Feigenbaum constant calculation

From Rosetta Code
Feigenbaum constant calculation is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.


Task

Calculate the Feigenbaum constant.


See



11l[edit]

Translation of: Python
V max_it = 13
V max_it_j = 10
V a1 = 1.0
V a2 = 0.0
V d1 = 3.2
V a = 0.0
 
print(‘ i d’)
L(i) 2..max_it
a = a1 + (a1 - a2) / d1
L(j) 1..max_it_j
V x = 0.0
V y = 0.0
L(k) 1..(1 << i)
y = 1.0 - 2.0 * y * x
x = a - x * x
a = a - x / y
V d = (a1 - a2) / (a - a1)
print(‘#2 #.8’.format(i, d))
d1 = d
a2 = a1
a1 = a
Output:
 i       d
 2    3.21851142
 3    4.38567760
 4    4.60094928
 5    4.65513050
 6    4.66611195
 7    4.66854858
 8    4.66906066
 9    4.66917155
10    4.66919515
11    4.66920026
12    4.66920098
13    4.66920537

ALGOL 68[edit]

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32
Translation of: Ring
# Calculate the Feigenbaum constant #
 
print( ( "Feigenbaum constant calculation:", newline ) );
INT max it = 13;
INT max it j = 10;
REAL a1 := 1.0;
REAL a2 := 0.0;
REAL d1 := 3.2;
print( ( "i ", "d", newline ) );
FOR i FROM 2 TO max it DO
REAL a := a1 + (a1 - a2) / d1;
FOR j TO max it j DO
REAL x := 0;
REAL y := 0;
FOR k TO 2 ^ i DO
y := 1 - 2 * y * x;
x := a - x * x
OD;
a := a - x / y
OD;
REAL d = (a1 - a2) / (a - a1);
IF i < 10 THEN
print( ( whole( i, 0 ), " ", fixed( d, -10, 8 ), newline ) )
ELSE
print( ( whole( i, 0 ), " ", fixed( d, -10, 8 ), newline ) )
FI;
d1 := d;
a2 := a1;
a1 := a
OD
Output:
Feigenbaum constant calculation:
i  d
2  3.21851142
3  4.38567760
4  4.60094928
5  4.65513050
6  4.66611195
7  4.66854858
8  4.66906066
9  4.66917155
10 4.66919515
11 4.66920026
12 4.66920098
13 4.66920537

AWK[edit]

 
# syntax: GAWK -f FEIGENBAUM_CONSTANT_CALCULATION.AWK
BEGIN {
a1 = 1
a2 = 0
d1 = 3.2
max_i = 13
max_j = 10
print(" i d")
for (i=2; i<=max_i; i++) {
a = a1 + (a1 - a2) / d1
for (j=1; j<=max_j; j++) {
x = y = 0
for (k=1; k<=2^i; k++) {
y = 1 - 2 * y * x
x = a - x * x
}
a -= x / y
}
d = (a1 - a2) / (a - a1)
printf("%2d %.8f\n",i,d)
d1 = d
a2 = a1
a1 = a
}
exit(0)
}
 
Output:
 i d
 2 3.21851142
 3 4.38567760
 4 4.60094928
 5 4.65513050
 6 4.66611195
 7 4.66854858
 8 4.66906066
 9 4.66917155
10 4.66919515
11 4.66920026
12 4.66920098
13 4.66920537

C[edit]

Translation of: Ring
#include <stdio.h>
 
void feigenbaum() {
int i, j, k, max_it = 13, max_it_j = 10;
double a, x, y, d, a1 = 1.0, a2 = 0.0, d1 = 3.2;
printf(" i d\n");
for (i = 2; i <= max_it; ++i) {
a = a1 + (a1 - a2) / d1;
for (j = 1; j <= max_it_j; ++j) {
x = 0.0;
y = 0.0;
for (k = 1; k <= 1 << i; ++k) {
y = 1.0 - 2.0 * y * x;
x = a - x * x;
}
a -= x / y;
}
d = (a1 - a2) / (a - a1);
printf("%2d  %.8f\n", i, d);
d1 = d;
a2 = a1;
a1 = a;
}
}
 
int main() {
feigenbaum();
return 0;
}
Output:
 i       d
 2    3.21851142
 3    4.38567760
 4    4.60094928
 5    4.65513050
 6    4.66611195
 7    4.66854858
 8    4.66906066
 9    4.66917155
10    4.66919515
11    4.66920026
12    4.66920098
13    4.66920537

