_______
_##___###_#________
_##___#_##_________
_##____###_________
_##____#_#_________
_##_____#__________
_##________________

JavaScript

The example below expects an array of 1s or 0s, as in the example. It also adds dead cells to both ends, which aren't included in the returned next generation.

state[i-1] refers to the new cell in question, (old[i] == 1) checks if the old cell was alive.

function caStep(old) {
  var old = [0].concat(old, [0]); // Surround with dead cells.
  var state = []; // The new state.
  
  for (var i=1; i<old.length-1; i++) {
    switch (old[i-1] + old[i+1]) {
      case 0: state[i-1] = 0; break;
      case 1: state[i-1] = (old[i] == 1) ? 1 : 0; break;
      case 2: state[i-1] = (old[i] == 1) ? 0 : 1; break;
    }
  }
  return state;
}
Example usage:
alert(caStep([0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]));

shows an alert with "0,1,0,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0".

jq

The main point of interest in the following is perhaps the way the built-in function "recurse" is used to continue the simulation until quiescence.

# The 1-d cellular automaton:
def next:
   # Conveniently, jq treats null as 0 when it comes to addition
   # so there is no need to fiddle with the boundaries
  . as $old
  | reduce range(0; length) as $i
    ([];
     ($old[$i-1] + $old[$i+1]) as $s
     | if   $s == 0 then .[$i] = 0
       elif $s == 1 then .[$i] = (if $old[$i] == 1 then 1 else 0 end)
       else              .[$i] = (if $old[$i] == 1 then 0 else 1 end)
       end);


# pretty-print an array:
def pp: reduce .[] as $i (""; . + (if $i == 0 then " " else "*" end));

# continue until quiescence:
def go: recurse(. as $prev | next | if . == $prev then empty else . end) | pp;

# Example:
[0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0] | go
Output:
$ jq -c -r -n -f One-dimensional_cellular_automata.jq
 *** ** * * * *  *  
 * ***** * * *      
  **   ** * *       
  **   *** *        
  **   * **         
  **    ***         
  **    * *         
  **     *          
  **

Julia

Julia: Implementation as a function accepting a Vector of Bool

automaton(g::Vector{Bool}) =
    for i  0:9
    	println(join(alive ? '#' : '_' for alive  g))
	    g = ([false; g[1:end-1]] .+ g .+ [g[2:end]; false]) .== 2
    end
     
automaton([c == '#' for c  "_###_##_#_#_#_#__#__"])

Julia: Implementation as an iterable struct

struct Automaton g₀::Vector{Bool} end

Base.iterate(a::Automaton, g = a.g₀) =
    g, ([false; g[1:end-1]] .+ g .+ [g[2:end]; false]) .== 2

Base.show(io::IO, a::Automaton) = for g in Iterators.take(a, 10)
    println(io, join(alive ? '#' : '_' for alive  g)) end

Automaton([c == '#' for c  "_###_##_#_#_#_#__#__"])
Output:
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________

K

f:{2=+/(0,x,0)@(!#x)+/:!3}
Example usage:
   `0:"_X"@f\0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0
_XXX_XX_X_X_X_X__X__
_X_XXXXX_X_X_X______
__XX___XX_X_X_______
__XX___XXX_X________
__XX___X_XX_________
__XX____XXX_________
__XX____X_X_________
__XX_____X__________
__XX________________

Kotlin

Translation of: C
// version 1.1.4-3

val trans = "___#_##_"

fun v(cell: StringBuilder, i: Int) = if (cell[i] != '_') 1 else 0

fun evolve(cell: StringBuilder, backup: StringBuilder): Boolean {
    val len = cell.length - 2
    var diff = 0
    for (i in 1 until len) {
        /* use left, self, right as binary number bits for table index */
        backup[i] = trans[v(cell, i - 1) * 4 + v(cell, i) * 2 + v(cell, i + 1)]
        diff += if (backup[i] != cell[i]) 1 else 0
    }
    cell.setLength(0)
    cell.append(backup)
    return diff != 0
}

fun main(args: Array<String>) {
    val c = StringBuilder("_###_##_#_#_#_#__#__")
    val b = StringBuilder("____________________")
    do {
       println(c.substring(1))
    }
    while (evolve(c,b))
}
Output:
###_##_#_#_#_#__#__
#_#####_#_#_#______
_##___##_#_#_______
_##___###_#________
_##___#_##_________
_##____###_________
_##____#_#_________
_##_____#__________
_##________________

Works with: UCB Logo
make "cell_list [0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0]
make "generations 9

to evolve :n
ifelse :n=1 [make "nminus1 item :cell_count :cell_list][make "nminus1 item :n-1 :cell_list]
ifelse :n=:cell_count[make "nplus1 item 1 :cell_list][make "nplus1 item :n+1 :cell_list]
ifelse ((item :n :cell_list)=0) [
	ifelse (and (:nminus1=1) (:nplus1=1)) [output 1][output (item :n :cell_list)]
][
	ifelse (and (:nminus1=1) (:nplus1=1)) [output 0][
	   ifelse and (:nminus1=0) (:nplus1=0) [output 0][output (item :n :cell_list)]]
]
end

to CA_1D :cell_list :generations
make "cell_count count :cell_list
(print ")
make "printout "
repeat :cell_count [
make "printout word :printout ifelse (item repcount :cell_list)=1 ["#]["_]
]
(print "Generation "0: :printout)

repeat :generations [
       (make "cell_list_temp [])
       repeat :cell_count[
             (make "cell_list_temp (lput (evolve repcount) :cell_list_temp))
       ]
       make "cell_list :cell_list_temp
       make "printout "
       repeat :cell_count [
       	      make "printout word :printout ifelse (item repcount :cell_list)=1 ["#]["_]
       ]
       (print "Generation  word repcount ": :printout)
]
end

CA_1D :cell_list :generations
Output:
Generation 0: _###_##_#_#_#_#__#__
Generation 1: _#_#####_#_#_#______
Generation 2: __##___##_#_#_______
Generation 3: __##___###_#________
Generation 4: __##___#_##_________
Generation 5: __##____###_________
Generation 6: __##____#_#_________
Generation 7: __##_____#__________
Generation 8: __##________________
Generation 9: __##________________

Lua

num_iterations = 9
f = { 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0 }

function Output( f, l )
    io.write( l, ":  " )
    for i = 1, #f do
        local c
        if f[i] == 1 then c = '#' else c = '_' end
        io.write( c )
    end
    print ""
end

Output( f, 0 )

for l = 1, num_iterations do
    local g = {}
    for i = 2, #f-1 do
        if f[i-1] + f[i+1] == 1 then 
            g[i] = f[i]
        elseif f[i] == 0 and f[i-1] + f[i+1] == 2 then
            g[i] = 1
        else
            g[i] = 0 
        end
    end
    if f[1]  == 1 and f[2]    == 1 then g[1]  = 1 else g[1]  = 0 end
    if f[#f] == 1 and f[#f-1] == 1 then g[#f] = 1 else g[#f] = 0 end        
    f, g = g, f

    Output( f, l )
end
Output:
0:  _###_##_#_#_#_#__#__
1:  _#_#####_#_#_#______
2:  __##___##_#_#_______
3:  __##___###_#________
4:  __##___#_##_________
5:  __##____###_________
6:  __##____#_#_________
7:  __##_____#__________
8:  __##________________
9:  __##________________

M4

divert(-1)
define(`set',`define(`$1[$2]',`$3')')
define(`get',`defn(`$1[$2]')')
define(`setrange',`ifelse(`$3',`',$2,`define($1[$2],$3)`'setrange($1,
   incr($2),shift(shift(shift($@))))')')

dnl  throw in sentinels at each end (0 and size+1) to make counting easy
define(`new',`set($1,size,eval($#-1))`'setrange($1,1,
   shift($@))`'set($1,0,0)`'set($1,$#,0)')

define(`for',
   `ifelse($#,0,``$0'',
   `ifelse(eval($2<=$3),1,
   `pushdef(`$1',$2)$4`'popdef(`$1')$0(`$1',incr($2),$3,`$4')')')')
define(`show',
   `for(`k',1,get($1,size),`get($1,k) ')')

dnl  swap(`a',a,`b')  using arg stack for temp
define(`swap',`define(`$1',$3)`'define(`$3',$2)')
define(`nalive',
   `eval(get($1,decr($2))+get($1,incr($2)))')
setrange(`live',0,0,1,0)
setrange(`dead',0,0,0,1)
define(`nv',
   `ifelse(get($1,z),0,`get(dead,$3)',`get(live,$3)')')
define(`evolve',
   `for(`z',1,get($1,size),
      `set($2,z,nv($1,z,nalive($1,z)))')')
new(`a',0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0)
set(`b',size,get(`a',size))`'set(`b',0,0)`'set(`b',incr(get(`a',size)),0)
define(`x',`a')
define(`y',`b')
divert
for(`j',1,10,
   `show(x)`'evolve(`x',`y')`'swap(`x',x,`y')
')`'show(x)
Output:
0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0
0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mathematica / Wolfram Language

Built-in function:

CellularAutomaton[{{0,0,_}->0,{0,1,0}->0,{0,1,1}->1,{1,0,0}->0,{1,0,1}->1,{1,1,0}->1,{1,1,1}->0},{{1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1},0},12]
Print @@@ (% /. {1 -> "#", 0 -> "."});

For succinctness, an integral rule can be used:

CellularAutomaton[2^^01101000 (* == 104 *), {{1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1}, 0}, 12];
Output:
###.##.#.#.#.#..#
#.#####.#.#.#....
.##...##.#.#.....
.##...###.#......
.##...#.##.......
.##....###.......
.##....#.#.......
.##.....#........
.##..............
.##..............
.##..............
.##..............
.##..............

