Hailstone sequence
The Hailstone sequence of numbers can be generated from a starting positive integer, n by:
- If n is 1 then the sequence ends.
- If n is even then the next n of the sequence
= n/2
- If n is odd then the next n of the sequence
= (3 * n) + 1
You are encouraged to solve this task according to the task description, using any language you may know.
The (unproven) Collatz conjecture is that the hailstone sequence for any starting number always terminates.
This sequence was named by Lothar Collatz in 1937 (or possibly in 1939), and is also known as (the):
- hailstone sequence, hailstone numbers
- 3x + 2 mapping, 3n + 1 problem
- Collatz sequence
- Hasse's algorithm
- Kakutani's problem
- Syracuse algorithm, Syracuse problem
- Thwaites conjecture
- Ulam's problem
The hailstone sequence is also known as hailstone numbers (because the values are usually subject to multiple descents and ascents like hailstones in a cloud).
- Task
- Create a routine to generate the hailstone sequence for a number.
- Use the routine to show that the hailstone sequence for the number 27 has 112 elements starting with
27, 82, 41, 124
and ending with8, 4, 2, 1
- Show the number less than 100,000 which has the longest hailstone sequence together with that sequence's length.
(But don't show the actual sequence!)
- See also
- xkcd (humourous).
- The Notorious Collatz conjecture Terence Tao, UCLA (Presentation, pdf).
- The Simplest Math Problem No One Can Solve Veritasium (video, sponsored).
11l
F hailstone(=n)
V seq = [n]
L n > 1
n = I n % 2 != 0 {3 * n + 1} E n I/ 2
seq.append(n)
R seq
V h = hailstone(27)
assert(h.len == 112 & h[0.<4] == [27, 82, 41, 124] & h[(len)-4 ..] == [8, 4, 2, 1])
V m = max((1..99999).map(i -> (hailstone(i).len, i)))
print(‘Maximum length #. was found for hailstone(#.) for numbers <100,000’.format(m[0], m[1]))
- Output:
Maximum length 351 was found for hailstone(77031) for numbers <100,000
360 Assembly
* Hailstone sequence 16/08/2015
HAILSTON CSECT
USING HAILSTON,R12
LR R12,R15
ST R14,SAVER14
BEGIN L R11,=F'100000' nmax
LA R8,27 n=27
LR R1,R8
MVI FTAB,X'01' ftab=true
BAL R14,COLLATZ
LR R10,R1 p
XDECO R8,XDEC n
MVC BUF1+10(6),XDEC+6
XDECO R10,XDEC p
MVC BUF1+18(5),XDEC+7
LA R5,6
LA R3,0 i
LA R4,BUF1+25
LOOPED L R2,TAB(R3) tab(i)
XDECO R2,XDEC
MVC 0(7,R4),XDEC+5
LA R3,4(R3) i=i+1
LA R4,7(R4)
C R5,=F'4'
BNE BCT
LA R4,7(R4)
BCT BCT R5,LOOPED
XPRNT BUF1,80 print hailstone(n)=p,tab(*)
MVC LONGEST,=F'0' longest=0
MVI FTAB,X'00' ftab=true
LA R8,1 i
LOOPI CR R8,R11 do i=1 to nmax
BH ELOOPI
LR R1,R8 n
BAL R14,COLLATZ
LR R10,R1 p
L R4,LONGEST
CR R4,R10 if longest<p
BNL NOTSUP
ST R8,IVAL ival=i
ST R10,LONGEST longest=p
NOTSUP LA R8,1(R8) i=i+1
B LOOPI
ELOOPI EQU * end i
XDECO R11,XDEC maxn
MVC BUF2+9(6),XDEC+6
L R1,IVAL ival
XDECO R1,XDEC
MVC BUF2+28(6),XDEC+6
L R1,LONGEST longest
XDECO R1,XDEC
MVC BUF2+36(5),XDEC+7
XPRNT BUF2,80 print maxn,hailstone(ival)=longest
B RETURN
* * * r1=collatz(r1)
COLLATZ LR R7,R1 m=n (R7)
LA R6,1 p=1 (R6)
LOOPP C R7,=F'1' do p=1 by 1 while(m>1)
BNH ELOOPP
CLI FTAB,X'01' if ftab
BNE NONOK
C R6,=F'1' if p>=1
BL NONOK
C R6,=F'3' & p<=3
BH NONOK
LR R1,R6 then
BCTR R1,0
SLA R1,2
ST R7,TAB(R1) tab(p)=m
NONOK LR R4,R7 m
N R4,=F'1' m&1
LTR R4,R4 if m//2=0 (if not(m&1))
BNZ ODD
EVEN SRA R7,1 m=m/2
B EIFM
ODD LA R3,3
MR R2,R7 *m
LA R7,1(R3) m=m*3+1
EIFM CLI FTAB,X'01' if ftab
BNE NEXTP
MVC TAB+12,TAB+16 tab(4)=tab(5)
MVC TAB+16,TAB+20 tab(5)=tab(6)
ST R7,TAB+20 tab(6)=m
NEXTP LA R6,1(R6) p=p+1
B LOOPP
ELOOPP LR R1,R6 end p; return(p)
BR R14 end collatz
*
RETURN L R14,SAVER14 restore caller address
XR R15,R15 set return code
BR R14 return to caller
SAVER14 DS F
IVAL DS F
LONGEST DS F
N DS F
TAB DS 6F
FTAB DS X
BUF1 DC CL80'hailstone(nnnnnn)=nnnnn : nnnnnn nnnnnn nnnnnn ...*
... nnnnnn nnnnnn nnnnnn'
BUF2 DC CL80'longest <nnnnnn : hailstone(nnnnnn)=nnnnn'
XDEC DS CL12
YREGS
END HAILSTON
- Output:
hailstone( 27)= 112 : 27 82 41 ...... 4 2 1 longest <100000 : hailstone( 77031)= 351
ABAP
CLASS lcl_hailstone DEFINITION.
PUBLIC SECTION.
TYPES: tty_sequence TYPE STANDARD TABLE OF i
WITH NON-UNIQUE EMPTY KEY,
BEGIN OF ty_seq_len,
start TYPE i,
len TYPE i,
END OF ty_seq_len,
tty_seq_len TYPE HASHED TABLE OF ty_seq_len
WITH UNIQUE KEY start.
CLASS-METHODS:
get_next
IMPORTING
n TYPE i
RETURNING
VALUE(r_next_hailstone_num) TYPE i,
get_sequence
IMPORTING
start TYPE i
RETURNING
VALUE(r_sequence) TYPE tty_sequence,
get_longest_sequence_upto
IMPORTING
limit TYPE i
RETURNING
VALUE(r_longest_sequence) TYPE ty_seq_len.
PRIVATE SECTION.
TYPES: BEGIN OF ty_seq,
start TYPE i,
seq TYPE tty_sequence,
END OF ty_seq.
CLASS-DATA: sequence_buffer TYPE HASHED TABLE OF ty_seq
WITH UNIQUE KEY start.
ENDCLASS.
CLASS lcl_hailstone IMPLEMENTATION.
METHOD get_next.
r_next_hailstone_num = COND #( WHEN n MOD 2 = 0 THEN n / 2
ELSE ( 3 * n ) + 1 ).
ENDMETHOD.
METHOD get_sequence.
INSERT start INTO TABLE r_sequence.
IF start = 1.
RETURN.
ENDIF.
READ TABLE sequence_buffer ASSIGNING FIELD-SYMBOL(<buff>)
WITH TABLE KEY start = start.
IF sy-subrc = 0.
INSERT LINES OF <buff>-seq INTO TABLE r_sequence.
ELSE.
DATA(seq) = get_sequence( get_next( start ) ).
INSERT LINES OF seq INTO TABLE r_sequence.
INSERT VALUE ty_seq( start = start
seq = seq ) INTO TABLE sequence_buffer.
ENDIF.
ENDMETHOD.
METHOD get_longest_sequence_upto.
DATA: max_seq TYPE ty_seq_len,
act_seq TYPE ty_seq_len.
DO limit TIMES.
act_seq-len = lines( get_sequence( sy-index ) ).
IF act_seq-len > max_seq-len.
max_seq-len = act_seq-len.
max_seq-start = sy-index.
ENDIF.
ENDDO.
r_longest_sequence = max_seq.
ENDMETHOD.
ENDCLASS.
START-OF-SELECTION.
cl_demo_output=>begin_section( |Hailstone sequence of 27 is: | ).
cl_demo_output=>write( REDUCE string( INIT result = ``
FOR item IN lcl_hailstone=>get_sequence( 27 )
NEXT result = |{ result } { item }| ) ).
cl_demo_output=>write( |With length: { lines( lcl_hailstone=>get_sequence( 27 ) ) }| ).
cl_demo_output=>begin_section( |Longest hailstone sequence upto 100k| ).
cl_demo_output=>write( lcl_hailstone=>get_longest_sequence_upto( 100000 ) ).
cl_demo_output=>display( ).
- Output:
Hailstone sequence of 27 is: 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 With length: 112 Longest hailstone sequence upto 100k Structure START LEN 77031 351
ABC
HOW TO RETURN hailstone n:
PUT {} IN seq
WHILE 1=1:
PUT n IN seq[#seq]
SELECT:
n=1: RETURN seq
n mod 2=0: PUT floor(n/2) IN n
n mod 2=1: PUT 3*n+1 IN n
RETURN seq
PUT hailstone 27 IN h27
WRITE "Length of Hailstone sequence for 27:", #h27/
WRITE "First 4 elements:", h27[0], h27[1], h27[2], h27[3]/
WRITE "Last 4 elements:", h27[#h27-4], h27[#h27-3], h27[#h27-2], h27[#h27-1]/
PUT 0, 0 IN longest, length
FOR n IN {1..100000}:
PUT hailstone n IN hn
IF #hn > length:
PUT n, #hn IN longest, length
WRITE longest, "has the longest hailstone sequence < 100,000, of length:", length/
- Output:
Length of Hailstone sequence for 27: 112 First 4 elements: 27 82 41 124 Last 4 elements: 8 4 2 1 77031 has the longest hailstone sequence < 100,000, of length: 351
ACL2
(defun hailstone (len)
(loop for x = len
then (if (evenp x)
(/ x 2)
(+ 1 (* 3 x)))
collect x until (= x 1)))
;; Must be tail recursive
(defun max-hailstone-start (limit mx curr)
(declare (xargs :mode :program))
(if (zp limit)
(mv mx curr)
(let ((new-mx (len (hailstone limit))))
(if (> new-mx mx)
(max-hailstone-start (1- limit) new-mx limit)
(max-hailstone-start (1- limit) mx curr)))))
- Output:
> (take 4 (hailstone 27)) (27 82 41 124) > (nthcdr 108 (hailstone 27)) (8 4 2 1) > (len (hailstone 27)) 112 > (max-hailstone-start 100000 0 0) (351 77031)
Ada
Similar to C method:
with Ada.Text_IO; use Ada.Text_IO;
procedure hailstone is
type int_arr is array(Positive range <>) of Integer;
type int_arr_pt is access all int_arr;
function hailstones(num:Integer; pt:int_arr_pt) return Integer is
stones : Integer := 1;
n : Integer := num;
begin
if pt /= null then pt(1) := num; end if;
while (n/=1) loop
stones := stones + 1;
if n mod 2 = 0 then n := n/2;
else n := (3*n)+1;
end if;
if pt /= null then pt(stones) := n; end if;
end loop;
return stones;
end hailstones;
nmax,stonemax,stones : Integer := 0;
list : int_arr_pt;
begin
stones := hailstones(27,null);
list := new int_arr(1..stones);
stones := hailstones(27,list);
put(" 27: "&Integer'Image(stones)); new_line;
for n in 1..4 loop put(Integer'Image(list(n))); end loop;
put(" .... ");
for n in stones-3..stones loop put(Integer'Image(list(n))); end loop;
new_line;
for n in 1..100000 loop
stones := hailstones(n,null);
if stones>stonemax then
nmax := n; stonemax := stones;
end if;
end loop;
put_line(Integer'Image(nmax)&" max @ n= "&Integer'Image(stonemax));
end hailstone;
- Output:
27: 112 27 82 41 124 .... 8 4 2 1 77031 max @ n= 351
Alternative method
A method without pointers or dynamic memory allocation, but slower for simply counting. This is also used for the "executable library" task Executable library#Ada.
hailstones.ads:
package Hailstones is
type Integer_Sequence is array(Positive range <>) of Integer;
function Create_Sequence (N : Positive) return Integer_Sequence;
end Hailstones;
hailstones.adb:
package body Hailstones is
function Create_Sequence (N : Positive) return Integer_Sequence is
begin
if N = 1 then
-- terminate
return (1 => N);
elsif N mod 2 = 0 then
-- even
return (1 => N) & Create_Sequence (N / 2);
else
-- odd
return (1 => N) & Create_Sequence (3 * N + 1);
end if;
end Create_Sequence;
end Hailstones;
example main.adb:
with Ada.Text_IO;
with Hailstones;
procedure Main is
package Integer_IO is new Ada.Text_IO.Integer_IO (Integer);
procedure Print_Sequence (X : Hailstones.Integer_Sequence) is
begin
for I in X'Range loop
Integer_IO.Put (Item => X (I), Width => 0);
if I < X'Last then
Ada.Text_IO.Put (", ");
end if;
end loop;
Ada.Text_IO.New_Line;
end Print_Sequence;
Hailstone_27 : constant Hailstones.Integer_Sequence :=
Hailstones.Create_Sequence (N => 27);
begin
Ada.Text_IO.Put_Line ("Length of 27:" & Integer'Image (Hailstone_27'Length));
Ada.Text_IO.Put ("First four: ");
Print_Sequence (Hailstone_27 (Hailstone_27'First .. Hailstone_27'First + 3));
Ada.Text_IO.Put ("Last four: ");
Print_Sequence (Hailstone_27 (Hailstone_27'Last - 3 .. Hailstone_27'Last));
declare
Longest_Length : Natural := 0;
Longest_N : Positive;
Length : Natural;
begin
for I in 1 .. 99_999 loop
Length := Hailstones.Create_Sequence (N => I)'Length;
if Length > Longest_Length then
Longest_Length := Length;
Longest_N := I;
end if;
end loop;
Ada.Text_IO.Put_Line ("Longest length is" & Integer'Image (Longest_Length));
Ada.Text_IO.Put_Line ("with N =" & Integer'Image (Longest_N));
end;
end Main;
- Output:
Length of 27: 112 First four: 27, 82, 41, 124 Last four: 8, 4, 2, 1 Longest length is 351 with N = 77031
Aime
void
print_hailstone(integer h)
{
list l;
while (h ^ 1) {
lb_p_integer(l, h);
h = h & 1 ? 3 * h + 1 : h / 2;
}
o_form("hailstone sequence for ~ is ~1 ~ ~ ~ .. ~ ~ ~ ~, it is ~ long\n",
l[0], l[1], l[2], l[3], l[-3], l[-2], l[-1], 1, ~l + 1);
}
void
max_hailstone(integer x)
{
integer e, i, m;
index r;
m = 0;
i = 1;
while (i < x) {
integer h, k, l;
h = i;
l = 1;
while (h ^ 1) {
if (i_j_integer(k, r, h)) {
l += k;
break;
} else {
l += 1;
h = h & 1 ? 3 * h + 1 : h / 2;
}
}
r[i] = l - 1;
if (m < l) {
m = l;
e = i;
}
i += 1;
}
o_form("hailstone sequence length for ~ is ~\n", e, m);
}
integer
main(void)
{
print_hailstone(27);
max_hailstone(100000);
return 0;
}
- Output:
hailstone sequence for 27 is 27 82 41 124 .. 8 4 2 1, it is 112 long hailstone sequence length for 77031 is 351
ALGOL 60
begin
comment Hailstone sequence - Algol 60;
integer array collatz[1:400]; integer icollatz;
integer procedure mod(i,j); value i,j; integer i,j;
mod:=i-(i div j)*j;
integer procedure hailstone(num);
value num; integer num;
begin
integer i,n;
icollatz:=1; n:=num; i:=0;
collatz[icollatz]:=n;
for i:=i+1 while n notequal 1 do begin
if mod(n,2)=0 then n:=n div 2
else n:=(3*n)+1;
icollatz:=icollatz+1;
collatz[icollatz]:=n
end;
hailstone:=icollatz
end hailstone;
integer i,nn,ncollatz,count,nlongest,nel,nelcur,nnn;
nn:=27;
ncollatz:=hailstone(nn);
outstring(1,"sequence for"); outinteger(1,nn); outstring(1," :\n");
for i:=1 step 1 until ncollatz do outinteger(1,collatz[i]);
outstring(1,"\n");
outstring(1,"number of elements:"); outinteger(1,ncollatz);
outstring(1,"\n\n");
nlongest:=0; nel:=0; nnn:=100000;
for count:=1, count+1 while count<nnn do begin
nelcur:=hailstone(count);
if nelcur>nel then begin
nel:=nelcur;
nlongest:=count
end
end;
outstring(1,"number <"); outinteger(1,nnn);
outstring(1,"with the longest sequence:"); outinteger(1,nlongest);
outstring(1,", with"); outinteger(1,nel); outstring(1,"elements.");
outstring(1,"\n")
end
- Output:
sequence for 27 : 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 number of elements: 112 number < 100000 with the longest sequence: 77031 , with 351 elements.
ALGOL 68
- note: This specimen retains the original C coding style.
MODE LINT = # LONG ... # INT;
PROC hailstone = (INT in n, REF[]LINT array)INT:
(
INT hs := 1;
INT index := 0;
LINT n := in n;
WHILE n /= 1 DO
hs +:= 1;
IF array ISNT REF[]LINT(NIL) THEN array[index +:= 1] := n FI;
n := IF ODD n THEN 3*n+1 ELSE n OVER 2 FI
OD;
IF array ISNT REF[]LINT(NIL) THEN array[index +:= 1] := n FI;
hs
);
main:
(
INT j, hmax := 0;
INT jatmax, n;
INT border = 4;
FOR j TO 100000-1 DO
n := hailstone(j, NIL);
IF hmax < n THEN
hmax := n;
jatmax := j
FI
OD;
[2]INT test := (27, jatmax);
FOR key TO UPB test DO
INT val = test[key];
n := hailstone(val, NIL);
[n]LINT array;
n := hailstone(val, array);
printf(($"[ "n(border)(g(0)", ")" ..."n(border)(", "g(0))"] len="g(0)l$,
array[:border], array[n-border+1:], n))
#;free(array) #
OD;
printf(($"Max "g(0)" at j="g(0)l$, hmax, jatmax))
# ELLA Algol68RS:
print(("Max",hmax," at j=",jatmax, new line))
#
)
- Output:
[ 27, 82, 41, 124, ..., 8, 4, 2, 1] len=112 [ 77031, 231094, 115547, 346642, ..., 8, 4, 2, 1] len=351 Max 351 at j=77031
ALGOL-M
The limitations of ALGOL-M's 15-bit integer data type will not allow the required search up to 100000 for the longest sequence, so we stick with what is possible.
BEGIN
INTEGER N, LEN, YES, NO, LIMIT, LONGEST, NLONG;
% RETURN P MOD Q %
INTEGER FUNCTION MOD(P, Q);
INTEGER P, Q;
BEGIN
MOD := P - Q * (P / Q);
END;
% COMPUTE AND OPTIONALLY DISPLAY HAILSTONE SEQUENCE FOR N. %
% RETURN LENGTH OF SEQUENCE OR ZERO ON OVERFLOW. %
INTEGER FUNCTION HAILSTONE(N, DISPLAY);
INTEGER N, DISPLAY;
BEGIN
INTEGER LEN;
LEN := 1;
IF DISPLAY = 1 THEN WRITE("");
WHILE (N <> 1) AND (N > 0) DO
BEGIN
IF DISPLAY = 1 THEN WRITEON(N," ");
IF MOD(N,2) = 0 THEN
N := N / 2
ELSE
N := (N * 3) + 1;
LEN := LEN + 1;
END;
IF DISPLAY = 1 THEN WRITEON(N);
HAILSTONE := (IF N < 0 THEN 0 ELSE LEN);
END;
% EXERCISE THE FUNCTION %
YES := 1; NO := 0;
WRITE("DISPLAY HAILSTONE SEQUENCE FOR WHAT NUMBER?");
READ(N);
LEN := HAILSTONE(N, YES);
WRITE("SEQUENCE LENGTH =", LEN);
% FIND LONGEST SEQUENCE BEFORE OVERFLOW %
N := 2;
LONGEST := 1;
LEN := 2;
NLONG := 2;
LIMIT := 1000;
WRITE("SEARCHING FOR LONGEST SEQUENCE UP TO N =",LIMIT," ...");
WHILE (N < LIMIT) AND (LEN <> 0) DO
BEGIN
LEN := HAILSTONE(N, NO);
IF LEN > LONGEST THEN
BEGIN
LONGEST := LEN;
NLONG := N;
END;
N := N + 1;
END;
IF LEN = 0 THEN WRITE("SEARCH TERMINATED WITH OVERFLOW AT N =",N-1);
WRITE("MAXIMUM SEQUENCE LENGTH =", LONGEST, " FOR N =", NLONG);
END
- Output:
DISPLAY HAILSTONE SEQUENCE FOR WHAT NUMBER? -> 27 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 SEQUENCE LENGTH = 112 SEARCHING FOR LONGEST SEQUENCE UP TO N = 10000 ... SEARCH TERMINATED WITH OVERFLOW AT N = 447 MAXIMUM SEQUENCE LENGTH = 144 FOR N = 327
ALGOL W
begin
% show some Hailstone Sequence related information %
% calculates the length of the sequence generated by n, %
% if showFirstAndLast is true, the first and last 4 elements of the %
% sequence are stored in first and last %
% hs holds a cache of the upbHs previously calculated sequence lengths %
% if showFirstAndLast is false, the cache will be used %
procedure hailstone ( integer value n
; integer array first, last ( * )
; integer result length
; integer array hs ( * )
; integer value upbHs
; logical value showFirstAndLast
) ;
if not showFirstAndLast and n <= upbHs and hs( n ) not = 0 then begin
% no need to store the start and end of the sequence and we already %
% know the length of the sequence for n %
length := hs( n )
end
else begin
% must calculate the sequence length %
integer sv;
for i := 1 until 4 do first( i ) := last( i ) := 0;
length := 0;
sv := n;
if sv > 0 then begin
while begin
length := length + 1;
if showFirstAndLast then begin
if length <= 4 then first( length ) := sv;
for lPos := 1 until 3 do last( lPos ) := last( lPos + 1 );
last( 4 ) := sv
end
else if sv <= upbHs and hs( sv ) not = 0 then begin
% have a known value %
length := ( length + hs( sv ) ) - 1;
sv := 1
end ;
sv not = 1
end do begin
sv := if odd( sv ) then ( 3 * sv ) + 1 else sv div 2
end while_sv_ne_1 ;
if n < upbHs then hs( n ) := length
end if_sv_gt_0
end hailstone ;
begin
% test the hailstone procedure %
integer HS_CACHE_SIZE;
HS_CACHE_SIZE := 100000;
begin
integer array first, last ( 1 :: 4 );
integer length, maxLength, maxNumber;
integer array hs ( 1 :: HS_CACHE_SIZE );
for i := 1 until HS_CACHE_SIZE do hs( i ) := 0;
hailstone( 27, first, last, length, hs, HS_CACHE_SIZE, true );
write( i_w := 1, s_w := 0
, "27: length ", length, ", first: ["
, first( 1 ), " ", first( 2 ), " ", first( 3 ), " ", first( 4 )
, "] last: ["
, last( 1 ), " ", last( 2 ), " ", last( 3 ), " ", last( 4 )
, "]"
);
maxNumber := 0;
maxLength := 0;
for n := 1 until 100000 do begin
hailstone( n, first, last, length, hs, HS_CACHE_SIZE, false );
if length > maxLength then begin
maxNumber := n;
maxLength := length
end if_length_gt_maxLength
end for_n ;
write( i_w := 1, s_w := 1, "Maximum sequence length: ", maxLength, " for: ", maxNumber )
end
end
end.
- Output:
27: length 112, first: [27 82 41 124] last: [8 4 2 1] Maximum sequence length: 351 for: 77031
Amazing Hopper
#include <basico.h>
#proto Hailstone(_X_,_SW_)
algoritmo
valor=27, máxima secuencia=0, vtemp=0
imprimir ( _Hailstone(27,1) ---copiar en 'máxima secuencia'--- , NL )
i=28
iterar
_Hailstone(i,0), copiar en 'vtemp'
cuando( sea mayor que 'máxima secuencia' ) {
máxima secuencia = vtemp
valor=i
}
++i
hasta que ' #(i==100000) '
imprimir ( #(utf8("Máxima longitud ")),máxima secuencia,\
" fue encontrada para Hailstone(",valor,\
#(utf8(") para números <100,000")), NL )
terminar
subrutinas
Hailstone(n, sw)
largo_de_secuencia = 0
v={}, n, mete(v)
iterar
tomar si ( es par(n), #(n/2), \
tomar si ( #(n<>1), #(3*n+1), 1) )
---copiar en 'n'--- mete(v)
hasta que ' #(n==1) '
#(length(v)), mover a 'largo_de_secuencia'
cuando (sw){
decimales '0'
#( v[1:4] ), ",...,",
#( v[largo_de_secuencia-4 : largo_de_secuencia] )
NL, #(utf8("Tamaño de la secuencia: "))
imprime esto; decimales normales
}
retornar ' largo_de_secuencia '
- Output:
27,82,41,124,...,16,8,4,2,1 Tamaño de la secuencia: 112 Máxima longitud 351 fue encontrada para Hailstone(77031) para números <100,000
APL
⍝ recursive dfn:
dfnHailstone←{
c←⊃⌽⍵ ⍝ last element
1=c:1 ⍝ if it is 1, stop.
⍵,∇(1+2|c)⊃(c÷2)(1+3×c) ⍝ otherwise pick the next step, and append the result of the recursive call
}
⍝ tradfn version:
∇seq←hailstone n;next
⍝ Returns the hailstone sequence for a given number
seq←n ⍝ Init the sequence
:While n≠1
next←(n÷2) (1+3×n) ⍝ Compute both possibilities
n←next[1+2|n] ⍝ Pick the appropriate next step
seq,←n ⍝ Append that to the sequence
:EndWhile
∇
- Output:
dfnHailstone 5
5 16 8 4 2 1
5↑hailstone 27
27 82 41 124 62
¯5↑hailstone 27
16 8 4 2 1
⍴hailstone 27
112
1↑{⍵[⍒↑(⍴∘hailstone)¨⍵]}⍳100000
77031
AppleScript
on hailstoneSequence(n)
script o
property sequence : {n}
end script
repeat until (n = 1)
if (n mod 2 is 0) then
set n to n div 2
else
set n to 3 * n + 1
end if
set end of o's sequence to n
end repeat
return o's sequence
end hailstoneSequence
set n to 27
tell hailstoneSequence(n)
return {n:n, |length of sequence|:(its length), |first 4 numbers|:items 1 thru 4, |last 4 numbers|:items -4 thru -1}
end tell
- Output:
{|length of sequence|:112, |first 4 numbers|:{27, 82, 41, 124}, |last 4 numbers|:{8, 4, 2, 1}}
-- Number(s) below 100,000 giving the longest sequence length, using the hailstoneSequence(n) handler above.
set nums to {}
set longestLength to 1
repeat with n from 2 to 99999
set thisLength to (count hailstoneSequence(n))
if (thisLength < longestLength) then
else if (thisLength > longestLength) then
set nums to {n}
set longestLength to thisLength
else
set end of nums to n
end if
end repeat
return {|number(s) giving longest sequence length|:nums, |length of sequence|:longestLength}
- Output:
{|number(s) giving longest sequence length|:{77031}, |length of sequence|:351}
ARM Assembly
Output is in hexadecimal but is otherwise correct. Because of the Game Boy Advance's limited screen size, only the first 4 and last 4 entries are printed to the screen. The emulator's memory dump can show the rest. In addition, the task was split into two separate programs.
Hailstone Sequence of N equal to 27
.org 0x08000000
b ProgramStart
;cartridge header goes here
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Program Start
.equ ramarea, 0x02000000
.equ CursorX,ramarea
.equ CursorY,ramarea+1
.equ hailstoneram,0x02000004
ProgramStart:
mov sp,#0x03000000 ;Init Stack Pointer
mov r4,#0x04000000 ;DISPCNT - LCD Video Controller
mov r2,#0x403 ;4= Layer 2 on / 3= ScreenMode 3
str r2,[r4] ;now the user can see the screen
bl ResetTextCursors ;set text cursors to top left of screen. This routine, as well as the other I/O
; routines, were omitted to keep this entry short.
mov r0,#27
adr r1,HailStoneMessage_Init
bl PrintString
bl NewLine
bl ShowHex32
bl NewLine
bl NewLine
bl Hailstone
;function is complete, return the output
adr r1,HailStoneMessage_0
bl PrintString
bl NewLine
ldr r1,HailStoneRam_Mirror ;mov r2,0x02000004
ldr r0,[r1],#4
bl ShowHex32
bl NewLine
ldr r0,[r1],#4
bl ShowHex32
bl NewLine
ldr r0,[r1],#4
bl ShowHex32
bl NewLine
ldr r0,[r1],#4
bl ShowHex32
bl NewLine
bl NewLine
adr r1,HailStoneMessage_1
bl PrintString
bl NewLine
ldr r0,[r2],#4
bl ShowHex32
bl NewLine
ldr r0,[r2],#4
bl ShowHex32
bl NewLine
ldr r0,[r2],#4
bl ShowHex32
bl NewLine
ldr r0,[r2],#4
bl ShowHex32
bl NewLine
bl NewLine
adr r1,HailStoneMessage_2
bl PrintString
bl NewLine
mov r0,r3
bl ShowHex32
forever:
b forever ;we're done, so trap the program counter.
Hailstone:
;input: R0 = n.
;out: r2 = pointer to last 4 entries
; r3 = length of sequence
;reg usage:
;R1 = scratchpad
;R3 = counter for entries in the sequence.
;R5 = pointer to output ram
stmfd sp!,{r4-r12,lr}
mov r5,#0x02000000
add r5,r5,#4
str r0,[r5],#4 ;store in hailstone ram and post-inc by 4
mov r3,#0
loop_hailstone:
add r3,r3,#1 ;represents number of entries in the sequence
cmp r0,#1
beq hailstone_end
tst r0,#1
;;;; executes only if r0 was even
moveq r0,r0,lsr #1 ;divide
;;;; executes only if r0 was odd
movne r1,r0
movne r0,r0,lsl #1
addne r0,r1,r0
addne r0,r0,#1
str r0,[r5],#4 ;store in hailstone ram, post inc by 4
b loop_hailstone
hailstone_end:
sub r5,r5,#16 ;subtract 16 to get pointer to last 4 entries.
mov r2,r5 ;output ptr to last 4 entries to r2.
;pointer to first 4 entries is 0x02000004
ldmfd sp!,{r4-r12,pc}
HailStoneRam_Mirror:
.long 0x02000004
HailstoneMessage_Init:
.byte "Your input was:",255
.align 4
HailstoneMessage_0:
.byte "First 4 numbers are:",255
.align 4
HailstoneMessage_1:
.byte "Last 4 numbers are:",255
.align 4
HailstoneMessage_2:
.byte "Sequence length is:",255
.align 4
;;;;;;;;;;; EVERYTHING PAST THIS POINT IS JUST I/O ROUTINES FOR PRINTING NUMBERS AND WORDS TO THE GAME BOY ADVANCE'S SCREEN
;;;;;;;;;;; I ASSURE YOU THAT ALL OF IT WORKS BUT CHANCES ARE YOU DIDN'T COME HERE TO SEE THAT.
;;;;;;;;;;; THANKS TO KEITH OF CHIBIAKUMAS.COM FOR WRITING THEM!