C++[edit]

Translation of: C
#include <iostream>
 
int main() {
const int max_it = 13;
const int max_it_j = 10;
double a1 = 1.0, a2 = 0.0, d1 = 3.2;
 
std::cout << " i d\n";
for (int i = 2; i <= max_it; ++i) {
double a = a1 + (a1 - a2) / d1;
for (int j = 1; j <= max_it_j; ++j) {
double x = 0.0;
double y = 0.0;
for (int k = 1; k <= 1 << i; ++k) {
y = 1.0 - 2.0*y*x;
x = a - x * x;
}
a -= x / y;
}
double d = (a1 - a2) / (a - a1);
printf("%2d  %.8f\n", i, d);
d1 = d;
a2 = a1;
a1 = a;
}
 
return 0;
}
Output:
 i       d
 2    3.21851142
 3    4.38567760
 4    4.60094928
 5    4.65513050
 6    4.66611195
 7    4.66854858
 8    4.66906066
 9    4.66917155
10    4.66919515
11    4.66920026
12    4.66920098
13    4.66920537

C#[edit]

Translation of: Kotlin
using System;
 
namespace FeigenbaumConstant {
class Program {
static void Main(string[] args) {
var maxIt = 13;
var maxItJ = 10;
var a1 = 1.0;
var a2 = 0.0;
var d1 = 3.2;
Console.WriteLine(" i d");
for (int i = 2; i <= maxIt; i++) {
var a = a1 + (a1 - a2) / d1;
for (int j = 1; j <= maxItJ; j++) {
var x = 0.0;
var y = 0.0;
for (int k = 1; k <= 1<<i; k++) {
y = 1.0 - 2.0 * y * x;
x = a - x * x;
}
a -= x / y;
}
var d = (a1 - a2) / (a - a1);
Console.WriteLine("{0,2:d} {1:f8}", i, d);
d1 = d;
a2 = a1;
a1 = a;
}
}
}
}
Output:
 i       d
 2    3.21851142
 3    4.38567760
 4    4.60094928
 5    4.65513050
 6    4.66611195
 7    4.66854858
 8    4.66906066
 9    4.66917155
10    4.66919515
11    4.66920026
12    4.66920098
13    4.66920537

D[edit]

import std.stdio;
 
void main() {
int max_it = 13;
int max_it_j = 10;
double a1 = 1.0;
double a2 = 0.0;
double d1 = 3.2;
double a;
 
writeln(" i d");
for (int i=2; i<=max_it; i++) {
a = a1 + (a1 - a2) / d1;
for (int j=1; j<=max_it_j; j++) {
double x = 0.0;
double y = 0.0;
for (int k=1; k <= 1<<i; k++) {
y = 1.0 - 2.0 * y * x;
x = a - x * x;
}
a -= x / y;
}
double d = (a1 - a2) / (a - a1);
writefln("%2d  %.8f", i, d);
d1 = d;
a2 = a1;
a1 = a;
}
}
Output:
 i       d
 2    3.21851142
 3    4.38567760
 4    4.60094928
 5    4.65513050
 6    4.66611195
 7    4.66854858
 8    4.66906066
 9    4.66917155
10    4.66919515
11    4.66920028
12    4.66920099
13    4.66920555

F#[edit]

Translation of: C#
open System
 
[<EntryPoint>]
let main _ =
let maxIt = 13
let maxItJ = 10
let mutable a1 = 1.0
let mutable a2 = 0.0
let mutable d1 = 3.2
Console.WriteLine(" i d")
for i in 2 .. maxIt do
let mutable a = a1 + (a1 - a2) / d1
for j in 1 .. maxItJ do
let mutable x = 0.0
let mutable y = 0.0
for _ in 1 .. (1 <<< i) do
y <- 1.0 - 2.0 * y * x
x <- a - x * x
a <- a - x / y
let d = (a1 - a2) / (a - a1)
Console.WriteLine("{0,2:d} {1:f8}", i, d)
d1 <- d
a2 <- a1
a1 <- a
0 // return an integer exit code
Output:
 i       d
 2    3.21851142
 3    4.38567760
 4    4.60094928
 5    4.65513050
 6    4.66611195
 7    4.66854858
 8    4.66906066
 9    4.66917155
10    4.66919515
11    4.66920026
12    4.66920098
13    4.66920537

Factor[edit]

Translation of: Perl 6
USING: formatting io locals math math.ranges sequences ;
 
[let
1 :> a1!
0 :> a2!
3.2 :> d!
 
