Deal cards for FreeCell
Free Cell is the solitaire card game that Paul Alfille introduced to the PLATO system in 1978. Jim Horne, at Microsoft, changed the name to FreeCell and reimplemented the game for DOS, then Windows.
This version introduced 32000 numbered deals. (The FreeCell FAQ tells this history.)
You are encouraged to solve this task according to the task description, using any language you may know.
As the game became popular, Jim Horne disclosed the algorithm, and other implementations of FreeCell began to reproduce the Microsoft deals.
These deals are numbered from 1 to 32000.
Newer versions from Microsoft have 1 million deals, numbered from 1 to 1000000; some implementations allow numbers outside that range.
The algorithm uses this linear congruential generator from Microsoft C:
- is in range 0 to 32767.
- Rosetta Code has another task, linear congruential generator, with code for this RNG in several languages.
The algorithm follows:
- Seed the RNG with the number of the deal.
- Create an array of 52 cards: Ace of Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, 2 of Clubs, 2 of Diamonds, and so on through the ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King. The array indexes are 0 to 51, with Ace of Clubs at 0, and King of Spades at 51.
- Until the array is empty:
- Choose a random card at index ≡ next random number (mod array length).
- Swap this random card with the last card of the array.
- Remove this random card from the array. (Array length goes down by 1.)
- Deal this random card.
- Deal all 52 cards, face up, across 8 columns. The first 8 cards go in 8 columns, the next 8 cards go on the first 8 cards, and so on.
Order to deal cards Game #1 Game #617 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Deals can also be checked against FreeCell solutions to 1000000 games. (Summon a video solution, and it displays the initial deal.)
Write a program to take a deal number and deal cards in the same order as this algorithm. The program may display the cards with ASCII, with Unicode, by drawing graphics, or any other way.
Related tasks:
11l
F randomGenerator(=seed, n)
[Int] r
-V max_int32 = 7FFF'FFFF
seed = seed [&] max_int32
L r.len < n
seed = (seed * 214013 + 2531011) [&] max_int32
r [+]= seed >> 16
R r
F deal(seed)
V nc = 52
V cards = Array((nc - 1 .< -1).step(-1))
V rnd = randomGenerator(seed, nc)
L(r) rnd
V j = (nc - 1) - r % (nc - L.index)
swap(&cards[L.index], &cards[j])
R cards
F show(cards)
V l = cards.map(c -> ‘A23456789TJQK’[Int(c / 4)]‘’‘CDHS’[c % 4])
L(i) (0 .< cards.len).step(8)
print((l[i .< i + 8]).join(‘ ’))
:start:
V seed = I :argv.len == 2 {Int(:argv[1])} E 11982
print(‘Hand #.’.format(seed))
V deck = deal(seed)
show(deck)
- Output:
Hand 11982 AH AS 4H AC 2D 6S TS JS 3D 3H QS QC 8S 7H AD KS KD 6H 5S 4D 9H JH 9S 3C JC 5D 5C 8C 9D TD KH 7C 6C 2C TH QH 6D TC 4S 7S JD 7D 8H 9C 2H QD 4C 5H KC 8D 2S 3S
Ada
with Ada.Text_IO; use Ada.Text_IO;
procedure FreeCell is
type State is mod 2**31;
type Deck is array (0..51) of String(1..2);
package Random is
procedure Init(Seed: State);
function Rand return State;
end Random;
package body Random is
S : State := State'First;
procedure Init(Seed: State) is begin S := Seed; end Init;
function Rand return State is begin
S := S * 214013 + 2531011; return S / 2**16;
end Rand;
end Random;
procedure Deal (num : State) is
thedeck : Deck; pick : State;
Chars : constant String := "A23456789TJQKCDHS";
begin
for i in thedeck'Range loop
thedeck(i):= Chars(i/4+1) & Chars(i mod 4 + 14);
end loop;
Random.Init(num);
for i in 0..51 loop
pick := Random.Rand mod State(52-i);
Put(thedeck(Natural(pick))&' ');
if (i+1) mod 8 = 0 then New_Line; end if;
thedeck(Natural(pick)) := thedeck(51-i);
end loop; New_Line;
end Deal;
begin
Deal(1);
New_Line;
Deal(617);
end FreeCell;
- Output:
JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
AutoHotkey
FreeCell(num){
cards := "A23456789TJQK", suits := "♣♦♥♠", card := [], Counter := 0
loop, parse, cards
{
ThisCard := A_LoopField
loop, parse, suits
Card[Counter++] := ThisCard . A_LoopField
}
loop, 52
{
a := MS(num)
num:=a[1]
MyCardNo := mod(a[2],53-A_Index)
MyCard := Card[MyCardNo]
Card[MyCardNo] := Card[52-A_Index]
Card.Remove(52-A_Index)
Res .= MyCard (Mod(A_Index,8)?" ":"`n")
}
return Res
}
MS(Seed) {
Seed := Mod(214013 * Seed + 2531011, 2147483648)
return, [Seed, Seed // 65536]
}
MS() found at http://rosettacode.org/wiki/Linear_congruential_generator#AutoHotkey
Examples:
Gui, font, s12, Courier
Gui, add, edit, w320 r17 -VScroll, % "Game# 1`n" FreeCell(1) "`n`nGame#617`n" FreeCell(617)
Gui, show
return
GuiClose:
GuiEscape:
ExitApp
return
Outputs:
Game# 1 J♦ 2♦ 9♥ J♣ 5♦ 7♥ 7♣ 5♥ K♦ K♣ 9♠ 5♠ A♦ Q♣ K♥ 3♥ 2♠ K♠ 9♦ Q♦ J♠ A♠ A♥ 3♣ 4♣ 5♣ T♠ Q♥ 4♥ A♣ 4♦ 7♠ 3♠ T♦ 4♠ T♥ 8♥ 2♣ J♥ 7♦ 6♦ 8♠ 8♦ Q♠ 6♣ 3♦ 8♣ T♣ 6♠ 9♣ 2♥ 6♥ Game#617 7♦ A♦ 5♣ 3♠ 5♠ 8♣ 2♦ A♥ T♦ 7♠ Q♦ A♣ 6♦ 8♥ A♠ K♥ T♥ Q♣ 3♥ 9♦ 6♠ 8♦ 3♦ T♣ K♦ 5♥ 9♠ 3♣ 8♠ 7♥ 4♦ J♠ 4♣ Q♠ 9♣ 9♥ 7♣ 6♥ 2♣ 2♠ 4♠ T♠ 2♥ 5♦ J♣ 6♣ J♥ Q♥ J♦ K♠ K♣ 4♥
BBC BASIC
*FLOAT 64
hand% = 617
REM Initialise card library:
SYS "LoadLibrary", "CARDS.DLL" TO cards%
IF cards% = 0 ERROR 100, "No CARDS library"
SYS "GetProcAddress", cards%, "cdtInit" TO cdtInit%
SYS "GetProcAddress", cards%, "cdtDraw" TO cdtDraw%
SYS cdtInit%, ^dx%, ^dy%
VDU 23,22,8*dx%;5*dy%;8,16,16,128
REM Initialise deck:
DIM card&(51)
FOR I% = 0 TO 51 : card&(I%) = I% : NEXT
REM Shuffle deck:
dummy% = FNrng(hand%)
FOR I% = 51 TO 0 STEP -1
C% = FNrng(-1) MOD (I% + 1)
SWAP card&(C%), card&(I%)
NEXT
REM Display deck:
FOR I% = 0 TO 51
C% = card&(51 - I%)
X% = (I% MOD 8) * dx%
Y% = (I% DIV 8) * dy% * 2 / 3
SYS cdtDraw%, @memhdc%, X%, Y%, C%, 0, 0
NEXT
SYS "InvalidateRect", @hwnd%, 0, 0
*GSAVE freecell
END
DEF FNrng(seed)
PRIVATE state, M%
IF seed >= 0 THEN
state = seed
ELSE
state = (state * 214013 + 2531011)
FOR M% = 52 TO 31 STEP -1
IF state >= 2^M% state -= 2^M%
NEXT
ENDIF
= state >> 16
- Output:
Befunge
vutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDC
>4$0" :rebmun emaG">:#,_$&>55+,>"O?+"**2+*"C4'' "**v
>8%!492*+*48*\-,1-:11p0g\0p11g#^_@A23456789TJQKCDHS*
^+3:g11,g2+"/"%4,g2+g14/4:-\"v"g0:%g11+*-/2-10-1*<>+
>8#8*#4*#::#%*#*/#*:#*0#:\#*`#:8#::#*:#8*#8:#2*#+^#<
- Output:
Game number: 1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H
Bracmat
( ( createArray
= array rank ranks suit suits
. A 2 3 4 5 6 7 8 9 T J Q K:?ranks
& :?array
& whl
' ( !ranks:%?rank ?ranks
& ♣ ♦ ♥ ♠:?suits
& whl
' ( !suits:%?suit ?suits
& !array str$(!rank !suit):?array
)
)
& !array
)
& ( deal
= A B D L Z pick card dealt deck
, i last rand row state
. !arg:(?deck:? [?L.?state)
& 8:?row
& :?dealt
& ( pick
= sep
. ( -1+!row:>0:?row
& " ":?sep
| \n:?sep&8:?row
)
& !dealt !arg !sep:?dealt
)
& 2^31:?B
& 2^16:?D
& "
'Hard code' the numbers B and D into the rand function using
macro expansion. (Gives a marginally faster execution speed.)