MATLAB / Octave

function one_dim_cell_automata(v,n)
   V='_#';
   while n>=0;
	disp(V(v+1));
	n = n-1;
	v = filter([1,1,1],1,[0,v,0]);
	v = v(3:end)==2;
   end; 
end
Output:
octave:27> one_dim_cell_automata('01110110101010100100'=='1',20);
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________
__##________________
...

Modula-3

Translation of: Ada

Modula-3 provides a module Word for doing bitwise operations, but it segfaults when trying to use BOOLEAN types, so we use INTEGER instead.

MODULE Cell EXPORTS Main;

IMPORT IO, Fmt, Word;

VAR culture := ARRAY [0..19] OF INTEGER {0, 1, 1, 1, 
                                         0, 1, 1, 0, 
                                         1, 0, 1, 0, 
                                         1, 0, 1, 0, 
                                         0, 1, 0, 0};

PROCEDURE Step(VAR culture: ARRAY OF INTEGER) =
  VAR left: INTEGER := 0;
      this, right: INTEGER;
  BEGIN
    FOR i := FIRST(culture) TO LAST(culture) - 1 DO
      right := culture[i + 1];
      this := culture[i];
      culture[i] := 
          Word.Or(Word.And(this, Word.Xor(left, right)), Word.And(Word.Not(this), Word.And(left, right)));
      left := this;
    END;
    culture[LAST(culture)] := Word.And(culture[LAST(culture)], Word.Not(left));
  END Step;

PROCEDURE Put(VAR culture: ARRAY OF INTEGER) =
  BEGIN
    FOR i := FIRST(culture) TO LAST(culture) DO
      IF culture[i] = 1 THEN
        IO.PutChar('#');
      ELSE
        IO.PutChar('_');
      END;
    END;
  END Put;

BEGIN
  FOR i := 0 TO 9 DO
    IO.Put("Generation " & Fmt.Int(i) & " ");
    Put(culture);
    IO.Put("\n");
    Step(culture);
  END;
END Cell.
Output:
Generation 0 _###_##_#_#_#_#__#__
Generation 1 _#_#####_#_#_#______
Generation 2 __##___##_#_#_______
Generation 3 __##___###_#________
Generation 4 __##___#_##_________
Generation 5 __##____###_________
Generation 6 __##____#_#_________
Generation 7 __##_____#__________
Generation 8 __##________________
Generation 9 __##________________

MontiLang

30 VAR length .
35 VAR height .
FOR length 0 ENDFOR 1 0 ARR VAR list . 
length 1 - VAR topLen . 
FOR topLen 0 ENDFOR 1 ARR VAR topLst .  

DEF getNeighbors
    1 - VAR tempIndex . 
    GET tempIndex SWAP 
    tempIndex 1 + VAR tempIndex .
    GET tempIndex SWAP 
    tempIndex 1 + VAR tempIndex .
    GET tempIndex SWAP .
    FOR 3 TOSTR ROT ENDFOR
    FOR 2 SWAP + ENDFOR  
ENDDEF

DEF printArr
    LEN 1 - VAR stLen .
    0 VAR j .
    FOR stLen
        GET j 
        TOSTR OUT .
        j 1 + VAR j .
    ENDFOR
    || PRINT .
ENDDEF

FOR height
    FOR length 0 ENDFOR ARR VAR next .
    1 VAR i .
    FOR length
        list i getNeighbors VAR last . 
        i 1 - VAR ind .
        last |111| == 
        IF : .
            next 0 INSERT ind
        ENDIF

        last |110| ==
        IF : .
            next 1 INSERT ind
        ENDIF

        last |101| ==
        IF : .
            next 1 INSERT ind
        ENDIF

        last |100| ==
        IF : .
            next 0 INSERT ind
        ENDIF

        last |011| ==
        IF : .
            next 1 INSERT ind
        ENDIF

        last |010| ==
        IF : .
            next 1 INSERT ind
        ENDIF

        last |001| ==
        IF : .
            next 1 INSERT ind
        ENDIF

        last |000| ==
        IF : .
            next 0 INSERT ind
        ENDIF
        clear
        i 1 + VAR i .
    ENDFOR 
    next printArr .
    next 0 ADD APPEND . VAR list .
ENDFOR

Nial

(life.nial)

% we need a way to write a values and pass the same back
wi is rest link [write, pass]
% calculate the neighbors by rotating the array left and right and joining them
neighbors is pack [pass, sum [-1 rotate,  1 rotate]]
% calculate the individual birth and death of a single array element
igen is fork [ = [ + [first, second], 3 first], 0 first, = [ + [first, second], 2 first], 1 first, 0 first ]
% apply that to the array
nextgen is each igen neighbors
% 42
life is fork [ > [sum pass, 0 first], life nextgen wi, pass ]
Using it:
|loaddefs 'life.nial'
|I := [0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
|life I

Nim

import random


type
  BoolArray  = array[30, bool]
  Symbols    = array[bool, char]


proc neighbours(map: BoolArray, i: int): int =
  if i > 0:             inc(result, int(map[i - 1]))
  if i + 1 < len(map):  inc(result, int(map[i + 1]))

proc print(map: BoolArray, symbols: Symbols) =
  for i in map: write(stdout, symbols[i])
  write(stdout, "\l")
 
proc randomMap: BoolArray =
  randomize()
  for i in mitems(result): i = sample([true, false])


const
  num_turns = 20
  symbols   = ['_', '#']

  T = true
  F = false

var map = 
  [F, T, T, T, F, T, T, F, T, F, T, F, T, F, T,
    F, F, T, F, F, F, F, F, F, F, F, F, F, F, F]

# map = randomMap()  # uncomment for random start

print(map, symbols)

for _ in 0 ..< num_turns:
  var map2 = map

  for i, v in pairs(map):
    map2[i] =
      if v: neighbours(map, i) == 1
      else: neighbours(map, i) == 2

  print(map2, symbols)

  if map2 == map: break
  map = map2
Output:
_###_##_#_#_#_#__#____________
_#_#####_#_#_#________________
__##___##_#_#_________________
__##___###_#__________________
__##___#_##___________________
__##____###___________________
__##____#_#___________________
__##_____#____________________
__##__________________________
__##__________________________

Using a string character counting method:

import strutils

const
  s_init: string = "_###_##_#_#_#_#__#__"
  arrLen: int = 20
  
var q0: string = s_init & repeat('_',arrLen-20)
var q1: string = q0

proc life(s:string): char =
   var str: string = s
   if len(normalize(str)) == 2:      # normalize eliminates underscores
      return '#'
   return '_'
   
proc evolve(q: string): string =
   result = repeat('_',arrLen)
   #result[0] = '_'
   for i in 1 .. q.len-1:
      result[i] = life(substr(q & '_',i-1,i+1))

echo(q1)
q1 = evolve(q0)
echo(q1)
while q1 != q0:
   q0 = q1
   q1 = evolve(q0)
   echo(q1)
Output:
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________

Using nested functions and method calling style:

proc cellAutomata =
  proc evolveInto(x, t : var string) =
    for i in x.low..x.high:
      let
        alive = x[i] == 'o'
        left  = if i == x.low:  false else: x[i - 1] == 'o'
        right = if i == x.high: false else: x[i + 1] == 'o'
      t[i] =
        if alive: (if left xor right: 'o' else: '.')
        else:     (if left and right: 'o' else: '.')

  var
    x = ".ooo.oo.o.o.o.o..o.."
    t = x

  for i in 1..10:
    x.echo
    x.evolveInto t
    swap t, x

cellAutomata()
Output:
.ooo.oo.o.o.o.o..o..
.o.ooooo.o.o.o......
..oo...oo.o.o.......
..oo...ooo.o........
..oo...o.oo.........
..oo....ooo.........
..oo....o.o.........
..oo.....o..........
..oo................
..oo................