" i d" print
 
2 13 [a,b] [| exp |
a1 a2 - d /f a1 + :> a!
10 [
0 :> x!
0 :> y!
exp 2^ [
1 2 x y * * - y!
a x sq - x!
] times
a x y /f - a!
] times
a1 a2 - a a1 - /f d!
a1 a2! a a1!
exp d "%2d %.8f\n" printf
] each
]
Output:
 i d
 2 3.21851142
 3 4.38567760
 4 4.60094928
 5 4.65513050
 6 4.66611195
 7 4.66854858
 8 4.66906066
 9 4.66917155
10 4.66919515
11 4.66920026
12 4.66920098
13 4.66920537

Fōrmulæ[edit]

In this page you can see the solution of this task.

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text (more info). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.

The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.

Fortran[edit]

      program feigenbaum
implicit none
 
integer i, j, k
real ( KIND = 16 ) x, y, a, b, a1, a2, d1
 
print '(a4,a13)', 'i', 'd'
 
a1 = 1.0;
a2 = 0.0;
d1 = 3.2;
 
do i=2,20
a = a1 + (a1 - a2) / d1;
do j=1,10
x = 0
y = 0
do k=1,2**i
y = 1 - 2 * y * x;
x = a - x**2;
end do
a = a - x / y;
end do
 
d1 = (a1 - a2) / (a - a1);
a2 = a1;
a1 = a;
print '(i4,f13.10)', i, d1
end do
end
Output:
   i            d
   2 3.2185114220
   3 4.3856775986
   4 4.6009492765
   5 4.6551304954
   6 4.6661119478
   7 4.6685485814
   8 4.6690606606
   9 4.6691715554
  10 4.6691951560
  11 4.6692002291
  12 4.6692013133
  13 4.6692015458
  14 4.6692015955
  15 4.6692016062
  16 4.6692016085
  17 4.6692016090
  18 4.6692016091
  19 4.6692016091
  20 4.6692016091

FreeBASIC[edit]

' version 25-0-2019
' compile with: fbc -s console
 
Dim As UInteger i, j, k, maxit = 13, maxitj = 13
Dim As Double x, y, a, a1 = 1, a2, d, d1 = 3.2
 
Print "Feigenbaum constant calculation:"
Print
Print " i d"
Print "==================="
 
For i = 2 To maxIt
a = a1 + (a1 - a2) / d1
For j = 1 To maxItJ
x = 0 : y = 0
For k = 1 To 2 ^ i
y = 1 - 2 * y * x
x = a - x * x
Next
a = a - x / y
Next
d = (a1 - a2) / (a - a1)
Print Using "### ##.#########"; i; d
d1 = d
a2 = a1
a1 = a
Next
 
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
Output:
Feigenbaum constant calculation:

  i     d
===================
  2     3.218511422
  3     4.385677599
  4     4.600949277
  5     4.655130495
  6     4.666111948
  7     4.668548581
  8     4.669060660
  9     4.669171555
 10     4.669195148
 11     4.669200285
 12     4.669201301
 13     4.669198656

Go[edit]

Translation of: Ring
package main
 
import "fmt"
 
func feigenbaum() {
maxIt, maxItJ := 13, 10
a1, a2, d1 := 1.0, 0.0, 3.2
fmt.Println(" i d")
for i := 2; i <= maxIt; i++ {
a := a1 + (a1-a2)/d1
for j := 1; j <= maxItJ; j++ {
x, y := 0.0, 0.0
for k := 1; k <= 1<<uint(i); k++ {
y = 1.0 - 2.0*y*x
x = a - x*x
}
a -= x / y
}
d := (a1 - a2) / (a - a1)
fmt.Printf("%2d  %.8f\n", i, d)
d1, a2, a1 = d, a1, a
}
}
 
func main() {
feigenbaum()
}
Output:
 i       d
 2    3.21851142
 3    4.38567760
 4    4.60094928
 5    4.65513050
 6    4.66611195
 7    4.66854858
 8    4.66906066
 9    4.66917155
10    4.66919515
11    4.66920026
12    4.66920098
13    4.66920537