"
&
' (
. mod$(!state*214013+2531011.$B):?state
& div$(!state.$D)
)
: (=?rand)
& !L+1:?L
& whl
' ( mod$(rand$.!L+-1:?L):?i
& !deck:?A [!i %?card ?Z
& ( !Z:?Z %@?last&!A !last !Z
| !A
)
: ?deck
& pick$!card
)
& pick$\n
& str$!dealt
)
& createArray$:?deck
& put$("Game #1\n","dealt.txt",NEW)
& put$(deal$(!deck.1),"dealt.txt",APP)
& put$("
Game #617
","dealt.txt",APP)
& put$(deal$(!deck.617),"dealt.txt",APP)
&
)
Content of dealt.txt
:
Game #1 J♦ 2♦ 9♥ J♣ 5♦ 7♥ 7♣ 5♥ K♦ K♣ 9♠ 5♠ A♦ Q♣ K♥ 3♥ 2♠ K♠ 9♦ Q♦ J♠ A♠ A♥ 3♣ 4♣ 5♣ T♠ Q♥ 4♥ A♣ 4♦ 7♠ 3♠ T♦ 4♠ T♥ 8♥ 2♣ J♥ 7♦ 6♦ 8♠ 8♦ Q♠ 6♣ 3♦ 8♣ T♣ 6♠ 9♣ 2♥ 6♥ Game #617 7♦ A♦ 5♣ 3♠ 5♠ 8♣ 2♦ A♥ T♦ 7♠ Q♦ A♣ 6♦ 8♥ A♠ K♥ T♥ Q♣ 3♥ 9♦ 6♠ 8♦ 3♦ T♣ K♦ 5♥ 9♠ 3♣ 8♠ 7♥ 4♦ J♠ 4♣ Q♠ 9♣ 9♥ 7♣ 6♥ 2♣ 2♠ 4♠ T♠ 2♥ 5♦ J♣ 6♣ J♥ Q♥ J♦ K♠ K♣ 4♥
C
#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
wchar_t s_suits[] = L"♣♦♥♠", s_nums[] = L"A23456789TJQK";
#define RMAX32 ((1U << 31) - 1)
static int seed = 1;
int rnd(void) { return (seed = (seed * 214013 + 2531011) & RMAX32) >> 16; }
void srnd(int x) { seed = x; }
void show(const int *c)
{
int i;
for (i = 0; i < 52; c++) {
printf(" \033[%dm%lc\033[m%lc", 32 - (1 + *c) % 4 / 2,
s_suits[*c % 4], s_nums[*c / 4]);
if (!(++i % 8) || i == 52) putchar('\n');
}
}
void deal(int s, int *t)
{
int i, j;
srnd(s);
for (i = 0; i < 52; i++) t[i] = 51 - i;
for (i = 0; i < 51; i++) {
j = 51 - rnd() % (52 - i);
s = t[i], t[i] = t[j], t[j] = s;
}
}
int main(int c, char **v)
{
int s, card[52];
if (c < 2 || (s = atoi(v[1])) <= 0) s = 11982;
setlocale(LC_ALL, "");
deal(s, card);
printf("Hand %d\n", s);
show(card);
return 0;
}
C#
Longer than it absolutely needs to be because I split out several independently useful classes.
using System;
using System.Collections.Generic;
using System.Text;
namespace FreeCellDeals
{
public class RNG
{
private int _state;
public RNG()
{
_state = (int)DateTime.Now.Ticks;
}
public RNG(int n)
{
_state = n;
}
public int Next()
{
return ((_state = 214013 * _state + 2531011) & int.MaxValue) >> 16;
}
}
public enum Rank
{
Ace,
One,
Two,
Three,
Four,
Five,
Six,
Seven,
Eight,
Nine,
Ten,
Jack,
Queen,
King
}
public enum Suit
{
Clubs,
Diamonds,
Hearts,
Spades
}
public class Card
{
private const string Ranks = "A23456789TJQK";
private const string Suits = "CDHS";
private Rank _rank;
public Rank Rank
{
get
{
return _rank;
}
set
{
if ((int)value < 0 || (int)value > 12)
{
throw new InvalidOperationException("Setting card rank out of range");
}
_rank = value;
}
}
private Suit _suit;
public Suit Suit
{
get
{
return _suit;
}
set
{
if ((int)value < 0 || (int)value > 3)
{
throw new InvalidOperationException("Setting card rank out of range");
}
_suit = value;
}
}
public Card(Rank rank, Suit suit)
{
Rank = rank;
Suit = suit;
}
public int NRank()
{
return (int) Rank;
}
public int NSuit()
{
return (int) Suit;
}
public override string ToString()
{
return new string(new[] {Ranks[NRank()], Suits[NSuit()]});
}
}
public class FreeCellDeal
{
public List<Card> Deck { get; private set; }
public FreeCellDeal(int iDeal)
{
RNG rng = new RNG(iDeal);
List<Card> rDeck = new List<Card>();
Deck = new List<Card>();
for (int rank = 0; rank < 13; rank++)
{
for (int suit = 0; suit < 4; suit++)
{
rDeck.Add(new Card((Rank)rank, (Suit)suit));
}
}
// Normally we deal from the front of a deck. The algorithm "deals" from the back so we reverse the
// deck here to more conventionally deal from the front/start of the array.
