Jump to content

JSON

From Rosetta Code
Task
JSON
You are encouraged to solve this task according to the task description, using any language you may know.

Load a JSON string into a data structure. Also, create a new data structure and serialize it into JSON.

Use objects and arrays (as appropriate for your language) and make sure your JSON is valid (https://jsonformatter.org).

11l

T.serializable Person
   String firstName, lastName
   Int age
   T PhoneNumber
      String ntype
      String number
   [PhoneNumber] phoneNumbers
   [String] children

Person p

json:to_object(‘
{
  "firstName": "John",
  "lastName": "Smith",
  "age": 27,
  "phoneNumbers": [
    {
      "ntype": "home",
      "number": "212 555-1234"
    },
    {
      "ntype": "office",
      "number": "646 555-4567"
    }
  ],
  "children": ["Mary", "Kate"]
}’, &p)

p.phoneNumbers.pop(0)
p.children.append(‘Alex’)

print(json:from_object(p))
Output:
{
    "age": 27,
    "children": [
        "Mary",
        "Kate",
        "Alex"
    ],
    "firstName": "John",
    "lastName": "Smith",
    "phoneNumbers": [
        {
            "ntype": "office",
            "number": "646 555-4567"
        }
    ]
}

8th

8th uses JSON as its data description language, so:

[1,2,3] . cr

Prints an array of [1,2,3].

Converting a string to an object:

"{ \"a\": 123 }"  json> 

Takes the string and converts to the JSON object (which is an 8th object). Convert back to a string:

{"a": 123} >s

That takes the object and converts to the JSON string given above.

Ada

Alternative using GNATCOLL

with Ada.Text_IO;
with GNATCOLL.JSON;
 
procedure JSON_Test is
   use Ada.Text_IO;
   use GNATCOLL.JSON;
 
   JSON_String : constant String := "{""name"":""Pingu"",""born"":1986}";
   
   Penguin : JSON_Value := Create_Object;
   Parents : JSON_Array;
begin
   Penguin.Set_Field (Field_Name => "name", 
                      Field      => "Linux");
   
   Penguin.Set_Field (Field_Name => "born",
                      Field      => 1992);
   
   Append (Parents, Create ("Linus Torvalds"));
   Append (Parents, Create ("Alan Cox"));
   Append (Parents, Create ("Greg Kroah-Hartman"));
 
   Penguin.Set_Field (Field_Name => "parents",
                      Field      => Parents);
   
   Put_Line (Penguin.Write);

   Penguin := Read (JSON_String, "json.errors");
   
   Penguin.Set_Field (Field_Name => "born",
                      Field      => 1986);
   
   Parents := Empty_Array;
   Append (Parents, Create ("Otmar Gutmann"));
   Append (Parents, Create ("Silvio Mazzola"));  
   
   Penguin.Set_Field (Field_Name => "parents",
                      Field      => Parents);
   
   Put_Line (Penguin.Write);
end JSON_Test;
Output:
{"parents":["Linus Torvalds", "Alan Cox", "Greg Kroah-Hartman"], "name":"Linux", "born":1992}
{"parents":["Otmar Gutmann", "Silvio Mazzola"], "name":"Pingu", "born":1986}

Alternative using Matreshka

with Ada.Wide_Wide_Text_IO; use Ada.Wide_Wide_Text_IO;
with League.JSON.Arrays;    use League.JSON.Arrays;
with League.JSON.Documents; use League.JSON.Documents;
with League.JSON.Objects;   use League.JSON.Objects;
with League.JSON.Values;    use League.JSON.Values;
with League.Strings;        use League.Strings;

procedure Main is

   function "+" (Item : Wide_Wide_String) return Universal_String
     renames To_Universal_String;

   JSON_String : constant Universal_String
     := +"{""name"":""Pingu"",""born"":1986}";

   Penguin : JSON_Object;
   Parents : JSON_Array;

begin
   Penguin.Insert (+"name", To_JSON_Value (+"Linux"));
   Penguin.Insert (+"born", To_JSON_Value (1992));

   Parents.Append (To_JSON_Value (+"Linus Torvalds"));
   Parents.Append (To_JSON_Value (+"Alan Cox"));
   Parents.Append (To_JSON_Value (+"Greg Kroah-Hartman"));

   Penguin.Insert (+"parents", To_JSON_Value (Parents));

   Put_Line (To_JSON_Document (Penguin).To_JSON.To_Wide_Wide_String);

   Penguin := From_JSON (JSON_String).To_JSON_Object;

   Parents := Empty_JSON_Array;

   Parents.Append (To_JSON_Value (+"Otmar Gutmann"));
   Parents.Append (To_JSON_Value (+"Silvio Mazzola"));

   Penguin.Insert (+"parents", To_JSON_Value (Parents));

   Put_Line (To_JSON_Document (Penguin).To_JSON.To_Wide_Wide_String);
end Main;
Output:
{"parents":["Linus Torvalds","Alan Cox","Greg Kroah-Hartman"],"name":"Linux","born":1992}
{"parents":["Otmar Gutmann","Silvio Mazzola"],"name":"Pingu","born":1986}

AntLang

JSON parser (maybe failes with "invalid JSON" error)

json:{[data]catch[eval[,|{[y]catch[{":" = "="; "[" = "<"; "]" = ">"; "," = ";"}[y];{x};{[]y}]}'("""("(\\.|[^\\"])*"|\-?[0-9]+(\.[0-9]+)?|\{|\}|\[|\]|\:|\,)"""~data)["strings"]];{x};{error["Invalid JSON"]}]}

ANTLR

ANTLR
ANTLR
ANTLR
ANTLR
ANTLR
ANTLR
ANTLR
ANTLR
ANTLR
ANTLR
ANTLR
ANTLR
ANTLR
ANTLR


Java

//  Parse JSON
//
//  Nigel Galloway - April 27th., 2012
//
grammar JSON ;
@members {
String Indent = "";
}
Number	:	(('0')|('-'? ('1'..'9') ('0'..'9')*)) ('.' ('0'..'9')+)? (('e'|'E') ('+'|'-')? ('0'..'9')+)?;
WS	:	(' ' | '\t' | '\r' |'\n') {skip();};
Tz	:	' ' .. '!' | '#' .. '[' | ']' .. '~';
Control	:	'\\' ('"'|'\\'|'/'|'b'|'f'|'n'|'r'|'t'|UCode);
UCode	:	'u' ('0'..'9'|'a'..'f'|'A'..'F') ('0'..'9'|'a'..'f'|'A'..'F') ('0'..'9'|'a'..'f'|'A'..'F') ('0'..'9'|'a'..'f'|'A'..'F');
Keyword	:	'true' | 'false' | 'null';
String	:	'"' (Control? Tz)* '"';
object	:       '{' {System.out.println(Indent + "{Object}"); Indent += "    ";} (pair (',' pair*)*)? '}' {Indent = Indent.substring(4);};
pair	:	e = String {System.out.println(Indent + "{Property}\t" + $e.text);} ':' value;
value	:	Number             {System.out.println(Indent + "{Number}  \t" + $Number.text);}
	|	object
	|	String             {System.out.println(Indent + "{String}  \t" + $String.text);}
	|	Keyword            {System.out.println(Indent + "{Keyword} \t" + $Keyword.text);}
	|	array;
array	:	'[' {System.out.println(Indent + "Array"); Indent += "    ";} (value (',' value)*)? ']' {Indent = Indent.substring(4);};

Produces:

>java Test
{
  "Nigel"
  :
  -110.2e-13
  ,
  "Fred"
  :
  {
    "Joe"
    :
    [3,true,"Nigel"]
  }
  "Harry"
  :
  [23,"Hello"]
}
^Z
{Object}
    {Property}  "Nigel"
    {Number}    -110.2e-13
    {Property}  "Fred"
    {Object}
        {Property}      "Joe"
        Array
            {Number}    3
            {Keyword}   true
            {String}    "Nigel"
    {Property}  "Harry"
    Array
        {Number}        23
        {String}        "Hello"

Apex

JSON serialization and deserialization is built in

class TestClass{
    String foo {get;set;}
    Integer bar {get;set;}
}

TestClass testObj = new TestClass();
testObj.foo = 'ABC';
testObj.bar = 123;

String serializedString = JSON.serialize(testObj);
TestClass deserializedObject = (TestClass)JSON.deserialize(serializedString, TestClass.class);

//"testObj.foo == deserializedObject.foo" is true
//"testObj.bar == deserializedObject.bar" is true

Arturo

print read.json {{ "foo": 1, "bar": [10, "apples"] }}

object: #[
	name: "john"
	surname: "doe"
	address: #[
		number: 10
		street: "unknown"
		country: "Spain"
    ]
	married: false
]

print write.json ø object
Output:
[foo:1 bar:[10 apples]]
{
    "name": "john",
    "surname": "doe",
    "address": {
        "number": 10,
        "street": "unknown",
        "country": "Spain"
    },
    "married": false
}

Bracmat

Bracmat has built-in functionality for reading and writing JSON data. A full roundtrip from JSON file over a Bracmat internal representation back to a JSON file looks like this:

put$(jsn$(get$("input.json",JSN)),"output.JSN,NEW)

Let us split this into separate steps.

To read a JSON file "myfile.json", use

get$("myfile.json",JSN)

If the JSON data, e.g, an array, has to be read from a string value, use the MEM option on the get function, like this:

get$("[1,2,3]",JSN,MEM)

To convert the corresponding Bracmat data structure (,1 2 3) back to a JSON string, use

jsn$(,1 2 3)

To write a JSON string "[1,2,3]" to a file "array.json", use

put$("[1,2,3]","array.json",NEW)

Bracmat and JSON/Javascript do far from represent data in similar ways. Bracmat has arbitrary-precision arithmetic. Floating point numbers are not a native datatype in Bracmat. (But since 2023, Bracmat has an object type, UFP, that handles floating point operations using C "double"s.) Bracmat has no Boolean values true and false and no null value. Bracmat has arrays and objects, but they are second class citizens. Most data is best represented as binary tree structures, with binary operators like the plus, comma, dot or white space sitting in the nodes and the atomic parts of the data sitting in the leaves. The only data type that is somewhat the same in JSON/JavaScript and Bracmat is the string, but there is a slight difference in the representation of strings in code. Whereas strings in JSON always are enclosed in quotation marks, this is only necessary in Bracmat if a string contains operator characters or starts with flag characters.

Here are the mapping rules:

Bracmat representation JSON representation Comment
null null
true true
false false
12345 12345
2/3 6.66666666666666666667E-1 Most rational numbers cannot be represented as floating point numbers, see note (1)
(.string) "string"
(,1 2) [1,2]
((a.1)+(b.2),) {"a":1,"b":2} The + operator sorts its arguments. See note (2)

Note (1) All floating point numbers can be represented as rational numbers. Therefore, a round trip of a Bracmat number to a JSON number and back to a Bracmat number can give a different number: 2/3 becomes 666666666666666666667/1000000000000000000000.

Note (2) The objects {"a":1,"b":2} and {"b":2,"a":1} are equivalent in Bracmat, as they are both internally represented as ((a.1)+(b.2),)

Here is a full round trip of the following JSON data, which is assumed to be stored in a file "rosetta.json". The employed code is:

( get$("rosetta.json",JSN):?json
& lst$(json,"json.bra",NEW)
& put$(jsn$!json,"rosetta-roundtrip.json",NEW)
)

rosetta.json:

[   
    {
        "ape": "\"King Kong\"",
        "C:\\projects": "23",
        "OS\/2": {
            "White\b\f\n\r\tspace": {}
        },
        "Cyrillic": [
            "Ya \u042F",
            "ya \u044f"
        ]
    },
    "TAB	",
    [
        "elem1",
        "elem2"
    ],
    "Bernhard",
    [],
    [
        "x",
        "y",
        "z"
    ],
    [
        "true",
        true,
        false,
        null
    ],
    { 
        "fixed point": [
            3.4,
            0.00987654321,
            -10.01,
            56.78,
            56.780
        ]
    },
    {
        "floating point": [
            0e0,
            0.0000006e-007,
            17E123,
            -17.87E123,
            0.87E123,            
            286e400
        ]
    },
    {
        "integer": [
            -0,
            0,
            -5,
            1234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567890
        ]
    }
]

Content of json.bra:

json=
  
,   (   ("C:\\projects"..23)
      + (Cyrillic.,(."Ya Я") (."ya я"))
      + (OS/2.("White\b\f
\r	space".0,),)
      + (ape.."\"King Kong\"")
    , 
    )
    (.TAB\t)
    (,(.elem1) (.elem2))
    (.Bernhard)
    (,)
    (,(.x) (.y) (.z))
    (,(.true) true false null)
    ( ("fixed point".,34/10 987654321/100000000000 -1001/100 5678/100 56780/1000)
    , 
    )
    ( ( "floating point"
      .   
        ,   0
            6/100000000000000
            17000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
            -17870000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
            870000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
            2860000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ...
      )
    , 
    )
    ( ( integer
      .   
        ,   -0
            0
            -5
            1234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891 ...
      )
    , 
    );

The file "rosetta-roundtrip.json" will contain a single line. There is no beautify option when constructing a JSON string using the jsn function. The http://jsonlint.com service can be used to view the JSON string, but notice that some of the numbers are to big to be handled by this service and are turned into null values.

Content of rosetta-roundtrip.json (1402 characters):

[{"C:\\projects":"23","Cyrillic":["Ya Я","ya я"],"OS/2":{"White\b\f\n\r\tspace":{}},"ape":"\"King Kong\""},"TAB\t",["elem1","elem2"],"Bernhard",[],["x","y","z"],["true",true,false,null],{"fixed point":[3.4,0.00987654321,-10.01,56.78,56.78]},{"floating point":[0,0.00000000000006,17000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,-17870000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,870000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,2860000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000]},{"integer":[-0,0,-5,1234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567890]}]

After manual reformatting, again shortened where lines run off the screen:

[
    {
        "C:\\projects": "23",
        "Cyrillic": [
            "Ya Я",
            "ya я"
        ],
        "OS/2": {
            "White\b\f\n\r\tspace": {}
        },
        "ape": "\"King Kong\""
    },
    "TAB\t",
    [
        "elem1",
        "elem2"
    ],
    "Bernhard",
    [],
    [
        "x",
        "y",
        "z"
    ],
    [
        "true",
        true,
        false,
        null
    ],
    {
        "fixed point": [
            3.4,
            0.00987654321,
            -10.01,
            56.78,
            56.78
        ]
    },
    {
        "floating point": [
            0,
            0.00000000000006,
            17000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,
            -17870000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,
            870000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,
            2860000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ...
        ]
    },
    {
        "integer": [
            -0,
            0,
            -5,
            1234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891234567891 ...
        ]
    }
]

C

Library: YAJL
Works with: YAJL version 2

Reads a snippet of JSON into YAJL's tree format, then walks the tree to print it back out again. The tree contains numbers both in an unparsed, string form, and also converted to long long or double when possible. The example below demonstrates both ways of dealing with numbers.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <yajl/yajl_tree.h>
#include <yajl/yajl_gen.h>

static void print_callback (void *ctx, const char *str, size_t len)
{
  FILE *f = (FILE *) ctx;
  fwrite (str, 1, len, f);
}

static void check_status (yajl_gen_status status)
{
  if (status != yajl_gen_status_ok)
    {
      fprintf (stderr, "yajl_gen_status was %d\n", (int) status);
      exit (EXIT_FAILURE);
    }
}

static void serialize_value (yajl_gen gen, yajl_val val, int parse_numbers)
{
  size_t i;

  switch (val->type)
    {
    case yajl_t_string:
      check_status (yajl_gen_string (gen,
                                     (const unsigned char *) val->u.string,
                                     strlen (val->u.string)));
      break;
    case yajl_t_number:
      if (parse_numbers  &&  YAJL_IS_INTEGER (val))
        check_status (yajl_gen_integer (gen, YAJL_GET_INTEGER (val)));
      else if (parse_numbers  &&  YAJL_IS_DOUBLE (val))
        check_status (yajl_gen_double (gen, YAJL_GET_DOUBLE (val)));
      else
        check_status (yajl_gen_number (gen, YAJL_GET_NUMBER (val),
                                       strlen (YAJL_GET_NUMBER (val))));
      break;
    case yajl_t_object:
      check_status (yajl_gen_map_open (gen));
      for (i = 0  ;  i < val->u.object.len  ;  i++)
        {
          check_status (yajl_gen_string (gen,
                                         (const unsigned char *) val->u.object.keys[i],
                                         strlen (val->u.object.keys[i])));
          serialize_value (gen, val->u.object.values[i], parse_numbers);
        }
      check_status (yajl_gen_map_close (gen));
      break;
    case yajl_t_array:
      check_status (yajl_gen_array_open (gen));
      for (i = 0  ;  i < val->u.array.len  ;  i++)
        serialize_value (gen, val->u.array.values[i], parse_numbers);
      check_status (yajl_gen_array_close (gen));
      break;
    case yajl_t_true:
      check_status (yajl_gen_bool (gen, 1));
      break;
    case yajl_t_false:
      check_status (yajl_gen_bool (gen, 0));
      break;
    case yajl_t_null:
      check_status (yajl_gen_null (gen));
      break;
    default:
      fprintf (stderr, "unexpectedly got type %d\n", (int) val->type);
      exit (EXIT_FAILURE);
    }
}

static void print_tree (FILE *f, yajl_val tree, int parse_numbers)
{
  yajl_gen gen;

  gen = yajl_gen_alloc (NULL);
  if (! gen)
    {
      fprintf (stderr, "yajl_gen_alloc failed\n");
      exit (EXIT_FAILURE);
    }

  if (0 == yajl_gen_config (gen, yajl_gen_beautify, 1)  ||
      0 == yajl_gen_config (gen, yajl_gen_validate_utf8, 1)  ||
      0 == yajl_gen_config (gen, yajl_gen_print_callback, print_callback, f))
    {
      fprintf (stderr, "yajl_gen_config failed\n");
      exit (EXIT_FAILURE);
    }

  serialize_value (gen, tree, parse_numbers);
  yajl_gen_free (gen);
}

int main (int argc, char **argv)
{
  char err_buf[200];
  const char *json =
    "{\"pi\": 3.14, \"large number\": 123456789123456789123456789, "
    "\"an array\": [-1, true, false, null, \"foo\"]}";
  yajl_val tree;

  tree = yajl_tree_parse (json, err_buf, sizeof (err_buf));
  if (! tree)
    {
      fprintf (stderr, "parsing failed because: %s\n", err_buf);
      return EXIT_FAILURE;
    }

  printf ("Treating numbers as strings...\n");
  print_tree (stdout, tree, 0);
  printf ("Parsing numbers to long long or double...\n");
  print_tree (stdout, tree, 1);

  yajl_tree_free (tree);

  return EXIT_SUCCESS;
}
Output:
Treating numbers as strings...
{
    "pi": 3.14,
    "large number": 123456789123456789123456789,
    "an array": [
        -1,
        true,
        false,
        null,
        "foo"
    ]
}
Parsing numbers to long long or double...
{
    "pi": 3.1400000000000001243,
    "large number": 1.2345678912345679134e+26,
    "an array": [
        -1,
        true,
        false,
        null,
        "foo"
    ]
}

C#

Works with: C sharp version 3.0

This uses the JavaScriptSerializer class which was shipped with .NET 3.5.