Haskell[edit]

import Data.List (mapAccumL)
 
feigenbaumApprox :: Int -> [Double]
feigenbaumApprox mx = snd $ mitch mx 10
where
mitch :: Int -> Int -> ((Double, Double, Double), [Double])
mitch mx mxj =
mapAccumL
(\(a1, a2, d1) i ->
let a =
iterate
(\a ->
let (x, y) =
iterate
(\(x, y) -> (a - (x * x), 1.0 - ((2.0 * x) * y)))
(0.0, 0.0) !!
(2 ^ i)
in a - (x / y))
(a1 + (a1 - a2) / d1) !!
mxj
d = (a1 - a2) / (a - a1)
in ((a, a1, d), d))
(1.0, 0.0, 3.2)
[2 .. (1 + mx)]
 
-- TEST ------------------------------------------------------------------
main :: IO ()
main =
(putStrLn . unlines) $
zipWith
(\i s -> justifyRight 2 ' ' (show i) ++ '\t' : s)
[1 ..]
(show <$> feigenbaumApprox 13)
where
justifyRight n c s = drop (length s) (replicate n c ++ s)
Output:
 1    3.2185114220380866
 2    4.3856775985683365
 3    4.600949276538056
 4    4.6551304953919646
 5    4.666111947822846
 6    4.668548581451485
 7    4.66906066077106
 8    4.669171554514976
 9    4.669195154039278
10    4.669200256503637
11    4.669200975097843
12    4.669205372040318
13    4.669207514010413

Java[edit]

Translation of: Kotlin
public class Feigenbaum {
public static void main(String[] args) {
int max_it = 13;
int max_it_j = 10;
double a1 = 1.0;
double a2 = 0.0;
double d1 = 3.2;
double a;
 
System.out.println(" i d");
for (int i = 2; i <= max_it; i++) {
a = a1 + (a1 - a2) / d1;
for (int j = 0; j < max_it_j; j++) {
double x = 0.0;
double y = 0.0;
for (int k = 0; k < 1 << i; k++) {
y = 1.0 - 2.0 * y * x;
x = a - x * x;
}
a -= x / y;
}
double d = (a1 - a2) / (a - a1);
System.out.printf("%2d  %.8f\n", i, d);
d1 = d;
a2 = a1;
a1 = a;
}
}
}
Output:
 i       d
 2    3.21851142
 3    4.38567760
 4    4.60094928
 5    4.65513050
 6    4.66611195
 7    4.66854858
 8    4.66906066
 9    4.66917155
10    4.66919515
11    4.66920026
12    4.66920098
13    4.66920537


Julia[edit]

# http://en.wikipedia.org/wiki/Feigenbaum_constant
 
function feigenbaum_delta(imax=23, jmax=20)
a1, a2, d1 = BigFloat(1.0), BigFloat(0.0), BigFloat(3.2)
println("Feigenbaum's delta constant incremental calculation:\ni δ\n1 3.20")
for i in 2:imax
a = a1 + (a1 - a2) / d1
for j in 1:jmax
x, y = 0, 0
for k in 1:2^i
y = 1 - 2 * x * y
x = a - x * x
end
a -= x / y
end
d = (a1 - a2) / (a - a1)
println(rpad(i, 4), lpad(d, 4))
d1, a2 = d, a1
a1 = a
end
end
 
feigenbaum_delta()
 
Output:
Feigenbaum's delta constant incremental calculation:
i   δ
1   3.20
2   3.218511422038087912270504530742813256028820377971082199141994437483271226037533
3   4.385677598568339085744948568775522346103216356576497808699630752612705940390646
4   4.600949276538075357811694698623834985023552496633543372295593454454329771521727
5   4.655130495391980136486254995856898819475460497385226078363311588165123307017281
6   4.66611194782857138833121369671177648071905897173694216397236891198998639455025
7   4.668548581446840948044543680148146265543287896654348757317309551400403337843036
8   4.66906066064826823913259982263027263779968209542149740052288679867743088942764
9   4.669171555379511388886004609897567088240676573170789783804375113804695091803033
10  4.669195156030017174021108801191492093392147908605756405516325961597435372704323
11  4.669200229086856497938353781004067217408888048906823830162962242800074595934665
12  4.669201313294204171164754941185571183728248888986548913352217226469150028661929
13  4.669201545780906707506058109930429736431564330452605295006142805341042630340361
14  4.669201595537493910292470639289646040074547412490596040512777985387237785978782
15  4.669201606198152157723831097078594524421336516011873717994000712976201143278191
16  4.669201608480804423294067945898622842792868381815074127672747764898152898198069
17  4.669201608969744700482485321938373343907385540992447405883605282416375303280911
18  4.669201609074452566227981520370886753946099646679618270214759101315481224820708
19  4.669201609096878794705135037864783677622666525741836726064298799595215295927305
20  4.66920160910168168118696016084580172992808889324407617097679098039831535247408
21  4.669201609102710327837210208629111857781724142614997392167298168695631199065625
22  4.669201609102930630539778141205517641783439121041016813735799961205502985593042
23  4.66920160910297781286849594159066394676896043144121209732784416240857379387701