- Output:
Your input was: 0000001B First 4 numbers are: 0000001B 00000052 00000029 0000007C Last 4 numbers are: 00000008 00000004 00000002 00000001 Sequence length is: 00000070
Picture of output on VisualBoyAdvance screen
Biggest Sequence Between 2 and 100,000
To keep this short, I'm only including the part that changed, and the output. This goes after the call to ResetTextCursors
but before the infinite loop:
mov r0,#1
bl Hailstone
mov r6,r3
mov r0,#2
mov r8,#100000
loop_getBiggestHailstone:
mov r10,r0
bl Hailstone
mov r0,r10
cmp r3,r6
movgt r6,r3 ;if greater than, store in r6
movgt r7,r0 ;if greater than, store in r7
add r0,r0,#1
cmp r0,r8
blt loop_getBiggestHailstone
adr r1,HailstoneMessage_0
bl PrintString
bl NewLine
adr r1,HailStoneMessage_1
bl PrintString
bl NewLine
mov r0,r7
bl ShowHex32
bl NewLine
adr r1,HailStoneMessage_2
bl PrintString
bl NewLine
mov r0,r6
bl ShowHex32
bl NewLine
- Output:
The number that makes the biggest sequence is: 00012CE7 And that sequence has a length of: 0000015F
Arturo
hailstone: function [n][
ret: @[n]
while [n>1][
if? 1 = and n 1 -> n: 1+3*n
else -> n: n/2
'ret ++ n
]
ret
]
print "Hailstone sequence for 27:"
print hailstone 27
maxHailstoneLength: 0
maxHailstone: 0
loop 2..1000 'x [
l: size hailstone x
if l>maxHailstoneLength [
maxHailstoneLength: l
maxHailstone: x
]
]
print ["max hailstone sequence found (<100000): of length" maxHailstoneLength "for" maxHailstone]
- Output:
Hailstone sequence for 27: 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 max hailstone sequence found (<100000): of length 351 for 77031
AutoHotkey
; Submitted by MasterFocus --- http://tiny.cc/iTunis
; [1] Generate the Hailstone Seq. for a number
List := varNum := 7 ; starting number is 7, not counting elements
While ( varNum > 1 )
List .= ", " ( varNum := ( Mod(varNum,2) ? (varNum*3)+1 : varNum//2 ) )
MsgBox % List
; [2] Seq. for starting number 27 has 112 elements
Count := 1, List := varNum := 27 ; starting number is 27, counting elements
While ( varNum > 1 )
Count++ , List .= ", " ( varNum := ( Mod(varNum,2) ? (varNum*3)+1 : varNum//2 ) )
MsgBox % "Sequence:`n" List "`n`nCount: " Count
; [3] Find number<100000 with longest seq. and show both values
MaxNum := Max := 0 ; reset the Maximum variables
TimesToLoop := 100000 ; limit number here is 100000
Offset := 70000 ; offset - use 0 to process from 0 to 100000
Loop, %TimesToLoop%
{
If ( TimesToLoop < ( varNum := Index := A_Index+Offset ) )
Break
text := "Processing...`n-------------------`n"
text .= "Current starting number: " Index "`n"
text .= "Current sequence count: " Count
text .= "`n-------------------`n"
text .= "Maximum starting number: " MaxNum "`n"
text .= "Maximum sequence count: " Max " <<" ; text split to avoid long code lines
ToolTip, %text%
Count := 1 ; going to count the elements, but no "List" required
While ( varNum > 1 )
Count++ , varNum := ( Mod(varNum,2) ? (varNum*3)+1 : varNum//2 )
If ( Count > Max )
Max := Count , MaxNum := Index ; set the new maximum values, if necessary
}
ToolTip
MsgBox % "Number: " MaxNum "`nCount: " Max
AutoIt
$Hail = Hailstone(27)
ConsoleWrite("Sequence-Lenght: "&$Hail&@CRLF)
$Big = -1
$Sequenzlenght = -1
For $I = 1 To 100000
$Hail = Hailstone($i, False)
If Number($Hail) > $Sequenzlenght Then
$Sequenzlenght = Number($Hail)
$Big = $i
EndIf
Next
ConsoleWrite("Longest Sequence : "&$Sequenzlenght&" from number "&$Big&@CRLF)
Func Hailstone($int, $sequence = True)
$Counter = 0
While True
$Counter += 1
If $sequence = True Then ConsoleWrite($int & ",")
If $int = 1 Then ExitLoop
If Not Mod($int, 2) Then
$int = $int / 2
Else
$int = 3 * $int + 1
EndIf
If Not Mod($Counter, 25) AND $sequence = True Then ConsoleWrite(@CRLF)
WEnd
If $sequence = True Then ConsoleWrite(@CRLF)
Return $Counter
EndFunc ;==>Hailstone
- Output:
27,82,41,124,62,31,94,47,142,71,214,107,322,161,484,242,121,364,182,91,274,137,412,206,103, 310,155,466,233,700,350,175,526,263,790,395,1186,593,1780,890,445,1336,668,334,167,502,251,754,377,1132, 566,283,850,425,1276,638,319,958,479,1438,719,2158,1079,3238,1619,4858,2429,7288,3644,1822,911,2734,1367,4102,2051, 6154,3077,9232,4616,2308,1154,577,1732,866,433,1300,650,325,976,488,244,122,61,184,92,46,23,70,35,106, 53,160,80,40,20,10,5,16,8,4,2,1, Sequence-Lenght: 112 Longest Sequence : 351 from number 77031
AWK
#!/usr/bin/awk -f
function hailstone(v, verbose) {
n = 1;
u = v;
while (1) {
if (verbose) printf " "u;
if (u==1) return(n);
n++;
if (u%2 > 0 )
u = 3*u+1;
else
u = u/2;
}
}
BEGIN {
i = 27;
printf("hailstone(%i) has %i elements\n",i,hailstone(i,1));
ix=0;
m=0;
for (i=1; i<100000; i++) {
n = hailstone(i,0);
if (m<n) {
m=n;
ix=i;
}
}
printf("longest hailstone sequence is %i and has %i elements\n",ix,m);
}
- Output:
27 82 41 124 ....... 8 4 2 1 hailstone(27) has 112 elements longest hailstone sequence is 77031 and has 351 elements
BASIC
Applesoft BASIC
10 HOME
100 N = 27
110 GOSUB 400"HAILSTONE
120 DEF FN L(I) = E(I + 4 * (I < 0))
130IFL=112AND(S(0)=27ANDS(1)=82ANDS(2)=41ANDS(3)=124)AND(FNL(M-3)=8ANDFNL(M-2)=4ANDFNL(M-1)=2ANDFNL(M)=1)THENPRINT"THE HAILSTONE SEQUENCE FOR THE NUMBER 27 HAS 112 ELEMENTS STARTING WITH 27, 82, 41, 124 AND ENDING WITH 8, 4, 2, 1"
140 PRINT
150 V = PEEK(37) + 1
200 N = 1
210 GOSUB 400"HAILSTONE
220 MN = 1
230 ML = L
240 FOR I = 2 TO 99999
250 N = I
260 GOSUB 400"HAILSTONE
270 IFL>MLTHENMN=I:ML=L:VTABV:HTAB1:PRINT "THE NUMBER " MN " HAS A HAILSTONE SEQUENCE LENGTH OF "L" WHICH IS THE LONGEST HAILSTONE SEQUENCE OF NUMBERS LESS THAN ";:Y=PEEK(37)+1:X=PEEK(36)+1
280 IF Y THEN VTAB Y : HTAB X : PRINTI+1;
290 NEXT I
300 END
400 M = 0
410 FOR L = 1 TO 1E38
420 IF L < 5 THEN S(L-1) = N
430 M = (M + 1) * (M < 3)
440 E(M) = N
450 IF N = 1 THEN RETURN
460 EVEN = INT(N/2)=N/2
470 IF EVEN THEN N=N/2
480 IF NOT EVEN THEN N = (3 * N) + 1
490 NEXT L : STOP
BBC BASIC
seqlen% = FNhailstone(27, TRUE)
PRINT '"Sequence length = "; seqlen%
maxlen% = 0
FOR number% = 2 TO 100000
seqlen% = FNhailstone(number%, FALSE)
IF seqlen% > maxlen% THEN
maxlen% = seqlen%
maxnum% = number%
ENDIF
NEXT
PRINT "The number with the longest hailstone sequence is " ; maxnum%
PRINT "Its sequence length is " ; maxlen%
END
DEF FNhailstone(N%, S%)
LOCAL L%
IF S% THEN PRINT N%;
WHILE N% <> 1
IF N% AND 1 THEN N% = 3 * N% + 1 ELSE N% DIV= 2
IF S% THEN PRINT N%;
L% += 1
ENDWHILE
= L% + 1
- Output:
27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 Sequence length = 112 The number with the longest hailstone sequence is 77031 Its sequence length is 351
Commodore BASIC
100 PRINT : PRINT "HAILSTONE SEQUENCE FOR N = 27:"
110 N=27 : SHOW=1
120 GOSUB 1000
130 PRINT X"ELEMENTS"
140 PRINT : PRINT "FINDING N WITH THE LONGEST HAILSTONE SEQUENCE"
150 SHOW=0
160 T0 = TI
170 FOR N=2 TO 100000
180 : GOSUB 1000
190 : IF X>MAX THEN MAX=X : NMAX = N
200 : REM' PRINT N,X,MAX
210 NEXT
230 PRINT "LONGEST HAILSTONE SEQUENCE STARTS WITH "NMAX"."
240 PRINT "IT HAS"MAX"ELEMENTS"
260 END
1000 REM '*** HAILSTONE SEQUENCE SUBROUTINE ***
1010 X = 0 : S = N
1020 IF SHOW THEN PRINT S,
1030 X = X+1
1040 IF S=1 THEN RETURN
1050 IF INT(S/2)=S/2 THEN S = S/2 : GOTO 1020
1060 S = 3*S+1
1070 GOTO 1020
FreeBASIC
' version 17-06-2015
' compile with: fbc -s console
Function hailstone_fast(number As ULongInt) As ULongInt
' faster version
' only counts the sequence
Dim As ULongInt count = 1
While number <> 1
If (number And 1) = 1 Then
number += number Shr 1 + 1 ' 3*n+1 and n/2 in one
count += 2
Else
number Shr= 1 ' divide number by 2
count += 1
End If
Wend
Return count
End Function
Sub hailstone_print(number As ULongInt)
' print the number and sequence
Dim As ULongInt count = 1
Print "sequence for number "; number
Print Using "########"; number; 'starting number
While number <> 1
If (number And 1) = 1 Then
number = number * 3 + 1 ' n * 3 + 1
count += 1
Else
number = number \ 2 ' n \ 2
count += 1
End If
Print Using "########"; number;
Wend
Print : Print
Print "sequence length = "; count
Print
Print String(79,"-")
End Sub
Function hailstone(number As ULongInt) As ULongInt
' normal version
' only counts the sequence
Dim As ULongInt count = 1
While number <> 1
If (number And 1) = 1 Then
number = number * 3 + 1 ' n * 3 + 1
count += 1
End If
number = number \ 2 ' divide number by 2
count += 1
Wend
Return count
End Function
' ------=< MAIN >=------
Dim As ULongInt number
Dim As UInteger x, max_x, max_seq
hailstone_print(27)
Print
For x As UInteger = 1 To 100000
number = hailstone(x)
If number > max_seq Then
max_x = x
max_seq = number
End If
Next
Print "The longest sequence is for "; max_x; ", it has a sequence length of "; max_seq
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print : Print "hit any key to end program"
Sleep
End
- Output:
sequence for number 27 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 sequence length = 112 ------------------------------------------------------------------------------- The longest sequence is for 77031, it has a sequence length of 351
GW-BASIC
10 N# = 27
20 P = 1
30 GOSUB 130
40 PRINT "That took";C;"steps."
50 P = 0 : A = 0 : B = 0
60 FOR M = 1 TO 99999!
70 N# = M
80 GOSUB 130
90 IF C > B THEN B = C: A = M
100 NEXT M
110 PRINT "The longest sequence is for n=";A;" and is ";B;" steps long."
120 END
130 C = 1
140 IF P = 1 THEN PRINT N#
150 IF N# < 2 THEN RETURN
160 IF N#/2 = INT(N#/2) THEN N# = N#/2 ELSE N# = 3*N# + 1
170 C = C + 1
180 GOTO 140
Liberty BASIC
print "Part 1: Create a routine to generate the hailstone sequence for a number."
print ""
while hailstone < 1 or hailstone <> int(hailstone)
input "Please enter a positive integer: "; hailstone
wend
print ""
print "The following is the 'Hailstone Sequence' for your number..."
print ""
print hailstone
while hailstone <> 1
if hailstone / 2 = int(hailstone / 2) then hailstone = hailstone / 2 else hailstone = (3 * hailstone) + 1
print hailstone
wend
print ""
input "Hit 'Enter' to continue to part 2...";dummy$
cls
print "Part 2: Use the routine to show that the hailstone sequence for the number 27 has 112 elements starting with 27, 82, 41, 124 and ending with 8, 4, 2, 1."
print ""
print "No. in Seq.","Hailstone Sequence Number for 27"
print ""
c = 1: hailstone = 27
print c, hailstone
while hailstone <> 1
c = c + 1
if hailstone / 2 = int(hailstone / 2) then hailstone = hailstone / 2 else hailstone = (3 * hailstone) + 1
print c, hailstone
wend
print ""
input "Hit 'Enter' to continue to part 3...";dummy$
cls
print "Part 3: Show the number less than 100,000 which has the longest hailstone sequence together with that sequence's length.(But don't show the actual sequence)!"
print ""
print "Calculating result... Please wait... This could take a little while..."
print ""
print "Percent Done", "Start Number", "Seq. Length", "Maximum Sequence So Far"
print ""
for cc = 1 to 99999
hailstone = cc: c = 1
while hailstone <> 1
c = c + 1
if hailstone / 2 = int(hailstone / 2) then hailstone = hailstone / 2 else hailstone = (3 * hailstone) + 1
wend
if c > max then max = c: largesthailstone = cc
locate 1, 7
print " "
locate 1, 7
print using("###.###", cc / 99999 * 100);"%", cc, c, max
scan
next cc
print ""
print "The number less than 100,000 with the longest 'Hailstone Sequence' is "; largesthailstone;". It's sequence length is "; max;"."
end
OxygenBasic
function Hailstone(sys *n)
'=========================
if n and 1
n=n*3+1
else
n=n>>1
end if
end function
function HailstoneSequence(sys n) as sys
'=======================================
count=1
do
Hailstone n
Count++
if n=1 then exit do
end do
return count
end function
'MAIN
'====
maxc=0
maxn=0
e=100000
for n=1 to e
c=HailstoneSequence n
if c>maxc
maxc=c
maxn=n
end if
next
print e ", " maxn ", " maxc
'result 100000, 77031, 351
PureBasic
NewList Hailstones.i() ; Make a linked list to use as we do not know the numbers of elements needed for an Array
Procedure.i FillHailstones(n) ; Fills the list & returns the amount of elements in the list
Shared Hailstones() ; Get access to the Hailstones-List
ClearList(Hailstones()) ; Remove old data
Repeat
AddElement(Hailstones()) ; Add an element to the list
Hailstones()=n ; Fill current value in the new list element
If n=1
ProcedureReturn ListSize(Hailstones())
ElseIf n%2=0
n/2
Else
n=(3*n)+1
EndIf
ForEver
EndProcedure
If OpenConsole()
Define i, l, maxl, maxi
l=FillHailstones(27)
Print("#27 has "+Str(l)+" elements and the sequence is: "+#CRLF$)
ForEach Hailstones()
If i=6
Print(#CRLF$)
i=0
EndIf
i+1
Print(RSet(Str(Hailstones()),5))
If Hailstones()<>1
Print(", ")
EndIf
Next
i=1
Repeat
l=FillHailstones(i)
If l>maxl
maxl=l
maxi=i
EndIf
i+1
Until i>=100000
Print(#CRLF$+#CRLF$+"The longest sequence below 100000 is #"+Str(maxi)+", and it has "+Str(maxl)+" elements.")
Print(#CRLF$+#CRLF$+"Press ENTER to exit."): Input()
CloseConsole()
EndIf
- Output:
#27 has 112 elements and the sequence is: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1 The longest sequence found up to 100000 is #77031 which has 351 elements. Press ENTER to exit.
Run BASIC
print "Part 1: Create a routine to generate the hailstone sequence for a number."
print ""
while hailstone < 1 or hailstone <> int(hailstone)
input "Please enter a positive integer: "; hailstone
wend
count = doHailstone(hailstone,"Y")
print: print "Part 2: Use the routine to show that the hailstone sequence for the number 27 has 112 elements starting with 27, 82, 41, 124 and ending with 8, 4, 2, 1."
count = doHailstone(27,"Y")
print: print "Part 3: Show the number less than 100,000 which has the longest hailstone sequence together with that sequence's length.(But don't show the actual sequence)!"
print "Calculating result... Please wait... This could take a little while..."
print "Stone Percent Count"
for i = 1 to 99999
count = doHailstone(i,"N")
if count > maxCount then
theBigStone = i
maxCount = count
print using("#####",i);" ";using("###.#", i / 99999 * 100);"% ";using("####",count)
end if
next i
end
'---------------------------------------------
' pass number and print (Y/N)
FUNCTION doHailstone(hailstone,prnt$)
if prnt$ = "Y" then
print
print "The following is the 'Hailstone Sequence' for number:";hailstone
end if
while hailstone <> 1
if (hailstone and 1) then hailstone = (hailstone * 3) + 1 else hailstone = hailstone / 2
doHailstone = doHailstone + 1
if prnt$ = "Y" then
print hailstone;chr$(9);
if (doHailstone mod 10) = 0 then print
end if
wend
END FUNCTION
Tiny BASIC
Tiny BASIC is limited to signed integers from -32768 to 32767. This code combines two integers into one: number = 32766A + B, to emulate integers up to 1.07 billion. Dealing with integer truncation, carries, and avoiding overflows requires some finesse. Even so one number, namely 77671, causes an overflow because one of its steps exceeds 1.07 billion.
PRINT "Enter a positive integer"
INPUT N REM unit column
LET M = 0 REM 32766 column
LET C = 1 REM count
LET P = 1 REM print the sequence?
LET L = 1 REM finite state label
GOSUB 10
LET F = 1 REM current champion
LET E = 0 REM 32766 part of current champ
LET Y = 1 REM length of current longest sequence
LET P = 0 REM no more printing
LET W = 0 REM currently testing this number
LET V = 0 REM 32766 column of the number
PRINT "Testing for longest chain for n<100000..."
5 LET W = W + 1
REM PRINT V, " ", W
LET N = W
LET M = V
LET C = 1 REM reset count
IF W = 32766 THEN GOSUB 50
GOSUB 10
IF C > Y THEN GOSUB 60
IF V = 3 THEN IF W = 1702 THEN GOTO 8
GOTO 5
8 PRINT "The longest sequence starts at 32766x",E," + ",F
PRINT "And goes for ",Y," steps."
END
10 IF P = 1 THEN IF M > 0 THEN PRINT C," 32766x",M," + ",N
IF P = 1 THEN IF M = 0 THEN PRINT C," ",N
IF M = 0 THEN IF N = 1 THEN RETURN
LET C = C + 1
IF 2*(N/2)=N THEN GOTO 20
IF M > 10922 THEN GOTO 100
IF N > 21844 THEN GOTO 30
IF N > 10922 THEN GOTO 40
LET N = 3*N + 1
LET M = 3*M
GOTO 10
20 LET N = N/2
IF (M/2)*2<>M THEN LET N = N + 16383 REM account for integer truncation
LET M=M/2
GOTO 10
30 LET N = N - 21844 REM two ways of accounting for overflow
LET N = 3*N + 1
LET M = 3*M + 2
GOTO 10
40 LET N = N - 10922
LET N = 3*N + 1
LET M = 3*M + 1
GOTO 10
50 LET W = 0 REM addition with carry
LET V = V + 1
RETURN
60 LET Y = C REM tracking current champion
LET F = W
LET E = V
RETURN
100 PRINT "Uh oh, getting an overflow for 32766x",V," + ",W
PRINT "at step number ",C
PRINT "trying to triple 32766x",M," + ",N
RETURN
- Output:
Enter a positive integer 27 1 27 2 82 3 41 .... 110 4 111 2 112 1 Testing for longest chain for n<100000... Uh oh, getting an overflow for 32766x2 + 12139 at step number 72 trying to triple 32766x15980 + 7565 The longest sequence starts at 32766x2 + 11499 And goes for 351 steps.
Batch File
1. Create a routine to generate the hailstone sequence for a number.
2. Show that the hailstone sequence for the number 27 has 112 elements...
@echo off
setlocal enabledelayedexpansion
echo.
::Task #1
call :hailstone 111
echo Task #1: (Start:!sav!)
echo !seq!
echo.
echo Sequence has !cnt! elements.
echo.
::Task #2
call :hailstone 27
echo Task #2: (Start:!sav!)
echo !seq!
echo.
echo Sequence has !cnt! elements.
echo.
pause>nul
exit /b 0
::The Function
:hailstone
set num=%1
set seq=%1
set sav=%1
set cnt=0
:loop
set /a cnt+=1
if !num! equ 1 goto :eof
set /a isodd=%num%%%2
if !isodd! equ 0 goto divideby2
set /a num=(3*%num%)+1
set seq=!seq! %num%
goto loop
:divideby2
set /a num/=2
set seq=!seq! %num%
goto loop
- Output:
Task #1: (Start:111) 111 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 Sequence has 70 elements. Task #2: (Start:27) 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 Sequence has 112 elements.
The script above could only be used in smaller inputs. Thus, for the third task, a slightly different script will be used. However, this script is still slow. I tried this on a fast computer and it took about 40-45 minutes to complete.
@echo off
setlocal enableDelayedExpansion
if "%~1"=="test" (
for /l %%. in () do (
set /a "test1=num %% 2, cnt=cnt+1"
if !test1! equ 0 (set /a num/=2 & if !num! equ 1 exit !cnt!) else (set /a num=3*num+1)
)
)
set max=0
set record=0
for /l %%X in (2,1,100000) do (
set num=%%X & cmd /c "%~f0" test
if !errorlevel! gtr !max! (set /a "max=!errorlevel!,record=%%X")
)
set /a max+=1
echo.Number less than 100000 with longest sequence: %record%
echo.With length %max%.
pause>nul
exit /b 0
- Output:
Number less than 100000 with longest sequence: 77031 With length 351.
beeswax
This approach reuses the main hailstone sequence function for all three tasks.
The pure hailstone sequence function, returning the sequence for any number entered in the console:
>@:N q
>%"d3~@.PNp
d~2~pL~1F{<T_
Returning the sequence for the starting value 27
>@:N q
>%"d3~@.PNq
d~2~qL~1Ff{<BF3_
{NNgA<
Output of the sequence, followed by the length of the sequence:
27
82
41
124
62
31
94
47
...
2158
1079
3238
1619
4858
2429
7288
3644
1822
...
16
8
4
2
1
112
Number below 100,000 with the longest hailstone sequence, and the length of that sequence:
>@: q pf1_#
>%"d3~@.Pqf#{g?` `{gpK@~BP9~5@P@q'M<
d~2~pL~1Ff< < >?d
>zAg?MM@1~y@~gLpz2~yg@~3~hAg?M d
>?~fz1~y?yg@hhAg?Mb
Output:
77031 351
Befunge
93*:. v
> :2%v >
v+1*3_2/
>" ",:.v v<
<v v-1:< <
+1\_$1+v^ \
v .,+94<>^>::v
>" "03pv :* p
v67:" "< 0: 1
>p78p25 *^*p0
v!-1: <<*^<
9$_:0\ ^-^< v
v01g00:< 1 4
>g"@"*+`v^ <+
v01/"@":_ $ ^,
>p"@"%00p\$:^.
vg01g00 ,+49<
>"@"*+.@
- Output:
27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 112 77031 351
BQN
Works in: CBQN
Collatz ← ⥊⊸{
𝕨𝕊1: 𝕨;
(𝕨⊸∾ 𝕊 ⊢) (2|𝕩)⊑⟨𝕩÷2⋄1+3×𝕩⟩
}
Collatz1 ← ⌽∘{
1: ⟨1⟩;
𝕩∾˜𝕊(2|𝕩)⊑⟨𝕩÷2⋄1+3×𝕩⟩
}
•Show Collatz1 5
•Show (⊑∾≠){𝕩⊑˜⊑⍒≠¨𝕩}Collatz1¨1+↕99999
⟨ 5 16 8 4 2 1 ⟩
⟨ 77031 351 ⟩
Bracmat
(
( hailstone
= L len
. !arg:?L
& whl
' ( !arg:~1
& (!arg*1/2:~/|3*!arg+1):?arg
& !arg !L:?L
)
& (!L:? [?len&!len.!L)
)
& ( reverse
= L e
. :?L
& whl'(!arg:%?e ?arg&!e !L:?L)
& !L
)
& hailstone$27:(?len.?list)
& reverse$!list:?first4 [4 ? [-5 ?last4
& put$"Hailstone sequence starting with "
& put$!first4
& put$(str$(" has " !len " elements and ends with "))
& put$(!last4 \n)
& 1:?N
& 0:?max:?Nmax
& whl
' ( !N+1:<100000:?N
& hailstone$!N
: ( >!max:?max&!N:?Nmax
| ?
. ?
)
)
& out
$ ( str
$ ( "The number <100000 with the longest hailstone sequence is "
!Nmax
" with "
!max
" elements."
)
)
);
Brainf***
>>>>>>,>,>,<<
[
.[-<+>]
]
>
[
.[-<+>]
]
>
[
.[-<+>]
]
<<<<
>------------------------------------------------[<<+>>-]>
[
<<<
[<+>-]<
[>++++++++++<-]>
>>>
------------------------------------------------
[<<<+>>>-]>
[
<<<<
[<+>-]<
[>++++++++++<-]>
>>>>
------------------------------------------------
[<<<<+>>>>-]
]
<
<<<[>+<<<+>>-]>[-<+>]>>>>>>>>>++++[>+++++++++++<-]++++[>>++++++++<<-]<<<<<<<<<<
[
>>>>>>>>>>+>.>.<<<<<<<<<<<<
>>+>+<<<
[-[->]<]+
>>>[>]
<[-<]<[-]<
[>+>+<<-]>[<+>-]+
>[
<<<[->>>>+>+>+<<<<<<]>>>>>>
[-<<<<<<+>>>>>>]<[-<<<<<+>>>>>]<[-<<<<+>>>>]
<<<<+>>
-
>[-]]
<<[-]>[
<<[-<+>[-<->>>>>+>]<<<<<]>>>>[-<<<<+>>>>]<<
-]
<<[->+>+<<]>[-<+>]>
[>>+>+<<<-]>>>[<<<+>>>-]<<+>[<->[>++++++++++<[->-[>+>>]>[+[-<+>]>+>>]<<<<<]>[-]
++++++++[<++++++>-]>[<<+>>-]>[<<+>>-]<<]>]<[->>++++++++[<++++++>-]]<[.[-]<]<
-[+>]<
]
[This program never terminates! ]
[This program isn't complete, (it only prints the hailstone ]
[sequence of a number until 1) but it may help other people ]
[to make complete versions. ]
[ ]
[This program only takes in up to 3 digit numbers as input ]
[If you want to input 1 digit integers, add a 0 before. e.g ]
[04. ]
[ ]
[Summary: ]
[This program takes 16 memory cells of space. Their data is ]
[presented below: ]
[ ]
[Cell 0: Temp cell. ]
[Cell 1: Displays the current number. This changes based on ]
[Collatz' Conjecture. ]
[Cell 14: Displays length of the hailstone sequence. ]
[Cell 15: ASCII code for ",". ]
[Cell 16: ASCII code for " " (Space). ]
[Rest of the cells: Temp cells. ]
Brat
hailstone = { num |
sequence = [num]
while { num != 1 }
{ true? num % 2 == 0
{ num = num / 2 }
{ num = num * 3 + 1 }
sequence << num
}
sequence
}
#Check sequence for 27
seq = hailstone 27
true? (seq[0,3] == [27 82 41 124] && seq[-1, -4] == [8 4 2 1])
{ p "Sequence for 27 is correct" }
{ p "Sequence for 27 is not correct!" }
#Find longest sequence for numbers < 100,000
longest = [number: 0 length: 0]
1.to 99999 { index |
seq = hailstone index
true? seq.length > longest[:length]
{ longest[:length] = seq.length
longest[:number] = index
p "Longest so far: #{index} @ #{longest[:length]} elements"
}
index = index + 1
}
p "Longest was starting from #{longest[:number]} and was of length #{longest[:length]}"
- Output:
Sequence for 27 is correct Longest so far: 1 @ 1 elements Longest so far: 2 @ 2 elements Longest so far: 3 @ 8 elements ... Longest so far: 52527 @ 340 elements Longest so far: 77031 @ 351 elements Longest was starting from 77031 and was of length 351
Bruijn
:import std/Combinator .
:import std/List .
:import std/Math M
:import std/Number/Binary .
# hailstone sequence using binary shifts
hailstone y [[(0 =? (+1b)) {}0 go]]
go 0 : (=²?0 (1 /²0) (1 (↑¹0 + 0)))
# --- tests ---
seq-27 hailstone (+27b)
:test (∀seq-27) ((+112))
:test (take (+4) seq-27) ((+27b) : ((+82b) : ((+41b) : {}(+124b))))
:test (take (+4) <~>seq-27) ((+1b) : ((+2b) : ((+4b) : {}(+8b))))
below-100000 [0 : ∀(hailstone 0)] <$> seq
seq take (+99999) (iterate ++‣ (+1b))
main [head (max-by (M.compare ⋔ tail) below-100000)]
Burlesque
blsq ) 27{^^^^2.%{3.*1.+}\/{2./}\/ie}{1!=}w!bx{\/+]}{\/isn!}w!L[
112
C
#include <stdio.h>
#include <stdlib.h>
int hailstone(int n, int *arry)
{
int hs = 1;
while (n!=1) {
hs++;
if (arry) *arry++ = n;
n = (n&1) ? (3*n+1) : (n/2);
}
if (arry) *arry++ = n;
return hs;
}
int main()
{
int j, hmax = 0;
int jatmax, n;
int *arry;
for (j=1; j<100000; j++) {
n = hailstone(j, NULL);
if (hmax < n) {
hmax = n;
jatmax = j;
}
}
n = hailstone(27, NULL);
arry = malloc(n*sizeof(int));
n = hailstone(27, arry);
printf("[ %d, %d, %d, %d, ...., %d, %d, %d, %d] len=%d\n",
arry[0],arry[1],arry[2],arry[3],
arry[n-4], arry[n-3], arry[n-2], arry[n-1], n);
printf("Max %d at j= %d\n", hmax, jatmax);
free(arry);
return 0;
}
- Output:
[ 27, 82, 41, 124, ...., 8, 4, 2, 1] len= 112 Max 351 at j= 77031
With caching
Much faster if you want to go over a million or so.
#include <stdio.h>
#define N 10000000
#define CS N /* cache size */
typedef unsigned long ulong;
ulong cache[CS] = {0};
ulong hailstone(ulong n)
{
int x;
if (n == 1) return 1;
if (n < CS && cache[n]) return cache[n];
x = 1 + hailstone((n & 1) ? 3 * n + 1 : n / 2);
if (n < CS) cache[n] = x;
return x;
}
int main()
{
int i, l, max = 0, mi;
for (i = 1; i < N; i++) {
if ((l = hailstone(i)) > max) {
max = l;
mi = i;
}
}
printf("max below %d: %d, length %d\n", N, mi, max);
return 0;
}
C#
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace Hailstone
{
class Program
{
public static List<int> hs(int n,List<int> seq)
{
List<int> sequence = seq;
sequence.Add(n);
if (n == 1)
{
return sequence;
}else{
int newn = (n % 2 == 0) ? n / 2 : (3 * n) + 1;
return hs(newn, sequence);
}
}
static void Main(string[] args)
{
int n = 27;
List<int> sequence = hs(n,new List<int>());
Console.WriteLine(sequence.Count + " Elements");
List<int> start = sequence.GetRange(0, 4);
List<int> end = sequence.GetRange(sequence.Count - 4, 4);
Console.WriteLine("Starting with : " + string.Join(",", start) + " and ending with : " + string.Join(",", end));
int number = 0, longest = 0;
for (int i = 1; i < 100000; i++)
{
int count = (hs(i, new List<int>())).Count;
if (count > longest)
{
longest = count;
number = i;
}
}
Console.WriteLine("Number < 100000 with longest Hailstone seq.: " + number + " with length of " + longest);
}
}
}
112 Elements Starting with : 27,82,41,124 and ending with : 8,4,2,1 Number < 100000 with longest Hailstone seq.: 77031 with length of 351
With caching
As with the C example, much faster if you want to go over a million or so.
using System;
using System.Collections.Generic;
namespace ConsoleApplication1
{
class Program
{
public static void Main()
{
int longestChain = 0, longestNumber = 0;
var recursiveLengths = new Dictionary<int, int>();
const int maxNumber = 100000;
for (var i = 1; i <= maxNumber; i++)
{
var chainLength = Hailstone(i, recursiveLengths);
if (longestChain >= chainLength)
continue;
longestChain = chainLength;
longestNumber = i;
}
Console.WriteLine("max below {0}: {1} ({2} steps)", maxNumber, longestNumber, longestChain);
}
private static int Hailstone(int num, Dictionary<int, int> lengths)
{
if (num == 1)
return 1;
while (true)
{
if (lengths.ContainsKey(num))
return lengths[num];
lengths[num] = 1 + ((num%2 == 0) ? Hailstone(num/2, lengths) : Hailstone((3*num) + 1, lengths));
}
}
}
}
max below 100000: 77031 (351 steps)
C++
#include <iostream>
#include <vector>
#include <utility>
std::vector<int> hailstone(int i)
{
std::vector<int> v;
while(true){
v.push_back(i);
if (1 == i) break;
i = (i % 2) ? (3 * i + 1) : (i / 2);
}
return v;
}
std::pair<int,int> find_longest_hailstone_seq(int n)
{
std::pair<int, int> maxseq(0, 0);
int l;
for(int i = 1; i < n; ++i){
l = hailstone(i).size();
if (l > maxseq.second) maxseq = std::make_pair(i, l);
}
return maxseq;
}
int main () {
// Use the routine to show that the hailstone sequence for the number 27
std::vector<int> h27;
h27 = hailstone(27);
// has 112 elements
int l = h27.size();
std::cout << "length of hailstone(27) is " << l;
// starting with 27, 82, 41, 124 and
std::cout << " first four elements of hailstone(27) are ";
std::cout << h27[0] << " " << h27[1] << " "
<< h27[2] << " " << h27[3] << std::endl;
// ending with 8, 4, 2, 1
std::cout << " last four elements of hailstone(27) are "
<< h27[l-4] << " " << h27[l-3] << " "
<< h27[l-2] << " " << h27[l-1] << std::endl;
std::pair<int,int> m = find_longest_hailstone_seq(100000);
std::cout << "the longest hailstone sequence under 100,000 is " << m.first
<< " with " << m.second << " elements." <<std::endl;
return 0;
}
- Output:
length of hailstone(27) is 112 first four elements of hailstone(27) are 27 82 41 124 last four elements of hailstone(27) are 8 4 2 1 the longest hailstone sequence under 100,000 is 77031 with 351 elements.
Templated solution works for all of Qt's sequential container classes (QLinkedList, QList, QVector).
#include <QDebug>
#include <QVector>
template <class T>
T hailstone(typename T::value_type n)
{
T seq;
for (seq << n; n != 1; seq << n) {
n = (n&1) ? (3*n)+1 : n/2;
}
return seq;
}
template <class T>
T longest_hailstone_seq(typename T::value_type n)
{
T maxSeq;
for (; n > 0; --n) {
const auto seq = hailstone<T>(n);
if (seq.size() > maxSeq.size()) {
maxSeq = seq;
}
}
return maxSeq;
}
int main(int, char *[]) {
const auto seq = hailstone<QVector<uint_fast16_t>>(27);
qInfo() << "hailstone(27):";
qInfo() << " length:" << seq.size() << "elements";
qInfo() << " first 4 elements:" << seq.mid(0,4);
qInfo() << " last 4 elements:" << seq.mid(seq.size()-4);
const auto max = longest_hailstone_seq<QVector<uint_fast32_t>>(100000);
qInfo() << "longest sequence with starting element under 100000:";
qInfo() << " length:" << max.size() << "elements";
qInfo() << " starting element:" << max.first();
}
- Output:
hailstone(27): length: 112 elements first 4 elements: QVector(27, 82, 41, 124) last 4 elements: QVector(8, 4, 2, 1) longest sequence with starting element under 100000: length: 351 elements starting element: 77031
Ceylon
shared void run() {
{Integer*} hailstone(variable Integer n) {
variable [Integer*] stones = [n];
while(n != 1) {
n = if(n.even) then n / 2 else 3 * n + 1;
stones = stones.append([n]);
}
return stones;
}
value hs27 = hailstone(27);
print("hailstone sequence for 27 is ``hs27.take(3)``...``hs27.skip(hs27.size - 3).take(3)`` with length ``hs27.size``");
variable value longest = hailstone(1);
for(i in 2..100k - 1) {
value current = hailstone(i);
if(current.size > longest.size) {
longest = current;
}
}
print("the longest sequence under 100,000 starts with ``longest.first else "what?"`` and has length ``longest.size``");
}
CLIPS
(deftemplate longest
(slot bound) ; upper bound for the range of values to check
(slot next (default 2)) ; next value that needs to be checked
(slot start (default 1)) ; starting value of longest sequence
(slot len (default 1)) ; length of longest sequence
)
(deffacts startup
(query 27)
(longest (bound 100000))
)
(deffunction hailstone-next
(?n)
(if (evenp ?n)
then (div ?n 2)
else (+ (* 3 ?n) 1)
)
)
(defrule extend-sequence
?hail <- (hailstone $?sequence ?tail&:(> ?tail 1))
=>
(retract ?hail)
(assert (hailstone ?sequence ?tail (hailstone-next ?tail)))
)
(defrule start-query
(query ?num)
=>
(assert (hailstone ?num))
)
(defrule result-query
(query ?num)
(hailstone ?num $?sequence 1)
=>
(bind ?sequence (create$ ?num ?sequence 1))
(printout t "Hailstone sequence starting with " ?num ":" crlf)
(bind ?len (length ?sequence))
(printout t " Length: " ?len crlf)
(printout t " First four: " (implode$ (subseq$ ?sequence 1 4)) crlf)
(printout t " Last four: " (implode$ (subseq$ ?sequence (- ?len 3) ?len)) crlf)
(printout t crlf)
)
(defrule longest-create-next-hailstone
(longest (bound ?bound) (next ?next))
(test (<= ?next ?bound))
(not (hailstone ?next $?))
=>
(assert (hailstone ?next))
)
(defrule longest-check-next-hailstone
?longest <- (longest (bound ?bound) (next ?next) (start ?start) (len ?len))
(test (<= ?next ?bound))
?hailstone <- (hailstone ?next $?sequence 1)
=>
(retract ?hailstone)
(bind ?thislen (+ 2 (length ?sequence)))
(if (> ?thislen ?len) then
(modify ?longest (start ?next) (len ?thislen) (next (+ ?next 1)))
else
(modify ?longest (next (+ ?next 1)))
)
)
(defrule longest-finished
(longest (bound ?bound) (next ?next) (start ?start) (len ?len))
(test (> ?next ?bound))
=>
(printout t "The number less than " ?bound " that has the largest hailstone" crlf)
(printout t "sequence is " ?start " with a length of " ?len "." crlf)
(printout t crlf)
)
- Output:
The number less than 100000 that has the largest hailstone sequence is 77031 with a length of 351. Hailstone sequence starting with 27: Length: 112 First four: 27 82 41 124 Last four: 8 4 2 1
Clojure
(defn hailstone-seq [n]
{:pre [(pos? n)]}
(lazy-seq
(cond (= n 1) '(1)
(even? n) (cons n (hailstone-seq (/ n 2)))
:else (cons n (hailstone-seq (+ (* n 3) 1))))))
(let [hseq (hailstone-seq 27)]
(-> hseq count (= 112) assert)
(->> hseq (take 4) (= [27 82 41 124]) assert)
(->> hseq (drop 108) (= [8 4 2 1]) assert))
(let [{max-i :num, max-len :len}
(reduce #(max-key :len %1 %2)
(for [i (range 1 100000)]
{:num i, :len (count (hailstone-seq i))}))]
(println "Maximum length" max-len "was found for hailstone(" max-i ")."))
