JSON
You are encouraged to solve this task according to the task description, using any language you may know.
Load a JSON string into a data structure. Also, create a new data structure and serialize it into JSON.
Use objects and arrays (as appropriate for your language) and make sure your JSON is valid (https://jsonformatter.org).
11l
T.serializable Person
String firstName, lastName
Int age
T PhoneNumber
String ntype
String number
[PhoneNumber] phoneNumbers
[String] children
Person p
json:to_object(‘
{
"firstName": "John",
"lastName": "Smith",
"age": 27,
"phoneNumbers": [
{
"ntype": "home",
"number": "212 555-1234"
},
{
"ntype": "office",
"number": "646 555-4567"
}
],
"children": ["Mary", "Kate"]
}’, &p)
p.phoneNumbers.pop(0)
p.children.append(‘Alex’)
print(json:from_object(p))
- Output:
{ "age": 27, "children": [ "Mary", "Kate", "Alex" ], "firstName": "John", "lastName": "Smith", "phoneNumbers": [ { "ntype": "office", "number": "646 555-4567" } ] }
8th
8th uses JSON as its data description language, so:
[1,2,3] . cr
Prints an array of [1,2,3].
Converting a string to an object:
"{ \"a\": 123 }" json>
Takes the string and converts to the JSON object (which is an 8th object). Convert back to a string:
{"a": 123} >s
That takes the object and converts to the JSON string given above.
Ada
Alternative using GNATCOLL
with Ada.Text_IO;
with GNATCOLL.JSON;
procedure JSON_Test is
use Ada.Text_IO;
use GNATCOLL.JSON;
JSON_String : constant String := "{""name"":""Pingu"",""born"":1986}";
Penguin : JSON_Value := Create_Object;
Parents : JSON_Array;
begin
Penguin.Set_Field (Field_Name => "name",
Field => "Linux");
Penguin.Set_Field (Field_Name => "born",
Field => 1992);
Append (Parents, Create ("Linus Torvalds"));
Append (Parents, Create ("Alan Cox"));
Append (Parents, Create ("Greg Kroah-Hartman"));
Penguin.Set_Field (Field_Name => "parents",
Field => Parents);
Put_Line (Penguin.Write);
Penguin := Read (JSON_String, "json.errors");
Penguin.Set_Field (Field_Name => "born",
Field => 1986);
Parents := Empty_Array;
Append (Parents, Create ("Otmar Gutmann"));
Append (Parents, Create ("Silvio Mazzola"));
Penguin.Set_Field (Field_Name => "parents",
Field => Parents);
Put_Line (Penguin.Write);
end JSON_Test;
- Output:
{"parents":["Linus Torvalds", "Alan Cox", "Greg Kroah-Hartman"], "name":"Linux", "born":1992} {"parents":["Otmar Gutmann", "Silvio Mazzola"], "name":"Pingu", "born":1986}
Alternative using Matreshka
with Ada.Wide_Wide_Text_IO; use Ada.Wide_Wide_Text_IO;
with League.JSON.Arrays; use League.JSON.Arrays;
with League.JSON.Documents; use League.JSON.Documents;
with League.JSON.Objects; use League.JSON.Objects;
with League.JSON.Values; use League.JSON.Values;
with League.Strings; use League.Strings;
procedure Main is
function "+" (Item : Wide_Wide_String) return Universal_String
renames To_Universal_String;
JSON_String : constant Universal_String
:= +"{""name"":""Pingu"",""born"":1986}";
Penguin : JSON_Object;
Parents : JSON_Array;
begin
Penguin.Insert (+"name", To_JSON_Value (+"Linux"));
Penguin.Insert (+"born", To_JSON_Value (1992));
Parents.Append (To_JSON_Value (+"Linus Torvalds"));
Parents.Append (To_JSON_Value (+"Alan Cox"));
Parents.Append (To_JSON_Value (+"Greg Kroah-Hartman"));
Penguin.Insert (+"parents", To_JSON_Value (Parents));
Put_Line (To_JSON_Document (Penguin).To_JSON.To_Wide_Wide_String);
Penguin := From_JSON (JSON_String).To_JSON_Object;
Parents := Empty_JSON_Array;
Parents.Append (To_JSON_Value (+"Otmar Gutmann"));
Parents.Append (To_JSON_Value (+"Silvio Mazzola"));
Penguin.Insert (+"parents", To_JSON_Value (Parents));
Put_Line (To_JSON_Document (Penguin).To_JSON.To_Wide_Wide_String);
end Main;
- Output:
{"parents":["Linus Torvalds","Alan Cox","Greg Kroah-Hartman"],"name":"Linux","born":1992} {"parents":["Otmar Gutmann","Silvio Mazzola"],"name":"Pingu","born":1986}
AntLang
JSON parser (maybe failes with "invalid JSON" error)
json:{[data]catch[eval[,|{[y]catch[{":" = "="; "[" = "<"; "]" = ">"; "," = ";"}[y];{x};{[]y}]}'("""("(\\.|[^\\"])*"|\-?[0-9]+(\.[0-9]+)?|\{|\}|\[|\]|\:|\,)"""~data)["strings"]];{x};{error["Invalid JSON"]}]}
ANTLR
Java
// Parse JSON
//
// Nigel Galloway - April 27th., 2012
//
grammar JSON ;
@members {
String Indent = "";
}
Number : (('0')|('-'? ('1'..'9') ('0'..'9')*)) ('.' ('0'..'9')+)? (('e'|'E') ('+'|'-')? ('0'..'9')+)?;
WS : (' ' | '\t' | '\r' |'\n') {skip();};
Tz : ' ' .. '!' | '#' .. '[' | ']' .. '~';
Control : '\\' ('"'|'\\'|'/'|'b'|'f'|'n'|'r'|'t'|UCode);
UCode : 'u' ('0'..'9'|'a'..'f'|'A'..'F') ('0'..'9'|'a'..'f'|'A'..'F') ('0'..'9'|'a'..'f'|'A'..'F') ('0'..'9'|'a'..'f'|'A'..'F');
Keyword : 'true' | 'false' | 'null';
String : '"' (Control? Tz)* '"';
object : '{' {System.out.println(Indent + "{Object}"); Indent += " ";} (pair (',' pair*)*)? '}' {Indent = Indent.substring(4);};
pair : e = String {System.out.println(Indent + "{Property}\t" + $e.text);} ':' value;
value : Number {System.out.println(Indent + "{Number} \t" + $Number.text);}
| object
| String {System.out.println(Indent + "{String} \t" + $String.text);}
| Keyword {System.out.println(Indent + "{Keyword} \t" + $Keyword.text);}
| array;
array : '[' {System.out.println(Indent + "Array"); Indent += " ";} (value (',' value)*)? ']' {Indent = Indent.substring(4);};
Produces:
>java Test { "Nigel" : -110.2e-13 , "Fred" : { "Joe" : [3,true,"Nigel"] } "Harry" : [23,"Hello"] } ^Z {Object} {Property} "Nigel" {Number} -110.2e-13 {Property} "Fred" {Object} {Property} "Joe" Array {Number} 3 {Keyword} true {String} "Nigel" {Property} "Harry" Array {Number} 23 {String} "Hello"
Apex
JSON serialization and deserialization is built in
class TestClass{
String foo {get;set;}
Integer bar {get;set;}
}
TestClass testObj = new TestClass();
testObj.foo = 'ABC';
testObj.bar = 123;
String serializedString = JSON.serialize(testObj);
TestClass deserializedObject = (TestClass)JSON.deserialize(serializedString, TestClass.class);
//"testObj.foo == deserializedObject.foo" is true
//"testObj.bar == deserializedObject.bar" is true
Arturo
print read.json {{ "foo": 1, "bar": [10, "apples"] }}
object: #[
name: "john"
surname: "doe"
address: #[
number: 10
street: "unknown"
country: "Spain"
]
married: false
]
print write.json ø object
- Output:
[foo:1 bar:[10 apples]] { "name": "john", "surname": "doe", "address": { "number": 10, "street": "unknown", "country": "Spain" }, "married": false }
Bracmat
Bracmat has built-in functionality for reading and writing JSON data. A full roundtrip from JSON file over a Bracmat internal representation back to a JSON file looks like this:
put$(jsn$(get$("input.json",JSN)),"output.JSN,NEW)
Let us split this into separate steps.
To read a JSON file "myfile.json", use
get$("myfile.json",JSN)
If the JSON data, e.g, an array, has to be read from a string value, use the MEM
option on the get
function, like this:
get$("[1,2,3]",JSN,MEM)
To convert the corresponding Bracmat data structure (,1 2 3)
back to a JSON string, use
jsn$(,1 2 3)
To write a JSON string "[1,2,3]"
to a file "array.json", use
put$("[1,2,3]","array.json",NEW)
Bracmat and JSON/Javascript do far from represent data in similar ways.
Bracmat has arbitrary-precision arithmetic. Floating point numbers are not a native datatype in Bracmat. (But since 2023, Bracmat has an object type, UFP, that handles floating point operations using C "double"s.)
Bracmat has no Boolean values true
and false
and no null
value.
Bracmat has arrays and objects, but they are second class citizens. Most data is best represented as binary tree structures, with binary operators like the plus, comma, dot or white space sitting in the nodes and the atomic parts of the data sitting in the leaves.
The only data type that is somewhat the same in JSON/JavaScript and Bracmat is the string, but there is a slight difference in the representation of strings in code. Whereas strings in JSON always are enclosed in quotation marks, this is only necessary in Bracmat if a string contains operator characters or starts with flag characters.
Here are the mapping rules:
Bracmat representation | JSON representation | Comment |
---|---|---|
null
|
null
|
|
true
|
true
| |
false
|
false
| |
12345
|
12345
| |
2/3
|
6.66666666666666666667E-1
|
Most rational numbers cannot be represented as floating point numbers, see note (1) |
(.string)
|
"string"
| |
(,1 2)
|
[1,2]
| |
((a.1)+(b.2),)
|
{"a":1,"b":2}
|
The + operator sorts its arguments. See note (2)
|
Note (1) All floating point numbers can be represented as rational numbers. Therefore, a round trip of a Bracmat number to a JSON number and back to a Bracmat number can give a different number: 2/3
becomes 666666666666666666667/1000000000000000000000
.
Note (2) The objects {"a":1,"b":2}
and {"b":2,"a":1}
are equivalent in Bracmat, as they are both internally represented as ((a.1)+(b.2),)
Here is a full round trip of the following JSON data, which is assumed to be stored in a file "rosetta.json". The employed code is:
( get$("rosetta.json",JSN):?json
& lst$(json,"json.bra",NEW)
& put$(jsn$!json,"rosetta-roundtrip.json",NEW)
)
rosetta.json:
[ { "ape": "\"King Kong\"", "C:\\projects": "23", "OS\/2": { "White\b\f\n\r\tspace": {} }, "Cyrillic": [ "Ya \u042F", "ya \u044f" ] }, "TAB ", [ "elem1", "elem2" ], "Bernhard", [], [ "x", "y", "z" ], [ "true", true, false, null ], { "fixed point": [ 3.4, 0.00987654321, -10.01, 56.78, 56.780 ] }, { "floating point": [ 0e0, 0.0000006e-007, 17E123, -17.87E123, 0.87E123, 286e400 ] }, { "integer": [ -0, 0, -5, 1234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567890 ] } ]
Content of json.bra:
json= , ( ("C:\\projects"..23) + (Cyrillic.,(."Ya Я") (."ya я")) + (OS/2.("White\b\f \r space".0,),) + (ape.."\"King Kong\"") , ) (.TAB\t) (,(.elem1) (.elem2)) (.Bernhard) (,) (,(.x) (.y) (.z)) (,(.true) true false null) ( ("fixed point".,34/10 987654321/100000000000 -1001/100 5678/100 56780/1000) , ) ( ( "floating point" . , 0 6/100000000000000 17000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 -17870000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 870000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 2860000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ... ) , ) ( ( integer . , -0 0 -5 1234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891 ... ) , );
The file "rosetta-roundtrip.json" will contain a single line. There is no beautify option when constructing a JSON string using the jsn
function. The http://jsonlint.com service can be used to view the JSON string, but notice that some of the numbers are to big to be handled by this service and are turned into null values.
Content of rosetta-roundtrip.json (1402 characters):
[{"C:\\projects":"23","Cyrillic":["Ya Я","ya я"],"OS/2":{"White\b\f\n\r\tspace":{}},"ape":"\"King Kong\""},"TAB\t",["elem1","elem2"],"Bernhard",[],["x","y","z"],["true",true,false,null],{"fixed point":[3.4,0.00987654321,-10.01,56.78,56.78]},{"floating point":[0,0.00000000000006,17000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,-17870000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,870000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,2860000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]},{"integer":[-0,0,-5,1234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567890]}]
After manual reformatting, again shortened where lines run off the screen:
[ { "C:\\projects": "23", "Cyrillic": [ "Ya Я", "ya я" ], "OS/2": { "White\b\f\n\r\tspace": {} }, "ape": "\"King Kong\"" }, "TAB\t", [ "elem1", "elem2" ], "Bernhard", [], [ "x", "y", "z" ], [ "true", true, false, null ], { "fixed point": [ 3.4, 0.00987654321, -10.01, 56.78, 56.78 ] }, { "floating point": [ 0, 0.00000000000006, 17000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, -17870000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 870000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 2860000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ... ] }, { "integer": [ -0, 0, -5, 1234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891 ... ] } ]
C
Reads a snippet of JSON into YAJL's tree format, then walks the tree to print it back out again. The tree contains numbers both in an unparsed, string form, and also converted to long long or double when possible. The example below demonstrates both ways of dealing with numbers.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <yajl/yajl_tree.h>
#include <yajl/yajl_gen.h>
static void print_callback (void *ctx, const char *str, size_t len)
{
FILE *f = (FILE *) ctx;
fwrite (str, 1, len, f);
}
static void check_status (yajl_gen_status status)
{
if (status != yajl_gen_status_ok)
{
fprintf (stderr, "yajl_gen_status was %d\n", (int) status);
exit (EXIT_FAILURE);
}
}
static void serialize_value (yajl_gen gen, yajl_val val, int parse_numbers)
{
size_t i;
switch (val->type)
{
case yajl_t_string:
check_status (yajl_gen_string (gen,
(const unsigned char *) val->u.string,
strlen (val->u.string)));
break;
case yajl_t_number:
if (parse_numbers && YAJL_IS_INTEGER (val))
check_status (yajl_gen_integer (gen, YAJL_GET_INTEGER (val)));
else if (parse_numbers && YAJL_IS_DOUBLE (val))
check_status (yajl_gen_double (gen, YAJL_GET_DOUBLE (val)));
else
check_status (yajl_gen_number (gen, YAJL_GET_NUMBER (val),
strlen (YAJL_GET_NUMBER (val))));
break;
case yajl_t_object:
check_status (yajl_gen_map_open (gen));
for (i = 0 ; i < val->u.object.len ; i++)
{
check_status (yajl_gen_string (gen,
(const unsigned char *) val->u.object.keys[i],
strlen (val->u.object.keys[i])));
serialize_value (gen, val->u.object.values[i], parse_numbers);
}
check_status (yajl_gen_map_close (gen));
break;
case yajl_t_array:
check_status (yajl_gen_array_open (gen));
for (i = 0 ; i < val->u.array.len ; i++)
serialize_value (gen, val->u.array.values[i], parse_numbers);
check_status (yajl_gen_array_close (gen));
break;
case yajl_t_true:
check_status (yajl_gen_bool (gen, 1));
break;
case yajl_t_false:
check_status (yajl_gen_bool (gen, 0));
break;
case yajl_t_null:
check_status (yajl_gen_null (gen));
break;
default:
fprintf (stderr, "unexpectedly got type %d\n", (int) val->type);
exit (EXIT_FAILURE);
}
}
static void print_tree (FILE *f, yajl_val tree, int parse_numbers)
{
yajl_gen gen;
gen = yajl_gen_alloc (NULL);
if (! gen)
{
fprintf (stderr, "yajl_gen_alloc failed\n");
exit (EXIT_FAILURE);
}
if (0 == yajl_gen_config (gen, yajl_gen_beautify, 1) ||
0 == yajl_gen_config (gen, yajl_gen_validate_utf8, 1) ||
0 == yajl_gen_config (gen, yajl_gen_print_callback, print_callback, f))
{
fprintf (stderr, "yajl_gen_config failed\n");
exit (EXIT_FAILURE);
}
serialize_value (gen, tree, parse_numbers);
yajl_gen_free (gen);
}
int main (int argc, char **argv)
{
char err_buf[200];
const char *json =
"{\"pi\": 3.14, \"large number\": 123456789123456789123456789, "
"\"an array\": [-1, true, false, null, \"foo\"]}";
yajl_val tree;
tree = yajl_tree_parse (json, err_buf, sizeof (err_buf));
if (! tree)
{
fprintf (stderr, "parsing failed because: %s\n", err_buf);
return EXIT_FAILURE;
}
printf ("Treating numbers as strings...\n");
print_tree (stdout, tree, 0);
printf ("Parsing numbers to long long or double...\n");
print_tree (stdout, tree, 1);
yajl_tree_free (tree);
return EXIT_SUCCESS;
}
- Output:
Treating numbers as strings... { "pi": 3.14, "large number": 123456789123456789123456789, "an array": [ -1, true, false, null, "foo" ] } Parsing numbers to long long or double... { "pi": 3.1400000000000001243, "large number": 1.2345678912345679134e+26, "an array": [ -1, true, false, null, "foo" ] }
C#
This uses the JavaScriptSerializer class which was shipped with .NET 3.5.