Kotlin[edit]

Translation of: Ring
// Version 1.2.40
 
fun feigenbaum() {
val maxIt = 13
val maxItJ = 10
var a1 = 1.0
var a2 = 0.0
var d1 = 3.2
println(" i d")
for (i in 2..maxIt) {
var a = a1 + (a1 - a2) / d1
for (j in 1..maxItJ) {
var x = 0.0
var y = 0.0
for (k in 1..(1 shl i)) {
y = 1.0 - 2.0 * y * x
x = a - x * x
}
a -= x / y
}
val d = (a1 - a2) / (a - a1)
println("%2d  %.8f".format(i,d))
d1 = d
a2 = a1
a1 = a
}
}
 
fun main(args: Array<String>) {
feigenbaum()
}
Output:
 i       d
 2    3.21851142
 3    4.38567760
 4    4.60094928
 5    4.65513050
 6    4.66611195
 7    4.66854858
 8    4.66906066
 9    4.66917155
10    4.66919515
11    4.66920026
12    4.66920098
13    4.66920537

Lua[edit]

function leftShift(n,p)
local r = n
while p>0 do
r = r * 2
p = p - 1
end
return r
end
 
-- main
 
local MAX_IT = 13
local MAX_IT_J = 10
local a1 = 1.0
local a2 = 0.0
local d1 = 3.2
 
print(" i d")
for i=2,MAX_IT do
local a = a1 + (a1 - a2) / d1
for j=1,MAX_IT_J do
local x = 0.0
local y = 0.0
for k=1,leftShift(1,i) do
y = 1.0 - 2.0 * y * x
x = a - x * x
end
a = a - x / y
end
d = (a1 - a2) / (a - a1)
print(string.format("%2d  %.8f", i, d))
d1 = d
a2 = a1
a1 = a
end
Output:
 i       d
 2    3.21851142
 3    4.38567760
 4    4.60094928
 5    4.65513050
 6    4.66611195
 7    4.66854858
 8    4.66906066
 9    4.66917155
10    4.66919515
11    4.66920026
12    4.66920098
13    4.66920537

Modula-2[edit]

MODULE Feigenbaum;
FROM FormatString IMPORT FormatString;
FROM LongStr IMPORT RealToStr;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
 
VAR
buf : ARRAY[0..63] OF CHAR;
i,j,k,max_it,max_it_j : INTEGER;
a,x,y,d,a1,a2,d1 : LONGREAL;
BEGIN
max_it := 13;
max_it_j := 10;
 
a1 := 1.0;
a2 := 0.0;
d1 := 3.2;
 
WriteString(" i d");
WriteLn;
FOR i:=2 TO max_it DO
a := a1 + (a1 - a2) / d1;
FOR j:=1 TO max_it_j DO
x := 0.0;
y := 0.0;
FOR k:=1 TO INT(1 SHL i) DO
y := 1.0 - 2.0 * y * x;
x := a - x * x
END;
a := a - x / y
END;
d := (a1 - a2) / (a - a1);
FormatString("%2i ", buf, i);
WriteString(buf);
RealToStr(d, buf);
WriteString(buf);
WriteLn;
d1 := d;
a2 := a1;
a1 := a
END;
 
ReadChar
END Feigenbaum.