CLU
% Generate the hailstone sequence for a number
hailstone = iter (n: int) yields (int)
while true do
yield(n)
if n=1 then break end
if n//2 = 0 then
n := n/2
else
n := 3*n + 1
end
end
end hailstone
% Make an array from an iterator
iter_array = proc [T,U: type] (i: itertype (U) yields (T), s: U) returns (array[T])
arr: array[T] := array[T]$[]
for item: T in i(s) do array[T]$addh(arr, item) end
return(arr)
end iter_array
start_up = proc ()
po: stream := stream$primary_output()
% Generate the hailstone sequence for 27
h27: array[int] := iter_array[int,int](hailstone, 27)
lo27: int := array[int]$low(h27)
hi27: int := array[int]$high(h27)
stream$putl(po, "The hailstone sequence for 27 has "
|| int$unparse(array[int]$size(h27)) || " elements.")
stream$puts(po, "The first 4 elements are:")
for i: int in int$from_to(lo27, lo27+3) do
stream$puts(po, " " || int$unparse(h27[i]))
end
stream$puts(po, ", and the last 4 elements are:")
for i: int in int$from_to(hi27-3, hi27) do
stream$puts(po, " " || int$unparse(h27[i]))
end
stream$putl(po, "")
% Find whichever sequence < 100 000 has the longest sequence
maxnum: int := 0
maxlen: int := 0
for i: int in int$from_to(1, 99999) do
len: int := array[int]$size(iter_array[int,int](hailstone, i))
if len > maxlen then
maxnum, maxlen := i, len
end
end
stream$putl(po, int$unparse(maxnum)
|| " has the longest hailstone sequence < 100000: "
|| int$unparse(maxlen))
end start_up
- Output:
The hailstone sequence for 27 has 112 elements. The first 4 elements are: 27 82 41 124, and the last 4 elements are: 8 4 2 1 77031 has the longest hailstone sequence < 100000: 351
COBOL
Testing with GnuCOBOL
identification division.
program-id. hailstones.
remarks. cobc -x hailstones.cob.
data division.
working-storage section.
01 most constant as 1000000.
01 coverage constant as 100000.
01 stones usage binary-long.
01 n usage binary-long.
01 storm usage binary-long.
01 show-arg pic 9(6).
01 show-default pic 99 value 27.
01 show-sequence usage binary-long.
01 longest usage binary-long occurs 2 times.
01 filler.
05 hail usage binary-long
occurs 0 to most depending on stones.
01 show pic z(10).
01 low-range usage binary-long.
01 high-range usage binary-long.
01 range usage binary-long.
01 remain usage binary-long.
01 unused usage binary-long.
procedure division.
accept show-arg from command-line
if show-arg less than 1 or greater than coverage then
move show-default to show-arg
end-if
move show-arg to show-sequence
move 1 to longest(1)
perform hailstone varying storm
from 1 by 1 until storm > coverage
display "Longest at: " longest(2) " with " longest(1) " elements"
goback.
*> **************************************************************
hailstone.
move 0 to stones
move storm to n
perform until n equal 1
if stones > most then
display "too many hailstones" upon syserr
stop run
end-if
add 1 to stones
move n to hail(stones)
divide n by 2 giving unused remainder remain
if remain equal 0 then
divide 2 into n
else
compute n = 3 * n + 1
end-if
end-perform
add 1 to stones
move n to hail(stones)
if stones > longest(1) then
move stones to longest(1)
move storm to longest(2)
end-if
if storm equal show-sequence then
display show-sequence ": " with no advancing
perform varying range from 1 by 1 until range > stones
move 5 to low-range
compute high-range = stones - 4
if range < low-range or range > high-range then
move hail(range) to show
display function trim(show) with no advancing
if range < stones then
display ", " with no advancing
end-if
end-if
if range = low-range and stones > 8 then
display "..., " with no advancing
end-if
end-perform
display ": " stones " elements"
end-if
.
end program hailstones.
- Output:
prompt$ cobc -x hailstones.cob prompt$ ./hailstones +0000000027: 27, 82, 41, 124, ..., 8, 4, 2, 1: +0000000112 elements Longest at: +0000077031 with +0000000351 elements prompt$ ./hailstones 42 +0000000042: 42, 21, 64, 32, ..., 8, 4, 2, 1: +0000000009 elements Longest at: +0000077031 with +0000000351 elements
CoffeeScript
Recursive version:
hailstone = (n) ->
if n is 1
[n]
else if n % 2 is 0
[n].concat hailstone n/2
else
[n].concat hailstone (3*n) + 1
h27 = hailstone 27
console.log "hailstone(27) = #{h27[0..3]} ... #{h27[-4..]} (length: #{h27.length})"
maxlength = 0
maxnums = []
for i in [1..100000]
seq = hailstone i
if seq.length is maxlength
maxnums.push i
else if seq.length > maxlength
maxlength = seq.length
maxnums = [i]
console.log "Max length: #{maxlength}; numbers generating sequences of this length: #{maxnums}"
hailstone(27) = 27,82,41,124 ... 8,4,2,1 (length: 112) Max length: 351; numbers generating sequences of this length: 77031
Common Lisp
(defun hailstone (n)
(cond ((= n 1) '(1))
((evenp n) (cons n (hailstone (/ n 2))))
(t (cons n (hailstone (+ (* 3 n) 1))))))
(defun longest (n)
(let ((k 0) (l 0))
(loop for i from 1 below n do
(let ((len (length (hailstone i))))
(when (> len l) (setq l len k i)))
finally (format t "Longest hailstone sequence under ~A for ~A, having length ~A." n k l))))
Sample session:
ROSETTA> (length (hailstone 27)) 112 ROSETTA> (subseq (hailstone 27) 0 4) (27 82 41 124) ROSETTA> (last (hailstone 27) 4) (8 4 2 1) ROSETTA> (longest-hailstone 100000) Longest hailstone sequence under 100000 for 77031, having length 351. NIL
Cowgol
include "cowgol.coh";
# Generate the hailstone sequence for the given N and return the length.
# If a non-NULL pointer to a buffer is given, then store the sequence there.
sub hailstone(n: uint32, buf: [uint32]): (len: uint32) is
len := 0;
loop
if buf != 0 as [uint32] then
[buf] := n;
buf := @next buf;
end if;
len := len + 1;
if n == 1 then
break;
elseif n & 1 == 0 then
n := n / 2;
else
n := 3*n + 1;
end if;
end loop;
end sub;
# Generate hailstone sequence for 27
var h27: uint32[113];
var h27len := hailstone(27, &h27[0]);
# Print information about it
print("The hailstone sequence for 27 has ");
print_i32(h27len);
print(" elements.\nThe first 4 elements are:");
var n: @indexof h27 := 0;
while n < 4 loop
print_char(' ');
print_i32(h27[n]);
n := n + 1;
end loop;
print(", and the last 4 elements are:");
n := h27len as @indexof h27 - 4;
while n as uint32 < h27len loop
print_char(' ');
print_i32(h27[n]);
n := n + 1;
end loop
print(".\n");
# Find longest hailstone sequence < 100,000
var i: uint32 := 1;
var max_i := i;
var len: uint32 := 0;
var max_len := len;
while i < 100000 loop
len := hailstone(i, 0 as [uint32]);
if len > max_len then
max_i := i;
max_len := len;
end if;
i := i + 1;
end loop;
print_i32(max_i);
print(" has the longest hailstone sequence < 100000: ");
print_i32(max_len);
print_nl();
- Output:
The hailstone sequence for 27 has 112 elements. The first 4 elements are: 27 82 41 124, and the last 4 elements are: 8 4 2 1. 77031 has the longest hailstone sequence < 100000: 351
Crystal
def hailstone(n)
seq = [n]
until n == 1
n = n.even? ? n // 2 : n * 3 + 1
seq << n
end
seq
end
max_len = (1...100_000).max_by{|n| hailstone(n).size }
max = hailstone(max_len)
puts ([max_len, max.size, max.max, max.first(4), max.last(4)])
# => [77031, 351, 21933016, [77031, 231094, 115547, 346642], [8, 4, 2, 1]]
twenty_seven = hailstone(27)
puts ([twenty_seven.size, twenty_seven.first(4), max.last(4)])
# => [112, [27, 82, 41, 124], [8, 4, 2, 1]]
D
Basic Version
import std.stdio, std.algorithm, std.range, std.typecons;
auto hailstone(uint n) pure nothrow {
auto result = [n];
while (n != 1) {
n = (n & 1) ? (n * 3 + 1) : (n / 2);
result ~= n;
}
return result;
}
void main() {
enum M = 27;
immutable h = M.hailstone;
writeln("hailstone(", M, ")= ", h[0 .. 4], " ... " , h[$ - 4 .. $]);
writeln("Length hailstone(", M, ")= ", h.length);
enum N = 100_000;
immutable p = iota(1, N)
.map!(i => tuple(i.hailstone.length, i))
.reduce!max;
writeln("Longest sequence in [1,", N, "]= ",p[1]," with len ",p[0]);
}
- Output:
hailstone(27)= [27, 82, 41, 124] ... [8, 4, 2, 1] Length hailstone(27)= 112 Longest sequence in [1,100000]= 77031 with len 351
Lazy Version
Same output.
import std.stdio, std.algorithm, std.typecons, std.range;
auto hailstone(uint m) pure nothrow @nogc {
return m
.recurrence!q{ a[n - 1] & 1 ? a[n - 1] * 3 + 1 : a[n - 1]/2}
.until!q{ a == 1 }(OpenRight.no);
}
void main() {
enum M = 27;
immutable h = M.hailstone.array;
writeln("hailstone(", M, ")= ", h[0 .. 4], " ... " , h[$ - 4 .. $]);
writeln("Length hailstone(", M, ")= ", h.length);
enum N = 100_000;
immutable p = iota(1, N)
.map!(i => tuple(i.hailstone.walkLength, i))
.reduce!max;
writeln("Longest sequence in [1,", N, "]= ",p[1]," with len ",p[0]);
}
Faster Lazy Version
Same output.
struct Hailstone {
uint n;
bool empty() const pure nothrow @nogc { return n == 0; }
uint front() const pure nothrow @nogc { return n; }
void popFront() pure nothrow @nogc {
n = n == 1 ? 0 : (n & 1 ? (n * 3 + 1) : n / 2);
}
}
void main() {
import std.stdio, std.algorithm, std.range, std.typecons;
enum M = 27;
immutable h = M.Hailstone.array;
writeln("hailstone(", M, ")= ", h[0 .. 4], " ... " , h[$ - 4 .. $]);
writeln("Length hailstone(", M, ")= ", h.length);
enum N = 100_000;
immutable p = iota(1, N)
.map!(i => tuple(i.Hailstone.walkLength, i))
.reduce!max;
writeln("Longest sequence in [1,", N, "]= ",p[1]," with len ",p[0]);
}
Lazy Version With Caching
Faster, same output.
import std.stdio, std.algorithm, std.range, std.typecons;
struct Hailstone(size_t cacheSize = 500_000) {
size_t n;
__gshared static size_t[cacheSize] cache;
bool empty() const pure nothrow @nogc { return n == 0; }
size_t front() const pure nothrow @nogc { return n; }
void popFront() nothrow {
if (n >= cacheSize) {
n = n == 1 ? 0 : (n & 1 ? n*3 + 1 : n/2);
} else if (cache[n]) {
n = cache[n];
} else {
immutable n2 = n == 1 ? 0 : (n & 1 ? n*3 + 1 : n/2);
n = cache[n] = n2;
}
}
}
void main() {
enum M = 27;
const h = M.Hailstone!().array;
writeln("hailstone(", M, ")= ", h[0 .. 4], " ... " , h[$ - 4 .. $]);
writeln("Length hailstone(", M, ")= ", h.length);
enum N = 100_000;
immutable p = iota(1, N)
.map!(i => tuple(i.Hailstone!().walkLength, i))
.reduce!max;
writeln("Longest sequence in [1,", N, "]= ",p[1]," with len ",p[0]);
}
Generator Range Version
import std.stdio, std.algorithm, std.range, std.typecons, std.concurrency;
auto hailstone(size_t n) {
return new Generator!size_t({
yield(n);
while (n > 1) {
n = (n & 1) ? (3 * n + 1) : (n / 2);
yield(n);
}
});
}
void main() {
enum M = 27;
const h = M.hailstone.array;
writeln("hailstone(", M, ")= ", h[0 .. 4], " ... " , h[$ - 4 .. $]);
writeln("Length hailstone(", M, ")= ", h.length);
enum N = 100_000;
immutable p = iota(1, N)
.map!(i => tuple(i.hailstone.walkLength, i))
.reduce!max;
writeln("Longest sequence in [1,", N, "]= ",p[1]," with len ",p[0]);
}
Dart
import 'package:collection/collection.dart';
import 'dart:collection';
List<int> hailstone(int n) {
if(n <= 0) {
throw ArgumentError("start value must be >=1)");
}
var seq = Queue<int>();
seq.add(n);
while(n != 1) {
n = n%2 == 0 ? n ~/ 2 : 3 * n + 1;
seq.add(n);
}
return seq.toList();
}
main() {
for(int i = 1; i <= 10; i++) {
print("h($i) = ${hailstone(i)}");
}
var h27 = hailstone(27);
var first4 = h27.take(4).toList();
print("first 4 elements of h(27): $first4");
assert(ListEquality().equals([27, 82, 41, 124], first4));
var last4 = h27.skip(h27.length - 4).take(4).toList();
print("last 4 elements of h(27): $last4");
assert(ListEquality().equals([8, 4, 2, 1], last4));
print("length of sequence h(27): ${h27.length}");
assert(112 == h27.length);
int seq = 0, max = 0;
for(int i = 1; i <= 100000; i++) {
var h = hailstone(i);
if(h.length > max) {
max = h.length;
seq = i;
}
}
print("up to 100000 the sequence h($seq) has the largest length ($max)");
}
- Output:
h(1) = [1] h(2) = [2, 1] h(3) = [3, 10, 5, 16, 8, 4, 2, 1] h(4) = [4, 2, 1] h(5) = [5, 16, 8, 4, 2, 1] h(6) = [6, 3, 10, 5, 16, 8, 4, 2, 1] h(7) = [7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1] h(8) = [8, 4, 2, 1] h(9) = [9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1] h(10) = [10, 5, 16, 8, 4, 2, 1] first 4 elements of h(27): [27, 82, 41, 124] last 4 elements of h(27): [8, 4, 2, 1] length of sequence h(27): 112 up to 100000 the sequence h(77031) has the largest length (351)
Dc
Firstly, this code takes the value from the stack, computes and prints the corresponding Hailstone sequence, and the length of the sequence. The q procedure is for counting the length of the sequence. The e and o procedure is for even and odd number respectively. The x procedure is for overall control.
27
[[--: ]nzpq]sq
[d 2/ p]se
[d 3*1+ p]so
[d2% 0=e d1=q d2% 1=o d1=q lxx]dsxx
- Output:
82 41 124 62 (omitted) 8 4 2 1 --: 112
Then we could wrap the procedure x with a new procedure s, and call it with l which is loops the value of t from 1 to 100000, and cleaning up the stack after each time we finish up with a number. Register L for the length of the longest sequence and T for the corresponding number. Also, procedure q is slightly modified for storing L and T if needed, and all printouts in procedure e and o are muted.
0dsLsT1st
[dsLltsT]sM
[[zdlL<M q]sq
[d 2/]se
[d 3*1+ ]so
[d2% 0=e d1=q d2% 1=o d1=q lxx]dsxx]ss
[lt1+dstlsxc lt100000>l]dslx
lTn[:]nlLp
- Output:
(Takes quite some time on a decent machine)
77031:351
DCL
$ n = f$integer( p1 )
$ i = 1
$ loop:
$ if p2 .nes. "QUIET" then $ s'i = n
$ if n .eq. 1 then $ goto done
$ i = i + 1
$ if .not. n
$ then
$ n = n / 2
$ else
$ if n .gt. 715827882 then $ exit ! avoid overflowing
$ n = 3 * n + 1
$ endif
$ goto loop
$ done:
$ if p2 .nes. "QUIET"
$ then
$ penultimate_i = i - 1
$ antepenultimate_i = i - 2
$ preantepenultimate_i = i - 3
$ write sys$output "sequence has ", i, " elements starting with ", s1, ", ", s2, ", ", s3, ", ", s4, " and ending with ", s'preantepenultimate_i, ", ", s'antepenultimate_i, ", ", s'penultimate_i, ", ", s'i
$ endif
$ sequence_length == i
- Output:
$ @hailstone 27 sequence has 112 elements starting with 27, 82, 41, 124 and ending with 8, 4, 2, 1
$ limit = f$integer( p1 )
$ i = 1
$ max_so_far = 0
$ loop:
$ call hailstone 'i quiet
$ if sequence_length .gt. max_so_far
$ then
$ max_so_far = sequence_length
$ current_record_holder = i
$ endif
$ i = i + 1
$ if i .lt. limit then $ goto loop
$ write sys$output current_record_holder, " is the number less than ", limit, " which has the longest hailstone sequence which is ", max_so_far, " in length"
$ exit
$
$ hailstone: subroutine
$ n = f$integer( p1 )
$ i = 1
$ loop:
$ if p2 .nes. "QUIET" then $ s'i = n
$ if n .eq. 1 then $ goto done
$ i = i + 1
$ if .not. n
$ then
$ n = n / 2
$ else
$ if n .gt. 715827882 then $ exit ! avoid overflowing
$ n = 3 * n + 1
$ endif
$ goto loop
$ done:
$ if p2 .nes. "QUIET"
$ then
$ penultimate_i = i - 1
$ antepenultimate_i = i - 2
$ preantepenultimate_i = i - 3
$ write sys$output "sequence has ", i, " elements starting with ", s1, ", ", s2, ", ", s3, ", ", s4, " and ending with ", s'preantepenultimate_i, ", ", s'antepenultimate_i, ", ", s'penultimate_i, ", ", s'i
$ endif
$ sequence_length == I
$ exit
$ endsubroutine
- Output:
$ @longest_hailstone 100000 77031 is the number less than 100000 which has the longest hailstone sequence which is 351 in length
Delphi
Using List<Integer>
program ShowHailstoneSequence;
{$APPTYPE CONSOLE}
uses SysUtils, Generics.Collections;
procedure GetHailstoneSequence(aStartingNumber: Integer; aHailstoneList: TList<Integer>);
var
n: Integer;
begin
aHailstoneList.Clear;
aHailstoneList.Add(aStartingNumber);
n := aStartingNumber;
while n <> 1 do
begin
if Odd(n) then
n := (3 * n) + 1
else
n := n div 2;
aHailstoneList.Add(n);
end;
end;
var
i: Integer;
lList: TList<Integer>;
lMaxSequence: Integer;
lMaxLength: Integer;
begin
lList := TList<Integer>.Create;
try
GetHailstoneSequence(27, lList);
Writeln(Format('27: %d elements', [lList.Count]));
Writeln(Format('[%d,%d,%d,%d ... %d,%d,%d,%d]',
[lList[0], lList[1], lList[2], lList[3],
lList[lList.Count - 4], lList[lList.Count - 3], lList[lList.Count - 2], lList[lList.Count - 1]]));
Writeln;
lMaxSequence := 0;
lMaxLength := 0;
for i := 1 to 100000 do
begin
GetHailstoneSequence(i, lList);
if lList.Count > lMaxLength then
begin
lMaxSequence := i;
lMaxLength := lList.Count;
end;
end;
Writeln(Format('Longest sequence under 100,000: %d with %d elements', [lMaxSequence, lMaxLength]));
finally
lList.Free;
end;
Readln;
end.
- Output:
27: 112 elements [27 82 41 124 ... 8 4 2 1] Longest sequence under 100,000: 77031 with 351 elements
Using Boost.Algorithm and TParallel.For
program ShowHailstoneSequence;
{$APPTYPE CONSOLE}
uses
System.SysUtils,
System.Types,
System.Threading,
System.SyncObjs,
Boost.Algorithm,
Boost.Int,
System.Diagnostics;
var
lList: TIntegerDynArray;
lMaxSequence, lMaxLength, i: Integer;
StopWatch: TStopwatch;
begin
lList := Hailstone(27);
Writeln(Format('27: %d elements', [lList.Count]));
Writeln(lList.toString(4), #10);
lMaxSequence := 0;
lMaxLength := 0;
StopWatch := TStopwatch.Create;
StopWatch.Start;
TParallel.for (1, 1, 100000,
procedure(idx: Integer)
var
lList: TIntegerDynArray;
begin
lList := Hailstone(idx);
if lList.Count > lMaxLength then
begin
TInterlocked.Exchange(lMaxSequence, idx);
TInterlocked.Exchange(lMaxLength, lList.Count);
end;
end);
StopWatch.Stop;
Write(Format('Longest sequence under 100,000: %d with %d elements', [lMaxSequence,
lMaxLength]));
Writeln(Format(' in %d ms', [StopWatch.ElapsedMilliseconds]));
Readln;
end.
- Output:
27: 112 elements [27, 82, 41, 124 ... 8, 4, 2, 1] Longest sequence under 100,000: 77031 with 351 elements in 520 ms
Déjà Vu
local hailstone:
swap [ over ]
while < 1 dup:
if % over 2:
#odd
++ * 3
else:
#even
/ swap 2
swap push-through rot dup
drop
if = (name) :(main):
local :h27 hailstone 27
!. = 112 len h27
!. = 27 h27! 0
!. = 82 h27! 1
!. = 41 h27! 2
!. = 124 h27! 3
!. = 8 h27! 108
!. = 4 h27! 109
!. = 2 h27! 110
!. = 1 h27! 111
local :max 0
local :maxlen 0
for i range 1 99999:
dup len hailstone i
if < maxlen:
set :maxlen
set :max i
else:
drop
!print( "number: " to-str max ", length: " to-str maxlen )
else:
@hailstone
- Output:
true true true true true true true true true number: 77031, length: 351
EasyLang
proc hailstone n . list[] .
list[] = [ ]
while n <> 1
list[] &= n
if n mod 2 = 0
n = n / 2
else
n = 3 * n + 1
.
.
list[] &= 1
.
hailstone 27 l[]
write "27 has length " & len l[] & " with "
for i to 4
write l[i] & " "
.
write "... "
for i = len l[] - 3 to len l[]
write l[i] & " "
.
print ""
for i = 1 to 100000
hailstone i l[]
if len l[] >= max_iter
max_i = i
max_iter = len l[]
end
end
print max_i & " has length " & max_iter
EchoLisp
(lib 'hash)
(lib 'sequences)
(lib 'compile)
(define (hailstone n)
(when (> n 1)
(if (even? n) (/ n 2) (1+ (* n 3)))))
(define H (make-hash))
;; (iterator/f seed f) returns seed, (f seed) (f(f seed)) ...
(define (hlength seed)
(define collatz (iterator/f hailstone seed))
(or
(hash-ref H seed) ;; known ?
(hash-set H seed
(for ((i (in-naturals)) (h collatz))
;; add length of subsequence if already known
#:break (hash-ref H h) => (+ i (hash-ref H h))
(1+ i)))))
(define (task (nmax 100000))
(for ((n [1 .. nmax])) (hlength n)) ;; fill hash table
(define hmaxlength (apply max (hash-values H)))
(define hmaxseed (hash-get-key H hmaxlength))
(writeln 'maxlength= hmaxlength 'for hmaxseed))
- Output:
(define H27 (iterator/f hailstone 27))
(take H27 6)
→ (27 82 41 124 62 31)
(length H27)
→ 112
(list-tail (take H27 112) -6)
→ (5 16 8 4 2 1)
(task)
maxlength= 351 for 77031
;; more ...
(lib 'bigint)
(task 200000)
maxlength= 383 for 156159
(task 300000)
maxlength= 443 for 230631
(task 400000)
maxlength= 443 for 230631
(task 500000)
maxlength= 449 for 410011
(task 600000)
maxlength= 470 for 511935
(task 700000)
maxlength= 509 for 626331
(task 800000)
maxlength= 509 for 626331
(task 900000)
maxlength= 525 for 837799
(task 1000000)
maxlength= 525 for 837799
EDSAC order code
This program uses no optimization, and is best run on a fast simulator. Even with the storage-related code cut out, Part 2 of the task executes 182 million EDSAC orders. At 650 orders per second, the original EDSAC would have taken 78 hours.
[Hailstone (or Collatz) task for Rosetta Code.
EDSAC program, Initial Orders 2.]
[This program shows how subroutines can be called via the
phi, H, N, ..., V parameters, so that the code doesn't have
to be changed if the subroutines are moved about in store.
See Wilkes, Wheeler and Gill, 1951 edition, page 18.]
[Library subroutine P7, prints long strictly positive integer;
10 characters, right justified, padded left with spaces.
Input: 0D = integer to be printed.
Closed, even; 35 storage locations; working position 4D.]
T 55 K [call subroutine via V parameter]
P 56 F [address of subroutine]
E 25 K
T V
GKA3FT26@H28#@NDYFLDT4DS27@TFH8@S8@T1FV4DAFG31@SFLDUFOFFFSFL4F
T4DA1FA27@G11@XFT28#ZPFT27ZP1024FP610D@524D!FO30@SFL8FE22@
[Subroutine to print a string placed after the subroutine call.
One location per character, with character in top 5 bits.
Last character flagged by having bit 0 set.
17 locations, workspace 0F.]
T 54 K [call subroutine via C parameter]
P 91 F [address of subroutine]
E 25 K
T C
GKH16@A2FG4@A6@A2FT6@AFTFOFCFSFE3@A6@A3FT15@EFV2047F
[************ Rosetta Code task ************
Subroutine to generate and optionally store the hailstone
(Collatz) sequence for the passed-in initial term n.
Input: 4D = n, 35-bit positive integer
6F = start address of sequence if stored;
must be even; 0 = don't store
Output: 7F = number of terms in sequence, or -1 if error
Workspace: 0D (general), 8D (term of sequence)
Must be loaded at an even address.]
T 45 K [call subroutine via H parameter]
P 108 F [address of subroutine]
E 25 K
T H
G K
A 3 F
T 46 @
H 54#@ [mult reg := 1 to test odd/even]
A 4 D [load n passed in by caller]
T 8 D [term := n]
A 54 @ [load 1 (single)]
T 7 F [include initial term in count]
A 6 F [load address for store]
S 56 @ [test for 0; allow for pre-inc]
G 11 @ [skip next if storing not wanted]
A 12 @ [make 'T addr D' order]
[11] T 21 @ [plant T order, or -ve value if not storing
(note that a T order is +ve as an integer)]
[Loop: deal with current term in sequence
First store it, if user requested that]
[12] T D [clear acc; also serves to make 'T addr D' order]
A 21 @ [load T order to store term]
G 22 @ [jump if caller doesn't want store]
A 56 @ [pre-inc the address]
U 21 @ [update T order]
S 51 @ [check not gone beyond max EDSAC address]
E 47 @ [error exit if it has]
T F [clear acc]
A 8 D [load term]
[21] T D [store]
[22] T F [clear acc]
A 54#@ [load 1 (double)]
S 8 D [1 - term]
E 46 @ [if term = 1, jump out with acc = 0]
T F [clear acc]
C 8 D [acc := term AND 1]
S 54#@ [test whether 0 or 1]
G 38 @ [jump if term is even]
[Here if term is odd; acc = 0]
A 8 D [load term]
S 52#@ [guard against numeric overflow]
E 47 @ [jump if overflow]
A 52#@ [restore term after test]
L D [term*2]
A 8 D [term*3]
A 54#@ [plus 1]
E 41 @ [join common code]
[Here if term is even]
[38] T F [clear acc]
A 8 D [load term]
R D [term/2]
[Common code, acc = new term]
[41] T 8 D [store new term]
A 7 F [load count]
A 54 @ [add 1]
T 7 F [update count]
E 12 @ [loop back]
[Here when sequence has reached 1
Assume jump here with acc = 0]
[46] E F [return with acc = 0]
[47] T F [here on error]
S 54 F [acc := -1]
T 7 F [return that as count]
E 46 @
[Arrange the following to ensure even addresses for 35-bit values]
[51] T 1024 F [for checking valid address]
[52] H 682 DT 682 D [(2^34 - 1)/3]
[54] P DP F [1]
[56] P 2 F [to change addresses by 2]
[Program to demonstrate Rosetta Code subroutine]
T 180 K
G K
[Double constants]
[P 500 F P F] [maximum n = 1000"]
[0] & 848 F PF [maximum n = 100000]
[2] P 13 D PF [n = 27 as demo of sequence]
[4] P D PF [1]
[Double variables]
[6] P F P F [n, start of Collatz sequence]
[8] P F P F [n with maximum count]
[Single constants]
[10] P 400 F [where to store sequence]
[11] P 2 F [to change addresses by 2]
[12] @ F [carriage return]
[13] & F [line feed]
[14] K 4096 F [null char]
[15] A D [used for maiking 'A addr D' order]
[16] P 8 F [ used for adding 8 to address]
[Single variables]
[17] P F [maximum number of terms]
[18] P F [temporary store]
[19] P F [marks end of printing]
[Subroutine to print 4 numbers starting at address in 6F.
Prints new line (CR, LF) at end.]
[20] A 3 F [plant link for return]
T 40 @
A 6 F [load start address]
A 15 @ [make 'A addr D' order]
A 16 @ [inc address by 8 (4 double values)]
U 19 @ [store as test for end]
S 16 @ [restore 'A addr D' order for start]
[27] U 31 @ [plant 'A addr D' order in code]
S 19 @ [test for end]
E 38 @ [out if so]
T F [clear acc]
[31] A D [load number]
T D [to 0D for printing]
[33] A 33 @ [call print subroutine]
G V
A 31 @ [load 'A addr D' order]
A 11 @ [inc address to next double value]
G 27 @ [loop back]
[38] O 12 @ [here when done, print CR LF]
O 13 @
[40] E F [return]
[Enter with acc = 0]
[PART 1]
[41] A 2#@ [load demo value of n]
T 4 D [to 4D for subroutine]
A 10 @ [address to store sequence]
T 6 F [to 6F for subroutine]
[45] A 45 @ [call subroutine to generate sequence]
G H
A 7 F [load length of sequence]
G 198 @ [out if error]
T 18 @
[Print result]
[50] A 50 @ [print 'start' message]
G C
K2048F SF TF AF RF TF !F !F #D
A 2#@ [load demo value of n]
T D [to 0D for printing]
[63] A 63 @ [print demo n]
G V
[65] A 65 @ [print 'length' string]
G C
K2048F @F &F LF EF NF GF TF HF !F #D
T D [ensure 1F and sandwich bit are 0]
A 18 @ [load length]
T F [to 0F (effectively 0D) for printing]
[81] A 81 @
G V
[83] A 83 @ [print 'first and last four' string]
G C
K2048F @F &F FF IF RF SF TF !F AF NF DF !F LF AF SF TF !F FF OF UF RF @F &F #D
A 18 @ [load length of sequence]
L 1 F [times 4]
A 6 F [make address of last 4]
S 16 @
T 18 @ [store address of last 4]
[115] A 115 @ [print first 4 terms]
G 20 @
A 18 @ [retrieve address of last 4]
T 6 F [pass as parameter]
[119] A 119 @ [print last 4 terms]
G 20 @
[PART 2]
T F
T 17 @ [max count := 0]
T 6#@ [n := 0]
[Loop: update n, start new sequence]
[124] T F [clear acc]
A 6#@ [load n]
A 4#@ [add 1 (double)]
U 6#@ [update n]
T 4 D [n to 4D for subroutine]
T 6 F [say no store]
[130] A 130 @ [call subroutine to generate sequence]
G H
A 7 F [load count returned by subroutine]
G 198 @ [out if error]
S 17 @ [compare with max count so far]
G 140 @ [skip if less]
A 17 @ [restore count after test]
T 17 @ [update max count]
A 6#@ [load n]
T 8#@ [remember n that gave max count]
[140] T F [clear acc]
A 6#@ [load n just done]
S #@ [compare with max(n)]
G 124 @ [loop back if n < max(n)
else fall through with acc = 0]
[Here whan reached maximum n. Print result.]
[144] A 144 @ [print 'max n' message]
G C
K2048F MF AF XF !F NF !F !F #D
A #@ [load maximum n]
T D [to 0D for printing]
[157] A 157 @ [call print subroutine]
G V
[159] A 159 @ [print 'max len' message]
G C
K2048F @F &F MF AF XF !F LF EF NF #D
T D [clear 1F and sandwich bit]
A 17 @ [load max count (single)]
T F [to 0F, effectively to 0D]
[175] A 175 @ [call print subroutine]
G V
[177] A 177 @ [print 'at n =' message]
G C
K2048F @F &F AF TF !F NF !F #F VF !D
A 8#@ [load n for which max count occurred]
T D [to 0D for printing]
[192] A 192 @ [call print subroutine]
G V
[194] O 12 @ [print CR, LF]
O 13 @
O 14 @ [print null to flush teleprinter buffer]
Z F [stop]
[Here if term would overflow EDSAC 35-bit value.
With a maximum n of 100,000 this doesn't happen.]
[198] A 198 @ [print 'overflow' message]
G C
K2048F @F &F OF VF EF RF FF LF OF WD
E 194 @ [jump to exit]
E 41 Z [define entry point]
P F [acc = 0 on entry]
- Output:
START 27 LENGTH 112 FIRST AND LAST FOUR 27 82 41 124 8 4 2 1 MAX N 100000 MAX LEN 351 AT N = 77031
Egel
import "prelude.eg"
namespace Hailstone (
using System
using List
def even = [ N -> (N%2) == 0 ]
def hailstone =
[ 1 -> {1}
| N -> if even N then cons N (hailstone (N/2))
else cons N (hailstone (N * 3 + 1)) ]
def hailpair =
[ N -> (N, length (hailstone N)) ]
def hailmax =
[ (N, NMAX), (M, MMAX) -> if (NMAX < MMAX) then (M, MMAX) else (N, NMAX) ]
def largest =
[ 1 -> (1, 1)
| N ->
let M0 = hailpair N in
let M1 = largest (N - 1) in
hailmax M0 M1 ]
)
using System
using List
using Hailstone
def task0 = let H27 = hailstone 27 in length H27
def task1 =
let H27 = hailstone 27 in
let L = length H27 in
(take 4 H27, drop (L - 4) H27)
def task2 = largest 100000
def main = (task0, task1, task2)
Eiffel
class
APPLICATION
create
make
feature
make
local
test: LINKED_LIST [INTEGER]
count, number, te: INTEGER
do
create test.make
test := hailstone_sequence (27)
io.put_string ("There are " + test.count.out + " elements in the sequence for the number 27.")
io.put_string ("%NThe first 4 elements are: ")
across
1 |..| 4 as t
loop
io.put_string (test [t.item].out + "%T")
end
io.put_string ("%NThe last 4 elements are: ")
across
(test.count - 3) |..| test.count as t
loop
io.put_string (test [t.item].out + "%T")
end
across
1 |..| 99999 as c
loop
test := hailstone_sequence (c.item)
te := test.count
if te > count then
count := te
number := c.item
end
end
io.put_string ("%NThe longest sequence for numbers below 100000 is " + count.out + " for the number " + number.out + ".")
end
hailstone_sequence (n: INTEGER): LINKED_LIST [INTEGER]
-- Members of the Hailstone Sequence starting from 'n'.
require
n_is_positive: n > 0
local
seq: INTEGER
do
create Result.make
from
seq := n
until
seq = 1
loop
Result.extend (seq)
if seq \\ 2 = 0 then
seq := seq // 2
else
seq := ((3 * seq) + 1)
end
end
Result.extend (seq)
ensure
sequence_terminated: Result.last = 1
end
end
- Output:
There are 112 elements in the sequence for the number 27. The first 4 elements are: 27 82 41 124 The last 4 elements are: 8 4 2 1 The longest sequence for numbers below 100000 is 351 for the number 77031.