OCaml

let get g i =
  try g.(i)
  with _ -> 0

let next_cell g i =
  match get g (i-1), get g (i), get g (i+1) with
  | 0, 0, 0 -> 0
  | 0, 0, 1 -> 0
  | 0, 1, 0 -> 0
  | 0, 1, 1 -> 1
  | 1, 0, 0 -> 0
  | 1, 0, 1 -> 1
  | 1, 1, 0 -> 1
  | 1, 1, 1 -> 0
  | _ -> assert(false)

let next g =
  let old_g = Array.copy g in
  for i = 0 to pred(Array.length g) do
    g.(i) <- (next_cell old_g i)
  done

let print_g g =
  for i = 0 to pred(Array.length g) do
    if g.(i) = 0
    then print_char '_'
    else print_char '#'
  done;
  print_newline()

put the code above in a file named "life.ml", and then use it in the ocaml toplevel like this:

#use "life.ml" ;;

let iter n g =
  for i = 0 to n do
    Printf.printf "Generation %d: " i; print_g g;
    next g;
  done
;;

let g_of_string str =
  let f = (function '_' -> 0 | '#' -> 1 | _ -> assert false) in
  Array.init (String.length str) (fun i -> f str.[i])
;;

# iter 9 (g_of_string "_###_##_#_#_#_#__#__") ;;
Generation 0: _###_##_#_#_#_#__#__
Generation 1: _#_#####_#_#_#______
Generation 2: __##___##_#_#_______
Generation 3: __##___###_#________
Generation 4: __##___#_##_________
Generation 5: __##____###_________
Generation 6: __##____#_#_________
Generation 7: __##_____#__________
Generation 8: __##________________
Generation 9: __##________________
- : unit = ()

Oforth

: nextGen( l )
| i s |
   l byteSize dup ->s String newSize
   s loop: i [ 
      i 1 if=: [ 0 ] else: [ i 1- l byteAt '#' = ]
      i l byteAt '#' = + 
      i s if=: [ 0 ] else: [ i 1+ l byteAt '#' = ] + 
      2 if=: [ '#' ] else: [ '_' ] over add
      ]
;
 
: gen( l n -- )
    l dup .cr #[ nextGen dup .cr ] times( n ) drop ;
Output:
"_###_##_#_#_#_#__#__" 10 gen
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________
__##________________
ok

Oz

declare
  A0 = {List.toTuple unit "_###_##_#_#_#_#__#__"}

  MaxGenerations = 9

  Rules = unit('___':&_
               '__#':&_
               '_#_':&_
               '_##':&#
               '#__':&_
               '#_#':&#
               '##_':&#
               '###':&_)

  fun {Evolve A}
     {Record.mapInd A
      fun {$ I V}
         Left = {CondSelect A I-1 &_}
         Right = {CondSelect A I+1 &_}
         Env = {String.toAtom [Left V Right]}
      in
         Rules.Env
      end
     }
  end

  fun lazy {Iterate X F}
     X|{Iterate {F X} F}
  end
in
  for
     I in 0..MaxGenerations
     A in {Iterate A0 Evolve}
  do
     {System.showInfo "Gen. "#I#": "#{Record.toList A}}
  end
Output:
Gen. 0: _###_##_#_#_#_#__#__
Gen. 1: _#_#####_#_#_#______
Gen. 2: __##___##_#_#_______
Gen. 3: __##___###_#________
Gen. 4: __##___#_##_________
Gen. 5: __##____###_________
Gen. 6: __##____#_#_________
Gen. 7: __##_____#__________
Gen. 8: __##________________
Gen. 9: __##________________

PARI/GP

This version defines the fixed cells to the left and right as dead; of course other versions are possible. This function generates one generation from a previous one, passed as a 0-1 vector.

step(v)=my(u=vector(#v),k);u[1]=v[1]&v[2];u[#u]=v[#v]&v[#v-1];for(i=2,#v-1,k=v[i-1]+v[i+1];u[i]=if(v[i],k==1,k==2));u;

To simulate a run of 10 generations of the automaton, the function above can be put in a loop that spawns a new generation as a function of nth generations passed (n=0 is the initial state):

cur = [0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]; for(n=0, 9, print(cur); cur = step(cur));

Output

[0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0]
[0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Pascal

program Test;
{$IFDEF FPC}{$MODE DELPHI}{$ELSE}{$APPTYPE}{$ENDIF}
uses
  sysutils;
const
  cCHAR: array[0..1] of char = ('_','#');
type
  TRow =  array of byte;

function ConvertToRow(const s:string):tRow;
var
  i : NativeInt;
Begin
  i := length(s);
  setlength(Result,length(s));
  For i := i downto 0 do
    result[i-1]:= ORD(s[i]=cChar[1]);
end;

function OutRow(const row:tRow):string;
//create output string
var
  i: NativeInt;
Begin
  i := length(row);
  setlength(result,i);
  For i := i downto 1 do
    result[i]:= cChar[row[i-1]];
end;

procedure NextRow(row:pByteArray;MaxIdx:NativeInt);
//compute next row in place by the using a small storage for the 
//2 values, that would otherwise be overridden
var
  leftValue,Value: NativeInt;
  i,trpCnt: NativeInt;
Begin
  leftValue := 0;
  trpCnt := row[0]+row[1];

  i := 0;
  while i < MaxIdx do
  Begin
    Value := row[i];
    //the rule for survive : PopCnt == 2
    row[i] := ORD(trpCnt= 2);
    //reduce popcnt of element before
    dec(trpCnt,leftValue);
    //goto next element
    inc(i);
    leftValue := Value;
    //increment popcnt by right element
    inc(trpCnt,row[i+1]);
    //move to next position in ring buffer
  end;
  row[MaxIdx] := ORD(trpCnt= 2);
end;

const
  TestString: string='  ### ## # # # #  #  ';
var
  s: string;
  row:tRow;
  i: NativeInt;
begin
  s := Teststring;
  row:= ConvertToRow(s);
  For i := 0 to 9 do
  Begin
    writeln(OutRow(row));
    NextRow(@row[0],High(row));
  end;
end.
Output:

__###_##_#_#_#_#__#__ __#_#####_#_#_#______ ___##___##_#_#_______ ___##___###_#________ ___##___#_##_________ ___##____###_________ ___##____#_#_________ ___##_____#__________ ___##________________

___##________________

Perl

Use regexp to extract and substitute cells while the string changes

Convert cells to zeros and ones to set complement state

$_="_###_##_#_#_#_#__#__\n";
do {
  y/01/_#/;
  print;
  y/_#/01/;
  s/(?<=(.))(.)(?=(.))/$1 == $3 ? $1 ? 1-$2 : 0 : $2/eg;
} while ($x ne $_ and $x=$_);

Use hash for complement state

$_="_###_##_#_#_#_#__#__\n";
%h=qw(# _ _ #);
do {
  print;
  s/(?<=(.))(.)(?=(.))/$1 eq $3 ? $1 eq "_" ? "_" : $h{$2} : $2/eg;
} while ($x ne $_ and $x=$_);
Output:

for both versions

_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________

Phix

Ludicrously optimised:

string s = "_###_##_#_#_#_#__#__"
integer prev='_', curr, toggled = 1

while 1 do
    ?s
    for i=2 to length(s)-1 do
        curr = s[i]
        if prev=s[i+1] 
        and (curr='#' or prev='#') then
            s[i] = 130-curr
            toggled = 1
        end if
        prev = curr
    end for
    if not toggled then ?s exit end if
    toggled = 0
end while
Output:
"_###_##_#_#_#_#__#__"
"_#_#####_#_#_#______"
"__##___##_#_#_______"
"__##___###_#________"
"__##___#_##_________"
"__##____###_________"
"__##____#_#_________"
"__##_____#__________"
"__##________________"
"__##________________"

And of course I had to have a crack at that Sierpinski_Triangle:

string s = "________________________#________________________"
integer prev='_', curr, toggled = 1
 
for limit=1 to 24 do
    ?s
    for i=2 to length(s)-1 do
        curr = s[i]
        if (prev=s[i+1]) = (curr='#') then
            s[i] = 130-curr
        end if
        prev = curr
    end for
end for
Output:
"________________________#________________________"
"_______________________#_#_______________________"
"______________________#___#______________________"
"_____________________#_#_#_#_____________________"
"____________________#_______#____________________"
"___________________#_#_____#_#___________________"
"__________________#___#___#___#__________________"
"_________________#_#_#_#_#_#_#_#_________________"
"________________#_______________#________________"
"_______________#_#_____________#_#_______________"
"______________#___#___________#___#______________"
"_____________#_#_#_#_________#_#_#_#_____________"
"____________#_______#_______#_______#____________"
"___________#_#_____#_#_____#_#_____#_#___________"
"__________#___#___#___#___#___#___#___#__________"
"_________#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_________"
"________#_______________________________#________"
"_______#_#_____________________________#_#_______"
"______#___#___________________________#___#______"
"_____#_#_#_#_________________________#_#_#_#_____"
"____#_______#_______________________#_______#____"
"___#_#_____#_#_____________________#_#_____#_#___"
"__#___#___#___#___________________#___#___#___#__"
"_#_#_#_#_#_#_#_#_________________#_#_#_#_#_#_#_#_"

Phixmonti

0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 stklen var w
w tolist 0 0 put
0 w 1 + repeat var x2

10 for
	drop
	w for
		var j
		j get 1 == if "#" else "_" endif print
		j 1 - get var p1 j get swap j 1 + get rot p1 + + 2 ==
		x2 swap j set var x2
	endfor
	nl
	drop x2
endfor

Picat

go =>
   %    _ # # # _ # # _ # _ # _ # _ # _ _ # _ _
   S = [0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0],
   println(init=S),
   run_ca(S),
   nl,

   println("Some random inits:"),
   _ = random2(),
   foreach(N in [5,10,20,50])
     S2 = [random() mod 2 : _I in 1..N],
     run_ca(S2),
     nl
    end.