for (int iCard = 51; iCard >= 0; iCard--)
{
int iSwap = rng.Next() % (iCard + 1);
Deck.Add(rDeck[iSwap]);
rDeck[iSwap] = rDeck[iCard];
}
}
public override string ToString()
{
StringBuilder sb = new StringBuilder();
for (int iRow = 0; iRow < 6; iRow++ )
{
for (int iCol = 0; iCol < 8; iCol++)
{
sb.AppendFormat("{0} ", Deck[iRow * 8 + iCol]);
}
sb.Append("\n");
}
for (int iCard = 48; iCard < 52; iCard++)
{
sb.AppendFormat("{0} ", Deck[iCard]);
}
return sb.ToString();
}
}
class Program
{
static void Main()
{
Console.WriteLine(new FreeCellDeal(1));
Console.WriteLine();
Console.WriteLine(new FreeCellDeal(617));
}
}
}
- Output:
JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Shorter version
Shorter than the previous version. Adds a few classes, but stays closer to the gist of the C version.
using System;
using System.Text;
namespace FreeCellConsole
{
public class Rand {
long _seed;
public Rand(int seed=1) {
_seed = seed;
}
public int Next() {
return (int) ((_seed = (_seed * 214013 + 2531011) & int.MaxValue) >> 16);
}
}
public class Card {
private static readonly string kSuits = "♣♦♥♠";
private static readonly string kValues = "A23456789TJQK";
public int Value { get; set; }
public int Suit { get; set; }
public Card(int rawvalue=0) : this(rawvalue / 4, rawvalue % 4) {
}
public Card(int value, int suit) {
Value = value; Suit = suit;
}
public override string ToString() {
return string.Format("{0}{1}", kValues[Value], kSuits[Suit]);
}
}
public class Deck {
public Card[] Cards;
public Deck(int seed) {
var r = new Rand(seed);
Cards = new Card[52];
for (int i=0; i < 52; i++)
Cards[i] = new Card(51 - i);
for (int i=0; i < 51; i++) {
int j = 51 - r.Next() % (52 - i);
Card tmp = Cards[i]; Cards[i] = Cards[j]; Cards[j] = tmp;
}
}
public override string ToString() {
var sb = new StringBuilder();
for (int i=0; i < Cards.Length; i++) {
sb.Append(Cards[i].ToString());
sb.Append(i % 8 == 7 ? "\n" : " ");
}
return sb.ToString();
}
}
class Program {
public static void Main(string[] args) {
Console.WriteLine("Deck 1\n{0}\n", new Deck(1));
Console.WriteLine("Deck 617\n{0}\n", new Deck(617));
}
}
}
- Output:
Deck 1 J♦ 2♦ 9♥ J♣ 5♦ 7♥ 7♣ 5♥ K♦ K♣ 9♠ 5♠ A♦ Q♣ K♥ 3♥ 2♠ K♠ 9♦ Q♦ J♠ A♠ A♥ 3♣ 4♣ 5♣ T♠ Q♥ 4♥ A♣ 4♦ 7♠ 3♠ T♦ 4♠ T♥ 8♥ 2♣ J♥ 7♦ 6♦ 8♠ 8♦ Q♠ 6♣ 3♦ 8♣ T♣ 6♠ 9♣ 2♥ 6♥ Deck 617 7♦ A♦ 5♣ 3♠ 5♠ 8♣ 2♦ A♥ T♦ 7♠ Q♦ A♣ 6♦ 8♥ A♠ K♥ T♥ Q♣ 3♥ 9♦ 6♠ 8♦ 3♦ T♣ K♦ 5♥ 9♠ 3♣ 8♠ 7♥ 4♦ J♠ 4♣ Q♠ 9♣ 9♥ 7♣ 6♥ 2♣ 2♠ 4♠ T♠ 2♥ 5♦ J♣ 6♣ J♥ Q♥ J♦ K♠ K♣ 4♥
C++
#include <windows.h>
#include <iostream>
//--------------------------------------------------------------------------------------------------
using namespace std;
//--------------------------------------------------------------------------------------------------
class fc_dealer
{
public:
void deal( int game )
{
_gn = game;
fillDeck();
shuffle();
display();
}
private:
void fillDeck()
{
int p = 0;
for( int c = 0; c < 13; c++ )
for( int s = 0; s < 4; s++ )
_cards[p++] = c | s << 4;
}
void shuffle()
{
srand( _gn );
int cc = 52, nc, lc;
while( cc )
{
nc = rand() % cc;
lc = _cards[--cc];
_cards[cc] = _cards[nc];
_cards[nc] = lc;
}
}
void display()
{
char* suit = "CDHS";
char* symb = "A23456789TJQK";
int z = 0;
cout << "GAME #" << _gn << endl << "=======================" << endl;
for( int c = 51; c >= 0; c-- )
{
cout << symb[_cards[c] & 15] << suit[_cards[c] >> 4] << " ";
if( ++z >= 8 )
{
cout << endl;
z = 0;
}
}
}
int _cards[52], _gn;
};
//--------------------------------------------------------------------------------------------------
int main( int argc, char* argv[] )
{
fc_dealer dealer;
int gn;
while( true )
{
cout << endl << "Game number please ( 0 to QUIT ): "; cin >> gn;
if( !gn ) break;
system( "cls" );
dealer.deal( gn );
cout << endl << endl;
}
return 0;
}
//--------------------------------------------------------------------------------------------------
Output:
GAME #1 ======================= JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H GAME #617 ======================= 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
OOP version
This is written using a more object-oriented approach than the version above.