using System;
using System.Collections.Generic;
using System.Web.Script.Serialization;

class Program
{
    static void Main()
    {
        var people = new Dictionary<string, object> {{"1", "John"}, {"2", "Susan"}};
        var serializer = new JavaScriptSerializer();
        
        var json = serializer.Serialize(people);
        Console.WriteLine(json);

        var deserialized = serializer.Deserialize<Dictionary<string, object>>(json);
        Console.WriteLine(deserialized["2"]);

        var jsonObject = serializer.DeserializeObject(@"{ ""foo"": 1, ""bar"": [10, ""apples""] }");
        var data = jsonObject as Dictionary<string, object>;
        var array = data["bar"] as object[];
        Console.WriteLine(array[1]);
    }
}

C++

Library: U++
#include "Core/Core.h"

using namespace Upp;

CONSOLE_APP_MAIN
{
	JsonArray a;
	a << Json("name", "John")("phone", "1234567") << Json("name", "Susan")("phone", "654321");
	String txt = ~a;
	Cout() << txt << '\n';
	Value v = ParseJSON(txt);
	for(int i = 0; i < v.GetCount(); i++)
		Cout() << v[i]["name"] << ' ' << v[i]["phone"] << '\n';
}

C++11

#include <iostream>
#include <iomanip> // std::setw
#include <sstream>
#include <cassert>

#include "json.hpp"

using json = nlohmann::json;

int main( int argc, char* argv[] )
{
        std::string const expected =
R"delim123({
    "answer": {
        "everything": 42
    },
    "happy": true,
    "list": [
        1,
        0,
        2
    ],
    "name": "Niels",
    "nothing": null,
    "object": {
        "currency": "USD",
        "value": 42.99
    },
    "pi": 3.141
})delim123";

    json const jexpected = json::parse( expected );

    assert( jexpected["list"][1].get<int>() == 0 );
    assert( jexpected["object"]["currency"] == "USD" );

    json jhandmade = {
        {"pi", 3.141},
        {"happy", true},
        {"name", "Niels"},
        {"nothing", nullptr},
        {"answer", {
             {"everything", 42}
         }
        },
        {"list", {1, 0, 2}},
        {"object", {
             {"currency", "USD"},
             {"value", 42.99}
         }
        }
    };

    assert( jexpected == jhandmade );

    std::stringstream jhandmade_stream;
    jhandmade_stream << std::setw(4) << jhandmade;

    std::string jhandmade_string = jhandmade.dump(4);

    assert( jhandmade_string == expected );
    assert( jhandmade_stream.str() == expected );
    
    return 0;    
}

Caché ObjectScript

Class Sample.JSON [ Abstract ]
{

ClassMethod GetPerson(ByRef pParms, Output pObject As %RegisteredObject) As %Status
{
	Set pObject=##class(Sample.Person).%OpenId(pParms("oid"))
	Quit $$$OK
}

}
Examples:
SAMPLES>Set pParms("oid")=5                                                                                       
SAMPLES>Do ##class(%ZEN.Auxiliary.jsonProvider).%WriteJSONFromObject("", "Sample.JSON", "GetPerson", .pParms)

{
"_class":"Sample.Person",
"_id":5,
"Age":80,
"DOB":33603,
"FavoriteColors":["White","Purple"],
"Home":
   {
"_class":"Sample.Address",
   "City":"Denver",
   "State":"SC",
   "Street":"6932 Second Court",
   "Zip":51309
   },
"Name":"Tillem,Will D.",
"Office":
   {
"_class":"Sample.Address",
   "City":"Queensbury",
   "State":"NV",
   "Street":"1169 Main Drive",
   "Zip":25310
   },
"SSN":"729-56-4619",
"Spouse":null
}

SAMPLES>Read json
{"_class":"Sample.Person","_id":5,"Age":80,"DOB":33603,"FavoriteColors":["White"
,"Purple"],"Home":{"_class":"Sample.Address","City":"Denver","State":"S C","Stre
et":"6932 Second Court","Zip":51309},"Name":"Tillem,Will D.","O ffice":{"_class"
:"Sample.Address","City":"Queensbury","State":"NV"," Street":"1169 Main Drive","
Zip":25310},"SSN":"729-56-4619","Spouse":null}

SAMPLES>Do ##class(%ZEN.Auxiliary.jsonProvider).%ConvertJSONToObject(json, "", .person)

SAMPLES>Write person.Name
Tillem,Will D.
SAMPLES>Write person.FavoriteColors.Count()
2
SAMPLES>Write person.Home.Street
6932 Second Court

Clojure

Library: data.json

(use 'clojure.data.json)

 ; Load as Clojure data structures and bind the resulting structure to 'json-map'.
(def json-map (read-json "{ \"foo\": 1, \"bar\": [10, \"apples\"] }"))

; Use pr-str to print out the Clojure representation of the JSON created by read-json.
(pr-str json-map)

; Pretty-print the Clojure representation of JSON. We've come full circle.
(pprint-json json-map)

CoffeeScript

sample =
  blue: [1, 2]
  ocean: 'water'
  
json_string = JSON.stringify sample
json_obj = JSON.parse json_string

console.log json_string
console.log json_obj

ColdFusion

<!--- Create sample JSON structure --->
<cfset json = {
  string: "Hello",
  number: 42,
  arrayOfNumbers: [1, 2, 3, 4],
  arrayOfStrings: ["One", "Two", "Three", "Four"],
  arrayOfAnything: [1, "One", [1, "One"], { one: 1 }],
  object: {
    key: "value"
  }
} />

<!--- Convert to JSON string --->
<cfset jsonSerialized = serializeJSON(json) />
<!--- Convert back to ColdFusion --->
<cfset jsonDeserialized = deserializeJSON(jsonSerialized) />

<!--- Output examples --->
<cfdump var="#jsonSerialized#" />
<cfdump var="#jsonDeserialized#" />

Common Lisp

Library: cl-json

(ql:quickload '("cl-json"))

(json:encode-json
 '#( ((foo . (1 2 3)) (bar . t) (baz . #\!))
    "quux" 4/17 4.25))

(print (with-input-from-string
	   (s "{\"foo\": [1, 2, 3], \"bar\": true, \"baz\": \"!\"}")
	 (json:decode-json s)))
To load "cl-json":
  Load 1 ASDF system:
    cl-json
; Loading "cl-json"

[{"foo":[1,2,3],"bar":true,"baz":"!"},"quux",0.23529412,4.25]
((:FOO 1 2 3) (:BAR . T) (:BAZ . "!")) 

Crystal

Before 1.0.0:

require "json_mapping"

class Foo
  JSON.mapping(
    num: Int64,
    array: Array(String),
  )
end

def json
  foo = Foo.from_json(%({"num": 1, "array": ["a", "b"]}))
  puts("#{foo.num} #{foo.array}")
  puts(foo.to_json)
end

After 1.0.0:

require "json"

class Foo
  include JSON::Serializable
  
  property num : Int64
  property array : Array(String)
end

def json
  foo = Foo.from_json(%({"num": 1, "array": ["a", "b"]}))
  puts("#{foo.num} #{foo.array}")
  puts(foo.to_json)
end

Output:

1 ["a", "b"]
{"num":1,"array":["a","b"]}

D

import std.stdio, std.json;
    
void main() {
    auto j = parseJSON(`{ "foo": 1, "bar": [10, "apples"] }`);
    writeln(toJSON(&j)); 
}
{"foo":1,"bar":[10,"apples"]}

Dart

import 'dart:convert' show jsonDecode, jsonEncode;

main(){
	var json_string = '''
	{
		"rosetta_code": {
			"task": "json",
			"language": "dart",
			"descriptions": [ "fun!", "easy to learn!", "awesome!" ]
		}
	}
	''';
	
	// decode string into Map<String, dynamic>
	var json_object = jsonDecode(json_string);
	
	for ( var description in json_object["rosetta_code"]["descriptions"] )
		print( "dart is $description" );

	var dart = {
		"compiled": true,
		"interpreted": true,
		"creator(s)":[ "Lars Bak", "Kasper Lund"],
		"development company": "Google"
	};

	var as_json_text = jsonEncode(dart);

	assert(as_json_text == '{"compiled":true,"interpreted":true,"creator(s)":["Lars Bak","Kasper Lund"],"development company":"Google"}');
}
Output:
dart is fun!
dart is easy to learn!
dart is awesome!
Translation of: JavaScript
import 'dart:convert';

main(){
	var data = jsonDecode('{ "foo": 1, "bar": [10, "apples"] }');
 
	var sample = { "blue": [1,2], "ocean": "water" };

	var json_string = jsonEncode(sample);
}

DuckDB

Works with: DuckDB version V1.0

DuckDB supports JSON as though it were one of the pre-defined types. Conversion to JSON is typically as simple as appending `::JSON` to an expression, as illustrated below.

Importing JSON

Files containing one or more JSON values can be read in several ways, depending on how the JSON is organized and on whether any kind of conversion is required.

For example, a file containing a single array of JSON objects can be conveniently used to populate a table with data-driven determination of the column names.

Similarly, one might wish to import an NDJSON file as a table with one row per line. For example, if colors.json is a file containing the text:

{ "white": [255, 255, 255] }
{ "red":   [195, 176, 145] }

then the statement

from 'colors.json';

yields:

┌─────────────────┬─────────────────┐
│      white      │       red       │
│     int64[]     │     int64[]     │
├─────────────────┼─────────────────┤
│ [255, 255, 255] │                 │
│                 │ [195, 176, 145] │
└─────────────────┴─────────────────┘

But if we want to read the values as two separate JSON objects, we could write:

select json::JSON from read_csv('colors.json', header=false, sep='\t') t(json);

with the result:

┌──────────────────────────────┐
│    CAST("json" AS "JSON")    │
│             json             │
├──────────────────────────────┤
│ { "white": [255, 255, 255] } │
│ { "red":   [195, 176, 145] } │
└──────────────────────────────┘

Conversion to JSON

DuckDB provides extensive support for converting rows and columns, and indeed DuckDB values in general, to JSON. These conversions can often be accomplished simply by "casting" a value to JSON as illustrated by the following query and the response it generates:

select 1, 1::JSON as int, [1,2], [1,2]::JSON as list, {'a':1}, {'a':1}::JSON as struct;
┌───────┬──────┬───────────────────────┬───────┬──────────────────────────┬─────────┐
│   1   │ int  │ main.list_value(1, 2) │ list  │ main.struct_pack(a := 1) │ struct  │
│ int32 │ json │        int32[]        │ json  │    struct(a integer)     │  json   │
├───────┼──────┼───────────────────────┼───────┼──────────────────────────┼─────────┤
│     1 │ 1    │ [1, 2]                │ [1,2] │ {'a': 1}                 │ {"a":1} │
└───────┴──────┴───────────────────────┴───────┴──────────────────────────┴─────────┘

The second row in the table above indicates the DuckDB type of the value below it.

Exporting as JSON

DuckDB's COPY command can be used to export a table or the result of a query to a JSON file simply by using .json as the suffix, e.g.

COPY t to 'output.json';

Here's an informative typescript:

D COPY (select 1 as x, 2 as y) to 'output.json';
D .system cat output.json
{"x":1,"y":2}
D COPY (select unnest([1, 2]) as a) to 'output.json';
D .system cat output.json
{"a":1}
{"a":2}
D COPY (select {'a':1, 'b': [1, 2]::JSON} as json) to 'output.json';
D .system cat output.json
{"json":{"a":1,"b":[1,2]}}

The COPY command has various options for governing the export to JSON, e.g. the ARRAY option for producing a single JSON array.

JSON values can also be printed (and therefore sent to a file) directly, e.g. using the `.once` dot command.


Delphi

Translation of: C#
program JsonTest;

{$APPTYPE CONSOLE}

{$R *.res}

uses
  System.SysUtils,
  Json;

type
  TJsonObjectHelper = class helper for TJsonObject
  public
    class function Deserialize(data: string): TJsonObject; static;
    function Serialize: string;
  end;

{ TJsonObjectHelper }

class function TJsonObjectHelper.Deserialize(data: string): TJsonObject;
begin
  Result := TJSONObject.ParseJSONValue(data) as TJsonObject;
end;

function TJsonObjectHelper.Serialize: string;
begin
  Result := ToJson;
end;

var
  people, deserialized: TJsonObject;
  bar: TJsonArray;
  _json: string;

begin
  people := TJsonObject.Create();
  people.AddPair(TJsonPair.Create('1', 'John'));
  people.AddPair(TJsonPair.Create('2', 'Susan'));

  _json := people.Serialize;
  Writeln(_json);

  deserialized := TJSONObject.Deserialize(_json);
  Writeln(deserialized.Values['2'].Value);

  deserialized := TJSONObject.Deserialize('{"foo":1 , "bar":[10,"apples"]}');

  bar := deserialized.Values['bar'] as TJSONArray;
  Writeln(bar.Items[1].Value);

  deserialized.Free;
  people.Free;

  Readln;
end.
Output:
{"1":"John","2":"Susan"}
Susan
apples

EchoLisp

The json library allows to import/export basic JSON types (string ,numbers, arrays) and to translate EchoLisp objects (lists, dates, ..) from/to JSON objects and types. See reference documentation [[1]].

;; JSON standard types : strings, numbers, and arrays (vectors)
(export-json #(6 7 8 9))     "[6,7,8,9]"
(export-json #("alpha" "beta" "gamma"))     "["alpha","beta","gamma"]"

(json-import "[6,7,8,9]")     #( 6 7 8 9)
(json-import #<< ["alpha","beta","gamma"] >>#)     #( "alpha" "beta" "gamma")

;; EchoLisp types : dates, rational, complex, big int
(export-json 3/4)     "{"_instanceof":"Rational","a":3,"b":4}"
(json-import #<< {"_instanceof":"Rational","a":666,"b":42} >>#)     111/7

;; Symbols
(export-json 'Simon-Gallubert)     "{"_instanceof":"Symbol","name":"Simon-Gallubert"}"
(json-import #<< {"_instanceof":"Symbol","name":"Antoinette-de-Gabolde"} >>#)  
       Antoinette-de-Gabolde
    
;; Lists
(define my-list 
    (export-json '( 43 4 5 ( 6 7 ( 8 9 )))))
        "{"_instanceof":"List" ,"array":[43,4,5,{"_instanceof":"List",
    "array":[6,7,{"_instanceof":"List",
    "array":[8,9],"circular":false}],"circular":false}],"circular":false}"

(json-import my-list)     (43 4 5 (6 7 (8 9)))

;; Structures
(struct Person (name pict))     #struct:Person [name pict]
(define antoinette (Person "antoinette" "👰"))      # (antoinette 👰)

(export-json antoinette)     
    "{"_instanceof":"Struct", "struct":"Person","id":17,"fields":["antoinette","👰"]}"
(json-import 
    #<< {"_instanceof":"Struct","struct":"Person","id":18,"fields":["simon","🎩"]} >>#)  
	   # (simon 🎩)


EGL

Works with: EDT

Structures used both to construct and to parse JSON strings:

record familyMember
	person person;
	relationships relationship[]?;
end

record person
	firstName string;
	lastName string;
	age int;
end

record relationship
	relationshipType string;
	id int;
end

Construct JSON string:

people Person[]; // Array of people
		
people.appendElement(new Person { firstName = "Frederick", lastName = "Flintstone", age = 35} );
people.appendElement(new Person { firstName = "Wilma", lastName = "Flintstone", age = 34} );
people.appendElement(new Person { firstName = "Pebbles", lastName = "Flintstone", age = 2} );
people.appendElement(new Person { firstName = "Bernard", lastName = "Rubble", age = 32} );
people.appendElement(new Person { firstName = "Elizabeth", lastName = "Rubble", age = 29} );
people.appendElement(new Person { firstName = "Bam Bam", lastName = "Rubble", age = 2} );
	
family Dictionary; // A dictionary of family members using a uid as key
family["1"] = new FamilyMember{ person = people[1], relationships = [new Relationship{ relationshipType="spouse", id = 2 }, new Relationship{ relationshipType="child", id = 3}] };
family["2"] = new FamilyMember{ person = people[2], relationships = [new Relationship{ relationshipType="spouse", id = 1 }, new Relationship{ relationshipType="child", id = 3}] };
family["3"] = new FamilyMember{ person = people[3], relationships = [new Relationship{ relationshipType="mother", id = 2 }, new Relationship{ relationshipType="father", id = 1}] };
family["4"] = new FamilyMember{ person = people[4], relationships = [new Relationship{ relationshipType="spouse", id = 5 }, new Relationship{ relationshipType="child", id = 6}] };
family["5"] = new FamilyMember{ person = people[5], relationships = [new Relationship{ relationshipType="spouse", id = 4 }, new Relationship{ relationshipType="child", id = 6}] };
family["6"] = new FamilyMember{ person = people[6], relationships = [new Relationship{ relationshipType="mother", id = 5 }, new Relationship{ relationshipType="father", id = 4}] };
	
// Convert dictionary of family members to JSON string
jsonString string = jsonLib.convertToJSON(family);

// Show JSON string
SysLib.writeStdout(jsonString);
Raw Output:
{
"1":{"person":{"firstName":"Frederick","lastName":"Flintstone","age":35},"relationships":[{"relationshipType":"spouse","id":2},{"relationshipType":"child","id":3}]},
"2":{"person":{"firstName":"Wilma","lastName":"Flintstone","age":34},"relationships":[{"relationshipType":"spouse","id":1},{"relationshipType":"child","id":3}]},
"3":{"person":{"firstName":"Pebbles","lastName":"Flintstone","age":2},"relationships":[{"relationshipType":"mother","id":2},{"relationshipType":"father","id":1}]},
"4":{"person":{"firstName":"Bernard","lastName":"Rubble","age":32},"relationships":[{"relationshipType":"spouse","id":5},{"relationshipType":"child","id":6}]},
"5":{"person":{"firstName":"Elizabeth","lastName":"Rubble","age":29},"relationships":[{"relationshipType":"spouse","id":4},{"relationshipType":"child","id":6}]},
"6":{"person":{"firstName":"Bam Bam","lastName":"Rubble","age":2},"relationships":[{"relationshipType":"mother","id":5},{"relationshipType":"father","id":4}]}
}
Validated Output (partial):
{
    "1": {
        "person": {
            "firstName": "Frederick",
            "lastName": "Flintstone",
            "age": 35
        },
        "relationships": [
            {
                "relationshipType": "spouse",
                "id": 2
            },
            {
                "relationshipType": "child",
                "id": 3
            }
        ]
    },
...
}

Parse JSON:

// Convert JSON string into dictionary of family members
family Dictionary;
jsonLib.convertFromJSON(jsonString, family);				

// List family members and their relationships
familyMember FamilyMember;
relation FamilyMember;
				
keys string[] = family.getKeys();
for(i int from 1 to keys.getSize())
			
	SysLib.writeStdout("----------------------------------------------------");

	familyMember = family[keys[i]];
			
	SysLib.writeStdout(familyMember.person.lastName + ", " + familyMember.person.firstName + " - " + familyMember.person.age);
			
	for(j int from 1 to familyMember.relationships.getSize())
		id string = familyMember.relationships[j].id;
		relation = family[id];
		SysLib.writeStdout(familyMember.relationships[j].relationshipType + ":  " +
		relation.person.lastName + ", " + relation.person.firstName);
	end

end
Output:
Flintstone, Frederick - 35
spouse: Flintstone, Wilma
child: Flintstone, Pebbles
----------------------------------------------------
Flintstone, Wilma - 34
spouse: Flintstone, Frederick
child: Flintstone, Pebbles
----------------------------------------------------
Flintstone, Pebbles - 2
mother: Flintstone, Wilma
father: Flintstone, Frederick
----------------------------------------------------
Rubble, Bernard - 32
spouse: Rubble, Elizabeth
child: Rubble, Bam Bam
----------------------------------------------------
Rubble, Elizabeth - 29
spouse: Rubble, Bernard
child: Rubble, Bam Bam
----------------------------------------------------
Rubble, Bam Bam - 2
mother: Rubble, Elizabeth
father: Rubble, Bernard

The examples above illustrate that it is possible to perform manual conversions to and from a JSON format but in EGL it is much more common for the programming language to handle these conversion automatically as a natural part of service invocations. Below is an example of a function definition designed to consume the Google Maps Geocoding service. The results are returned in a JSON format and parsed by EGL into records that mirror the structure of the reply.