%
% Run a CA and show the result.
%

% rule/1 is the default
run_ca(S) =>
  run_ca(S,rule).
run_ca(S,Rules) =>
  Len = S.length,
  All := [S],
  Seen = new_map(), % detect fixpoint and cycle
  while (not Seen.has_key(S))
    Seen.put(S,1),
    T = [S[1]] ++ [apply(Rules, slice(S,I-1,I+1)) : I in 2..Len-1] ++ [S[Len]],
    All := All ++ [T],
    S := T
  end,
  foreach(A in All) println(A.convert()) end,
  writeln(len=All.length).

% Convert:
%  0->"_"
%  1->"#"
convert(L) = Res =>
    B = "_#",
    Res = [B[L[I]+1] : I in 1..L.length].

% the rules
rule([0,0,0]) = 0. % 
rule([0,0,1]) = 0. %
rule([0,1,0]) = 0. % Dies without enough neighbours
rule([0,1,1]) = 1. % Needs one neighbour to survive
rule([1,0,0]) = 0. %
rule([1,0,1]) = 1. % Two neighbours giving birth
rule([1,1,0]) = 1. % Needs one neighbour to survive
rule([1,1,1]) = 0. % Starved to death.
Output:
init = [0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________
len = 10

Some random inits:
_###_
_#_#_
__#__
_____
_____
len = 5

_#___##_#_
_____###__
_____#_#__
______#___
__________
__________
len = 6

###__####_#___#___##
#_#__#__##________##
##______##________##
##______##________##
len = 4

______###_#_#___####__#_______#__#___#_####__#_###
______#_##_#____#__#__________________##__#___##_#
_______####___________________________##______####
_______#__#___________________________##______#__#
______________________________________##_________#
______________________________________##_________#
len = 6


The program is fairly general. Here's the additional code for the rule 30 CA.

go2 => 
   N = 4,
   Ns = [0 : _ in 1..N],
   S = Ns ++ [1] ++ Ns,
   run_ca(S, rule30).

% The rules for rule 30
rule30([0,0,0]) = 0.
rule30([0,0,1]) = 1.
rule30([0,1,0]) = 1.
rule30([0,1,1]) = 1.
rule30([1,0,0]) = 1.
rule30([1,0,1]) = 0.
rule30([1,1,0]) = 0.
rule30([1,1,1]) = 0.

PicoLisp

(let Cells (chop "_###_##_#_#_#_#__#__")
   (do 10
      (prinl Cells)
      (setq Cells
         (make
            (link "_")
            (map
               '((L)
                  (case (head 3 L)
                     (`(mapcar chop '("___" "__#" "_#_" "#__" "###"))
                         (link "_") )
                     (`(mapcar chop '("_##" "#_#" "##_"))
                        (link "#") ) ) )
               Cells )
            (link "_") ) ) ) )
Output:
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________

Prolog

Works ith SWI-Prolog.

one_dimensional_cellular_automata(L) :-
	maplist(my_write, L), nl,
	length(L, N),
	length(LN, N),
	% there is a 0 before the beginning
	compute_next([0 |L], LN),
	(   L \= LN -> one_dimensional_cellular_automata(LN); true).

% All the possibilites
compute_next([0, 0, 0 | R], [0 | R1]) :-
	compute_next([0, 0 | R], R1).

compute_next([0, 0, 1 | R], [0 | R1]) :-
	compute_next([0, 1 | R], R1).

compute_next([0, 1, 0 | R], [0 | R1]) :-
	compute_next([1, 0 | R], R1).

compute_next([0, 1, 1 | R], [1 | R1]) :-
	compute_next([1, 1 | R], R1).

compute_next([1, 0, 0 | R], [0 | R1]) :-
	compute_next([0, 0 | R], R1).

compute_next([1, 0, 1 | R], [1 | R1]) :-
	compute_next([0, 1 | R], R1).

compute_next([1, 1, 0 | R], [1 | R1]) :-
	compute_next([1, 0 | R], R1).

compute_next([1, 1, 1 | R], [0 | R1]) :-
	compute_next([1, 1 | R], R1).

% the last four possibilies =>
% we consider that there is à 0  after the end
complang jq># The 1-d cellular automaton:
def next:
   # Conveniently, jq treats null as 0 when it comes to addition
   # so there is no need to fiddle with the boundaries
  . as $old
  | reduce range(0; length) as $i
    ([];
     ($old[$i-1] + $old[$i+1]) as $s
     | if   $s == 0 then .[$i] = 0
       elif $s == 1 then .[$i] = (if $old[$i] == 1 then 1 else 0 end)
       else              .[$i] = (if $old[$i] == 1 then 0 else 1 end)
       end);


# pretty-print an array:
def pp: reduce .[] as $i (""; . + (if $i == 0 then " " else "*" end));

# continue until quiescence:
def go: recurse(. as $prev | next | if . == $prev then empty else . end) | pp;

# Example:
[0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0] | goute_next([0, 0], [0]).

compute_next([1, 0], [0]).

compute_next([0, 1], [0]).

compute_next([1, 1], [1]).

my_write(0) :-
	write(.).

my_write(1) :-
	write(#).

one_dimensional_cellular_automata :-
	L = [0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0],
	one_dimensional_cellular_automata(L).
Output:
 ?- one_dimensional_cellular_automata.
.###.##.#.#.#.#..#..
.#.#####.#.#.#......
..##...##.#.#.......
..##...###.#........
..##...#.##.........
..##....###.........
..##....#.#.........
..##.....#..........
..##................
true .

Python

Procedural

Python: Straightforward interpretation of spec

import random

printdead, printlive = '_#'
maxgenerations = 10
cellcount = 20
offendvalue = '0'

universe = ''.join(random.choice('01') for i in range(cellcount))

neighbours2newstate = {
 '000': '0',
 '001': '0',
 '010': '0',
 '011': '1',
 '100': '0',
 '101': '1',
 '110': '1',
 '111': '0',
 }

for i in range(maxgenerations):
    print "Generation %3i:  %s" % ( i,
          universe.replace('0', printdead).replace('1', printlive) )
    universe = offendvalue + universe + offendvalue
    universe = ''.join(neighbours2newstate[universe[i:i+3]] for i in range(cellcount))
Output:
Generation   0:  _###_##_#_#_#_#__#__
Generation   1:  _#_#####_#_#_#______
Generation   2:  __##___##_#_#_______
Generation   3:  __##___###_#________
Generation   4:  __##___#_##_________
Generation   5:  __##____###_________
Generation   6:  __##____#_#_________
Generation   7:  __##_____#__________
Generation   8:  __##________________
Generation   9:  __##________________

Python: Using boolean operators on bits

The following implementation uses boolean operations to realize the function.

import random

nquads = 5
maxgenerations = 10
fmt = '%%0%ix'%nquads
nbits = 4*nquads
a = random.getrandbits(nbits)  << 1
#a = int('01110110101010100100', 2) << 1
endmask = (2<<nbits)-2;
endvals = 0<<(nbits+1) | 0
tr = ('____', '___#', '__#_', '__##', '_#__', '_#_#', '_##_', '_###',
      '#___', '#__#', '#_#_', '#_##', '##__', '##_#', '###_', '####' )
for i in range(maxgenerations):
   print "Generation %3i:  %s" % (i,(''.join(tr[int(t,16)] for t in (fmt%(a>>1)))))
   a |= endvals
   a = ((a&((a<<1) | (a>>1))) ^ ((a<<1)&(a>>1))) & endmask

Python: Sum neighbours == 2

This example makes use of the observation that a cell is alive in the next generation if the sum with its current neighbours of alive cells is two.

>>> gen = [ch == '#' for ch in '_###_##_#_#_#_#__#__']
>>> for n in range(10):
	print(''.join('#' if cell else '_' for cell in gen))
	gen = [0] + gen + [0]
	gen = [sum(gen[m:m+3]) == 2 for m in range(len(gen)-2)]

	
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________
>>>

Composition of pure functions

Interpreting the rule shown in the task description as Wolfram rule 104, and generalising enough to allow for other rules of this kind:

'''Cellular Automata'''

from itertools import islice, repeat
from functools import reduce
from random import randint


# nextRowByRule :: Int -> [Bool] -> [Bool]
def nextRowByRule(intRule):
    '''A row of booleans derived by Wolfram rule n
       from another boolean row of the same length.
    '''
    # step :: (Bool, Bool, Bool) -> Bool
    def step(l, x, r):
        return bool(intRule & 2**intFromBools([l, x, r]))

    # go :: [Bool] -> [Bool]
    def go(xs):
        return [False] + list(map(
            step,
            xs, xs[1:], xs[2:]
        )) + [False]
    return go


# intFromBools :: [Bool] -> Int
def intFromBools(xs):
    '''Integer derived by binary interpretation
       of a list of booleans.
    '''
    def go(b, pn):
        power, n = pn
        return (2 * power, n + power if b else n)
    return foldr(go)([1, 0])(xs)[1]


# ------------------------- TEST -------------------------
# main :: IO ()
def main():
    '''Samples of Wolfram rule evolutions.
    '''
    print(
        unlines(map(showRuleSample, [104, 30, 110]))
    )


# ----------------------- DISPLAY ------------------------

# showRuleSample :: Int -> String
def showRuleSample(intRule):
    '''16 steps in the evolution
       of a given Wolfram rule.
    '''
    return 'Rule ' + str(intRule) + ':\n' + (
        unlines(map(
            showCells,
            take(16)(
                iterate(nextRowByRule(intRule))(
                    onePixelInLineOf(64) if (
                        bool(randint(0, 1))
                    ) else randomPixelsInLineOf(64)
                )
            )
        ))
    )