using System;
using System.Collections.Generic;
using System.Web.Script.Serialization;
class Program
{
static void Main()
{
var people = new Dictionary<string, object> {{"1", "John"}, {"2", "Susan"}};
var serializer = new JavaScriptSerializer();
var json = serializer.Serialize(people);
Console.WriteLine(json);
var deserialized = serializer.Deserialize<Dictionary<string, object>>(json);
Console.WriteLine(deserialized["2"]);
var jsonObject = serializer.DeserializeObject(@"{ ""foo"": 1, ""bar"": [10, ""apples""] }");
var data = jsonObject as Dictionary<string, object>;
var array = data["bar"] as object[];
Console.WriteLine(array[1]);
}
}
C++
#include "Core/Core.h"
using namespace Upp;
CONSOLE_APP_MAIN
{
JsonArray a;
a << Json("name", "John")("phone", "1234567") << Json("name", "Susan")("phone", "654321");
String txt = ~a;
Cout() << txt << '\n';
Value v = ParseJSON(txt);
for(int i = 0; i < v.GetCount(); i++)
Cout() << v[i]["name"] << ' ' << v[i]["phone"] << '\n';
}
C++11
#include <iostream>
#include <iomanip> // std::setw
#include <sstream>
#include <cassert>
#include "json.hpp"
using json = nlohmann::json;
int main( int argc, char* argv[] )
{
std::string const expected =
R"delim123({
"answer": {
"everything": 42
},
"happy": true,
"list": [
1,
0,
2
],
"name": "Niels",
"nothing": null,
"object": {
"currency": "USD",
"value": 42.99
},
"pi": 3.141
})delim123";
json const jexpected = json::parse( expected );
assert( jexpected["list"][1].get<int>() == 0 );
assert( jexpected["object"]["currency"] == "USD" );
json jhandmade = {
{"pi", 3.141},
{"happy", true},
{"name", "Niels"},
{"nothing", nullptr},
{"answer", {
{"everything", 42}
}
},
{"list", {1, 0, 2}},
{"object", {
{"currency", "USD"},
{"value", 42.99}
}
}
};
assert( jexpected == jhandmade );
std::stringstream jhandmade_stream;
jhandmade_stream << std::setw(4) << jhandmade;
std::string jhandmade_string = jhandmade.dump(4);
assert( jhandmade_string == expected );
assert( jhandmade_stream.str() == expected );
return 0;
}
Caché ObjectScript
Class Sample.JSON [ Abstract ]
{
ClassMethod GetPerson(ByRef pParms, Output pObject As %RegisteredObject) As %Status
{
Set pObject=##class(Sample.Person).%OpenId(pParms("oid"))
Quit $$$OK
}
}
- Examples:
SAMPLES>Set pParms("oid")=5 SAMPLES>Do ##class(%ZEN.Auxiliary.jsonProvider).%WriteJSONFromObject("", "Sample.JSON", "GetPerson", .pParms) { "_class":"Sample.Person", "_id":5, "Age":80, "DOB":33603, "FavoriteColors":["White","Purple"], "Home": { "_class":"Sample.Address", "City":"Denver", "State":"SC", "Street":"6932 Second Court", "Zip":51309 }, "Name":"Tillem,Will D.", "Office": { "_class":"Sample.Address", "City":"Queensbury", "State":"NV", "Street":"1169 Main Drive", "Zip":25310 }, "SSN":"729-56-4619", "Spouse":null } SAMPLES>Read json {"_class":"Sample.Person","_id":5,"Age":80,"DOB":33603,"FavoriteColors":["White" ,"Purple"],"Home":{"_class":"Sample.Address","City":"Denver","State":"S C","Stre et":"6932 Second Court","Zip":51309},"Name":"Tillem,Will D.","O ffice":{"_class" :"Sample.Address","City":"Queensbury","State":"NV"," Street":"1169 Main Drive"," Zip":25310},"SSN":"729-56-4619","Spouse":null} SAMPLES>Do ##class(%ZEN.Auxiliary.jsonProvider).%ConvertJSONToObject(json, "", .person) SAMPLES>Write person.Name Tillem,Will D. SAMPLES>Write person.FavoriteColors.Count() 2 SAMPLES>Write person.Home.Street 6932 Second Court
Clojure
Library: data.json
(use 'clojure.data.json)
; Load as Clojure data structures and bind the resulting structure to 'json-map'.
(def json-map (read-json "{ \"foo\": 1, \"bar\": [10, \"apples\"] }"))
; Use pr-str to print out the Clojure representation of the JSON created by read-json.
(pr-str json-map)
; Pretty-print the Clojure representation of JSON. We've come full circle.
(pprint-json json-map)
CoffeeScript
sample =
blue: [1, 2]
ocean: 'water'
json_string = JSON.stringify sample
json_obj = JSON.parse json_string
console.log json_string
console.log json_obj
ColdFusion
<!--- Create sample JSON structure --->
<cfset json = {
string: "Hello",
number: 42,
arrayOfNumbers: [1, 2, 3, 4],
arrayOfStrings: ["One", "Two", "Three", "Four"],
arrayOfAnything: [1, "One", [1, "One"], { one: 1 }],
object: {
key: "value"
}
} />
<!--- Convert to JSON string --->
<cfset jsonSerialized = serializeJSON(json) />
<!--- Convert back to ColdFusion --->
<cfset jsonDeserialized = deserializeJSON(jsonSerialized) />
<!--- Output examples --->
<cfdump var="#jsonSerialized#" />
<cfdump var="#jsonDeserialized#" />
Common Lisp
Library: cl-json
(ql:quickload '("cl-json"))
(json:encode-json
'#( ((foo . (1 2 3)) (bar . t) (baz . #\!))
"quux" 4/17 4.25))
(print (with-input-from-string
(s "{\"foo\": [1, 2, 3], \"bar\": true, \"baz\": \"!\"}")
(json:decode-json s)))
To load "cl-json": Load 1 ASDF system: cl-json ; Loading "cl-json" [{"foo":[1,2,3],"bar":true,"baz":"!"},"quux",0.23529412,4.25] ((:FOO 1 2 3) (:BAR . T) (:BAZ . "!"))
Crystal
Before 1.0.0:
require "json_mapping"
class Foo
JSON.mapping(
num: Int64,
array: Array(String),
)
end
def json
foo = Foo.from_json(%({"num": 1, "array": ["a", "b"]}))
puts("#{foo.num} #{foo.array}")
puts(foo.to_json)
end
After 1.0.0:
require "json"
class Foo
include JSON::Serializable
property num : Int64
property array : Array(String)
end
def json
foo = Foo.from_json(%({"num": 1, "array": ["a", "b"]}))
puts("#{foo.num} #{foo.array}")
puts(foo.to_json)
end
Output:
1 ["a", "b"] {"num":1,"array":["a","b"]}
D
import std.stdio, std.json;
void main() {
auto j = parseJSON(`{ "foo": 1, "bar": [10, "apples"] }`);
writeln(toJSON(&j));
}
{"foo":1,"bar":[10,"apples"]}
Dart
import 'dart:convert' show jsonDecode, jsonEncode;
main(){
var json_string = '''
{
"rosetta_code": {
"task": "json",
"language": "dart",
"descriptions": [ "fun!", "easy to learn!", "awesome!" ]
}
}
''';
// decode string into Map<String, dynamic>
var json_object = jsonDecode(json_string);
for ( var description in json_object["rosetta_code"]["descriptions"] )
print( "dart is $description" );
var dart = {
"compiled": true,
"interpreted": true,
"creator(s)":[ "Lars Bak", "Kasper Lund"],
"development company": "Google"
};
var as_json_text = jsonEncode(dart);
assert(as_json_text == '{"compiled":true,"interpreted":true,"creator(s)":["Lars Bak","Kasper Lund"],"development company":"Google"}');
}
- Output:
dart is fun! dart is easy to learn! dart is awesome!
import 'dart:convert';
main(){
var data = jsonDecode('{ "foo": 1, "bar": [10, "apples"] }');
var sample = { "blue": [1,2], "ocean": "water" };
var json_string = jsonEncode(sample);
}
DuckDB
DuckDB supports JSON as though it were one of the pre-defined types. Conversion to JSON is typically as simple as appending `::JSON` to an expression, as illustrated below.
Importing JSON
Files containing one or more JSON values can be read in several ways, depending on how the JSON is organized and on whether any kind of conversion is required.
For example, a file containing a single array of JSON objects can be conveniently used to populate a table with data-driven determination of the column names.
Similarly, one might wish to import an NDJSON file as a table with one row per line. For example, if colors.json is a file containing the text:
{ "white": [255, 255, 255] } { "red": [195, 176, 145] }
then the statement
from 'colors.json';
yields:
┌─────────────────┬─────────────────┐ │ white │ red │ │ int64[] │ int64[] │ ├─────────────────┼─────────────────┤ │ [255, 255, 255] │ │ │ │ [195, 176, 145] │ └─────────────────┴─────────────────┘
But if we want to read the values as two separate JSON objects, we could write:
select json::JSON from read_csv('colors.json', header=false, sep='\t') t(json);
with the result:
┌──────────────────────────────┐ │ CAST("json" AS "JSON") │ │ json │ ├──────────────────────────────┤ │ { "white": [255, 255, 255] } │ │ { "red": [195, 176, 145] } │ └──────────────────────────────┘
Conversion to JSON
DuckDB provides extensive support for converting rows and columns, and indeed DuckDB values in general, to JSON. These conversions can often be accomplished simply by "casting" a value to JSON as illustrated by the following query and the response it generates:
select 1, 1::JSON as int, [1,2], [1,2]::JSON as list, {'a':1}, {'a':1}::JSON as struct; ┌───────┬──────┬───────────────────────┬───────┬──────────────────────────┬─────────┐ │ 1 │ int │ main.list_value(1, 2) │ list │ main.struct_pack(a := 1) │ struct │ │ int32 │ json │ int32[] │ json │ struct(a integer) │ json │ ├───────┼──────┼───────────────────────┼───────┼──────────────────────────┼─────────┤ │ 1 │ 1 │ [1, 2] │ [1,2] │ {'a': 1} │ {"a":1} │ └───────┴──────┴───────────────────────┴───────┴──────────────────────────┴─────────┘
The second row in the table above indicates the DuckDB type of the value below it.
Exporting as JSON
DuckDB's COPY command can be used to export a table or the result of a query to a JSON file simply by using .json as the suffix, e.g.
COPY t to 'output.json';
Here's an informative typescript:
D COPY (select 1 as x, 2 as y) to 'output.json'; D .system cat output.json {"x":1,"y":2} D COPY (select unnest([1, 2]) as a) to 'output.json'; D .system cat output.json {"a":1} {"a":2} D COPY (select {'a':1, 'b': [1, 2]::JSON} as json) to 'output.json'; D .system cat output.json {"json":{"a":1,"b":[1,2]}}
The COPY command has various options for governing the export to JSON, e.g. the ARRAY option for producing a single JSON array.
JSON values can also be printed (and therefore sent to a file) directly, e.g. using the `.once` dot command.
Delphi
program JsonTest;
{$APPTYPE CONSOLE}
{$R *.res}
uses
System.SysUtils,
Json;
type
TJsonObjectHelper = class helper for TJsonObject
public
class function Deserialize(data: string): TJsonObject; static;
function Serialize: string;
end;
{ TJsonObjectHelper }
class function TJsonObjectHelper.Deserialize(data: string): TJsonObject;
begin
Result := TJSONObject.ParseJSONValue(data) as TJsonObject;
end;
function TJsonObjectHelper.Serialize: string;
begin
Result := ToJson;
end;
var
people, deserialized: TJsonObject;
bar: TJsonArray;
_json: string;
begin
people := TJsonObject.Create();
people.AddPair(TJsonPair.Create('1', 'John'));
people.AddPair(TJsonPair.Create('2', 'Susan'));
_json := people.Serialize;
Writeln(_json);
deserialized := TJSONObject.Deserialize(_json);
Writeln(deserialized.Values['2'].Value);
deserialized := TJSONObject.Deserialize('{"foo":1 , "bar":[10,"apples"]}');
bar := deserialized.Values['bar'] as TJSONArray;
Writeln(bar.Items[1].Value);
deserialized.Free;
people.Free;
Readln;
end.
- Output:
{"1":"John","2":"Susan"} Susan apples
EchoLisp
The json library allows to import/export basic JSON types (string ,numbers, arrays) and to translate EchoLisp objects (lists, dates, ..) from/to JSON objects and types. See reference documentation [[1]].
;; JSON standard types : strings, numbers, and arrays (vectors)
(export-json #(6 7 8 9)) → "[6,7,8,9]"
(export-json #("alpha" "beta" "gamma")) → "["alpha","beta","gamma"]"
(json-import "[6,7,8,9]") → #( 6 7 8 9)
(json-import #<< ["alpha","beta","gamma"] >>#) → #( "alpha" "beta" "gamma")
;; EchoLisp types : dates, rational, complex, big int
(export-json 3/4) → "{"_instanceof":"Rational","a":3,"b":4}"
(json-import #<< {"_instanceof":"Rational","a":666,"b":42} >>#) → 111/7
;; Symbols
(export-json 'Simon-Gallubert) → "{"_instanceof":"Symbol","name":"Simon-Gallubert"}"
(json-import #<< {"_instanceof":"Symbol","name":"Antoinette-de-Gabolde"} >>#)
→ Antoinette-de-Gabolde
;; Lists
(define my-list
(export-json '( 43 4 5 ( 6 7 ( 8 9 )))))
→ "{"_instanceof":"List" ,"array":[43,4,5,{"_instanceof":"List",
"array":[6,7,{"_instanceof":"List",
"array":[8,9],"circular":false}],"circular":false}],"circular":false}"
(json-import my-list) → (43 4 5 (6 7 (8 9)))
;; Structures
(struct Person (name pict)) → #struct:Person [name pict]
(define antoinette (Person "antoinette" "👰")) → # (antoinette 👰)
(export-json antoinette) →
"{"_instanceof":"Struct", "struct":"Person","id":17,"fields":["antoinette","👰"]}"
(json-import
#<< {"_instanceof":"Struct","struct":"Person","id":18,"fields":["simon","🎩"]} >>#)
→ # (simon 🎩)
EGL
Structures used both to construct and to parse JSON strings:
record familyMember
person person;
relationships relationship[]?;
end
record person
firstName string;
lastName string;
age int;
end
record relationship
relationshipType string;
id int;
end
Construct JSON string:
people Person[]; // Array of people
people.appendElement(new Person { firstName = "Frederick", lastName = "Flintstone", age = 35} );
people.appendElement(new Person { firstName = "Wilma", lastName = "Flintstone", age = 34} );
people.appendElement(new Person { firstName = "Pebbles", lastName = "Flintstone", age = 2} );
people.appendElement(new Person { firstName = "Bernard", lastName = "Rubble", age = 32} );
people.appendElement(new Person { firstName = "Elizabeth", lastName = "Rubble", age = 29} );
people.appendElement(new Person { firstName = "Bam Bam", lastName = "Rubble", age = 2} );
family Dictionary; // A dictionary of family members using a uid as key
family["1"] = new FamilyMember{ person = people[1], relationships = [new Relationship{ relationshipType="spouse", id = 2 }, new Relationship{ relationshipType="child", id = 3}] };
family["2"] = new FamilyMember{ person = people[2], relationships = [new Relationship{ relationshipType="spouse", id = 1 }, new Relationship{ relationshipType="child", id = 3}] };
family["3"] = new FamilyMember{ person = people[3], relationships = [new Relationship{ relationshipType="mother", id = 2 }, new Relationship{ relationshipType="father", id = 1}] };
family["4"] = new FamilyMember{ person = people[4], relationships = [new Relationship{ relationshipType="spouse", id = 5 }, new Relationship{ relationshipType="child", id = 6}] };
family["5"] = new FamilyMember{ person = people[5], relationships = [new Relationship{ relationshipType="spouse", id = 4 }, new Relationship{ relationshipType="child", id = 6}] };
family["6"] = new FamilyMember{ person = people[6], relationships = [new Relationship{ relationshipType="mother", id = 5 }, new Relationship{ relationshipType="father", id = 4}] };
// Convert dictionary of family members to JSON string
jsonString string = jsonLib.convertToJSON(family);
// Show JSON string
SysLib.writeStdout(jsonString);
- Raw Output:
{ "1":{"person":{"firstName":"Frederick","lastName":"Flintstone","age":35},"relationships":[{"relationshipType":"spouse","id":2},{"relationshipType":"child","id":3}]}, "2":{"person":{"firstName":"Wilma","lastName":"Flintstone","age":34},"relationships":[{"relationshipType":"spouse","id":1},{"relationshipType":"child","id":3}]}, "3":{"person":{"firstName":"Pebbles","lastName":"Flintstone","age":2},"relationships":[{"relationshipType":"mother","id":2},{"relationshipType":"father","id":1}]}, "4":{"person":{"firstName":"Bernard","lastName":"Rubble","age":32},"relationships":[{"relationshipType":"spouse","id":5},{"relationshipType":"child","id":6}]}, "5":{"person":{"firstName":"Elizabeth","lastName":"Rubble","age":29},"relationships":[{"relationshipType":"spouse","id":4},{"relationshipType":"child","id":6}]}, "6":{"person":{"firstName":"Bam Bam","lastName":"Rubble","age":2},"relationships":[{"relationshipType":"mother","id":5},{"relationshipType":"father","id":4}]} }
- Validated Output (partial):
{ "1": { "person": { "firstName": "Frederick", "lastName": "Flintstone", "age": 35 }, "relationships": [ { "relationshipType": "spouse", "id": 2 }, { "relationshipType": "child", "id": 3 } ] }, ... }
Parse JSON:
// Convert JSON string into dictionary of family members
family Dictionary;
jsonLib.convertFromJSON(jsonString, family);
// List family members and their relationships
familyMember FamilyMember;
relation FamilyMember;
keys string[] = family.getKeys();
for(i int from 1 to keys.getSize())
SysLib.writeStdout("----------------------------------------------------");
familyMember = family[keys[i]];
SysLib.writeStdout(familyMember.person.lastName + ", " + familyMember.person.firstName + " - " + familyMember.person.age);
for(j int from 1 to familyMember.relationships.getSize())
id string = familyMember.relationships[j].id;
relation = family[id];
SysLib.writeStdout(familyMember.relationships[j].relationshipType + ": " +
relation.person.lastName + ", " + relation.person.firstName);
end
end
- Output:
Flintstone, Frederick - 35 spouse: Flintstone, Wilma child: Flintstone, Pebbles ---------------------------------------------------- Flintstone, Wilma - 34 spouse: Flintstone, Frederick child: Flintstone, Pebbles ---------------------------------------------------- Flintstone, Pebbles - 2 mother: Flintstone, Wilma father: Flintstone, Frederick ---------------------------------------------------- Rubble, Bernard - 32 spouse: Rubble, Elizabeth child: Rubble, Bam Bam ---------------------------------------------------- Rubble, Elizabeth - 29 spouse: Rubble, Bernard child: Rubble, Bam Bam ---------------------------------------------------- Rubble, Bam Bam - 2 mother: Rubble, Elizabeth father: Rubble, Bernard
The examples above illustrate that it is possible to perform manual conversions to and from a JSON format but in EGL it is much more common for the programming language to handle these conversion automatically as a natural part of service invocations. Below is an example of a function definition designed to consume the Google Maps Geocoding service. The results are returned in a JSON format and parsed by EGL into records that mirror the structure of the reply.