#include <string> // std::string
#include <iostream> // std::cout
#include <sstream> // std::stringstream
#include <vector> // std::vector
using namespace std;
//------------------------------------------------------------------------------
class Random {
public:
void init(uint32_t seed) { _seed = seed; }
int roll() { return (_seed = (_seed * MULT + INCR) & MASK) >> 16; }
private:
int _seed;
enum { MULT = 214013, INCR = 2531011, MASK = (1U << 31) - 1 };
};
//------------------------------------------------------------------------------
class Card {
public:
Card(int value) : _value(value) { }
int suit() const { return _value % 4; }
int rank() const { return _value / 4; }
string str() const {
stringstream s; s << _ranks[rank()] << _suits[suit()]; return s.str();
}
private:
int _value;
const char* _suits = "CDHS";
const char* _ranks = "A23456789TJQK";
};
//------------------------------------------------------------------------------
class Deck {
public:
Deck(int seed) {
_random.init(seed);
for (int i = 0; i < 52; i++)
_cards.push_back(Card(51 - i));
for (int i = 0; i < 51; i++) {
int j = 51 - _random.roll() % (52 - i);
swap(_cards[i], _cards[j]);
}
}
string str() const {
stringstream s;
for (int i = 0; i < _cards.size(); i++)
s << _cards[i].str() << (i % 8 == 7 || i == 51 ? "\n" : " ");
return s.str();
}
private:
vector<Card> _cards;
Random _random;
};
//------------------------------------------------------------------------------
int main(int argc, const char * argv[])
{
{
Deck deck(1);
cout << "Deck 1" << endl << deck.str() << endl;
}
{
Deck deck(617);
cout << "Deck 617" << endl << deck.str() << endl;
}
return 0;
}
- Output:
Deck 1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H Deck 617 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Ceylon
shared void freeCellDeal() {
//a function that returns a random number generating function
function createRNG(variable Integer state) =>
() => (state = (214_013 * state + 2_531_011) % 2^31) / 2^16;
void deal(Integer num) {
// create an array with a list comprehension
variable value deck = Array {
for(rank in "A23456789TJQK")
for(suit in "CDHS")
"``rank````suit``"
};
value rng = createRNG(num);
for(i in 1..52) {
value index = rng() % deck.size;
assert(exists lastIndex = deck.lastIndex);
//swap the random card with the last one
deck.swap(index, lastIndex);
//print the last one
process.write("``deck.last else "missing card"`` " );
if(i % 8 == 0) {
print("");
}
//and shrink the array to remove the last card
deck = deck[...lastIndex - 1];
}
}
deal(1);
print("\n");
deal(617);
}
Clojure
(def deck (into [] (for [rank "A23456789TJQK" suit "CDHS"] (str rank suit))))
(defn lcg [seed]
(map #(bit-shift-right % 16)
(rest (iterate #(mod (+ (* % 214013) 2531011) (bit-shift-left 1 31)) seed))))
(defn gen [seed]
(map (fn [rnd rng] (into [] [(mod rnd rng) (dec rng)]))
(lcg seed) (range 52 0 -1)))
(defn xchg [v [src dst]] (assoc v dst (v src) src (v dst)))
(defn show [seed] (map #(println %) (partition 8 8 ""
(reverse (reduce xchg deck (gen seed))))))
(show 1)
Common Lisp
(defun make-rng (seed)
#'(lambda ()
(ash (setf seed (mod (+ (* 214013 seed) 2531011) (expt 2 31))) -16)))
(defun split (s) (map 'list #'string s))
(defun make-deck (seed)
(let ((hand (make-array 52 :fill-pointer 0))
(rng (make-rng seed)))
(dolist (d (split "A23456789TJQK"))
(dolist (s (split "♣♦♥♠"))
(vector-push (concatenate 'string d s) hand)))
(dotimes (i 52)
(rotatef (aref hand (- 51 i))
(aref hand (mod (funcall rng) (- 52 i)))))
(nreverse hand)))
(defun show-deck (seed)
(let ((hand (make-deck seed)))
(format t "~%Hand ~d~%" seed)
(dotimes (i 52)
(format t "~A " (aref hand i))
(if (= (mod i 8) 7) (write-line "")))))
(show-deck 1)
(show-deck 617)
D
import std.stdio, std.conv, std.algorithm, std.range;
struct RandomGenerator {
uint seed = 1;
@property uint next() pure nothrow @safe @nogc {
seed = (seed * 214_013 + 2_531_011) & int.max;
return seed >> 16;
}
}
struct Deck {
int[52] cards;
void deal(in uint seed) pure nothrow @safe @nogc {
enum int nc = cards.length; // Must be signed for iota.
nc.iota.retro.copy(cards[]);
auto rnd = RandomGenerator(seed);
foreach (immutable i, ref c; cards)
c.swap(cards[(nc - 1) - rnd.next % (nc - i)]);
}
void show() const @safe {
writefln("%(%-( %s%)\n%)",
cards[]
.chunks(8)
.map!(row => row.map!(c => only("A23456789TJQK"[c / 4],
"CDHS"[c % 4]))));
}
}
void main(in string[] args) @safe {
immutable seed = (args.length == 2) ? args[1].to!uint : 11_982;
writeln("Hand ", seed);
Deck cards;
cards.deal(seed);
cards.show;
}
Hand 11982 AH AS 4H AC 2D 6S TS JS 3D 3H QS QC 8S 7H AD KS KD 6H 5S 4D 9H JH 9S 3C JC 5D 5C 8C 9D TD KH 7C 6C 2C TH QH 6D TC 4S 7S JD 7D 8H 9C 2H QD 4C 5H KC 8D 2S 3S
Delphi
program Deal_cards_for_FreeCell;
{$APPTYPE CONSOLE}
uses
System.SysUtils;
type
TRandom = record
Seed: Int64;
function Next: Integer;
end;
TCard = record
const
kSuits = '♣♦♥♠';
kValues = 'A23456789TJQK';
var
Value: Integer;
Suit: Integer;
procedure Create(rawvalue: Integer); overload;
procedure Create(value, suit: Integer); overload;
procedure Assign(other: TCard);
function ToString: string;
end;
TDeck = record
Cards: TArray<TCard>;
procedure Create(Seed: Integer);
function ToString: string;
end;
{ TRandom }
function TRandom.Next: Integer;
begin
Seed := ((Seed * 214013 + 2531011) and Integer.MaxValue);
Result := Seed shr 16;
end;
{ TCard }
procedure TCard.Create(rawvalue: Integer);
begin
Create(rawvalue div 4, rawvalue mod 4);
end;
procedure TCard.Assign(other: TCard);
begin
Create(other.Value, other.Suit);
end;
procedure TCard.Create(value, suit: Integer);
begin
self.Value := value;
self.Suit := suit;
end;
function TCard.ToString: string;
begin
result := format('%s%s', [kValues[value + 1], kSuits[suit + 1]]);
end;
{ TDeck }
procedure TDeck.Create(Seed: Integer);
var
r: TRandom;
i, j: integer;
tmp: Tcard;
begin
r.Seed := Seed;
SetLength(Cards, 52);
for i := 0 to 51 do
Cards[i].Create(51 - i);
for i := 0 to 50 do
begin
j := 51 - (r.Next mod (52 - i));
tmp.Assign(Cards[i]);
Cards[i].Assign(Cards[j]);
Cards[j].Assign(tmp);
end;
end;
function TDeck.ToString: string;
var
i: Integer;
begin
Result := '';
for i := 0 to length(Cards) - 1 do
begin
Result := Result + Cards[i].ToString;
if i mod 8 = 7 then
Result := Result + #10
else
Result := Result + ' ';
end;
end;
var
Deck: TDeck;
begin
Deck.Create(1);
Writeln('Deck 1'#10, Deck.ToString, #10);
Deck.Create(617);
Writeln('Deck 617'#10, Deck.ToString);
readln;
end.
- Output:
Deck 1 J♦ 2♦ 9♥ J♣ 5♦ 7♥ 7♣ 5♥ K♦ K♣ 9♠ 5♠ A♦ Q♣ K♥ 3♥ 2♠ K♠ 9♦ Q♦ J♠ A♠ A♥ 3♣ 4♣ 5♣ T♠ Q♥ 4♥ A♣ 4♦ 7♠ 3♠ T♦ 4♠ T♥ 8♥ 2♣ J♥ 7♦ 6♦ 8♠ 8♦ Q♠ 6♣ 3♦ 8♣ T♣ 6♠ 9♣ 2♥ 6♥ Deck 617 7♦ A♦ 5♣ 3♠ 5♠ 8♣ 2♦ A♥ T♦ 7♠ Q♦ A♣ 6♦ 8♥ A♠ K♥ T♥ Q♣ 3♥ 9♦ 6♠ 8♦ 3♦ T♣ K♦ 5♥ 9♠ 3♣ 8♠ 7♥ 4♦ J♠ 4♣ Q♠ 9♣ 9♥ 7♣ 6♥ 2♣ 2♠ 4♠ T♠ 2♥ 5♦ J♣ 6♣ J♥ Q♥ J♦ K♠ K♣ 4♥
EasyLang
global seed .
func xrnd .
seed = (seed * 214013 + 2531011) mod 0x80000000
return seed div 0x10000
.
len cards[] 52
proc deal game_num . .
print "hand " & game_num
seed = game_num
for i = 1 to 52
cards[i] = 52 - i
.
for i = 1 to 51
j = 52 - xrnd mod (53 - i)
swap cards[i] cards[j]
.