# boolsFromInt :: Int -> [Bool]
def boolsFromInt(n):
    '''List of booleans derived by binary
       decomposition of an integer.
    '''
    def go(x):
        return Just((x // 2, bool(x % 2))) if x else Nothing()
    return unfoldl(go)(n)


# nBoolsFromInt :: Int -> Int -> [Bool]
def nBoolsFromInt(n):
    '''List of bools, left-padded to given length n,
       derived by binary decomposition of an integer x.
    '''
    def go(n, x):
        bs = boolsFromInt(x)
        return list(repeat(False, n - len(bs))) + bs
    return lambda x: go(n, x)


# onePixelInLineOf :: Int -> [Bool]
def onePixelInLineOf(n):
    '''A row of n (mainly False) booleans,
       with a single True value in the middle.
    '''
    return nBoolsFromInt(n)(
        2**(n // 2)
    )


# randomPixelsInLineOf :: Int -> [Bool]
def randomPixelsInLineOf(n):
    '''A row of n booleans with pseudorandom values.
    '''
    return [bool(randint(0, 1)) for _ in range(1, 1 + n)]


# showCells :: [Bool] -> String
def showCells(xs):
    '''A block string representation of a list of booleans.
    '''
    return ''.join([chr(9608) if x else ' ' for x in xs])


# ----------------------- GENERIC ------------------------

# Just :: a -> Maybe a
def Just(x):
    '''Constructor for an inhabited Maybe (option type) value.
       Wrapper containing the result of a computation.
    '''
    return {'type': 'Maybe', 'Nothing': False, 'Just': x}


# Nothing :: () -> Maybe a
def Nothing():
    '''Constructor for an empty Maybe (option type) value.
       Empty wrapper returned where a computation is not possible.
    '''
    return {'type': 'Maybe', 'Nothing': True}


# foldr :: (a -> b -> b) -> b -> [a] -> b
def foldr(f):
    '''Right to left reduction of a list,
       using the binary operator f, and
       starting with an initial accumulator value.
    '''
    def g(a, x):
        return f(x, a)
    return lambda acc: lambda xs: reduce(
        g, xs[::-1], acc
    )


# iterate :: (a -> a) -> a -> Gen [a]
def iterate(f):
    '''An infinite list of repeated
       applications of f to x.
    '''
    def go(x):
        v = x
        while True:
            yield v
            v = f(v)
    return go


# take :: Int -> [a] -> [a]
# take :: Int -> String -> String
def take(n):
    '''The prefix of xs of length n,
       or xs itself if n > length xs.
    '''
    def go(xs):
        return (
            xs[0:n]
            if isinstance(xs, (list, tuple))
            else list(islice(xs, n))
        )
    return go


# unfoldl :: (b -> Maybe (b, a)) -> b -> [a]
def unfoldl(f):
    '''Dual to reduce or foldl.
       Where these reduce a list to a summary value, unfoldl
       builds a list from a seed value.
       Where f returns Just(a, b), a is appended to the list,
       and the residual b is used as the argument for the next
       application of f.
       When f returns Nothing, the completed list is returned.
    '''
    def go(v):
        x, r = v, v
        xs = []
        while True:
            mb = f(x)
            if mb.get('Nothing'):
                return xs
            else:
                x, r = mb.get('Just')
                xs.insert(0, r)
        return xs
    return go


# unlines :: [String] -> String
def unlines(xs):
    '''A single string formed by the intercalation
       of a list of strings with the newline character.
    '''
    return '\n'.join(xs)


# MAIN -------------------------------------------------
if __name__ == '__main__':
    main()
Output:
Rule 104:
    █  █  ████  ██    █   █      █ █ █ ██    █████ ██  ██  █ ██ 
          █  █  ██                █ █ ███    █   ████  ██   ███ 
                ██                 █ ██ █        █  █  ██   █ █ 
                ██                  ████               ██    █  
                ██                  █  █               ██       
                ██                                     ██       
                ██                                     ██       
                ██                                     ██       
                ██                                     ██       
                ██                                     ██       
                ██                                     ██       
                ██                                     ██       
                ██                                     ██       
                ██                                     ██       
                ██                                     ██       
                ██                                     ██       
Rule 30:
                               █                                
                              ███                               
                             ██  █                              
                            ██ ████                             
                           ██  █   █                            
                          ██ ████ ███                           
                         ██  █    █  █                          
                        ██ ████  ██████                         
                       ██  █   ███     █                        
                      ██ ████ ██  █   ███                       
                     ██  █    █ ████ ██  █                      
                    ██ ████  ██ █    █ ████                     
                   ██  █   ███  ██  ██ █   █                    
                  ██ ████ ██  ███ ███  ██ ███                   
                 ██  █    █ ███   █  ███  █  █                  
                ██ ████  ██ █  █ █████  ███████                 
Rule 110:
█  █  ██ ██  ██  █ █  ██  ███ █ █ ███     ██ ██    █    █   █   
  ██ ██████ ███ ████ ███ ██ ███████ █    ██████   ██   ██  ██   
 █████    ███ ███  ███ ██████     ███   ██    █  ███  ███ ███   
 █   █   ██ ███ █ ██ ███    █    ██ █  ███   ██ ██ █ ██ ███ █   
 █  ██  █████ ████████ █   ██   █████ ██ █  █████████████ ███   
 █ ███ ██   ███      ███  ███  ██   ██████ ██           ███ █   
 ███ ████  ██ █     ██ █ ██ █ ███  ██    ████          ██ ███   
 █ ███  █ █████    ████████████ █ ███   ██  █         █████ █   
 ███ █ ████   █   ██          █████ █  ███ ██        ██   ███   
 █ █████  █  ██  ███         ██   ███ ██ ████       ███  ██ █   
 ███   █ ██ ███ ██ █        ███  ██ ██████  █      ██ █ █████   
 █ █  ███████ ██████       ██ █ █████    █ ██     ███████   █   
 ███ ██     ███    █      ███████   █   █████    ██     █  ██   
 █ ████    ██ █   ██     ██     █  ██  ██   █   ███    ██ ███   
 ███  █   █████  ███    ███    ██ ███ ███  ██  ██ █   █████ █   
 █ █ ██  ██   █ ██ █   ██ █   █████ ███ █ ███ █████  ██   ███   

Quackery

 [ stack 0 ]                     is cells    (   --> s )

 [ dup size cells replace
   0 swap witheach 
     [ char # = 
       | 1 << ] ]                is setup    ( $ --> n )

 [ 0 swap 
   cells share times 
     [ dup i >> 7 & 
       [ table 0 0 0 1 0 1 1 0 ]
       rot 1 << | swap ] 
   drop 1 << ]                   is nextline ( n --> n )

  [ cells share times
      [ dup i 1+ bit & 
        iff [ char # ]
        else [ char _ ] 
        emit ] 
    cr drop ]                    is echoline ( n -->   )

  [ setup
    [ dup echoline 
      dup nextline 
      tuck = until ]
    echoline ]                   is automate ( $ -->   )

  $ "_###_##_#_#_#_#__#__" automate
Output:
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________


R

set.seed(15797, kind="Mersenne-Twister")

maxgenerations = 10
cellcount = 20
offendvalue = FALSE

## Cells are alive if TRUE, dead if FALSE
universe <- c(offendvalue,
              sample( c(TRUE, FALSE), cellcount, replace=TRUE),
              offendvalue)

## List of patterns in which the cell stays alive
stayingAlive <- lapply(list(c(1,1,0),
                            c(1,0,1),
                            c(0,1,0)), as.logical)

## x : length 3 logical vector
## map: list of length 3 logical vectors that map to patterns
##      in which x stays alive
deadOrAlive <- function(x, map) list(x) %in% map

cellularAutomata <- function(x, map) {
    c(x[1], apply(embed(x, 3), 1, deadOrAlive, map=map), x[length(x)])
}

deadOrAlive2string <- function(x) {
    paste(ifelse(x, '#', '_'), collapse="")
}

for (i in 1:maxgenerations) {
    universe <- cellularAutomata(universe, stayingAlive)
    cat(format(i, width=3), deadOrAlive2string(universe), "\n")
}
Output:
  1 _##_____####_#___#_#__ 
  2 _##_____#__##_____#___ 
  3 _##________##_________ 
  4 _##________##_________ 
  5 _##________##_________ 
  6 _##________##_________ 
  7 _##________##_________ 
  8 _##________##_________ 
  9 _##________##_________ 
 10 _##________##_________ 

Racket

#lang racket

(define (update cells)
  (for/list ([crowding (map +
                            (append '(0) (drop-right cells 1))
                            cells
                            (append (drop cells 1) '(0)))])
    (if (= 2 crowding) 1 0)))

(define (life-of cells time)
  (unless (zero? time)
    (displayln cells)
    (life-of (update cells) (sub1 time))))

(life-of '(0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0)
         10)

#| (0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0)
   (0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0)
   (0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0)
   (0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0)
   (0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0)
   (0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0)
   (0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0)
   (0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0)
   (0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
   (0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) |#

Below is an alternative implementation using graphical output in the Racket REPL. It works with DrRacket and Emacs + Geiser.