Perl[edit]

use strict;
use warnings;
use Math::AnyNum 'sqr';
 
my $a1 = 1.0;
my $a2 = 0.0;
my $d1 = 3.2;
 
print " i δ\n";
 
for my $i (2..13) {
my $a = $a1 + ($a1 - $a2)/$d1;
for (1..10) {
my $x = 0;
my $y = 0;
for (1 .. 2**$i) {
$y = 1 - 2 * $y * $x;
$x = $a - sqr($x);
}
$a -= $x/$y;
}
 
$d1 = ($a1 - $a2) / ($a - $a1);
($a2, $a1) = ($a1, $a);
printf "%2d %17.14f\n", $i, $d1;
}
Output:
 2  3.21851142203809
 3  4.38567759856834
 4  4.60094927653808
 5  4.65513049539198
 6  4.66611194782857
 7  4.66854858144684
 8  4.66906066064827
 9  4.66917155537951
10  4.66919515603002
11  4.66920022908686
12  4.66920131329420
13  4.66920154578091

Perl 6[edit]

Works with: Rakudo version 2018.04.01
Translation of: Ring
my $a1 = 1;
my $a2 = 0;
my $d = 3.2;
 
say ' i d';
 
for 2 .. 13 -> $exp {
my $a = $a1 + ($a1 - $a2) / $d;
do {
my $x = 0;
my $y = 0;
for ^2 ** $exp {
$y = 1 - 2 * $y * $x;
$x = $a - $x²;
}
$a -= $x / $y;
} xx 10;
$d = ($a1 - $a2) / ($a - $a1);
($a2, $a1) = ($a1, $a);
printf "%2d %.8f\n", $exp, $d;
}
Output:
 i d
 2 3.21851142
 3 4.38567760
 4 4.60094928
 5 4.65513050
 6 4.66611195
 7 4.66854858
 8 4.66906066
 9 4.66917155
10 4.66919515
11 4.66920026
12 4.66920098
13 4.66920537

Phix[edit]

Translation of: Ring
constant maxIt = 13,
maxItJ = 10
atom a1 = 1.0,
a2 = 0.0,
d1 = 3.2
puts(1," i d\n")
for i=2 to maxIt do
atom a = a1 + (a1 - a2) / d1
for j=1 to maxItJ do
atom x = 0, y = 0
for k=1 to power(2,i) do
y = 1 - 2*y*x
x = a - x*x
end for
a = a - x/y
end for
atom d = (a1-a2)/(a-a1)
printf(1,"%2d %.8f\n",{i,d})
d1 = d
a2 = a1
a1 = a
end for
Output:
 i d
 2 3.21851142
 3 4.38567760
 4 4.60094928
 5 4.65513050
 6 4.66611195
 7 4.66854858
 8 4.66906066
 9 4.66917155
10 4.66919515
11 4.66920026
12 4.66920098
13 4.66920537

Python[edit]

Translation of: D
max_it = 13
max_it_j = 10
a1 = 1.0
a2 = 0.0
d1 = 3.2
a = 0.0
 
print " i d"
for i in range(2, max_it + 1):
a = a1 + (a1 - a2) / d1
for j in range(1, max_it_j + 1):
x = 0.0
y = 0.0
for k in range(1, (1 << i) + 1):
y = 1.0 - 2.0 * y * x
x = a - x * x
a = a - x / y
d = (a1 - a2) / (a - a1)
print("{0:2d} {1:.8f}".format(i, d))
d1 = d
a2 = a1
a1 = a
Output:
 i       d
 2    3.21851142
 3    4.38567760
 4    4.60094928
 5    4.65513050
 6    4.66611195
 7    4.66854858
 8    4.66906066
 9    4.66917155
10    4.66919515
11    4.66920026
12    4.66920098
13    4.66920537

Racket[edit]

Translation of: C
#lang racket
(define (feigenbaum #:max-it (max-it 13) #:max-it-j (max-it-j 10))
(displayln " i d" (current-error-port))
(define-values (_a _a1 d)
(for/fold ((a 1) (a1 0) (d 3.2))
((i (in-range 2 (add1 max-it))))
(let* ((a′ (for/fold ((a (+ a (/ (- a a1) d))))
((j (in-range max-it-j)))
(let-values (([x y] (for/fold ((x 0) (y 0))
((k (expt 2 i)))
(values (- a (* x x))
(- 1 (* 2 y x))))))
(- a (/ x y)))))
(d′ (/ (- a a1) (- a′ a))))
(eprintf "~a ~a\n" (~a i #:width 2) (real->decimal-string d′ 8))
(values a′ a d′))))
d)
 
(module+ main
(feigenbaum))
Output:
 i       d
2    3.21851142
3    4.38567760
4    4.60094928
5    4.65513050
6    4.66611195
7    4.66854858
8    4.66906066
9    4.66917155
10   4.66919515
11   4.66920026
12   4.66920098
13   4.66920537
4.669205372040318

REXX[edit]