Elena
ELENA 6.x :
import system'collections;
import extensions;
const int maxNumber = 100000;
Hailstone(int n,Map<int,int> lengths)
{
if (n == 1)
{
^ 1
};
while (true)
{
if (lengths.containsKey(n))
{
^ lengths[n]
}
else
{
if (n.isEven())
{
lengths[n] := 1 + Hailstone(n/2, lengths)
}
else
{
lengths[n] := 1 + Hailstone(3*n + 1, lengths)
}
}
}
}
public program()
{
int longestChain := 0;
int longestNumber := 0;
auto recursiveLengths := new Map<int,int>(4096,4096);
for(int i := 1; i < maxNumber; i+=1)
{
var chainLength := Hailstone(i, recursiveLengths);
if (longestChain < chainLength)
{
longestChain := chainLength;
longestNumber := i
}
};
console.printFormatted("max below {0}: {1} ({2} steps)", maxNumber, longestNumber, longestChain)
}
- Output:
max bellow 100000: 77031 (351 steps)
Elixir
defmodule Hailstone do
require Integer
def step(1) , do: 0
def step(n) when Integer.is_even(n), do: div(n,2)
def step(n) , do: n*3 + 1
def sequence(n) do
Stream.iterate(n, &step/1) |> Stream.take_while(&(&1 > 0)) |> Enum.to_list
end
def run do
seq27 = sequence(27)
len27 = length(seq27)
repr = String.replace(inspect(seq27, limit: 4) <> inspect(Enum.drop(seq27,len27-4)), "][", ", ")
IO.puts "Hailstone(27) has #{len27} elements: #{repr}"
{len, start} = Enum.map(1..100_000, fn(n) -> {length(sequence(n)), n} end) |> Enum.max
IO.puts "Longest sequence starting under 100000 begins with #{start} and has #{len} elements."
end
end
Hailstone.run
- Output:
Hailstone(27) has 112 elements: [27, 82, 41, 124, ..., 8, 4, 2, 1] Longest sequence starting under 100000 begins with 77031 and has 351 elements.
EMal
fun hailstone = List by int n
List h = int[n]
while n != 1
n = when((n % 2 == 0), n / 2, 3 * n + 1)
h.append(n)
end
return h
end
int NUMBER = 27
int LESS_THAN = 100000
List sequence = hailstone(NUMBER)
writeLine("The hailstone sequence for the number " + NUMBER +
" has " + sequence.length + " elements")
writeLine("starting with " +
sequence.extractStart(4).join(", ") + " and ending with " +
sequence.extractEnd(4).join(", ") + ".")
int number = 0
sequence = int[]
for int i = 1; i < LESS_THAN; ++i
List current = hailstone(i)
if current.length > sequence.length
sequence = current
number = i
end
end
writeLine("The number less than 100000 with longest hailstone sequence is " +
number + ", with length of " + sequence.length + ".")
- Output:
The hailstone sequence for the number 27 has 112 elements starting with 27, 82, 41, 124 and ending with 8, 4, 2, 1. The number less than 100000 with longest hailstone sequence is 77031, with length of 351.
Erlang
-module(hailstone).
-import(io).
-export([main/0]).
hailstone(1) -> [1];
hailstone(N) when N band 1 == 1 -> [N|hailstone(N * 3 + 1)];
hailstone(N) when N band 1 == 0 -> [N|hailstone(N div 2)].
max_length(Start, Stop) ->
F = fun (N) -> {length(hailstone(N)), N} end,
Lengths = lists:map(F, lists:seq(Start, Stop)),
lists:max(Lengths).
main() ->
io:format("hailstone(4): ~w~n", [hailstone(4)]),
Seq27 = hailstone(27),
io:format("hailstone(27) length: ~B~n", [length(Seq27)]),
io:format("hailstone(27) first 4: ~w~n",
[lists:sublist(Seq27, 4)]),
io:format("hailstone(27) last 4: ~w~n",
[lists:nthtail(length(Seq27) - 4, Seq27)]),
io:format("finding maximum hailstone(N) length for 1 <= N <= 100000..."),
{Length, N} = max_length(1, 100000),
io:format(" done.~nhailstone(~B) length: ~B~n", [N, Length]).
- Output:
Eshell V5.8.4 (abort with ^G) 1> c(hailstone). {ok,hailstone} 2> hailstone:main(). hailstone(4): [4,2,1] hailstone(27) length: 112 hailstone(27) first 4: [27,82,41,124] hailstone(27) last 4: [8,4,2,1] finding maximum hailstone(N) length for 1 <= N <= 100000... done. hailstone(77031) length: 351 ok
Erlang 2
This version has one collatz function for just calculating totals (just for fun) and the second generating lists.
-module(collatz).
-export([main/0,collatz/1,coll/1,max_atz_under/1]).
collatz(1) -> 1;
collatz(N) when N rem 2 == 0 -> 1 + collatz(N div 2);
collatz(N) when N rem 2 > 0 -> 1 + collatz(3 * N +1).
max_atz_under(N) ->
F = fun (X) -> {collatz(X), X} end,
{_, Index} = lists:max(lists:map(F, lists:seq(1, N))),
Index.
coll(1) -> [1];
coll(N) when N rem 2 == 0 -> [N|coll(N div 2)];
coll(N) -> [N|coll(3 * N + 1)].
main() ->
io:format("collatz(4) non-list total: ~w~n", [collatz(4)]),
io:format("coll(4) with lists ~w~n", [coll(4)] ),
Seq27 = coll(27),
Seq1000 = coll(max_atz_under(100000)),
io:format("coll(27) length: ~B~n", [length(Seq27)]),
io:format("coll(27) first 4: ~w~n", [lists:sublist(Seq27, 4)]),
io:format("collatz(27) last 4: ~w~n",
[lists:nthtail(length(Seq27) - 4, Seq27)]),
io:format("maximum N <= 100000..."),
io:format("Max: ~w~n", [max_atz_under(100000)]),
io:format("Total: ~w~n", [ length( Seq1000 ) ] ).
Output
64> collatz:main(). collatz(4) non-list total: 3 coll(4) with lists [4,2,1] coll(27) length: 112 coll(27) first 4: [27,82,41,124] collatz(27) last 4: [8,4,2,1] maximum N <= 100000...Max: 77031 Total: 351 ok
ERRE
In Italy it's known also as "Ulam conjecture".
PROGRAM ULAM
!$DOUBLE
PROCEDURE HAILSTONE(X,PRT%->COUNT)
COUNT=1
IF PRT% THEN PRINT(X,) END IF
REPEAT
IF X/2<>INT(X/2) THEN
X=X*3+1
ELSE
X=X/2
END IF
IF PRT% THEN PRINT(X,) END IF
COUNT=COUNT+1
UNTIL X=1
IF PRT% THEN PRINT END IF
END PROCEDURE
BEGIN
HAILSTONE(27,TRUE->COUNT)
PRINT("Sequence length for 27:";COUNT)
MAX_COUNT=2
NMAX=2
FOR I=3 TO 100000 DO
HAILSTONE(I,FALSE->COUNT)
IF COUNT>MAX_COUNT THEN NMAX=I MAX_COUNT=COUNT END IF
END FOR
PRINT("Max. number is";NMAX;" with";MAX_COUNT;"elements")
END PROGRAM
- Output:
27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 Sequence length for 27: 112 Max. number is 77031 with 351 elements
Euler Math Toolbox
>function hailstone (n) ...
$ v=[n];
$ repeat
$ if mod(n,2) then n=3*n+1;
$ else n=n/2;
$ endif;
$ v=v|n;
$ until n==1;
$ end;
$ return v;
$ endfunction
>hailstone(27), length(%)
[ 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242
121 364 182 91 274 137 412 206 103 310 155 466 233 700
350 175 526 263 790 395 1186 593 1780 890 445 1336 668
334 167 502 251 754 377 1132 566 283 850 425 1276 638 319
958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644
1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154
577 1732 866 433 1300 650 325 976 488 244 122 61 184 92
46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 ]
112
>function hailstonelength (n) ...
$ v=zeros(1,n);
$ v[1]=4; v[2]=2;
$ loop 3 to n;
$ count=1;
$ n=#;
$ repeat
$ if mod(n,2) then n=3*n+1;
$ else n=n/2;
$ endif;
$ if n<=cols(v) and v[n] then
$ v[#]=v[n]+count;
$ break;
$ endif;
$ count=count+1;
$ end;
$ end;
$ return v;
$ endfunction
>h=hailstonelength(100000);
>ex=extrema(h); ex[3], ex[4]
351
77031
Euphoria
function hailstone(atom n)
sequence s
s = {n}
while n != 1 do
if remainder(n,2)=0 then
n /= 2
else
n = 3*n + 1
end if
s &= n
end while
return s
end function
function hailstone_count(atom n)
integer count
count = 1
while n != 1 do
if remainder(n,2)=0 then
n /= 2
else
n = 3*n + 1
end if
count += 1
end while
return count
end function
sequence s
s = hailstone(27)
puts(1,"hailstone(27) =\n")
? s
printf(1,"len = %d\n\n",length(s))
integer max,imax,count
max = 0
for i = 2 to 1e5-1 do
count = hailstone_count(i)
if count > max then
max = count
imax = i
end if
end for
printf(1,"The longest hailstone sequence under 100,000 is %d with %d elements.\n",
{imax,max})
- Output:
hailstone(27) = {27,82,41,124,62,31,94,47,142,71,214,107,322,161,484,242,121,364,182, 91,274,137,412,206,103,310,155,466,233,700,350,175,526,263,790,395, 1186,593,1780,890,445,1336,668,334,167,502,251,754,377,1132,566,283, 850,425,1276,638,319,958,479,1438,719,2158,1079,3238,1619,4858,2429, 7288,3644,1822,911,2734,1367,4102,2051,6154,3077,9232,4616,2308,1154, 577,1732,866,433,1300,650,325,976,488,244,122,61,184,92,46,23,70,35, 106,53,160,80,40,20,10,5,16,8,4,2,1} len = 112 The longest hailstone sequence under 100,000 is 77031 with 351 elements.
Excel
In cell A1, place the starting number. In cell A2 enter this formula =IF(MOD(A1,2)=0,A1/2,A1*3+1) Drag and copy the formula down until 4, 2, 1
Ezhil
Ezhil is a Tamil programming language, see | Wikipedia entry.
நிரல்பாகம் hailstone ( எண் )
பதிப்பி "=> ",எண் #hailstone seq
@( எண் == 1 ) ஆனால்
பின்கொடு எண்
முடி
@( (எண்%2) == 1 ) ஆனால்
hailstone( 3*எண் + 1)
இல்லை
hailstone( எண்/2 )
முடி
முடி
எண்கள் = [5,17,19,23,37]
@(எண்கள் இல் இவ்வெண்) ஒவ்வொன்றாக
பதிப்பி "****** calculating hailstone seq for ",இவ்வெண்," *********"
hailstone( இவ்வெண் )
பதிப்பி "**********************************************"
முடி
F#
let rec hailstone n = seq {
match n with
| 1 -> yield 1
| n when n % 2 = 0 -> yield n; yield! hailstone (n / 2)
| n -> yield n; yield! hailstone (n * 3 + 1)
}
let hailstone27 = hailstone 27 |> Array.ofSeq
assert (Array.length hailstone27 = 112)
assert (hailstone27.[..3] = [|27;82;41;124|])
assert (hailstone27.[108..] = [|8;4;2;1|])
let maxLen, maxI = Seq.max <| seq { for i in 1..99999 -> Seq.length (hailstone i), i}
printfn "Maximum length %d was found for hailstone(%d)" maxLen maxI
- Output:
Maximum length 351 was found for hailstone(77031)
Factor
! rosetta/hailstone/hailstone.factor
USING: arrays io kernel math math.ranges prettyprint sequences vectors ;
IN: rosetta.hailstone
: hailstone ( n -- seq )
[ 1vector ] keep
[ dup 1 number= ]
[
dup even? [ 2 / ] [ 3 * 1 + ] if
2dup swap push
] until
drop ;
<PRIVATE
: main ( -- )
27 hailstone dup dup
"The hailstone sequence from 27:" print
" has length " write length .
" starts with " write 4 head [ unparse ] map ", " join print
" ends with " write 4 tail* [ unparse ] map ", " join print
! Maps n => { length n }, and reduces to longest Hailstone sequence.
1 100000 [a,b)
[ [ hailstone length ] keep 2array ]
[ [ [ first ] bi@ > ] most ] map-reduce
first2
"The hailstone sequence from " write pprint
" has length " write pprint "." print ;
PRIVATE>
MAIN: main
- Output:
$ ./factor -run=rosetta.hailstone Loading resource:work/rosetta/hailstone/hailstone.factor The hailstone sequence from 27: has length 112 starts with 27, 82, 41, 124 ends with 8, 4, 2, 1 The hailstone sequence from 77031 has length 351.
FALSE
[$1&$[%3*1+0~]?~[2/]?]n:
[[$." "$1>][n;!]#%]s:
[1\[$1>][\1+\n;!]#%]c:
27s;! 27c;!."
"
0m:0f:
1[$100000\>][$c;!$m;>[m:$f:0]?%1+]#%
f;." has hailstone sequence length "m;.
Fermat
Array g[2]
Func Collatz(n, d) =
{Runs the Collatz procedure for the number n and returns the number of steps.}
{If d is nonzero, prints the terms in the sequence.}
steps := 1;
while n>1 do
if n|2=0 then n:=n/2 else n:=3n+1 fi;
if d then !!n fi;
steps := steps + 1
od;
steps.
Function LongestTo(n) =
{Finds the number up to n for which the Collatz algorithm takes the most number of steps.}
{The result is stored in the array [g]: g[1] is the number, g[2] is how many steps it takes.}
champ:=0;
record:=0;
for i = 1, n do
q:=Collatz(i, 0);
if q > record then
champ:=i; record:=q; fi;
od;
g[1]:=champ;
g[2]:=record;
.
Forth
: hail-next ( n -- n )
dup 1 and if 3 * 1+ else 2/ then ;
: .hail ( n -- )
begin dup . dup 1 > while hail-next repeat drop ;
: hail-len ( n -- n )
1 begin over 1 > while swap hail-next swap 1+ repeat nip ;
27 hail-len . cr
27 .hail cr
: longest-hail ( max -- )
0 0 rot 1+ 1 do ( n length )
i hail-len 2dup < if
nip nip i swap
else drop then
loop
swap . ." has hailstone sequence length " . ;
100000 longest-hail
Fortran
program Hailstone
implicit none
integer :: i, maxn
integer :: maxseqlen = 0, seqlen
integer, allocatable :: seq(:)
call hs(27, seqlen)
allocate(seq(seqlen))
call hs(27, seqlen, seq)
write(*,"(a,i0,a)") "Hailstone sequence for 27 has ", seqlen, " elements"
write(*,"(a,4(i0,a),3(i0,a),i0)") "Sequence = ", seq(1), ", ", seq(2), ", ", seq(3), ", ", seq(4), " ...., ", &
seq(seqlen-3), ", ", seq(seqlen-2), ", ", seq(seqlen-1), ", ", seq(seqlen)
do i = 1, 99999
call hs(i, seqlen)
if (seqlen > maxseqlen) then
maxseqlen = seqlen
maxn = i
end if
end do
write(*,*)
write(*,"(a,i0,a,i0,a)") "Longest sequence under 100000 is for ", maxn, " with ", maxseqlen, " elements"
deallocate(seq)
contains
subroutine hs(number, length, seqArray)
integer, intent(in) :: number
integer, intent(out) :: length
integer, optional, intent(inout) :: seqArray(:)
integer :: n
n = number
length = 1
if(present(seqArray)) seqArray(1) = n
do while(n /= 1)
if(mod(n,2) == 0) then
n = n / 2
else
n = n * 3 + 1
end if
length = length + 1
if(present(seqArray)) seqArray(length) = n
end do
end subroutine
end program
- Output:
Hailstone sequence for 27 has 112 elements Sequence = 27, 82, 41, 124, ...., 8, 4, 2, 1 Longest sequence under 100000 is for 77031 with 351 elements
Frege
module Hailstone where
import Data.List (maximumBy)
hailstone :: Int -> [Int]
hailstone 1 = [1]
hailstone n | even n = n : hailstone (n `div` 2)
| otherwise = n : hailstone (n * 3 + 1)
withResult :: (t -> t1) -> t -> (t1, t)
withResult f x = (f x, x)
main :: IO ()
main = do
let h27 = hailstone 27
putStrLn $ show $ length h27
let h4 = show $ take 4 h27
let t4 = show $ drop (length h27 - 4) h27
putStrLn ("hailstone 27: " ++ h4 ++ " ... " ++ t4)
putStrLn $ show $ maximumBy (comparing fst) $ map (withResult (length . hailstone)) [1..100000]
- Output:
112 hailstone 27: [27, 82, 41, 124] ... [8, 4, 2, 1] (351, 77031) runtime 0.969 wallclock seconds.
Frink
hailstone[n] :=
{
results = new array
while n != 1
{
results.push[n]
if n mod 2 == 0 // n is even?
n = n / 2
else
n = (3n + 1)
}
results.push[1]
return results
}
longestLen = 0
longestN = 0
for n = 1 to 100000
{
seq = hailstone[n]
if length[seq] > longestLen
{
longestLen = length[seq]
longestN = n
}
}
println["$longestN has length $longestLen"]
FunL
def
hailstone( 1 ) = [1]
hailstone( n ) = n # hailstone( if 2|n then n/2 else n*3 + 1 )
if _name_ == '-main-'
h27 = hailstone( 27 )
assert( h27.length() == 112 and h27.startsWith([27, 82, 41, 124]) and h27.endsWith([8, 4, 2, 1]) )
val (n, len) = maxBy( snd, [(i, hailstone( i ).length()) | i <- 1:100000] )
println( n, len )
- Output:
77031, 351
Futhark
fun hailstone_step(x: int): int =
if (x % 2) == 0
then x/2
else (3*x) + 1
fun hailstone_seq(x: int): []int =
let capacity = 100
let i = 1
let steps = replicate capacity (-1)
let steps[0] = x
loop ((capacity,i,steps,x)) = while x != 1 do
let (steps, capacity) =
if i == capacity then
(concat steps (replicate capacity (-1)),
capacity * 2)
else (steps, capacity)
let x = hailstone_step x
let steps[i] = x
in (capacity, i+1, steps, x)
in #1 (split i steps)
fun hailstone_len(x: int): int =
let i = 1
loop ((i,x)) = while x != 1 do
(i+1, hailstone_step x)
in i
fun max (x: int) (y: int): int = if x < y then y else x
fun main (x: int) (n: int): ([]int, int) =
(hailstone_seq x,
reduce max 0 (map hailstone_len (map (1+) (iota (n-1)))))
FutureBasic
local fn Hailstone( n as NSInteger ) as NSInteger
NSInteger count = 1
while ( n != 1 )
if ( n and 1 ) == 1
n = n * 3 + 1
count++
end if
n = n / 2
count++
wend
end fn = count
void local fn PrintHailstone( n as NSInteger )
NSInteger count = 1, col = 1
print "Sequence for number "; n; ":" : print
print using "########"; n;
col = 2
while ( n != 1 )
if ( n and 1 ) == 1
n = n * 3 + 1
count++
else
n = n / 2
count++
end if
print using "########"; n;
if col == 10 then print : col = 1 else col++
wend
print : print
print "Sequence length = "; count
end fn
window 1, @"Hailstone Sequence", ( 0, 0, 620, 400 )
NSInteger n, seq_num, x, max_x, max_seq
seq_num = 27
print
fn PrintHailstone( seq_num )
print
for x = 1 to 100000
n = fn Hailstone( x )
if n > max_seq
max_x = x
max_seq = n
end if
next
print "The longest sequence is for "; max_x; ", it has a sequence length of "; max_seq; "."
HandleEvents
- Output:
Sequence for number 27: 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 Sequence length = 112 The longest sequence is for 77031, it has a sequence length of 351.
Fōrmulæ
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.
Programs in Fōrmulæ are created/edited online in its website.
In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.
Part 1. Create a routine to generate the hailstone sequence for a number
Part 2. Use the routine to show that the hailstone sequence for the number 27 has 112 elements starting with {27, 82, 41, 124} and ending with {8, 4, 2, 1}
Part 3. Show the number less than 100,000 which has the longest hailstone sequence together with that sequence's length
The sequence for the number 77,031 is the longest one, with 351 terms
Part 4. (Additional, not a requirement) Show the number less than 100,000 which has the highest value in its hailstone sequence together with that highest value
The sequence for the number 77,671 has the highest term: 1,570,824,736
GAP
CollatzSequence := function(n)
local v;
v := [ n ];
while n > 1 do
if IsEvenInt(n) then
n := QuoInt(n, 2);
else
n := 3*n + 1;
fi;
Add(v, n);
od;
return v;
end;
CollatzLength := function(n)
local m;
m := 1;
while n > 1 do
if IsEvenInt(n) then
n := QuoInt(n, 2);
else
n := 3*n + 1;
fi;
m := m + 1;
od;
return m;
end;
CollatzMax := function(a, b)
local n, len, nmax, lmax;
lmax := 0;
for n in [a .. b] do
len := CollatzLength(n);
if len > lmax then
nmax := n;
lmax := len;
fi;
od;
return [ nmax, lmax ];
end;
CollatzSequence(27);
# [ 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206,
# 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502,
# 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429,
# 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300,
# 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1 ]
CollatzLength(27);
# 112
CollatzMax(1, 100);
# [ 97, 119 ]
CollatzMax(1, 1000);
# [ 871, 179 ]
CollatzMax(1, 10000);
# [ 6171, 262 ]
CollatzMax(1, 100000);
# [ 77031, 351 ]
CollatzMax(1, 1000000);
# [ 837799, 525 ]
Go
package main
import "fmt"
// 1st arg is the number to generate the sequence for.
// 2nd arg is a slice to recycle, to reduce garbage.
func hs(n int, recycle []int) []int {
s := append(recycle[:0], n)
for n > 1 {
if n&1 == 0 {
n = n / 2
} else {
n = 3*n + 1
}
s = append(s, n)
}
return s
}
func main() {
seq := hs(27, nil)
fmt.Printf("hs(27): %d elements: [%d %d %d %d ... %d %d %d %d]\n",
len(seq), seq[0], seq[1], seq[2], seq[3],
seq[len(seq)-4], seq[len(seq)-3], seq[len(seq)-2], seq[len(seq)-1])
var maxN, maxLen int
for n := 1; n < 100000; n++ {
seq = hs(n, seq)
if len(seq) > maxLen {
maxN = n
maxLen = len(seq)
}
}
fmt.Printf("hs(%d): %d elements\n", maxN, maxLen)
}
- Output:
hs(27): 112 elements: [27 82 41 124 ... 8 4 2 1] hs(77031): 351 elements
Alternate solution (inspired both by recent news of a new proof submitted for publication and by recent chat on #rosettacode about generators.)
This solution interprets the wording of the task differently, and takes the word "generate" to mean use a generator. This has the advantage of not storing the whole sequence in memory at once. Elements are generated one at a time, counted and discarded. A time optimization added for task 3 is to store the sequence lengths computed so far.
Output is the same as version above.
package main
import "fmt"
// Task 1 implemented with a generator. Calling newHg will "create
// a routine to generate the hailstone sequence for a number."
func newHg(n int) func() int {
return func() (n0 int) {
n0 = n
if n&1 == 0 {
n = n / 2
} else {
n = 3*n + 1
}
return
}
}
func main() {
// make generator for sequence starting at 27
hg := newHg(27)
// save first four elements for printing later
s1, s2, s3, s4 := hg(), hg(), hg(), hg()
// load next four elements in variables to use as shift register.
e4, e3, e2, e1 := hg(), hg(), hg(), hg()
// 4+4= 8 that we've generated so far
ec := 8
// until we get to 1, generate another value, shift, and increment.
// note that intermediate elements--those shifted off--are not saved.
for e1 > 1 {
e4, e3, e2, e1 = e3, e2, e1, hg()
ec++
}
// Complete task 2:
fmt.Printf("hs(27): %d elements: [%d %d %d %d ... %d %d %d %d]\n",
ec, s1, s2, s3, s4, e4, e3, e2, e1)
// Task 3: strategy is to not store sequences, but just the length
// of each sequence. as soon as the sequence we're currently working on
// dips into the range that we've already computed, we short-circuit
// to the end by adding the that known length to whatever length
// we've accumulated so far.
var nMaxLen int // variable holds n with max length encounted so far
// slice holds sequence length for each n as it is computed
var computedLen [1e5]int
computedLen[1] = 1
for n := 2; n < 1e5; n++ {
var ele, lSum int
for hg := newHg(n); ; lSum++ {
ele = hg()
// as soon as we get an element in the range we have already
// computed, we're done...
if ele < n {
break
}
}
// just add the sequence length already computed from this point.
lSum += computedLen[ele]
// save the sequence length for this n
computedLen[n] = lSum
// and note if it's the maximum so far
if lSum > computedLen[nMaxLen] {
nMaxLen = n
}
}
fmt.Printf("hs(%d): %d elements\n", nMaxLen, computedLen[nMaxLen])
}
Groovy
def hailstone = { long start ->
def sequence = []
while (start != 1) {
sequence << start
start = (start % 2l == 0l) ? start / 2l : 3l * start + 1l
}
sequence << start
}
Test Code
def sequence = hailstone(27)
assert sequence.size() == 112
assert sequence[0..3] == [27, 82, 41, 124]
assert sequence[-4..-1] == [8, 4, 2, 1]
def results = (1..100000).collect { [n:it, size:hailstone(it).size()] }.max { it.size }
println results
- Output:
[n:77031, size:351]
Haskell
import Data.List (maximumBy)
import Data.Ord (comparing)
-------------------- HAILSTONE SEQUENCE ------------------
collatz :: Int -> Int
collatz n
| even n = n `div` 2
| otherwise = 1 + 3 * n
hailstone :: Int -> [Int]
hailstone = takeWhile (1 /=) . iterate collatz
longestChain :: Int
longestChain =
fst $
maximumBy (comparing snd) $
(,) <*> (length . hailstone) <$> [1 .. 100000]
--------------------------- TEST -------------------------
main :: IO ()
main =
mapM_
putStrLn
[ "Collatz sequence for 27: ",
(show . hailstone) 27,
"The number " <> show longestChain,
"has the longest hailstone sequence",
"for any number less then 100000. ",
"The sequence has length: "
<> (show . length . hailstone $ longestChain)
]
- Output:
Collatz sequence for 27: [27,82,41,124,62,31,94,47,142,71,214,107,322,161,484,242,121,364,182,91,274,137,412,206,103,310,155,466,233,700,350,175,526,263,790,395,1186,593,1780,890,445,1336,668,334,167,502,251,754,377,1132,566,283,850,425,1276,638,319,958,479,1438,719,2158,1079,3238,1619,4858,2429,7288,3644,1822,911,2734,1367,4102,2051,6154,3077,9232,4616,2308,1154,577,1732,866,433,1300,650,325,976,488,244,122,61,184,92,46,23,70,35,106,53,160,80,40,20,10,5,16,8,4,2] The number 77031 has the longest hailstone sequence for any number less then 100000. The sequence has length: 350
The following is an older version, which some of the language examples on this page are translated from:
import Data.Ord (comparing)
import Data.List (maximumBy, intercalate)
hailstone :: Int -> [Int]
hailstone 1 = [1]
hailstone n
| even n = n : hailstone (n `div` 2)
| otherwise = n : hailstone (n * 3 + 1)
withResult :: (Int -> Int) -> Int -> (Int, Int)
withResult f x = (f x, x)
h27 :: [Int]
h27 = hailstone 27
main :: IO ()
main =
mapM_
putStrLn
[ (show . length) h27
, "hailstone 27: " ++
intercalate " ... " (show <$> [take 4 h27, drop (length h27 - 4) h27])
, show $
maximumBy (comparing fst) $
withResult (length . hailstone) <$> [1 .. 100000]
]
- Output:
112 hailstone 27: [27,82,41,124] ... [8,4,2,1] (351,77031)
Or, going back to basics, we can observe that the hailstone sequence is an 'anamorphism' – it builds up a list structure from a single integer value, which makes unfoldr the obvious first thing to reach for the first main task.
In turn, deriving the longest sequence for starting values below 100000 essentially involves a 'catamorphism' – it takes a list of hailstone sequences (or at least a list of their seed values and their lengths), and strips that structure down to a single (N, length) pair. This makes foldr the obvious recursion scheme to start with for the second main task.
One approach to using unfoldr and then foldr might be:
import Data.List (unfoldr)
-------------------- HAILSTONE SEQUENCE ------------------
hailStones :: Int -> [Int]
hailStones = (<> [1]) . unfoldr go
where
f x
| even x = div x 2
| otherwise = 1 + 3 * x
go x
| 2 > x = Nothing
| otherwise = Just (x, f x)
mostStones :: Int -> (Int, Int)
mostStones = foldr go (0, 0) . enumFromTo 1
where
go x (m, ml)
| l > ml = (x, l)
| otherwise = (m, ml)
where
l = length (hailStones x)
------------------------- GENERIC ------------------------
lastN_ :: Int -> [Int] -> [Int]
lastN_ = (foldr (const (drop 1)) <*>) . drop
--------------------------- TEST -------------------------
h27, start27, end27 :: [Int]
[h27, start27, end27] = [id, take 4, lastN_ 4] <*> [hailStones 27]
maxNum, maxLen :: Int
(maxNum, maxLen) = mostStones 100000
main :: IO ()
main =
mapM_
putStrLn
[ "Sequence 27 length:"
, show $ length h27
, "Sequence 27 start:"
, show start27
, "Sequence 27 end:"
, show end27
, ""
, "N with longest sequence where N <= 100000"
, show maxNum
, "length of this sequence:"
, show maxLen
]
- Output:
Sequence 27 length: 112 Sequence 27 start: [27,82,41,124] Sequence 27 end: [8,4,2,1] N with longest sequence where N <= 100000 77031 length of this sequence: 351
HicEst
DIMENSION stones(1000)
H27 = hailstone(27)
ALIAS(stones,1, first4,4)
ALIAS(stones,H27-3, last4,4)
WRITE(ClipBoard, Name) H27, first4, "...", last4
longest_sequence = 0
DO try = 1, 1E5
elements = hailstone(try)
IF(elements >= longest_sequence) THEN
number = try
longest_sequence = elements
WRITE(StatusBar, Name) number, longest_sequence
ENDIF
ENDDO
WRITE(ClipBoard, Name) number, longest_sequence
END
FUNCTION hailstone( n )
USE : stones
stones(1) = n
DO i = 1, LEN(stones)
IF(stones(i) == 1) THEN
hailstone = i
RETURN
ELSEIF( MOD(stones(i),2) ) THEN
stones(i+1) = 3*stones(i) + 1
ELSE
stones(i+1) = stones(i) / 2
ENDIF
ENDDO
END
H27=112; first4(1)=27; first4(2)=82; first4(3)=41; first4(4)=124; ...; last4(1)=8; last4(2)=4; last4(3)=2; last4(4)=1;
number=77031; longest_sequence=351;
Icon and Unicon
A simple solution that generates (in the Icon sense) the sequence is:
and a test program for this solution is:
but this solution is computationally expensive when run repeatedly (task 3).
The following solution uses caching to improve performance on task 3 at the expense of space.
A test program is:
A sample run is:
->hs 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 112 values in the sequence. 77031 has a sequence of 351 values ->
Inform 7
This solution uses a cache to speed up the length calculation for larger numbers.
Home is a room.
To decide which list of numbers is the hailstone sequence for (N - number):
let result be a list of numbers;
add N to result;
while N is not 1:
if N is even, let N be N / 2;
otherwise let N be (3 * N) + 1;
add N to result;
decide on result.
Hailstone length cache relates various numbers to one number.
To decide which number is the hailstone sequence length for (N - number):
let ON be N;
let length so far be 0;
while N is not 1:
if N relates to a number by the hailstone length cache relation:
let result be length so far plus the number to which N relates by the hailstone length cache relation;
now the hailstone length cache relation relates ON to result;
decide on result;
if N is even, let N be N / 2;
otherwise let N be (3 * N) + 1;
increment length so far;
let result be length so far plus 1;
now the hailstone length cache relation relates ON to result;
decide on result.
To say first and last (N - number) entry/entries in (L - list of values of kind K):
let length be the number of entries in L;
if length <= N * 2:
say L;
else:
repeat with M running from 1 to N:
if M > 1, say ", ";
say entry M in L;
say " ... ";
repeat with M running from length - N + 1 to length:
say entry M in L;
if M < length, say ", ".
When play begins:
let H27 be the hailstone sequence for 27;
say "Hailstone sequence for 27 has [number of entries in H27] element[s]: [first and last 4 entries in H27].";
let best length be 0;
let best number be 0;
repeat with N running from 1 to 99999:
let L be the hailstone sequence length for N;
if L > best length:
let best length be L;
let best number be N;
say "The number under 100,000 with the longest hailstone sequence is [best number] with [best length] element[s].";
end the story.
- Output:
Hailstone sequence for 27 has 112 elements: 27, 82, 41, 124 ... 8, 4, 2, 1. The number under 100,000 with the longest hailstone sequence is 77031 with 351 elements.
Io
Here is a simple, brute-force approach:
makeItHail := method(n,
stones := list(n)
while (n != 1,
if(n isEven,
n = n / 2,
n = 3 * n + 1
)
stones append(n)
)
stones
)
out := makeItHail(27)
writeln("For the sequence beginning at 27, the number of elements generated is ", out size, ".")
write("The first four elements generated are ")
for(i, 0, 3,
write(out at(i), " ")
)
writeln(".")
write("The last four elements generated are ")
for(i, out size - 4, out size - 1,
write(out at(i), " ")
)
writeln(".")
numOfElems := 0
nn := 3
for(x, 3, 100000,
out = makeItHail(x)
if(out size > numOfElems,
numOfElems = out size
nn = x
)
)
writeln("For numbers less than or equal to 100,000, ", nn,
" has the longest sequence of ", numOfElems, " elements.")
- Output:
For the sequence beginning at 27, the number of elements generated is 112. The first four elements generated are 27 82 41 124 . The last four elements generated are 8 4 2 1 . For numbers less than or equal to 100,000, 77031 has the longest sequence of 351 elements.
Ioke
collatz = method(n,
n println
unless(n <= 1,
if(n even?, collatz(n / 2), collatz(n * 3 + 1)))
)
J
Solution:
hailseq=: -:`(1 3&p.)@.(2&|) ^:(1 ~: ]) ^:a:"0
Usage:
# hailseq 27 NB. sequence length
112
4 _4 {."0 1 hailseq 27 NB. first & last 4 numbers in sequence
27 82 41 124
8 4 2 1
(>:@(i. >./) , >./) #@hailseq }.i. 1e5 NB. number < 100000 with max seq length & its seq length
77031 351
See also the Collatz Conjecture essay on the J wiki.