// Service function definition
function geocode(address String) returns (GoogleGeocoding) {
    @Resource{uri = "binding:GoogleGeocodingBinding"},
    @Rest{method = _GET, uriTemplate = "/json?address={address}&sensor=false",
    requestFormat = None, responseFormat = JSON}
}

// Invoke service function
call geocode("111 Maple Street, Somewhere, CO") returning to callback;

function callBack(result GoogleGeocoding in)
    SysLib.writeStdout(result.status);
    SysLib.writeStdout(result.results[1].geometry.location.lat);
    SysLib.writeStdout(result.results[1].geometry.location.lng);
end

Elena

ELENA 4.x

import extensions;
import extensions'dynamic;
 
public program()
{
    var json := "{ ""foo"": 1, ""bar"": [10, ""apples""] }";
 
    var o := json.fromJson();
 
    console.printLine("json.foo=",o.foo);
    console.printLine("json.bar=",o.bar)
}
Output:
json.foo=1
json.bar=10,apples

Emacs Lisp

Library: Jansson

Emacs 27.1 offers native JSON processing using the Jansson library.

(require 'cl-lib)

(cl-assert (fboundp 'json-parse-string))
(cl-assert (fboundp 'json-serialize))

(defvar example "{\"foo\": \"bar\", \"baz\": [1, 2, 3]}")
(defvar example-object '((foo . "bar") (baz . [1 2 3])))

;; decoding
(json-parse-string example) ;=> #s(hash-table [...]))
;; using json.el-style options
(json-parse-string example :object-type 'alist :null-object nil :false-object :json-false)
;;=> ((foo . "bar") (baz . [1 2 3]))
;; using plists for objects
(json-parse-string example :object-type 'plist) ;=> (:foo "bar" :baz [1 2 3])

;; encoding
(json-serialize example-object) ;=> "{\"foo\":\"bar\",\"baz\":[1,2,3]}"
Library: json.el
(require 'json)

(defvar example "{\"foo\": \"bar\", \"baz\": [1, 2, 3]}")
(defvar example-object '((foo . "bar") (baz . [1 2 3])))

;; decoding
(json-read-from-string example) ;=> ((foo . "bar") (baz . [1 2 3]))
;; using plists for objects
(let ((json-object-type 'plist))
  (json-read-from-string)) ;=> (:foo "bar" :baz [1 2 3])
;; using hash tables for objects
(let ((json-object-type 'hash-table))
  (json-read-from-string example)) ;=> #<hash-table equal 2/65 0x1563c39805fb>

;; encoding
(json-encode example-object) ;=> "{\"foo\":\"bar\",\"baz\":[1,2,3]}"
;; pretty-printing
(let ((json-encoding-pretty-print t))
  (message "%s" (json-encode example-object)))
Output:
{
  "foo": "bar",
  "baz": [
    1,
    2,
    3
  ]
}

Erlang

Use the JSON library for Erlang (mochijson) from mochiweb. The JSON code is extracted from wikipedia

-module(json).
-export([main/0]).

main() ->
	JSON = 
		"{
		    \"firstName\": \"John\",
		    \"lastName\": \"Smith\",
		    \"age\": 25,
		    \"address\": {
		        \"streetAddress\": \"21 2nd Street\",
		        \"city\": \"New York\",
		        \"state\": \"NY\",
		        \"postalCode\": \"10021\"
		    },
		    \"phoneNumber\": [
		        {
		            \"type\": \"home\",
		            \"number\": \"212 555-1234\"
		        },
		        {
		            \"type\": \"fax\",
		            \"number\": \"646 555-4567\"
		        }
		    ]
		}",
	Erlang = 
		{struct,
			[{"firstName","John"},
	         {"lastName","Smith"},
	         {"age",25},
	         {"address",
	          {struct,[{"streetAddress","21 2nd Street"},
	                   {"city","New York"},
	                   {"state","NY"},
	                   {"postalCode","10021"}]}},
	         {"phoneNumber",
	          {array,[{struct,[{"type","home"},{"number","212 555-1234"}]},
	                  {struct,[{"type","fax"},{"number","646 555-4567"}]}]}}]},
	io:format("JSON -> Erlang\n~p\n",[mochijson:decode(JSON)]),
	io:format("Erlang -> JSON\n~s\n",[mochijson:encode(Erlang)]).
Output:
JSON -> Erlang
{struct,[{"firstName","John"},
         {"lastName","Smith"},
         {"age",25},
         {"address",
          {struct,[{"streetAddress","21 2nd Street"},
                   {"city","New York"},
                   {"state","NY"},
                   {"postalCode","10021"}]}},
         {"phoneNumber",
          {array,[{struct,[{"type","home"},{"number","212 555-1234"}]},
                  {struct,[{"type","fax"},{"number","646 555-4567"}]}]}}]}
Erlang -> JSON
{"firstName":"John","lastName":"Smith","age":25,"address":{"streetAddress":"21 2nd Street","city":"New York","state":"NY","postalCode":"10021"},"phoneNumber":[{"type":"home","number":"212 555-1234"},{"type":"fax","number":"646 555-4567"}]}

F#

There are several ways:

1. Using Json.Net

open Newtonsoft.Json
type Person = {ID: int; Name:string}
let xs = [{ID = 1; Name = "First"} ; { ID = 2; Name = "Second"}]

let json = JsonConvert.SerializeObject(xs)
json |> printfn "%s"

let xs1 = JsonConvert.DeserializeObject<Person list>(json)
xs1 |> List.iter(fun x -> printfn "%i  %s" x.ID x.Name)

Print:

[{"ID":1,"Name":"First"},{"ID":2,"Name":"Second"}]
1  First
2  Second

2. Using FSharp.Data

open FSharp.Data
open FSharp.Data.JsonExtensions

type Person = {ID: int; Name:string}
let xs = [{ID = 1; Name = "First"} ; { ID = 2; Name = "Second"}]

let infos = xs |> List.map(fun x -> JsonValue.Record([| "ID", JsonValue.Number(decimal x.ID); "Name", JsonValue.String(x.Name) |]))
            |> Array.ofList |> JsonValue.Array

infos |> printfn "%A"
match JsonValue.Parse(infos.ToString()) with
| JsonValue.Array(x) -> x |> Array.map(fun x -> {ID = System.Int32.Parse(string x?ID); Name = (string x?Name)})
| _ -> failwith "fail json"
|> Array.iter(fun x -> printfn "%i  %s" x.ID x.Name)

Print:

[
  {
    "ID": 1,
    "Name": "First"
  },
  {
    "ID": 2,
    "Name": "Second"
  }
]
1  "First"
2  "Second"

3. Alternative way of parsing: JsonProvider

open FSharp.Data
type Person = {ID: int; Name:string}
type People = JsonProvider<""" [{"ID":1,"Name":"First"},{"ID":2,"Name":"Second"}] """>

People.GetSamples()
|> Array.map(fun x -> {ID = x.Id; Name = x.Name} )
|> Array.iter(fun x -> printfn "%i  %s" x.ID x.Name)

Print:

1  First
2  Second

Factor

USING: json.writer json.reader ;

SYMBOL: foo

! Load a JSON string into a data structure
"[[\"foo\",1],[\"bar\",[10,\"apples\"]]]" json> foo set


! Create a new data structure and serialize into JSON
{ { "blue" { "ocean" "water" } } >json

Fantom

using util

class Json
{
  public static Void main ()
  {
    Str input := """{"blue": [1, 2], "ocean": "water"}"""
    Map jsonObj := JsonInStream(input.in).readJson

    echo ("Value for 'blue' is: " + jsonObj["blue"])
    jsonObj["ocean"] = ["water":["cold", "blue"]]
    Map ocean := jsonObj["ocean"]
    echo ("Value for 'ocean/water' is: " + ocean["water"])
    output := JsonOutStream(Env.cur.out)
    output.writeJson(jsonObj)
    echo ()
  }
}
Output:
Value for 'blue' is: [1, 2]
Value for 'ocean/water' is: [cold, blue]
{"blue":[1,2],
"ocean":{"water":["cold","blue"]}}

Forth

Forth has no built-in high level data structures such as arrays, strings, and objects. Nor is there a standardized Forth library to build and use such structures. But there are many different Forth libraries, written by individuals, available though finding them is not always easy and the syntax and behavior is different for each. The library code used below can be found here:

https://github.com/DouglasBHoffman/FMS2

Load a JSON Forth string into a json data structure and print it.

s\" {\"value\":10,\"flag\":false,\"array\":[1,2,3]}" $>json value j 
j :.    

Prints a JSON as follows: { "value": 10, "flag": false, "array": [ 1, 2, 3] }

Create a new Json data structure (here a Json pair), and insert it into the previous Json object. Print it again.

j{ "another":"esc\"ap\u20ACed" }j j :add j :. 

Prints the modified JSON:

{ "value": 10, "flag": false, "array": [ 1, 2, 3], "another": "esc"ap€ed" }


Serialize the JSON object into a string. Print the string.

j json>$ :.

{"value":10,"flag":false,"array":[1,2,3],"another":"esc\"ap\u20ACed"}

Fortran

Using json-fortran library. Creating the json example file / reading a JSON string.

{
  "PhoneBook": [
    {
      "name": "Adam",
      "phone": "0000001"
    },
    {
      "name": "Eve",
      "phone": "0000002"
    },
    {
      "name": "Julia",
      "phone": "6666666"
    }
  ]
}
program json_fortran
   use json_module
   implicit none

   type phonebook_type
      character(len=:),allocatable :: name
      character(len=:),allocatable :: phone
   end type phonebook_type

   type(phonebook_type), dimension(3) :: PhoneBook
   integer :: i
   type(json_value),pointer :: json_phonebook,p,e
   type(json_file) :: json

   PhoneBook(1) % name = 'Adam'
   PhoneBook(2) % name = 'Eve'
   PhoneBook(3) % name = 'Julia'
   PhoneBook(1) % phone = '0000001'
   PhoneBook(2) % phone = '0000002'
   PhoneBook(3) % phone = '6666666'

   call json_initialize()

   !create the root structure:
   call json_create_object(json_phonebook,'')

   !create and populate the phonebook array:
   call json_create_array(p,'PhoneBook')
   do i=1,3
      call json_create_object(e,'')
      call json_add(e,'name',PhoneBook(i)%name)
      call json_add(e,'phone',PhoneBook(i)%phone)
      call json_add(p,e) !add this element to array
      nullify(e) !cleanup for next loop
   end do
   call json_add(json_phonebook,p) !add p to json_phonebook
   nullify(p) !no longer need this

   !write it to a file:
   call json_print(json_phonebook,'phonebook.json')

   ! read directly from a character string
   call json%load_from_string('{ "PhoneBook": [ { "name": "Adam", "phone": "0000001" },&
   { "name": "Eve", "phone": "0000002" }, { "name": "Julia", "phone": "6666666" } ]}')
   ! print it to the console
   call json%print_file()

end program json_fortran

FreeBASIC

Library: YAJL

FreeBASIC JSON Parser "JSON is simple, so the interface should also be simple" Written by Oz (alex DOT barry AT gmail DOT com) - April 22, 2010, Updated May 21, 2013

Sample JSON file:

{
    "menu": {      "id": "file",
            "string": "File:",
       "number": -3,
 "boolean1":true , "boolean2"     :false,"boolean3":true,
    "sentence" : "the rain in spain falls mainly on the plain.  This here \" is an escaped quote!",
           "null": null,
    "array" : [0,1,2,3]
            "Thumbnail": {
            "Url":    "http://www.example.com/image/481989943",
            "Height": 125,
            "Width":  "100"
        },
    }
}


#include "inc/fbJSON.bas"

Sub printNodeChildren(Byval n As fbJSON Ptr, Byval level As Integer)
End Sub

Dim test As fbJSON Ptr = fbJSON_ImportFile("test1.json")

If test = NULL Then
	Print "Unable to load json file/string!"
	End 1
End If

Print fbJSON_ExportString(test, 1)

fbJSON_Delete(test)

Sleep
Output:
{
        "menu": {
                        "id" : "file",
                        "string" : "File:",
                        "number" : -3,
                        "boolean1" : true,
                        "boolean2" : false,
                        "boolean3" : true,
                        "sentence" : "the rain in spain falls mainly on the plain.  This here " is an escaped quote!",
                        "null" : null,
                        "array": [              0,              1,              2,              3               ]
,
                        "Thumbnail": {
                                        "Url" : "http://www.example.com/image/481989943",
                                        "Height" : 125,
                                        "Width" : "100"
                }

        }

}

FunL

Since FunL map syntax is conforms to JSON, the built-in function eval() can be used to parse a JSON string. Built-in println() also produces JSON conformant output. This method only uses built-in functions but is comparatively slow.

println( eval('{ "foo": 1, "bar": [10, "apples"] }') )

Using module json gives better performance and also pretty prints the JSON output.

import json.*

DefaultJSONWriter.write( JSONReader({'ints', 'bigInts'}).fromString('{ "foo": 1, "bar": [10, "apples"] }') )
Output:
{"foo": 1, "bar": [10, "apples"]}
{
  "foo": 1,
  "bar": [
    10,
    "apples"
  ]
}



FutureBasic

FB has dedicated JSON functions making easy to serialize objects as JSON and to convert JSON to objects.

include "NSLog.incl"

local fn DoIt
  ErrorRef err = NULL
  
  CFStringRef jsonString = @"{ \"foo\": 1, \"bar\": [10, \"apples\"] }"
  CFDataRef      strData = fn StringData( jsonString, NSUTF8StringEncoding )
  CFTypeRef      jsonObj = fn JSONSerializationJSONObjectWithData( strData, NULL, @err )
  if err then NSLog( @"%@", fn ErrorLocalizedDescription( err ) )
  NSLog( @"%@\n", jsonObj )
  
  CfDictionaryRef    dict = @{ @"blue": @[@1, @2], @"ocean": @"water"}
  CFDataRef      jsonData = fn JSONSerializationDataWithJSONObject( dict, 0, @err )
  if err then NSLog( @"%@", fn ErrorLocalizedDescription( err ) )
  CFStringRef jsonString2 = fn StringWithData( jsonData, NSUTF8StringEncoding )
  NSLog( @"%@\n", jsonString2 )
end fn

fn DoIt

HandleEvents
Output:
{
    bar =     (
        10,
        apples
    );
    foo = 1;
}

{"blue":[1,2],"ocean":"water"}



Go

Example below shows simple correspondence between JSON objects and Go maps, and shows that you don't have to know anything about the structure of the JSON data to read it in.

package main

import "encoding/json"
import "fmt"

func main() {
    var data interface{}
    err := json.Unmarshal([]byte(`{"foo":1, "bar":[10, "apples"]}`), &data)
    if err == nil {
        fmt.Println(data)
    } else {
        fmt.Println(err)
    }

    sample := map[string]interface{}{
        "blue":  []interface{}{1, 2},
        "ocean": "water",
    }
    json_string, err := json.Marshal(sample)
    if err == nil {
        fmt.Println(string(json_string))
    } else {
        fmt.Println(err)
    }
}
Output:
map[bar:[10 apples] foo:1]
{"blue":[1,2],"ocean":"water"}

Example below demonstrates more typical case where you have an expected correspondence between JSON data and some composite data types in your program, and shows how the correspondence doesn't have to be exact.

package main

import "encoding/json"
import "fmt"

type Person struct {
    Name string   `json:"name"`
    Age  int      `json:"age,omitempty"`
    Addr *Address `json:"address,omitempty"`
    Ph   []string `json:"phone,omitempty"`
}

type Address struct {
    Street string `json:"street"`
    City   string `json:"city"`
    State  string `json:"state"`
    Zip    string `json:"zip"`
}

func main() {
    // compare with output, note apt field ignored, missing fields
    // have zero values.
    jData := []byte(`{
        "name": "Smith",
        "address": {
            "street": "21 2nd Street",
            "apt": "507",
            "city": "New York",
            "state": "NY",
            "zip": "10021"
        }
    }`)
    var p Person
    err := json.Unmarshal(jData, &p)
    if err != nil {
        fmt.Println(err)
    } else {
        fmt.Printf("%+v\n  %+v\n\n", p, p.Addr)
    }

    // compare with output, note empty fields omitted.
    pList := []Person{
        {
            Name: "Jones",
            Age:  21,
        },
        {
            Name: "Smith",
            Addr: &Address{"21 2nd Street", "New York", "NY", "10021"},
            Ph:   []string{"212 555-1234", "646 555-4567"},
        },
    }
    jData, err = json.MarshalIndent(pList, "", "    ")
    if err != nil {
        fmt.Println(err)
    } else {
        fmt.Println(string(jData))
    }
}
Output:
{Name:Smith Age:0 Addr:0xf840026080 Ph:[]}
  &{Street:21 2nd Street City:New York State:NY Zip:10021}

[
    {
        "name": "Jones",
        "age": 21
    },
    {
        "name": "Smith",
        "address": {
            "street": "21 2nd Street",
            "city": "New York",
            "state": "NY",
            "zip": "10021"
        },
        "phone": [
            "212 555-1234",
            "646 555-4567"
        ]
    }
]



Gosu

Gosu consumes JSON as a Dynamic type via this core API:

gw.lang.reflect.json.Json#fromJson( String json ) : javax.script.Bindings

As the signature of the method suggests, you pass in a JSON string and receive standard script Bindings in return. Bindings is basically a map mirroring the tree structure of the JSON object. Internally Gosu supports any Bindings instance as a Dynamic Expando object. Essentially this means you can directly cast any Bindings instance to Dynamic and treat it as an Expando.

The following JSON example illustrates this:

Sample Person JSON (from http://gosu-lang.github.io/data/person.json):

{
  "Name": "Dickson Yamada",
  "Age": 39,
  "Address": {
    "Number": 9604,
    "Street": "Donald Court",
    "City": "Golden Shores",
    "State": "FL"
  },
  "Hobby": [
    {
      "Category": "Sport",
      "Name": "Baseball"
    },
    {
      "Category": "Recreation",
      "Name": "Hiking"
    }
  ]
}

And the dynamic Gosu code to access it:

var personUrl = new URL( "http://gosu-lang.github.io/data/person.json" )
var person: Dynamic = personUrl.JsonContent
print( person.Name )

Notice the JsonContent property on URL:

personUrl.JsonContent

This is a convenient enhancement property Gosu provides for Java’s URL class. It does all the work to get the JSON text and calls the new Json#fromJson() method for you. It also declares the Dynamic type for you as its return type, so the declared Dynamic type on the person var is unnecessary; it’s there to clearly demonstrate that the person var is indeed Dynamic.