Translation of: Sidef
/*REXX pgm calculates the (Mitchell) Feigenbaum bifurcation velocity, #digs can be given*/
parse arg digs maxi maxj . /*obtain optional argument from the CL.*/
if digs=='' | digs=="," then digs= 30 /*Not specified? Then use the default.*/
if maxi=='' | maxi=="," then maxi= 20 /* " " " " " " */
if maxJ=='' | maxJ=="," then maxJ= 10 /* " " " " " " */
#= 4.669201609102990671853203820466201617258185577475768632745651343004134330211314737138,
|| 68974402394801381716 /*◄──Feigenbaum's constant, true value.*/
numeric digits digs /*use the specified # of decimal digits*/
a1= 1
a2= 0
d1= 3.2
say 'Using ' maxJ " iterations for maxJ, with " digs ' decimal digits:'
say
say copies(' ', 9) center('correct', 11) copies(' ', digs+1)
say center('i', 9, "─") center('digits' , 11, '─') center('d', digs+1, "─")
 
do i=2 for maxi-1
a= a1 + (a1 - a2) / d1
do maxJ
x= 0; y= 0
do 2**i; y= 1 - 2 * x * y
x= a - x*x
end /*2**i*/
a= a - x / y
end /*maxj*/
d= (a1 - a2) / (a - a1) /*compute the delta (D) of the function*/
t= max(0, compare(d, #) - 2) /*# true digs so far, ignore dec. point*/
say center(i, 9) center(t, 11) d /*display values for I & D ──►terminal*/
parse value d a1 a with d1 a2 a1 /*assign 3 variables with 3 new values.*/
end /*i*/
say /*stick a fork in it, we're all done. */
say ' true value= ' # / 1 /*true value of Feigenbaum's constant. */
output   when using the default inputs:
Using  10  iterations for  maxJ,  with  30  decimal digits:

            correct
────i──── ──digits─── ───────────────d───────────────
    2          0      3.21851142203808791227050453077
    3          1      4.3856775985683390857449485682
    4          2      4.60094927653807535781169469969
    5          2      4.65513049539198013648625498649
    6          3      4.66611194782857138833121364654
    7          3      4.66854858144684094804454708811
    8          4      4.66906066064826823913257549468
    9          4      4.6691715553795113888859465442
   10          4      4.66919515603001717402161720542
   11          6      4.66920022908685649793393149233
   12          7      4.66920131329420417113719511412
   13          7      4.66920154578090670783369507315
   14          7      4.66920159553749390966169074155
   15          9      4.66920160619815215840788706632
   16          9      4.66920160848080435144581223484
   17          9      4.66920160896974538458267849027
   18         10      4.66920160907444981238909862845
   19         10      4.66920160909687888294310165196
   20         12      4.66920160910169069039564432665

         true value=  4.66920160910299067185320382047

Ring[edit]

# Project : Feigenbaum constant calculation
 
decimals(8)
see "Feigenbaum constant calculation:" + nl
maxIt = 13
maxItJ = 10
a1 = 1.0
a2 = 0.0
d1 = 3.2
see "i " + "d" + nl
for i = 2 to maxIt
a = a1 + (a1 - a2) / d1
for j = 1 to maxItJ
x = 0
y = 0
for k = 1 to pow(2,i)
y = 1 - 2 * y * x
x = a - x * x
next
a = a - x / y
next
d = (a1 - a2) / (a - a1)
if i < 10
see "" + i + " " + d + nl
else
see "" + i + " " + d + nl
ok
d1 = d
a2 = a1
a1 = a
next

Output:

Feigenbaum constant calculation:
i  d
2  3.21851142
3  4.38567760
4  4.60094928
5  4.65513050
6  4.66611195
7  4.66854858
8  4.66906066
9  4.66917155
10 4.66919515
11 4.66920026
12 4.66920098
13 4.66920537

Scala[edit]

Imperative, ugly[edit]

object Feigenbaum1 extends App {
val (max_it, max_it_j) = (13, 10)
var (a1, a2, d1, a) = (1.0, 0.0, 3.2, 0.0)
 
println(" i d")
var i: Int = 2
while (i <= max_it) {
a = a1 + (a1 - a2) / d1
for (_ <- 0 until max_it_j) {
var (x, y) = (0.0, 0.0)
for (_ <- 0 until 1 << i) {
y = 1.0 - 2.0 * y * x
x = a - x * x
}
a -= x / y
}
val d: Double = (a1 - a2) / (a - a1)
printf("%2d  %.8f\n", i, d)
d1 = d
a2 = a1
a1 = a
i += 1
}
 