Java
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
class Hailstone {
public static List<Long> getHailstoneSequence(long n) {
if (n <= 0)
throw new IllegalArgumentException("Invalid starting sequence number");
List<Long> list = new ArrayList<Long>();
list.add(Long.valueOf(n));
while (n != 1) {
if ((n & 1) == 0)
n = n / 2;
else
n = 3 * n + 1;
list.add(Long.valueOf(n));
}
return list;
}
public static void main(String[] args) {
List<Long> sequence27 = getHailstoneSequence(27);
System.out.println("Sequence for 27 has " + sequence27.size() + " elements: " + sequence27);
long MAX = 100000;
// Simple way
{
long highestNumber = 1;
int highestCount = 1;
for (long i = 2; i < MAX; i++) {
int count = getHailstoneSequence(i).size();
if (count > highestCount) {
highestCount = count;
highestNumber = i;
}
}
System.out.println("Method 1, number " + highestNumber + " has the longest sequence, with a length of " + highestCount);
}
// More memory efficient way
{
long highestNumber = 1;
int highestCount = 1;
for (long i = 2; i < MAX; i++) {
int count = 1;
long n = i;
while (n != 1) {
if ((n & 1) == 0)
n = n / 2;
else
n = 3 * n + 1;
count++;
}
if (count > highestCount) {
highestCount = count;
highestNumber = i;
}
}
System.out.println("Method 2, number " + highestNumber + " has the longest sequence, with a length of " + highestCount);
}
// Efficient for analyzing all sequences
{
long highestNumber = 1;
long highestCount = 1;
Map<Long, Integer> sequenceMap = new HashMap<Long, Integer>();
sequenceMap.put(Long.valueOf(1), Integer.valueOf(1));
List<Long> currentList = new ArrayList<Long>();
for (long i = 2; i < MAX; i++) {
currentList.clear();
Long n = Long.valueOf(i);
Integer count = null;
while ((count = sequenceMap.get(n)) == null) {
currentList.add(n);
long nValue = n.longValue();
if ((nValue & 1) == 0)
n = Long.valueOf(nValue / 2);
else
n = Long.valueOf(3 * nValue + 1);
}
int curCount = count.intValue();
for (int j = currentList.size() - 1; j >= 0; j--)
sequenceMap.put(currentList.get(j), Integer.valueOf(++curCount));
if (curCount > highestCount) {
highestCount = curCount;
highestNumber = i;
}
}
System.out.println("Method 3, number " + highestNumber + " has the longest sequence, with a length of " + highestCount);
}
return;
}
}
- Output:
Sequence for 27 has 112 elements: [27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1] Method 1, number 77031 has the longest sequence, with a length of 351 Method 2, number 77031 has the longest sequence, with a length of 351 Method 3, number 77031 has the longest sequence, with a length of 351
JavaScript
ES5
Imperative
function hailstone (n) {
var seq = [n];
while (n > 1) {
n = n % 2 ? 3 * n + 1 : n / 2;
seq.push(n);
}
return seq;
}
// task 2: verify the sequence for n = 27
var h = hailstone(27), hLen = h.length;
print("sequence 27 is (" + h.slice(0, 4).join(", ") + " ... "
+ h.slice(hLen - 4, hLen).join(", ") + "). length: " + hLen);
// task 3: find the longest sequence for n < 100000
for (var n, max = 0, i = 100000; --i;) {
var seq = hailstone(i), sLen = seq.length;
if (sLen > max) {
n = i;
max = sLen;
}
}
print("longest sequence: " + max + " numbers for starting point " + n);
- Output:
sequence 27 is (27, 82, 41, 124 ... 8, 4, 2, 1). length: 112 longest sequence: 351 numbers for starting point 77031
Functional
This simple problem turns out to be a good test of the constraints on composing (ES5) JavaScript code in a functional style.
The first sub-problem falls easily within reach of a basic recursive definition (translating one of the Haskell solutions).
(function () {
// Hailstone Sequence
// n -> [n]
function hailstone(n) {
return n === 1 ? [1] : (
[n].concat(
hailstone(n % 2 ? n * 3 + 1 : n / 2)
)
)
}
var lstCollatz27 = hailstone(27);
return {
length: lstCollatz27.length,
sequence: lstCollatz27
};
})();
- Output:
{"length":112,"sequence":[27,82,41,124,62,31,94,47,142,71,214,
107,322,161,484,242,121,364,182,91,274,137,412,206,103,310,155,466,233,700,350,
175,526, 263,790,395,1186,593,1780,890,445,1336,668,334,167,502,251,754,377,
1132,566,283,850,425,1276,638,319,958,479,1438,719,2158,1079,3238,1619,4858,
2429,7288,3644,1822,911,2734,1367,4102,2051,6154,3077,9232,4616,2308,1154,577,
1732,866,433,1300,650,325,976,488,244,122,61,184,92,46,23,70,35,106,53,160,80,
40,20,10,5,16,8,4,2,1]}
Attempting to fold that recursive function over an array of 100,000 elements, however, (to solve the second part of the problem) soon runs out of stack space, at least on the system used here.
The stack problem can be quickly fixed, as often, by simply applying a memoized function, which reuses previously calculated paths.
(function () {
function memoizedHailstone() {
var dctMemo = {};
return function hailstone(n) {
var value = dctMemo[n];
if (typeof value === "undefined") {
dctMemo[n] = value = (n === 1) ?
[1] : ([n].concat(hailstone(n % 2 ? n * 3 + 1 : n / 2)));
}
return value;
}
}
// Derived a memoized version of the function,
// which can reuse previously calculated paths
var fnCollatz = memoizedHailstone();
// Iterative version of range
// [m..n]
function range(m, n) {
var a = Array(n - m + 1),
i = n + 1;
while (i--) a[i - 1] = i;
return a;
}
// Fold/reduce over an array to find the maximum length
function longestBelow(n) {
return range(1, n).reduce(
function (a, x, i) {
var lng = fnCollatz(x).length;
return lng > a.l ? {
n: i + 1,
l: lng
} : a
}, {
n: 0,
l: 0
}
)
}
return longestBelow(100000);
})();
- Output:
// Number, length of sequence
{"n":77031, "l":351}
For better time (as well as space) we can continue to memoize while falling back to a function which returns the sequence length alone, and is iteratively implemented. This also proves more scaleable, and we can still use a fold/reduce pattern over a list to find the longest collatz sequences for integers below one million, or ten million and beyond, without hitting the limits of system resources.
(function (n) {
var dctMemo = {};
// Length only of hailstone sequence
// n -> n
function collatzLength(n) {
var i = 1,
a = n,
lng;
while (a !== 1) {
lng = dctMemo[a];
if ('u' === (typeof lng)[0]) {
a = (a % 2 ? 3 * a + 1 : a / 2);
i++;
} else return lng + i - 1;
}
return i;
}
// Iterative version of range
// [m..n]
function range(m, n) {
var a = Array(n - m + 1),
i = n + 1;
while (i--) a[i - 1] = i;
return a;
}
// Fold/reduce over an array to find the maximum length
function longestBelow(n) {
return range(1, n).reduce(
function (a, x) {
var lng = dctMemo[x] || (dctMemo[x] = collatzLength(x));
return lng > a.l ? {
n: x,
l: lng
} : a
}, {
n: 0,
l: 0
}
)
}
return [100000, 1000000, 10000000].map(longestBelow);
})();
- Output:
[
{"n":77031, "l":351}, // 100,000
{"n":837799, "l":525}, // 1,000,000
{"n":8400511, "l":686} // 10,000,000
]
longestBelow(100000000)
-> {"n":63728127, "l":950}
ES6
(() => {
// hailstones :: Int -> [Int]
const hailstones = x => {
const collatz = memoized(n =>
even(n) ? div(n, 2) : (3 * n) + 1);
return reverse(until(
xs => xs[0] === 1,
xs => cons(collatz(xs[0]), xs), [x]
));
};
// collatzLength :: Int -> Int
const collatzLength = n =>
until(
xi => xi[0] === 1,
([x, i]) => [(x % 2 ? 3 * x + 1 : x / 2), i + 1], //
[n, 1]
)[1];
// GENERIC FUNCTIONS -----------------------------------------------------
// comparing :: (a -> b) -> (a -> a -> Ordering)
const comparing = f =>
(x, y) => {
const
a = f(x),
b = f(y);
return a < b ? -1 : (a > b ? 1 : 0);
};
// cons :: a -> [a] -> [a]
const cons = (x, xs) => [x].concat(xs);
// div :: Int -> Int -> Int
const div = (x, y) => Math.floor(x / y);
// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = (m, n) =>
Array.from({
length: Math.floor(n - m) + 1
}, (_, i) => m + i);
// even :: Int -> Bool
const even = n => n % 2 === 0;
// fst :: (a, b) -> a
const fst = pair => pair.length === 2 ? pair[0] : undefined;
// map :: (a -> b) -> [a] -> [b]
const map = (f, xs) => xs.map(f);
// maximumBy :: (a -> a -> Ordering) -> [a] -> a
const maximumBy = (f, xs) =>
xs.length > 0 ? (
xs.slice(1)
.reduce((a, x) => f(x, a) > 0 ? x : a, xs[0])
) : undefined;
// memoized :: (a -> b) -> (a -> b)
const memoized = f => {
const dctMemo = {};
return x => {
const v = dctMemo[x];
return v !== undefined ? v : (dctMemo[x] = f(x));
};
};
// reverse :: [a] -> [a]
const reverse = xs =>
xs.slice(0)
.reverse();
// unlines :: [String] -> String
const unlines = xs => xs.join('\n');
// until :: (a -> Bool) -> (a -> a) -> a -> a
const until = (p, f, x) => {
let v = x;
while (!p(v)) v = f(v);
return v;
};
// MAIN ------------------------------------------------------------------
const
// ceiling :: Int
ceiling = 100000,
// (maxLen, maxNum) :: (Int, Int)
[maxLen, maxNum] =
maximumBy(
comparing(fst),
map(i => [collatzLength(i), i], enumFromTo(1, ceiling))
);
return unlines([
'Collatz sequence for 27: ',
`${hailstones(27)}`,
'',
`The number ${maxNum} has the longest hailstone sequence`,
`for any starting number under ${ceiling}.`,
'',
`The length of that sequence is ${maxLen}.`
]);
})();
- Output:
(Run in the Atom editor, through the Script package)
Collatz sequence for 27: 27,82,41,124,62,31,94,47,142,71,214,107,322,161,484,242,121,364,182,91, 274,137,412,206,103,310,155,466,233,700,350,175,526,263,790,395,1186,593, 1780,890,445,1336,668,334,167,502,251,754,377,1132,566,283,850,425,1276, 638,319,958,479,1438,719,2158,1079,3238,1619,4858,2429,7288,3644,1822, 911,2734,1367,4102,2051,6154,3077,9232,4616,2308,1154,577,1732,866,433, 1300,650,325,976,488,244,122,61,184,92,46,23,70,35,106,53,160,80,40,20, 10,5,16,8,4,2,1 The number 77031 has the longest hailstone sequence for any starting number under 100000. The length of that sequence is 351. [Finished in 1.139s]
jq
# Generate the hailstone sequence as a stream to save space (and time) when counting
def hailstone:
recurse( if . > 1 then
if . % 2 == 0 then ./2|floor else 3*. + 1 end
else empty
end );
def count(g): reduce g as $i (0; .+1);
# return [i, length] for the first maximal-length hailstone sequence where i is in [1 .. n]
def max_hailstone(n):
# state: [i, length]
reduce range(1; n+1) as $i
([0,0];
($i | count(hailstone)) as $l
| if $l > .[1] then [$i, $l] else . end);
Examples:
[27|hailstone] as $h
| "[27|hailstone]|length is \($h|length)",
"The first four numbers: \($h[0:4])",
"The last four numbers: \($h|.[length-4:length])",
"",
max_hailstone(100000) as $m
| "Maximum length for n|hailstone for n in 1..100000 is \($m[1]) (n == \($m[0]))"
- Output:
$ jq -M -r -n -f hailstone.jq
[27|hailstone]|length is 112
The first four numbers: [27,82,41,124]
The last four numbers: [8,4,2,1]
Maximum length for n|hailstone for n in 1..100000 is 351 (n == 77031)
Julia
Dynamic solution
function hailstonelength(n::Integer)
len = 1
while n > 1
n = ifelse(iseven(n), n ÷ 2, 3n + 1)
len += 1
end
return len
end
@show hailstonelength(27); nothing
@show findmax([hailstonelength(i) for i in 1:100_000]); nothing
- Output:
hailstonelength(27) = 112 findmax((hailstonelength(i) for i = 1:100000)) = (351, 77031)
Solution with iterator
Julia 1.0
struct HailstoneSeq{T<:Integer}
count::T
end
Base.eltype(::HailstoneSeq{T}) where T = T
function Base.iterate(h::HailstoneSeq, state=h.count)
if state == 1
(1, 0)
elseif state < 1
nothing
elseif iseven(state)
(state, state ÷ 2)
elseif isodd(state)
(state, 3state + 1)
end
end
function Base.length(h::HailstoneSeq)
len = 0
for _ in h
len += 1
end
return len
end
function Base.show(io::IO, h::HailstoneSeq)
f5 = collect(Iterators.take(h, 5))
print(io, "HailstoneSeq{", join(f5, ", "), "...}")
end
hs = HailstoneSeq(27)
println("Collection of the Hailstone sequence from 27: $hs")
cl = collect(hs)
println("First 5 elements: ", join(cl[1:5], ", "))
println("Last 5 elements: ", join(cl[end-4:end], ", "))
Base.isless(h::HailstoneSeq, s::HailstoneSeq) = length(h) < length(s)
println("The number with the longest sequence under 100,000 is: ", maximum(HailstoneSeq.(1:100_000)))
- Output:
Collection of the Hailstone sequence from 27: HailstoneSeq{27, 82, 411, 124, 62...} First 5 elements: 27, 82, 41, 124, 62 Last 5 elements: 16, 8, 4, 2, 1 The number with the longest sequence under 100,000 is: HailstoneSeq{777031, 231094, 115547, 346642, 173321...}
Julia 0.6
struct HailstoneSeq{T<:Integer}
start::T
end
Base.eltype(::HailstoneSeq{T}) where T = T
Base.start(hs::HailstoneSeq) = (-1, hs.start)
Base.done(::HailstoneSeq, state) = state == (1, 4)
function Base.next(::HailstoneSeq, state)
_, s2 = state
s1 = s2
if iseven(s2)
s2 = s2 ÷ 2
else
s2 = 3s2 + 1
end
return s1, (s1, s2)
end
function Base.length(hs::HailstoneSeq)
r = 0
for _ in hs
r += 1
end
return r
end
function Base.show(io::IO, hs::HailstoneSeq)
f5 = collect(Iterators.take(hs, 5))
print(io, "HailstoneSeq(", join(f5, ", "), "...)")
end
hs = HailstoneSeq(27)
println("Collection of the Hailstone sequence from 27: $hs")
cl = collect(hs)
println("First 5 elements: ", join(cl[1:5], ", "))
println("Last 5 elements: ", join(cl[end-4:end], ", "))
Base.isless(h::HailstoneSeq, s::HailstoneSeq) = length(h) < length(s)
println("The number with the longest sequence under 100,000 is: ", maximum(HailstoneSeq.(1:100_000)))
- Output:
Collection of the Hailstone sequence from 27: HailstoneSeq(27, 82, 41, 124, 62...) First 5 elements: 27, 82, 41, 124, 62 Last 5 elements: 16, 8, 4, 2, 1 The number with the longest sequence under 100,000 is: HailstoneSeq(77031, 231094, 115547, 346642, 173321...)
K
hail: (1<){:[x!2;1+3*x;_ x%2]}\
seqn: hail 27
#seqn
112
4#seqn
27 82 41 124
-4#seqn
8 4 2 1
{m,x@s?m:|/s:{#hail x}'x}{x@&x!2}!:1e5
351 77031
Kotlin
fun hailstone(start: Int) = generateSequence(start) { n ->
when {
n == 1 -> null
n % 2 == 0 -> n / 2
else -> n * 3 + 1
}
}
fun main() {
val hail27 = hailstone(27).toList()
println("The hailstone sequence for 27 has ${hail27.size} elements:\n$hail27")
val (n, length) = (1..100000).asSequence()
.map { it to hailstone(it).count() }
.maxBy { it.second }
println("The number between 1 and 100000 with the longest hailstone sequence is $n, of length $length")
}
Alternative, doing it manually:
import java.util.ArrayDeque
fun hailstone(n: Int): ArrayDeque<Int> {
val hails = when {
n == 1 -> ArrayDeque<Int>()
n % 2 == 0 -> hailstone(n / 2)
else -> hailstone(3 * n + 1)
}
hails.addFirst(n)
return hails
}
fun main(args: Array<String>) {
val hail27 = hailstone(27)
fun showSeq(s: List<Int>) = s.map { it.toString() }.reduce { a, b -> a + ", " + b }
println("Hailstone sequence for 27 is " + showSeq(hail27.take(3)) + " ... "
+ showSeq(hail27.drop(hail27.size - 3)) + " with length ${hail27.size}.")
var longestHail = hailstone(1)
for (x in 1..99999)
longestHail = arrayOf(hailstone(x), longestHail).maxBy { it.size } ?: longestHail
println("${longestHail.first} is the number less than 100000 with " +
"the longest sequence, having length ${longestHail.size}.")
}
- Output:
Hailstone sequence for 27 is 27, 82, 41 ... 4, 2, 1 with length 112. 77031 is the number less than 100000 with the longest sequence, having length 351.
Lasso
[
define_tag("hailstone", -required="n", -type="integer", -copy);
local("sequence") = array(#n);
while(#n != 1);
((#n % 2) == 0) ? #n = (#n / 2) | #n = (#n * 3 + 1);
#sequence->insert(#n);
/while;
return(#sequence);
/define_tag;
local("result");
#result = hailstone(27);
while(#result->size > 8);
#result->remove(5);
/while;
#result->insert("...",5);
"Hailstone sequence for n = 27 -> { " + #result->join(", ") + " }";
local("longest_sequence") = 0;
local("longest_index") = 0;
loop(-from=1, -to=100000);
local("length") = hailstone(loop_count)->size;
if(#length > #longest_sequence);
#longest_index = loop_count;
#longest_sequence = #length;
/if;
/loop;
"<br/>";
"Number with the longest sequence under 100,000: " #longest_index + ", with " + #longest_sequence + " elements.";
]
Limbo
implement Hailstone;
include "sys.m"; sys: Sys;
include "draw.m";
Hailstone: module {
init: fn(ctxt: ref Draw->Context, args: list of string);
};
init(nil: ref Draw->Context, nil: list of string)
{
sys = load Sys Sys->PATH;
seq := hailstone(big 27);
l := len seq;
sys->print("hailstone(27): ");
for(i := 0; i < 4; i++) {
sys->print("%bd, ", hd seq);
seq = tl seq;
}
sys->print("⋯");
while(len seq > 4)
seq = tl seq;
while(seq != nil) {
sys->print(", %bd", hd seq);
seq = tl seq;
}
sys->print(" (length %d)\n", l);
max := 1;
maxn := big 1;
for(n := big 2; n < big 100000; n++) {
cur := len hailstone(n);
if(cur > max) {
max = cur;
maxn = n;
}
}
sys->print("hailstone(%bd) has length %d\n", maxn, max);
}
hailstone(i: big): list of big
{
if(i == big 1)
return big 1 :: nil;
if(i % big 2 == big 0)
return i :: hailstone(i / big 2);
return i :: hailstone((big 3 * i) + big 1);
}
- Output:
hailstone(27): 27, 82, 41, 124, ⋯, 8, 4, 2, 1 (length 112) hailstone(77031) has length 351
Lingo
on hailstone (n, sequenceList)
len = 1
repeat while n<>1
if listP(sequenceList) then sequenceList.add(n)
if n mod 2 = 0 then
n = n / 2
else
n = 3 * n + 1
end if
len = len + 1
end repeat
if listP(sequenceList) then sequenceList.add(n)
return len
end
Usage:
sequenceList = []
hailstone(27, sequenceList)
put sequenceList
-- [27, 82, 41, 124, ... , 8, 4, 2, 1]
n = 0
maxLen = 0
repeat with i = 1 to 99999
len = hailstone(i)
if len>maxLen then
n = i
maxLen = len
end if
end repeat
put n, maxLen
-- 77031 351
Logo
to hail.next :n
output ifelse equal? 0 modulo :n 2 [:n/2] [3*:n + 1]
end
to hail.seq :n
if :n = 1 [output [1]]
output fput :n hail.seq hail.next :n
end
show hail.seq 27
show count hail.seq 27
to max.hail :n
localmake "max.n 0
localmake "max.length 0
repeat :n [if greater? count hail.seq repcount :max.length [
make "max.n repcount
make "max.length count hail.seq repcount
] ]
(print :max.n [has hailstone sequence length] :max.length)
end
max.hail 100000
Logtalk
:- object(hailstone).
:- public(generate_sequence/2).
:- mode(generate_sequence(+natural, -list(natural)), zero_or_one).
:- info(generate_sequence/2, [
comment is 'Generates the Hailstone sequence that starts with its first argument. Fails if the argument is not a natural number.',
argnames is ['Start', 'Sequence']
]).
:- public(write_sequence/1).
:- mode(write_sequence(+natural), zero_or_one).
:- info(write_sequence/1, [
comment is 'Writes to the standard output the Hailstone sequence that starts with its argument. Fails if the argument is not a natural number.',
argnames is ['Start']
]).
:- public(sequence_length/2).
:- mode(sequence_length(+natural, -natural), zero_or_one).
:- info(sequence_length/2, [
comment is 'Calculates the length of the Hailstone sequence that starts with its first argument. Fails if the argument is not a natural number.',
argnames is ['Start', 'Length']
]).
:- public(longest_sequence/4).
:- mode(longest_sequence(+natural, +natural, -natural, -natural), zero_or_one).
:- info(longest_sequence/4, [
comment is 'Calculates the longest Hailstone sequence in the interval [Start, End]. Fails if the interval is not valid.',
argnames is ['Start', 'End', 'N', 'Length']
]).
generate_sequence(Start, Sequence) :-
integer(Start),
Start >= 1,
sequence(Start, Sequence).
sequence(1, [1]) :-
!.
sequence(N, [N| Sequence]) :-
( N mod 2 =:= 0 ->
M is N // 2
; M is (3 * N) + 1
),
sequence(M, Sequence).
write_sequence(Start) :-
integer(Start),
Start >= 1,
sequence(Start).
sequence(1) :-
!,
write(1), nl.
sequence(N) :-
write(N), write(' '),
( N mod 2 =:= 0 ->
M is N // 2
; M is (3 * N) + 1
),
sequence(M).
sequence_length(Start, Length) :-
integer(Start),
Start >= 1,
sequence_length(Start, 1, Length).
sequence_length(1, Length, Length) :-
!.
sequence_length(N, Length0, Length) :-
Length1 is Length0 + 1,
( N mod 2 =:= 0 ->
M is N // 2
; M is (3 * N) + 1
),
sequence_length(M, Length1, Length).
longest_sequence(Start, End, N, Length) :-
integer(Start),
integer(End),
Start >= 1,
Start =< End,
longest_sequence(Start, End, 1, N, 1, Length).
longest_sequence(Current, End, N, N, Length, Length) :-
Current > End,
!.
longest_sequence(Current, End, N0, N, Length0, Length) :-
sequence_length(Current, 1, CurrentLength),
Next is Current + 1,
( CurrentLength > Length0 ->
longest_sequence(Next, End, Current, N, CurrentLength, Length)
; longest_sequence(Next, End, N0, N, Length0, Length)
).
:- end_object.
Testing:
| ?- hailstone::write_sequence(27).
27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
true
| ?- hailstone::sequence_length(27, Length).
Length = 112
true
| ?- hailstone::longest_sequence(1, 100000, N, Length).
N = 77031, Length = 351
true
LOLCODE
There is presently no way to query a BUKKIT for the existence of a given key, thus making memoization infeasible. This solution takes advantage of prior knowledge to run in reasonable time.
HAI 1.3
HOW IZ I hailin YR stone
I HAS A sequence ITZ A BUKKIT
sequence HAS A length ITZ 1
sequence HAS A SRS 0 ITZ stone
IM IN YR stoner
BOTH SAEM stone AN 1, O RLY?
YA RLY, FOUND YR sequence
OIC
MOD OF stone AN 2, O RLY?
YA RLY, stone R SUM OF PRODUKT OF stone AN 3 AN 1
NO WAI, stone R QUOSHUNT OF stone AN 2
OIC
sequence HAS A SRS sequence'Z length ITZ stone
sequence'Z length R SUM OF sequence'Z length AN 1
IM OUTTA YR stoner
IF U SAY SO
I HAS A hail27 ITZ I IZ hailin YR 27 MKAY
VISIBLE "hail(27) = "!
IM IN YR first4 UPPIN YR i TIL BOTH SAEM i AN 4
VISIBLE hail27'Z SRS i " "!
IM OUTTA YR first4
VISIBLE "..."!
IM IN YR last4 UPPIN YR i TIL BOTH SAEM i AN 4
VISIBLE " " hail27'Z SRS SUM OF 108 AN i!
IM OUTTA YR last4
VISIBLE ", length = " hail27'Z length
I HAS A max, I HAS A len ITZ 0
BTW, DIS IZ RLY NOT FAST SO WE ONLY CHEK N IN [75000, 80000)
IM IN YR maxer UPPIN YR n TIL BOTH SAEM n AN 5000
I HAS A n ITZ SUM OF n AN 75000
I HAS A seq ITZ I IZ hailin YR n MKAY
BOTH SAEM len AN SMALLR OF len AN seq'Z length, O RLY?
YA RLY, max R n, len R seq'Z length
OIC
IM OUTTA YR maxer
VISIBLE "len(hail(" max ")) = " len
KTHXBYE
- Output:
hail(27) = 27 82 41 124 ... 8 4 2 1, length = 112 len(hail(77031)) = 351
Lua
function hailstone( n, print_numbers )
local n_iter = 1
while n ~= 1 do
if print_numbers then print( n ) end
if n % 2 == 0 then
n = n / 2
else
n = 3 * n + 1
end
n_iter = n_iter + 1
end
if print_numbers then print( n ) end
return n_iter;
end
hailstone( 27, true )
max_i, max_iter = 0, 0
for i = 1, 100000 do
num = hailstone( i, false )
if num >= max_iter then
max_i = i
max_iter = num
end
end
print( string.format( "Needed %d iterations for the number %d.\n", max_iter, max_i ) )
M2000 Interpreter
Use of two versions of Hailstone, one which return each n, and another one which return only the length of sequence.
Also we use current stack as FIFO to get the last 4 numbers
Module hailstone.Task {
hailstone=lambda (n as long)->{
=lambda n (&val) ->{
if n=1 then =false: exit
=true
if n mod 2=0 then n/=2 : val=n: exit
n*=3 : n++: val=n
}
}
Count=Lambda (n) ->{
m=lambda n ->{
if n=1 then =false: exit
=true :if n mod 2=0 then n/=2 :exit
n*=3 : n++
}
c=1
While m() {c++}
=c
}
k=Hailstone(27)
counter=1
x=0
Print 27,
While k(&x) {
counter++
Print x,
if counter=4 then exit
}
Print
Flush ' empty current stack
While k(&x) {
counter++
data x ' send to end of stack -used as FIFO
if stack.size>4 then drop
}
\\ [] return a stack object and leave empty current stack
\\ Print use automatic iterator to print all values in columns.
Print []
Print "counter:";counter
m=0
For i=2 to 99999 {
m1=max.data(count(i), m)
if m1<>m then m=m1: im=i
}
Print Format$("Number {0} has then longest hailstone sequence of length {1}", im, m)
}
hailstone.Task
- Output:
27 82 41 124 8 4 2 1 counter:112 Number 77031 has then longest hailstone sequence of length 351
Maple
Define the procedure:
hailstone := proc( N )
local n := N, HS := Array([n]);
while n > 1 do
if type(n,even) then
n := n/2;
else
n := 3*n+1;
end if;
HS(numelems(HS)+1) := n;
end do;
HS;
end proc;
Run the command and show the appropriate portion of the result;
> r := hailstone(27):
[ 1..112 1-D Array ]
r := [ Data Type: anything ]
[ Storage: rectangular ]
[ Order: Fortran_order ]
> r(1..4) ... r(-4..);
[27, 82, 41, 124] .. [8, 4, 2, 1]
Compute the first 100000 sequences:
longest := 0; n := 0;
for i from 1 to 100000 do
len := numelems(hailstone(i));
if len > longest then
longest := len;
n := i;
end if;
od:
printf("The longest Hailstone sequence in the first 100k is n=%d, with %d terms\n",n,longest);
- Output:
The longest Hailstone sequence in the first 100k is n=77031, with 351 terms
Mathematica / Wolfram Language
Here are four ways to generate the sequence.
Nested function call formulation
HailstoneF[n_] := NestWhileList[If[OddQ[#], 3 # + 1, #/2] &, n, # > 1 &]
This is probably the most readable and shortest implementation.
Fixed-Point formulation
HailstoneFP[n_] := Most@FixedPointList[Switch[#, 1, 1, _?OddQ , 3# + 1, _, #/2] &, n]
Recursive formulation
HailstoneR[1] = {1}
HailstoneR[n_?OddQ] := Prepend[HailstoneR[3 n + 1], n]
HailstoneR[n_] := Prepend[HailstoneR[n/2], n]
Procedural implementation
HailstoneP[n_] := Module[{x = {n}, s = n},
While[s > 1, x = {x, s = If[OddQ@s, 3 s + 1, s/2]}]; Flatten@x]
Validation
I use this version to do the validation:
Hailstone[n_] :=
NestWhileList[If[Mod[#, 2] == 0, #/2, ( 3*# + 1) ] &, n, # != 1 &];
c27 = Hailstone@27;
Print["Hailstone sequence for n = 27: [", c27[[;; 4]], "...", c27[[-4 ;;]], "]"]
Print["Length Hailstone[27] = ", Length@c27]
longest = -1; comp = 0;
Do[temp = Length@Hailstone@i;
If[comp < temp, comp = temp; longest = i],
{i, 100000}
]
Print["Longest Hailstone sequence at n = ", longest, "\nwith length = ", comp];
- Output:
Hailstone sequence for n = 27: [{27,82,41,124}...{8,4,2,1}] Length Hailstone[27] = 112 Longest Hailstone sequence at n = 77031 with length = 351
I think the fixed-point and the recursive piece-wise function formulations are more idiomatic for Mathematica
Sequence 27
With[{seq = HailstoneFP[27]}, { Length[seq], Take[seq, 4], Take[seq, -4]}]
- Output:
{112, {27, 82, 41, 124}, {8, 4, 2, 1}}
Alternatively,
Short[HailstoneFP[27],0.45]
- Output:
{27, 82, 41, 124, <<104>>, 8, 4, 2, 1}
Longest sequence length
MaximalBy[Table[{i, Length[HailstoneFP[i]]}, {i, 100000}], Last]
- Output:
{{77031, 351}}
MATLAB / Octave
Hailstone Sequence For N
function x = hailstone(n)
x = n;
while n > 1
% faster than mod(n, 2)
if n ~= floor(n / 2) * 2
n = n * 3 + 1;
else
n = n / 2;
end
x(end + 1) = n; %#ok
end
Show sequence of hailstone(27) and number of elements:
x = hailstone(27);
fprintf('hailstone(27): %d %d %d %d ... %d %d %d %d\nnumber of elements: %d\n', x(1:4), x(end-3:end), numel(x))
- Output:
hailstone(27): 27 82 41 124 ... 8 4 2 1 number of elements: 112
Longest Hailstone Sequence Under N
Show the number less than 100,000 which has the longest hailstone sequence together with that sequence's length:
Basic Version (use the above routine)
N = 1e5;
maxLen = 0;
for k = 1:N
kLen = numel(hailstone(k));
if kLen > maxLen
maxLen = kLen;
n = k;
end
end
- Output:
n = 77031 maxLen = 351
Faster Version
function [n, maxLen] = longestHailstone(N)
maxLen = 0;
for k = 1:N
a = k;
kLen = 1;
while a > 1
if a ~= floor(a / 2) * 2
a = a * 3 + 1;
else
a = a / 2;
end
kLen = kLen + 1;
end
if kLen > maxLen
maxLen = kLen;
n = k;
end
end
- Output:
>> [n, maxLen] = longestHailstone(1e5)
n = 77031
maxLen = 351
Much Faster Version With Caching
function [n, maxLen] = longestHailstone(N)
lenList(N) = 0;
lenList(1) = 1;
maxLen = 0;
for k = 2:N
a = k;
kLen = 0;
while a >= k
if a == floor(a / 2) * 2
a = a / 2;
else
a = a * 3 + 1;
end
kLen = kLen + 1;
end
kLen = kLen + lenList(a);
lenList(k) = kLen;
if kLen > maxLen
maxLen = kLen;
n = k;
end
end
- Output:
>> [n, maxLen] = longestHailstone(1e5)
n = 77031
maxLen = 351
Maxima
collatz(n) := block([L], L: [n], while n > 1 do
(n: if evenp(n) then n/2 else 3*n + 1, L: endcons(n, L)), L)$
collatz_length(n) := block([m], m: 1, while n > 1 do
(n: if evenp(n) then n/2 else 3*n + 1, m: m + 1), m)$
collatz_max(n) := block([j, m, p], m: 0,
for i from 1 thru n do
(p: collatz_length(i), if p > m then (m: p, j: i)),
[j, m])$
collatz(27); /* [27, 82, 41, ..., 4, 2, 1] */
length(%); /* 112 */
collatz_length(27); /* 112 */
collatz_max(100000); /* [77031, 351] */
Mercury
The actual calculation (including module ceremony) providing both a function and a predicate implementation:
:- module hailstone.
:- interface.
:- import_module int, list.
:- func hailstone(int) = list(int).
:- pred hailstone(int::in, list(int)::out) is det.
:- implementation.
hailstone(N) = S :- hailstone(N, S).
hailstone(N, [N|S]) :-
( N = 1 -> S = []
; N mod 2 = 0 -> hailstone(N/2, S)
; hailstone(3 * N + 1, S) ).
:- end_module hailstone.
The mainline test driver (making use of unification for more succinct tests):
:- module test_hailstone.
:- interface.
:- import_module io.
:- pred main(io.state::di, io.state::uo) is det.
:- implementation.
:- import_module int, list.
:- import_module hailstone.
:- pred longest(int::in, int::out, int::out) is det.
:- pred longest(int::in, int::in, int::in, int::out, int::out) is det.
longest(M, N, L) :- longest(M, 0, 0, N, L).
longest(N, CN, CL, MN, ML) :-
( N > 1 ->
L = list.length(hailstone(N)),
( L > CL -> longest(N - 1, N, L, MN, ML)
; longest(N - 1, CN, CL, MN, ML) )
; MN = CN, ML = CL ).
main(!IO) :-
S = hailstone(27),
( list.length(S) = 112,
list.append([27, 82, 41, 124], _, S),
list.remove_suffix(S, [8, 4, 2, 1], _),
longest(100000, 77031, 351) ->
io.write_string("All tests succeeded.\n", !IO)
; io.write_string("At least one test failed.\n", !IO) ).
:- end_module test_hailstone.
- Output:
of running this program is
All tests succeeded.
For those unused to logic programming languages it seems that nothing has been proved in terms of confirming anything, but if you look at the predicate declaration for longest/3
…
:- pred longest(int::in, int::out, int::out) is det.
… you see that the second and third parameters are output parameters.
This by calling longest(100000, 77031, 351)
you prove,
through unification, that the longest sequence is with the
number 77031 and that it is 351 cycles long.
Similarly, using list.append([27, 82, 41, 124], _, S)
automatically proves that the generated sequence begins with the provided sequence, etc.
Thus we know that the correct sequences and values were generated
without bothering to print them out.
MiniScript
Non-cached version
Calculates sequence without using previous calculated sequences.
getSequence = function(n)
results = [n]
while n > 1
if n % 2 then
n = 3 * n + 1
else
n = n / 2
end if
results.push n
end while
return results
end function
h = getSequence(27)
print "The hailstone sequence for 27 has 112 elements starting with"
print h[:4]
print "and ending with"
print h[-4:]
maxSeqLen = 0
maxSeqVal = 0
for i in range(1,100000)
h = getSequence(i)
if h.len > maxSeqLen then
maxSeqLen = h.len
maxSeqVal = i
end if
end for
print
print "The number < 100,000 which has the longest hailstone sequence is " + maxSeqVal + "."
print "This sequence has " + maxSeqLen + " elements."