#lang slideshow

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Simulation of cellular automata, as described by Stephen Wolfram in his 1983 paper.
;; Uses Racket's inline image display capability for visual presentation	 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(require racket/draw)
(require slideshow)

(define *rules* '((1 1 1) (1 1 0) (1 0 1) (1 0 0)
		  (0 1 1) (0 1 0) (0 0 1) (0 0 0)))

(define (bordered-square n)
  (filled-rectangle n n #:draw-border? #t))

(define (draw-row lst)
  (apply hc-append 2 (map (λ (x) (colorize (bordered-square 10) (cond ((= x 0) "gray")
								      ((= x 1) "red")
								      (else "gray"))))
			  lst)))

(define (extract-neighborhood nth prev-row)
  (take (drop (append '(0) prev-row '(0)) nth) 3))

(define (automaton-to-bits n)
  (reverse (map (λ (y) (if (zero? (bitwise-and y n)) 0 1)) 
		(map (λ (x) (expt 2 x)) (range 0 8)))))

(define (get-rules bits)
  (map cdr (filter (λ (x) (= (car x) 1)) (map cons bits *rules*))))

(define (advance-row old-row rules)
  (let ([new '()])
    (for ([i (in-range 0 (length old-row))])
      (set! new (cons (if (member (extract-neighborhood i old-row)
				  rules) 1 0) new)))
    (reverse new)))

(define (draw-automaton automaton init-row row-number)
  (let* ([bit-representation (automaton-to-bits automaton)]
	 [rules (get-rules bit-representation)]
	 [rows (list init-row)])
    (for ([i (in-range 1 row-number)])
      (set! rows (cons (advance-row (car rows) rules)
		       rows)))
    (apply vc-append 2 (map draw-row (reverse rows)))))

(draw-automaton 104 '(0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0) 10)

Raku

(formerly Perl 6)

Works with: rakudo version 2014-02-27

We'll make a general algorithm capable of computing any cellular automata as defined by Stephen Wolfram's famous book A new kind of Science. We will take the liberty of wrapping the array of cells as it does not affect the result much and it makes the implementation a lot easier.

class Automaton {
    has $.rule;
    has @.cells;
    has @.code = $!rule.fmt('%08b').flip.comb».Int;
 
    method gist { "|{ @!cells.map({+$_ ?? '#' !! ' '}).join }|" }
 
    method succ {
        self.new: :$!rule, :@!code, :cells( 
            @!code[
                    4 «*« @!cells.rotate(-1)
                »+« 2 «*« @!cells
                »+«       @!cells.rotate(1)
            ]
        )
    }
}

#  The rule proposed for this task is rule 0b01101000 = 104

my @padding = 0 xx 5;
my Automaton $a .= new:
    rule  => 104,
    cells => flat @padding, '111011010101'.comb, @padding
;
say $a++ for ^10;


# Rule 104 is not particularly interesting so here is [[wp:Rule 90|Rule 90]], 
# which shows a [[wp:Sierpinski Triangle|Sierpinski Triangle]].

say '';
@padding = 0 xx 25;
$a = Automaton.new: :rule(90), :cells(flat @padding, 1, @padding);
 
say $a++ for ^20;
Output:
|     ### ## # # #     |
|     # ##### # #      |
|      ##   ## #       |
|      ##   ###        |
|      ##   # #        |
|      ##    #         |
|      ##              |
|      ##              |
|      ##              |
|      ##              |

|                         #                         |
|                        # #                        |
|                       #   #                       |
|                      # # # #                      |
|                     #       #                     |
|                    # #     # #                    |
|                   #   #   #   #                   |
|                  # # # # # # # #                  |
|                 #               #                 |
|                # #             # #                |
|               #   #           #   #               |
|              # # # #         # # # #              |
|             #       #       #       #             |
|            # #     # #     # #     # #            |
|           #   #   #   #   #   #   #   #           |
|          # # # # # # # # # # # # # # # #          |
|         #                               #         |
|        # #                             # #        |
|       #   #                           #   #       |
|      # # # #                         # # # #      |

Red

Red [
    Purpose: "One-dimensional cellular automata"
    Author: "Joe Smith"
]

vals: [0 1 0]
kill: [[0 0] [#[none] 0] [0 #[none]]]
evo: function [petri] [
	new-petri: copy petri
	while [petri/1] [
		if all [petri/-1 = 1 petri/2 = 1] [new-petri/1: select vals petri/1]
		if find/only kill reduce [petri/-1 petri/2] [new-petri/1: 0]
		petri: next petri new-petri: next new-petri 
	]
	petri: head petri new-petri: head new-petri
	clear insert petri new-petri
]

display: function [petri] [
	print replace/all (replace/all to-string petri "0" "_") "1" "#"
	petri	 
]

loop 10 [
	evo display [1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0]
]
Output:
###_##_#_#_#_#__#_
#_#####_#_#_#_____
_##___##_#_#______
_##___###_#_______
_##___#_##________
_##____###________
_##____#_#________
_##_____#_________
_##_______________
_##_______________

Refal

$ENTRY Go {
    , ' ### ## # # # #  #  ': e.State
    = <Run <Table> 10 e.State>;
};

Table {
    = ((('   ') ' ')
       (('  #') ' ')
       ((' # ') ' ')
       ((' ##') '#')
       (('#  ') ' ')
       (('# #') '#')
       (('## ') '#')
       (('###') ' '));
};

Run {
    t.Table 0 e.X = ;
    t.Table s.Steps e.X =
        <Prout e.X>
        <Run t.Table <- s.Steps 1> <DoStep t.Table e.X>>;
};

DoStep {
    t.Table e.X = <Step1 t.Table ' ' e.X ' '>;
};

Step1 {
    t.Table s.1 s.2 s.3 e.R,
        <Lookup t.Table s.1 s.2 s.3>: e.Next,
        e.R: {
            = e.Next;
            e.R = e.Next <Step1 t.Table s.2 s.3 e.R>;
    };
}

Lookup {
    (e.A ((e.X)e.Y) e.B) e.X = e.Y;
};
Output:
 ### ## # # # #  #
 # ##### # # #
  ##   ## # #
  ##   ### #
  ##   # ##
  ##    ###
  ##    # #
  ##     #
  ##
  ##

Retro

# 1D Cellular Automota

Assume an array of cells with an initial distribution of live and
dead cells, and imaginary cells off the end of the array having
fixed values.

Cells in the next generation of the array are calculated based on
the value of the cell and its left and right nearest neighbors in
the current generation.

If, in the following table, a live cell is represented by 1 and a
dead cell by 0 then to generate the value of the cell at a particular
index in the array of cellular values you use the following table:

000 -> 0  # 
001 -> 0  #
010 -> 0  # Dies without enough neighbours
011 -> 1  # Needs one neighbour to survive
100 -> 0  #
101 -> 1  # Two neighbours giving birth
110 -> 1  # Needs one neighbour to survive
111 -> 0  # Starved to death.

I had originally written an implementation of this in RETRO 11.
For RETRO 12 I took advantage of new language features and some
further considerations into the rules for this task.

The first word, `string,` inlines a string to `here`. I'll use
this to setup the initial input.

~~~
:string, (s-) [ , ] s:for-each #0 , ; 
~~~

The next two lines setup an initial generation and a buffer for
the evolved generation. In this case, `This` is the current 
generation and `Next` reflects the next step in the evolution.

~~~
'This d:create 
  '.###.##.#.#.#.#..#.. string, 
 
'Next d:create 
  '.................... string, 
~~~

I use `display` to show the current generation.

~~~
:display (-) 
  &This s:put nl ; 
~~~

As might be expected, `update` copies the `Next` generation to
the `This` generation, setting things up for the next cycle.

~~~
:update (-) 
  &Next &This dup s:length copy ; 
~~~

The word `group` extracts a group of three cells. This data will
be passed to `evolve` for processing.

~~~
:group (a-nnn) 
  [ fetch ] 
  [ n:inc fetch ] 
  [ n:inc n:inc fetch ] tri ; 
~~~

I use `evolve` to decide how a cell should change, based on its
initial state with relation to its neighbors.

In the prior implementation this part was much more complex as I 
tallied things up and had separate conditions for each combination. 
This time I take advantage of the fact that only cells with two 
neighbors will be alive in the next generation. So the process is:

- take the data from `group`
- compare to `$#` (for living cells)
- add the flags
- if the result is `#-2`, the cell should live
- otherwise it'll be dead

~~~
:evolve (nnn-c) 
  [ $# eq? ] tri@ + + 
  #-2 eq? [ $# ] [ $. ] choose ; 
~~~

For readability I separated out the next few things. `at` takes an
index and returns the address in `This` starting with the index.

~~~
:at (n-na) 
  &This over + ; 
~~~

The `record` word adds the evolved value to a buffer. In this case
my `generation` code will set the buffer to `Next`.

~~~
:record (c-) 
  buffer:add n:inc ; 
~~~

And now to tie it all together. Meet `generation`, the longest bit
of code in this sample. It has several bits:

- setup a new buffer pointing to `Next`

  - this also preserves the old buffer

- setup a loop for each cell in `This`

  - initial loop index at -1, to ensure proper dummy state for first cell
  - get length of `This` generation

- perform a loop for each item in the generation, updating `Next` as it goes

- copy `Next` to `This` using `update`.

~~~
:generation (-) 
  [ &Next buffer:set 
    #-1 &This s:length 
    [ at group evolve record ] times drop 
    update 
  ] buffer:preserve ; 
~~~

The last bit is a helper. It takes a number of generations and displays
the state, then runs a `generation`.

~~~
:generations (n-) 
  [ display generation ] times ; 
~~~

And a text. The output should be:

    .###.##.#.#.#.#..#..
    .#.#####.#.#.#......
    ..##...##.#.#.......
    ..##...###.#........
    ..##...#.##.........
    ..##....###.........
    ..##....#.#.........
    ..##.....#..........
    ..##................
    ..##................

~~~
#10 generations 
~~~

REXX

This REXX version will show (as a default)   40   generations,   or less if the generations of cellular automata repeat.