}

Functional Style, Tail recursive[edit]

Output:
Best seen running in your browser either by ScalaFiddle (ES aka JavaScript, non JVM) or Scastie (remote JVM).
object Feigenbaum2 extends App {
private val (max_it, max_it_j) = (13, 10)
 
private def result = {
 
@scala.annotation.tailrec
def outer(i: Int, d1: Double, a2: Double, a1: Double, acc: Seq[Double]): Seq[Double] = {
@scala.annotation.tailrec
def center(j: Int, a: Double): Double = {
@scala.annotation.tailrec
def inner(k: Int, end: Int, x: Double, y: Double): (Double, Double) =
if (k < end) inner(k + 1, end, a - x * x, 1.0 - 2.0 * y * x) else (x, y)
 
val (x, y) = inner(0, 1 << i, 0.0, 0.0)
if (j < max_it_j) {
center(j + 1, a - (x / y))
} else a
}
 
if (i <= max_it) {
val a = center(0, a1 + (a1 - a2) / d1)
val d: Double = (a1 - a2) / (a - a1)
 
outer(i + 1, d, a1, a, acc :+ d)
} else acc
}
 
outer(2, 3.2, 0, 1.0, Seq[Double]()).zipWithIndex
}
 
println(" i ≈ δ")
result.foreach { case (δ, i) => println(f"${i + 2}%2d $δ%.8f") }
 
}

Sidef[edit]

Translation of: Perl 6
var a1 = 1
var a2 = 0
var δ = 3.2.float
 
say " i\tδ"
 
for i in (2..15) {
var a0 = ((a1 - a2)/δ + a1)
10.times {
var (x, y) = (0, 0)
2**i -> times {
y = (1 - 2*x*y)
x = (a0 -)
}
a0 -= x/y
}
δ = ((a1 - a2) / (a0 - a1))
(a2, a1) = (a1, a0)
printf("%2d %.8f\n", i, δ)
}
Output:
 i	δ
 2 3.21851142
 3 4.38567760
 4 4.60094928
 5 4.65513050
 6 4.66611195
 7 4.66854858
 8 4.66906066
 9 4.66917156
10 4.66919516
11 4.66920023
12 4.66920131
13 4.66920155
14 4.66920160
15 4.66920161

Visual Basic .NET[edit]

Translation of: C#
Module Module1
 
Sub Main()
Dim maxIt = 13
Dim maxItJ = 10
Dim a1 = 1.0
Dim a2 = 0.0
Dim d1 = 3.2
Console.WriteLine(" i d")
For i = 2 To maxIt
Dim a = a1 + (a1 - a2) / d1
For j = 1 To maxItJ
Dim x = 0.0
Dim y = 0.0
For k = 1 To 1 << i
y = 1.0 - 2.0 * y * x
x = a - x * x
Next
a -= x / y
Next
Dim d = (a1 - a2) / (a - a1)
Console.WriteLine("{0,2:d} {1:f8}", i, d)
d1 = d
a2 = a1
a1 = a
Next
End Sub
 
End Module
Output:
 i       d
 2    3.21851142
 3    4.38567760
 4    4.60094928
 5    4.65513050
 6    4.66611195
 7    4.66854858
 8    4.66906066
 9    4.66917155
10    4.66919515
11    4.66920026
12    4.66920098
13    4.66920537

zkl[edit]

Translation of: Kotlin
fcn feigenbaum{
maxIt,maxItJ,a1,a2,d1,a,d := 13, 10, 1.0, 0.0, 3.2, 0, 0;
println(" i d");
foreach i in ([2..maxIt]){
a=a1 + (a1 - a2)/d1;
foreach j in ([1..maxItJ]){
x,y := 0.0, 0.0;
foreach k in ([1..(1).shiftLeft(i)]){ y,x = 1.0 - 2.0*y*x, a - x*x; }
a-=x/y
}
d=(a1 - a2)/(a - a1);
println("%2d  %.8f".fmt(i,d));
d1,a2,a1 = d,a1,a;
}
}();
Output:
 i       d
 2    3.21851142
 3    4.38567760
 4    4.60094928
 5    4.65513050
 6    4.66611195
 7    4.66854858
 8    4.66906066
 9    4.66917155
10    4.66919515
11    4.66920026
12    4.66920098
13    4.66920537