- Output:
The hailstone sequence for 27 has 112 elements starting with [27, 82, 41, 124] and ending with [8, 4, 2, 1] The number < 100,000 which has the longest hailstone sequence is 77031. This sequence has 351 elements.
Cached version
Calculations are stored for used in later calculations.
cache = {}
calc = function(n)
if cache.hasIndex(n) then return
items = [n]
origNum = n
while n > 1 and not cache.hasIndex(n)
if n % 2 then
n = 3 * n + 1
else
n = n /2
end if
items.push n
end while
cache[origNum] = {"len": items.len,"items":items}
end function
getLen = function(n)
if not cache.hasIndex(n) then calc n
if n == 1 then return 1
return cache[n].len + getLen(cache[n].items[-1]) - 1
end function
getSequence = function(n)
if not cache.hasIndex(n) then calc n
if n == 1 then return [1]
return cache[n].items[:-1] + getSequence(cache[n].items[-1])
end function
h = getSequence(27)
print "The hailstone sequence for 27 has " + h.len + " elements starting with"
print h[:4]
print "and ending with"
print h[-4:]
longSeq = 0
longSeqVal =0
for i in range(2, 100000)
seq = getLen(i)
if longSeq < seq then
longSeq = seq
longSeqVal = i
end if
end for
print "The number < 100,000 which has the longest hailstone sequence is " + longSeqVal + "."
print "This sequence has " + longSeq + " elements."
- Output:
Output is the same as the non-cached version above.
The hailstone sequence for 27 has 112 elements starting with [27, 82, 41, 124] and ending with [8, 4, 2, 1] The number < 100,000 which has the longest hailstone sequence is 77031. This sequence has 351 elements.
ML
MLite
fun hail (x = 1) = [1]
| (x rem 2 = 0) = x :: hail (x div 2)
| x = x :: hail (x * 3 + 1)
fun hailstorm
([], i, largest, largest_at) = (largest_at, largest)
| (x :: xs, i, largest, largest_at) =
let
val k = len (hail x)
in
if k > largest then
hailstorm (xs, i + 1, k, i)
else
hailstorm (xs, i + 1, largest, largest_at)
end
| (x :: xs) = hailstorm (x :: xs, 1, 0, 0)
;
val h27 = hail 27;
print "hailstone sequence for the number 27 has ";
print ` len (h27);
print " elements starting with ";
print ` sub (h27, 0, 4);
print " and ending with ";
print ` sub (h27, len(h27)-4, len h27);
println ".";
val biggest = hailstorm ` iota (100000 - 1);
print "The number less than 100,000 which has the longest ";
print "hailstone sequence is at element ";
print ` ref (biggest, 0);
print " and is of length ";
println ` ref (biggest, 1);
- Output:
hailstone sequence for the number 27 has 112 elements starting with [27, 82, 41, 124] and ending with [8, 4, 2, 1]. The number less than 100,000 which has the longest hailstone sequence is at element 77031 and is of length 351
Modula-2
MODULE hailst;
IMPORT InOut;
CONST maxCard = MAX (CARDINAL) DIV 3;
TYPE action = (List, Count, Max);
VAR a : CARDINAL;
PROCEDURE HailStone (start : CARDINAL; type : action) : CARDINAL;
VAR n, max, count : CARDINAL;
BEGIN
count := 1;
n := start;
max := n;
LOOP
IF type = List THEN
InOut.WriteCard (n, 12);
IF count MOD 6 = 0 THEN InOut.WriteLn END
END;
IF n = 1 THEN EXIT END;
IF ODD (n) THEN
IF n < maxCard THEN
n := 3 * n + 1;
IF n > max THEN max := n END
ELSE
InOut.WriteString ("Exceeding max value for type CARDINAL at count = ");
InOut.WriteCard (count, 10);
InOut.WriteString (" for intermediate value ");
InOut.WriteCard (n, 10);
InOut.WriteString (". Aborting.");
HALT
END
ELSE
n := n DIV 2
END;
INC (count)
END;
IF type = Max THEN RETURN max ELSE RETURN count END
END HailStone;
PROCEDURE FindMax (num : CARDINAL);
VAR val, maxCount, maxVal, cnt : CARDINAL;
BEGIN
maxCount := 0;
maxVal := 0;
FOR val := 2 TO num DO
cnt := HailStone (val, Count);
IF cnt > maxCount THEN
maxVal := val;
maxCount := cnt
END
END;
InOut.WriteString ("Longest sequence below "); InOut.WriteCard (num, 1);
InOut.WriteString (" is "); InOut.WriteCard (HailStone (maxVal, Count), 1);
InOut.WriteString (" for n = "); InOut.WriteCard (maxVal, 1);
InOut.WriteString (" with an intermediate maximum of ");
InOut.WriteCard (HailStone (maxVal, Max), 1);
InOut.WriteLn
END FindMax;
BEGIN
a := HailStone (27, List);
InOut.WriteLn;
InOut.WriteString ("Iterations total = "); InOut.WriteCard (HailStone (27, Count), 12);
InOut.WriteString (" max value = "); InOut.WriteCard (HailStone (27, Max) , 12);
InOut.WriteLn;
FindMax (100000);
InOut.WriteString ("Done."); InOut.WriteLn
END hailst.
Producing:
jan@Beryllium:~/modula/rosetta$ hailst 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 Iterations total = 112 max value = 9232 Longest sequence below 100000 is 351 for n = 77031 with an intermediate maximum of 21933016 Done.
When trying the same for all values below 1 million:
Exceeding max value for type CARDINAL at n = 159487 , count = 60 and intermediate value 1699000271. Aborting.
MUMPS
hailstone(n) ;
If n=1 Quit n
If n#2 Quit n_" "_$$hailstone(3*n+1)
Quit n_" "_$$hailstone(n\2)
Set x=$$hailstone(27) Write !,$Length(x," ")," terms in ",x,!
112 terms in 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
Nanoquery
def hailstone(n)
seq = list()
while (n > 1)
append seq n
if (n % 2)=0
n = int(n / 2)
else
n = int((3 * n) + 1)
end
end
append seq n
return seq
end
h = hailstone(27)
println "hailstone(27)"
println "total elements: " + len(hailstone(27))
print h[0] + ", " + h[1] + ", " + h[2] + ", " + h[3] + ", ..., "
println h[-4] + ", " + h[-3] + ", " + h[-2] + ", " + h[-1]
max = 0
maxLoc = 0
for i in range(1,99999)
result = len(hailstone(i))
if (result > max)
max = result
maxLoc = i
end
end
print "\nThe number less than 100,000 with the longest sequence is "
println maxLoc + " with a length of " + max
- Output:
hailstone(27) total elements: 112 27, 82, 41, 124, ..., 8, 4, 2, 1 The number less than 100,000 with the longest sequence is 77031 with a length of 351
NetRexx
/* NetRexx */
options replace format comments java crossref savelog symbols binary
do
start = 27
hs = hailstone(start)
hsCount = hs.words
say 'The number' start 'has a hailstone sequence comprising' hsCount 'elements'
say ' its first four elements are:' hs.subword(1, 4)
say ' and last four elements are:' hs.subword(hsCount - 3)
hsMax = 0
hsCountMax = 0
llimit = 100000
loop x_ = 1 to llimit - 1
hs = hailstone(x_)
hsCount = hs.words
if hsCount > hsCountMax then do
hsMax = x_
hsCountMax = hsCount
end
end x_
say 'The number' hsMax 'has the longest hailstone sequence in the range 1 to' llimit - 1 'with a sequence length of' hsCountMax
catch ex = Exception
ex.printStackTrace
end
return
method hailstone(hn = long) public static returns Rexx signals IllegalArgumentException
hs = Rexx('')
if hn <= 0 then signal IllegalArgumentException('Invalid start point. Must be a positive integer greater than 0')
loop label n_ while hn > 1
hs = hs' 'hn
if hn // 2 \= 0 then hn = hn * 3 + 1
else hn = hn % 2
end n_
hs = hs' 'hn
return hs.strip
- Output:
The number 27 has a hailstone sequence comprising 112 elements its first four elements are: 27 82 41 124 and last four elements are: 8 4 2 1 The number 77031 has the longest hailstone sequence in the range 1 to 99999 with a sequence length of 351
Nim
proc hailstone(n: int): seq[int] =
result = @[n]
var n = n
while n > 1:
if (n and 1) == 1:
n = 3 * n + 1
else:
n = n div 2
result.add n
when isMainModule:
import strformat, strutils
let h = hailstone(27)
echo &"Hailstone sequence for number 27 has {h.len} elements."
let first = h[0..3].join(", ")
let last = h[^4..^1].join(", ")
echo &"This sequence begins with {first} and ends with {last}."
var m, mi = 0
for i in 1..<100_000:
let n = hailstone(i).len
if n > m:
m = n
mi = i
echo &"\nFor numbers < 100_000, maximum length {m} was found for Hailstone({mi})."
- Output:
Hailstone sequence for number 27 has 112 elements. This sequence begins with 27, 82, 41, 124 and ends with 8, 4, 2, 1. For numbers < 100_000, maximum length 351 was found for Hailstone(77031).
Oberon-2
MODULE hailst;
IMPORT Out;
CONST maxCard = MAX (INTEGER) DIV 3;
List = 1;
Count = 2;
Max = 3;
VAR a : INTEGER;
PROCEDURE HailStone (start, type : INTEGER) : INTEGER;
VAR n, max, count : INTEGER;
BEGIN
count := 1;
n := start;
max := n;
LOOP
IF type = List THEN
Out.Int (n, 12);
IF count MOD 6 = 0 THEN Out.Ln END
END;
IF n = 1 THEN EXIT END;
IF ODD (n) THEN
IF n < maxCard THEN
n := 3 * n + 1;
IF n > max THEN max := n END
ELSE
Out.String ("Exceeding max value for type INTEGER at: ");
Out.String (" n = "); Out.Int (start, 12);
Out.String (" , count = "); Out.Int (count, 12);
Out.String (" and intermediate value ");
Out.Int (n, 1);
Out.String (". Aborting.");
Out.Ln;
HALT (2)
END
ELSE
n := n DIV 2
END;
INC (count)
END;
IF type = Max THEN RETURN max ELSE RETURN count END
END HailStone;
PROCEDURE FindMax (num : INTEGER);
VAR val, maxCount, maxVal, cnt : INTEGER;
BEGIN
maxCount := 0;
maxVal := 0;
FOR val := 2 TO num DO
cnt := HailStone (val, Count);
IF cnt > maxCount THEN
maxVal := val;
maxCount := cnt
END
END;
Out.String ("Longest sequence below "); Out.Int (num, 1);
Out.String (" is "); Out.Int (HailStone (maxVal, Count), 1);
Out.String (" for n = "); Out.Int (maxVal, 1);
Out.String (" with an intermediate maximum of ");
Out.Int (HailStone (maxVal, Max), 1);
Out.Ln
END FindMax;
BEGIN
a := HailStone (27, List);
Out.Ln;
Out.String ("Iterations total = "); Out.Int (HailStone (27, Count), 12);
Out.String (" max value = "); Out.Int (HailStone (27, Max) , 12);
Out.Ln;
FindMax (1000000);
Out.String ("Done.");
Out.Ln
END hailst.
Producing
27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 Iterations total = 112 max value = 9232 Exceeding max value for type INTEGER at: n = 113383 , count = 120 and intermediate value 827370449. Aborting.
OCaml
#load "nums.cma";;
open Num;;
(* generate Hailstone sequence *)
let hailstone n =
let one = Int 1
and two = Int 2
and three = Int 3 in
let rec g s x =
if x =/ one
then x::s
else g (x::s) (if mod_num x two =/ one
then three */ x +/ one
else x // two)
in
g [] (Int n)
;;
(* compute only sequence length *)
let haillen n =
let one = Int 1
and two = Int 2
and three = Int 3 in
let rec g s x =
if x =/ one
then s+1
else g (s+1) (if mod_num x two =/ one
then three */ x +/ one
else x // two)
in
g 0 (Int n)
;;
(* max length for starting values in 1..n *)
let hailmax =
let rec g idx len = function
| 0 -> (idx, len)
| i ->
let a = haillen i in
if a > len
then g i a (i-1)
else g idx len (i-1)
in
g 0 0
;;
hailmax 100000 ;;
(* - : int * int = (77031, 351) *)
List.rev_map string_of_num (hailstone 27) ;;
(* - : string list =
["27"; "82"; "41"; "124"; "62"; "31"; "94"; "47"; "142"; "71"; "214"; "107";
"322"; "161"; "484"; "242"; "121"; "364"; "182"; "91"; "274"; "137"; "412";
"206"; "103"; "310"; "155"; "466"; "233"; "700"; "350"; "175"; "526"; "263";
"790"; "395"; "1186"; "593"; "1780"; "890"; "445"; "1336"; "668"; "334";
"167"; "502"; "251"; "754"; "377"; "1132"; "566"; "283"; "850"; "425";
"1276"; "638"; "319"; "958"; "479"; "1438"; "719"; "2158"; "1079"; "3238";
"1619"; "4858"; "2429"; "7288"; "3644"; "1822"; "911"; "2734"; "1367";
"4102"; "2051"; "6154"; "3077"; "9232"; "4616"; "2308"; "1154"; "577";
"1732"; "866"; "433"; "1300"; "650"; "325"; "976"; "488"; "244"; "122";
"61"; "184"; "92"; "46"; "23"; "70"; "35"; "106"; "53"; "160"; "80"; "40";
"20"; "10"; "5"; "16"; "8"; "4"; "2"; "1"] *)
Oforth
: hailstone // n -- [n]
| l |
ListBuffer new ->l
while(dup 1 <>) [ dup l add dup isEven ifTrue: [ 2 / ] else: [ 3 * 1+ ] ]
l add l dup freeze ;
hailstone(27) dup size println dup left(4) println right(4) println
100000 seq map(#[ dup hailstone size swap Pair new ]) reduce(#maxKey) println
- Output:
112 [27, 82, 41, 124] [8, 4, 2, 1] [351, 77031]
Onyx (wasm)
use core { * }
hailstone :: (n: u32) -> [..]u32 {
seq: [..]u32;
array.push(&seq, n);
while n > 1 {
n = n/2 if n%2 == 0 else (n*3)+1;
array.push(&seq, n);
}
return seq;
}
Longest :: struct { num, len : u32; }
main :: () {
// -------
// task 1:
// -------
// "Create a routine to generate the hailstone
// sequence for a number."
i := 27;
seq := hailstone(i);
printf("Task 1:\n{}: {}\n\n",
i,
seq
);
// -------
// task 2:
// -------
// "Use the routine to show that the hailstone
// sequence for the number 27 has
// 112 elements starting with
// 27, 82, 41, 124 and ending with 8, 4, 2, 1"
slice_size := 4;
len := seq.length;
slice_first := seq[0..slice_size];
slice_last := seq[seq.length-slice_size..seq.length];
printf("Task 2:\nlength: {}, first: {}, last: {}\n\n",
len,
slice_first,
slice_last
);
// -------
// task 3:
// -------
// "Show the number less than 100,000
// which has the longest hailstone sequence
// together with that sequences length."
l : Longest;
for i in 1..100000 {
seq := hailstone(i);
if l.len < seq.length { l = .{num = i, len = seq.length}; }
}
printf("Task 3:\nLongest Num: {}, Sequence Length: {}\n", l.num, l.len);
}
ooRexx
sequence = hailstone(27)
say "Hailstone sequence for 27 has" sequence~items "elements and is ["sequence~toString('l', ", ")"]"
highestNumber = 1
highestCount = 1
loop i = 2 to 100000
sequence = hailstone(i)
count = sequence~items
if count > highestCount then do
highestNumber = i
highestCount = count
end
end
say "Number" highestNumber "has the longest sequence with" highestCount "elements"
-- short routine to generate a hailstone sequence
::routine hailstone
use arg n
sequence = .array~of(n)
loop while n \= 1
if n // 2 == 0 then n = n / 2
else n = 3 * n + 1
sequence~append(n)
end
return sequence
- Output:
Hailstone sequence for 27 has 112 elements and is [27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 77, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 102, 051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 0, 40, 20, 10, 5, 16, 8, 4, 2, 1] Number 77031 has the longest sequence with 351 elements
Order
To display the length, and first and last elements, of the hailstone sequence for 27, we could do this:
#include <order/interpreter.h>
#define ORDER_PP_DEF_8hailstone ORDER_PP_FN( \
8fn(8N, \
8cond((8equal(8N, 1), 8seq(1)) \
(8is_0(8remainder(8N, 2)), \
8seq_push_front(8N, 8hailstone(8quotient(8N, 2)))) \
(8else, \
8seq_push_front(8N, 8hailstone(8inc(8times(8N, 3))))))) )
ORDER_PP(
8lets((8H, 8seq_map(8to_lit, 8hailstone(27)))
(8S, 8seq_size(8H)),
8print(8(h(27) - length:) 8to_lit(8S) 8comma 8space
8(starts with:) 8seq_take(4, 8H) 8comma 8space
8(ends with:) 8seq_drop(8minus(8S, 4), 8H))
) )
- Output:
h(27) - length:112, starts with:(27)(82)(41)(124), ends with:(8)(4)(2)(1)
Unfortunately, the C preprocessor not really being designed with large amounts of garbage collection in mind, trying to compute the hailstone sequences up to 100000 is almost guaranteed to run out of memory (and take a very, very long time). If we wanted to try, we could add this to the program, which in most languages would use relatively little memory:
#define ORDER_PP_DEF_8h_longest ORDER_PP_FN( \
8fn(8M, 8P, \
8if(8is_0(8M), \
8P, \
8let((8L, 8seq_size(8hailstone(8M))), \
8h_longest(8dec(8M), \
8if(8greater(8L, 8tuple_at_1(8P)), \
8pair(8M, 8L), 8P))))) )
ORDER_PP(
8let((8P, 8h_longest(8nat(1,0,0,0,0,0), 8pair(0, 0))),
8pair(8to_lit(8tuple_at_0(8P)), 8to_lit(8tuple_at_1(8P))))
)
...or even this "more elegant" version, which will run out of memory very quickly indeed (but in practice seems to work better for smaller ranges):
ORDER_PP(
8let((8P,
8seq_head(
8seq_sort(8fn(8P, 8Q, 8greater(8tuple_at_1(8P),
8tuple_at_1(8Q))),
8seq_map(8fn(8N,
8pair(8N, 8seq_size(8hailstone(8N)))),
8seq_iota(1, 8nat(1,0,0,0,0,0)))))),
8pair(8to_lit(8tuple_at_0(8P)), 8to_lit(8tuple_at_1(8P)))) )
Notice that large numbers (>100) must be entered as digit sequences with 8nat
. 8to_lit
converts a digit sequence back to a readable number.
Oz
declare
fun {HailstoneSeq N}
N > 0 = true %% assert
if N == 1 then [1]
elseif {IsEven N} then N|{HailstoneSeq N div 2}
else N|{HailstoneSeq 3*N+1}
end
end
HSeq27 = {HailstoneSeq 27}
{Length HSeq27} = 112
{List.take HSeq27 4} = [27 82 41 124]
{List.drop HSeq27 108} = [8 4 2 1]
fun {MaxBy2nd A=A1#A2 B=B1#B2}
if B2 > A2 then B else A end
end
Pairs = {Map {List.number 1 99999 1}
fun {$ I} I#{Length {HailstoneSeq I}} end}
MaxI#MaxLen = {List.foldL Pairs MaxBy2nd 0#0}
{System.showInfo
"Maximum length "#MaxLen#" was found for hailstone("#MaxI#")"}
- Output:
Maximum length 351 was found for hailstone(77031)
PARI/GP
Version #1.
show(n)={
my(t=1);
while(n>1,
print1(n",");
n=if(n%2,
3*n+1
,
n/2
);
t++
);
print(1);
t
};
len(n)={
my(t=1);
while(n>1,
if(n%2,
t+=2;
n+=(n>>1)+1
,
t++;
n>>=1
)
);
t
};
show(27)
r=0;for(n=1,1e5,t=len(n);if(t>r,r=t;ra=n));print(ra"\t"r)
- Output:
27,82,41,124,62,31,94,47,142,71,214,107,322,161,484,242,121,364,182,91,274,137,4 12,206,103,310,155,466,233,700,350,175,526,263,790,395,1186,593,1780,890,445,133 6,668,334,167,502,251,754,377,1132,566,283,850,425,1276,638,319,958,479,1438,719 ,2158,1079,3238,1619,4858,2429,7288,3644,1822,911,2734,1367,4102,2051,6154,3077, 9232,4616,2308,1154,577,1732,866,433,1300,650,325,976,488,244,122,61,184,92,46,2 3,70,35,106,53,160,80,40,20,10,5,16,8,4,2,1
and
77031 351
Version #2.
Different kind of PARI scripts for Collatz sequences you can find in OEIS, e.g.: A070165
\\ Get vector with Collatz sequence for the specified starting number.
\\ Limit vector to the lim length, or less, if 1 (one) term is reached (when lim=0).
\\ 3/26/2016 aev
Collatz(n,lim=0)={
my(c=n,e=0,L=List(n)); if(lim==0, e=1; lim=n*10^6);
for(i=1,lim, if(c%2==0, c=c/2, c=3*c+1); listput(L,c); if(e&&c==1, break));
return(Vec(L)); }
Collatzmax(ns,nf)={
my(V,vn,mxn=1,mx,im=1);
print("Search range: ",ns,"..",nf);
for(i=ns,nf, V=Collatz(i); vn=#V; if(vn>mxn, mxn=vn; im=i); kill(V));
print("Hailstone/Collatz(",im,") has the longest length = ",mxn);
}
{
\\ Required tests:
print("Required tests:");
my(Vr,vrn);
Vr=Collatz(27); vrn=#Vr;
print("Hailstone/Collatz(27): ",Vr[1..4]," ... ",Vr[vrn-3..vrn],"; length = ",vrn);
Collatzmax(1,100000);
}
- Output:
Required tests: Hailstone/Collatz(27): [27, 82, 41, 124] ... [8, 4, 2, 1]; length = 112 Search range: 1..100000 Hailstone/Collatz(77031) has the longest length = 351 (15:32) gp > ## *** last result computed in 15,735 ms.
Pascal
See Delphi or try this transformed Delphi version without generics.Use of a static array.
program ShowHailstoneSequence;
{$IFDEF FPC}
{$MODE delphi} //or objfpc
{$Else}
{$Apptype Console} // for delphi
{$ENDIF}
uses
SysUtils;// format
const
maxN = 10*1000*1000;// for output 1000*1000*1000
type
tiaArr = array[0..1000] of Uint64;
tIntArr = record
iaMaxPos : integer;
iaArr : tiaArr
end;
tpiaArr = ^tiaArr;
function HailstoneSeqCnt(n: UInt64): NativeInt;
begin
result := 0;
//ensure n to be odd
while not(ODD(n)) do
Begin
inc(result);
n := n shr 1;
end;
IF n > 1 then
repeat
//now n == odd -> so two steps in one can be made
repeat
n := (3*n+1) SHR 1;inc(result,2);
until NOT(Odd(n));
//now n == even -> so only one step can be made
repeat
n := n shr 1; inc(result);
until odd(n);
until n = 1;
end;
procedure GetHailstoneSequence(aStartingNumber: NativeUint;var aHailstoneList: tIntArr);
var
maxPos: NativeInt;
n: UInt64;
pArr : tpiaArr;
begin
with aHailstoneList do
begin
maxPos := 0;
pArr := @iaArr;
end;
n := aStartingNumber;
pArr^[maxPos] := n;
while n <> 1 do
begin
if odd(n) then
n := (3*n+1)
else
n := n shr 1;
inc(maxPos);
pArr^[maxPos] := n;
end;
aHailstoneList.iaMaxPos := maxPos;
end;
var
i,Limit: NativeInt;
lList: tIntArr;
lAverageLength:Uint64;
lMaxSequence: NativeInt;
lMaxLength,lgth: NativeInt;
begin
lList.iaMaxPos := 0;
GetHailstoneSequence(27, lList);//319804831
with lList do
begin
Limit := iaMaxPos;
writeln(Format('sequence of %d has %d elements',[iaArr[0],Limit+1]));
write(iaArr[0],',',iaArr[1],',',iaArr[2],',',iaArr[3],'..');
For i := iaMaxPos-3 to iaMaxPos-1 do
write(iaArr[i],',');
writeln(iaArr[iaMaxPos]);
end;
Writeln;
lMaxSequence := 0;
lMaxLength := 0;
i := 1;
limit := 10*i;
writeln(' Limit : number with max length | average length');
repeat
lAverageLength:= 0;
repeat
lgth:= HailstoneSeqCnt(i);
inc(lAverageLength, lgth);
if lgth >= lMaxLength then
begin
lMaxSequence := i;
lMaxLength := lgth+1;
end;
inc(i);
until i = Limit;
Writeln(Format(' %10d : %9d | %4d | %7.3f',
[limit,lMaxSequence, lMaxLength,0.9*lAverageLength/Limit]));
limit := limit*10;
until Limit > maxN;
end.
- Output:
sequence of 27 has 112 elements 27,82,41,124..8,4,2,1 Limit : number with max length | average length 10 : 9 | 20 | 5.490 100 : 97 | 119 | 27.504 1000 : 871 | 179 | 50.683 10000 : 6171 | 262 | 71.119 100000 : 77031 | 351 | 89.137 1000000 : 837799 | 525 | 108.613 10000000 : 8400511 | 686 | 127.916 100000000 : 63728127 | 950 | 147.337 1000000000 : 670617279 | 987 | 166.780 real 6m22.968s // 32-bit compiled real 3m56.573s // 64-bit compiled
PascalABC.NET
function hailstone(n: Integer): sequence of integer;
begin
result := seq(n);
while n > 1 do
begin
n := n.IsEven ? n div 2 : 3 * n + 1;
result := result + seq(n);
end;
end;
begin
var a := hailstone(27);
println(a.Count, a.Take(4), a.TakeLast(4));
var max := 0;
var maxi := 0;
for var i := 1 to 100_000 do
if hailstone(i).Count > max then
begin
max := hailstone(i).Count;
maxi := i;
end;
println(maxi, max);
end.
- Output:
112 [27,82,41,124] [8,4,2,1] 77031 351
Perl
Straightforward
#!/usr/bin/perl
use warnings;
use strict;
my @h = hailstone(27);
print "Length of hailstone(27) = " . scalar @h . "\n";
print "[" . join(", ", @h[0 .. 3], "...", @h[-4 .. -1]) . "]\n";
my ($max, $n) = (0, 0);
for my $x (1 .. 99_999) {
@h = hailstone($x);
if (scalar @h > $max) {
($max, $n) = (scalar @h, $x);
}
}
print "Max length $max was found for hailstone($n) for numbers < 100_000\n";
sub hailstone {
my ($n) = @_;
my @sequence = ($n);
while ($n > 1) {
if ($n % 2 == 0) {
$n = int($n / 2);
} else {
$n = $n * 3 + 1;
}
push @sequence, $n;
}
return @sequence;
}
- Output:
Length of hailstone(27) = 112 [27, 82, 41, 124, ..., 8, 4, 2, 1] Max length 351 was found for hailstone(77031) for numbers < 100_000
Compact
A more compact version:
#!/usr/bin/perl
use strict;
sub hailstone {
@_ = local $_ = shift;
push @_, $_ = $_ % 2 ? 3 * $_ + 1 : $_ / 2 while $_ > 1;
@_;
}
my @h = hailstone($_ = 27);
print "$_: @h[0 .. 3] ... @h[-4 .. -1] (".@h.")\n";
@h = ();
for (1 .. 99_999) { @h = ($_, $h[2]) if ($h[2] = hailstone($_)) > $h[1] }
printf "%d: (%d)\n", @h;
- Output:
27: 27 82 41 124 ... 8 4 2 1 (112) 77031: (351)
Phix
Copy of Euphoria
with javascript_semantics function hailstone(atom n) sequence s = {n} while n!=1 do if remainder(n,2)=0 then n /= 2 else n = 3*n+1 end if s &= n end while return s end function function hailstone_count(atom n) integer count = 1 while n!=1 do if remainder(n,2)=0 then n /= 2 else n = 3*n+1 end if count += 1 end while return count end function sequence s = hailstone(27) printf(1,"hailstone(27) = %v\n",{shorten(s,"numbers",4)}) integer hmax = 1, imax = 1,count for i=2 to 1e5-1 do count = hailstone_count(i) if count>hmax then hmax = count imax = i end if end for printf(1,"The longest hailstone sequence under 100,000 is %d with %d elements.\n",{imax,hmax})
- Output:
hailstone(27) = {27,82,41,124,"...",8,4,2,1," (112 numbers)"} The longest hailstone sequence under 100,000 is 77031 with 351 elements.
PHP
function hailstone($n,$seq=array()){
$sequence = $seq;
$sequence[] = $n;
if($n == 1){
return $sequence;
}else{
$n = ($n%2==0) ? $n/2 : (3*$n)+1;
return hailstone($n, $sequence);
}
}
$result = hailstone(27);
echo count($result) . ' Elements.<br>';
echo 'Starting with : ' . implode(",",array_slice($result,0,4)) .' and ending with : ' . implode(",",array_slice($result,count($result)-4)) . '<br>';
$maxResult = array(0);
for($i=1;$i<=100000;$i++){
$result = count(hailstone($i));
if($result > max($maxResult)){
$maxResult = array($i=>$result);
}
}
foreach($maxResult as $key => $val){
echo 'Number < 100000 with longest Hailstone seq.: ' . $key . ' with length of ' . $val;
}
112 Elements. Starting with : 27,82,41,124 and ending with : 8,4,2,1 Number < 100000 with longest Hailstone seq.: 77031 with length of 351
Picat
import util.
go =>
println("H27:"),
H27 = hailstoneseq(27),
H27Len = H27.len,
println(len=H27.len),
println(take(H27,4)++['...']++drop(H27,H27Len-4)),
nl,
println("Longest sequence < 100_000:"),
longest_seq(99_999),
nl.
% The Hailstone value of a number
hailstone(N) = N // 2, N mod 2 == 0 => true.
hailstone(N) = 3*N+1, N mod 2 == 1 => true.
% Sequence for a number
hailstoneseq(N) = Seq =>
Seq := [N],
while (N > 1)
N := hailstone(N),
Seq := Seq ++ [N]
end.
%
% Use a map to cache the lengths.
% Here we don't care about the actual sequence.
%
longest_seq(Limit) =>
Lens = new_map(), % caching the lengths
MaxLen = 0,
MaxN = 1,
foreach(N in 1..Limit-1)
M = N,
CLen = 1,
while (M > 1)
if Lens.has_key(M) then
CLen := CLen + Lens.get(M) - 1,
M := 1
else
M := hailstone(M), % call the
CLen := CLen + 1
end
end,
Lens.put(N, CLen),
if CLen > MaxLen then
MaxLen := CLen,
MaxN := N
end
end,
println([maxLen=MaxLen, maxN=MaxN]),
nl.
- Output:
H27: len = 112 [27,82,41,124,...,8,4,2,1] Longest sequence < 100_000: [maxLen = 351,maxN = 77031]
Mode-directed tabling
If we just want to get the length of the longest sequence - and are not forced to use the same Hailstone function as for the H27 task - then this version using model-directed tabling is faster than longest_seq/1: 0.055s vs 0.127s. (Original idea by Neng-Fa Zhou.)
go2 =>
time(max_chain(MaxN,MaxLen)),
printf("MaxN=%w,MaxLen=%w%n",MaxN,MaxLen).
table (-,max)
max_chain(N,Len) =>
between(2,99_999,N),
gen(N,Len).
table (+,-)
gen(1,Len) => Len=1.
gen(N,Len), N mod 2 == 0 =>
gen(N div 2,Len1),
Len=Len1+1.
gen(N,Len) =>
gen(3*N+1,Len1),
Len=Len1+1.
PicoLisp
(de hailstone (N)
(make
(until (= 1 (link N))
(setq N
(if (bit? 1 N)
(inc (* N 3))
(/ N 2) ) ) ) ) )
(let L (hailstone 27)
(println 27 (length L) (head 4 L) '- (tail 4 L)) )
(let N (maxi '((N) (length (hailstone N))) (range 1 100000))
(println N (length (hailstone N))) )
- Output:
27 112 (27 82 41 124) - (8 4 2 1) 77031 351
Pike
#!/usr/bin/env pike
int next(int n)
{
if (n==1)
return 0;
if (n%2)
return 3*n+1;
else
return n/2;
}
array(int) hailstone(int n)
{
array seq = ({ n });
while (n=next(n))
seq += ({ n });
return seq;
}
void main()
{
array(int) two = hailstone(27);
if (equal(two[0..3], ({ 27, 82, 41, 124 })) && equal(two[<3..], ({ 8,4,2,1 })))
write("sizeof(({ %{%d, %}, ... %{%d, %} }) == %d\n", two[0..3], two[<3..], sizeof(two));
mapping longest = ([ "length":0, "start":0 ]);
foreach(allocate(100000); int start; )
{
int length = sizeof(hailstone(start));
if (length > longest->length)
{
longest->length = length;
longest->start = start;
}
}
write("longest sequence starting at %d has %d elements\n", longest->start, longest->length);
}
- Output:
sizeof(({ 27, 82, 41, 124, , ... 8, 4, 2, 1, }) == 112 longest sequence starting at 77031 has 351 elements
PL/I
test: proc options (main);
declare (longest, n) fixed (15);
declare flag bit (1);
declare (i, value) fixed (15);
/* Task 1: */
flag = '1'b;
put skip list ('The sequence for 27 is');
i = hailstones(27);
/* Task 2: */
flag = '0'b;
longest = 0;
do i = 1 to 99999;
if longest < hailstones(i) then
do; longest = hailstones(i); value = i; end;
end;
put skip edit (value, ' has the longest sequence of ', longest) (a);
hailstones: procedure (n) returns ( fixed (15));
declare n fixed (15) nonassignable;
declare (m, p) fixed (15);
m = n;
p = 1;
if flag then put skip list (m);
do p = 1 by 1 while (m > 1);
if iand(m, 1) = 0 then
m = m/2;
else
m = 3*m + 1;
if flag then put skip list (m);
end;
if flag then put skip list ('The hailstone sequence has length' || p);
return (p);
end hailstones;
end test;
- Output:
The sequence for 27 is 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 The hailstone sequence has length 112 77031 has the longest sequence of 351
PL/I-80
hailstone_demo: proc options (main);
%replace
true by '1'b,
false by '0'b;
dcl
(slen, longest) fixed bin(15),
(n, n_longest,limit) fixed decimal(12),
answer char(1);
put skip list ('Display hailstone sequence for what number? ');
get list (n);
slen = hailstone(n, true);
put skip list ('Sequence length = ', slen);
put skip(2) list ('Search for longest sequence (y/n)? ');
get list (answer);
if ((answer ^= 'y') & (answer ^= 'Y')) then stop;
put list ('Search to what limit? ');
get list (limit);
longest = 1;
n = 2;
do while (n < limit);
slen = hailstone(n, false);
if slen > longest then
do;
longest = slen;
n_longest = n;
end;
n = n + 1;
end;
put skip edit ('Longest sequence =',longest,' for n =',n_longest)
(a,f(4),a,f(6));
/* compute, and optionally display, hailstone sequence for n */
hailstone:
procedure(n, show) returns (fixed binary);
dcl
(len, col) fixed binary,
(n, k) fixed decimal(12),
show bit(1);
/* make local copy since n is passed by reference */
k = n;
col = 1;
len = 1;
do while ((k ^= 1) & (k > 0));
if (show) then /* print 8 columns across */
do;
put edit (k) (f(8));
col = col + 1;
if col > 8 then
do;
put skip;
col = 1;
end;
end;
if (mod(k,2) = 0) then
k = k / 2;
else
k = k * 3 + 1;
len = len + 1;
end;
if (show) then put edit (k) (f(8));
return (len);
end hailstone;
end hailstone_demo;
- Output:
Display hailstone sequence for what number? 27 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1136 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 Sequence length = 112 Search for longest sequence (y/n)? y Search to what limit? 100000 Longest sequence = 351 for n = 77031
Plain TeX
The following code works with any TeX engine.