As you can see we can access the Name property from the JSON object from the person var. This is all well and good, but falls short of our desired level of JSON support. Gosu being a static language, we really want that Name reference to be statically verified as well as code-completed in the IDE.

Here’s how we make the previous example work statically:

print( person.toStructure( "Person", false ) )

Gosu enhances Bindings with the method, toStructure( name: String, mutable: boolean ). Note the resulting structure is optionally mutable via the mutable argument. This method generates the complete nesting of types plus convenient factory methods:

structure Person {
  static function fromJson( jsonText: String ): Person {
    return gw.lang.reflect.json.Json.fromJson( jsonText ) as Person
  }
  static function fromJsonUrl( url: String ): Person {
    return new java.net.URL( url ).JsonContent
  }
  static function fromJsonUrl( url: java.net.URL ): Person {
    return url.JsonContent
  }
  static function fromJsonFile( file: java.io.File ) : Person {
    return fromJsonUrl( file.toURI().toURL() )
  }
  property get Address(): Address
  property get Hobby(): List<Hobby>
  property get Age(): Integer
  property get Name(): String
  structure Address {
    property get Number(): Integer
    property get State(): String
    property get Street(): String
    property get City(): String
  }
  structure Hobby {
    property get Category(): String
    property get Name(): String
  }
}

The Person structure reflects the JSON object’s implied type nesting. You can do whatever you like with this type. You can embed it as an inner structure in an existing class or make a top-level type. In any case all the types in the JSON object are uniquely preserved in one structure. Use it like this:

var person = Person.fromJsonUrl( personUrl )
print( person.Name )
print( person.Address.City )
print( person.Hobby[0].Name )

All statically verified and fully code completion friendly!

Other features:

print( person.toJson() ) // toJson() generates the Expando bindings to a JSON string
print( person.toGosu() ) // toGosu() generates any Bindings instance to a Gosu Expando initializer string
print( person.toXml() ) // toXml() generates any Bindings instance to standard XML

And similar to JavaScript, you can directly evaluate a Gosu Expando initializer string:

var clone = eval( person.toGosu() )

Groovy

Solution requires Groovy 1.8 or later.

Note that JsonSlurper accepts an extra comma such as [1,2,3,]. This is an extension to the [JSON grammar].

def slurper = new groovy.json.JsonSlurper()
def result = slurper.parseText('''
{
    "people":[
        {"name":{"family":"Flintstone","given":"Frederick"},"age":35,"relationships":{"wife":"people[1]","child":"people[4]"}},
        {"name":{"family":"Flintstone","given":"Wilma"},"age":32,"relationships":{"husband":"people[0]","child":"people[4]"}},
        {"name":{"family":"Rubble","given":"Barnard"},"age":30,"relationships":{"wife":"people[3]","child":"people[5]"}},
        {"name":{"family":"Rubble","given":"Elisabeth"},"age":32,"relationships":{"husband":"people[2]","child":"people[5]"}},
        {"name":{"family":"Flintstone","given":"Pebbles"},"age":1,"relationships":{"mother":"people[1]","father":"people[0]"}},
        {"name":{"family":"Rubble","given":"Bam-Bam"},"age":1,"relationships":{"mother":"people[3]","father":"people[2]"}},
    ]
}
''')

Test:

result.each { println it.key; it.value.each {person -> println person} }

assert result.people[0].name == [family:'Flintstone', given:'Frederick']
assert result.people[4].age == 1
assert result.people[2].relationships.wife == 'people[3]'
assert result.people[3].name == [family:'Rubble', given:'Elisabeth']
assert Eval.x(result, 'x.' + result.people[2].relationships.wife + '.name') == [family:'Rubble', given:'Elisabeth']
assert Eval.x(result, 'x.' + result.people[1].relationships.husband + '.name') == [family:'Flintstone', given:'Frederick']
Output:
people
[age:35, name:[given:Frederick, family:Flintstone], relationships:[child:people[4], wife:people[1]]]
[age:32, name:[given:Wilma, family:Flintstone], relationships:[child:people[4], husband:people[0]]]
[age:30, name:[given:Barnard, family:Rubble], relationships:[child:people[5], wife:people[3]]]
[age:32, name:[given:Elisabeth, family:Rubble], relationships:[child:people[5], husband:people[2]]]
[age:1, name:[given:Pebbles, family:Flintstone], relationships:[mother:people[1], father:people[0]]]
[age:1, name:[given:Bam-Bam, family:Rubble], relationships:[mother:people[3], father:people[2]]]

Halon

$data = json_decode(''{ "foo": 1, "bar": [10, "apples"] }'');

$sample = ["blue" => [1, 2], "ocean" => "water"];
$jsonstring = json_encode($sample, ["pretty_print" => true]);

Harbour

Parse JSON string into the arr variable:

LOCAL arr
hb_jsonDecode( '[101,[26,"Test1"],18,false]', @arr )
Output:

the JSON representation of an array arr

LOCAL arr := { 101, { 18, "Test1" }, 18, .F. }
? hb_jsonEncode( arr )
// The output is:
// [101,[26,"Test1"],18,false]

Haskell

Uses the Aeson library from hackage (http://hackage.haskell.org/package/aeson).

{-# LANGUAGE OverloadedStrings #-}

import Data.Aeson
import Data.Attoparsec (parseOnly)
import Data.Text
import qualified Data.ByteString.Lazy.Char8 as B
import qualified Data.ByteString.Char8 as S

testdoc = object [
    "foo"   .= (1 :: Int),
    "bar"   .= ([1.3, 1.6, 1.9] :: [Double]),
    "baz"   .= ("some string" :: Text),
    "other" .= object [
        "yes" .= ("sir" :: Text)
        ]
    ]

main = do
    let out = encode testdoc
    B.putStrLn out
    case parseOnly json (S.concat $ B.toChunks out) of
        Left e -> error $ "strange error re-parsing json: " ++ (show e)
        Right v | v /= testdoc -> error "documents not equal!"
        Right v | otherwise    -> print v

An example using Aeson and TemplateHaskell. Note that it can handle the absence of keys.

{-# LANGUAGE TemplateHaskell, OverloadedStrings #-}
import Data.Aeson
import Data.Aeson.TH

data Person = Person { firstName :: String
                     , lastName  :: String
                     , age :: Maybe Int
                     } deriving (Show, Eq)

$(deriveJSON defaultOptions ''Person)

main = do
    let test1 = "{\"firstName\":\"Bob\", \"lastName\":\"Smith\"}"
        test2 = "{\"firstName\":\"Miles\", \"lastName\":\"Davis\", \"age\": 45}"
    print (decode test1 :: Maybe Person)
    print (decode test2 :: Maybe Person)

An example using Aeson and GHC.Generics. Note that it can handle the absence of keys.

{-# LANGUAGE DeriveGeneric, OverloadedStrings #-}
import Data.Aeson
import GHC.Generics

data Person = Person { firstName :: String
                     , lastName  :: String
                     , age :: Maybe Int
                     } deriving (Show, Eq, Generic)

instance FromJSON Person
instance ToJSON Person

main = do
    let test1 = "{\"firstName\":\"Bob\", \"lastName\":\"Smith\"}"
        test2 = "{\"firstName\":\"Miles\", \"lastName\":\"Davis\", \"age\": 45}"
    print (decode test1 :: Maybe Person)
    print (decode test2 :: Maybe Person)

Hoon

:-  %say
|=  [^ [in=@tas ~] ~]
:-  %noun
  =+  obj=(need (poja in))                              :: try parse to json
  =+  typ=$:(name=@tas age=@ud)                         :: datastructure
  =+  spec=(ot name/so age/ni ~):jo                     :: parsing spec
  ?.  ?=([%o *] obj)                                    :: isnt an object?
    ~
  =+  ^=  o
    %.  %.  (spec obj)                                  :: parse with spec
      need                                              :: panic if failed
    ,typ                                                :: cast to type
  =.  age.o  +(age.o)                                   :: increment its age...
  %:  crip  %:  pojo                                    :: pretty-print result
    (jobe [%name s/name.o] [%age n/(crip <age.o>)] ~)   :: convert back to json

Usage: Put code in gen/json.hoon

> +json '{"name":"pojo", "age":4}'
'{"age":5,"name":"pojo"}'

Insitux

(var object       {:a 1 :b "Hello, world!" [1 2 3] :c}
     serialised   (to-json object)
     deserialised (from-json serialised))

(print "Object:       " object)
(print "Serialised:   " serialised)
(str "Deserialised: " deserialised)
Output:
Object:       {:a 1, :b "Hello, world!", [1 2 3] :c}
Serialised:   {":a":1,":b":"Hello, world!","[1 2 3]":":c"}
Deserialised: {":a" 1, ":b" "Hello, world!", "[1 2 3]" ":c"}

Observe that JSON is incapable of lossless serialisation and deserialisation of Insitux data structures, with the recommended approach rather being str and safe-eval.

J

Here is a minimal implementation based on an old email message.

NB.               character classes:
NB. 0: whitespace
NB. 1: "
NB. 2: \
NB. 3: [ ] , { } :
NB. 4: ordinary
classes=.3<. '"\[],{}:' (#@[ |&>: i.) a.
classes=.0 (I.a.e.' ',CRLF,TAB)} (]+4*0=])classes

words=:(0;(0 10#:10*".;._2]0 :0);classes)&;: NB. states:
  0.0  1.1  2.1  3.1  4.1  NB. 0 whitespace
  1.0  5.0  6.0  1.0  1.0  NB. 1 "
  4.0  4.0  4.0  4.0  4.0  NB. 2 \
  0.3  1.2  2.2  3.2  4.2  NB. 3 { : , } [ ]
  0.3  1.2  2.0  3.2  4.0  NB. 4 ordinary
  0.3  1.2  2.2  3.2  4.2  NB. 5 ""
  1.0  1.0  1.0  1.0  1.0  NB. 6 "\
)

tokens=. ;:'[ ] , { } :'
actions=: lBra`rBracket`comma`lBra`rBrace`colon`value

NB. action verbs argument conventions:
NB.   x -- boxed json word
NB.   y -- boxed json state stack
NB.   result -- new boxed json state stack
NB.
NB. json state stack is an list of boxes of incomplete lists
NB. (a single box for complete, syntactically valid json)
jsonParse=: 0 {:: (,a:) ,&.> [: actions@.(tokens&i.@[)/ [:|.a:,words

lBra=: a: ,~ ]
rBracket=: _2&}.@], [:< _2&{::@], _1&{@]
comma=: ]
rBrace=: _2&}.@], [:< _2&{::@](, <)  [:|: (2,~ [: -:@$ _1&{::@]) $ _1&{::@]
colon=: ]
value=: _1&}.@], [:< _1&{::@], jsonValue&.>@[

NB. hypothetically, jsonValue should strip double quotes
NB. interpret back slashes
NB. and recognize numbers
jsonValue=:]


require'strings'
jsonSer2=: jsonSer1@(<"_1^:(0>.#@$-1:))
jsonSer1=: ']' ,~ '[' }:@;@; (',' ,~ jsonSerialize)&.>
jsonSer0=: '"', jsonEsc@:":, '"'"_
jsonEsc=: rplc&(<;._1' \ \\ " \"')
jsonSerialize=:jsonSer0`jsonSer2@.(*@L.)

Example use:

   jsonParse'{ "blue": [1,2], "ocean": "water" }'
┌────────────────┐
│┌──────┬───────┐│
││"blue"│"ocean"││
│├──────┼───────┤│
││┌─┬─┐ │"water"││
│││1│2│ │       ││
││└─┴─┘ │       ││
│└──────┴───────┘│
└────────────────┘
└──────────────────────────────┘
   jsonSerialize jsonParse'{ "blue": [1,2], "ocean": "water" }'
[[["\"blue\"","\"ocean\""],[["1","2"],"\"water\""]]]

Note that these are not strict inverses of each other. These routines allow data to be extracted from json and packed into json format, but only in a minimalistic sense. No attempts are made to preserve the subtleties of type and structure which json can carry. This should be good enough for most applications which are required to deal with json but will not be adequate for ill behaved applications which exploit the typing mechanism to carry significant information.

Also, a different serializer will probably be necessary, if you are delivering json to legacy javascript. Nevertheless, these simplifications are probably appropriate for practical cases.

Java

This uses Gson, a library to convert JSON to Java objects and vice-versa.

import com.google.gson.Gson;

public class JsonExample {

	public static void main(String[] args) {
		Gson gson = new Gson();
		String json = "{ \"foo\": 1, \"bar\": [ \"10\", \"apples\"] }";
		
		MyJsonObject obj = gson.fromJson(json, MyJsonObject.class);
		
		System.out.println(obj.getFoo());

		for(String bar : obj.getBar()) {
			System.out.println(bar);
		}
		
		obj = new MyJsonObject(2, new String[] { "20", "oranges" });
		json = gson.toJson(obj);
		
		System.out.println(json);
	}
	
}

class MyJsonObject {
	
	private int foo;
	private String[] bar;
	
	public MyJsonObject(int foo, String[] bar) {
		this.foo = foo;
		this.bar = bar;
	}
	
	public int getFoo() {
		return foo;
	}
	
	public String[] getBar() {
		return bar;
	}
	
}

JavaScript

Requires JSON library, now present in all major browsers.

var data = JSON.parse('{ "foo": 1, "bar": [10, "apples"] }');

var sample = { "blue": [1,2], "ocean": "water" };
var json_string = JSON.stringify(sample);

JSON is called JavaScript Object Notation, but JSON differs form JavaScript object literal. cf. MDN/JSON

jq

JSON is jq's native data format, so nothing need be done to parse JSON input. For example, to "pretty print" a stream of JSON entities (including scalars), it would be sufficient to use the jq program:

 .

Here are the jq equivalents of the examples given in the section on Julia, assuming the file data.json holds the following JSON text:

{ "blue": [1,2], "ocean": "water" }

jq -c . data.json

produces:

{"blue":[1,2],"ocean":"water"}

jq tostring data.json

produces: "{\"blue\":[1,2],\"ocean\":\"water\"}"

Jsish

prompt$ jsish
Jsish interactive: see 'help [cmd]'
# var data = JSON.parse('{ "foo": 1, "bar": [10, "apples"] }');
variable
# data
{ bar:[ 10, "apples" ], foo:1 }

# var sample = { blue: [1,2], ocean: "water" };
variable
# sample
{ blue:[ 1, 2 ], ocean:"water" }

# puts(JSON.stringify(sample))
{ "blue":[ 1, 2 ], "ocean":"water" }

Julia

Works with: Julia version 0.6
# Pkg.add("JSON") ... an external library http://docs.julialang.org/en/latest/packages/packagelist/
using JSON

sample = Dict()
sample["blue"] = [1, 2]
sample["ocean"] = "water"

@show sample jsonstring = json(sample)
@show jsonobj = JSON.parse(jsonstring)

@assert jsonstring == "{\"ocean\":\"water\",\"blue\":[1,2]}"
@assert jsonobj == Dict("ocean" => "water", "blue" => [1, 2])
@assert typeof(jsonobj) == Dict{String, Any}

Kotlin

We use Kotlin JS here to obtain access to the JavaScript JSON object:

// version 1.2.21

data class JsonObject(val foo: Int, val bar: Array<String>)

data class JsonObject2(val ocean: String, val blue: Array<Int>)

fun main(args: Array<String>) {
    // JSON to object
    val data: JsonObject = JSON.parse("""{ "foo": 1, "bar": ["10", "apples"] }""")
    println(JSON.stringify(data))

    // object to JSON
    val data2 = JsonObject2("water", arrayOf(1, 2))
    println(JSON.stringify(data2))
}
Output:
{"foo":1,"bar":["10","apples"]}
{"ocean":"water","blue":[1,2]}

Lasso

// Javascript objects are represented by maps in Lasso
local(mymap = map(
	'success'	= true,
	'numeric'	= 11,
	'string'	= 'Eleven'
))

json_serialize(#mymap) // {"numeric": 11,"string": "Eleven","success": true}
'<br />'

// Javascript arrays are represented by arrays
local(opendays = array(
	'Monday',
	'Tuesday'
))

local(closeddays = array(
	'Wednesday',
	'Thursday',
	'Friday'
))

json_serialize(#opendays) // ["Monday", "Tuesday"]
'<br />'
json_serialize(#closeddays) // ["Wednesday", "Thursday", "Friday"]
'<br />'

#mymap -> insert('Open' = #opendays)
#mymap -> insert('Closed' = #closeddays)

local(myjson = json_serialize(#mymap))
#myjson // {"Closed": ["Wednesday", "Thursday", "Friday"],"numeric": 11,"Open": ["Monday", "Tuesday"],"string": "Eleven","success": true}
'<br />'

json_deserialize(#myjson) // map(Closed = array(Wednesday, Thursday, Friday), numeric = 11, Open = array(Monday, Tuesday), string = Eleven, success = true)

LFE

This example uses the third-party library "Jiffy".

Encoding

(: jiffy encode (list 1 2 3 '"apple" 'true 3.14))

The result from that can be made a little more legible with the following:

(: erlang binary_to_list
  (: jiffy encode (list 1 2 3 '"apple" 'true 3.14)))

Decoding

We can run the encoding example in reverse, and get back what we put in above with the following:

(: jiffy decode '"[1,2,3,[97,112,112,108,101],true,3.14]")

Here's a key-value example:

(: jiffy decode '"{\"foo\": [1, 2, 3]}")

Decoding to Patterns

We can also extract the key and value using Erlang patterns:

(let (((tuple (list (tuple key value)))
       (: jiffy decode '"{\"foo\": [1, 2, 3]}")))
  (: io format '"~p: ~p~n" (list key value)))

Lingo

Lingo has no native JSON support. A JSON library could of course be written in pure Lingo or as binary plugin ("Xtra").