.
suits$[] = strchars "CDHS"
ranks$[] = strchars "A23456789TJQK"
#
proc show . .
for idx = 1 to 52
rank = cards[idx] div 4 + 1
suit = cards[idx] mod 4 + 1
write ranks$[rank] & suits$[suit] & " "
if idx mod1 13 = 13
print ""
.
.
print ""
.
deal 1 ; show
deal 617 ; show
Elixir
defmodule FreeCell do
import Bitwise
@suits ~w( C D H S )
@pips ~w( A 2 3 4 5 6 7 8 9 T J Q K )
@orig_deck for pip <- @pips, suit <- @suits, do: pip <> suit
def deal(games) do
games = if length(games) == 0, do: [Enum.random(1..32000)], else: games
Enum.each(games, fn seed ->
IO.puts "Game ##{seed}"
Enum.reduce(52..2, {seed,@orig_deck}, fn len,{state,deck} ->
state = ((214013 * state) + 2531011) &&& 0x7fff_ffff
index = rem(state >>> 16, len)
last = len - 1
{a, b} = {Enum.at(deck, index), Enum.at(deck, last)}
{state, deck |> List.replace_at(index, b) |> List.replace_at(last, a)}
end)
|> elem(1)
|> Enum.reverse
|> Enum.chunk(8,8,[])
|> Enum.each(fn row -> Enum.join(row, " ") |> IO.puts end)
IO.puts ""
end)
end
end
System.argv |> Enum.map(&String.to_integer/1)
|> FreeCell.deal
- Output:
C:\Elixir>elixir freecell.exs 1 617 Game #1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H Game #617 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
ERRE
PROGRAM FREECELL
!$DOUBLE
DIM CARDS%[52]
PROCEDURE XRANDOM(SEED->XRND)
POW31=2^31
POW16=2^16
SEED=SEED*214013+2531011
SEED=SEED-POW31*INT(SEED/POW31)
XRND=INT(SEED/POW16)
END PROCEDURE
PROCEDURE DEAL(CARDS%[],GAME_NUM)
LOCAL I%,J%,S%
SEED=GAME_NUM
FOR I%=1 TO 52 DO
CARDS%[I%]=52-I%
END FOR
FOR I%=1 TO 51 DO
XRANDOM(SEED->XRND)
J%=52-XRND MOD (53-I%)
S%=CARDS%[I%]
CARDS%[I%]=CARDS%[J%]
CARDS%[J%]=S%
END FOR
END PROCEDURE
PROCEDURE SHOW(CARDS%[])
LOCAL INDEX%
FOR INDEX%=1 TO 52 DO
PRINT(MID$(SUITS$,CARDS%[INDEX%] MOD 4+1,1);MID$(NUMS$,CARDS%[INDEX%] DIV 4+1,1);" ";)
IF INDEX% MOD 8=0 OR INDEX%=52 THEN
PRINT
END IF
END FOR
END PROCEDURE
BEGIN
PRINT(CHR$(12);)
SUITS$="♣♦♥♠"
NUMS$="A23456789TJQK"
GAME_NUM=1982 ! if missing command line
IF CMDLINE$<>"" THEN GAME_NUM=VAL(CMDLINE$) END IF
SEED=1
DEAL(CARDS%[],GAME_NUM)
PRINT("Hand ";GAME_NUM)
SHOW(CARDS%[])
END PROGRAM
- Output:
Hand 1 ♦J ♦2 ♥9 ♣J ♦5 ♥7 ♣7 ♥5 ♦K ♣K ♠9 ♠5 ♦A ♣Q ♥K ♥3 ♠2 ♠K ♦9 ♦Q ♠J ♠A ♥A ♣3 ♣4 ♣5 ♠T ♥Q ♥4 ♣A ♦4 ♠7 ♠3 ♦T ♠4 ♥T ♥8 ♣2 ♥J ♦7 ♦6 ♠8 ♦8 ♠Q ♣6 ♦3 ♣8 ♣T ♠6 ♣9 ♥2 ♥6
Hand 617 ♦7 ♦A ♣5 ♠3 ♠5 ♣8 ♦2 ♥A ♦T ♠7 ♦Q ♣A ♦6 ♥8 ♠A ♥K ♥T ♣Q ♥3 ♦9 ♠6 ♦8 ♦3 ♣T ♦K ♥5 ♠9 ♣3 ♠8 ♥7 ♦4 ♠J ♣4 ♠Q ♣9 ♥9 ♣7 ♥6 ♣2 ♠2 ♠4 ♠T ♥2 ♦5 ♣J ♣6 ♥J ♥Q ♦J ♠K ♣K ♥4
F#
The deal for this one is a little arduous, as we're using a list and maintain an immutable state. Of course, an array could be used, but what's the fun in that?
let msKindaRand seed =
let state = ref seed
(fun (_:unit) ->
state := (214013 * !state + 2531011) &&& System.Int32.MaxValue
!state / (1<<<16))
let unshuffledDeck = [0..51] |> List.map(fun n->sprintf "%c%c" "A23456789TJQK".[n / 4] "CDHS".[n % 4])
let deal boot idx =
let (last,rest) = boot |> List.rev |> fun xs->(List.head xs),(xs |> List.tail |> List.rev)
if idx=((List.length boot) - 1) then last, rest
else
rest
|> List.mapi (fun i x -> i,x)
|> List.partition (fst >> ((>) idx))
|> fun (xs,ys) -> (List.map snd xs),(List.map snd ys)
|> fun (xs,ys) -> (List.head ys),(xs @ last::(List.tail ys))
let game gameNo =
let rnd = msKindaRand gameNo
[52..-1..1]
|> List.map (fun i->rnd() % i)
|> List.fold (fun (dealt, boot) idx->deal boot idx |> fun (x,xs) -> (x::dealt, xs)) ([],unshuffledDeck)
|> fst |> List.rev
|> List.chunkBySize 8
|> List.map (String.concat " ")
|> String.concat "\n"
|> printfn "Game #%d\n%s\n" gameNo
[1; 617] |> List.iter game
- Output:
Game #1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H Game #617 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Factor
USING: formatting grouping io kernel literals make math
math.functions namespaces qw sequences sequences.extras ;
IN: rosetta-code.freecell
CONSTANT: max-rand-ms $[ 1 15 shift 1 - ]
CONSTANT: suits qw{ C D H S }
CONSTANT: ranks qw{ A 2 3 4 5 6 7 8 9 T J Q K }
SYMBOL: seed
: (random) ( n1 n2 -- n3 ) seed get * + dup seed set ;
: rand-ms ( -- n )
max-rand-ms 2531011 214013 (random) -16 shift bitand ;
: init-deck ( -- seq )
ranks suits [ append ] cartesian-map concat V{ } like ;
: swap-cards ( seq -- seq' )
rand-ms over length [ mod ] [ 1 - ] bi pick exchange ;
: (deal) ( seq -- seq' )
[ [ swap-cards dup pop , ] until-empty ] { } make ;
: deal ( game# -- seq ) seed set init-deck (deal) ;
: .cards ( seq -- ) 8 group [ [ write bl ] each nl ] each nl ;
: .game ( game# -- ) dup "Game #%d\n" printf deal .cards ;
: freecell ( -- ) 1 617 [ .game ] bi@ ;
MAIN: freecell
- Output:
Game #1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H Game #617 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Fortran
Using the lcgs module from Linear congruential generator#Fortran:
module Freecell
use lcgs
implicit none
character(4) :: suit = "CDHS"
character(13) :: rank = "A23456789TJQK"
character(2) :: deck(0:51)
contains
subroutine Createdeck()
integer :: i, j, n
n = 0
do i = 1, 13
do j = 1, 4
deck(n) = rank(i:i) // suit(j:j)
n = n + 1
end do
end do
end subroutine
subroutine Freecelldeal(game)
integer, intent(in) :: game
integer(i64) :: rnum
integer :: i, n
character(2) :: tmp
call Createdeck()
rnum = msrand(game)
do i = 51, 1, -1
n = mod(rnum, i+1)
tmp = deck(n)
deck(n) = deck(i)
deck(i) = tmp
rnum = msrand()
end do
write(*, "(a, i0)") "Game #", game
write(*, "(8(a, tr1))") deck(51:0:-1)
write(*,*)
end subroutine
end module Freecell
program Freecell_test
use Freecell
implicit none
call Freecelldeal(1)
call Freecelldeal(617)
end program
- Output:
Game #1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H Game #617 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
FreeBASIC
' version 04-11-2016