// Service function definition
function geocode(address String) returns (GoogleGeocoding) {
@Resource{uri = "binding:GoogleGeocodingBinding"},
@Rest{method = _GET, uriTemplate = "/json?address={address}&sensor=false",
requestFormat = None, responseFormat = JSON}
}
// Invoke service function
call geocode("111 Maple Street, Somewhere, CO") returning to callback;
function callBack(result GoogleGeocoding in)
SysLib.writeStdout(result.status);
SysLib.writeStdout(result.results[1].geometry.location.lat);
SysLib.writeStdout(result.results[1].geometry.location.lng);
end
Elena
ELENA 4.x
import extensions;
import extensions'dynamic;
public program()
{
var json := "{ ""foo"": 1, ""bar"": [10, ""apples""] }";
var o := json.fromJson();
console.printLine("json.foo=",o.foo);
console.printLine("json.bar=",o.bar)
}
- Output:
json.foo=1 json.bar=10,apples
Emacs Lisp
Emacs 27.1 offers native JSON processing using the Jansson library.
(require 'cl-lib)
(cl-assert (fboundp 'json-parse-string))
(cl-assert (fboundp 'json-serialize))
(defvar example "{\"foo\": \"bar\", \"baz\": [1, 2, 3]}")
(defvar example-object '((foo . "bar") (baz . [1 2 3])))
;; decoding
(json-parse-string example) ;=> #s(hash-table [...]))
;; using json.el-style options
(json-parse-string example :object-type 'alist :null-object nil :false-object :json-false)
;;=> ((foo . "bar") (baz . [1 2 3]))
;; using plists for objects
(json-parse-string example :object-type 'plist) ;=> (:foo "bar" :baz [1 2 3])
;; encoding
(json-serialize example-object) ;=> "{\"foo\":\"bar\",\"baz\":[1,2,3]}"
(require 'json)
(defvar example "{\"foo\": \"bar\", \"baz\": [1, 2, 3]}")
(defvar example-object '((foo . "bar") (baz . [1 2 3])))
;; decoding
(json-read-from-string example) ;=> ((foo . "bar") (baz . [1 2 3]))
;; using plists for objects
(let ((json-object-type 'plist))
(json-read-from-string)) ;=> (:foo "bar" :baz [1 2 3])
;; using hash tables for objects
(let ((json-object-type 'hash-table))
(json-read-from-string example)) ;=> #<hash-table equal 2/65 0x1563c39805fb>
;; encoding
(json-encode example-object) ;=> "{\"foo\":\"bar\",\"baz\":[1,2,3]}"
;; pretty-printing
(let ((json-encoding-pretty-print t))
(message "%s" (json-encode example-object)))
- Output:
{ "foo": "bar", "baz": [ 1, 2, 3 ] }
Erlang
Use the JSON library for Erlang (mochijson) from mochiweb. The JSON code is extracted from wikipedia
-module(json).
-export([main/0]).
main() ->
JSON =
"{
\"firstName\": \"John\",
\"lastName\": \"Smith\",
\"age\": 25,
\"address\": {
\"streetAddress\": \"21 2nd Street\",
\"city\": \"New York\",
\"state\": \"NY\",
\"postalCode\": \"10021\"
},
\"phoneNumber\": [
{
\"type\": \"home\",
\"number\": \"212 555-1234\"
},
{
\"type\": \"fax\",
\"number\": \"646 555-4567\"
}
]
}",
Erlang =
{struct,
[{"firstName","John"},
{"lastName","Smith"},
{"age",25},
{"address",
{struct,[{"streetAddress","21 2nd Street"},
{"city","New York"},
{"state","NY"},
{"postalCode","10021"}]}},
{"phoneNumber",
{array,[{struct,[{"type","home"},{"number","212 555-1234"}]},
{struct,[{"type","fax"},{"number","646 555-4567"}]}]}}]},
io:format("JSON -> Erlang\n~p\n",[mochijson:decode(JSON)]),
io:format("Erlang -> JSON\n~s\n",[mochijson:encode(Erlang)]).
- Output:
JSON -> Erlang {struct,[{"firstName","John"}, {"lastName","Smith"}, {"age",25}, {"address", {struct,[{"streetAddress","21 2nd Street"}, {"city","New York"}, {"state","NY"}, {"postalCode","10021"}]}}, {"phoneNumber", {array,[{struct,[{"type","home"},{"number","212 555-1234"}]}, {struct,[{"type","fax"},{"number","646 555-4567"}]}]}}]} Erlang -> JSON {"firstName":"John","lastName":"Smith","age":25,"address":{"streetAddress":"21 2nd Street","city":"New York","state":"NY","postalCode":"10021"},"phoneNumber":[{"type":"home","number":"212 555-1234"},{"type":"fax","number":"646 555-4567"}]}
F#
There are several ways:
1. Using Json.Net
open Newtonsoft.Json
type Person = {ID: int; Name:string}
let xs = [{ID = 1; Name = "First"} ; { ID = 2; Name = "Second"}]
let json = JsonConvert.SerializeObject(xs)
json |> printfn "%s"
let xs1 = JsonConvert.DeserializeObject<Person list>(json)
xs1 |> List.iter(fun x -> printfn "%i %s" x.ID x.Name)
Print:
[{"ID":1,"Name":"First"},{"ID":2,"Name":"Second"}]
1 First
2 Second
2. Using FSharp.Data
open FSharp.Data
open FSharp.Data.JsonExtensions
type Person = {ID: int; Name:string}
let xs = [{ID = 1; Name = "First"} ; { ID = 2; Name = "Second"}]
let infos = xs |> List.map(fun x -> JsonValue.Record([| "ID", JsonValue.Number(decimal x.ID); "Name", JsonValue.String(x.Name) |]))
|> Array.ofList |> JsonValue.Array
infos |> printfn "%A"
match JsonValue.Parse(infos.ToString()) with
| JsonValue.Array(x) -> x |> Array.map(fun x -> {ID = System.Int32.Parse(string x?ID); Name = (string x?Name)})
| _ -> failwith "fail json"
|> Array.iter(fun x -> printfn "%i %s" x.ID x.Name)
Print:
[
{
"ID": 1,
"Name": "First"
},
{
"ID": 2,
"Name": "Second"
}
]
1 "First"
2 "Second"
3. Alternative way of parsing: JsonProvider
open FSharp.Data
type Person = {ID: int; Name:string}
type People = JsonProvider<""" [{"ID":1,"Name":"First"},{"ID":2,"Name":"Second"}] """>
People.GetSamples()
|> Array.map(fun x -> {ID = x.Id; Name = x.Name} )
|> Array.iter(fun x -> printfn "%i %s" x.ID x.Name)
Print:
1 First
2 Second
Factor
USING: json.writer json.reader ;
SYMBOL: foo
! Load a JSON string into a data structure
"[[\"foo\",1],[\"bar\",[10,\"apples\"]]]" json> foo set
! Create a new data structure and serialize into JSON
{ { "blue" { "ocean" "water" } } >json
Fantom
using util
class Json
{
public static Void main ()
{
Str input := """{"blue": [1, 2], "ocean": "water"}"""
Map jsonObj := JsonInStream(input.in).readJson
echo ("Value for 'blue' is: " + jsonObj["blue"])
jsonObj["ocean"] = ["water":["cold", "blue"]]
Map ocean := jsonObj["ocean"]
echo ("Value for 'ocean/water' is: " + ocean["water"])
output := JsonOutStream(Env.cur.out)
output.writeJson(jsonObj)
echo ()
}
}
- Output:
Value for 'blue' is: [1, 2] Value for 'ocean/water' is: [cold, blue] {"blue":[1,2], "ocean":{"water":["cold","blue"]}}
Forth
Forth has no built-in high level data structures such as arrays, strings, and objects. Nor is there a standardized Forth library to build and use such structures. But there are many different Forth libraries, written by individuals, available though finding them is not always easy and the syntax and behavior is different for each. The library code used below can be found here:
https://github.com/DouglasBHoffman/FMS2
Load a JSON Forth string into a json data structure and print it.
s\" {\"value\":10,\"flag\":false,\"array\":[1,2,3]}" $>json value j j :.
Prints a JSON as follows: { "value": 10, "flag": false, "array": [ 1, 2, 3] }
Create a new Json data structure (here a Json pair), and insert it into the previous Json object. Print it again.
j{ "another":"esc\"ap\u20ACed" }j j :add j :.
Prints the modified JSON:
{ "value": 10, "flag": false, "array": [ 1, 2, 3], "another": "esc"ap€ed" }
Serialize the JSON object into a string. Print the string.
j json>$ :.
{"value":10,"flag":false,"array":[1,2,3],"another":"esc\"ap\u20ACed"}
Fortran
Using json-fortran library. Creating the json example file / reading a JSON string.
{ "PhoneBook": [ { "name": "Adam", "phone": "0000001" }, { "name": "Eve", "phone": "0000002" }, { "name": "Julia", "phone": "6666666" } ] }
program json_fortran
use json_module
implicit none
type phonebook_type
character(len=:),allocatable :: name
character(len=:),allocatable :: phone
end type phonebook_type
type(phonebook_type), dimension(3) :: PhoneBook
integer :: i
type(json_value),pointer :: json_phonebook,p,e
type(json_file) :: json
PhoneBook(1) % name = 'Adam'
PhoneBook(2) % name = 'Eve'
PhoneBook(3) % name = 'Julia'
PhoneBook(1) % phone = '0000001'
PhoneBook(2) % phone = '0000002'
PhoneBook(3) % phone = '6666666'
call json_initialize()
!create the root structure:
call json_create_object(json_phonebook,'')
!create and populate the phonebook array:
call json_create_array(p,'PhoneBook')
do i=1,3
call json_create_object(e,'')
call json_add(e,'name',PhoneBook(i)%name)
call json_add(e,'phone',PhoneBook(i)%phone)
call json_add(p,e) !add this element to array
nullify(e) !cleanup for next loop
end do
call json_add(json_phonebook,p) !add p to json_phonebook
nullify(p) !no longer need this
!write it to a file:
call json_print(json_phonebook,'phonebook.json')
! read directly from a character string
call json%load_from_string('{ "PhoneBook": [ { "name": "Adam", "phone": "0000001" },&
{ "name": "Eve", "phone": "0000002" }, { "name": "Julia", "phone": "6666666" } ]}')
! print it to the console
call json%print_file()
end program json_fortran
FreeBASIC
FreeBASIC JSON Parser "JSON is simple, so the interface should also be simple" Written by Oz (alex DOT barry AT gmail DOT com) - April 22, 2010, Updated May 21, 2013
Sample JSON file:
{
"menu": { "id": "file",
"string": "File:",
"number": -3,
"boolean1":true , "boolean2" :false,"boolean3":true,
"sentence" : "the rain in spain falls mainly on the plain. This here \" is an escaped quote!",
"null": null,
"array" : [0,1,2,3]
"Thumbnail": {
"Url": "http://www.example.com/image/481989943",
"Height": 125,
"Width": "100"
},
}
}
#include "inc/fbJSON.bas"
Sub printNodeChildren(Byval n As fbJSON Ptr, Byval level As Integer)
End Sub
Dim test As fbJSON Ptr = fbJSON_ImportFile("test1.json")
If test = NULL Then
Print "Unable to load json file/string!"
End 1
End If
Print fbJSON_ExportString(test, 1)
fbJSON_Delete(test)
Sleep
- Output:
{ "menu": { "id" : "file", "string" : "File:", "number" : -3, "boolean1" : true, "boolean2" : false, "boolean3" : true, "sentence" : "the rain in spain falls mainly on the plain. This here " is an escaped quote!", "null" : null, "array": [ 0, 1, 2, 3 ] , "Thumbnail": { "Url" : "http://www.example.com/image/481989943", "Height" : 125, "Width" : "100" } } }
FunL
Since FunL map syntax is conforms to JSON, the built-in function
eval()
can be used to parse a JSON string.
Built-in println()
also produces JSON conformant output.
This method only uses built-in functions but is comparatively slow.
println( eval('{ "foo": 1, "bar": [10, "apples"] }') )
Using module json
gives better performance and also pretty prints the JSON output.
import json.*
DefaultJSONWriter.write( JSONReader({'ints', 'bigInts'}).fromString('{ "foo": 1, "bar": [10, "apples"] }') )
- Output:
{"foo": 1, "bar": [10, "apples"]} { "foo": 1, "bar": [ 10, "apples" ] }
FutureBasic
FB has dedicated JSON functions making easy to serialize objects as JSON and to convert JSON to objects.
include "NSLog.incl"
local fn DoIt
ErrorRef err = NULL
CFStringRef jsonString = @"{ \"foo\": 1, \"bar\": [10, \"apples\"] }"
CFDataRef strData = fn StringData( jsonString, NSUTF8StringEncoding )
CFTypeRef jsonObj = fn JSONSerializationJSONObjectWithData( strData, NULL, @err )
if err then NSLog( @"%@", fn ErrorLocalizedDescription( err ) )
NSLog( @"%@\n", jsonObj )
CfDictionaryRef dict = @{ @"blue": @[@1, @2], @"ocean": @"water"}
CFDataRef jsonData = fn JSONSerializationDataWithJSONObject( dict, 0, @err )
if err then NSLog( @"%@", fn ErrorLocalizedDescription( err ) )
CFStringRef jsonString2 = fn StringWithData( jsonData, NSUTF8StringEncoding )
NSLog( @"%@\n", jsonString2 )
end fn
fn DoIt
HandleEvents
- Output:
{ bar = ( 10, apples ); foo = 1; } {"blue":[1,2],"ocean":"water"}
Go
Example below shows simple correspondence between JSON objects and Go maps, and shows that you don't have to know anything about the structure of the JSON data to read it in.
package main
import "encoding/json"
import "fmt"
func main() {
var data interface{}
err := json.Unmarshal([]byte(`{"foo":1, "bar":[10, "apples"]}`), &data)
if err == nil {
fmt.Println(data)
} else {
fmt.Println(err)
}
sample := map[string]interface{}{
"blue": []interface{}{1, 2},
"ocean": "water",
}
json_string, err := json.Marshal(sample)
if err == nil {
fmt.Println(string(json_string))
} else {
fmt.Println(err)
}
}
- Output:
map[bar:[10 apples] foo:1] {"blue":[1,2],"ocean":"water"}
Example below demonstrates more typical case where you have an expected correspondence between JSON data and some composite data types in your program, and shows how the correspondence doesn't have to be exact.
package main
import "encoding/json"
import "fmt"
type Person struct {
Name string `json:"name"`
Age int `json:"age,omitempty"`
Addr *Address `json:"address,omitempty"`
Ph []string `json:"phone,omitempty"`
}
type Address struct {
Street string `json:"street"`
City string `json:"city"`
State string `json:"state"`
Zip string `json:"zip"`
}
func main() {
// compare with output, note apt field ignored, missing fields
// have zero values.
jData := []byte(`{
"name": "Smith",
"address": {
"street": "21 2nd Street",
"apt": "507",
"city": "New York",
"state": "NY",
"zip": "10021"
}
}`)
var p Person
err := json.Unmarshal(jData, &p)
if err != nil {
fmt.Println(err)
} else {
fmt.Printf("%+v\n %+v\n\n", p, p.Addr)
}
// compare with output, note empty fields omitted.
pList := []Person{
{
Name: "Jones",
Age: 21,
},
{
Name: "Smith",
Addr: &Address{"21 2nd Street", "New York", "NY", "10021"},
Ph: []string{"212 555-1234", "646 555-4567"},
},
}
jData, err = json.MarshalIndent(pList, "", " ")
if err != nil {
fmt.Println(err)
} else {
fmt.Println(string(jData))
}
}
- Output:
{Name:Smith Age:0 Addr:0xf840026080 Ph:[]} &{Street:21 2nd Street City:New York State:NY Zip:10021} [ { "name": "Jones", "age": 21 }, { "name": "Smith", "address": { "street": "21 2nd Street", "city": "New York", "state": "NY", "zip": "10021" }, "phone": [ "212 555-1234", "646 555-4567" ] } ]
Gosu
Gosu consumes JSON as a Dynamic type via this core API:
gw.lang.reflect.json.Json#fromJson( String json ) : javax.script.Bindings
As the signature of the method suggests, you pass in a JSON string and receive standard script Bindings in return. Bindings is basically a map mirroring the tree structure of the JSON object. Internally Gosu supports any Bindings instance as a Dynamic Expando object. Essentially this means you can directly cast any Bindings instance to Dynamic and treat it as an Expando.
The following JSON example illustrates this:
Sample Person JSON (from http://gosu-lang.github.io/data/person.json):
{
"Name": "Dickson Yamada",
"Age": 39,
"Address": {
"Number": 9604,
"Street": "Donald Court",
"City": "Golden Shores",
"State": "FL"
},
"Hobby": [
{
"Category": "Sport",
"Name": "Baseball"
},
{
"Category": "Recreation",
"Name": "Hiking"
}
]
}
And the dynamic Gosu code to access it:
var personUrl = new URL( "http://gosu-lang.github.io/data/person.json" )
var person: Dynamic = personUrl.JsonContent
print( person.Name )
Notice the JsonContent property on URL:
personUrl.JsonContent
This is a convenient enhancement property Gosu provides for Java’s URL class. It does all the work to get the JSON text and calls the new Json#fromJson() method for you. It also declares the Dynamic type for you as its return type, so the declared Dynamic type on the person var is unnecessary; it’s there to clearly demonstrate that the person var is indeed Dynamic.
As you can see we can access the Name property from the JSON object from the person var. This is all well and good, but falls short of our desired level of JSON support. Gosu being a static language, we really want that Name reference to be statically verified as well as code-completed in the IDE.