\newif\ifprint
\newcount\itercount
\newcount\currentnum
\def\hailstone#1{\itercount=0 \currentnum=#1 \hailstoneaux}
\def\hailstoneaux{%
\advance\itercount1
\ifprint\number\currentnum\space\space\fi
\ifnum\currentnum>1
\ifodd\currentnum
\multiply\currentnum3 \advance\currentnum1
\else
\divide\currentnum2
\fi
\expandafter\hailstoneaux
\fi
}
\parindent=0pt
\printtrue\hailstone{27}
Length = \number\itercount
\bigbreak
\newcount\ii \ii=1
\printfalse
\def\lenmax{0}
\def\seed{0}
\loop
\ifnum\ii<100000
\hailstone\ii
\ifnum\itercount>\lenmax\relax
\edef\lenmax{\number\itercount}%
\edef\seed{\number\ii}%
\fi
\advance\ii1
\repeat
Seed max = \seed, length = \lenmax
\bye
pdf or dvi output:
27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 Length = 112 Seed max = 77031, length = 351
Pointless
output =
println(format(fmt,
[seqLength, initSeq, tailSeq] ++ toList(longestPair)
))
fmt = """getSeq(27) (length): {}
getSeq(27) (first 4): {}
getSeq(27) (last 4): {}
max length {} for n = {}"""
-----------------------------------------------------------
seq = getSeq(27)
seqLength = length(seq)
initSeq = take(4, seq)
tailSeq = drop(seqLength - 4, seq)
-----------------------------------------------------------
longestPair =
range(1, 99999)
|> map(n => (length(getSeq(n)), n))
|> argmax(at(0))
-----------------------------------------------------------
-- generate full sequence
getSeq(n) =
iterate(step, n)
|> takeUntil(eq(1))
-----------------------------------------------------------
-- get the next number in a sequence
step(n) =
if n % 2 == 0 then round(n / 2) else n * 3 + 1
- Output:
getSeq(27) (length): 112 getSeq(27) (first 4): [27, 82, 41, 124] getSeq(27) (last 4): [8, 4, 2, 1] max length 351 for n = 77031
PowerShell
function Get-HailStone {
param($n)
switch($n) {
1 {$n;return}
{$n % 2 -eq 0} {$n; return Get-Hailstone ($n = $n / 2)}
{$n % 2 -ne 0} {$n; return Get-Hailstone ($n = ($n * 3) +1)}
}
}
function Get-HailStoneBelowLimit {
param($UpperLimit)
for ($i = 1; $i -lt $UpperLimit; $i++) {
[pscustomobject]@{
'Number' = $i
'Count' = (Get-HailStone $i).count
}
}
}
- Output:
PS C:\> Get-HailStone 27 27 82 41 ... 8 4 2 1 PS C:\> (Get-HailStone 27).count 112 PS C:\> Get-HailStoneBelowLimit 100000 | Sort Count -Descending | Select -first 1 Number Count ------ ----- 77031 351
Prolog
1. Create a routine to generate the hailstone sequence for a number.
hailstone(1,[1]) :- !.
hailstone(N,[N|S]) :- 0 is N mod 2, N1 is N / 2, hailstone(N1,S).
hailstone(N,[N|S]) :- 1 is N mod 2, N1 is (3 * N) + 1, hailstone(N1, S).
2. Use the routine to show that the hailstone sequence for the number 27 has 112 elements starting with 27, 82, 41, 124 and ending with 8, 4, 2, 1.
The following query performs the test.
hailstone(27,X),
length(X,112),
append([27, 82, 41, 124], _, X),
append(_, [8, 4, 2, 1], X).
3. Show the number less than 100,000 which has the longest hailstone sequence together with that sequences length.
longestHailstoneSequence(M, Seq, Len) :- longesthailstone(M, 1, 1, Seq, Len).
longesthailstone(1, Cn, Cl, Mn, Ml):- Mn = Cn,
Ml = Cl.
longesthailstone(N, _, Cl, Mn, Ml) :- hailstone(N, X),
length(X, L),
Cl < L,
N1 is N-1,
longesthailstone(N1, N, L, Mn, Ml).
longesthailstone(N, Cn, Cl, Mn, Ml) :- N1 is N-1,
longesthailstone(N1, Cn, Cl, Mn, Ml).
run this query.
longestHailstoneSequence(100000, Seq, Len).
to get the following result
Seq = 77031, Len = 351
Constraint Handling Rules
CHR is a programming language created by Professor Thom Frühwirth.
Works with SWI-Prolog and module chr written by Tom Schrijvers and Jan Wielemaker
:- use_module(library(chr)).
:- chr_option(debug, off).
:- chr_option(optimize, full).
:- chr_constraint collatz/2, hailstone/1, clean/0.
% to remove all constraints hailstone/1 after computation
clean @ clean \ hailstone(_) <=> true.
clean @ clean <=> true.
% compute Collatz number
init @ collatz(1,X) <=> X = 1 | true.
collatz @ collatz(N, C) <=> (N mod 2 =:= 0 -> C is N / 2; C is 3 * N + 1).
% Hailstone loop
hailstone(1) ==> true.
hailstone(N) ==> N \= 1 | collatz(N, H), hailstone(H).
Code for task one :
task1 :-
hailstone(27),
findall(X, find_chr_constraint(hailstone(X)), L),
clean,
% check the requirements
( (length(L, 112), append([27, 82, 41, 124 | _], [8,4,2,1], L)) -> writeln(ok); writeln(ko)).
- Output:
?- task1. ok true.
Code for task two :
longest_sequence :-
seq(2, 100000, 1-[1], Len-V),
format('For ~w sequence has ~w len ! ~n', [V, Len]).
% walk through 2 to 100000 and compute the length of the sequences
% memorize the longest
seq(N, Max, Len-V, Len-V) :- N is Max + 1, !.
seq(N, Max, CLen - CV, FLen - FV) :-
len_seq(N, Len - N),
( Len > CLen -> Len1 = Len, V1 = [N]
; Len = CLen -> Len1 = Len, V1 = [N | CV]
; Len1 = CLen, V1 = CV),
N1 is N+1,
seq(N1, Max, Len1 - V1, FLen - FV).
% compute the len of the Hailstone sequence for a number
len_seq(N, Len - N) :-
hailstone(N),
findall(hailstone(X), find_chr_constraint(hailstone(X)), L),
length(L, Len),
clean.
- Output:
?- longest_sequence. For [77031] sequence has 351 len ! true.
Pure
// 1. Create a routine to generate the hailstone sequence for a number.
type odd x::int = x mod 2;
type even x::int = ~odd x;
odd x = typep odd x;
even x = typep even x;
hailstone 1 = [1];
hailstone n::even = n:hailstone (n div 2);
hailstone n::odd = n:hailstone (3*n + 1);
// 2. Use the routine to show that the hailstone sequence for the number 27
// has 112 elements starting with 27, 82, 41, 124 and ending with 8, 4, 2, 1
n = 27;
hs = hailstone n;
l = # hs;
using system;
printf
("the hailstone sequence for the number %d has %d elements " +
"starting with %s and ending with %s\n")
(n, l, __str__ (hs!!(0..3)), __str__ ( hs!!((l-4)..l)));
// 3. Show the number less than 100,000 which has the longest hailstone
// sequence together with that sequences length.
printf ("the number under 100,000 with the longest sequence is %d " +
"with a sequence length of %d\n")
(foldr (\ (a,b) (c,d) -> if (b > d) then (a,b) else (c,d))
(0,0)
(map (\ x -> (x, # hailstone x)) (1..100000)));
- Output:
the hailstone sequence for the number 27 has 112 elements starting with [27,82,41,124] and ending with [8,4,2,1] the number under 100,000 with the longest sequence is 77031 with a sequence length of 351
Python
Procedural
def hailstone(n):
seq = [n]
while n > 1:
n = 3 * n + 1 if n & 1 else n // 2
seq.append(n)
return seq
if __name__ == '__main__':
h = hailstone(27)
assert (len(h) == 112
and h[:4] == [27, 82, 41, 124]
and h[-4:] == [8, 4, 2, 1])
max_length, n = max((len(hailstone(i)), i) for i in range(1, 100_000))
print(f"Maximum length {max_length} was found for hailstone({n}) "
f"for numbers <100,000")
- Output:
Maximum length 351 was found for hailstone(77031) for numbers <100,000
Using a generator
from itertools import islice
def hailstone(n):
yield n
while n > 1:
n = 3 * n + 1 if n & 1 else n // 2
yield n
if __name__ == '__main__':
h = hailstone(27)
assert list(islice(h, 4)) == [27, 82, 41, 124]
for _ in range(112 - 4 * 2):
next(h)
assert list(islice(h, 4)) == [8, 4, 2, 1]
max_length, n = max((sum(1 for _ in hailstone(i)), i)
for i in range(1, 100_000))
print(f"Maximum length {max_length} was found for hailstone({n}) "
f"for numbers <100,000")
- Output:
Maximum length 351 was found for hailstone(77031) for numbers <100,000
Composition of pure functions
'''Hailstone sequences'''
from itertools import (islice, takewhile)
# hailstone :: Int -> [Int]
def hailstone(x):
'''Hailstone sequence starting with x.'''
def p(n):
return 1 != n
return list(takewhile(p, iterate(collatz)(x))) + [1]
# collatz :: Int -> Int
def collatz(n):
'''Next integer in the hailstone sequence.'''
return 3 * n + 1 if 1 & n else n // 2
# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''Tests.'''
n = 27
xs = hailstone(n)
print(unlines([
f'The hailstone sequence for {n} has {len(xs)} elements,',
f'starting with {take(4)(xs)},',
f'and ending with {drop(len(xs) - 4)(xs)}.\n'
]))
(a, b) = (1, 99999)
(i, x) = max(
enumerate(
map(compose(len)(hailstone), enumFromTo(a)(b))
),
key=snd
)
print(unlines([
f'The number in the range {a}..{b} '
f'which produces the longest sequence is {1 + i},',
f'generating a hailstone sequence of {x} integers.'
]))
# ----------------------- GENERIC ------------------------
# compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
def compose(g):
'''Function composition.'''
return lambda f: lambda x: g(f(x))
# drop :: Int -> [a] -> [a]
# drop :: Int -> String -> String
def drop(n):
'''The sublist of xs beginning at
(zero-based) index n.
'''
def go(xs):
if isinstance(xs, (list, tuple, str)):
return xs[n:]
else:
take(n)(xs)
return xs
return go
# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
'''Integer enumeration from m to n.'''
return lambda n: range(m, 1 + n)
# iterate :: (a -> a) -> a -> Gen [a]
def iterate(f):
'''An infinite list of repeated
applications of f to x.
'''
def go(x):
v = x
while True:
yield v
v = f(v)
return go
# snd :: (a, b) -> b
def snd(tpl):
'''Second component of a tuple.'''
return tpl[1]
# take :: Int -> [a] -> [a]
# take :: Int -> String -> String
def take(n):
'''The prefix of xs of length n,
or xs itself if n > length xs.
'''
def go(xs):
return (
xs[0:n]
if isinstance(xs, (list, tuple))
else list(islice(xs, n))
)
return go
# unlines :: [String] -> String
def unlines(xs):
'''A single newline-delimited string derived
from a list of strings.'''
return '\n'.join(xs)
if __name__ == '__main__':
main()
- Output:
The hailstone sequence for 27 has 112 elements, starting with [27, 82, 41, 124], and ending with [8, 4, 2, 1]. The number in the range 1..99999 which produces the longest sequence is 77031, generating a hailstone sequence of 351 integers.
Quackery
[ 1 & ] is odd ( n --> b )
[ []
[ over join swap
dup 1 > while
dup odd iff
[ 3 * 1 + ]
else
[ 2 / ]
swap again ]
drop ] is hailstone ( n --> [ )
[ stack ] is longest ( --> s )
[ stack ] is length ( --> s )
27 hailstone
say "The hailstone sequence for 27 has "
dup size echo say " elements." cr
say "It starts with"
dup 4 split drop witheach [ sp echo ]
say " and ends with"
-4 split nip witheach [ sp echo ]
say "." cr cr
0 longest put 0 length put
99999 times
[ i^ 1+ hailstone size
dup length share > if
[ dup length replace
i^ 1+ longest replace ]
drop ]
longest take echo
say " has the longest sequence of any number less than 100000."
cr say "It is " length take echo say " elements long." cr
Output:
The hailstone sequence for 27 has 112 elements.
It starts with 27 82 41 124 and ends with 8 4 2 1.
77031 has the longest sequence of any number less than 100000.
It is 351 elements long.
R
Iterative solution
### PART 1:
makeHailstone <- function(n){
hseq <- n
while (hseq[length(hseq)] > 1){
current.value <- hseq[length(hseq)]
if (current.value %% 2 == 0){
next.value <- current.value / 2
} else {
next.value <- (3 * current.value) + 1
}
hseq <- append(hseq, next.value)
}
return(list(hseq=hseq, seq.length=length(hseq)))
}
### PART 2:
twenty.seven <- makeHailstone(27)
twenty.seven$hseq
twenty.seven$seq.length
### PART 3:
max.length <- 0; lower.bound <- 1; upper.bound <- 100000
for (index in lower.bound:upper.bound){
current.hseq <- makeHailstone(index)
if (current.hseq$seq.length > max.length){
max.length <- current.hseq$seq.length
max.index <- index
}
}
cat("Between ", lower.bound, " and ", upper.bound, ", the input of ",
max.index, " gives the longest hailstone sequence, which has length ",
max.length, ". \n", sep="")
- Output:
> twenty.seven$hseq [1] 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 [16] 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 [31] 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 [46] 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 [61] 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 [76] 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 [91] 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 [106] 10 5 16 8 4 2 1 > twenty.seven$seq.length [1] 112 Between 1 and 1e+05, the input of 77031 gives the longest hailstone sequence, which has length 351.
Vectorization solution
The previous solution is entirely satisfactory and may be more efficient than the following solution. However, problems like these are a great chance to show off the strength of R's vectorization. Also, this lets us show off how the <- syntax can do multiple variable assignments in one line. Observe how short the following code is:
###Task 1:
collatz <- function(n)
{
lastIndex <- 1
output <- lastEntry <- n
while(lastEntry != 1)
{
#Each branch updates lastEntry, lastIndex, and appends a new element to the end of output.
#Note that the return value of lastIndex <- lastIndex + 1 is lastIndex + 1.
#You may be surprised that output can be appended to despite starting as just a single number.
#If so, recall that R's numerics are vectors, meaning that output<-n created a vector of length 1.
#It's ugly, but efficient.
if(lastEntry %% 2) lastEntry <- output[lastIndex <- lastIndex + 1] <- 3 * lastEntry + 1
else lastEntry <- output[lastIndex <- lastIndex + 1] <- lastEntry %/% 2
}
output
}
###Task 2:
#Notice how easy it is to access the required elements:
twentySeven <- collatz(27)
cat("The first four elements are:", twentySeven[1:4], "and the last four are:", twentySeven[length(twentySeven) - 3:0], "\n")
###Task 3:
#Notice how a several line long loop can be avoided with R's sapply or Vectorize:
seqLenghts <- sapply(seq_len(99999), function(x) length(collatz(x)))
longest <- which.max(seqLenghts)
cat("The longest sequence before the 100000th is found at n =", longest, "and it has length", seqLenghts[longest], "\n")
#Equivalently, line 1 could have been: seqLenghts <- sapply(Vectorize(collatz)(1:99999), length).
#Another good option would be seqLenghts <- lengths(Vectorize(collatz)(1:99999)).
- Output:
The first four elements are: 27 82 41 124 and the last four are: 8 4 2 1 The longest sequence before the 100000th is found at n = 77031 and it has length 351
Racket
#lang racket
(define hailstone
(let ([t (make-hasheq)])
(hash-set! t 1 '(1))
(λ(n) (hash-ref! t n
(λ() (cons n (hailstone (if (even? n) (/ n 2) (+ (* 3 n) 1)))))))))
(define h27 (hailstone 27))
(printf "h(27) = ~s, ~s items\n"
`(,@(take h27 4) ... ,@(take-right h27 4))
(length h27))
(define N 100000)
(define longest
(for/fold ([m #f]) ([i (in-range 1 (add1 N))])
(define h (hailstone i))
(if (and m (> (cdr m) (length h))) m (cons i (length h)))))
(printf "for x<=~s, ~s has the longest sequence with ~s items\n"
N (car longest) (cdr longest))
- Output:
h(27) = (27 82 41 124 ... 8 4 2 1), 112 items for x<=100000, 77031 has the longest sequence with 351 items
Raku
(formerly Perl 6)
sub hailstone($n) { $n, { $_ %% 2 ?? $_ div 2 !! $_ * 3 + 1 } ... 1 }
my @h = hailstone(27);
say "Length of hailstone(27) = {+@h}";
say ~@h;
my $m = max ( (1..99_999).race.map: { +hailstone($_) => $_ } );
say "Max length {$m.key} was found for hailstone({$m.value}) for numbers < 100_000";
- Output:
Length of hailstone(27) = 112 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 Max length 351 was found for hailstone(77031) for numbers < 100_000
REBOL
hail: func [
"Returns the hailstone sequence for n"
n [integer!]
/local seq
] [
seq: copy reduce [n]
while [n <> 1] [
append seq n: either n % 2 == 0 [n / 2] [3 * n + 1]
]
seq
]
hs27: hail 27
print [
"the hail sequence of 27 has length" length? hs27
"and has the form " copy/part hs27 3 "..."
back back back tail hs27
]
maxN: maxLen: 0
repeat n 99999 [
if (len: length? hail n) > maxLen [
maxN: n
maxLen: len
]
]
print [
"the number less than 100000 with the longest hail sequence is"
maxN "with length" maxLen
]
- Output:
the hail sequence of 27 has length 112 and has the form 27 82 41 ... 4 2 1 the number less than 100000 with the longest hail sequence is 77031 with length 351
Refal
$ENTRY Go {
= <ShowHailstone 27>
<ShowLongest 100000>;
}
Hailstone {
1 = 1;
s.N, <Mod s.N 2>: {
0 = s.N <Hailstone <Div s.N 2>>;
1 = s.N <Hailstone <+ 1 <* 3 s.N>>>;
};
};
ShowHailstone {
s.N, <Hailstone s.N>: e.Seq,
<Lenw e.Seq>: s.Len s.1 s.2 s.3 s.4 e.X s.D4 s.D3 s.D2 s.D1
= <Prout 'The hailstone sequence for the number '
<Symb s.N> ' has ' <Symb s.Len> ' elements,\n'
'starting with ' s.1 s.2 s.3 s.4
'and ending with ' s.D4 s.D3 s.D2 <Symb s.D1>'.'>;
}
FindLongest {
s.Max = <FindLongest s.Max 1 1 1>;
s.Max s.Max s.Long s.Len = s.Long s.Len;
s.Max s.Cur s.Long s.Len,
<Hailstone s.Cur>: e.CurSeq,
<Lenw e.CurSeq>: s.CurLen e.X,
<+ s.Cur 1>: s.Next,
<Compare s.CurLen s.Len>: {
'+' = <FindLongest s.Max s.Next s.Cur s.CurLen>;
s.X = <FindLongest s.Max s.Next s.Long s.Len>;
};
};
ShowLongest {
s.Max, <FindLongest s.Max>: s.Long s.Len
= <Prout 'The number < ' <Symb s.Max> ' which has the longest'
' hailstone sequence is ' <Symb s.Long> '.\n'
'The length of its Hailstone sequence is '
<Symb s.Len> '.'>;
};
- Output:
The hailstone sequence for the number 27 has 112 elements, starting with 27 82 41 124 and ending with 8 4 2 1. The number < 100000 which has the longest hailstone sequence is 77031. The length of its Hailstone sequence is 351.
REXX
non-optimized
/*REXX program tests a number and also a range for hailstone (Collatz) sequences. */
numeric digits 20 /*be able to handle gihugeic numbers. */
parse arg x y . /*get optional arguments from the C.L. */
if x=='' | x=="," then x= 27 /*No 1st argument? Then use default.*/
if y=='' | y=="," then y= 100000 - 1 /* " 2nd " " " " */
$= hailstone(x) /*▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒task 1▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒*/
say x ' has a hailstone sequence of ' words($)
say ' and starts with: ' subword($, 1, 4) " ∙∙∙"
say ' and ends with: ∙∙∙' subword($, max(5, words($)-3))
if y==0 then exit /*▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒task 2▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒*/
say
w= 0; do j=1 for y; call hailstone j /*traipse through the range of numbers.*/
if #hs<=w then iterate /*Not big 'nuff? Then keep traipsing.*/
bigJ= j; w= #hs /*remember what # has biggest hailstone*/
end /*j*/
say '(between 1 ──►' y") " bigJ ' has the longest hailstone sequence: ' w
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
hailstone: procedure expose #hs; parse arg n 1 s /*N and S: are set to the 1st argument.*/
do #hs=1 while n\==1 /*keep loop while N isn't unity. */
if n//2 then n= n * 3 + 1 /*N is odd ? Then calculate 3*n + 1 */
else n= n % 2 /*" " even? Then calculate fast ÷ */
s= s n /* [↑] % is REXX integer division. */
end /*#hs*/ /* [↑] append N to the sequence list*/
return s /*return the S string to the invoker.*/
- output when using the default inputs:
27 has a hailstone sequence of 112 and starts with: 27 82 41 124 ∙∙∙ and ends with: ∙∙∙ 8 4 2 1 (between 1 ──► 99999) 77031 has the longest hailstone sequence: 351
optimized
This version is about 7 times faster than the previous (unoptimized) version.
It makes use of:
- previously calculated Collatz sequences (memoization)
- a faster method of determining if an integer is even
/*REXX program tests a number and also a range for hailstone (Collatz) sequences. */
!.=0; !.0=1; !.2=1; !.4=1; !.6=1; !.8=1 /*assign even numerals to be "true". */
numeric digits 20; @.= 0 /*handle big numbers; initialize array.*/
parse arg x y z .; !.h= y /*get optional arguments from the C.L. */
if x=='' | x=="," then x= 27 /*No 1st argument? Then use default.*/
if y=='' | y=="," then y= 100000 - 1 /* " 2nd " " " " */
if z=='' | z=="," then z= 12 /*head/tail number? " " " */
hm= max(y, 500000) /*use memoization (maximum num for @.)*/
$= hailstone(x) /*▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒task 1▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒*/
say x ' has a hailstone sequence of ' words($)
say ' and starts with: ' subword($, 1, z) " ∙∙∙"
say ' and ends with: ∙∙∙' subword($, max(z+1, words($)-z+1))
if y==0 then exit /*▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒task 2▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒*/
say
w= 0; do j=1 for y; $= hailstone(j) /*traipse through the range of numbers.*/
#hs= words($) /*find the length of the hailstone seq.*/
if #hs<=w then iterate /*Not big enough? Then keep traipsing.*/
bigJ= j; w= #hs /*remember what # has biggest hailstone*/
end /*j*/
say '(between 1 ──►' y") " bigJ ' has the longest hailstone sequence: ' w
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
hailstone: procedure expose @. !. hm; parse arg n 1 s 1 o,@.1 /*N,S,O: are the 1st arg*/
do while @.n==0 /*loop while the residual is unknown. */
parse var n '' -1 L /*extract the last decimal digit of N.*/
if !.L then n= n % 2 /*N is even? Then calculate fast ÷ */
else n= n * 3 + 1 /*" " odd ? " " 3*n + 1 */
s= s n /* [↑] %: is the REXX integer division*/
end /*while*/ /* [↑] append N to the sequence list*/
s= s @.n /*append the number to a sequence list.*/
@.o= subword(s, 2); parse var s _ r /*use memoization for this hailstone #.*/
do while r\==''; parse var r _ r /*obtain the next hailstone sequence. */
if @._\==0 then leave /*Was number already found? Return S.*/
if _>hm then iterate /*Is number out of range? Ignore it.*/
@._= r /*assign subsequence number to array. */
end /*while*/; return s
- output when using the default inputs:
27 has a hailstone sequence of 112 and starts with: 27 82 41 124 62 31 94 47 142 71 214 107 ∙∙∙ and ends with: ∙∙∙ 53 160 80 40 20 10 5 16 8 4 2 1 (between 1 ──► 99999) 77031 has the longest hailstone sequence: 351
- output when using the inputs: , 1000000
27 has a hailstone sequence of 112 and starts with: 27 82 41 124 62 31 94 47 142 71 214 107 ∙∙∙ and ends with: ∙∙∙ 53 160 80 40 20 10 5 16 8 4 2 1 (between 1 ──► 1000000) 837799 has the longest hailstone sequence: 525
Ring
size = 27
aList = []
hailstone(size)
func hailstone n
add(aList,n)
while n != 1
if n % 2 = 0 n = n / 2
else n = 3 * n + 1 ok
add(aList, n)
end
see "first 4 elements : "
for i = 1 to 4
see "" + aList[i] + " "
next
see nl
see "last 4 elements : "
for i = len(aList) - 3 to len(aList)
see "" + aList[i] + " "
next
RPL
HP-28 emulator's timedog preventing from longlasting code execution, the third item of the task is achieved by calculating the 1-100,000 sequence in increments of 5,000 numbers, with a derivative of the generator that only provides the length of the sequence to increase execution speed.
Code | Comments |
---|---|
≪ DUP 1 →LIST SWAP WHILE DUP 1 ≠ REPEAT IF DUP 2 MOD THEN 3 * 1 + ELSE 2 / END SWAP OVER + SWAP END DROP ≫ 'SYRAQ' STO ≪ 1 SWAP WHILE DUP 1 ≠ REPEAT IF DUP 2 MOD THEN 3 * 1 + ELSE 2 / END SWAP 1 + SWAP END DROP ≫ 'SYRAF' STO ≪ SyMax SYRAF SWAP DUP 5000 + DUP 4 ROLLD FOR n IF DUP n SYRAF < THEN DROP n SYRAF n 'SyMax' STO END NEXT DROP ≫ 'SYR5K' STO |
( n -- { sequence } ) initialize sequence with n Calculate next element Store it into sequence Forget n ( n -- sequence_length ) Initialize counter Calculate next element Increment counter Forget n ( n -- n+10000 ) Initialize loop If sequence length greater than previous ones... ... memorize n |
The following instructions deliver what is required:
27 SYRAQ SIZE 1 SYR5K … SYR5K [20 times] DROP SyMax RCL
- Output:
2: 127 1: 77031
Ruby
This program uses new methods (Integer#even? and Enumerable#max_by) from Ruby 1.8.7.
def hailstone n
seq = [n]
until n == 1
n = (n.even?) ? (n / 2) : (3 * n + 1)
seq << n
end
seq
end
puts "for n = 27, show sequence length and first and last 4 elements"
hs27 = hailstone 27
p [hs27.length, hs27[0..3], hs27[-4..-1]]
# find the longest sequence among n less than 100,000
n = (1 ... 100_000).max_by{|n| hailstone(n).length}
puts "#{n} has a hailstone sequence length of #{hailstone(n).length}"
puts "the largest number in that sequence is #{hailstone(n).max}"
- Output:
for n = 27, show sequence length and first and last 4 elements [112, [27, 82, 41, 124], [8, 4, 2, 1]] 77031 has a hailstone sequence length of 351 the largest number in that sequence is 21933016
This version builds some linked lists with shared structure. Hailstone::ListNode is an adaptation of ListNode from Singly-linked list/Element definition#Ruby. When two sequences contain the same value, those two lists share a tail. This avoids recomputing the end of the sequence.
module Hailstone
ListNode = Struct.new(:value, :size, :succ) do
def each
node = self
while node
yield node.value
node = node.succ
end
end
end
@@sequence = {1 => ListNode[1,1]}
module_function
def sequence(n)
unless @@sequence[n]
m, ary = n, []
until succ = @@sequence[m]
ary << m
m = m.even? ? (m / 2) : (3 * m + 1)
end
ary.reverse_each do |m|
@@sequence[m] = succ = ListNode[m, succ.size + 1, succ]
end
end
@@sequence[n]
end
end
puts "for n = 27, show sequence length and first and last 4 elements"
hs27 = Hailstone.sequence(27).entries
p [hs27.size, hs27[0..3], hs27[-4..-1]]
# find the longest sequence among n less than 100,000
n = (1 ... 100_000).max_by{|n| Hailstone.sequence(n).size}
puts "#{n} has a hailstone sequence length of #{Hailstone.sequence(n).size}"
puts "the largest number in that sequence is #{Hailstone.sequence(n).max}"
output is the same as the above.
Rust
fn hailstone(start : u32) -> Vec<u32> {
let mut res = Vec::new();
let mut next = start;
res.push(start);
while next != 1 {
next = if next % 2 == 0 { next/2 } else { 3*next+1 };
res.push(next);
}
res
}
fn main() {
let test_num = 27;
let test_hailseq = hailstone(test_num);
println!("For {} number of elements is {} ", test_num, test_hailseq.len());
let fst_slice = test_hailseq[0..4].iter()
.fold("".to_owned(), |acc, i| { acc + &*(i.to_string()).to_owned() + ", " });
let last_slice = test_hailseq[test_hailseq.len()-4..].iter()
.fold("".to_owned(), |acc, i| { acc + &*(i.to_string()).to_owned() + ", " });
println!(" hailstone starting with {} ending with {} ", fst_slice, last_slice);
let max_range = 100000;
let mut max_len = 0;
let mut max_seed = 0;
for i_seed in 1..max_range {
let i_len = hailstone(i_seed).len();
if i_len > max_len {
max_len = i_len;
max_seed = i_seed;
}
}
println!("Longest sequence is {} element long for seed {}", max_len, max_seed);
}
- Output:
For 27 number of elements is 112 hailstone starting with 27, 82, 41, 124, ending with 8, 4, 2, 1, Longest sequence is 351 element long for seed 77031
S-lang
% lst=1, return list of elements; lst=0 just return length
define hailstone(n, lst)
{
variable l;
if (lst) l = {n};
else l = 1;
while (n > 1) {
if (n mod 2)
n = 3 * n + 1;
else
n /= 2;
if (lst)
list_append(l, n);
else
l++;
% if (prn) () = printf("%d, ", n);
}
% if (prn) () = printf("\n");
return l;
}
variable har = list_to_array(hailstone(27, 1)), more = 0;
() = printf("Hailstone(27) has %d elements starting with:\n\t", length(har));
foreach $1 (har[[0:3]])
() = printf("%d, ", $1);
() = printf("\nand ending with:\n\t");
foreach $1 (har[[length(har)-4:]]) {
if (more) () = printf(", ");
more = printf("%d", $1);
}
() = printf("\ncalculating...\r");
variable longest, longlen = 0, h;
_for $1 (2, 99999, 1) {
$2 = hailstone($1, 0);
if ($2 > longlen) {
longest = $1;
longlen = $2;
() = printf("longest sequence started w/%d and had %d elements \r", longest, longlen);
}
}
() = printf("\n");
- Output:
Hailstone(27) has 112 elements starting with: 27, 82, 41, 124, and ending with: 8, 4, 2, 1 longest sequence started w/77031 and had 351 elements
SAS
* Create a routine to generate the hailstone sequence for one number;
%macro gen_seq(n);
data hailstone;
array hs_seq(100000);
n=&n;
do until (n=1);
seq_size + 1;
hs_seq(seq_size) = n;
if mod(n,2)=0 then n=n/2;
else n=(3*n)+1;
end;
seq_size + 1;
hs_seq(seq_size)=n;
call symputx('seq_length',seq_size);
run;
proc sql;
title "First and last elements of Hailstone Sequence for number &n";
select seq_size as sequence_length, hs_seq1, hs_seq2, hs_seq3, hs_seq4
%do i=&seq_length-3 %to &seq_length;
, hs_seq&i
%end;
from hailstone;
quit;
%mend;
* Use the routine to output the first and last four numbers in the sequence for 27;
%gen_seq(27);
* Show the number less than 100,000 which has the longest hailstone sequence, and what that length is ;
%macro longest_hailstone(start_num, end_num);
data hailstone_analysis;
do start=&start_num to &end_num;
n=start;
length_of_sequence=1;
do while (n>1);
length_of_sequence+1;
if mod(n,2)=0 then n=n/2;
else n=(3*n) + 1;
end;
output;
end;
run;
proc sort data=hailstone_analysis;
by descending length_of_sequence;
run;
proc print data=hailstone_analysis (obs=1) noobs;
title "Number from &start_num to &end_num with longest Hailstone sequence";
var start length_of_sequence;
run;
%mend;
%longest_hailstone(1,99999);
- Output:
First and last elements of Hailstone Sequence for number 27 sequence_ length hs_seq1 hs_seq2 hs_seq3 hs_seq4 hs_seq109 hs_seq110 hs_seq111 hs_seq112 ------------------------------------------------------------------------------------------------- 112 27 82 41 124 8 4 2 1 Number from 1 to 99999 with longest Hailstone sequence length_of_ start sequence 77031 351
S-BASIC
comment
Compute and display "hailstone" (i.e., Collatz) sequence
for a given number and find the longest sequence in the
range permitted by S-BASIC's 16-bit integer data type.
end
$lines
$constant false = 0
$constant true = FFFFH
rem - compute p mod q
function mod(p, q = integer) = integer
end = p - q * (p/q)
comment
Compute, and optionally display, hailstone sequence for n.
Return length of sequence or zero on overflow
end
function hailstone(n, display = integer) = integer
var length = integer
length = 1
while (n <> 1) and (n > 0) do
begin
if display then print using "##### ", n;
if mod(n,2) = 0 then
n = n / 2
else
n = (n * 3) + 1
length = length + 1
end
if display then print using "##### ", n
rem - return 0 on overflow
if n < 0 then length = 0
end = length
var n, limit, slen, longest, n_longest = integer
input "Display hailstone sequence for what number"; n
slen = hailstone(n, true)
print "Sequence length = "; slen
rem - find longest sequence before overflow
n = 2
longest = 1
slen = 1
limit = 1000;
print "Searching for longest sequence up to N =", limit," ..."
while (n < limit) and (slen <> 0) do
begin
slen = hailstone(n, false)
if slen > longest then
begin
longest = slen
n_longest = n
end
n = n + 1
end
if slen = 0 then print "Search terminated with overflow at";n-1
print "Maximum sequence length =";longest;" for N =";n_longest
end
- Output:
Display hailstone sequence for what number? 27 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 Sequence length = 112 Searching for longest sequence up to N = 1000 ... Search terminated with overflow at 447 Maximum sequence length = 144 for N = 327
Scala
object HailstoneSequence extends App {
def hailstone(n: Int): Stream[Int] =
n #:: (if (n == 1) Stream.empty else hailstone(if (n % 2 == 0) n / 2 else n * 3 + 1))
val nr = args.headOption.map(_.toInt).getOrElse(27)
val collatz = hailstone(nr)
println(s"Use the routine to show that the hailstone sequence for the number: $nr.")
println(collatz.toList)
println(s"It has ${collatz.length} elements.")
println
println(
"Compute the number < 100,000, which has the longest hailstone sequence with that sequence's length.")
val (n, len) = (1 until 100000).map(n => (n, hailstone(n).length)).maxBy(_._2)
println(s"Longest hailstone sequence length= $len occurring with number $n.")
}
- Output:
Use the routine to show that the hailstone sequence for the number: 27. List(27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1) It has 112 elements. Compute the number < 100,000, which has the longest hailstone sequence with that sequence's length. Longest hailstone sequence length= 351 occurring with number 77031.