/*REXX program generates & displays N generations of one─dimensional cellular automata. */
parse arg $ gens .                               /*obtain optional arguments from the CL*/
if    $=='' |    $==","  then $=001110110101010  /*Not specified?  Then use the default.*/
if gens=='' | gens==","  then gens=40            /* "      "         "   "   "     "    */

   do #=0  for gens                              /* process the  one-dimensional  cells.*/
   say  " generation"    right(#,length(gens))       ' '       translate($, "#·", 10)
   @=0                                                                /* [↓] generation.*/
          do j=2  for length($) - 1;          x=substr($, j-1, 3)     /*obtain the cell.*/
          if x==011 | x==101 | x==110  then @=overlay(1, @, j)        /*the cell lives. */
                                       else @=overlay(0, @, j)        /* "   "    dies. */
          end   /*j*/

   if $==@  then do;  say right('repeats', 40);  leave;  end          /*does it repeat? */
   $=@                                           /*now use the next generation of cells.*/
   end       /*#*/                               /*stick a fork in it,  we're all done. */

output when using the default input:

 generation  0   ··###·##·#·#·#·
 generation  1   ··#·#####·#·#··
 generation  2   ···##···##·#···
 generation  3   ···##···###····
 generation  4   ···##···#·#····
 generation  5   ···##····#·····
 generation  6   ···##··········
                                 repeats

Ring

# Project : One-dimensional cellular automata

rule = ["0", "0", "0", "1", "0", "1", "1", "0"]
now = "01110110101010100100"
 
for generation = 0 to 9
    see "generation " + generation + ": " + now + nl
    nxt = ""
    for cell = 1 to len(now)
        str = "bintodec(" + '"' +substr("0"+now+"0", cell, 3) + '"' + ")"
        eval("p=" + str) 
        nxt = nxt + rule[p+1]
    next 
    temp = nxt
    nxt = now
    now = temp
next 

func bintodec(bin)
     binsum = 0
     for n=1  to len(bin)
         binsum = binsum + number(bin[n]) *pow(2, len(bin)-n)
     next
     return binsum

Output:

generation 0: 01110110101010100100
generation 1: 01011111010101000000
generation 2: 00110001101010000000
generation 3: 00110001110100000000
generation 4: 00110001011000000000
generation 5: 00110000111000000000
generation 6: 00110000101000000000
generation 7: 00110000010000000000
generation 8: 00110000000000000000
generation 9: 00110000000000000000

RPL

Rather than assuming fixed values for cells beyond borders, it has been decided to make the board 'circular', as it is the case in many 2D versions. A new generation is directly derived from the output string of the previous generation.

Works with: Halcyon Calc version 4.2.7
≪ 1 10 START
      DUP DUP 1 1 SUB
      OVER DUP SIZE DUP SUB ROT + SWAP +
      { "_##" "#_#" "##_" } 
      → gen lives
      ≪ "" 2 gen SIZE 1 - FOR j
            lives gen j 1 - DUP 2 + SUB POS "#" "_" IFTE +
         NEXT 
      ≫
   NEXT
 ≫ 
'CELLS' STO
"_###_##_#_#_#_#__#__" CELLS
Output:
10: _###_##_#_#_#_#__#__
9:  _#_#####_#_#_#______
8:  __##___##_#_#_______
7:  __##___###_#________
6:  __##___#_##_________
5:  __##____###_________
4:  __##____#_#_________
3:  __##_____#__________
2:  __##________________
1:  __##________________

Ruby

def evolve(ary)
  ([0]+ary+[0]).each_cons(3).map{|a,b,c| a+b+c == 2 ? 1 : 0}
end

def printit(ary)
  puts ary.join.tr("01",".#")
end

ary = [0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
printit ary
until ary == (new = evolve(ary))
  printit ary = new
end
Output:
.###.##.#.#.#.#..#..
.#.#####.#.#.#......
..##...##.#.#.......
..##...###.#........
..##...#.##.........
..##....###.........
..##....#.#.........
..##.....#..........
..##................

Rust

fn get_new_state(windowed: &[bool]) -> bool {
    match windowed {
        [false, true, true] | [true, true, false] => true,
        _ => false
    }
}

fn next_gen(cell: &mut [bool]) {
    let mut v = Vec::with_capacity(cell.len());
    v.push(cell[0]);
    for i in cell.windows(3) {
        v.push(get_new_state(i));
    }
    v.push(cell[cell.len() - 1]);
    cell.copy_from_slice(&v);
}

fn print_cell(cell: &[bool]) {
    for v in cell {
        print!("{} ", if *v {'#'} else {' '});
    }
    println!();
}

fn main() {

    const MAX_GENERATION: usize = 10;
    const CELLS_LENGTH: usize = 30;

    let mut cell: [bool; CELLS_LENGTH] = rand::random();

    for i in 1..=MAX_GENERATION {
        print!("Gen {:2}: ", i);
        print_cell(&cell);
        next_gen(&mut cell);
    }
}

Scala

Works with: Scala version 2.8
def cellularAutomata(s: String) = {
  def it = Iterator.iterate(s) ( generation =>
    ("_%s_" format generation).iterator 
    sliding 3 
    map (_ count (_ == '#')) 
    map Map(2 -> "#").withDefaultValue("_") 
    mkString
  )
  
  (it drop 1) zip it takeWhile Function.tupled(_ != _) map (_._2) foreach println
}

Sample:

scala> cellularAutomata("_###_##_#_#_#_#__#__")
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________

Scheme

Works with: Scheme version RRS
(define (next-generation left petri-dish right)
  (if (null? petri-dish)
      (list)
      (cons (if (= (+ left
                      (car petri-dish)
                      (if (null? (cdr petri-dish))
                          right
                          (cadr petri-dish)))
                   2)
                1
                0)
            (next-generation (car petri-dish) (cdr petri-dish) right))))

(define (display-evolution petri-dish generations)
  (if (not (zero? generations))
      (begin (display petri-dish)
             (newline)
             (display-evolution (next-generation 0 petri-dish 0)
                                (- generations 1)))))

(display-evolution (list 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0) 10)

Output:

(1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0)
(1 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0)
(0 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0)
(0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0)
(0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0)
(0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0)
(0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0)
(0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0)
(0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

Seed7

A graphical cellular automaton can be found here.

$ include "seed7_05.s7i";

const string: start is "_###_##_#_#_#_#__#__";
 
const proc: main is func
  local
    var string: g0 is start;
    var string: g1 is start;
    var integer: generation is 0;
    var integer: i is 0;
  begin
    writeln(g0);
    for generation range 0 to 9 do
      for i range 2 to pred(length(g0)) do
        if g0[i-1] <> g0[i+1] then
          g1 @:= [i] g0[i];
        elsif g0[i] = '_' then
          g1 @:= [i] g0[i-1];
        else
          g1 @:= [i] '_'
        end if;
      end for;
      writeln(g1);
      g0 := g1;
    end for;
  end func;

Output:

_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________
__##________________

SequenceL

import <Utilities/Conversion.sl>;

main(args(2)) :=
    run(args[1], stringToInt(args[2])) when size(args) = 2 
else
    "Usage error: exec <initialCells> <generations>";

stringToCells(string(1))[i] := 0 when string[i] = '_' else 1;
cellsToString(cells(1))[i] := '#' when cells[i] = 1 else '_'; 

run(cellsString(1), generations) := 
        runHelper(stringToCells(cellsString), generations, cellsString);

runHelper(cells(1), generations, result(1)) :=
    let
        nextCells := step(cells);
    in
        result when generations = 0
    else
        runHelper(nextCells, generations - 1, 
                  result ++ "\n" ++ cellsToString(nextCells));

step(cells(1))[i] := 
    let
        left := cells[i-1] when i > 1 else 0;
        right := cells[i + 1] when i < size(cells) else 0;
    in
        1 when (left + cells[i] + right) = 2
    else
        0;
Output:
"_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________
__##________________"