Here’s how we make the previous example work statically:
print( person.toStructure( "Person", false ) )
Gosu enhances Bindings with the method, toStructure( name: String, mutable: boolean ). Note the resulting structure is optionally mutable via the mutable argument. This method generates the complete nesting of types plus convenient factory methods:
structure Person {
static function fromJson( jsonText: String ): Person {
return gw.lang.reflect.json.Json.fromJson( jsonText ) as Person
}
static function fromJsonUrl( url: String ): Person {
return new java.net.URL( url ).JsonContent
}
static function fromJsonUrl( url: java.net.URL ): Person {
return url.JsonContent
}
static function fromJsonFile( file: java.io.File ) : Person {
return fromJsonUrl( file.toURI().toURL() )
}
property get Address(): Address
property get Hobby(): List<Hobby>
property get Age(): Integer
property get Name(): String
structure Address {
property get Number(): Integer
property get State(): String
property get Street(): String
property get City(): String
}
structure Hobby {
property get Category(): String
property get Name(): String
}
}
The Person structure reflects the JSON object’s implied type nesting. You can do whatever you like with this type. You can embed it as an inner structure in an existing class or make a top-level type. In any case all the types in the JSON object are uniquely preserved in one structure. Use it like this:
var person = Person.fromJsonUrl( personUrl )
print( person.Name )
print( person.Address.City )
print( person.Hobby[0].Name )
All statically verified and fully code completion friendly!
Other features:
print( person.toJson() ) // toJson() generates the Expando bindings to a JSON string
print( person.toGosu() ) // toGosu() generates any Bindings instance to a Gosu Expando initializer string
print( person.toXml() ) // toXml() generates any Bindings instance to standard XML
And similar to JavaScript, you can directly evaluate a Gosu Expando initializer string:
var clone = eval( person.toGosu() )
Groovy
Solution requires Groovy 1.8 or later.
Note that JsonSlurper accepts an extra comma such as [1,2,3,]. This is an extension to the [JSON grammar].
def slurper = new groovy.json.JsonSlurper()
def result = slurper.parseText('''
{
"people":[
{"name":{"family":"Flintstone","given":"Frederick"},"age":35,"relationships":{"wife":"people[1]","child":"people[4]"}},
{"name":{"family":"Flintstone","given":"Wilma"},"age":32,"relationships":{"husband":"people[0]","child":"people[4]"}},
{"name":{"family":"Rubble","given":"Barnard"},"age":30,"relationships":{"wife":"people[3]","child":"people[5]"}},
{"name":{"family":"Rubble","given":"Elisabeth"},"age":32,"relationships":{"husband":"people[2]","child":"people[5]"}},
{"name":{"family":"Flintstone","given":"Pebbles"},"age":1,"relationships":{"mother":"people[1]","father":"people[0]"}},
{"name":{"family":"Rubble","given":"Bam-Bam"},"age":1,"relationships":{"mother":"people[3]","father":"people[2]"}},
]
}
''')
Test:
result.each { println it.key; it.value.each {person -> println person} }
assert result.people[0].name == [family:'Flintstone', given:'Frederick']
assert result.people[4].age == 1
assert result.people[2].relationships.wife == 'people[3]'
assert result.people[3].name == [family:'Rubble', given:'Elisabeth']
assert Eval.x(result, 'x.' + result.people[2].relationships.wife + '.name') == [family:'Rubble', given:'Elisabeth']
assert Eval.x(result, 'x.' + result.people[1].relationships.husband + '.name') == [family:'Flintstone', given:'Frederick']
- Output:
people [age:35, name:[given:Frederick, family:Flintstone], relationships:[child:people[4], wife:people[1]]] [age:32, name:[given:Wilma, family:Flintstone], relationships:[child:people[4], husband:people[0]]] [age:30, name:[given:Barnard, family:Rubble], relationships:[child:people[5], wife:people[3]]] [age:32, name:[given:Elisabeth, family:Rubble], relationships:[child:people[5], husband:people[2]]] [age:1, name:[given:Pebbles, family:Flintstone], relationships:[mother:people[1], father:people[0]]] [age:1, name:[given:Bam-Bam, family:Rubble], relationships:[mother:people[3], father:people[2]]]
Halon
$data = json_decode(''{ "foo": 1, "bar": [10, "apples"] }'');
$sample = ["blue" => [1, 2], "ocean" => "water"];
$jsonstring = json_encode($sample, ["pretty_print" => true]);
Harbour
Parse JSON string into the arr variable:
LOCAL arr
hb_jsonDecode( '[101,[26,"Test1"],18,false]', @arr )
- Output:
the JSON representation of an array arr
LOCAL arr := { 101, { 18, "Test1" }, 18, .F. }
? hb_jsonEncode( arr )
// The output is:
// [101,[26,"Test1"],18,false]
Haskell
Uses the Aeson library from hackage (http://hackage.haskell.org/package/aeson).
{-# LANGUAGE OverloadedStrings #-}
import Data.Aeson
import Data.Attoparsec (parseOnly)
import Data.Text
import qualified Data.ByteString.Lazy.Char8 as B
import qualified Data.ByteString.Char8 as S
testdoc = object [
"foo" .= (1 :: Int),
"bar" .= ([1.3, 1.6, 1.9] :: [Double]),
"baz" .= ("some string" :: Text),
"other" .= object [
"yes" .= ("sir" :: Text)
]
]
main = do
let out = encode testdoc
B.putStrLn out
case parseOnly json (S.concat $ B.toChunks out) of
Left e -> error $ "strange error re-parsing json: " ++ (show e)
Right v | v /= testdoc -> error "documents not equal!"
Right v | otherwise -> print v
An example using Aeson and TemplateHaskell. Note that it can handle the absence of keys.
{-# LANGUAGE TemplateHaskell, OverloadedStrings #-}
import Data.Aeson
import Data.Aeson.TH
data Person = Person { firstName :: String
, lastName :: String
, age :: Maybe Int
} deriving (Show, Eq)
$(deriveJSON defaultOptions ''Person)
main = do
let test1 = "{\"firstName\":\"Bob\", \"lastName\":\"Smith\"}"
test2 = "{\"firstName\":\"Miles\", \"lastName\":\"Davis\", \"age\": 45}"
print (decode test1 :: Maybe Person)
print (decode test2 :: Maybe Person)
An example using Aeson and GHC.Generics. Note that it can handle the absence of keys.
{-# LANGUAGE DeriveGeneric, OverloadedStrings #-}
import Data.Aeson
import GHC.Generics
data Person = Person { firstName :: String
, lastName :: String
, age :: Maybe Int
} deriving (Show, Eq, Generic)
instance FromJSON Person
instance ToJSON Person
main = do
let test1 = "{\"firstName\":\"Bob\", \"lastName\":\"Smith\"}"
test2 = "{\"firstName\":\"Miles\", \"lastName\":\"Davis\", \"age\": 45}"
print (decode test1 :: Maybe Person)
print (decode test2 :: Maybe Person)
Hoon
:- %say
|= [^ [in=@tas ~] ~]
:- %noun
=+ obj=(need (poja in)) :: try parse to json
=+ typ=$:(name=@tas age=@ud) :: datastructure
=+ spec=(ot name/so age/ni ~):jo :: parsing spec
?. ?=([%o *] obj) :: isnt an object?
~
=+ ^= o
%. %. (spec obj) :: parse with spec
need :: panic if failed
,typ :: cast to type
=. age.o +(age.o) :: increment its age...
%: crip %: pojo :: pretty-print result
(jobe [%name s/name.o] [%age n/(crip <age.o>)] ~) :: convert back to json
Usage: Put code in gen/json.hoon
> +json '{"name":"pojo", "age":4}' '{"age":5,"name":"pojo"}'
Insitux
(var object {:a 1 :b "Hello, world!" [1 2 3] :c}
serialised (to-json object)
deserialised (from-json serialised))
(print "Object: " object)
(print "Serialised: " serialised)
(str "Deserialised: " deserialised)
- Output:
Object: {:a 1, :b "Hello, world!", [1 2 3] :c} Serialised: {":a":1,":b":"Hello, world!","[1 2 3]":":c"} Deserialised: {":a" 1, ":b" "Hello, world!", "[1 2 3]" ":c"}
Observe that JSON is incapable of lossless serialisation and deserialisation of Insitux data structures, with the recommended approach rather being str
and safe-eval
.
J
Here is a minimal implementation based on an old email message.
NB. character classes:
NB. 0: whitespace
NB. 1: "
NB. 2: \
NB. 3: [ ] , { } :
NB. 4: ordinary
classes=.3<. '"\[],{}:' (#@[ |&>: i.) a.
classes=.0 (I.a.e.' ',CRLF,TAB)} (]+4*0=])classes
words=:(0;(0 10#:10*".;._2]0 :0);classes)&;: NB. states:
0.0 1.1 2.1 3.1 4.1 NB. 0 whitespace
1.0 5.0 6.0 1.0 1.0 NB. 1 "
4.0 4.0 4.0 4.0 4.0 NB. 2 \
0.3 1.2 2.2 3.2 4.2 NB. 3 { : , } [ ]
0.3 1.2 2.0 3.2 4.0 NB. 4 ordinary
0.3 1.2 2.2 3.2 4.2 NB. 5 ""
1.0 1.0 1.0 1.0 1.0 NB. 6 "\
)
tokens=. ;:'[ ] , { } :'
actions=: lBra`rBracket`comma`lBra`rBrace`colon`value
NB. action verbs argument conventions:
NB. x -- boxed json word
NB. y -- boxed json state stack
NB. result -- new boxed json state stack
NB.
NB. json state stack is an list of boxes of incomplete lists
NB. (a single box for complete, syntactically valid json)
jsonParse=: 0 {:: (,a:) ,&.> [: actions@.(tokens&i.@[)/ [:|.a:,words
lBra=: a: ,~ ]
rBracket=: _2&}.@], [:< _2&{::@], _1&{@]
comma=: ]
rBrace=: _2&}.@], [:< _2&{::@](, <) [:|: (2,~ [: -:@$ _1&{::@]) $ _1&{::@]
colon=: ]
value=: _1&}.@], [:< _1&{::@], jsonValue&.>@[
NB. hypothetically, jsonValue should strip double quotes
NB. interpret back slashes
NB. and recognize numbers
jsonValue=:]
require'strings'
jsonSer2=: jsonSer1@(<"_1^:(0>.#@$-1:))
jsonSer1=: ']' ,~ '[' }:@;@; (',' ,~ jsonSerialize)&.>
jsonSer0=: '"', jsonEsc@:":, '"'"_
jsonEsc=: rplc&(<;._1' \ \\ " \"')
jsonSerialize=:jsonSer0`jsonSer2@.(*@L.)
Example use:
jsonParse'{ "blue": [1,2], "ocean": "water" }'
┌────────────────┐
│┌──────┬───────┐│
││"blue"│"ocean"││
│├──────┼───────┤│
││┌─┬─┐ │"water"││
│││1│2│ │ ││
││└─┴─┘ │ ││
│└──────┴───────┘│
└────────────────┘
└──────────────────────────────┘
jsonSerialize jsonParse'{ "blue": [1,2], "ocean": "water" }'
[[["\"blue\"","\"ocean\""],[["1","2"],"\"water\""]]]
Note that these are not strict inverses of each other. These routines allow data to be extracted from json and packed into json format, but only in a minimalistic sense. No attempts are made to preserve the subtleties of type and structure which json can carry. This should be good enough for most applications which are required to deal with json but will not be adequate for ill behaved applications which exploit the typing mechanism to carry significant information.
Also, a different serializer will probably be necessary, if you are delivering json to legacy javascript. Nevertheless, these simplifications are probably appropriate for practical cases.
Java
This uses Gson, a library to convert JSON to Java objects and vice-versa.
import com.google.gson.Gson;
public class JsonExample {
public static void main(String[] args) {
Gson gson = new Gson();
String json = "{ \"foo\": 1, \"bar\": [ \"10\", \"apples\"] }";
MyJsonObject obj = gson.fromJson(json, MyJsonObject.class);
System.out.println(obj.getFoo());
for(String bar : obj.getBar()) {
System.out.println(bar);
}
obj = new MyJsonObject(2, new String[] { "20", "oranges" });
json = gson.toJson(obj);
System.out.println(json);
}
}
class MyJsonObject {
private int foo;
private String[] bar;
public MyJsonObject(int foo, String[] bar) {
this.foo = foo;
this.bar = bar;
}
public int getFoo() {
return foo;
}
public String[] getBar() {
return bar;
}
}
JavaScript
Requires JSON library, now present in all major browsers.
var data = JSON.parse('{ "foo": 1, "bar": [10, "apples"] }');
var sample = { "blue": [1,2], "ocean": "water" };
var json_string = JSON.stringify(sample);
JSON is called JavaScript Object Notation, but JSON differs form JavaScript object literal. cf. MDN/JSON
jq
JSON is jq's native data format, so nothing need be done to parse JSON input. For example, to "pretty print" a stream of JSON entities (including scalars), it would be sufficient to use the jq program:
.
Here are the jq equivalents of the examples given in the section on Julia, assuming the file data.json holds the following JSON text:
{ "blue": [1,2], "ocean": "water" }
jq -c . data.json
produces:
{"blue":[1,2],"ocean":"water"}
jq tostring data.json
produces: "{\"blue\":[1,2],\"ocean\":\"water\"}"
Jsish
prompt$ jsish
Jsish interactive: see 'help [cmd]'
# var data = JSON.parse('{ "foo": 1, "bar": [10, "apples"] }');
variable
# data
{ bar:[ 10, "apples" ], foo:1 }
# var sample = { blue: [1,2], ocean: "water" };
variable
# sample
{ blue:[ 1, 2 ], ocean:"water" }
# puts(JSON.stringify(sample))
{ "blue":[ 1, 2 ], "ocean":"water" }
Julia
# Pkg.add("JSON") ... an external library http://docs.julialang.org/en/latest/packages/packagelist/
using JSON
sample = Dict()
sample["blue"] = [1, 2]
sample["ocean"] = "water"
@show sample jsonstring = json(sample)
@show jsonobj = JSON.parse(jsonstring)
@assert jsonstring == "{\"ocean\":\"water\",\"blue\":[1,2]}"
@assert jsonobj == Dict("ocean" => "water", "blue" => [1, 2])
@assert typeof(jsonobj) == Dict{String, Any}
Kotlin
We use Kotlin JS here to obtain access to the JavaScript JSON object:
// version 1.2.21
data class JsonObject(val foo: Int, val bar: Array<String>)
data class JsonObject2(val ocean: String, val blue: Array<Int>)
fun main(args: Array<String>) {
// JSON to object
val data: JsonObject = JSON.parse("""{ "foo": 1, "bar": ["10", "apples"] }""")
println(JSON.stringify(data))
// object to JSON
val data2 = JsonObject2("water", arrayOf(1, 2))
println(JSON.stringify(data2))
}
- Output:
{"foo":1,"bar":["10","apples"]} {"ocean":"water","blue":[1,2]}
Lasso
// Javascript objects are represented by maps in Lasso
local(mymap = map(
'success' = true,
'numeric' = 11,
'string' = 'Eleven'
))
json_serialize(#mymap) // {"numeric": 11,"string": "Eleven","success": true}
'<br />'
// Javascript arrays are represented by arrays
local(opendays = array(
'Monday',
'Tuesday'
))
local(closeddays = array(
'Wednesday',
'Thursday',
'Friday'
))
json_serialize(#opendays) // ["Monday", "Tuesday"]
'<br />'
json_serialize(#closeddays) // ["Wednesday", "Thursday", "Friday"]
'<br />'
#mymap -> insert('Open' = #opendays)
#mymap -> insert('Closed' = #closeddays)
local(myjson = json_serialize(#mymap))
#myjson // {"Closed": ["Wednesday", "Thursday", "Friday"],"numeric": 11,"Open": ["Monday", "Tuesday"],"string": "Eleven","success": true}
'<br />'
json_deserialize(#myjson) // map(Closed = array(Wednesday, Thursday, Friday), numeric = 11, Open = array(Monday, Tuesday), string = Eleven, success = true)
LFE
This example uses the third-party library "Jiffy".
Encoding
(: jiffy encode (list 1 2 3 '"apple" 'true 3.14))
The result from that can be made a little more legible with the following:
(: erlang binary_to_list
(: jiffy encode (list 1 2 3 '"apple" 'true 3.14)))
Decoding
We can run the encoding example in reverse, and get back what we put in above with the following:
(: jiffy decode '"[1,2,3,[97,112,112,108,101],true,3.14]")
Here's a key-value example:
(: jiffy decode '"{\"foo\": [1, 2, 3]}")
Decoding to Patterns
We can also extract the key and value using Erlang patterns:
(let (((tuple (list (tuple key value)))
(: jiffy decode '"{\"foo\": [1, 2, 3]}")))
(: io format '"~p: ~p~n" (list key value)))
Lingo
Lingo has no native JSON support. A JSON library could of course be written in pure Lingo or as binary plugin ("Xtra").