Scheme
(define (collatz n)
(if (= n 1) '(1)
(cons n (collatz (if (even? n) (/ n 2) (+ 1 (* 3 n)))))))
(define (collatz-length n)
(let aux ((n n) (r 1)) (if (= n 1) r
(aux (if (even? n) (/ n 2) (+ 1 (* 3 n))) (+ r 1)))))
(define (collatz-max a b)
(let aux ((i a) (j 0) (k 0))
(if (> i b) (list j k)
(let ((h (collatz-length i)))
(if (> h k) (aux (+ i 1) i h) (aux (+ i 1) j k))))))
(collatz 27)
; (27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182
; 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395
; 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283
; 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429
; 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154
; 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35
; 106 53 160 80 40 20 10 5 16 8 4 2 1)
(collatz-length 27)
; 112
(collatz-max 1 100000)
; (77031 351)
Scilab
function x=hailstone(n)
// iterative definition
// usage: global verbose; verbose=%T; hailstone(27)
global verbose
x=0; loop=%T
while(loop)
x=x+1
if verbose then
printf('%i ',n)
end
if n==1 then
loop=%F
elseif modulo(n,2)==1 then
n=3*n+1
else
n=n/2
end
end
endfunction
global verbose;
verbose=1;
N=hailstone(27);
printf('\n\n%i\n',N);
global verbose;
verbose=0;
N=100000;
M=zeros(N,1);
for k=1:N
M(k)=hailstone(k);
end;
[maxLength,n]=max(M)
- Output:
27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 112 n = 77031. maxLength = 351.
Seed7
$ include "seed7_05.s7i";
const func array integer: hailstone (in var integer: n) is func
result
var array integer: hSequence is 0 times 0;
begin
while n <> 1 do
hSequence &:= n;
if odd(n) then
n := 3 * n + 1;
else
n := n div 2;
end if;
end while;
hSequence &:= n;
end func;
const func integer: hailstoneSequenceLength (in var integer: n) is func
result
var integer: sequenceLength is 1;
begin
while n <> 1 do
incr(sequenceLength);
if odd(n) then
n := 3 * n + 1;
else
n := n div 2;
end if;
end while;
end func;
const proc: main is func
local
var integer: number is 0;
var integer: length is 0;
var integer: maxLength is 0;
var integer: numberOfMaxLength is 0;
var array integer: h27 is 0 times 0;
begin
for number range 1 to 99999 do
length := hailstoneSequenceLength(number);
if length > maxLength then
maxLength := length;
numberOfMaxLength := number;
end if;
end for;
h27 := hailstone(27);
writeln("hailstone(27):");
for number range 1 to 4 do
write(h27[number] <& ", ");
end for;
write("....");
for number range length(h27) -3 to length(h27) do
write(", " <& h27[number]);
end for;
writeln(" length=" <& length(h27));
writeln("Maximum length " <& maxLength <& " at number=" <& numberOfMaxLength);
end func;
- Output:
hailstone(27): 27, 82, 41, 124, ...., 8, 4, 2, 1 length=112 Maximum length 351 at number=77031
SETL
program hailstone_sequence;
hail27 := hailstone(27);
print("The hailstone sequence for the number 27 has", #hail27, "elements,");
print("starting with", hail27(..4), "and ending with", hail27(#hail27-3..));
sizes := [#hailstone(n) : n in [1..99999]];
maxsize := max/sizes;
maxelem := [n : n in [1..#sizes] | sizes(n) = maxsize](1);
print("The number < 100,000 with the longest hailstone sequence is",maxelem);
print("The length of its sequence is",sizes(maxelem));
proc hailstone(n);
seq := [];
loop doing seq with:= n; while n/=1 do
if even n then
n div:= 2;
else
n := 3*n + 1;
end if;
end loop;
return seq;
end proc;
end program;
- Output:
The hailstone sequence for the number 27 has 112 elements, starting with [27 82 41 124] and ending with [8 4 2 1] The number < 100,000 with the longest hailstone sequence is 77031 The length of its sequence is 351
Sidef
func hailstone (n) {
var sequence = [n]
while (n > 1) {
sequence << (
n.is_even ? n.div!(2)
: n.mul!(3).add!(1)
)
}
return(sequence)
}
# The hailstone sequence for the number 27
var arr = hailstone(var nr = 27)
say "#{nr}: #{arr.first(4)} ... #{arr.last(4)} (#{arr.len})"
# The longest hailstone sequence for a number less than 100,000
var h = [0, 0]
for i (1 .. 99_999) {
(var l = hailstone(i).len) > h[1] && (
h = [i, l]
)
}
printf("%d: (%d)\n", h...)
Smalltalk
Object subclass: Sequences [
Sequences class >> hailstone: n [
|seq|
seq := OrderedCollection new.
seq add: n.
(n = 1) ifTrue: [ ^seq ].
(n even) ifTrue: [ seq addAll: (Sequences hailstone: (n / 2)) ]
ifFalse: [ seq addAll: (Sequences hailstone: ( (3*n) + 1 ) ) ].
^seq.
]
Sequences class >> hailstoneCount: n [
^ (Sequences hailstoneCount: n num: 1)
]
"this 'version' avoids storing the sequence, it just counts
its length - no memoization anyway"
Sequences class >> hailstoneCount: n num: m [
(n = 1) ifTrue: [ ^m ].
(n even) ifTrue: [ ^ Sequences hailstoneCount: (n / 2) num: (m + 1) ]
ifFalse: [ ^ Sequences hailstoneCount: ( (3*n) + 1) num: (m + 1) ].
]
].
|r|
r := Sequences hailstone: 27. "hailstone 'from' 27"
(r size) displayNl. "its length"
"test 'head' ..."
( (r first: 4) = #( 27 82 41 124 ) asOrderedCollection ) displayNl.
"... and 'tail'"
( ( (r last: 4 ) ) = #( 8 4 2 1 ) asOrderedCollection) displayNl.
|longest|
longest := OrderedCollection from: #( 1 1 ).
2 to: 100000 do: [ :c |
|l|
l := Sequences hailstoneCount: c.
(l > (longest at: 2) ) ifTrue: [ longest replaceFrom: 1 to: 2 with: { c . l } ].
].
('Sequence generator %1, sequence length %2' % { (longest at: 1) . (longest at: 2) })
displayNl.
SNUSP
/@+@@@+++# 27 | halve odd /===count<<\ /recurse\ #/?\ zero $>@/===!/===-?\==>?!/-<+++\ \!/=!\@\>?!\@/<@\.!\-/ /+<-\!>\?-<+>/++++<\?>+++/*6+4 | | \=/ \=itoa=@@@+@+++++# \=>?/<=!=\ | | ! /+ !/+ !/+ !/+ \ mod10 |//!==/========\ | /<+> -\!?-\!?-\!?-\!?-\! /=>?\<=/\<+>!\->+>+<<?/>>=print@/\ln \?!\-?!\-?!\-?!\-?!\-?/\ div10 \+<-/!< ----------.++++++++++/ # +/! +/! +/! +/! +/
Swift
func hailstone(var n:Int) -> [Int] {
var arr = [n]
while n != 1 {
if n % 2 == 0 {
n /= 2
} else {
n = (3 * n) + 1
}
arr.append(n)
}
return arr
}
let n = hailstone(27)
println("hailstone(27): \(n[0...3]) ... \(n[n.count-4...n.count-1]) for a count of \(n.count).")
var longest = (n: 1, len: 1)
for i in 1...100_000 {
let new = hailstone(i)
if new.count > longest.len {
longest = (i, new.count)
}
}
println("Longest sequence for numbers under 100,000 is with \(longest.n). Which has \(longest.len) items.")
- Output:
hailstone(27): [27, 82, 41, 124] ... [8, 4, 2, 1] for a count of 112 Longest sequence for numbers under 100,000 is with 77031. Which has 351 items.
Tcl
The core looping structure is an example of an n-plus-one-half loop, except the loop is officially infinite here.
proc hailstone n {
while 1 {
lappend seq $n
if {$n == 1} {return $seq}
set n [expr {$n & 1 ? $n*3+1 : $n/2}]
}
}
set h27 [hailstone 27]
puts "h27 len=[llength $h27]"
puts "head4 = [lrange $h27 0 3]"
puts "tail4 = [lrange $h27 end-3 end]"
set maxlen [set max 0]
for {set i 1} {$i<100000} {incr i} {
set l [llength [hailstone $i]]
if {$l>$maxlen} {set maxlen $l;set max $i}
}
puts "max is $max, with length $maxlen"
- Output:
h27 len=112 head4 = 27 82 41 124 tail4 = 8 4 2 1 max is 77031, with length 351
TI-83 BASIC
Task 1
prompt N
N→M: 0→X: 1→L
While L=1
X+1→X
Disp M
If M=1
Then: 0→L
Else
If remainder(M,2)=1
Then: 3*M+1→M
Else: M/2→M
End
End
End
{N,X}
- Output:
10 5 16 8 4 2 1 {27,112}
Task 2
As the calculator is quite slow, so the output is for N=200
prompt N
0→A:0→B
for(I,1,N)
I→M: 0→X: 1→L
While L=1
X+1→X
If M=1
Then: 0→L
Else
If remainder(M,2)=1
Then: 3*M+1→M
Else: M/2→M
End
End
End
If X>B: Then
I→A:X→B
End
Disp {I,X}
End
{A,B}
- Output:
{171,125}
Transd
#lang transd
MainModule: {
hailstone: (λ n Int()
(with seq Vector<Int>([n])
(while (> n 1)
(= n (if (mod n 2) (+ (* 3 n) 1)
else (/ n 2)))
(append seq n)
)
(ret seq)
)
),
_start: (λ
(with h (hailstone 27) l 0 n 0 t 0
(lout "Length of (27): " (size h))
(lout "First 4 of (27): " Range(in: h 0 4))
(lout "Last 4 of (27): " Range(in: h -4 -0))
(for i in Range(100000) do
(= t (size (hailstone (to-Int i)))) (if (> t l) (= l t) (= n i))
)
(lout "For n < 100.000 the max. sequence length is " l " for " n)
)
)
}
- Output:
Length of (27): 112 First 4 of (27): [27, 82, 41, 124] Last 4 of (27): [8, 4, 2, 1] For n < 100.000 the max. sequence length is 351 for 77031
TXR
@(do (defun hailstone (n)
(cons n
(gen (not (eq n 1))
(set n (if (evenp n)
(trunc n 2)
(+ (* 3 n) 1)))))))
@(next :list @(mapcar* (fun tostring) (hailstone 27)))
27
82
41
124
@(skip)
8
4
2
1
@(eof)
@(do (let ((max 0) maxi)
(each* ((i (range 1 99999))
(h (mapcar* (fun hailstone) i))
(len (mapcar* (fun length) h)))
(if (> len max)
(progn
(set max len)
(set maxi i))))
(format t "longest sequence is ~a for n = ~a\n" max maxi)))
$ txr -l hailstone.txr longest sequence is 351 for n = 77031
uBasic/4tH
' ------=< MAIN >=------
m = 0
Proc _hailstone_print(27)
Print
For x = 1 To 10000
n = Func(_hailstone(x))
If n > m Then
t = x
m = n
EndIf
Next
Print "The longest sequence is for "; t; ", it has a sequence length of "; m
End
_hailstone_print Param (1)
' print the number and sequence
Local (1)
b@ = 1
Print "sequence for number "; a@
Print Using "________"; a@; 'starting number
Do While a@ # 1
If (a@ % 2 ) = 1 Then
a@ = a@ * 3 + 1 ' n * 3 + 1
Else
a@ = a@ / 2 ' n / 2
EndIf
b@ = b@ + 1
Print Using "________"; a@;
If (b@ % 10) = 0 Then Print
Loop
Print : Print
Print "sequence length = "; b@
Print
For b@ = 0 To 79
Print "-";
Next
Print
Return
_hailstone Param (1)
' normal version
' only counts the sequence
Local (1)
b@ = 1
Do While a@ # 1
If (a@ % 2) = 1 Then
a@ = a@ * 3 + 1 ' n * 3 + 1
Else
a@ = a@ / 2 ' divide number by 2
EndIf
b@ = b@ + 1
Loop
Return (b@)
uBasic is an interpreted language. Doing a sequence up to 100,000 would take over an hour, so we did up to 10,000 here.
- Output:
sequence for number 2727 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1sequence length = 112
--------------------------------------------------------------------------------
The longest sequence is for 6171, it has a sequence length of 262
UNIX Shell
The best way is to use a shell with built-in arrays and arithmetic, such as Bash.
#!/bin/bash
# seq is the array genereated by hailstone
# index is used for seq
declare -a seq
declare -i index
# Create a routine to generate the hailstone sequence for a number
hailstone () {
unset seq index
seq[$((index++))]=$((n=$1))
while [ $n -ne 1 ]; do
[ $((n % 2)) -eq 1 ] && ((n=n*3+1)) || ((n=n/2))
seq[$((index++))]=$n
done
}
# Use the routine to show that the hailstone sequence for the number 27
# has 112 elements starting with 27, 82, 41, 124 and ending with 8, 4, 2, 1
i=27
hailstone $i
echo "$i: ${#seq[@]}"
echo "${seq[@]:0:4} ... ${seq[@]:(-4):4}"
# Show the number less than 100,000 which has the longest hailstone
# sequence together with that sequences length.
# (But don't show the actual sequence)!
max=0
maxlen=0
for ((i=1;i<100000;i++)); do
hailstone $i
if [ $((len=${#seq[@]})) -gt $maxlen ]; then
max=$i
maxlen=$len
fi
done
echo "${max} has a hailstone sequence length of ${maxlen}"
- Output:
27: 112 27 82 41 124 ... 8 4 2 1 77031 has a hailstone sequence of 351
Bourne Shell
This script follows tradition for the Bourne Shell; its hailstone() function writes the sequence to standard output, so the shell can capture or pipe this output. This script is very slow because it forks many processes. Each `command substitution` forks a subshell, and each expr(1) command forks a process.
- Therefore, this script only examines sequences from 1 to 1000, not 100000. A fast computer might run this script in 45 to 120 seconds, using most time to run system calls in kernel mode. If the script went to 100000, it would need several hours.
# Outputs a hailstone sequence from $1, with one element per line.
# Clobbers $n.
hailstone() {
n=`expr "$1" + 0`
eval "test $? -lt 2 || return $?" # $n must be integer.
echo $n
while test $n -ne 1; do
if expr $n % 2 >/dev/null; then
n=`expr 3 \* $n + 1`
else
n=`expr $n / 2`
fi
echo $n
done
}
set -- `hailstone 27`
echo "Hailstone sequence from 27 has $# elements:"
first="$1, $2, $3, $4"
shift `expr $# - 4`
echo " $first, ..., $1, $2, $3, $4"
i=1 max=0 maxlen=0
while test $i -lt 1000; do
len=`hailstone $i | wc -l | tr -d ' '`
test $len -gt $maxlen && max=$i maxlen=$len
i=`expr $i + 1`
done
echo "Hailstone sequence from $max has $maxlen elements."
C Shell
This script is several times faster than the previous Bourne Shell script, because it uses C Shell expressions, not the expr(1) command. This script is slow, but it can reach 100000, and a fast computer might run it in less than 15 minutes.
# Outputs a hailstone sequence from !:1, with one element per line.
# Clobbers $n.
alias hailstone eval \''@ n = \!:1:q \\
echo $n \\
while ( $n != 1 ) \\
if ( $n % 2 ) then \\
@ n = 3 * $n + 1 \\
else \\
@ n /= 2 \\
endif \\
echo $n \\
end \\
'\'
set sequence=(`hailstone 27`)
echo "Hailstone sequence from 27 has $#sequence elements:"
@ i = $#sequence - 3
echo " $sequence[1-4] ... $sequence[$i-]"
# hailstone-length $i
# acts like
# @ len = `hailstone $i | wc -l | tr -d ' '`
# but without forking any subshells.
alias hailstone-length eval \''@ n = \!:1:q \\
@ len = 1 \\
while ( $n != 1 ) \\
if ( $n % 2 ) then \\
@ n = 3 * $n + 1 \\
else \\
@ n /= 2 \\
endif \\
@ len += 1 \\
end \\
'\'
@ i = 1
@ max = 0
@ maxlen = 0
while ($i < 100000)
# XXX - I must run hailstone-length in a subshell, because my
# C Shell has a bug when it runs hailstone-length inside this
# while ($i < 1000) loop: it forgets about this loop, and
# reports an error <<end: Not in while/foreach.>>
@ len = `hailstone-length $i; echo $len`
if ($len > $maxlen) then
@ max = $i
@ maxlen = $len
endif
@ i += 1
end
echo "Hailstone sequence from $max has $maxlen elements."
- Output:
$ csh -f hailstone.csh Hailstone sequence from 27 has 112 elements: 27 82 41 124 ... 8 4 2 1 Hailstone sequence from 77031 has 351 elements.
Ursa
Implementation
hailstone.u
import "math"
def hailstone (int n)
decl int<> seq
while (> n 1)
append n seq
if (= (mod n 2) 0)
set n (floor (/ n 2))
else
set n (int (+ (* 3 n) 1))
end if
end while
append n seq
return seq
end hailstone
Usage
- Output:
> import "hailstone.u" > out (hailstone 27) endl console class java.lang.Integer<27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1> > out (size (hailstone 27)) endl console 112 > decl int i max maxLoc > for (set i 1) (< i 100000) (inc i) .. decl int result .. set result (size (hailstone i)) .. .. if (> result max) .. set max result .. set maxLoc i .. end if ..end for > out "hailstone(" maxLoc ")= " max endl console hailstone(77031)= 351 > _
Ursala
#import std
#import nat
hail = @iNC ~&h~=1->x ^C\~& @h ~&h?\~&t successor+ sum@iNiCX
#show+
main =
<
^T(@ixX take/$4; %nLP~~lrxPX; ^|TL/~& :/'...',' has length '--@h+ %nP+ length) hail 27,
^|TL(~&,:/' has sequence length ') %nP~~ nleq$^&r ^(~&,length+ hail)* nrange/1 100000>
The hail
function computes the sequence as follows.
- Given a number as an argument,
@iNC
makes a list containing only that number before passing it to the rest of the function. Thei
in the expression stands for the identity function,N
for the constant null function, andC
for the cons operator. - The iteration combinator (
->
) is used with a predicate of~&h~=l
which tests the condition that the head (~&h
) of its argument is not equal (~=
) to 1. Iteration of the rest of the function continues while this predicate holds. - The
x
suffix says to return the reversal of the list after the iteration finishes. - The function being iterated builds a list using the cons operator (
^C
) with the identity function (~&
) of the argument for the tail, and the result of the rest of the line for the head. - The
@h
operator says that the function following will be applied to the head of the list. - The conditional operator (
?
) has the head function (~&h
) as its predicate, which tests whether the head of its argument is non-null. - In this case, the argument is a natural number, but naturals are represented as lists of booleans, so taking the head of a number is the same as testing the least significant bit.
- If the condition is not met, the number has a 0 least significant bit, and therefore is even. In this case, the conditional predicate calls for taking its tail (
~&t
), effectively dividing it by 2 using a bit shift. - If the condition is met, the number is odd, so the rest of the function computes the successor of the number multiplied by three.
- Rather than multiplying the hard way, the function
sum@iNiCX
computes the sum of the pair (X
) of numbers given by the identity function (i
) of the argument, and the doubling of the argument (NiC
), also obtained by a bit shift, with a zero bit (N
) consed (C
) with the identity (i
).
Most of the main expression pertains to less interesting printing and formatting, but the part that searches for the longest sequence in the range is nleq$^&r ^(~&,length+ hail)* nrange/1 100000
.
- The expression
nrange/1 100000
evaluates to the list of the first 100000 positive integers. - The map operator (
*
) causes a list to be made of the results of its operand applied to each number. - The operand to the map operator, applied to an individual number in the list, constructs a pair (
^
) with the identity function (~&
) of the number on the left, and the length of thehail
sequence on the right. - The maximizing operator (
$^
) with respect to the natural less or equal relation (nleq
) applied to the right sides (&r
) of its pair of arguments extracts the number with the maximum length sequence.
- Output:
<27,82,41,124>...<8,4,2,1> has length 112 77031 has sequence length 351
Ursalang
let hailstone = fn(n_) {
var n = n_
let steps = [n]
loop {
if n < 2 { break steps }
n := (if n % 2 == 0 { n / 2 } else { n * 3 + 1 })
steps.push(n)
}
}
let twentySeven = hailstone(27)
print("The Hailstone sequence for 27 starts with:")
print(twentySeven.slice(0, 4))
print("and ends with:")
print(twentySeven.slice(-4))
print("and its length is:")
print(twentySeven.len())
print("Checking sequences up to 100,000")
var longest = 0
var longestLen = 0
for i in range(100000) {
let len = hailstone(i).len()
if len > longestLen {
longest := i
longestLen := len
}
if i % 10000 == 0 {print(i)}
}
print("The longest sequence under 100,000 is for:")
print(longest)
print("and has length:")
print(longestLen)
- Output:
The Hailstone sequence for 27 starts with: [ 27, 82, 41, 124 ] and ends with: [ 8, 4, 2, 1 ] and its length is: 112 Checking sequences up to 100,000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 The longest sequence under 100,000 is for: 77031 and has length: 351
VBA
Private Function hailstone(ByVal n As Long) As Collection
Dim s As New Collection
s.Add CStr(n), CStr(n)
i = 0
Do While n <> 1
If n Mod 2 = 0 Then
n = n / 2
Else
n = 3 * n + 1
End If
s.Add CStr(n), CStr(n)
Loop
Set hailstone = s
End Function
Private Function hailstone_count(ByVal n As Long)
Dim count As Long: count = 1
Do While n <> 1
If n Mod 2 = 0 Then
n = n / 2
Else
n = 3 * n + 1
End If
count = count + 1
Loop
hailstone_count = count
End Function
Public Sub rosetta()
Dim s As Collection, i As Long
Set s = hailstone(27)
Dim ls As Integer: ls = s.count
Debug.Print "hailstone(27) = ";
For i = 1 To 4
Debug.Print s(i); ", ";
Next i
Debug.Print "... ";
For i = s.count - 4 To s.count - 1
Debug.Print s(i); ", ";
Next i
Debug.Print s(s.count)
Debug.Print "length ="; ls
Dim hmax As Long: hmax = 1
Dim imax As Long: imax = 1
Dim count As Integer
For i = 2 To 100000# - 1
count = hailstone_count(i)
If count > hmax Then
hmax = count
imax = i
End If
Next i
Debug.Print "The longest hailstone sequence under 100,000 is"; imax; "with"; hmax; "elements."
End Sub
- Output:
hailstone(27) = 27, 82, 41, 124, ... 16, 8, 4, 2, 1length = 112
The longest hailstone sequence under 100,000 is 77031 with 351 elements.
VBScript
'function arguments: "num" is the number to sequence and "return" is the value to return - "s" for the sequence or
'"e" for the number elements.
Function hailstone_sequence(num,return)
n = num
sequence = num
elements = 1
Do Until n = 1
If n Mod 2 = 0 Then
n = n / 2
Else
n = (3 * n) + 1
End If
sequence = sequence & " " & n
elements = elements + 1
Loop
Select Case return
Case "s"
hailstone_sequence = sequence
Case "e"
hailstone_sequence = elements
End Select
End Function
'test driving.
'show sequence for 27
WScript.StdOut.WriteLine "Sequence for 27: " & hailstone_sequence(27,"s")
WScript.StdOut.WriteLine "Number of Elements: " & hailstone_sequence(27,"e")
WScript.StdOut.WriteBlankLines(1)
'show the number less than 100k with the longest sequence
count = 1
n_elements = 0
n_longest = ""
Do While count < 100000
current_n_elements = hailstone_sequence(count,"e")
If current_n_elements > n_elements Then
n_elements = current_n_elements
n_longest = "Number: " & count & " Length: " & n_elements
End If
count = count + 1
Loop
WScript.StdOut.WriteLine "Number less than 100k with the longest sequence: "
WScript.StdOut.WriteLine n_longest
- Output:
Sequence for 27: 27 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 Number of Elements: 112 Number less than 100k with the longest sequence: Number: 77031 Length: 351
Visual Basic
Option Explicit
Dim flag As Boolean ' true to print values
Sub main()
Dim longest As Long, n As Long
Dim i As Long, value As Long
' Task 1:
flag = True
i = 27
Debug.Print "The hailstone sequence has length of "; i; " is "; hailstones(i)
' Task 2:
flag = False
longest = 0
For i = 1 To 99999
If longest < hailstones(i) Then
longest = hailstones(i)
value = i
End If
Next i
Debug.Print value; " has the longest sequence of "; longest
End Sub 'main
Function hailstones(n As Long) As Long
Dim m As Long, p As Long
Dim m1 As Long, m2 As Long, m3 As Long, m4 As Long
If flag Then Debug.Print "The sequence for"; n; "is: ";
p = 1
m = n
If flag Then Debug.Print m;
While m > 1
p = p + 1
If (m Mod 2) = 0 Then
m = m / 2
Else
m = 3 * m + 1
End If
If p <= 4 Then If flag Then Debug.Print m;
m4 = m3
m3 = m2
m2 = m1
m1 = m
Wend
If flag Then
If p <= 4 Then
Debug.Print
ElseIf p = 5 Then
Debug.Print m1
ElseIf p = 6 Then
Debug.Print m2; m1
ElseIf p = 7 Then
Debug.Print m3; m2; m1
ElseIf p = 8 Then
Debug.Print m4; m3; m2; m1
Else
Debug.Print "..."; m4; m3; m2; m1
End If
End If
hailstones = p
End Function 'hailstones
- Output:
The sequence for 27 is: 27 82 41 124 ... 8 4 2 1 The hailstone sequence has length of 27 is 112 77031 has the longest sequence of 351
Visual Basic .NET
Module HailstoneSequence
Sub Main()
' Checking sequence of 27.
Dim l As List(Of Long) = HailstoneSequence(27)
Console.WriteLine("27 has {0} elements in sequence:", l.Count())
For i As Integer = 0 To 3 : Console.Write("{0}, ", l(i)) : Next
Console.Write("... ")
For i As Integer = l.Count - 4 To l.Count - 1 : Console.Write(", {0}", l(i)) : Next
Console.WriteLine()
' Finding longest sequence for numbers below 100000.
Dim max As Integer = 0
Dim maxCount As Integer = 0
For i = 1 To 99999
l = HailstoneSequence(i)
If l.Count > maxCount Then
max = i
maxCount = l.Count
End If
Next
Console.WriteLine("Max elements in sequence for number below 100k: {0} with {1} elements.", max, maxCount)
Console.ReadLine()
End Sub
Private Function HailstoneSequence(ByVal n As Long) As List(Of Long)
Dim valList As New List(Of Long)()
valList.Add(n)
Do Until n = 1
n = IIf(n Mod 2 = 0, n / 2, (3 * n) + 1)
valList.Add(n)
Loop
Return valList
End Function
End Module
- Output:
27 has 112 elements in sequence: 27, 82, 41, 124, ... , 8, 4, 2, 1 Max elements in sequence for number below 100k: 77031 with 351 elements.
V (Vlang)
// 1st arg is the number to generate the sequence for.
// 2nd arg is a slice to recycle, to reduce garbage.
fn hs(nn int, recycle []int) []int {
mut n := nn
mut s := recycle[..0]
s << n
for n > 1 {
if n&1 == 0 {
n /= 2
} else {
n = 3*n + 1
}
s << n
}
return s
}
fn main() {
mut seq := hs(27, [])
println("hs(27): $seq.len elements: [${seq[0]} ${seq[1]} ${seq[2]} ${seq[3]} ... ${seq[seq.len-4]} ${seq[seq.len-3]} ${seq[seq.len-2]} ${seq[seq.len-1]}]")
mut max_n, mut max_len := 0,0
for n in 1..100000 {
seq = hs(n, seq)
if seq.len > max_len {
max_n = n
max_len = seq.len
}
}
println("hs($max_n): $max_len elements")
}
- Output:
hs(27): 112 elements: [27 82 41 124 ... 8 4 2 1] hs(77031): 351 elements
Wren
var hailstone = Fn.new { |n|
if (n < 1) Fiber.abort("Parameter must be a positive integer.")
var h = [n]
while (n != 1) {
n = (n%2 == 0) ? (n/2).floor : 3*n + 1
h.add(n)
}
return h
}
var h = hailstone.call(27)
System.print("For the Hailstone sequence starting with n = 27:")
System.print(" Number of elements = %(h.count)")
System.print(" First four elements = %(h[0..3])")
System.print(" Final four elements = %(h[-4..-1])")
System.print("\nThe Hailstone sequence for n < 100,000 with the longest length is:")
var longest = 0
var longlen = 0
for (n in 1..99999) {
var h = hailstone.call(n)
var c = h.count
if (c > longlen) {
longest = n
longlen = c
}
}
System.print(" Longest = %(longest)")
System.print(" Length = %(longlen)")
- Output:
For the Hailstone sequence starting with n = 27: Number of elements = 112 First four elements = [27, 82, 41, 124] Final four elements = [8, 4, 2, 1] The Hailstone sequence for n < 100,000 with the longest length is: Longest = 77031 Length = 351
XPL0
include c:\cxpl\codes; \intrinsic 'code' declarations
int Seq(1000); \more than enough for longest sequence
func Hailstone(N); \Return length of Hailstone sequence starting at N
int N; \ also fills Seq array with sequence
int I;
[I:= 0;
loop [Seq(I):= N; I:= I+1;
if N=1 then return I;
N:= if N&1 then N*3+1 else N/2;
];
];
int N, SN, Len, MaxLen;
[Len:= Hailstone(27);
Text(0, "27's Hailstone length = "); IntOut(0, Len); CrLf(0);
Text(0, "Sequence = ");
for N:= 0 to 3 do [IntOut(0, Seq(N)); ChOut(0, ^ )];
Text(0, "... ");
for N:= Len-4 to Len-1 do [IntOut(0, Seq(N)); ChOut(0, ^ )];
CrLf(0);
MaxLen:= 0;
for N:= 1 to 100_000-1 do
[Len:= Hailstone(N);
if Len > MaxLen then [MaxLen:= Len; SN:= N]; \save N with max length
];
IntOut(0, SN); Text(0, "'s Hailstone length = "); IntOut(0, MaxLen);
]
- Output:
27's Hailstone length = 112 Sequence = 27 82 41 124 ... 8 4 2 1 77031's Hailstone length = 351
Z80 Assembly
This task will be split into two parts, in order to fit all the output of each on one Amstrad CPC screen.
Show The Sequence with n=27
Output is in hexadecimal but is otherwise correct.
;;;;;;;;;;;;;;;;;;; HEADER ;;;;;;;;;;;;;;;;;;;
read "\SrcCPC\winape_macros.asm"
read "\SrcCPC\MemoryMap.asm"
read "\SrcALL\winapeBuildCompat.asm"
;;;;;;;;;;;;;;;;;;; PROGRAM ;;;;;;;;;;;;;;;;;;;
org &8000
ld de,27
call doHailstone
;returns length of sequence, and writes each entry in the sequence
; to RAM
;print the sequence length (in hex)
ld a,h
call ShowHex
ld a,l
ld (memdump_smc),a
;just to prove I didn't need to know the sequence length at
; compile time, I'll store the calculated length as the operand
; of "doMemDump" which normally takes a constant embedded after
; it as the number of bytes to display.
; If that doesn't make sense, don't worry.
; This has nothing to do with calculating the hailstone sequence, just showing the results.
call ShowHex
call NewLine ;prints CRLF
call NewLine
call doMemDump
memdump_smc:
byte 0 ;operand of "doMemDump" (gets overwritten with the sequence length)
word HailstoneBuffer ;operand of "doMemDump"
ret
;;;;;;;;;;;;;;;;;;; LIBRARY ;;;;;;;;;;;;;;;;;;;
read "\SrcCPC\winape_stringop.asm"
read "\SrcCPC\winape_showhex.asm"
doHailstone:
;you need the proper input for the function "hailstone"
;returns addr. of last element in IX.
call hailstone
ld de,HailstoneBuffer
or a ;clear carry
push ix
pop hl ;returns element count in HL.
sbc hl,de ;subtract the two to get the length of the array.
SRL H
RR L ;divide array size by 2, since each entry is 2 bytes.
INC L
ret nz ;if no carry, don't increment H.
INC H
ret
hailstone:
;input - de = n
ld ix,HailstoneBuffer
ld a,d
or e
ret z ;zero is not allowed.
loop_hailstone:
ld (IX+0),e
ld (IX+1),d
ld a,e
cp 1
jr nz,continue_hailstone
ld a,d
or a
ret z ;if de = 1, stop.
continue_hailstone:
bit 0,e
jr z,DE_IS_EVEN
;de is odd
push de
pop hl ;ld hl,de
SLA E
RL D
add hl,de ;hl = de*3
ld de,1
add hl,de
push hl
pop de ;ld de,hl
inc ix
inc ix
jr loop_hailstone
DE_IS_EVEN:
SRL D ;A/2
RR E
inc ix
inc ix
jr loop_hailstone
doMemDump:
;show the hailstone sequence to the screen. This is just needed to display the data, if you don't care about that
;you can stop reading here.
pop hl ;get PC
ld b,(hl) ;get byte count
inc hl
ld e,(hl) ;get low byte of start addr.
inc hl
ld d,(hl) ;get high byte of start addr.
inc hl
push hl ;now when we return we'll skip the data block.
ex de,hl
call NewLine
;we'll dump 8 words per line.
ld c,8
loop_doMemDump:
inc hl
ld a,(hl)
call ShowHex
dec hl
ld a,(hl)
call ShowHex
ld a,' '
call PrintChar
inc hl
inc hl
dec c
ld a,c
and %00001111
jr nz,continueMemdump
ld c,8
continueMemdump:
djnz loop_doMemDump
ret
HailstoneBuffer:
ds 512,0
- Output:
call &8000 0070 001B 0052 0029 007C 003E 001F 005E 002F 008E 0047 00D6 006B 0142 00A1 01E4 00F2 0079 016C 00B6 005B 0112 0089 019C 00CE 0067 0136 009B 01D2 00E9 02BC 015E 00AF 01BD 0538 029C 014E 00A7 01F6 00FB 02F2 0179 046C 0236 011B 0352 01A9 04FC 027E 013F 03BE 01DF 059E 02CF 086E 0437 0CA6 0653 12FA 097D 1C78 0E3C 071E 038F 0AAE 0557 1006 0803 180A 0C05 2410 1208 0904 0482 0241 06C4 0362 01B1 0514 028A 0145 03D0 01E8 00F4 007A 003D 00B8 005C 002E 0017 0046 0023 006A 0035 00A0 0050 0028 0014 000A 0005 0010 0008 0004 0002 0001
zkl
fcn collatz(n,z=L()){ z.append(n); if(n==1) return(z);
if(n.isEven) return(self.fcn(n/2,z)); return(self.fcn(n*3+1,z)) }
This uses tail recursion and thus is stack efficient.
- Output:
var n=collatz(27) n.len() 112 n[0,4] L(27,82,41,124) n[-4,*] L(8,4,2,1)
Rather than write a function that calculates the length, just roll through all 100,000 sequences and save the largest (length,sequence start) pair. Creating all those Collatz lists isn't quick. This works by using a [mutable] list to hold state as the pump does the basic looping.
[2..0d100_000].pump(Void, // loop n from 2 to 100,000
collatz, // generate Collatz sequence(n)
fcn(c,n){ // if new longest sequence, save length/C, return longest
if(c.len()>n[0]) n.clear(c.len(),c[0]); n}.fp1(L(0,0)))
- Output:
L(351,77031) // length, hailstone
ZX Spectrum Basic
10 LET n=27: LET s=1
20 GO SUB 1000
30 PRINT '"Sequence length = ";seqlen
40 LET maxlen=0: LET s=0
50 FOR m=2 TO 100000
60 LET n=m
70 GO SUB 1000
80 IF seqlen>maxlen THEN LET maxlen=seqlen: LET maxnum=m
90 NEXT m
100 PRINT "The number with the longest hailstone sequence is ";maxnum
110 PRINT "Its sequence length is ";maxlen
120 STOP
1000 REM Hailstone
1010 LET l=0
1020 IF s THEN PRINT n;" ";
1030 IF n=1 THEN LET seqlen=l+1: RETURN
1040 IF FN m(n,2)=0 THEN LET n=INT (n/2): GO TO 1060
1050 LET n=3*n+1
1060 LET l=l+1
1070 GO TO 1020
2000 DEF FN m(a,b)=a-INT (a/b)*b