' compile with: fbc -s console
' to seed ms_lcg(seed > -1)
' to get random number ms_lcg(-1) or ms_lcg() or just ms_lcg
Function ms_lcg(seed As Integer = -1) As UInteger
Static As UInteger ms_state
If seed <> -1 Then
ms_state = seed Mod 2 ^ 31
Else
ms_state = (214013 * ms_state + 2531011) Mod 2 ^ 31
End If
Return ms_state Shr 16
End Function
' ------=< MAIN >=------
Dim As UByte card(51)
Dim As String suit = "CDHS", value = "A23456789TJQK"
Dim As Long i, c, s, v, game = 1
Dim As ULong game_nr(1 To 2) = { 1, 617}
Do
ms_lcg(game_nr(game)) ' seed generator
Print "game #"; game_nr(game)
game = game + 1
For i = 0 To 51 ' set up the cards
card(i) = i
Next
For i = 51 To 0 Step -1 ' shuffle
c = ms_lcg Mod (i +1)
Swap card(i), card(c)
Next
c = 0
Do
For i = 0 To 7
s = card(51 - c) Mod 4
v = card(51 - c) \ 4
Print Chr(value[v]); Chr(suit[s]); " ";
c = c +1
If c > 51 Then Exit Do
Next
Print
Loop
Print : Print
Loop Until game > UBound(game_nr)
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
- Output:
game #1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H game #617 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Fōrmulæ
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.
Programs in Fōrmulæ are created/edited online in its website.
In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.
Solution
There is no need to remove from a deal to be added to another one, it can be performed on a single array. It is and iteration from 52 to 1 indicating the end of the first array, and therefore the start of a second one after each swap. The only inconvenience is that second array contains the information in reversed order, but when it is shown it is also read in reversed order.
The number 127,185 is the decimal number of the 🃑 Unicode character.
In the Unicode playing cards characters, there is the Knight, between the Jack and Queen suits, which is not used, so it is skipped in the order.
Test case. The —only— impossible deal #11982 in the original version of FreeCell for windows:
Go
package main
import (
"fmt"
"math"
"math/rand"
"os"
"strconv"
"time"
)
const sSuits = "CDHS"
const sNums = "A23456789TJQK"
const rMax32 = math.MaxInt32
var seed = 1
func rnd() int {
seed = (seed*214013 + 2531011) & rMax32
return seed >> 16
}
func deal(s int) []int {
seed = s
t := make([]int, 52)
for i := 0; i < 52; i++ {
t[i] = 51 - i
}
for i := 0; i < 51; i++ {
j := 51 - rnd()%(52-i)
t[i], t[j] = t[j], t[i]
}
return t
}
func show(cs []int) {
for i, c := range cs {
fmt.Printf(" %c%c", sNums[c/4], sSuits[c%4])
if (i+1)%8 == 0 || i+1 == len(cs) {
fmt.Println()
}
}
}
func main() {
var game int
switch len(os.Args) {
case 1:
rand.Seed(time.Now().UnixNano())
game = 1 + rand.Intn(32000)
case 2:
var err error
game, err = strconv.Atoi(os.Args[1])
if err == nil && game >= 1 && game <= 32000 {
break
}
fallthrough
default:
fmt.Println("usage: deal [game]")
fmt.Println(" where game is a number in the range 1 to 32000")
return
}
fmt.Printf("\nGame #%d\n", game)
show(deal(game))
}
- Output:
Game #1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H Game #617 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Groovy
class FreeCell{
int seed
List<String> createDeck(){
List<String> suits = ['♣','♦','♥','♠']
List<String> values = ['A','2','3','4','5','6','7','8','9','10','J','Q','K']
return [suits,values].combinations{suit,value -> "$suit$value"}
}
int random() {
seed = (214013 * seed + 2531011) & Integer.MAX_VALUE
return seed >> 16
}
List<String> shuffledDeck(List<String> cards) {
List<String> deck = cards.clone()
(deck.size() - 1..1).each{index ->
int r = random() % (index + 1)
deck.swap(r, index)
}
return deck
}
List<String> dealGame(int seed = 1){
this.seed= seed
List<String> cards = shuffledDeck(createDeck())
(1..cards.size()).each{ number->
print "${cards.pop()}\t"
if(number % 8 == 0) println('')
}
println('\n')
}
}
def freecell = new FreeCell()
freecell.dealGame()
freecell.dealGame(617)
- Output:
Game #1 ♦J ♦2 ♥9 ♣J ♦5 ♥7 ♣7 ♥5 ♦K ♣K ♠9 ♠5 ♦A ♣Q ♥K ♥3 ♠2 ♠K ♦9 ♦Q ♠J ♠A ♥A ♣3 ♣4 ♣5 ♠10 ♥Q ♥4 ♣A ♦4 ♠7 ♠3 ♦10 ♠4 ♥10 ♥8 ♣2 ♥J ♦7 ♦6 ♠8 ♦8 ♠Q ♣6 ♦3 ♣8 ♣10 ♠6 ♣9 ♥2 ♥6 Game #617 ♦7 ♦A ♣5 ♠3 ♠5 ♣8 ♦2 ♥A ♦10 ♠7 ♦Q ♣A ♦6 ♥8 ♠A ♥K ♥10 ♣Q ♥3 ♦9 ♠6 ♦8 ♦3 ♣10 ♦K ♥5 ♠9 ♣3 ♠8 ♥7 ♦4 ♠J ♣4 ♠Q ♣9 ♥9 ♣7 ♥6 ♣2 ♠2 ♠4 ♠10 ♥2 ♦5 ♣J ♣6 ♥J ♥Q ♦J ♠K ♣K ♥4
Haskell
import Data.Int
import Data.Bits
import Data.List
import Data.Array.ST
import Control.Monad
import Control.Monad.ST
import System.Environment
srnd :: Int32 -> [Int]
srnd = map (fromIntegral . flip shiftR 16) .
tail . iterate (\x -> (x * 214013 + 2531011) .&. maxBound)
deal :: Int32 -> [String]
deal s = runST (do
ar <- newListArray (0,51) $ sequence ["A23456789TJQK", "CDHS"]
:: ST s (STArray s Int String)
forM (zip [52,51..1] rnd) $ \(n, r) -> do
let j = r `mod` n
vj <- readArray ar j
vn <- readArray ar (n - 1)
writeArray ar j vn
return vj)
where rnd = srnd s
showCards :: [String] -> IO ()
showCards = mapM_ (putStrLn . unwords) .
takeWhile (not . null) .
unfoldr (Just . splitAt 8)
main :: IO ()
main = do
args <- getArgs
let s = read (head args) :: Int32
putStrLn $ "Deal " ++ show s ++ ":"
let cards = deal s
showCards cards
Execution:
$ runghc freecell.hs 617 Deal 617: 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Icon and Unicon
- Sample output for game 1:
Hand: 1 2 3 4 5 6 7 8 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H
J
Paraphrase of C:
deck=: ,/ 'A23456789TJQK' ,"0/ 7 u: '♣♦♥♠'
srnd=: 3 :'SEED=:{.y,11982'
srnd ''
seed=: do bind 'SEED'
rnd=: (2^16) <.@%~ (2^31) srnd@| 2531011 + 214013 * seed
pairs=: <@<@~.@(<: , (| rnd))@>:@i.@-@# NB. indices to swap, for shuffle
swaps=: [: > C.&.>/@|.@; NB. implement the specified shuffle
deal=: |.@(swaps pairs) bind deck
show=: (,"2)@:(_8 ]\ ' '&,.)