But since Director - the only implementation of Lingo - also includes a SpiderMonkey JS engine (rather outdated and without native JSON object), we can implement a simple (unsafe) JSON encoder/decoder with the following two movie scripts:
JavaScript movie script "JSON":
//--------------------------------------
// Simple (unsafe) JSON decoder based on eval()
// @param {string} json
// @return {any}
//--------------------------------------
function json_decode (json){
var o;
eval('o='+json);
return _json_decode_val(o);
}
function _json_decode_val (o){
if (o==null) return undefined;
switch(typeof(o)){
case "object":
if (o instanceof Array){
var v = list();
var cnt = o.length;
for (i=0;i<cnt;i++){
v.add(_json_decode_val(o[i]));
}
}else{
var v = propList();
for (var i in o){
var p = i;
v.setAProp(_json_decode_val(p), _json_decode_val(o[i]));
}
}
return v;
case "string":
// optional support of special Lingo data type 'symbol' unknown to JavaScript
if (o.substr(0,7)=='__sym__') return symbol(o.substr(7));
return o;
default:
return o;
}
}
function _json_escape_string (str){
var hash={"\\":"\\\\", "/":"\\/", "\n":"\\n", "\t":"\\t", "\r":"\\r", "\b":"\\b", "\f":"\\f", "\"":"\\\""};
var patt = "["; for (i in hash) patt+=i;patt+="]";
return str.replace(RegExp(patt, "g"), function(c){
return hash[c]
});
}
Lingo movie script "JSON":
----------------------------------------
-- JSON encoder
-- Supported Lingo data types: VOID, integer, float, string, symbol, list, propList
-- @param {any} o
-- @return {string}
----------------------------------------
on json_encode (o)
case ilk(o) of
#void:
return "null"
#integer, #float:
return string(o)
#string:
return QUOTE & _json_escape_string(o) & QUOTE
#list:
res = []
repeat with v in o
res.add(json_encode(v))
end repeat
return "[" & _cimplode(res) & "]"
#propList:
res = []
cnt = count(o)
repeat with i = 1 to cnt
p = o.getPropAt(i)
v = o[i]
res.add( json_encode(p)&":"&json_encode(v) )
end repeat
return "{" & _cimplode(res) & "}"
#symbol:
-- optional support of special Lingo data type 'symbol' unknown to JavaScript
return QUOTE &"__sym__"&_json_escape_string(string(o)) & QUOTE
otherwise:
put "ERROR: unsupported data type"
end case
end
----------------------------------------
-- Implodes list into comma-separated string
-- @param {list} l
-- @return {string}
----------------------------------------
on _cimplode (l)
str=""
repeat with i=1 to l.count
put l[i]&"," after str
end repeat
delete the last char of str
return str
end
Usage:
data_org = [\
42,\
3.14159,\
[2, 4, #fooBar, "apples", "bananas", "cherries" ],\
["foo": 1, #bar: VOID, "Hello": "world!"],\
VOID\
]
json_str = json_encode(data_org) -- valid according to JSONLint
data_decoded = json_decode(json_str)
put data_org
-- [42, 3.1416, [2, 4, #fooBar, "apples", "bananas", "cherries"], ["foo": 1, #bar: <Void>, "Hello": "world!"], <Void>]
put data_decoded
-- [42, 3.1416, [2, 4, #fooBar, "apples", "bananas", "cherries"], ["foo": 1, #bar: <Void>, "Hello": "world!"], <Void>]
Lua
Using the luajson library:
local json = require("json")
local json_data = [=[[
42,
3.14159,
[ 2, 4, 8, 16, 32, 64, "apples", "bananas", "cherries" ],
{ "H": 1, "He": 2, "X": null, "Li": 3 },
null,
true,
false
]]=]
print("Original JSON: " .. json_data)
local data = json.decode(json_data)
json.util.printValue(data, 'Lua')
print("JSON re-encoded: " .. json.encode(data))
local data = {
42,
3.14159,
{
2, 4, 8, 16, 32, 64,
"apples",
"bananas",
"cherries"
},
{
H = 1,
He = 2,
X = json.util.null(),
Li = 3
},
json.util.null(),
true,
false
}
print("JSON from new Lua data: " .. json.encode(data))
Since in Lua, a variable or table entry with nil
is treated as the same as an undefined variable or non-existing table entry, a null
value in JSON is decoded to a special function value, which ensures that it can be re-encoded properly to null
again.
To manually insert a null
value in the JSON output,
use the json.util.null
function.
- Output:
Original JSON: [ 42, 3.14159, [ 2, 4, 8, 16, 32, 64, "apples", "bananas", "cherries" ], { "H": 1, "He": 2, "X": null, "Li": 3 }, null, true, false ] Lua= { 1=42 2=3.14159 3= { 1=2 2=4 3=8 4=16 5=32 6=64 7=apples 8=bananas 9=cherries 4= { Li=3 He=2 H=1 X=function: 0x8f6f00 5=function: 0x8f6f00 6=true 7=false JSON re-encoded: [42,3.14159,[2,4,8,16,32,64,"apples","bananas","cherries"],{"Li":3,"He":2,"H":1,"X":null},null,true,false] JSON from new Lua data: [42,3.14159,[2,4,8,16,32,64,"apples","bananas","cherries"],{"Li":3,"He":2,"H":1,"X":null},null,true,false]
M2000 Interpreter
We use a class written in M2000 for Json M2000 Interpreter Json Class in a module LIB1
MODULE A {
\\ Process data in json format
\\ We can load from external file with Inline "libName"
\\ or multiple files Inline "file1" && "file2"
\\ but here we have the library in a module
Inline Code Lib1
\\ So now we make a Parser object (a group type in M2000)
Parser=ParserClass()
\\ We can display any function, module that is public and known list
Modules ?
\\ And this are all known variables (or and objects)
List !
Document json$
\\ We can load from file
\\ Load.Doc json$, "alfa.json"
json$={{
"alfa":-0.11221e+12,
"array" : [
-0.67,
"alfa1",
[
10,
20
],
"beta1",
1.21e12,
21.12145,
"ok"
],
"delta": false, "epsilon" : true, "Null Value" : null
}}
Save.Doc json$, "json2.json" \\ by default in Utf-8 with BOM
\\ just show multiline text
\\ Report display lines and stop after 3/4 of console height lines
\\ just press a key or click mouse button
Report json$
\\ so now we get text to a new object
alfa=Parser.Eval(json$)
\\ check it
Print Type$(alfa) ' it is a group
Print "alfa.type$=";alfa.type$ \\ this is a read only property
Report "as one line"
Report Parser.Ser$(alfa, 0)
Report "as multiline"
Report Parser.Ser$(alfa, 1)
Print "Using Print"
Print Parser.ReadAnyString$(alfa)
Print "Value for alfa, id alfa"
Print Parser.ReadAnyString$(alfa,"alfa")
Report "as multiline"
Report Parser.Ser$(Parser.Eval(Parser.ReadAnyString$(alfa,"array", 2)), 1)
\\ We get a copy of an array as a Group (a group which return an array)
Alfa3=Parser.Eval(Parser.ReadAnyString$(alfa,"array", 2))
\\ First value is for actual object, second value is a readonly property of this object
Print type$(Alfa3), Alfa3.type$
Dim B()
\\ Now Alfa3 run Value part and pass a pointer of array
\\ B() is an array and here take a pointer to Alfa3 array (as value of Alfa3)
B()=Alfa3
\\ each() make an iterator for B()
N=each(B())
While N {
\\ Using B() we get values always. but if we have "object" or "array" then Print prints items **
Print B(N^)
}
\\ Print show here nothing because if value is object then "print" just leave a column and continue to next one
Print B()
\\ we have to use Group() to get group not value of group (if any).
\\ Group() works for "named" group, not for stored in an array or an inventory or a stack
Print Parser.StringValue$(Group(Alfa3), 0)
Print Parser.StringValue$(Group(Alfa3), 1)
\\ Now we want to pass a new value
\\ Interpreter want to match type of expression from left side to right side
\\ Because Parser.StringValue$ is actual a Group (As property),
\\ we have a second linked name: Parser.StringValue
\\ we have to use Parser.StringValue()
\\ and all values must be groups, as those provided by Parser
Parser.StringValue(Group(Alfa3), 1)=Parser.Numeric(1234)
Print Parser.StringValue$(Group(Alfa3), 1)
Print Parser.StringValue$(Group(Alfa), "array", 2, 0)
\\ we have to use Parser.StringValue$()
Parser.StringValue$(Group(Alfa), "array", 2, 0)=Parser.JString$("Changed to String")
Print Parser.StringValue$(Group(Alfa), "array", 2,0)
Try ok {
Print Parser.StringValue$(Group(Alfa), "array", 2)
}
If Error or not ok Then Print Error$
Parser.StringValue.Add = True
Parser.StringValue$(Group(Alfa), "array", 2, 10)=Parser.JString$("Changed to String 2")
Parser.StringValue(Group(Alfa), "Last value")=Parser.Boolean(true)
Report "as multiline"
Report Parser.Ser$(alfa3, 1)
Report Parser.Ser$(alfa, 1)
Parser.StringValue.Add = False
Parser.StringValue.Del = True
Parser.StringValue(Group(Alfa), "array", 0)=Parser.Null()
Parser.StringValue(Group(Alfa), "delta")=Parser.Null()
Parser.StringValue.Del = False
For Parser {
.StringValue(Group(Alfa), "array", 1,5)=.Arr((.Numeric(10), .Jstring$("ok 20"), .Boolean(true)))
}
Report Parser.Ser$(alfa, 1)
}
// call A
A
Maple
> JSON:-ParseString("[{\"tree\": \"maple\", \"count\": 21}]");
[table(["tree" = "maple", "count" = 21])]
> JSON:-ToString( [table(["tree" = "maple", "count" = 21])] );
"[{\"count\": 21, \"tree\": \"maple\"}]"
Mathematica /Wolfram Language
data = ImportString["{ \"foo\": 1, \"bar\": [10, \"apples\"] }","JSON"]
ExportString[data, "JSON"]
MATLAB / Octave
>> jsondecode('{ "foo": 1, "bar": [10, "apples"] }')
ans =
struct with fields:
foo: 1
bar: {2×1 cell}
>> jsonencode(ans)
ans =
{"foo":1,"bar":[10,"apples"]}
The toolbox JSONlab is doing a nice job to read (loadjson.m) and write (savejson.m) data in JSON format.
NetRexx
json.org Library
This uses a library provided by json.org to serialize/deserialize JSON objects.
/* NetRexx */
options replace format comments java crossref symbols nobinary
import java.util.List
import org.json.JSONObject
import org.json.JSONArray
import org.json.JSONTokener
import org.json.JSONException
/**
* Using library from json.org
*
* @see http://www.json.org/java/index.html
*/
class RJson01 public
properties private constant
JSON_DWARFS = '' -
'{\n' -
' "F1937_1" : {\n' -
' "title" : "Snow White and the Seven Dwarfs",\n' -
' "year" : 1937,\n' -
' "medium" : "film",\n' -
' "dwarfs" : [ "Grumpy", "Happy", "Sleepy", "Bashful", "Sneezy", "Dopey", "Doc" ]\n' -
' },\n' -
' "F2012_1" : {\n' -
' "title" : "Mirror, Mirror",\n' -
' "year" : 2012,\n' -
' "medium" : "film",\n' -
' "dwarfs" : [ "Grimm", "Butcher", "Wolf", "Napoleon", "Half Pint", "Grub", "Chuckles" ]\n' -
' },\n' -
'}'
/**
* A bean that looks like the following JSON
* <pre>
* {
* "F2012_2" : {
* "title" : "Snow White & the Huntsman",
* "year" : 2012,
* "medium" : "film",
* "dwarfs" : [ "Beith", "Quert", "Muir", "Coll", "Duir", "Gus", "Gort", "Nion" ]
* }
* }
* </pre>
*/
SAMPLE_BEAN = DwarfBean( -
"F2012_2", -
"Snow White & the Huntsman", -
Long(2012), -
"film", -
Arrays.asList([String "Beith", "Quert", "Muir", "Coll", "Duir", "Gus", "Gort", "Nion"]) -
)
method main(args = String[]) public static
say json2bean(JSON_DWARFS)
say
say bean2json(SAMPLE_BEAN)
say
return
method json2bean(dwarfs) public static returns List
say "Make beans from this JSON string:"
say dwarfs
jsonBeans = ArrayList()
do
jd = JSONObject(JSONTokener(dwarfs))
ns = JSONObject.getNames(jd)
name = String
loop name over ns
dwarves = ArrayList()
jn = jd.getJSONObject(name)
title = jn.getString('title')
year = Long(jn.getLong('year'))
medium = jn.getString('medium')
dwa = jn.getJSONArray('dwarfs')
loop di = 0 to dwa.length() - 1
dwarves.add(dwa.getString(di))
end di
jb = DwarfBean(name, title, year, medium, dwarves)
jsonBeans.add(jb.toString())
end name
catch ex = JSONException
ex.printStackTrace()
end
return jsonBeans
method bean2json(sb = DwarfBean) public static returns String
say "Make JSONObject from this bean:"
say sb
jsonString = String
do
jd = JSONObject(sb)
jo = JSONObject()
jo = jo.put(sb.keyGet(), jd)
jsonString = jo.toString(2)
catch ex = JSONException
ex.printStackTrace()
end
return jsonString
-- =============================================================================
class RJson01.DwarfBean public binary
properties private
key = String -- not part of bean
properties indirect
title = String
year = Long
medium = String
dwarfs = List
method DwarfBean(key_ = String null, title_ = String null, year_ = Long null, medium_ = String null, dwarfs_ = List null) public
keyPut(key_)
setTitle(title_)
setYear(year_)
setMedium(medium_)
setDwarfs(dwarfs_)
return
method keyPut(key_ = String) public
key = key_
return
method keyGet() returns String
return key
method toString public returns String
ts = StringBuilder()
ts.append(String.format("%s@%08x ", [Object this.getClass().getSimpleName(), Integer(hashCode())]))
ts.append('[')
ts.append('key='String.valueOf(keyGet())', ')
ts.append('title='String.valueOf(getTitle())', ')
ts.append('year='String.valueOf(getYear())', ')
ts.append('medium='String.valueOf(getMedium())', ')
ts.append('dwarfs='String.valueOf(getDwarfs()))
ts.append(']')
return ts.toString()
- Output:
Make beans from this JSON string: { "F1937_1" : { "title" : "Snow White and the Seven Dwarfs", "year" : 1937, "medium" : "film", "dwarfs" : [ "Grumpy", "Happy", "Sleepy", "Bashful", "Sneezy", "Dopey", "Doc" ] }, "F2012_1" : { "title" : "Mirror, Mirror", "year" : 2012, "medium" : "film", "dwarfs" : [ "Grimm", "Butcher", "Wolf", "Napoleon", "Half Pint", "Grub", "Chuckles" ] }, } [DwarfBean@07377711 [key=F2012_1, title=Mirror, Mirror, year=2012, medium=film, dwarfs=[Grimm, Butcher, Wolf, Napoleon, Half Pint, Grub, Chuckles]], DwarfBean@19f16e6e [key=F1937_1, title=Snow White and the Seven Dwarfs, year=1937, medium=film, dwarfs=[Grumpy, Happy, Sleepy, Bashful, Sneezy, Dopey, Doc]]] Make JSONObject from this bean: DwarfBean@39890510 [key=F2012_2, title=Snow White & the Huntsman, year=2012, medium=film, dwarfs=[Beith, Quert, Muir, Coll, Duir, Gus, Gort, Nion]] {"F2012_2": { "title": "Snow White & the Huntsman", "dwarfs": [ "Beith", "Quert", "Muir", "Coll", "Duir", "Gus", "Gort", "Nion" ], "year": 2012, "medium": "film" }}
Google gson Library
This uses Gson, a library to convert JSON to Java objects and vice-versa.
/* NetRexx */
options replace format comments java crossref symbols nobinary
import com.google.gson.
import java.util.List
/**
* Using google-gson library
*
* @see https://code.google.com/p/google-gson/
*/
class RJson02 public
properties private constant
JSON_DWARFS = '' -
'{\n' -
' "title" : "Snow White and the Seven Dwarfs",\n' -
' "year" : 1937,\n' -
' "medium": "film",\n' -
' "dwarfs": [ "Grumpy", "Happy", "Sleepy", "Bashful", "Sneezy", "Dopey", "Doc" ]\n' -
'}'
/**
* A bean that looks like the following JSON
* <pre>
* {
* "title" : "Snow White & the Huntsman",
* "year" : 2012,
* "medium" : "film",
* "dwarfs" : [ "Beith", "Quert", "Muir", "Coll", "Duir", "Gus", "Gort", "Nion" ]
* }
* </pre>
*/
SAMPLE_BEAN = RJSON02.DwarfBean( -
/*"F2012_2",*/ -
"Snow White and the Huntsman", -
Long(2012), -
"film", -
Arrays.asList([String "Beith", "Quert", "Muir", "Coll", "Duir", "Gus", "Gort", "Nion"]) -
)
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method main(args = String[]) public static
gsonObj = GsonBuilder().setPrettyPrinting().create()
jsonBean = RJson02.DwarfBean gsonObj.fromJson(JSON_DWARFS, RJson02.DwarfBean.class)
say JSON_DWARFS
say jsonBean.toString()
say
json = gsonObj.toJson(SAMPLE_BEAN);
say json
say SAMPLE_BEAN.toString()
say
return
-- =============================================================================
class RJson02.DwarfBean public binary
properties indirect
title = String
year = Long
medium = String
dwarfs = List
method DwarfBean(title_ = String null, year_ = Long null, medium_ = String null, dwarfs_ = List null) public
setTitle(title_)
setYear(year_)
setMedium(medium_)
setDwarfs(dwarfs_)
return
method toString public returns String
ts = StringBuilder()
ts.append(String.format("%s@%08x ", [Object this.getClass().getSimpleName(), Integer(hashCode())]))
ts.append('[')
ts.append('title='String.valueOf(getTitle())', ')
ts.append('year='String.valueOf(getYear())', ')
ts.append('medium='String.valueOf(getMedium())', ')
ts.append('dwarfs='String.valueOf(getDwarfs()))
ts.append(']')
return ts.toString()
- Output:
{ "title" : "Snow White and the Seven Dwarfs", "year" : 1937, "medium": "film", "dwarfs": [ "Grumpy", "Happy", "Sleepy", "Bashful", "Sneezy", "Dopey", "Doc" ] } DwarfBean@63f5e4b6 [title=Snow White and the Seven Dwarfs, year=1937, medium=film, dwarfs=[Grumpy, Happy, Sleepy, Bashful, Sneezy, Dopey, Doc]] { "title": "Snow White and the Huntsman", "year": 2012, "medium": "film", "dwarfs": [ "Beith", "Quert", "Muir", "Coll", "Duir", "Gus", "Gort", "Nion" ] } DwarfBean@6d63de20 [title=Snow White and the Huntsman, year=2012, medium=film, dwarfs=[Beith, Quert, Muir, Coll, Duir, Gus, Gort, Nion]]
Nim
import json
var data = parseJson("""{ "foo": 1, "bar": [10, "apples"] }""")
echo data["foo"]
echo data["bar"]
var js = %* [{"name": "John", "age": 30}, {"name": "Susan", "age": 31}]
echo js
- Output:
1 [10,"apples"] [{"name":"John","age":30},{"name":"Susan","age":31}]
Objeck
use Struct;
use JSON;
bundle Default {
class Json {
function : Main(args : String[]) ~ Nil {
parser := JSONParser->New("{ \"foo\": 1, \"bar\": [10, \"apples\"] }");
root := parser->Parse();
if(root <> Nil) {
root->ToString()->PrintLine();
};
}
}
}
Objective-C
NSString *jsonString = @"{ \"foo\": 1, \"bar\": [10, \"apples\"] }";
id obj = [NSJSONSerialization
JSONObjectWithData: [jsonString dataUsingEncoding: NSUTF8StringEncoding]
options: 0
error: NULL];
NSLog(@"%@", obj);
NSDictionary *dict = @{ @"blue": @[@1, @2], @"ocean": @"water"};
NSData *jsonData = [NSJSONSerialization dataWithJSONObject: dict
options: 0
error: NULL];
NSString *jsonString2 = [[NSString alloc] initWithData: jsonData
encoding: NSUTF8StringEncoding];
NSLog(@"%@", jsonString2);
OCaml
Using json-wheel/json-static libs
type json item =
< name "Name": string;
kingdom "Kingdom": string;
phylum "Phylum": string;
class_ "Class": string;
order "Order": string;
family "Family": string;
tribe "Tribe": string
>
let str = "
{
\"Name\": \"camel\",
\"Kingdom\": \"Animalia\",
\"Phylum\": \"Chordata\",
\"Class\": \"Mammalia\",
\"Order\": \"Artiodactyla\",
\"Family\": \"Camelidae\",
\"Tribe\": \"Camelini\"
}"
let () =
let j = Json_io.json_of_string str in
print_endline (Json_io.string_of_json j);
compile with:
ocamlfind opt -o j.opt j.ml -linkpkg -package json-static -syntax camlp4o
Using yojson lib
open Yojson.Basic.Util
let s = "
{ \"name\": \"John Doe\",
\"pages\": [
{ \"id\": 1,
\"title\": \"The Art of Flipping Coins\",
\"url\": \"http://example.com/398eb027/1\"
},
{ \"id\": 2, \"deleted\": true },
{ \"id\": 3,
\"title\": \"Artichoke Salad\",
\"url\": \"http://example.com/398eb027/3\"
},
{ \"id\": 4,
\"title\": \"Flying Bananas\",
\"url\": \"http://example.com/398eb027/4\"
}
]
}"
let extract_titles json =
[json]
|> filter_member "pages"
|> flatten
|> filter_member "title"
|> filter_string
let () =
let json = Yojson.Basic.from_string s in
List.iter print_endline (extract_titles json)
Compile and run:
$ ocamlfind ocamlopt -o filtering filtering.ml -package yojson -linkpkg $ ./filtering The Art of Flipping Coins Artichoke Salad Flying Bananas
Oforth
In oforth, Json objects are builtin and can be interpreted natively
A String can be converted to Json object using #perform
A Json object can be converted to a string using #asString
>{"parents":["Otmar Gutmann", "Silvio Mazzola"], "name":"Pingu", "born":1986} .s
[1] (Json) {"parents" : ["Otmar Gutmann", "Silvio Mazzola"], "name" : "Pingu", "born" : 1986 }
ok
>asString .s
[1] (String) {"parents" : ["Otmar Gutmann", "Silvio Mazzola"], "name" : "Pingu", "born" :1986 }
ok
>perform .s
[1] (Json) {"parents" : ["Otmar Gutmann", "Silvio Mazzola"], "name" : "Pingu", "born" : 1986 }
ok
>
Ol
Ol comes with library that provides JSON parsing and forming.