But since Director - the only implementation of Lingo - also includes a SpiderMonkey JS engine (rather outdated and without native JSON object), we can implement a simple (unsafe) JSON encoder/decoder with the following two movie scripts:

JavaScript movie script "JSON":

//--------------------------------------
// Simple (unsafe) JSON decoder based on eval()
// @param {string} json
// @return {any}
//--------------------------------------
function json_decode (json){
  var o;
  eval('o='+json);
  return _json_decode_val(o);
}

function _json_decode_val (o){
  if (o==null) return undefined;
  switch(typeof(o)){
    case "object":
      if (o instanceof Array){
        var v = list();
        var cnt = o.length;
        for (i=0;i<cnt;i++){
          v.add(_json_decode_val(o[i]));
        }
      }else{
        var v = propList();
        for (var i in o){
          var p = i;
          v.setAProp(_json_decode_val(p), _json_decode_val(o[i]));
        }
      }
      return v;
    case "string":
      // optional support of special Lingo data type 'symbol' unknown to JavaScript
      if (o.substr(0,7)=='__sym__') return symbol(o.substr(7));
      return o;
    default:
      return o;
  }
}

function _json_escape_string (str){
  var hash={"\\":"\\\\", "/":"\\/", "\n":"\\n", "\t":"\\t", "\r":"\\r", "\b":"\\b", "\f":"\\f", "\"":"\\\""};
  var patt = "["; for (i in hash) patt+=i;patt+="]";
  return str.replace(RegExp(patt, "g"), function(c){
    return hash[c]
  });
}

Lingo movie script "JSON":

----------------------------------------
-- JSON encoder
-- Supported Lingo data types: VOID, integer, float, string, symbol, list, propList
-- @param {any} o
-- @return {string}
----------------------------------------
on json_encode (o)
  case ilk(o) of
    #void:
      return "null"
    #integer, #float:
      return string(o)
    #string:
      return QUOTE & _json_escape_string(o) & QUOTE
    #list:
      res = []
      repeat with v in o
        res.add(json_encode(v))
      end repeat
      return "[" & _cimplode(res) & "]"
    #propList:
      res = []
      cnt = count(o)
      repeat with i = 1 to cnt
        p = o.getPropAt(i)
        v = o[i]
        res.add( json_encode(p)&":"&json_encode(v) )
      end repeat
      return "{" & _cimplode(res) & "}"
    #symbol:
      -- optional support of special Lingo data type 'symbol' unknown to JavaScript
      return QUOTE &"__sym__"&_json_escape_string(string(o)) & QUOTE
    otherwise:
      put "ERROR: unsupported data type"
  end case
end

----------------------------------------
-- Implodes list into comma-separated string
-- @param {list} l
-- @return {string}
----------------------------------------
on _cimplode (l)
  str=""
  repeat with i=1 to l.count
    put l[i]&"," after str
  end repeat
  delete the last char of str
  return str
end

Usage:

data_org = [\
  42,\
  3.14159,\
  [2, 4, #fooBar, "apples", "bananas", "cherries" ],\
  ["foo": 1, #bar: VOID, "Hello": "world!"],\
  VOID\
]

json_str = json_encode(data_org) -- valid according to JSONLint

data_decoded = json_decode(json_str)

put data_org
-- [42, 3.1416, [2, 4, #fooBar, "apples", "bananas", "cherries"], ["foo": 1, #bar: <Void>, "Hello": "world!"], <Void>]
put data_decoded
-- [42, 3.1416, [2, 4, #fooBar, "apples", "bananas", "cherries"], ["foo": 1, #bar: <Void>, "Hello": "world!"], <Void>]

Lua

Using the luajson library:

local json = require("json")

local json_data = [=[[
    42,
    3.14159,
    [ 2, 4, 8, 16, 32, 64, "apples", "bananas", "cherries" ],
    { "H": 1, "He": 2, "X": null, "Li": 3 },
    null,
    true,
    false
]]=]

print("Original JSON: " .. json_data)
local data = json.decode(json_data)
json.util.printValue(data, 'Lua')
print("JSON re-encoded: " .. json.encode(data))

local data = {
    42,
    3.14159,
    {
        2, 4, 8, 16, 32, 64,
        "apples",
        "bananas",
        "cherries"
    },
    {
        H = 1,
        He = 2,
        X = json.util.null(),
        Li = 3
    },
    json.util.null(),
    true,
    false
}

print("JSON from new Lua data: " .. json.encode(data))

Since in Lua, a variable or table entry with nil is treated as the same as an undefined variable or non-existing table entry, a null value in JSON is decoded to a special function value, which ensures that it can be re-encoded properly to null again. To manually insert a null value in the JSON output, use the json.util.null function.

Output:
   Original JSON: [
       42,
       3.14159,
       [ 2, 4, 8, 16, 32, 64, "apples", "bananas", "cherries" ],
       { "H": 1, "He": 2, "X": null, "Li": 3 },
       null,
       true,
       false
   ]
   Lua= {
    1=42
    2=3.14159
    3= {
     1=2
     2=4
     3=8
     4=16
     5=32
     6=64
     7=apples
     8=bananas
     9=cherries
    4= {
     Li=3
     He=2
     H=1
     X=function: 0x8f6f00
    5=function: 0x8f6f00
    6=true
    7=false
   JSON re-encoded: [42,3.14159,[2,4,8,16,32,64,"apples","bananas","cherries"],{"Li":3,"He":2,"H":1,"X":null},null,true,false]
   JSON from new Lua data: [42,3.14159,[2,4,8,16,32,64,"apples","bananas","cherries"],{"Li":3,"He":2,"H":1,"X":null},null,true,false]

M2000 Interpreter

We use a class written in M2000 for Json M2000 Interpreter Json Class in a module LIB1

MODULE A {
      \\ Process data in json format

      \\ We can load from external file with Inline "libName"
      \\ or multiple files Inline "file1" && "file2"
      \\ but here we have the library in a module
      Inline Code Lib1
      \\ So now we make a Parser object (a group type in M2000)
      Parser=ParserClass()
      \\ We can display any function, module that is public and known list
      Modules ?
      \\ And this are all known variables (or and objects)
      List !
      Document json$
      \\ We can load from file
      \\ Load.Doc json$, "alfa.json"
      json$={{
            "alfa":-0.11221e+12,
            "array" : [
                  -0.67,
                  "alfa1",
                  [
                        10,
                        20
                  ],
                  "beta1",
                  1.21e12,
                  21.12145,
                  "ok"
            ],
            "delta": false, "epsilon" : true, "Null Value" : null
      }}
      Save.Doc json$, "json2.json"    \\ by default in Utf-8 with BOM
      \\ just show multiline text
      \\ Report display lines and stop after 3/4 of console height lines
      \\ just press a key or click mouse button
      Report json$
      \\ so now we get text to a new object
      alfa=Parser.Eval(json$)
      \\ check it
      Print Type$(alfa) ' it is a group
      Print "alfa.type$=";alfa.type$ \\ this is a read only property

      Report "as one line"
      Report Parser.Ser$(alfa, 0)

      Report "as multiline"
      Report Parser.Ser$(alfa, 1)

      Print "Using Print"
      Print Parser.ReadAnyString$(alfa)

      Print "Value for alfa, id alfa"
      Print Parser.ReadAnyString$(alfa,"alfa")
      Report "as multiline"
      Report Parser.Ser$(Parser.Eval(Parser.ReadAnyString$(alfa,"array", 2)), 1)
      \\ We get a copy of an array as a Group (a group which return an array)
      Alfa3=Parser.Eval(Parser.ReadAnyString$(alfa,"array", 2))
      \\ First value is for actual object, second value is a readonly property of this object
      Print type$(Alfa3), Alfa3.type$
      Dim B()
      \\ Now Alfa3 run Value part and pass a pointer of array
      \\  B() is an array and here take a pointer to Alfa3 array (as value of Alfa3)
      B()=Alfa3
      \\ each() make an iterator for B()
      N=each(B())
      While N {
            \\ Using B() we get values always. but if we have "object" or "array" then Print prints items **
            Print B(N^)
      }
      \\ Print show here nothing because if value is object then "print" just leave a column and continue to next one
      Print B()
      \\ we have to use Group() to get group not value of group (if any).
      \\ Group() works for "named" group, not for stored in an array or an inventory or a stack
      Print Parser.StringValue$(Group(Alfa3), 0)
      Print Parser.StringValue$(Group(Alfa3), 1)
      \\ Now we want to pass a new value
      \\ Interpreter want to match type of expression from left side to right side
      \\ Because Parser.StringValue$ is actual a Group (As property),
      \\ we have a second linked name:  Parser.StringValue
      \\ we have to use Parser.StringValue()
      \\ and all values must be groups, as those provided by Parser
      Parser.StringValue(Group(Alfa3), 1)=Parser.Numeric(1234)
      Print Parser.StringValue$(Group(Alfa3), 1)
      Print Parser.StringValue$(Group(Alfa), "array", 2, 0)
      \\ we have to use Parser.StringValue$()
      Parser.StringValue$(Group(Alfa), "array", 2, 0)=Parser.JString$("Changed to String")
      Print Parser.StringValue$(Group(Alfa), "array", 2,0)
      Try ok {
            Print Parser.StringValue$(Group(Alfa), "array", 2)
      }
      If Error or not ok Then Print Error$
      Parser.StringValue.Add = True
      Parser.StringValue$(Group(Alfa), "array", 2, 10)=Parser.JString$("Changed to String 2")
      Parser.StringValue(Group(Alfa), "Last value")=Parser.Boolean(true)
      Report "as multiline"
      Report Parser.Ser$(alfa3, 1)
      Report Parser.Ser$(alfa, 1)
      Parser.StringValue.Add = False
      Parser.StringValue.Del = True
      Parser.StringValue(Group(Alfa), "array", 0)=Parser.Null()
      Parser.StringValue(Group(Alfa), "delta")=Parser.Null()
      Parser.StringValue.Del = False
      For Parser {
            .StringValue(Group(Alfa), "array", 1,5)=.Arr((.Numeric(10), .Jstring$("ok 20"), .Boolean(true)))
      }
      Report Parser.Ser$(alfa, 1)

}
// call A
A

Maple

> JSON:-ParseString("[{\"tree\": \"maple\", \"count\": 21}]");
       [table(["tree" = "maple", "count" = 21])]
> JSON:-ToString( [table(["tree" = "maple", "count" = 21])] );
       "[{\"count\": 21, \"tree\": \"maple\"}]"

Mathematica /Wolfram Language

data = ImportString["{ \"foo\": 1, \"bar\": [10, \"apples\"] }","JSON"]
ExportString[data, "JSON"]

MATLAB / Octave

>> jsondecode('{ "foo": 1, "bar": [10, "apples"] }')
ans = 
  struct with fields:

    foo: 1
    bar: {2×1 cell}
>> jsonencode(ans)
ans =
{"foo":1,"bar":[10,"apples"]}

The toolbox JSONlab is doing a nice job to read (loadjson.m) and write (savejson.m) data in JSON format.

NetRexx

json.org Library

This uses a library provided by json.org to serialize/deserialize JSON objects.

/* NetRexx */
options replace format comments java crossref symbols nobinary

import java.util.List
import org.json.JSONObject
import org.json.JSONArray
import org.json.JSONTokener
import org.json.JSONException

/**
 * Using library from json.org 
 *
 * @see http://www.json.org/java/index.html
 */
class RJson01 public

  properties private constant
    JSON_DWARFS = '' -
      '{\n' -
      '  "F1937_1" : {\n' -
      '    "title"  : "Snow White and the Seven Dwarfs",\n' -
      '    "year"   : 1937,\n' -
      '    "medium" : "film",\n' -
      '    "dwarfs" : [ "Grumpy", "Happy", "Sleepy", "Bashful", "Sneezy", "Dopey", "Doc" ]\n' -
      '  },\n' -
      '  "F2012_1" : {\n' -
      '    "title"  : "Mirror, Mirror",\n' -
      '    "year"   : 2012,\n' -
      '    "medium" : "film",\n' -
      '    "dwarfs" : [ "Grimm", "Butcher", "Wolf", "Napoleon", "Half Pint", "Grub", "Chuckles" ]\n' -
      '  },\n' -
      '}'

      /**
       * A bean that looks like the following JSON
       * <pre>
       * {
       *   "F2012_2" : {
       *     "title"  : "Snow White & the Huntsman",
       *     "year"   : 2012, 
       *     "medium" : "film",
       *     "dwarfs" : [ "Beith", "Quert", "Muir", "Coll", "Duir", "Gus", "Gort", "Nion" ]
       *   }
       * }
       * </pre>
       */
      SAMPLE_BEAN = DwarfBean( -
        "F2012_2", -
        "Snow White & the Huntsman", -
        Long(2012), -
        "film", -
        Arrays.asList([String "Beith", "Quert", "Muir", "Coll", "Duir", "Gus", "Gort", "Nion"]) -
        )

  method main(args = String[]) public static
    say json2bean(JSON_DWARFS)
    say
    say bean2json(SAMPLE_BEAN)
    say
    return

method json2bean(dwarfs) public static returns List
    say "Make beans from this JSON string:"
    say dwarfs
    jsonBeans = ArrayList()
    do
      jd = JSONObject(JSONTokener(dwarfs))
      ns = JSONObject.getNames(jd)
      name = String
      loop name over ns
        dwarves = ArrayList()
        jn      = jd.getJSONObject(name)
        title   = jn.getString('title')
        year    = Long(jn.getLong('year'))
        medium  = jn.getString('medium')
        dwa     = jn.getJSONArray('dwarfs')
        loop di = 0 to dwa.length() - 1
          dwarves.add(dwa.getString(di))
          end di
        jb = DwarfBean(name, title, year, medium, dwarves)
        jsonBeans.add(jb.toString())
        end name
    catch ex = JSONException
      ex.printStackTrace()
    end
  return jsonBeans

method bean2json(sb = DwarfBean) public static returns String
  say "Make JSONObject from this bean:"
  say sb
  jsonString = String
  do
    jd = JSONObject(sb)
    jo = JSONObject()
    jo = jo.put(sb.keyGet(), jd)
    jsonString = jo.toString(2)
  catch ex = JSONException
    ex.printStackTrace()
  end
  return jsonString

-- =============================================================================
class RJson01.DwarfBean public binary
  properties private
    key    = String -- not part of bean
  properties indirect
    title  = String
    year   = Long
    medium = String
    dwarfs = List

  method DwarfBean(key_ = String null, title_ = String null, year_ = Long null, medium_ = String null, dwarfs_ = List null) public
    keyPut(key_)
    setTitle(title_)
    setYear(year_)
    setMedium(medium_)
    setDwarfs(dwarfs_)
    return

  method keyPut(key_ = String) public
    key = key_
    return

  method keyGet() returns String
    return key

  method toString public returns String
    ts = StringBuilder()
    ts.append(String.format("%s@%08x ", [Object this.getClass().getSimpleName(), Integer(hashCode())]))
    ts.append('[')
    ts.append('key='String.valueOf(keyGet())', ')
    ts.append('title='String.valueOf(getTitle())', ')
    ts.append('year='String.valueOf(getYear())', ')
    ts.append('medium='String.valueOf(getMedium())', ')
    ts.append('dwarfs='String.valueOf(getDwarfs()))
    ts.append(']')
    return ts.toString()
Output:
Make beans from this JSON string:
 {
   "F1937_1" : {
     "title"  : "Snow White and the Seven Dwarfs",
     "year"   : 1937,
     "medium" : "film",
     "dwarfs" : [ "Grumpy", "Happy", "Sleepy", "Bashful", "Sneezy", "Dopey", "Doc" ]
   },
   "F2012_1" : {
     "title"  : "Mirror, Mirror",
     "year"   : 2012,
     "medium" : "film",
     "dwarfs" : [ "Grimm", "Butcher", "Wolf", "Napoleon", "Half Pint", "Grub", "Chuckles" ]
   },
 }
[DwarfBean@07377711 [key=F2012_1, title=Mirror, Mirror, year=2012, medium=film, dwarfs=[Grimm, Butcher, Wolf, Napoleon, Half Pint, Grub, Chuckles]], DwarfBean@19f16e6e [key=F1937_1, title=Snow White and the Seven Dwarfs, year=1937, medium=film, dwarfs=[Grumpy, Happy, Sleepy, Bashful, Sneezy, Dopey, Doc]]]

Make JSONObject from this bean:
DwarfBean@39890510 [key=F2012_2, title=Snow White & the Huntsman, year=2012, medium=film, dwarfs=[Beith, Quert, Muir, Coll, Duir, Gus, Gort, Nion]]
{"F2012_2": {
  "title": "Snow White & the Huntsman",
  "dwarfs": [
    "Beith",
    "Quert",
    "Muir",
    "Coll",
    "Duir",
    "Gus",
    "Gort",
    "Nion"
  ],
  "year": 2012,
  "medium": "film"
}}

Google gson Library

This uses Gson, a library to convert JSON to Java objects and vice-versa.

/* NetRexx */
options replace format comments java crossref symbols nobinary

import com.google.gson.
import java.util.List

/**
 * Using google-gson library
 *
 * @see https://code.google.com/p/google-gson/
 */
class RJson02 public

  properties private constant
    JSON_DWARFS = '' -
      '{\n' -
      '  "title" : "Snow White and the Seven Dwarfs",\n' -
      '  "year"  : 1937,\n' -
      '  "medium": "film",\n' -
      '  "dwarfs": [ "Grumpy", "Happy", "Sleepy", "Bashful", "Sneezy", "Dopey", "Doc" ]\n' -
      '}'

      /**
       * A bean that looks like the following JSON
       * <pre>
       * {
       *   "title"  : "Snow White & the Huntsman",
       *   "year"   : 2012, 
       *   "medium" : "film",
       *   "dwarfs" : [ "Beith", "Quert", "Muir", "Coll", "Duir", "Gus", "Gort", "Nion" ]
       * }
       * </pre>
       */
      SAMPLE_BEAN = RJSON02.DwarfBean( -
        /*"F2012_2",*/ -
        "Snow White and the Huntsman", -
        Long(2012), -
        "film", -
        Arrays.asList([String "Beith", "Quert", "Muir", "Coll", "Duir", "Gus", "Gort", "Nion"]) -
        )

  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  method main(args = String[]) public static
    gsonObj = GsonBuilder().setPrettyPrinting().create()
    jsonBean = RJson02.DwarfBean gsonObj.fromJson(JSON_DWARFS, RJson02.DwarfBean.class)
    say JSON_DWARFS
    say jsonBean.toString()
    say

    json = gsonObj.toJson(SAMPLE_BEAN);
    say json
    say SAMPLE_BEAN.toString()
    say

    return

-- =============================================================================
class RJson02.DwarfBean public binary
  properties indirect
    title  = String
    year   = Long
    medium = String
    dwarfs = List

  method DwarfBean(title_ = String null, year_ = Long null, medium_ = String null, dwarfs_ = List null) public
    setTitle(title_)
    setYear(year_)
    setMedium(medium_)
    setDwarfs(dwarfs_)
    return

  method toString public returns String
    ts = StringBuilder()
    ts.append(String.format("%s@%08x ", [Object this.getClass().getSimpleName(), Integer(hashCode())]))
    ts.append('[')
    ts.append('title='String.valueOf(getTitle())', ')
    ts.append('year='String.valueOf(getYear())', ')
    ts.append('medium='String.valueOf(getMedium())', ')
    ts.append('dwarfs='String.valueOf(getDwarfs()))
    ts.append(']')
    return ts.toString()
Output:
 {
   "title" : "Snow White and the Seven Dwarfs",
   "year"  : 1937,
   "medium": "film",
   "dwarfs": [ "Grumpy", "Happy", "Sleepy", "Bashful", "Sneezy", "Dopey", "Doc" ]
 }
DwarfBean@63f5e4b6 [title=Snow White and the Seven Dwarfs, year=1937, medium=film, dwarfs=[Grumpy, Happy, Sleepy, Bashful, Sneezy, Dopey, Doc]]

{
  "title": "Snow White and the Huntsman",
  "year": 2012,
  "medium": "film",
  "dwarfs": [
    "Beith",
    "Quert",
    "Muir",
    "Coll",
    "Duir",
    "Gus",
    "Gort",
    "Nion"
  ]
}
DwarfBean@6d63de20 [title=Snow White and the Huntsman, year=2012, medium=film, dwarfs=[Beith, Quert, Muir, Coll, Duir, Gus, Gort, Nion]]