Sidef

Translation of: Perl
var seq = "_###_##_#_#_#_#__#__";
var x = '';

loop {
    seq.tr!('01', '_#');
    say seq;
    seq.tr!('_#', '01');
    seq.gsub!(/(?<=(.))(.)(?=(.))/, {|s1,s2,s3| s1 == s3 ? (s1 ? 1-s2 : 0) : s2});
    (x != seq) && (x = seq) || break;
}
Output:
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
Translation of: Raku
class Automaton(rule, cells) {

    method init {
        rule = sprintf("%08b", rule).chars.map{.to_i}.reverse;
    }

    method next {
        var previous = cells.map{_};
        var len = previous.len;
        cells[] = rule[
                previous.range.map { |i|
                    4*previous[i-1 % len] +
                    2*previous[i]         +
                      previous[i+1 % len]
                }...
            ]
    }

    method to_s {
        cells.map { _ ? '#' : ' ' }.join;
    }
}

var size = 10;
var auto = Automaton(
    rule: 104,
    cells: [(size/2).of(0)..., 111011010101.digits..., (size/2).of(0)...],
);

size.times {
    say "|#{auto}|";
    auto.next;
}
Output:
|     ### ## # # #     |
|     # ##### # #      |
|      ##   ## #       |
|      ##   ###        |
|      ##   # #        |
|      ##    #         |
|      ##              |
|      ##              |
|      ##              |
|      ##              |

Tcl

proc evolve {a} {
    set new [list]
    for {set i 0} {$i < [llength $a]} {incr i} {
        lappend new [fate $a $i]
    }
    return $new
}

proc fate {a i} {
    return [expr {[sum $a $i] == 2}]
}

proc sum {a i} {
    set sum 0
    set start [expr {$i - 1 < 0 ? 0 : $i - 1}]
    set end [expr {$i + 1 >= [llength $a] ? $i : $i + 1}]
    for {set j $start} {$j <= $end} {incr j} {
        incr sum [lindex $a $j]        
    }
    return $sum
}

proc print {a} {
    puts [string map {0 _ 1 #} [join $a ""]]
}

proc parse {s} {
    return [split [string map {_ 0 # 1} $s] ""]
}

set array [parse "_###_##_#_#_#_#__#__"]
print $array
while {[set new [evolve $array]] ne $array} {
    set array $new
    print $array
}

Uiua

Based on the example code on the Uiua homepage.

Uses the provided Rule 104. More interesting rules are 105, 110, 30, 90 etc.

Try them out on the Uiua Pad!

Rule ← /+⊞= ⊓(⊚⋯|°⋯⇌◫3⇌ ⊂⊂0:0)
[⍥(⁅⚂)200]          # Init
⇌[⍥(Rule104.)⌊÷2⧻.] # Run
▽⟜(≡▽)4             # Scale up

Ursala

Three functions are defined. Rule takes a neighborhood of three cells to the succeeding value of the middle one, step takes a list of cells to its successor by applying the rule across a sliding window, and evolve takes an initial list of cells to a list of those evolving from it according to the rule. The cells are maintained as a list of booleans (0 and &) but are converted to characters for presentation in the example code.

#import std
#import nat

rule = -$<0,0,0,&,0,&,&,0>@rSS zipp0*ziD iota8

step = rule*+ swin3+ :/0+ --<0>

evolve "n" = @iNC ~&x+ rep"n" ^C/step@h ~&

#show+

example =  ~&?(`#!,`.!)** evolve10 <0,&,&,&,0,&,&,0,&,0,&,0,&,0,0,&,0,0>

output:

.###.##.#.#.#..#..
.#.#####.#.#......
..##...##.#.......
..##...###........
..##...#.#........
..##....#.........
..##..............
..##..............
..##..............
..##..............
..##..............

Vedit macro language

This implementation writes the calculated patterns into an edit buffer, where the results can viewed and saved into a file if required. The edit buffer also acts as storage during calculations.

IT("Gen 0: ..###.##.#.#.#.#..#.....")     // initial pattern
#9  = Cur_Col

for (#8 = 1; #8 < 10; #8++) {             // 10 generations
    Goto_Col(7)
    Reg_Empty(20)
    while (Cur_Col < #9-1) {
        if (Match("|{##|!#,#.#,|!###}")==0) {
            Reg_Set(20, "#", APPEND)
        } else {
            Reg_Set(20, ".", APPEND)
        }
        Char
    }
    EOL IN
    IT("Gen ") Num_Ins(#8, LEFT+NOCR) IT(": ")
    Reg_Ins(20)
}

Sample output:

Gen 0: ..###.##.#.#.#.#..#.....
Gen 1: ..#.#####.#.#.#.........
Gen 2: ...##...##.#.#..........
Gen 3: ...##...###.#...........
Gen 4: ...##...#.##............
Gen 5: ...##....###............
Gen 6: ...##....#.#............
Gen 7: ...##.....#.............
Gen 8: ...##...................
Gen 9: ...##...................

Wart

Simple

def (gens n l)
  prn l
  repeat n
    zap! gen l
    prn l

def (gen l)
  with (a nil  b nil  c l.0)
    collect nil  # won't insert paren without second token
      each x cdr.l
        shift! a b c x
        yield (next a b c)
      yield (next b c nil)

def (next a b c)  # next state of b given neighbors a and c
  if (and a c)  not.b
     (or a c)  b

Output looks a little ugly:

ready! type in an expression, then hit enter twice. ctrl-d exits.
gens 5 '(1 1 1 nil 1)

(1 1 1 nil 1)
(1 nil 1 1 nil)
(nil 1 1 1 nil)
(nil 1 nil 1 nil)
(nil nil 1 nil nil)
(nil nil nil nil nil)

More sophisticated

Computing the next generation becomes much cleaner once you invest a few LoC in a new datatype.

def (uca l)  # new datatype: Uni-dimensional Cellular Automaton
  (tag uca (list l len.l))

def (len l) :case (isa uca l)  # how to compute its length
  rep.l.1

defcoerce uca list  # how to convert it to a list
  (fn(_) rep._.0)

def (pr l) :case (isa uca l)  # how to print it
  each x l  # transparently coerces to a list for iterating over
    pr (if x "#" "_")

# (l i) returns ith cell when l is a uca, and nil when i is out-of-bounds
defcall uca (l i)
  if (0 <= i < len.l)
    rep.l.0.i

def (gens n l)
  prn l
  repeat n
    zap! gen l
    prn l

def (gen l)
  uca+collect+for i 0 (i < len.l) ++i
    yield (next  (l i-1)  l.i  (l i+1))

# next state of b, given neighbors a and c
def (next a b c)
  if (and a c) not.b
     (or a c)  b

Output is prettier now:

ready! type in an expression, then hit enter twice. ctrl-d exits.
gens 10 (uca '(nil 1 1 1 nil 1 1 nil 1 nil 1 nil 1 nil 1 nil nil 1 nil nil))

_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________
__##________________
__##________________

Wren

Translation of: Kotlin
var trans = "___#_##_"

var v = Fn.new { |cell, i| (cell[i] != "_") ? 1 : 0 }

var evolve = Fn.new { |cell, backup|
    var len = cell.count - 2
    var diff = 0
    for (i in 1...len) {
        /* use left, self, right as binary number bits for table index */
        backup[i] = trans[v.call(cell, i - 1) * 4 + v.call(cell, i) * 2 + v.call(cell, i + 1)]
        diff = diff + ((backup[i] != cell[i]) ? 1 : 0)
    }
    cell.clear()
    cell.addAll(backup)
    return diff != 0
}

var c = "_###_##_#_#_#_#__#__".toList
var b = "____________________".toList
while(true) {
    System.print(c[1..-1].join())
    if (!evolve.call(c,b)) break
}
Output:
###_##_#_#_#_#__#__
#_#####_#_#_#______
_##___##_#_#_______
_##___###_#________
_##___#_##_________
_##____###_________
_##____#_#_________
_##_____#__________
_##________________

XPL0

code ChOut=8, CrLf=9;
int  Gen, Now, New, I;
[Now:= $076A_A400;
for Gen:= 1 to 10 do
    [for I:= 31 downto 0 do ChOut(0, if Now & 1<<I then ^# else ^_);
    CrLf(0);
    New:= 0;
    for I:= 30 downto 1 do
        case Now>>(I-1) & 7 of %011, %101, %110: New:= New ! 1<<I other;
    Now:= New;
    ];
]
Output:
_____###_##_#_#_#_#__#__________
_____#_#####_#_#_#______________
______##___##_#_#_______________
______##___###_#________________
______##___#_##_________________
______##____###_________________
______##____#_#_________________
______##_____#__________________
______##________________________
______##________________________

zkl

Translation of: Groovy
fcn life1D(line){
   right:=line[1,*] + False;           // shift left, False fill
   left :=T(False).extend(line[0,-1]); // shift right
   left.zip(line,right).apply(fcn(hood){ hood.sum(0)==2 });
}
chars:=T("_","#");
cells:="_###_##_#_#_#_#__#__".split("").apply('==("#")); //-->L(False,True,True,True,False...)
do(10){ cells.apply(chars.get).concat().println(); cells=life1D(cells); }

Or, using strings instead of lists:

fcn life1D(line){
   right:=line[1,*] + "_";  // shift left, "_" fill
   left :="_" + line[0,-1]; // shift right
   Utils.Helpers.zipWith(
      fcn(a,b,c){ (String(a,b,c) - "_") == "##" and "#" or "_" },
      left,line,right).concat();
}
cells:="_###_##_#_#_#_#__#__";
do(10){ cells.println(); cells=life1D(cells); }
Output:
_###_##_#_#_#_#__#__
_#_#####_#_#_#______
__##___##_#_#_______
__##___###_#________
__##___#_##_________
__##____###_________
__##____#_#_________
__##_____#__________
__##________________