(import (file json))
(define o (read-json-string "
{
'name': 'John',
'full name': 'John Smith',
'age': 42,
'weight': 156.18,
'married': false,
'address': {
'street': '21 2nd Street',
'city': 'New York',
},
'additional staff': [
{
'type': 'numbers',
'numbers': [ 1, -2, 0.75, -4.567 ]
},
{
'type': 'phone',
'number': '222 222-2222'
}
]
}"))
(print o)
(print-json-with display o)
(print-json-with display {
'name "John"
'|full name| "John Smith"
'age 42
'married #false
'address {
'street "21 2nd Street"
'city "New York"
}
'|additional staff| [
{
'type "numbers"
'numbers [ 1 2 3 4 ]
}
{
'type "phone"
'number "222 222-2222"
}
]
- Output:
#ff((name . John) (|full name| . John Smith) (age . 42) (married . #false) (address . #ff((street . 21 2nd Street) (city . New York))) (|additional staff| . #(#ff((type . numbers) (numbers . #(1 2 3 4))) #ff((type . phone) (number . 222 222-2222))))) {"name":"John","|full name|":"John Smith","age":42,"married":false,"address":{"street":"21 2nd Street","city":"New York"},"|additional staff|":[{"type":"numbers","numbers":[1,2,3,4]},{"type":"phone","number":"222 222-2222"}]} {"name":"John","|full name|":"John Smith","age":42,"married":false,"address":{"street":"21 2nd Street","city":"New York"},"|additional staff|":[{"type":"numbers","numbers":[1,2,3,4]},{"type":"phone","number":"222 222-2222"}]}
OpenEdge/Progress
The WRITE-JSON and READ-JSON methods were introduced in Progress OpenEdge 10.2B.
/* using a longchar to read and write to, can also be file, memptr, stream */
DEFINE VARIABLE lcjson AS LONGCHAR NO-UNDO.
/* temp-table defines object, can also be dataset */
DEFINE TEMP-TABLE example
FIELD blue AS INTEGER EXTENT 2
FIELD ocean AS CHARACTER
.
CREATE example.
ASSIGN
example.blue [1] = 1
example.blue [2] = 2
example.ocean = "water"
.
/* write-json to put result in lcjson, true indicates formatted */
TEMP-TABLE example:DEFAULT-BUFFER-HANDLE:WRITE-JSON( "LONGCHAR", lcjson, TRUE ).
/* display result */
MESSAGE
STRING( lcjson )
VIEW-AS ALERT-BOX.
/* empty results */
EMPTY TEMP-TABLE example.
/* read-json to get result from lcjson */
TEMP-TABLE example:DEFAULT-BUFFER-HANDLE:READ-JSON( "LONGCHAR", lcjson ).
FIND example.
/* display results */
MESSAGE
example.blue [1] example.blue [2] SKIP
example.ocean
VIEW-AS ALERT-BOX.
- Output:
write-json
--------------------------- Message --------------------------- {"example": [ { "blue": [ 1, 2 ], "ocean": "water" } ]} --------------------------- OK ---------------------------
- Output:
read-json
--------------------------- Message --------------------------- 1 2 water --------------------------- OK ---------------------------
Oz
Using the google.com/oz-code JSON library:
declare
[JSON] = {Module.link ['JSON.ozf']}
{System.show {JSON.decode "{ \"foo\": 1, \"bar\": [10, \"apples\"] }"}}
Sample = object(blue:array(1 2) ocean:"water")
{System.showInfo {JSON.encode Sample}}
- Output:
object(bar:array(10 [97 112 112 108 101 115]) foo:1) {"blue":[1,2],"ocean":"water"}
Pascal
Works with FPC (tested with version 3.2.2).
program test;
{$mode objfpc}{$h+}
uses
FpJson, JsonParser;
const
JsonValue =
'{ ' + LineEnding +
' "answer": { ' + LineEnding +
' "everything": 42 ' + LineEnding +
' }, ' + LineEnding +
' "happy": true, ' + LineEnding +
' "list": [ ' + LineEnding +
' 0, ' + LineEnding +
' 1, ' + LineEnding +
' 2 ' + LineEnding +
' ], ' + LineEnding +
' "name": "Pierrot", ' + LineEnding +
' "nothing": null, ' + LineEnding +
' "object": { ' + LineEnding +
' "product": "unknown",' + LineEnding +
' "amount": 1001 ' + LineEnding +
' }, ' + LineEnding +
' "pi": 3.1416 ' + LineEnding +
'} ';
function JsonsEqual(L, R: TJsonData): Boolean;
var
I: Integer;
e: TJsonEnum;
d: TJsonData;
begin
if (L = nil) or (R = nil) then exit(False);
if L = R then exit(True);
if (L.JSONType <> R.JSONType) or (L.Count <> R.Count) then exit(False);
case L.JSONType of
jtUnknown: exit(False);
jtNull: ;
jtBoolean: exit(L.AsBoolean = R.AsBoolean);
jtNumber: exit(L.AsFloat = R.AsFloat);
jtString: exit(L.AsString = R.AsString);
jtArray:
for I := 0 to Pred(L.Count) do
if not JsonsEqual(L.Items[I], R.Items[I]) then exit(False);
jtObject:
for e in L do begin
if not TJsonObject(R).Find(e.Key, d) then exit(False);
if not JsonsEqual(e.Value, d) then exit(False);
end;
end;
Result := True;
end;
var
Expected, HandMade: TJsonData;
begin
Expected := GetJson(JsonValue);
HandMade := CreateJSONObject([
'answer', CreateJSONObject(['everything', 42]),
'happy', True,
'list', CreateJSONArray([0, 1, 2]),
'name', 'Pierrot',
'nothing', CreateJSON,
'object', CreateJSONObject(['product', 'unknown', 'amount', 1001]),
'pi', 3.1416
]);
WriteLn(HandMade.FormatJson);
WriteLn;
if JsonsEqual(Expected, HandMade) then
WriteLn('Objects look identical')
else
WriteLn('Oops, something went wrong');
Expected.Free;
HandMade.Free;
end.
PascalABC.NET
{$reference System.Web.Extensions.dll}
uses System.Web.Script.Serialization;
begin
var serializer := new JavaScriptSerializer;
var people := new Dictionary<string, object>;
people.Add('1', 'John');
people.Add('2', 'Susan');
var json := serializer.Serialize(people);
Println(json);
var res := serializer.Deserialize&<Dictionary<string, object>>(json);
Println(TypeName(res));
Println(res);
var jsonObject := serializer.DeserializeObject('{ "foo": 1, "bar": [10, "apples"] }')
as Dictionary<string, object>;
Println(jsonObject);
var arr := jsonObject['bar'] as array of object;
arr.Println;
end.
- Output:
{"1":"John","2":"Susan"} Dictionary<string, Object> {(1,John),(2,Susan)} {(foo,1),(bar,[10,apples])} 10 apples
Perl
use JSON;
my $data = decode_json('{ "foo": 1, "bar": [10, "apples"] }');
my $sample = { blue => [1,2], ocean => "water" };
my $json_string = encode_json($sample);
Phix
The distribution now contains a simple json module
-- demo\rosetta\JSON.exw with javascript_semantics include builtins/json.e puts(1,"roundtrip (10 examples):\n") sequence json_strings = {`{"this":"that","age":{"this":"that","age":29}}`, `1`, `"hello"`, `null`, `[12]`, `[null,12]`, `[]`, `{"this":"that","age":29}`, `{}`, `[null,[null,12]]`} for i=1 to length(json_strings) do string s = json_strings[i] puts(1,s&"\n") object json_object = parse_json(s) puts(1,print_json("",json_object,true)&"\n") if not equal(print_json("",json_object,true),s) then ?9/0 end if end for
- Output:
roundtrip (10 examples): {"this":"that","age":{"this":"that","age":29}} {"this":"that","age":{"this":"that","age":29}} 1 1 "hello" "hello" null null [12] [12] [null,12] [null,12] [] [] {"this":"that","age":29} {"this":"that","age":29} {} {} [null,[null,12]] [null,[null,12]]
PHP
<?php
$data = json_decode('{ "foo": 1, "bar": [10, "apples"] }'); // dictionaries will be returned as objects
$data2 = json_decode('{ "foo": 1, "bar": [10, "apples"] }', true); // dictionaries will be returned as arrays
$sample = array( "blue" => array(1,2), "ocean" => "water" );
$json_string = json_encode($sample);
?>
PicoLisp
PicoLisp has no JSON library, but it is easy enough to write one. The following supports only fixpoint numbers (no floating point, as it doesn't exist in PicoLisp). Arrays and objects are both mapped to lists.
(de checkJson (X Item)
(unless (= X Item)
(quit "Bad JSON" Item) ) )
(de readJson ()
(case (read "_")
("{"
(make
(for (X (readJson) (not (= "}" X)) (readJson))
(checkJson ":" (readJson))
(link (cons X (readJson)))
(T (= "}" (setq X (readJson))))
(checkJson "," X) ) ) )
("["
(make
(link T) # Array marker
(for (X (readJson) (not (= "]" X)) (readJson))
(link X)
(T (= "]" (setq X (readJson))))
(checkJson "," X) ) ) )
(T
(let X @
(cond
((pair X) (pack X))
((and (= "-" X) (format (peek)))
(- (read)) )
(T X) ) ) ) ) )
(de printJson (Item) # For simplicity, without indentation
(cond
((atom Item) (if Item (print @) (prin "{}")))
((=T (car Item))
(prin "[")
(map
'((X)
(printJson (car X))
(and (cdr X) (prin ", ")) )
(cdr Item) )
(prin "]") )
(T
(prin "{")
(map
'((X)
(print (caar X))
(prin ": ")
(printJson (cdar X))
(and (cdr X) (prin ", ")) )
Item )
(prin "}") ) ) )
This reads/prints JSON from/to files, pipes, sockets etc. To read from a string, a pipe can be used:
: (pipe (prinl "{ \"foo\": 1, \"bar\": [10, \"apples\"] }") (readJson) ) -> (("foo" . 1) ("bar" T 10 "apples")) : (printJson (quote ("name" . "Smith") ("age" . 25) ("address" ("street" . "21 2nd Street") ("city" . "New York") ("state" . "NY") ("zip" . "10021") ) ("phone" T "212 555-1234" "646 555-4567") ) ) {"name": "Smith", "age": 25, ... {"street": ... "phone": ["212 555-1234", ...
Pike
int main() {
// Decoding
string json = "{\"cake\":[\"desu\",1,2.3],\"foo\":1}";
write("%O\n", Standards.JSON.decode(json));
// Encoding
mapping m = ([
"foo": ({ 1, 2, 3 }),
"bar": "hello"
]);
write("%s\n", Standards.JSON.encode(m));
}
([ /* 2 elements */ "cake": ({ /* 3 elements */ "desu", 1, 2.3 }), "foo": 1 ]) {"foo":[1,2,3],"bar":"hello"}
PowerShell
# JSON input is being stored in ordered hashtable.
# Ordered hashtable is available in PowerShell v3 and higher.
[ordered]@{ "foo"= 1; "bar"= 10, "apples" } | ConvertTo-Json
# ConvertFrom-Json converts a JSON-formatted string to a custom object.
# If you use the Invoke-RestMethod cmdlet there is not need for the ConvertFrom-Json cmdlet
Invoke-WebRequest -Uri "http://date.jsontest.com" | ConvertFrom-Json
- Output:
{
"foo": 1,
"bar": [
10,
"apples"
]
}
time milliseconds_since_epoch date
---- ------------------------ ----
12:25:25 PM 1414326325923 10-26-2014
Prolog
Using SWI-Prolog 7's library(http/json), and the new dict datatype, there is nearly transparent handling of JSON objects. All of the serialization and parsing in the following code is accomplished with two predicates. The rest of the code is for the sake of example.
:- use_module([ library(http/json),
library(func) ]).
test_json('{"widget": { "debug": "on", "window": { "title": "Sample Konfabulator Widget", "name": "main_window", "width": 500, "height": 500 }, "image": { "src": "Images/Sun.png", "name": "sun1", "hOffset": 250, "vOffset": 250, "alignment": "center" }, "text": { "data": "Click Here", "size": 36, "style": "bold", "name": "text1", "hOffset": 250, "vOffset": 100, "alignment": "center", "onMouseUp": "sun1.opacity = (sun1.opacity / 100) * 90;" }}}').
reading_JSON_term :-
atom_json_dict(test_json(~), Dict, []), %% This accomplishes reading in the JSON data
writeln( 'JSON as Prolog dict: ~w~n'
$ Dict),
writeln( 'Access field "widget.text.data": ~s~n'
$ Dict.widget.text.data),
writeln( 'Alter field "widget": ~w~n'
$ Dict.put(widget, "Altered")).
searalize_a_JSON_term :-
Dict = _{book:_{title:"To Mock a Mocking Bird",
author:_{first_name:"Ramond",
last_name:"Smullyan"},
publisher:"Alfred A. Knopf",
year:1985
}},
json_write(current_output, Dict). %% This accomplishes serializing the JSON object.
- Output:
from these two example predicates
?- reading_JSON_term.
JSON as Prolog dict: _G5217{widget:_G5207{debug:on,image:_G5123{alignment:center,hOffset:250,name:sun1,src:Images/Sun.png,vOffset:250},text:_G5189{alignment:center,data:Click Here,hOffset:250,name:text1,onMouseUp:sun1.opacity = (sun1.opacity / 100) * 90;,size:36,style:bold,vOffset:100},window:_G5077{height:500,name:main_window,title:Sample Konfabulator Widget,width:500}}}
Access field "widget.text.data": Click Here
Alter field "widget": _G5217{widget:Altered}
true.
?- searalize_a_JSON_term.
{
"book": {
"author": {"first_name":"Ramond", "last_name":"Smullyan"},
"publisher":"Alfred A. Knopf",
"title":"To Mock a Mocking Bird",
"year":1985
}
}
true.