Nim

import json

var data = parseJson("""{ "foo": 1, "bar": [10, "apples"] }""")
echo data["foo"]
echo data["bar"]

var js = %* [{"name": "John", "age": 30}, {"name": "Susan", "age": 31}]
echo js
Output:
1
[10,"apples"]
[{"name":"John","age":30},{"name":"Susan","age":31}]

Objeck

use Struct;
use JSON;

bundle Default {
  class Json {
    function : Main(args : String[]) ~ Nil {
      parser := JSONParser->New("{ \"foo\": 1, \"bar\": [10, \"apples\"] }");
      root := parser->Parse();
      if(root <> Nil) {
        root->ToString()->PrintLine();
      };
    }
  }
}

Objective-C

Works with: 10.7+ version Xcode 4.4+
NSString *jsonString = @"{ \"foo\": 1, \"bar\": [10, \"apples\"] }";
id obj = [NSJSONSerialization 
    JSONObjectWithData: [jsonString dataUsingEncoding: NSUTF8StringEncoding]
               options: 0
                 error: NULL];
NSLog(@"%@", obj);

NSDictionary *dict = @{ @"blue": @[@1, @2], @"ocean": @"water"};
NSData *jsonData = [NSJSONSerialization dataWithJSONObject: dict
                                                   options: 0
                                                     error: NULL];
NSString *jsonString2 = [[NSString alloc] initWithData: jsonData
                                              encoding: NSUTF8StringEncoding];
NSLog(@"%@", jsonString2);

OCaml

Using json-wheel/json-static libs

Library: json-wheel
Library: json-static
type json item =
  < name    "Name": string;
    kingdom "Kingdom": string;
    phylum  "Phylum": string;
    class_  "Class": string;
    order   "Order": string;
    family  "Family": string;
    tribe   "Tribe": string
  >

let str = "
  {
    \"Name\":    \"camel\",
    \"Kingdom\": \"Animalia\",
    \"Phylum\":  \"Chordata\",
    \"Class\":   \"Mammalia\",
    \"Order\":   \"Artiodactyla\",
    \"Family\":  \"Camelidae\",
    \"Tribe\":   \"Camelini\"
  }"

let () =
  let j = Json_io.json_of_string str in
  print_endline (Json_io.string_of_json j);

compile with:

ocamlfind opt -o j.opt j.ml -linkpkg -package json-static -syntax camlp4o

Using yojson lib

Library: yojson
open Yojson.Basic.Util

let s = "
{ \"name\": \"John Doe\",
  \"pages\": [
    { \"id\": 1,
      \"title\": \"The Art of Flipping Coins\",
      \"url\": \"http://example.com/398eb027/1\"
    },
    { \"id\": 2, \"deleted\": true },
    { \"id\": 3,
      \"title\": \"Artichoke Salad\",
      \"url\": \"http://example.com/398eb027/3\"
    },
    { \"id\": 4,
      \"title\": \"Flying Bananas\",
      \"url\": \"http://example.com/398eb027/4\"
    }
  ]
}"

let extract_titles json =
  [json]
    |> filter_member "pages"
    |> flatten
    |> filter_member "title"
    |> filter_string

let () =
  let json = Yojson.Basic.from_string s in
  List.iter print_endline (extract_titles json)

Compile and run:

$ ocamlfind ocamlopt -o filtering filtering.ml -package yojson -linkpkg
$ ./filtering
The Art of Flipping Coins
Artichoke Salad
Flying Bananas

Oforth

In oforth, Json objects are builtin and can be interpreted natively


A String can be converted to Json object using #perform

A Json object can be converted to a string using #asString

>{"parents":["Otmar Gutmann", "Silvio Mazzola"], "name":"Pingu", "born":1986} .s
[1] (Json) {"parents" : ["Otmar Gutmann", "Silvio Mazzola"], "name" : "Pingu", "born" : 1986 }
ok
>asString .s
[1] (String) {"parents" : ["Otmar Gutmann", "Silvio Mazzola"], "name" : "Pingu", "born" :1986 }
ok
>perform .s
[1] (Json) {"parents" : ["Otmar Gutmann", "Silvio Mazzola"], "name" : "Pingu", "born" : 1986 }
ok
>

Ol

Ol comes with library that provides JSON parsing and forming.

(import (file json))

(define o (read-json-string "
  {
    'name': 'John',
    'full name': 'John Smith',
    'age': 42,
    'weight': 156.18,
    'married': false,
    'address': {
      'street': '21 2nd Street',
      'city': 'New York',
    },
    'additional staff': [
      {
        'type': 'numbers',
        'numbers': [ 1, -2, 0.75, -4.567 ]
      },
      {
        'type': 'phone',
        'number': '222 222-2222'
      }
    ]
  }"))
(print o)

(print-json-with display o)
(print-json-with display {
  'name "John"
  '|full name| "John Smith"
  'age 42
  'married #false
  'address {
    'street "21 2nd Street"
    'city   "New York"
  }
  '|additional staff| [
    {
      'type "numbers"
      'numbers [ 1 2 3 4 ]
    }
    {
      'type "phone"
      'number "222 222-2222"
    }
  ]
Output:
#ff((name . John) (|full name| . John Smith) (age . 42) (married . #false) (address . #ff((street . 21 2nd Street) (city . New York))) (|additional staff| . #(#ff((type . numbers) (numbers . #(1 2 3 4))) #ff((type . phone) (number . 222 222-2222)))))

{"name":"John","|full name|":"John Smith","age":42,"married":false,"address":{"street":"21 2nd Street","city":"New York"},"|additional staff|":[{"type":"numbers","numbers":[1,2,3,4]},{"type":"phone","number":"222 222-2222"}]}

{"name":"John","|full name|":"John Smith","age":42,"married":false,"address":{"street":"21 2nd Street","city":"New York"},"|additional staff|":[{"type":"numbers","numbers":[1,2,3,4]},{"type":"phone","number":"222 222-2222"}]}

OpenEdge/Progress

The WRITE-JSON and READ-JSON methods were introduced in Progress OpenEdge 10.2B.

/* using a longchar to read and write to, can also be file, memptr, stream */
DEFINE VARIABLE lcjson AS LONGCHAR NO-UNDO.

/* temp-table defines object, can also be dataset */
DEFINE TEMP-TABLE example
   FIELD blue  AS INTEGER EXTENT 2
   FIELD ocean AS CHARACTER
   .
CREATE example. 
ASSIGN 
   example.blue [1]  =  1
   example.blue [2]  =  2
   example.ocean     =  "water"
   .
/* write-json to put result in lcjson, true indicates formatted */
TEMP-TABLE example:DEFAULT-BUFFER-HANDLE:WRITE-JSON( "LONGCHAR", lcjson, TRUE ).

/* display result */
MESSAGE
   STRING( lcjson )
VIEW-AS ALERT-BOX.

/* empty results */
EMPTY TEMP-TABLE example.

/* read-json to get result from lcjson */
TEMP-TABLE example:DEFAULT-BUFFER-HANDLE:READ-JSON( "LONGCHAR", lcjson ).

FIND example.
/* display results */
MESSAGE
   example.blue [1] example.blue [2] SKIP
   example.ocean
VIEW-AS ALERT-BOX.
Output:

write-json

---------------------------
Message
---------------------------
{"example": [
  {
    "blue": [
      1,
      2
    ],
    "ocean": "water"
  }
]}
---------------------------
OK   
---------------------------
Output:

read-json

---------------------------
Message
---------------------------
1 2 
water
---------------------------
OK   
---------------------------

Oz

Using the google.com/oz-code JSON library:

declare
  [JSON] = {Module.link ['JSON.ozf']}

  {System.show {JSON.decode "{ \"foo\": 1, \"bar\": [10, \"apples\"] }"}}

  Sample = object(blue:array(1 2) ocean:"water")
  {System.showInfo {JSON.encode Sample}}
Output:
object(bar:array(10 [97 112 112 108 101 115]) foo:1)
{"blue":[1,2],"ocean":"water"}

Pascal

Works with FPC (tested with version 3.2.2).

program test;
{$mode objfpc}{$h+}
uses
  FpJson, JsonParser;

const
  JsonValue =
    '{                            ' + LineEnding +
    '    "answer": {              ' + LineEnding +
    '        "everything": 42     ' + LineEnding +
    '    },                       ' + LineEnding +
    '    "happy": true,           ' + LineEnding +
    '    "list": [                ' + LineEnding +
    '        0,                   ' + LineEnding +
    '        1,                   ' + LineEnding +
    '        2                    ' + LineEnding +
    '    ],                       ' + LineEnding +
    '    "name": "Pierrot",       ' + LineEnding +
    '    "nothing": null,         ' + LineEnding +
    '    "object": {              ' + LineEnding +
    '        "product": "unknown",' + LineEnding +
    '        "amount": 1001       ' + LineEnding +
    '    },                       ' + LineEnding +
    '    "pi": 3.1416            ' + LineEnding +
    '}                            ';

function JsonsEqual(L, R: TJsonData): Boolean;
var
  I: Integer;
  e: TJsonEnum;
  d: TJsonData;
begin
  if (L = nil) or (R = nil) then exit(False);
  if L = R then exit(True);
  if (L.JSONType <> R.JSONType) or (L.Count <> R.Count) then exit(False);
  case L.JSONType of
    jtUnknown: exit(False);
    jtNull:    ;
    jtBoolean: exit(L.AsBoolean = R.AsBoolean);
    jtNumber:  exit(L.AsFloat = R.AsFloat);
    jtString:  exit(L.AsString = R.AsString);
    jtArray:
      for I := 0 to Pred(L.Count) do
        if not JsonsEqual(L.Items[I], R.Items[I]) then exit(False);
    jtObject:
      for e in L do begin
        if not TJsonObject(R).Find(e.Key, d) then exit(False);
        if not JsonsEqual(e.Value, d) then exit(False);
      end;
  end;
  Result := True;
end;

var
  Expected, HandMade: TJsonData;

begin
  Expected := GetJson(JsonValue);
  HandMade := CreateJSONObject([
    'answer', CreateJSONObject(['everything', 42]),
    'happy', True,
    'list', CreateJSONArray([0, 1, 2]),
    'name', 'Pierrot',
    'nothing', CreateJSON,
    'object', CreateJSONObject(['product', 'unknown', 'amount', 1001]),
    'pi', 3.1416
  ]);
  WriteLn(HandMade.FormatJson);
  WriteLn;
  if JsonsEqual(Expected, HandMade) then
    WriteLn('Objects look identical')
  else
    WriteLn('Oops, something went wrong');
  Expected.Free;
  HandMade.Free;
end.

PascalABC.NET

{$reference System.Web.Extensions.dll}
uses System.Web.Script.Serialization;

begin
  var serializer := new JavaScriptSerializer;
  var people := new Dictionary<string, object>;
  people.Add('1', 'John');
  people.Add('2', 'Susan');
  var json := serializer.Serialize(people);
  Println(json);
  var res := serializer.Deserialize&<Dictionary<string, object>>(json);
  Println(TypeName(res));
  Println(res);
  
  var jsonObject := serializer.DeserializeObject('{ "foo": 1, "bar": [10, "apples"] }')
    as Dictionary<string, object>;
  Println(jsonObject);
  var arr := jsonObject['bar'] as array of object;
  arr.Println;
end.
Output:
{"1":"John","2":"Susan"}
Dictionary<string, Object>
{(1,John),(2,Susan)}
{(foo,1),(bar,[10,apples])}
10 apples

Perl

Library: JSON
use JSON;

my $data = decode_json('{ "foo": 1, "bar": [10, "apples"] }');

my $sample = { blue => [1,2], ocean => "water" };
my $json_string = encode_json($sample);

Phix

The distribution now contains a simple json module

-- demo\rosetta\JSON.exw
with javascript_semantics
include builtins/json.e
 
puts(1,"roundtrip (10 examples):\n")
sequence json_strings = {`{"this":"that","age":{"this":"that","age":29}}`,
                         `1`,
                         `"hello"`,
                         `null`,
                         `[12]`,
                         `[null,12]`,
                         `[]`,
                         `{"this":"that","age":29}`,
                         `{}`,
                         `[null,[null,12]]`}
 
for i=1 to length(json_strings) do
    string s = json_strings[i]
    puts(1,s&"\n")
    object json_object = parse_json(s)
    puts(1,print_json("",json_object,true)&"\n")
    if not equal(print_json("",json_object,true),s) then ?9/0 end if
end for
Output:
roundtrip (10 examples):
{"this":"that","age":{"this":"that","age":29}}
{"this":"that","age":{"this":"that","age":29}}
1
1
"hello"
"hello"
null
null
[12]
[12]
[null,12]
[null,12]
[]
[]
{"this":"that","age":29}
{"this":"that","age":29}
{}
{}
[null,[null,12]]
[null,[null,12]]

PHP

<?php
$data = json_decode('{ "foo": 1, "bar": [10, "apples"] }'); // dictionaries will be returned as objects
$data2 = json_decode('{ "foo": 1, "bar": [10, "apples"] }', true); // dictionaries will be returned as arrays

$sample = array( "blue" => array(1,2), "ocean" => "water" );
$json_string = json_encode($sample);
?>

PicoLisp

PicoLisp has no JSON library, but it is easy enough to write one. The following supports only fixpoint numbers (no floating point, as it doesn't exist in PicoLisp). Arrays and objects are both mapped to lists.

(de checkJson (X Item)
   (unless (= X Item)
      (quit "Bad JSON" Item) ) )

(de readJson ()
   (case (read "_")
      ("{"
         (make
            (for (X (readJson)  (not (= "}" X))  (readJson))
               (checkJson ":" (readJson))
               (link (cons X (readJson)))
               (T (= "}" (setq X (readJson))))
               (checkJson "," X) ) ) )
      ("["
         (make
            (link T)  # Array marker
            (for (X (readJson)  (not (= "]" X))  (readJson))
               (link X)
               (T (= "]" (setq X (readJson))))
               (checkJson "," X) ) ) )
      (T
         (let X @
            (cond
               ((pair X) (pack X))
               ((and (= "-" X) (format (peek)))
                  (- (read)) )
               (T X) ) ) ) ) )

(de printJson (Item)  # For simplicity, without indentation
   (cond
      ((atom Item) (if Item (print @) (prin "{}")))
      ((=T (car Item))
         (prin "[")
         (map
            '((X)
               (printJson (car X))
               (and (cdr X) (prin ", ")) )
            (cdr Item) )
         (prin "]") )
      (T
         (prin "{")
         (map
            '((X)
               (print (caar X))
               (prin ": ")
               (printJson (cdar X))
               (and (cdr X) (prin ", ")) )
            Item )
         (prin "}") ) ) )

This reads/prints JSON from/to files, pipes, sockets etc. To read from a string, a pipe can be used:

: (pipe (prinl "{ \"foo\": 1, \"bar\": [10, \"apples\"] }")
   (readJson) )
-> (("foo" . 1) ("bar" T 10 "apples"))

: (printJson
   (quote
      ("name" . "Smith")
      ("age" . 25)
      ("address"
         ("street" . "21 2nd Street")
         ("city" . "New York")
         ("state" . "NY")
         ("zip" . "10021") )
      ("phone" T "212 555-1234" "646 555-4567") ) )
{"name": "Smith", "age": 25, ... {"street": ... "phone": ["212 555-1234", ...

Pike

int main() {
	// Decoding
	string json = "{\"cake\":[\"desu\",1,2.3],\"foo\":1}";
	write("%O\n", Standards.JSON.decode(json));
	
	// Encoding
	mapping m = ([
		"foo": ({ 1, 2, 3 }),
		"bar": "hello"
	]);
	
	write("%s\n", Standards.JSON.encode(m));
}
([ /* 2 elements */
  "cake": ({ /* 3 elements */
        "desu",
        1,
        2.3
    }),
  "foo": 1
])
{"foo":[1,2,3],"bar":"hello"}

PowerShell

# JSON input is being stored in ordered hashtable.
# Ordered hashtable is available in PowerShell v3 and higher.
[ordered]@{ "foo"= 1; "bar"= 10, "apples" } | ConvertTo-Json

# ConvertFrom-Json converts a JSON-formatted string to a custom object.
# If you use the Invoke-RestMethod cmdlet there is not need for the ConvertFrom-Json cmdlet
Invoke-WebRequest -Uri "http://date.jsontest.com" | ConvertFrom-Json
Output:
{
    "foo":  1,
    "bar":  [
                10,
                "apples"
            ]
}

time                                                                  milliseconds_since_epoch date                                          
----                                                                  ------------------------ ----                                          
12:25:25 PM                                                                      1414326325923 10-26-2014

Prolog

Using SWI-Prolog 7's library(http/json), and the new dict datatype, there is nearly transparent handling of JSON objects. All of the serialization and parsing in the following code is accomplished with two predicates. The rest of the code is for the sake of example.

:- use_module([ library(http/json),
                library(func) ]).

test_json('{"widget": { "debug": "on", "window": { "title": "Sample Konfabulator Widget", "name": "main_window", "width": 500, "height": 500 }, "image": { "src": "Images/Sun.png", "name": "sun1", "hOffset": 250, "vOffset": 250, "alignment": "center" }, "text": { "data": "Click Here", "size": 36, "style": "bold", "name": "text1", "hOffset": 250, "vOffset": 100, "alignment": "center", "onMouseUp": "sun1.opacity = (sun1.opacity / 100) * 90;" }}}').

reading_JSON_term :-
    atom_json_dict(test_json(~), Dict, []), %% This accomplishes reading in the JSON data
    writeln( 'JSON as Prolog dict: ~w~n'
           $ Dict),
    writeln( 'Access field "widget.text.data": ~s~n'
           $ Dict.widget.text.data),
    writeln( 'Alter field "widget": ~w~n'
           $ Dict.put(widget, "Altered")).

searalize_a_JSON_term :-
    Dict = _{book:_{title:"To Mock a Mocking Bird",
                    author:_{first_name:"Ramond",
                             last_name:"Smullyan"},
                    publisher:"Alfred A. Knopf",
                    year:1985
                   }},
    json_write(current_output, Dict). %% This accomplishes serializing the JSON object.
Output:

from these two example predicates

?- reading_JSON_term.
JSON as Prolog dict: _G5217{widget:_G5207{debug:on,image:_G5123{alignment:center,hOffset:250,name:sun1,src:Images/Sun.png,vOffset:250},text:_G5189{alignment:center,data:Click Here,hOffset:250,name:text1,onMouseUp:sun1.opacity = (sun1.opacity / 100) * 90;,size:36,style:bold,vOffset:100},window:_G5077{height:500,name:main_window,title:Sample Konfabulator Widget,width:500}}}

Access field "widget.text.data": Click Here

Alter field "widget": _G5217{widget:Altered}

true.

?- searalize_a_JSON_term.
{
  "book": {
    "author": {"first_name":"Ramond", "last_name":"Smullyan"},
    "publisher":"Alfred A. Knopf",
    "title":"To Mock a Mocking Bird",
    "year":1985
  }
}
true.