- Example use:
show deal srnd 1
J♦ 2♦ 9♥ J♣ 5♦ 7♥ 7♣ 5♥
K♦ K♣ 9♠ 5♠ A♦ Q♣ K♥ 3♥
2♠ K♠ 9♦ Q♦ J♠ A♠ A♥ 3♣
4♣ 5♣ T♠ Q♥ 4♥ A♣ 4♦ 7♠
3♠ T♦ 4♠ T♥ 8♥ 2♣ J♥ 7♦
6♦ 8♠ 8♦ Q♠ 6♣ 3♦ 8♣ T♣
6♠ 9♣ 2♥ 6♥
show deal srnd 617
7♦ A♦ 5♣ 3♠ 5♠ 8♣ 2♦ A♥
T♦ 7♠ Q♦ A♣ 6♦ 8♥ A♠ K♥
T♥ Q♣ 3♥ 9♦ 6♠ 8♦ 3♦ T♣
K♦ 5♥ 9♠ 3♣ 8♠ 7♥ 4♦ J♠
4♣ Q♠ 9♣ 9♥ 7♣ 6♥ 2♣ 2♠
4♠ T♠ 2♥ 5♦ J♣ 6♣ J♥ Q♥
J♦ K♠ K♣ 4♥
Java
import java.util.Arrays;
public class Shuffler {
private int seed;
private String[] deck = {
"AC", "AD", "AH", "AS",
"2C", "2D", "2H", "2S",
"3C", "3D", "3H", "3S",
"4C", "4D", "4H", "4S",
"5C", "5D", "5H", "5S",
"6C", "6D", "6H", "6S",
"7C", "7D", "7H", "7S",
"8C", "8D", "8H", "8S",
"9C", "9D", "9H", "9S",
"TC", "TD", "TH", "TS",
"JC", "JD", "JH", "JS",
"QC", "QD", "QH", "QS",
"KC", "KD", "KH", "KS",
};
private int random() {
seed = (214013 * seed + 2531011) & Integer.MAX_VALUE;
return seed >> 16;
}
//shuffled cards go to the end
private String[] getShuffledDeck() {
String[] deck = Arrays.copyOf(this.deck, this.deck.length);
for(int i = deck.length - 1; i > 0; i--) {
int r = random() % (i + 1);
String card = deck[r];
deck[r] = deck[i];
deck[i] = card;
}
return deck;
}
//deal from end first
public void dealGame(int seed) {
this.seed = seed;
String[] shuffledDeck = getShuffledDeck();
for(int count = 1, i = shuffledDeck.length - 1; i >= 0; count++, i--) {
System.out.print(shuffledDeck[i]);
if(count % 8 == 0) {
System.out.println();
} else {
System.out.print(" ");
}
}
System.out.println();
}
public static void main(String[] args) {
Shuffler s = new Shuffler();
s.dealGame(1);
System.out.println();
s.dealGame(617);
}
}
- Output:
JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
JavaScript
"use strict";
/*
* Microsoft C Run-time-Library-compatible Random Number Generator
* Copyright by Shlomi Fish, 2011.
* Released under the MIT/X11 License
* ( http://en.wikipedia.org/wiki/MIT_License ).
* */
/* This uses Joose 2.x-or-above, an object system for JavaScript - http://code.google.com/p/joose-js/ . */
Class('MSRand', {
has: {
seed: { is: rw, },
},
methods: {
rand: function() {
this.setSeed((this.getSeed() * 214013 + 2531011) & 0x7FFFFFFF);
return ((this.getSeed() >> 16) & 0x7fff);
},
max_rand: function(mymax) {
return this.rand() % mymax;
},
shuffle: function(deck) {
if (deck.length) {
var i = deck.length;
while (--i) {
var j = this.max_rand(i+1);
var tmp = deck[i];
deck[i] = deck[j];
deck[j] = tmp;
}
}
return deck;
},
},
});
/*
* Microsoft Windows Freecell / Freecell Pro boards generation.
*
* See:
*
* - http://rosettacode.org/wiki/Deal_cards_for_FreeCell
*
* - http://www.solitairelaboratory.com/mshuffle.txt
*
* Under MIT/X11 Licence.
*
* */
function deal_ms_fc_board(seed) {
var randomizer = new MSRand({ seed: seed });
var num_cols = 8;
var _perl_range = function(start, end) {
var ret = [];
for (var i = start; i <= end; i++) {
ret.push(i);
}
return ret;
};
var columns = _perl_range(0, num_cols-1).map(function () { return []; });
var deck = _perl_range(0, 4*13-1);
randomizer.shuffle(deck);
deck = deck.reverse()
for (var i = 0; i < 52; i++) {
columns[i % num_cols].push(deck[i]);
}
var render_card = function (card) {
var suit = (card % 4);
var rank = Math.floor(card / 4);
return "A23456789TJQK".charAt(rank) + "CDHS".charAt(suit);
}
var render_column = function(col) {
return ": " + col.map(render_card).join(" ") + "\n";
}
return columns.map(render_column).join("");
}
Julia
const rank = split("A23456789TJQK", "")
const suit = split("♣♦♥♠", "")
const deck = Vector{String}()
const mslcg = [0]
rng() = (mslcg[1] = ((mslcg[1] * 214013 + 2531011) & 0x7fffffff)) >> 16
initdeck() = for r in rank, s in suit push!(deck, "$r$s") end
function deal(num = rand(UInt,1)[1] % 32000 + 1)
initdeck()
mslcg[1] = num
println("\nGame # ", num)
while length(deck) > 0
choice = rng() % length(deck) + 1
deck[choice], deck[end] = deck[end], deck[choice]
print(" ", pop!(deck), length(deck) % 8 == 4 ? "\n" : "")
end
end
deal(1)
deal(617)
deal()
- Output:
Game # 1
J♦ 2♦ 9♥ J♣ 5♦ 7♥ 7♣ 5♥ K♦ K♣ 9♠ 5♠ A♦ Q♣ K♥ 3♥ 2♠ K♠ 9♦ Q♦ J♠ A♠ A♥ 3♣ 4♣ 5♣ T♠ Q♥ 4♥ A♣ 4♦ 7♠ 3♠ T♦ 4♠ T♥ 8♥ 2♣ J♥ 7♦ 6♦ 8♠ 8♦ Q♠ 6♣ 3♦ 8♣ T♣ 6♠ 9♣ 2♥ 6♥Game # 617
7♦ A♦ 5♣ 3♠ 5♠ 8♣ 2♦ A♥ T♦ 7♠ Q♦ A♣ 6♦ 8♥ A♠ K♥ T♥ Q♣ 3♥ 9♦ 6♠ 8♦ 3♦ T♣ K♦ 5♥ 9♠ 3♣ 8♠ 7♥ 4♦ J♠ 4♣ Q♠ 9♣ 9♥ 7♣ 6♥ 2♣ 2♠ 4♠ T♠ 2♥ 5♦ J♣ 6♣ J♥ Q♥ J♦ K♠ K♣ 4♥Game # 20065
7♥ 8♠ T♣ 3♦ T♥ 2♥ 6♥ K♥ K♣ A♣ 4♣ 5♥ 9♠ K♠ K♦ J♦ 8♦ 6♦ J♣ 6♠ T♠ 7♦ 7♠ Q♥ 7♣ J♠ A♠ 4♦ 5♣ 2♠ A♥ T♦ A♦ 6♣ Q♣ 8♥ 3♣ 5♦ 3♠ 3♥ 9♦ 2♦ Q♦ 4♠ 5♠ 9♥ 8♣ 4♥ 9♣ 2♣ J♥ Q♠
Kotlin
// version 1.1.3
class Lcg(val a: Long, val c: Long, val m: Long, val d: Long, val s: Long) {