PureBasic
OpenConsole()
If CreateJSON(1)
PB_Team_Members=SetJSONObject(JSONValue(1))
SetJSONString(AddJSONMember(PB_Team_Members,"PB_Team_Member_1"),"Frederic Laboureur")
SetJSONString(AddJSONMember(PB_Team_Members,"PB_Team_Member_2"),"Andre Beer")
SetJSONString(AddJSONMember(PB_Team_Members,"PB_Team_Member_3"),"Timo Harter")
EndIf
If CreateJSON(2)
Former_Team_Members=SetJSONArray(JSONValue(2))
SetJSONString(AddJSONElement(Former_Team_Members),"Richard Andersson")
SetJSONString(AddJSONElement(Former_Team_Members),"Benny Sels")
SetJSONString(AddJSONElement(Former_Team_Members),"Danilo Krahn")
EndIf
PrintN("PureBasic - Team Members:")
PrintN(ComposeJSON(1,#PB_JSON_PrettyPrint)+#CRLF$)
PrintN("PureBasic - Former Team Members:")
PrintN(ComposeJSON(2,#PB_JSON_PrettyPrint)+#CRLF$)
#DL=Chr(34)
PB_Special_thanks$="[ " +#DL+"Gary Willoughby"+#DL+", " +#DL+"Mark James"+#DL+", " +#DL+"Neil Hodgson"+#DL+" ]"
NewList otherpersons.s()
If ParseJSON(3,PB_Special_thanks$)
ExtractJSONList(JSONValue(3),otherpersons())
PrintN("Pure Basic - and others:")
ForEach otherpersons() : PrintN(otherpersons()) : Next
Else
PrintN(JSONErrorMessage() + " : " + Str(JSONErrorPosition()))
PrintN(Left(PB_Special_thanks$,JSONErrorPosition()))
PrintN(Mid(PB_Special_thanks$,JSONErrorPosition()+1))
EndIf
Input()
- Output:
PureBasic - Team Members: { "PB_Team_Member_1": "Frederic Laboureur", "PB_Team_Member_2": "Andre Beer", "PB_Team_Member_3": "Timo Harter" } PureBasic - Former Team Members: [ "Richard Andersson", "Benny Sels", "Danilo Krahn" ] Pure Basic - and others: Gary Willoughby Mark James Neil Hodgson
Python
>>> import json
>>> data = json.loads('{ "foo": 1, "bar": [10, "apples"] }')
>>> sample = { "blue": [1,2], "ocean": "water" }
>>> json_string = json.dumps(sample)
>>> json_string
'{"blue": [1, 2], "ocean": "water"}'
>>> sample
{'blue': [1, 2], 'ocean': 'water'}
>>> data
{'foo': 1, 'bar': [10, 'apples']}
Because most of JSON is valid Python syntax (except "true", "false", and "null", and a few obscure escape sequences), it is also possible (but not recommended) to parse JSON using eval():
>>> true = True; false = False; null = None
>>> data = eval('{ "foo": 1, "bar": [10, "apples"] }')
>>> data
{'foo': 1, 'bar': [10, 'apples']}
R
library(rjson)
data <- fromJSON('{ "foo": 1, "bar": [10, "apples"] }')
data
data $foo [1] 1 $bar $bar[[1]] [1] 10 $bar[[2]] [1] "apples"
cat(toJSON(data))
{"foo":1,"bar":[10,"apples"]}
Racket
#lang racket
(require json)
(string->jsexpr
"{\"foo\":[1,2,3],\"bar\":null,\"baz\":\"blah\"}")
(write-json '(1 2 "three" #hash((x . 1) (y . 2) (z . 3))))
Raku
(formerly Perl 6)
Using JSON::Tiny
use JSON::Tiny;
say from-json '{ "foo": 1, "bar": [10, "apples"] }';
say to-json %( blue => [1,2], ocean => "water" );
- Output:
{bar => [10 apples], foo => 1} { "blue" : [ 1, 2 ], "ocean" : "water" }
REBOL
Using json.org/json.r
json-str: {{"menu": {
"id": "file",
"string": "File:",
"number": -3,
"boolean": true,
"boolean2": false,
"null": null,
"array": [1, 0.13, null, true, false, "\t\r\n"],
"empty-string": ""
}
}}
res: json-to-rebol json-str
js: rebol-to-json res
json-to-rebol Result:
make object! [ menu: make object! [ id: "file" string: "File:" number: -3 boolean: true boolean2: false null: none array: [1 0.13 none true false "^-^M^/"] empty-string: "" ] ]
rebol-to-json Result:
{ "menu": { "id": "file", "string": "File:", "number": -3, "boolean": true, "boolean2": false, "null": null, "array": [1, 0.13, null, true, false, "\t\r\n"], "empty-string": "" } }
Ruby
require 'json'
ruby_obj = JSON.parse('{"blue": [1, 2], "ocean": "water"}')
puts ruby_obj
ruby_obj["ocean"] = { "water" => ["fishy", "salty"] }
puts JSON.generate(ruby_obj)
puts JSON.pretty_generate(ruby_obj)
- Output:
{"blue"=>[1, 2], "ocean"=>"water"} {"blue":[1,2],"ocean":{"water":["fishy","salty"]}} { "blue": [ 1, 2 ], "ocean": { "water": [ "fishy", "salty" ] } }
Rust
Serializing and deserializing JSON in Rust is done by libraries.
[dependencies]
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
Serde is a general serialization/deserialization library. Serde-JSON implements JSON serialization for Serde.
Using said library is quite straight forward, one simply derives Serialize
/Deserialize
onto the types they want to convert into and from JSON strings.
use serde::{Serialize, Deserialize};
#[derive(Serialize, Deserialize, Debug)]
struct Point {
x: i32,
y: i32,
}
Said type could then be used as such:
fn main() {
let point = Point { x: 1, y: 2 };
let serialized = serde_json::to_string(&point).unwrap();
let deserialized: Point = serde_json::from_str(&serialized).unwrap();
println!("serialized = {}", serialized);
println!("deserialized = {:?}", deserialized);
}
The result of which is type-checked JSON (where extra entries get ignored), without need of a key-value container.
- Output:
serialized = {"x":1,"y":2} deserialized = Point { x: 1, y: 2 }
It also handles more Rust specific types like enums, tuples, struct tuples, and zero-sized types.
#[derive(Serialize, Deserialize)]
struct W { a: i32, b: i32 } // => { "a": 0, "b": 0 }
#[derive(Serialize, Deserialize)]
struct X(i32, i32); // => [0, 0]
#[derive(Serialize, Deserialize)]
struct Y(i32); // => 0
#[derive(Serialize, Deserialize)]
struct Z; // => null
#[derive(Serialize, Deserialize)]
enum E {
W { a: i32, b: i32 }, // => { "W": { "a": 0, "b": 0 } }
X(i32, i32), // => { "X": [0, 0] }
Y(i32), // => { "Y": 0 }
Z, // => { "Z" }
}
The traits are also implemented for HashMap
and Vec
which can be used as conventional objects/arrays, on top of macros and serde_json::Value
to handle all other potentially weird edge cases.
use std::collections::HashMap;
use serde_json::Value;
#[derive(Serialize, Deserialize)]
struct Data {
points: Vec<Points>,
#[serde(flatten)]
metadata: HashMap<String, Value>,
}
In this example metadata
would simply capture all other additional entries, for example:
fn main() {
let data = {
let mut metadata = HashMap::new();
metadata.insert("triangle".to_string(), Value::Number(3.into()));
metadata.insert("square".to_string(), Value::Bool(false));
Data {
points: vec![Point { x: 1, y: 2 }, Point { x: 15, y: 32 }],
metadata,
}
};
let serialized = serde_json::to_string(&data).unwrap();
let deserialized: Data = serde_json::from_str(&serialized).unwrap();
println!("serialized = {}", serialized);
println!("deserialized = {:?}", deserialized);
}
- Output:
serialized = {"points":[{"x":1,"y":2},{"x":15,"y":32}],"square":false,"triangle":3} deserialized = Data { points: [Point { x: 1, y: 2 }, Point { x: 15, y: 32 }], metadata: {"triangle": Number(3), "square": Bool(false)} }
Scala
Using the builtin parsing lib (debatably slower than third-party libs such as lift-json from Liftweb).
scala> import scala.util.parsing.json.{JSON, JSONObject}
import scala.util.parsing.json.{JSON, JSONObject}
scala> JSON.parseFull("""{"foo": "bar"}""")
res0: Option[Any] = Some(Map(foo -> bar))
scala> JSONObject(Map("foo" -> "bar")).toString()
res1: String = {"foo" : "bar"}
Scheme
Using the json egg:
(use json)
(define object-example
(with-input-from-string "{\"foo\": \"bar\", \"baz\": [1, 2, 3]}"
json-read))
(pp object-example)
; this prints #(("foo" . "bar") ("baz" 1 2 3))
(json-write #([foo . bar]
[baz 1 2 3]
[qux . #((rosetta . code))]))
; this writes the following:
; {"foo": "bar", "baz": [1, 2, 3], "qux": {"foo": "bar"}}
SenseTalk
set jsonString to <<{"foo": 10, "bar": [1, 2, 3]}>>
put JSONValue(jsonString)
set dataObject to (string_value: "lorem ipsum", int_value: 314, array_value: (2, 4, 6))
put JSONFormat(dataObject)
Sidef
var json = require('JSON::PP').new
var data = json.decode('{"blue": [1, 2], "ocean": "water"}')
say data
data{:ocean} = Hash(water => %w[fishy salty])
say json.encode(data)
- Output:
Hash( "blue" => [1, 2], "ocean" => "water" ) {"blue":[1,2],"ocean":{"water":["fishy","salty"]}}
Smalltalk
Use the NeoJSON library: NeoJSON
NeoJSONReader fromString: '{ "foo": 1, "bar": [10, "apples"] }'.
- Output:
a Dictionary('bar'->#(10 'apples') 'foo'->1 )
Standard ML
Using SML/NJ JSON library
Uses the the SML/NJ library [2].
JSONParser.parse(JSONParser.openString("{\"fruit\":\"apple\", \"numbers\": [2,7,1,8,2,8], \"tau\": 6.28318530718}"));
(* val it =
OBJECT
[("fruit", STRING "apple"),
("numbers", ARRAY [INT 2, INT 7, INT 1, INT 8, INT 2, INT 8]),
("tau", FLOAT 6.283185307)]: JSON.value
*)
JSONPrinter.print(TextIO.stdOut, it);
(* {"fruit":"apple","numbers":[2,7,1,8,2,8],"tau":6.28319} *)
JSONPrinter.print' {strm=TextIO.stdOut, pretty=true} it;
(*
{
"fruit" : "apple",
"numbers" : [
2,
7,
1,
8,
2,
8
],
"tau" : 6.28319
}
*)
Using only Basis
Works on Unix/Linux/BSD with jq (github.com/stedolan/jq/ ) installed. Data storage in strings, so floating point numbers can be written back as received, in a recursive polymorphic structure, which can also be used to store the data as SML-types. (Without Jq on the system or on Microsoft systems, delete the Validate function and its call, and the code can be used for valid JSON-strings without any white space outside strings (only).)
val Validate = fn jsonstring =>
let
val Valid = fn jsonstring =>
let
val json = String.translate (fn #"\"" => "\\\""|n=>str n ) jsonstring ;
val textlength = (String.size json ) + 50 ;
val app = " jq -c '.' "
val fname = "/tmp/jsonval" ^ (String.extract (Time.toString (Posix.ProcEnv.time()),7,NONE) );
val shellCommand = "echo \"" ^ json ^ "\" | " ^ app
val me = ( Posix.FileSys.mkfifo (fname, Posix.FileSys.S.flags [ Posix.FileSys.S.irusr,Posix.FileSys.S.iwusr ] ) ;
Posix.Process.fork () ) ;
in
if (Option.isSome me) then
let
val fin =TextIO.openIn fname
in
( Posix.Process.sleep (Time.fromReal 0.1) ;
TextIO.inputN (fin,textlength) before
(TextIO.closeIn fin ; OS.FileSys.remove fname)
)
end
else
( OS.Process.system ( shellCommand ^ " > " ^fname ^ " 2>&1 ") ; (* remove fmt and validate *)
"done\n" before OS.Process.exit OS.Process.success )
end
val result = Valid jsonstring
in
if String.isPrefix "{" result then result else "JSON error\n"
end;
datatype ('a,'b) element = elem of 'a * 'b | markerb of int ; (* < internal structure v *)
datatype 'a content = value of 'a | block of ('a,'a content) element list | arr of 'a content list |marker of int ;
exception Dtype of string ;
val unarr = fn arr lst => lst | _ => (raise Dtype "unarr" ; []) ;
val unblock = fn block lst => lst | _ => (raise Dtype "unblock" ; []) ;
(* --- example loop to apply a function 'dothis', which returns type jvals, to the structure ---- *)
datatype jvals = St of string | It of IntInf.int | Rl of real | Bl of bool ; (* returned type by 'dothis' *)
val rec gothruAndDo = fn dothis => fn storedObject =>
let
val walk = fn elem ( n, value v) => elem (dothis n , value (dothis v) )
| elem ( n, block v) => elem (dothis n , block ( (gothruAndDo dothis) (rev (tl (rev v)))) )
| elem ( n, arr v) => elem (dothis n , arr ( List.map (block o (gothruAndDo dothis) o unblock) (rev (tl (rev v))) ) )
| _ => elem (St "", value (It (IntInf.fromInt ~1)))
in
List.map walk storedObject
end;
(* ------------------------------------ end of loop example ------------------------------------ *)
local
exception Dtype of string ;
val markbToInt = fn markerb NrChars => NrChars | _ => (raise Dtype "markerb!" ; ~1) ;
val markToInt = fn marker NrChars => NrChars | _ => (raise Dtype "marker!" ; ~1) ;
fun readarr rtag rc = fn #"]"::S => [ marker (List.length S) ] (* process array *)
| S => let val tmp = (rtag rc ("",S)) in (block tmp) ::
( readarr rtag rc ( List.drop (S,(List.length S) - markbToInt ( hd (rev tmp))) )) end ;
val rec readNaVa = fn rc : string * char list -> string content * char list => fn
("",[]) => []
| (sr,[]) => [ elem (sr, value "") ]
| (sr,#":":: #"["::S) =>
let val tmp = arr (readarr readNaVa rc S) in (* field is array *)
( elem (sr, tmp )) :: (readNaVa rc ("" , List.drop (S,(List.length S) - (markToInt (hd (rev(unarr tmp)))) ) ))
end
| (sr, #":":: #"{"::S) =>
let val tmp = readNaVa rc ("",S ) in (* field is object *)
( elem (sr, block tmp)) :: (readNaVa rc ("" , List.drop (S,(List.length S) -(markbToInt ( hd (rev tmp)))) ))
end
| (sr,#"}":: #","::S) => [ markerb (List.length S) ]
| (sr,#"}"::S) => [ markerb (List.length S) ]
| (sr,#":"::S) =>
let val tmp = rc ("",S) in (* field is basic *)
elem ( sr, #1 tmp) :: (readNaVa rc ("", #2 tmp ) )
end
| (sr,#","::S) => readNaVa rc (sr , S)
| (sr,#"{"::a::S) => readNaVa rc (sr^(str a) , S)
| (sr,a::S) => readNaVa rc (sr^(str a) , S) ; (* name field *)
val rec readcontent = fn
(sc,a::[]) => (value ( sc^(str a) ),[])
| (sc,#","::t) => (value sc , t)
| (sc, #"}"::t) => (value sc , #"}"::t)
| (sc, #"]"::t) => (value sc , #"]"::t)
| (sc, a::t) => readcontent( ( sc^(str a) ),t) ;
val putall = fn input =>
let
val rec put = fn
[] => ""
| (elem h)::t => (#1 h) ^ ":" ^ ( ( fn value x=> x
| block x => "{" ^ (put x )
| arr x => "[" ^ String.concat (( List.map (fn x=> "{"^( (put o unblock) x)^"," ) (rev (tl (rev x))))) ^ "]" ) (#2 h))
^ ","
^ (put t)
| (markerb h)::t => "}"
in
"{" ^ (put input)
end;
val commas = fn tok => fn S =>
( Substring.concatWith (str tok)
( List.map (Substring.dropr (fn x=> x= #"," ))
(Substring.tokens (fn x=> x= tok ) (Substring.full S) )) ) ^ (if tok = #"}" then str tok else "" )
in
val storeJsString = fn input =>
readNaVa readcontent ("" , String.explode ( Validate input ) )
val writeJS = fn storedStruct =>
( ( ( commas #"}" ) o ( commas #"]" ) o putall ) storedStruct )
end ;
Example
val testString="{\"firstName\":\"John\",\"lastName\":\"Smith\",\"age\":25,\"address\":{\"streetAddress\":\"21 2nd Street\",\"city\":\"New York\",\"state\":\"NY\",\"postalCode\":\"10021\"},\"phoneNumber\":[{\"type\":\"home\",\"numbers\":[{\"o\":\"212 555-1234\",\"h\":\"119 323-1234\"}]},{\"type\":\"fax\",\"number\":\"646 555-4567\"}]}" ;
testString = (writeJS o storeJsString) testString ;
val it = true : bool (* because the test string was unformatted *)
val toMlVal = fn input =>
case String.isPrefix "\"" input
of true => St (String.substring (input,1,(String.size input)-2) )
| _ => case IntInf.fromString input of
SOME n => It n
| NONE => case Real.fromString input of
SOME x => Rl x
| NONE => case Bool.fromString input of
SOME b => Bl b
| NONE => St "" ;
val toMlVal = fn: string -> jvals
List.nth (gothruAndDo toMlVal (storeJsString testString ) ,3);
val it =
elem
(St "address",
block
[elem (St "streetAddress", value (St "21 2nd Street")),
elem (St "city", value (St "New York")),
elem (St "state", value (St "NY")),
elem (St "postalCode", value (St "10021"))]):
(jvals, jvals content) element
Swift
import Foundation
let jsonString = "{ \"foo\": 1, \"bar\": [10, \"apples\"] }"
if let jsonData = jsonString.data(using: .utf8) {
if let jsonObject: Any = try? JSONSerialization.jsonObject(with: jsonData, options: .allowFragments) {
print("Dictionary: \(jsonObject)")
}
}
let obj = [
"foo": [1, "Orange"],
"bar": 1
] as [String : Any]
if let objData = try? JSONSerialization.data(withJSONObject: obj, options: .prettyPrinted) {
if let jsonString2 = String(data: objData, encoding: .utf8) {
print("JSON: \(jsonString2)")
}
}
- Output:
Dictionary: { bar = ( 10, apples ); foo = 1; } JSON: { "foo" : [ 1, "Orange" ], "bar" : 1 }
Tailspin
A JSON parser and printer can fairly easily be created
// Not all JSON object member keys can be represented, a fallback would need to be implemented
// Currently Tailspin only supports integers so for now we leave numbers as strings, as we do for true, false and null
templates hexToInt
templates hexDigit
<='0'> 0! <='1'> 1! <='2'> 2! <='3'> 3! <='4'> 4! <='5'> 5! <='6'> 6! <='7'> 7! <='8'> 8! <='9'> 9!