PureBasic

OpenConsole()
If CreateJSON(1)
  PB_Team_Members=SetJSONObject(JSONValue(1))
  SetJSONString(AddJSONMember(PB_Team_Members,"PB_Team_Member_1"),"Frederic Laboureur")
  SetJSONString(AddJSONMember(PB_Team_Members,"PB_Team_Member_2"),"Andre Beer")
  SetJSONString(AddJSONMember(PB_Team_Members,"PB_Team_Member_3"),"Timo Harter")  
EndIf

If CreateJSON(2)
  Former_Team_Members=SetJSONArray(JSONValue(2))
  SetJSONString(AddJSONElement(Former_Team_Members),"Richard Andersson")
  SetJSONString(AddJSONElement(Former_Team_Members),"Benny Sels")
  SetJSONString(AddJSONElement(Former_Team_Members),"Danilo Krahn")
EndIf

PrintN("PureBasic - Team Members:")
PrintN(ComposeJSON(1,#PB_JSON_PrettyPrint)+#CRLF$)
PrintN("PureBasic - Former Team Members:")
PrintN(ComposeJSON(2,#PB_JSON_PrettyPrint)+#CRLF$)  

#DL=Chr(34)
PB_Special_thanks$="[ " +#DL+"Gary Willoughby"+#DL+", " +#DL+"Mark James"+#DL+", " +#DL+"Neil Hodgson"+#DL+" ]"
NewList otherpersons.s()

If ParseJSON(3,PB_Special_thanks$)  
  ExtractJSONList(JSONValue(3),otherpersons())
  PrintN("Pure Basic - and others:")
  ForEach otherpersons() : PrintN(otherpersons()) : Next
Else
  PrintN(JSONErrorMessage() + " : " + Str(JSONErrorPosition()))
  PrintN(Left(PB_Special_thanks$,JSONErrorPosition()))
  PrintN(Mid(PB_Special_thanks$,JSONErrorPosition()+1))
EndIf
Input()
Output:
PureBasic - Team Members:
{
  "PB_Team_Member_1": "Frederic Laboureur",
  "PB_Team_Member_2": "Andre Beer",
  "PB_Team_Member_3": "Timo Harter"
}

PureBasic - Former Team Members:
[
  "Richard Andersson",
  "Benny Sels",
  "Danilo Krahn"
]

Pure Basic - and others:
Gary Willoughby
Mark James
Neil Hodgson

Python

Works with: Python version 2.6+
Works with: Python version 3.0+
>>> import json
>>> data = json.loads('{ "foo": 1, "bar": [10, "apples"] }')
>>> sample = { "blue": [1,2], "ocean": "water" }
>>> json_string = json.dumps(sample)
>>> json_string
'{"blue": [1, 2], "ocean": "water"}'
>>> sample
{'blue': [1, 2], 'ocean': 'water'}
>>> data
{'foo': 1, 'bar': [10, 'apples']}

Because most of JSON is valid Python syntax (except "true", "false", and "null", and a few obscure escape sequences), it is also possible (but not recommended) to parse JSON using eval():

>>> true = True; false = False; null = None
>>> data = eval('{ "foo": 1, "bar": [10, "apples"] }')
>>> data
{'foo': 1, 'bar': [10, 'apples']}

R

library(rjson)
data <- fromJSON('{ "foo": 1, "bar": [10, "apples"] }')
data
data
$foo
[1] 1

$bar
$bar[[1]]
[1] 10

$bar[[2]]
[1] "apples"
cat(toJSON(data))
{"foo":1,"bar":[10,"apples"]}

Racket

#lang racket

(require json)

(string->jsexpr
 "{\"foo\":[1,2,3],\"bar\":null,\"baz\":\"blah\"}")

(write-json '(1 2 "three" #hash((x . 1) (y . 2) (z . 3))))

Raku

(formerly Perl 6)

Using JSON::Tiny

use JSON::Tiny;

say from-json '{ "foo": 1, "bar": [10, "apples"] }';
say to-json   %( blue => [1,2], ocean => "water" );
Output:
{bar => [10 apples], foo => 1}
{ "blue" : [ 1, 2 ], "ocean" : "water" }

REBOL

Using json.org/json.r

json-str: {{"menu": {
    "id": "file",
    "string": "File:",
    "number": -3,
    "boolean": true,
    "boolean2": false,
    "null": null,
    "array": [1, 0.13, null, true, false, "\t\r\n"],
    "empty-string": ""
  }
}}

res: json-to-rebol json-str
js: rebol-to-json res

json-to-rebol Result:

make object! [
    menu: make object! [
        id: "file"
        string: "File:"
        number: -3
        boolean: true
        boolean2: false
        null: none
        array: [1 0.13 none true false "^-^M^/"]
        empty-string: ""
    ]
]


rebol-to-json Result:

{
    "menu": {
        "id": "file",
        "string": "File:",
        "number": -3,
        "boolean": true,
        "boolean2": false,
        "null": null,
        "array": [1, 0.13, null, true, false, "\t\r\n"],
        "empty-string": ""
    }
}

Ruby

require 'json'

ruby_obj = JSON.parse('{"blue": [1, 2], "ocean": "water"}')
puts ruby_obj

ruby_obj["ocean"] = { "water" => ["fishy", "salty"] }
puts JSON.generate(ruby_obj)
puts JSON.pretty_generate(ruby_obj)
Output:
{"blue"=>[1, 2], "ocean"=>"water"}
{"blue":[1,2],"ocean":{"water":["fishy","salty"]}}
{
  "blue": [
    1,
    2
  ],
  "ocean": {
    "water": [
      "fishy",
      "salty"
    ]
  }
}

Rust

Serializing and deserializing JSON in Rust is done by libraries.

Works with: Rust version 1.31
Library: Serde version 1.0
[dependencies]
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"

Serde is a general serialization/deserialization library. Serde-JSON implements JSON serialization for Serde.

Using said library is quite straight forward, one simply derives Serialize/Deserialize onto the types they want to convert into and from JSON strings.

use serde::{Serialize, Deserialize};

#[derive(Serialize, Deserialize, Debug)]
struct Point {
    x: i32,
    y: i32,
}

Said type could then be used as such:

fn main() {
    let point = Point { x: 1, y: 2 };

    let serialized = serde_json::to_string(&point).unwrap();
    let deserialized: Point = serde_json::from_str(&serialized).unwrap();

    println!("serialized = {}", serialized);
    println!("deserialized = {:?}", deserialized);
}

The result of which is type-checked JSON (where extra entries get ignored), without need of a key-value container.

Output:
serialized = {"x":1,"y":2}
deserialized = Point { x: 1, y: 2 }

It also handles more Rust specific types like enums, tuples, struct tuples, and zero-sized types.

#[derive(Serialize, Deserialize)]
struct W { a: i32, b: i32 }  // => { "a": 0, "b": 0 }

#[derive(Serialize, Deserialize)]
struct X(i32, i32);          // => [0, 0]

#[derive(Serialize, Deserialize)]
struct Y(i32);               // => 0

#[derive(Serialize, Deserialize)]
struct Z;                    // => null

#[derive(Serialize, Deserialize)]
enum E {
    W { a: i32, b: i32 },    // => { "W": { "a": 0, "b": 0 } }
    X(i32, i32),             // => { "X": [0, 0] }
    Y(i32),                  // => { "Y": 0 }
    Z,                       // => { "Z" }
}

The traits are also implemented for HashMap and Vec which can be used as conventional objects/arrays, on top of macros and serde_json::Value to handle all other potentially weird edge cases.

use std::collections::HashMap;
use serde_json::Value;

#[derive(Serialize, Deserialize)]
struct Data {
    points: Vec<Points>,

    #[serde(flatten)]
    metadata: HashMap<String, Value>,
}

In this example metadata would simply capture all other additional entries, for example:

fn main() {
    let data = {
        let mut metadata = HashMap::new();
        metadata.insert("triangle".to_string(), Value::Number(3.into()));
        metadata.insert("square".to_string(), Value::Bool(false));
        
        Data {
            points: vec![Point { x: 1, y: 2 }, Point { x: 15, y: 32 }],
            metadata,
        }
    };

    let serialized = serde_json::to_string(&data).unwrap();
    let deserialized: Data = serde_json::from_str(&serialized).unwrap();

    println!("serialized = {}", serialized);
    println!("deserialized = {:?}", deserialized);
}
Output:
serialized = {"points":[{"x":1,"y":2},{"x":15,"y":32}],"square":false,"triangle":3}
deserialized = Data { points: [Point { x: 1, y: 2 }, Point { x: 15, y: 32 }], metadata: {"triangle": Number(3), "square": Bool(false)} }

Scala

Using the builtin parsing lib (debatably slower than third-party libs such as lift-json from Liftweb).

scala> import scala.util.parsing.json.{JSON, JSONObject}
import scala.util.parsing.json.{JSON, JSONObject}

scala> JSON.parseFull("""{"foo": "bar"}""")
res0: Option[Any] = Some(Map(foo -> bar))

scala> JSONObject(Map("foo" -> "bar")).toString()
res1: String = {"foo" : "bar"}

Scheme

Works with: Chicken Scheme

Using the json egg:

(use json)
(define object-example
  (with-input-from-string "{\"foo\": \"bar\", \"baz\": [1, 2, 3]}"
                          json-read))
(pp object-example)
; this prints #(("foo" . "bar") ("baz" 1 2 3))

(json-write #([foo . bar]
              [baz   1 2 3]
              [qux . #((rosetta . code))]))
; this writes the following:
; {"foo": "bar", "baz": [1, 2, 3], "qux": {"foo": "bar"}}

SenseTalk

set jsonString to <<{"foo": 10, "bar": [1, 2, 3]}>>
put JSONValue(jsonString)

set dataObject to (string_value: "lorem ipsum", int_value: 314, array_value: (2, 4, 6))
put JSONFormat(dataObject)

Sidef

var json = require('JSON::PP').new
var data = json.decode('{"blue": [1, 2], "ocean": "water"}')
say data
data{:ocean} = Hash(water => %w[fishy salty])
say json.encode(data)
Output:
Hash(
    "blue" => [1, 2],
    "ocean" => "water"
)
{"blue":[1,2],"ocean":{"water":["fishy","salty"]}}

Smalltalk

Use the NeoJSON library: NeoJSON

NeoJSONReader fromString: '{ "foo": 1, "bar": [10, "apples"] }'.
Output:
a Dictionary('bar'->#(10 'apples') 'foo'->1 )

Standard ML

Using SML/NJ JSON library

Works with: SML/NJ
Works with: Poly/ML
Works with: MLton

Uses the the SML/NJ library [2].

JSONParser.parse(JSONParser.openString("{\"fruit\":\"apple\", \"numbers\": [2,7,1,8,2,8], \"tau\": 6.28318530718}"));
(* val it =
   OBJECT
    [("fruit", STRING "apple"),
     ("numbers", ARRAY [INT 2, INT 7, INT 1, INT 8, INT 2, INT 8]),
     ("tau", FLOAT 6.283185307)]: JSON.value
*)


JSONPrinter.print(TextIO.stdOut, it);
(* {"fruit":"apple","numbers":[2,7,1,8,2,8],"tau":6.28319} *)


JSONPrinter.print' {strm=TextIO.stdOut, pretty=true} it;
(*
{
    "fruit" : "apple",
    "numbers" : [
        2,
        7,
        1,
        8,
        2,
        8
      ],
    "tau" : 6.28319
  }
*)

Using only Basis

Works on Unix/Linux/BSD with jq (github.com/stedolan/jq/ ) installed. Data storage in strings, so floating point numbers can be written back as received, in a recursive polymorphic structure, which can also be used to store the data as SML-types. (Without Jq on the system or on Microsoft systems, delete the Validate function and its call, and the code can be used for valid JSON-strings without any white space outside strings (only).)

val Validate = fn jsonstring =>
let
 val Valid =  fn jsonstring =>
  let
   val json       =  String.translate (fn #"\"" => "\\\""|n=>str n ) jsonstring ;
   val textlength = (String.size json ) + 50 ;
   val app        = " jq -c '.' "  
   val fname      = "/tmp/jsonval" ^ (String.extract (Time.toString (Posix.ProcEnv.time()),7,NONE) );
   val shellCommand = "echo  \"" ^ json ^ "\" | " ^ app
   val me         = (  Posix.FileSys.mkfifo (fname, Posix.FileSys.S.flags [ Posix.FileSys.S.irusr,Posix.FileSys.S.iwusr ] ) ;
                       Posix.Process.fork () ) ;
  in
   if (Option.isSome me) then
     let
        val fin =TextIO.openIn fname
     in
        ( Posix.Process.sleep (Time.fromReal 0.1) ;
          TextIO.inputN (fin,textlength) before
	  (TextIO.closeIn fin ; OS.FileSys.remove fname)
	)
     end
   else
     ( OS.Process.system ( shellCommand ^ " > " ^fname ^ " 2>&1 ") ;                                           (* remove fmt and validate *)
       "done\n" before OS.Process.exit OS.Process.success )
  end
 val result = Valid jsonstring
in
 if String.isPrefix "{" result then result else "JSON error\n" 
end;



datatype ('a,'b) element = elem of 'a * 'b | markerb of int ;                       (*  <   internal structure   v   *)
datatype 'a content      = value of 'a | block of ('a,'a content) element list | arr of 'a content list |marker of int ; 

exception Dtype of string ;
val unarr    =  fn arr lst => lst   |  _   =>  (raise Dtype "unarr"   ; []) ;
val unblock  =  fn block lst => lst |  _   =>  (raise Dtype "unblock" ; []) ;


(* --- example loop to apply a function 'dothis', which returns type jvals, to the structure  ---- *)

datatype jvals       = St of string | It of IntInf.int | Rl of real | Bl of bool ;        (* returned type by 'dothis' *)

val rec gothruAndDo = fn dothis => fn storedObject =>
   let 
      val walk = fn elem ( n, value v)  => elem (dothis n , value (dothis v) )
                  | elem ( n, block v)  => elem (dothis n , block ( (gothruAndDo dothis)  (rev (tl (rev v)))) )
                  | elem ( n, arr v)    => elem (dothis n , arr ( List.map (block o (gothruAndDo dothis) o unblock)  (rev (tl (rev v))) ) )
		  | _                   => elem (St "", value (It (IntInf.fromInt ~1)))
   in
      List.map walk storedObject
 end;

(*  ------------------------------------  end of loop example  ------------------------------------ *) 


local 

exception Dtype of string ;
val markbToInt        =  fn markerb NrChars => NrChars | _  => (raise Dtype "markerb!" ; ~1) ;
val markToInt         =  fn  marker NrChars => NrChars |  _ => (raise Dtype "marker!"  ; ~1) ;


fun readarr rtag rc =  fn #"]"::S => [  marker (List.length S)   ]                                    (* process array *)
                        | S       => let val tmp = (rtag rc ("",S)) in  (block tmp)  ::
                                          ( readarr rtag rc (   List.drop (S,(List.length S) -   markbToInt ( hd (rev  tmp)))    ))  end ;



val rec readNaVa = fn rc : string * char list -> string content * char list   => fn
    ("",[])             => []
|   (sr,[])             =>   [ elem (sr, value "") ]
|   (sr,#":":: #"["::S) => 
                             let val tmp = arr (readarr readNaVa rc S) in                              (* field is array *)
                               ( elem (sr,  tmp )) :: (readNaVa rc ("" ,  List.drop (S,(List.length S) - (markToInt (hd (rev(unarr tmp)))) )     ))
			     end 
|  (sr, #":":: #"{"::S) =>  
                             let  val tmp = readNaVa rc ("",S )  in                                    (* field is object *)
                               ( elem (sr, block tmp)) :: (readNaVa rc ("" , List.drop (S,(List.length S) -(markbToInt ( hd (rev tmp))))    ))
                              end  
|  (sr,#"}":: #","::S)  =>   [ markerb (List.length S) ]
|  (sr,#"}"::S)         =>   [ markerb (List.length S) ]
|  (sr,#":"::S)         =>
                             let val tmp = rc ("",S)  in                                                (* field is basic *)
                                elem ( sr, #1 tmp) :: (readNaVa rc ("",  #2  tmp ) ) 
                             end
|  (sr,#","::S)         =>   readNaVa rc (sr , S)
|  (sr,#"{"::a::S)      =>   readNaVa rc (sr^(str a) , S)
|  (sr,a::S)            =>   readNaVa rc (sr^(str a) , S)  ;                                            (* name field *)

 val rec readcontent = fn        
   (sc,a::[])       => (value ( sc^(str a) ),[])
|  (sc,#","::t)     => (value  sc , t)
|  (sc, #"}"::t)    => (value  sc , #"}"::t)
|  (sc, #"]"::t)    => (value  sc , #"]"::t)
|  (sc, a::t)       => readcontent( ( sc^(str a) ),t) ;


val putall = fn input =>
 let 
  val rec put  = fn 
          []      => ""
    | (elem h)::t => (#1 h) ^ ":" ^ ( ( fn value x=> x 
                                       | block x => "{" ^ (put x ) 
				       | arr x   => "["  ^  String.concat (( List.map (fn x=> "{"^( (put o unblock) x)^"," ) (rev (tl (rev x)))))  ^ "]" ) (#2 h))
					 ^ ","
					 ^ (put t) 
    | (markerb h)::t => "}" 
 in
   "{" ^ (put input)
 end;

val commas = fn tok => fn S => 
   ( Substring.concatWith (str tok)
     ( List.map (Substring.dropr (fn x=> x= #"," ))
          (Substring.tokens (fn x=> x= tok ) (Substring.full S) )) ) ^ (if tok = #"}" then str tok else "" )


in

  val storeJsString = fn input => 
      readNaVa readcontent ("" , String.explode (  Validate input ) )

  val writeJS = fn storedStruct =>
      ( ( ( commas #"}" ) o ( commas #"]" ) o putall ) storedStruct )

end ;

Example

val testString="{\"firstName\":\"John\",\"lastName\":\"Smith\",\"age\":25,\"address\":{\"streetAddress\":\"21 2nd Street\",\"city\":\"New York\",\"state\":\"NY\",\"postalCode\":\"10021\"},\"phoneNumber\":[{\"type\":\"home\",\"numbers\":[{\"o\":\"212 555-1234\",\"h\":\"119 323-1234\"}]},{\"type\":\"fax\",\"number\":\"646 555-4567\"}]}" ;

testString =  (writeJS o storeJsString) testString ;
val it = true : bool                                             (*  because the test string was unformatted *) 

val toMlVal = fn input =>
 case String.isPrefix "\"" input
 of true => St (String.substring (input,1,(String.size input)-2) )
    |  _ => case IntInf.fromString input of
                SOME n => It n
              | NONE   => case Real.fromString input of
		       SOME x => Rl x
                     | NONE   => case Bool.fromString input of
		           SOME b => Bl b
                         | NONE   => St "" ;

val toMlVal = fn: string -> jvals

List.nth (gothruAndDo toMlVal (storeJsString testString  ) ,3);

val it =
    elem
    (St "address",
     block
      [elem (St "streetAddress", value (St "21 2nd Street")),
       elem (St "city", value (St "New York")),
       elem (St "state", value (St "NY")),
       elem (St "postalCode", value (St "10021"))]):
   (jvals, jvals content) element

Swift

import Foundation

let jsonString = "{ \"foo\": 1, \"bar\": [10, \"apples\"] }"
if let jsonData = jsonString.data(using: .utf8) {
	if let jsonObject: Any = try? JSONSerialization.jsonObject(with: jsonData, options: .allowFragments) {
		print("Dictionary: \(jsonObject)")
	}
}

let obj = [
	"foo": [1, "Orange"],
	"bar": 1
] as [String : Any]

if let objData = try? JSONSerialization.data(withJSONObject: obj, options: .prettyPrinted) {
	if let jsonString2 = String(data: objData, encoding: .utf8) {
		print("JSON: \(jsonString2)")
	}
}
Output:
Dictionary: {
    bar =     (
        10,
        apples
    );
    foo = 1;
}
JSON: {
  "foo" : [
    1,
    "Orange"
  ],
  "bar" : 1
}

Tailspin

A JSON parser and printer can fairly easily be created

// Not all JSON object member keys can be represented, a fallback would need to be implemented
// Currently Tailspin only supports integers so for now we leave numbers as strings, as we do for true, false and null

templates hexToInt
  templates hexDigit
    <='0'> 0! <='1'> 1! <='2'> 2! <='3'> 3! <='4'> 4! <='5'> 5! <='6'> 6! <='7'> 7! <='8'> 8! <='9'> 9!
    <'[Aa]'> 10! <'[Bb]'> 11! <'[Cc]'> 12! <'[Dd]'> 13! <'[Ee]'> 14! <'[Ff]'> 15!
  end hexDigit
  @: 0;
  $... -> hexDigit -> @: $@ * 16 + $;
  $@ !
end hexToInt

composer jsonParser
  <value>
  rule value: (<WS>?) <string|number|object|array|true|false|null> (<WS>?)

  rule string: (<='"'>) <chars>  (<='"'>)
  rule chars: [ <quote|backslash|slash|backspace|formfeed|linefeed|return|tab|unicode|'[^"]'>* ] -> '$...;'
  rule quote: <='\"'> -> '"'
  rule backslash: <='\\'> -> '\'
  rule slash: <='\/'> -> '/'
  rule backspace: <='\b'> -> '$#8;'
  rule formfeed: <='\f'> -> '$#12;'
  rule linefeed: <='\n'> -> '$#10;'
  rule return: <='\r'> -> '$#13;'
  rule tab: <='\t'> -> '$#9;'
  rule unicode: (<='\u'>) <'[0-9A-Fa-f]{4}'> -> hexToInt -> '$#$;'

  rule number: <'-?(0|[1-9][0-9]*)(\.[0-9]+)?((e|E)(\+|-)?[0-9]+)?'> // TODO: represent this other than string

  rule object: (<='{'> <WS>?) { <keyValues>? } (<='}'>)
  rule keyValues: <keyValue> <followingKeyValue>*
  rule keyValue: <string>: (<WS>? <=':'>) <value>
  rule followingKeyValue: (<=','> <WS>?) <keyValue>

  rule array: (<='['>) [ <arrayValues>? ] (<=']'>)
  rule arrayValues: <value> <followingArrayValue>*
  rule followingArrayValue: (<=','>) <value>

  rule true: <='true'> // TODO: represent this other than string
  rule false: <='false'> // TODO: represent this other than string
  rule null: <='null'> // TODO: represent this other than string
end jsonParser

templates printJson
  templates printKeyValue
    '$::key -> printJson;: $::value -> printJson;' !
  end printKeyValue
  templates encodeChars
    <='"'> '\"' !
    <='\'> '\\' !
    <='/'> '\/' !
    <='$#8;'> '\b' !
    <='$#12;'> '\f' !
    <='$#10;'> '\n' !
    <='$#13;'> '\r' !
    <='$#9;'> '\t' !
    <> $ !
  end encodeChars
  $ -> #
  when <[]> do
    '[$(1) -> printJson;$(2..last)... -> ', $ -> printJson;';]' !
  when <{}> do
    [ $... ] -> '{$(1) -> printKeyValue;$(2..last)... -> ', $ -> printKeyValue;';}' !
  when <..> do
    '$;'!
  when <''> do
    [ $... -> encodeChars ] -> '"$...;"' !
  otherwise 'WTF!' !
  // Other types do not yet exist in Tailspin
end printJson

'{ "foo": 1, "bar": [10, "apples"] }' -> jsonParser -> '$.bar(2);
' -> !OUT::write

{ blue: [1,2], ocean: 'water' } -> printJson -> '$;
' -> !OUT::write

'plain string
' -> printJson -> '$;
' -> !OUT::write
Output:
apples
{"blue": [1, 2], "ocean": "water"}
"plain string\n"

Tcl

For parsing JSON,

Library: Tcllib (Package: json)

provides the capability (see the Tcler's Wiki page on it for more discussion):

package require json
set sample {{ "foo": 1, "bar": [10, "apples"] }}

set parsed [json::json2dict $sample]
puts $parsed
Output:
foo 1 bar {10 apples}

However, that package is very weak in its generation of JSON because Tcl's official type system is substantially different to that envisaged by JSON. It's possible to work around this though the use of Tcl 8.6, as this next example shows:

Works with: Tcl version 8.6
Library: Tcllib (Package: json::write)
package require Tcl 8.6
package require json::write

proc tcl2json value {
    # Guess the type of the value; deep *UNSUPPORTED* magic!
    regexp {^value is a (.*?) with a refcount} \
	[::tcl::unsupported::representation $value] -> type

    switch $type {
	string {
	    return [json::write string $value]
	}
	dict {
	    return [json::write object {*}[
		dict map {k v} $value {tcl2json $v}]]
	}
	list {
	    return [json::write array {*}[lmap v $value {tcl2json $v}]]
	}
	int - double {
	    return [expr {$value}]
	}
	booleanString {
	    return [expr {$value ? "true" : "false"}]
	}
	default {
	    # Some other type; do some guessing...
	    if {$value eq "null"} {
		# Tcl has *no* null value at all; empty strings are semantically
		# different and absent variables aren't values. So cheat!
		return $value
	    } elseif {[string is integer -strict $value]} {
		return [expr {$value}]
	    } elseif {[string is double -strict $value]} {
		return [expr {$value}]
	    } elseif {[string is boolean -strict $value]} {
		return [expr {$value ? "true" : "false"}]
	    }
	    return [json::write string $value]
	}
    }
}

Sample code (note that the value is built with dict create and list so that there is some auxiliary type hints available, which the above procedure can read):

set d [dict create blue [list 1 2] ocean water]
puts [tcl2json $d]
Output:
{
    "blue"  : [1,2],
    "ocean" : "water"
}

Note that this is capable of correctly handling the round-trip of values parsed from the json package described above.

TXR

Built-In

TXR has built in JSON support.

The TXR Lisp syntax supports JSON literals, which are prefixed with #J.

1> #J{"foo" : true, [1, 2, "bar", false] : null}
#H(() ("foo" t) (#(1.0 2.0 "bar" nil) null))

JSON objects become hash tables, and arrays become vectors. The JSON keywords true, false and null become Lisp symbols t, nil and null.

The above #J syntax is a true hash table literal; it isn't an expression which has to be evaluated to construct the object.

Quasiquoting is supported over this syntax, in two usefully different ways. In quasiquoted JSON, an interpolated values are indicated not by the usual unquoting comma, but a tilde.

If we place the quasiquoting circumflex after the #J, just before the JSON syntax, then we get a form of quasiquote which interpolates values into the implied data structure. The syntax is transliterated into an invocation of a macro called json, which produces code to construct the object, with the dynamic values inserted into it:

1> (let ((str "hello"))
     #J^{~str : 42})
#H(() ("hello" 42.0))

If the syntax is externally quasiquoted, such as by the circumflex being placed just before the #J or else by the JSON occurring inside a larger Lisp quasiquote, then the literal syntax itself is being quasiquoted. The result of evaluating the quasiquote isn't the object, but the syntax itself, which when evaluated again produces the object:

1> (let ((str "hello"))
     ^#J{~str : 42})
#J{"hello":42}
2> (eval *1)
#H(() ("hello" 42.0))


The get-json and put-json functions are the basic interface for reading JSON from a stream, and sending data to a stream in JSON format. Surrounding these core functions are a number of convenience functions. For instance file-get-json reads a JSON file and returns the data structure, and tojson returns an object as a JSON character string.

1> (file-get-json "/usr/share/iso-codes/json/iso_15924.json")
#H(() ("15924" #(#H(() ("name" "Adlam") ("alpha_4" "Adlm") ("numeric" "166"))
                 #H(() ("name" "Afaka") ("alpha_4" "Afak") ("numeric" "439"))

                 [ ... SNIP ... ]

                 #H(() ("name" "Code for uncoded script") ("alpha_4" "Zzzz") ("numeric" "999")))))

JSON is printed in a "native" formatting by default:

2> (put-jsonl *1)
{"15924":[{"name":"Adlam","alpha_4":"Adlm","numeric":"166"},{"name":"Afaka","alpha_4":"Afak","numeric":"439"},
          {"name":"Caucasian Albanian","alpha_4":"Aghb","numeric":"239"},
          {"name":"Ahom, Tai Ahom","alpha_4":"Ahom","numeric":"338"},{"name":"Arabic","alpha_4":"Arab","numeric":"160"},

          [ ... SNIP ... ]

          {"name":"Code for undetermined script","alpha_4":"Zyyy","numeric":"998"},
          {"name":"Code for uncoded script","alpha_4":"Zzzz","numeric":"999"}]}
t

With the special variable *print-json-format* we can get the de-facto standard formatting.

3> (let ((*print-json-format* :standard))
     (put-jsonl *1))
{
  "15924" : [
    {
      "name" : "Adlam",
      "alpha_4" : "Adlm",
      "numeric" : "166"
    },
    {
      "name" : "Afaka",
      "alpha_4" : "Afak",
      "numeric" : "439"
    },
    {
      "name" : "Caucasian Albanian",
      "alpha_4" : "Aghb",
      "numeric" : "239"
    },

    [ ... SNIP ... ]

    {
      "name" : "Code for uncoded script",
      "alpha_4" : "Zzzz",
      "numeric" : "999"
    }
  ]
}
t

The *read-bad-json* variable controls whether the parser is tolerant toward superfluous commas:

4> (get-json "[1, 2, 3,]")
** syntax error: read: string: errors encountered
4> (let ((*read-bad-json* t)) 
     (get-json "[1, 2, 3,]"))
#(1.0 2.0 3.0)

Numbers must be floating-point in order to convert to JSON:

5> (put-jsonl #(1 2 3))
[** print: invalid object 1 in JSON
** during evaluation at expr-7:1 of form (put-jsonl #(1 2 3))
5> (put-jsonl #(1. 2. 3.))
[1,2,3]
t

This rigidity prevents errors in applications like saving some integer in JSON which unexpectedly comes back as a floating-point value, not necessarily equal to that integer.

From Scratch JSON Parsing in Pattern Language

The following implements the parsing half of the task. It is a parser closely based on the JSON grammar [[3]]. This exercise shows how the TXR Pattern Language, though geared toward line-oriented, loose matching over entire documents, can nevertheless parse languages.

This is implemented with recursive horizontal pattern matching functions, and so basically the definition resembles a grammar. Horizontal functions allow the language to easily specify LL grammars with indefinite lookahead, not restricted to regular languages (thanks to TXR's backtracking). The numerous occurences of @\ in the code are line continuations. Horizontal functions must be written on one logical line. @\ eats the whitespace at the start of the next physical line, to allow indentation.

The parser translates to a nested list structure in which the types are labeled with the strings "O", "A", "N", "S" and "K". (Object, array, number, string, and keyword).

The largest grammar rule handles JSON string literals. The strategy is to generate a HTML string and then filter from HTML using the :from_html filter in TXR. For instance \uABCD is translated to &#xABCD; and then the filter will produce the proper Unicode character. Similarly \" is translated to &quot; and \n is translated to etc.

A little liberty is taken: the useless commas in JSON are treated as optional. (TXR's built-in JSON

Superfluous terminating commas (not generated by the JSON grammar but accepted by some other parsers) are not allowed by this parser.

@(define value (v))@\
  @(cases)@\
    @(string v)@(or)@(num v)@(or)@(object v)@(or)@\
    @(keyword v)@(or)@(array v)@\
  @(end)@\
@(end)
@(define ws)@/[\n\t ]*/@(end)
@(define string (g))@\
  @(local s hex)@\
  @(ws)@\
  "@(coll :gap 0 :vars (s))@\
     @(cases)@\
       \"@(bind s "&quot;")@(or)@\
       \\@(bind s "\\\\")@(or)@\
       \/@(bind s "\\/")@(or)@\
       \b@(bind s "&#8;")@(or)@\
       \f@(bind s "&#12;")@(or)@\
       \n@(bind s "&#10;")@(or)@\
       \r@(bind s "&#13;")@(or)@\
       \t@(bind s "&#9;")@(or)@\
       \u@{hex /[0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f]/}@\
         @(bind s `&#x@hex;`)@(or)@\
       @{s /[^"\\]*/}@(filter :to_html s)@\
     @(end)@\
     @(until)"@\
   @(end)"@\
  @(ws)@\
  @(cat s "")@\
  @(filter :from_html s)@\
  @(bind g ("S" s))@\
@(end)
@(define num (v))@\
  @(local n)@\
  @(ws)@{n /-?[0-9]+((\.[0-9]+)?([Ee][+\-]?[0-9]+)?)?/}@(ws)@\
  @(bind v ("N" n))@\
@(end)
@(define keyword (v))@\
  @(local k)@\
  @(all)@(ws)@{k /true|false|null/}@(trailer)@/[^A-Za-z0-9_]/@(end)@(ws)@\
  @(bind v ("K" k))@\
@(end)
@(define object (v))@\
  @(local p e pair)@\
  @(ws){@(ws)@(coll :gap 0 :vars (pair))@\
                @(string p):@(value e)@/,?/@\
                @(bind pair (p e))@\
                @(until)}@\
             @(end)}@(ws)@\
  @(bind v ("O" pair))@\
@(end)
@(define array (v))@\
  @(local e)@\
  @(ws)[@(ws)@(coll :gap 0 :var (e))@(value e)@/,?/@(until)]@(end)]@(ws)@\
  @(bind v ("A" e))@\
@(end)
@(freeform)
@(maybe)@(value v)@(end)@badsyntax

A few tests. Note, the badsyntax variable is bound to any trailing portion of the input that does not match the syntax. The call to the parser @(value v) extracts the longest prefix of the input which is consistent with the syntax, leaving the remainder to be matched into badsyntax.

$ echo  -n '{ "a" : { "b" : 3, "c" : [1,2,3] }  }[' | ./txr -l json.txr - 
(v "O" ((("S" "a") ("O" ((("S" "b") ("N" "3")) (("S" "c") ("A" (("N" "1") ("N" "2") ("N" "3")))))))))
(badsyntax . "[\n")

$ echo  -n '"\u1234"' | ./txr -l json.txr - 
(v "S" "\11064")
(badsyntax . "")

V (Vlang)

import json

struct User {
	// Adding a [required] attribute will make decoding fail, if that
	// field is not present in the input.
	// If a field is not [required], but is missing, it will be assumed
	// to have its default value, like 0 for numbers, or '' for strings,
	// and decoding will not fail.
	name string [required]
	age  int
	// Use the `skip` attribute to skip certain fields
	foo int [skip]
	// If the field name is different in JSON, it can be specified
	last_name string [json: lastName]
	possessions []string
}

fn main() {
	data := '{ "name": "Frodo", "lastName": "Baggins", "age": 25, "possessions": ["shirt","ring","sting"] }'
	user := json.decode(User, data) or {
		eprintln('Failed to decode json, error: $err')
		return
	}
	println(user)

	println(json.encode(user))
}
Output:
User{
    name: 'Frodo'
    age: 25
    foo: 0
    last_name: 'Baggins'
    possessions: ['shirt', 'ring', 'sting']
}
{"name":"Frodo","age":25,"lastName":"Baggins","possessions":["shirt","ring","sting"]}

Wren

Library: Wren-json
import "/json" for JSON

var s = "{ \"foo\": 1, \"bar\": [ \"10\", \"apples\"] }"
var o = JSON.parse(s)
System.print(o)

o = { "blue": [1, 2], "ocean": "water" }
s = JSON.stringify(o)
System.print(s)
Output:
{foo: 1, bar: [10, apples]}
{"ocean":"water","blue":[1,2]}

XQuery

The XPath 3.1 standard specifies an XML format to store JSON information. Different XQuery processors implement their own JSON parsers in addition to the XPath functions. One such function has been added, to show, how to map JSON into an XPath map using the BaseX processor. As XQuery is a superset of XPath, the following code is valid XQuery 3.1. Except for 'null', which does not exist in the XPath data model, all JSON datatypes have their XPath equivalent. 'Null' is being represented by the empty sequence. This gets shown at the last function invocation, which creates an XPath map. It may be interesting to note, that the different options for the json serializers and parsers have not been used here.

let $json := '
{
  "Astring" : "string-value",
  "Anumber" : 5.7,
  "Anull"   : null,
  "Aarray"  : ["One","Two", 3],
  "Aobject" : {
               "key1": "value1",
               "key2": "value2"
             },
  "Atrue"   : true,
  "Afalse"  : false
}
'
let $xml := json-to-xml($local:json)
return (
 "XPath fn:json-to-xml#1 function:"
 ,""
 ,$xml
 ,""
 ,"Round trip, using fn:xml-to-json#1:"
 ,""
 ,xml-to-json($xml)
 ,""
 ,"Using BaseX json:parse#2 function to create an XPath 3.1 map:"
 ,""
 ,json:parse($local:json, map{"format":"xquery"})
)

Result:

XPath fn:json-to-xml#1 function:

<map xmlns="http://www.w3.org/2005/xpath-functions">
  <string key="Astring">string-value</string>
  <number key="Anumber">5.7</number>
  <null key="Anull"/>
  <array key="Aarray">
    <string>One</string>
    <string>Two</string>
    <number>3</number>
  </array>
  <map key="Aobject">
    <string key="key1">value1</string>
    <string key="key2">value2</string>
  </map>
  <boolean key="Atrue">true</boolean>
  <boolean key="Afalse">false</boolean>
</map>

Round trip, using fn:xml-to-json#1:

{
  "Astring":"string-value",
  "Anumber":5.7,
  "Anull":null,
  "Aarray":[
    "One",
    "Two",
    3
  ],
  "Aobject":{
    "key1":"value1",
    "key2":"value2"
  },
  "Atrue":true,
  "Afalse":false
}

Using BaseX json:parse#2 function to create an XPath 3.1 map:

map {
  "Aobject": map {
    "key1": "value1",
    "key2": "value2"
  },
  "Afalse": false(),
  "Anull": (),
  "Anumber": 5.7e0,
  "Atrue": true(),
  "Astring": "string-value",
  "Aarray": ["One", "Two", 3.0e0]
}

zkl

zkl has a JSON codec based on yajl.

To convert from JSON to zkl:

a,b:=Import.lib("zklYAJL");
var [const] YAJL=a, toJSON=b;
src:=
#<<<
0'|{
    "pi": 3.14,
    "large number": 123456789123456791,
    "an array": [
        -1,
        true,
        false,
        null,
        "foo"
    ]
}|;
#<<<
obj:=YAJL().write(src).close();
// or obj:=src.pump(YAJL()).close(); // for example, from file or socket
obj.println();
Output:
D(pi:3.14,an array:L(-1,True,False,Void,"foo"),large number:123456789123456791)

From zkl to JSON:

// using above code plus:
toJSON(obj).println();
Output:
{"pi":3.1400000000,"an array":[-1,true,false,null,"foo"],"large number":123456789123456791}
Cookies help us deliver our services. By using our services, you agree to our use of cookies.