<'[Aa]'> 10! <'[Bb]'> 11! <'[Cc]'> 12! <'[Dd]'> 13! <'[Ee]'> 14! <'[Ff]'> 15!
end hexDigit
@: 0;
$... -> hexDigit -> @: $@ * 16 + $;
$@ !
end hexToInt
composer jsonParser
<value>
rule value: (<WS>?) <string|number|object|array|true|false|null> (<WS>?)
rule string: (<='"'>) <chars> (<='"'>)
rule chars: [ <quote|backslash|slash|backspace|formfeed|linefeed|return|tab|unicode|'[^"]'>* ] -> '$...;'
rule quote: <='\"'> -> '"'
rule backslash: <='\\'> -> '\'
rule slash: <='\/'> -> '/'
rule backspace: <='\b'> -> '$#8;'
rule formfeed: <='\f'> -> '$#12;'
rule linefeed: <='\n'> -> '$#10;'
rule return: <='\r'> -> '$#13;'
rule tab: <='\t'> -> '$#9;'
rule unicode: (<='\u'>) <'[0-9A-Fa-f]{4}'> -> hexToInt -> '$#$;'
rule number: <'-?(0|[1-9][0-9]*)(\.[0-9]+)?((e|E)(\+|-)?[0-9]+)?'> // TODO: represent this other than string
rule object: (<='{'> <WS>?) { <keyValues>? } (<='}'>)
rule keyValues: <keyValue> <followingKeyValue>*
rule keyValue: <string>: (<WS>? <=':'>) <value>
rule followingKeyValue: (<=','> <WS>?) <keyValue>
rule array: (<='['>) [ <arrayValues>? ] (<=']'>)
rule arrayValues: <value> <followingArrayValue>*
rule followingArrayValue: (<=','>) <value>
rule true: <='true'> // TODO: represent this other than string
rule false: <='false'> // TODO: represent this other than string
rule null: <='null'> // TODO: represent this other than string
end jsonParser
templates printJson
templates printKeyValue
'$::key -> printJson;: $::value -> printJson;' !
end printKeyValue
templates encodeChars
<='"'> '\"' !
<='\'> '\\' !
<='/'> '\/' !
<='$#8;'> '\b' !
<='$#12;'> '\f' !
<='$#10;'> '\n' !
<='$#13;'> '\r' !
<='$#9;'> '\t' !
<> $ !
end encodeChars
$ -> #
when <[]> do
'[$(1) -> printJson;$(2..last)... -> ', $ -> printJson;';]' !
when <{}> do
[ $... ] -> '{$(1) -> printKeyValue;$(2..last)... -> ', $ -> printKeyValue;';}' !
when <..> do
'$;'!
when <''> do
[ $... -> encodeChars ] -> '"$...;"' !
otherwise 'WTF!' !
// Other types do not yet exist in Tailspin
end printJson
'{ "foo": 1, "bar": [10, "apples"] }' -> jsonParser -> '$.bar(2);
' -> !OUT::write
{ blue: [1,2], ocean: 'water' } -> printJson -> '$;
' -> !OUT::write
'plain string
' -> printJson -> '$;
' -> !OUT::write
- Output:
apples {"blue": [1, 2], "ocean": "water"} "plain string\n"
Tcl
For parsing JSON,
provides the capability (see the Tcler's Wiki page on it for more discussion):
package require json
set sample {{ "foo": 1, "bar": [10, "apples"] }}
set parsed [json::json2dict $sample]
puts $parsed
- Output:
foo 1 bar {10 apples}
However, that package is very weak in its generation of JSON because Tcl's official type system is substantially different to that envisaged by JSON. It's possible to work around this though the use of Tcl 8.6, as this next example shows:
package require Tcl 8.6
package require json::write
proc tcl2json value {
# Guess the type of the value; deep *UNSUPPORTED* magic!
regexp {^value is a (.*?) with a refcount} \
[::tcl::unsupported::representation $value] -> type
switch $type {
string {
return [json::write string $value]
}
dict {
return [json::write object {*}[
dict map {k v} $value {tcl2json $v}]]
}
list {
return [json::write array {*}[lmap v $value {tcl2json $v}]]
}
int - double {
return [expr {$value}]
}
booleanString {
return [expr {$value ? "true" : "false"}]
}
default {
# Some other type; do some guessing...
if {$value eq "null"} {
# Tcl has *no* null value at all; empty strings are semantically
# different and absent variables aren't values. So cheat!
return $value
} elseif {[string is integer -strict $value]} {
return [expr {$value}]
} elseif {[string is double -strict $value]} {
return [expr {$value}]
} elseif {[string is boolean -strict $value]} {
return [expr {$value ? "true" : "false"}]
}
return [json::write string $value]
}
}
}
Sample code (note that the value is built with dict create
and list
so that there is some auxiliary type hints available, which the above procedure can read):
set d [dict create blue [list 1 2] ocean water]
puts [tcl2json $d]
- Output:
{ "blue" : [1,2], "ocean" : "water" }
Note that this is capable of correctly handling the round-trip of values parsed from the json
package described above.
TXR
Built-In
TXR has built in JSON support.
The TXR Lisp syntax supports JSON literals, which are prefixed with #J
.
1> #J{"foo" : true, [1, 2, "bar", false] : null} #H(() ("foo" t) (#(1.0 2.0 "bar" nil) null))
JSON objects become hash tables, and arrays become vectors. The JSON keywords true
, false
and null
become Lisp symbols t
, nil
and null
.
The above #J
syntax is a true hash table literal; it isn't an expression which has to be evaluated to construct the object.
Quasiquoting is supported over this syntax, in two usefully different ways. In quasiquoted JSON, an interpolated values are indicated not by the usual unquoting comma, but a tilde.
If we place the quasiquoting circumflex after the #J
, just before the JSON syntax, then we get a form of quasiquote which interpolates values into the implied data structure. The syntax is transliterated into an invocation of a macro called json
, which produces code to construct the object, with the dynamic values inserted into it:
1> (let ((str "hello")) #J^{~str : 42}) #H(() ("hello" 42.0))
If the syntax is externally quasiquoted, such as by the circumflex being placed just before the #J
or else by the JSON occurring inside a larger Lisp quasiquote, then the literal syntax itself is being quasiquoted. The result of evaluating the quasiquote isn't the object, but the syntax itself, which when evaluated again produces the object:
1> (let ((str "hello")) ^#J{~str : 42}) #J{"hello":42} 2> (eval *1) #H(() ("hello" 42.0))
The get-json
and put-json
functions are the basic interface for reading JSON from a stream, and sending data to a stream in JSON format. Surrounding these core functions are a number of convenience functions. For instance file-get-json
reads a JSON file and returns the data structure, and tojson
returns an object as a JSON character string.
1> (file-get-json "/usr/share/iso-codes/json/iso_15924.json") #H(() ("15924" #(#H(() ("name" "Adlam") ("alpha_4" "Adlm") ("numeric" "166")) #H(() ("name" "Afaka") ("alpha_4" "Afak") ("numeric" "439")) [ ... SNIP ... ] #H(() ("name" "Code for uncoded script") ("alpha_4" "Zzzz") ("numeric" "999")))))
JSON is printed in a "native" formatting by default:
2> (put-jsonl *1) {"15924":[{"name":"Adlam","alpha_4":"Adlm","numeric":"166"},{"name":"Afaka","alpha_4":"Afak","numeric":"439"}, {"name":"Caucasian Albanian","alpha_4":"Aghb","numeric":"239"}, {"name":"Ahom, Tai Ahom","alpha_4":"Ahom","numeric":"338"},{"name":"Arabic","alpha_4":"Arab","numeric":"160"}, [ ... SNIP ... ] {"name":"Code for undetermined script","alpha_4":"Zyyy","numeric":"998"}, {"name":"Code for uncoded script","alpha_4":"Zzzz","numeric":"999"}]} t
With the special variable *print-json-format*
we can get the de-facto standard formatting.
3> (let ((*print-json-format* :standard)) (put-jsonl *1)) { "15924" : [ { "name" : "Adlam", "alpha_4" : "Adlm", "numeric" : "166" }, { "name" : "Afaka", "alpha_4" : "Afak", "numeric" : "439" }, { "name" : "Caucasian Albanian", "alpha_4" : "Aghb", "numeric" : "239" }, [ ... SNIP ... ] { "name" : "Code for uncoded script", "alpha_4" : "Zzzz", "numeric" : "999" } ] } t
The *read-bad-json*
variable controls whether the parser is tolerant toward superfluous commas:
4> (get-json "[1, 2, 3,]") ** syntax error: read: string: errors encountered 4> (let ((*read-bad-json* t)) (get-json "[1, 2, 3,]")) #(1.0 2.0 3.0)
Numbers must be floating-point in order to convert to JSON:
5> (put-jsonl #(1 2 3)) [** print: invalid object 1 in JSON ** during evaluation at expr-7:1 of form (put-jsonl #(1 2 3)) 5> (put-jsonl #(1. 2. 3.)) [1,2,3] t
This rigidity prevents errors in applications like saving some integer in JSON which unexpectedly comes back as a floating-point value, not necessarily equal to that integer.
From Scratch JSON Parsing in Pattern Language
The following implements the parsing half of the task. It is a parser closely based on the JSON grammar [[3]]. This exercise shows how the TXR Pattern Language, though geared toward line-oriented, loose matching over entire documents, can nevertheless parse languages.
This is implemented with recursive horizontal pattern matching functions, and so basically the definition resembles a grammar. Horizontal functions allow the language to easily specify LL grammars with indefinite lookahead, not restricted to regular languages (thanks to TXR's backtracking). The numerous occurences of @\ in the code are line continuations. Horizontal functions must be written on one logical line. @\ eats the whitespace at the start of the next physical line, to allow indentation.
The parser translates to a nested list structure in which the types are labeled with the strings "O", "A", "N", "S" and "K". (Object, array, number, string, and keyword).
The largest grammar rule handles JSON string literals. The strategy is to generate a HTML string and then filter from HTML using the :from_html
filter in TXR. For instance \uABCD is translated to ꯍ
and then the filter will produce the proper Unicode character. Similarly \" is translated to "
and \n is translated to
etc.
A little liberty is taken: the useless commas in JSON are treated as optional. (TXR's built-in JSON
Superfluous terminating commas (not generated by the JSON grammar but accepted by some other parsers) are not allowed by this parser.
@(define value (v))@\
@(cases)@\
@(string v)@(or)@(num v)@(or)@(object v)@(or)@\
@(keyword v)@(or)@(array v)@\
@(end)@\
@(end)
@(define ws)@/[\n\t ]*/@(end)
@(define string (g))@\
@(local s hex)@\
@(ws)@\
"@(coll :gap 0 :vars (s))@\
@(cases)@\
\"@(bind s """)@(or)@\
\\@(bind s "\\\\")@(or)@\
\/@(bind s "\\/")@(or)@\
\b@(bind s "")@(or)@\
\f@(bind s "")@(or)@\
\n@(bind s " ")@(or)@\
\r@(bind s " ")@(or)@\
\t@(bind s "	")@(or)@\
\u@{hex /[0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f]/}@\
@(bind s `&#x@hex;`)@(or)@\
@{s /[^"\\]*/}@(filter :to_html s)@\
@(end)@\
@(until)"@\
@(end)"@\
@(ws)@\
@(cat s "")@\
@(filter :from_html s)@\
@(bind g ("S" s))@\
@(end)
@(define num (v))@\
@(local n)@\
@(ws)@{n /-?[0-9]+((\.[0-9]+)?([Ee][+\-]?[0-9]+)?)?/}@(ws)@\
@(bind v ("N" n))@\
@(end)
@(define keyword (v))@\
@(local k)@\
@(all)@(ws)@{k /true|false|null/}@(trailer)@/[^A-Za-z0-9_]/@(end)@(ws)@\
@(bind v ("K" k))@\
@(end)
@(define object (v))@\
@(local p e pair)@\
@(ws){@(ws)@(coll :gap 0 :vars (pair))@\
@(string p):@(value e)@/,?/@\
@(bind pair (p e))@\
@(until)}@\
@(end)}@(ws)@\
@(bind v ("O" pair))@\
@(end)
@(define array (v))@\
@(local e)@\
@(ws)[@(ws)@(coll :gap 0 :var (e))@(value e)@/,?/@(until)]@(end)]@(ws)@\
@(bind v ("A" e))@\
@(end)
@(freeform)
@(maybe)@(value v)@(end)@badsyntax
A few tests. Note, the badsyntax
variable is bound to any trailing portion of the input that does not match the syntax. The call to the parser @(value v)
extracts the longest prefix of the input which is consistent with the syntax, leaving the remainder to be matched into badsyntax
.
$ echo -n '{ "a" : { "b" : 3, "c" : [1,2,3] } }[' | ./txr -l json.txr -
(v "O" ((("S" "a") ("O" ((("S" "b") ("N" "3")) (("S" "c") ("A" (("N" "1") ("N" "2") ("N" "3")))))))))
(badsyntax . "[\n")
$ echo -n '"\u1234"' | ./txr -l json.txr -
(v "S" "\11064")
(badsyntax . "")
V (Vlang)
import json
struct User {
// Adding a [required] attribute will make decoding fail, if that
// field is not present in the input.
// If a field is not [required], but is missing, it will be assumed
// to have its default value, like 0 for numbers, or '' for strings,
// and decoding will not fail.
name string [required]
age int
// Use the `skip` attribute to skip certain fields
foo int [skip]
// If the field name is different in JSON, it can be specified
last_name string [json: lastName]
possessions []string
}
fn main() {
data := '{ "name": "Frodo", "lastName": "Baggins", "age": 25, "possessions": ["shirt","ring","sting"] }'
user := json.decode(User, data) or {
eprintln('Failed to decode json, error: $err')
return
}
println(user)
println(json.encode(user))
}
- Output:
User{ name: 'Frodo' age: 25 foo: 0 last_name: 'Baggins' possessions: ['shirt', 'ring', 'sting'] } {"name":"Frodo","age":25,"lastName":"Baggins","possessions":["shirt","ring","sting"]}
Wren
import "/json" for JSON
var s = "{ \"foo\": 1, \"bar\": [ \"10\", \"apples\"] }"
var o = JSON.parse(s)
System.print(o)
o = { "blue": [1, 2], "ocean": "water" }
s = JSON.stringify(o)
System.print(s)
- Output:
{foo: 1, bar: [10, apples]} {"ocean":"water","blue":[1,2]}
XQuery
The XPath 3.1 standard specifies an XML format to store JSON information. Different XQuery processors implement their own JSON parsers in addition to the XPath functions. One such function has been added, to show, how to map JSON into an XPath map using the BaseX processor. As XQuery is a superset of XPath, the following code is valid XQuery 3.1. Except for 'null', which does not exist in the XPath data model, all JSON datatypes have their XPath equivalent. 'Null' is being represented by the empty sequence. This gets shown at the last function invocation, which creates an XPath map. It may be interesting to note, that the different options for the json serializers and parsers have not been used here.
let $json := '
{
"Astring" : "string-value",
"Anumber" : 5.7,
"Anull" : null,
"Aarray" : ["One","Two", 3],
"Aobject" : {
"key1": "value1",
"key2": "value2"
},
"Atrue" : true,
"Afalse" : false
}
'
let $xml := json-to-xml($local:json)
return (
"XPath fn:json-to-xml#1 function:"
,""
,$xml
,""
,"Round trip, using fn:xml-to-json#1:"
,""
,xml-to-json($xml)
,""
,"Using BaseX json:parse#2 function to create an XPath 3.1 map:"
,""
,json:parse($local:json, map{"format":"xquery"})
)
Result:
XPath fn:json-to-xml#1 function: <map xmlns="http://www.w3.org/2005/xpath-functions"> <string key="Astring">string-value</string> <number key="Anumber">5.7</number> <null key="Anull"/> <array key="Aarray"> <string>One</string> <string>Two</string> <number>3</number> </array> <map key="Aobject"> <string key="key1">value1</string> <string key="key2">value2</string> </map> <boolean key="Atrue">true</boolean> <boolean key="Afalse">false</boolean> </map> Round trip, using fn:xml-to-json#1: { "Astring":"string-value", "Anumber":5.7, "Anull":null, "Aarray":[ "One", "Two", 3 ], "Aobject":{ "key1":"value1", "key2":"value2" }, "Atrue":true, "Afalse":false } Using BaseX json:parse#2 function to create an XPath 3.1 map: map { "Aobject": map { "key1": "value1", "key2": "value2" }, "Afalse": false(), "Anull": (), "Anumber": 5.7e0, "Atrue": true(), "Astring": "string-value", "Aarray": ["One", "Two", 3.0e0] }
zkl
zkl has a JSON codec based on yajl.
To convert from JSON to zkl:
a,b:=Import.lib("zklYAJL");
var [const] YAJL=a, toJSON=b;
src:=
#<<<
0'|{
"pi": 3.14,
"large number": 123456789123456791,
"an array": [
-1,
true,
false,
null,
"foo"
]
}|;
#<<<
obj:=YAJL().write(src).close();
// or obj:=src.pump(YAJL()).close(); // for example, from file or socket
obj.println();
- Output:
D(pi:3.14,an array:L(-1,True,False,Void,"foo"),large number:123456789123456791)
From zkl to JSON:
// using above code plus:
toJSON(obj).println();
- Output:
{"pi":3.1400000000,"an array":[-1,true,false,null,"foo"],"large number":123456789123456791}
- Programming Tasks
- Solutions by Programming Task
- 11l
- 8th
- Ada
- AntLang
- ANTLR
- Apex
- Arturo
- Bracmat
- C
- YAJL
- C sharp
- C++
- U++
- Nlohmann::json
- Caché ObjectScript
- Clojure
- CoffeeScript
- ColdFusion
- Common Lisp
- Crystal
- D
- Dart
- DuckDB
- Delphi
- EchoLisp
- EGL
- Elena
- Emacs Lisp
- Jansson
- Json.el
- Erlang
- F Sharp
- Factor
- Fantom
- Forth
- Fortran
- FreeBASIC
- FunL
- FutureBasic
- Go
- Gosu
- Groovy
- Halon
- Harbour
- Haskell
- Hoon
- Insitux
- J
- Java
- JavaScript
- Jq
- Jsish
- Julia
- Kotlin
- Lasso
- LFE
- Lingo
- Lua
- M2000 Interpreter
- Maple
- Mathematica
- Wolfram Language
- MATLAB
- Octave
- NetRexx
- Nim
- Objeck
- Objective-C
- OCaml
- Json-wheel
- Json-static
- Yojson
- Oforth
- Ol
- OpenEdge/Progress
- Oz
- Pascal
- PascalABC.NET
- Perl
- JSON
- Phix
- PHP
- PicoLisp
- Pike
- PowerShell
- Prolog
- PureBasic
- Python
- R
- Racket
- Raku
- REBOL
- Ruby
- Rust
- Serde
- Scala
- Scheme
- SenseTalk
- Sidef
- Smalltalk
- Standard ML
- Swift
- Tailspin
- Tcl
- Tcllib
- TXR
- V (Vlang)
- Wren
- Wren-json
- XQuery
- Zkl
- Data Structures
- ML/I/Omit
- Axe/Omit
- Pages with too many expensive parser function calls