private var state = s
fun nextInt(): Long {
state = (a * state + c) % m
return state / d
}
}
const val CARDS = "A23456789TJQK"
const val SUITS = "♣♦♥♠"
fun deal(): Array<String?> {
val cards = arrayOfNulls<String>(52)
for (i in 0 until 52) {
val card = CARDS[i / 4]
val suit = SUITS[i % 4]
cards[i] = "$card$suit"
}
return cards
}
fun game(n: Int) {
require(n > 0)
println("Game #$n:")
val msc = Lcg(214013, 2531011, 1 shl 31, 1 shl 16, n.toLong())
val cards = deal()
for (m in 52 downTo 1) {
val index = (msc.nextInt() % m).toInt()
val temp = cards[index]
cards[index] = cards[m - 1]
print("$temp ")
if ((53 - m) % 8 == 0) println()
}
println("\n")
}
fun main(args: Array<String>) {
game(1)
game(617)
}
- Output:
Game #1: J♦ 2♦ 9♥ J♣ 5♦ 7♥ 7♣ 5♥ K♦ K♣ 9♠ 5♠ A♦ Q♣ K♥ 3♥ 2♠ K♠ 9♦ Q♦ J♠ A♠ A♥ 3♣ 4♣ 5♣ T♠ Q♥ 4♥ A♣ 4♦ 7♠ 3♠ T♦ 4♠ T♥ 8♥ 2♣ J♥ 7♦ 6♦ 8♠ 8♦ Q♠ 6♣ 3♦ 8♣ T♣ 6♠ 9♣ 2♥ 6♥ Game #617: 7♦ A♦ 5♣ 3♠ 5♠ 8♣ 2♦ A♥ T♦ 7♠ Q♦ A♣ 6♦ 8♥ A♠ K♥ T♥ Q♣ 3♥ 9♦ 6♠ 8♦ 3♦ T♣ K♦ 5♥ 9♠ 3♣ 8♠ 7♥ 4♦ J♠ 4♣ Q♠ 9♣ 9♥ 7♣ 6♥ 2♣ 2♠ 4♠ T♠ 2♥ 5♦ J♣ 6♣ J♥ Q♥ J♦ K♠ K♣ 4♥
Logo
; Linear congruential random number generator
make "_lcg_state 0
to seed_lcg :seed
make "_lcg_state :seed
end
to sample_lcg
make "_lcg_state modulo sum product 214013 :_lcg_state 2531011 2147483648
output int quotient :_lcg_state 65536
end
; FreeCell
to card_from_number :number
output word item sum 1 int quotient :number 4 "A23456789TJQK item sum 1 modulo :number 4 "CDHS
end
to generate_deal :number
(local "deck "size "index "deal)
seed_lcg :number
make "deck []
repeat 52 [
make "deck lput difference # 1 :deck
]
make "deck listtoarray :deck
make "deal []
repeat 52 [
make "size difference 53 #
make "index sum 1 modulo sample_lcg :size
make "deal lput item :index :deck :deal
setitem :index :deck item :size :deck
]
output :deal
end
to print_deal :number
(local "deal "i "j "index)
make "deal generate_deal :number
repeat 7 [
make "i difference # 1
repeat (ifelse [equal? :i 6] 4 8) [
make "j difference # 1
make "index (sum 1 product :i 8 :j)
type (word (card_from_number item :index :deal) "| |)
]
print "||
]
end
print [Game #1]
print_deal 1
print "||
print [Game #617]
print_deal 617
print "||
bye
- Output:
Game #1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H Game #617 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Lua
Uses bit32 library added in Lua 5.2.
deck = {}
rank = {"A", "2", "3", "4", "5", "6", "7", "8", "9", "T", "J", "Q", "K"}
suit = {"C", "D", "H", "S"}
two31, state = bit32.lshift(1, 31), 0
function rng()
state = (214013 * state + 2531011) % two31
return bit32.rshift(state, 16)
end
function initdeck()
for i, r in ipairs(rank) do
for j, s in ipairs(suit) do
table.insert(deck, r .. s)
end
end
end
function deal(num)
initdeck()
state = num
print("Game #" .. num)
repeat
choice = rng(num) % #deck + 1
deck[choice], deck[#deck] = deck[#deck], deck[choice]
io.write(" " .. deck[#deck])
if (#deck % 8 == 5) then
print()
end
deck[#deck] = nil
until #deck == 0
print()
end
deal(1)
deal(617)
- Output:
Game #1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H Game #617 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Mathematica / Wolfram Language
next[last_] := Mod[214013 last + 2531011, 2^31];
deal[n_] :=
Module[{last = n, idx,
deck = StringJoin /@
Tuples[{{"A", "2", "3", "4", "5", "6", "7", "8", "9", "T", "J",
"Q", "K"}, {"C", "D", "H", "S"}}], res = {}},
While[deck != {}, last = next[last];
idx = Mod[BitShiftRight[last, 16], Length[deck]] + 1;
deck = ReplacePart[deck, {idx -> deck[[-1]], -1 -> deck[[idx]]}];
AppendTo[res, deck[[-1]]]; deck = deck[[;; -2]]]; res];
format[deal_] := Grid[Partition[deal, 8, 8, {1, 4}, Null]];
Print[format[deal[1]]];
Print[format[deal[617]]];
- Output:
JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Nim
import sequtils, strutils, os
proc randomGenerator(seed: int): iterator: int =
var state = seed
return iterator: int =
while true:
state = (state * 214013 + 2531011) and int32.high
yield state shr 16
proc deal(seed: int): seq[int] =
const nc = 52
result = toSeq countdown(nc - 1, 0)
var rnd = randomGenerator seed
for i in 0 ..< nc:
let r = rnd()
let j = (nc - 1) - r mod (nc - i)
swap result[i], result[j]
proc show(cards: seq[int]) =
var l = newSeq[string]()
for c in cards:
l.add "A23456789TJQK"[c div 4] & "CDHS"[c mod 4]
for i in countup(0, cards.high, 8):
echo " ", l[i..min(i+7, l.high)].join(" ")
let seed = if paramCount() == 1: paramStr(1).parseInt else: 11982
echo "Hand ", seed
let deck = deal seed
show deck
Output:
Hand 11982 AH AS 4H AC 2D 6S TS JS 3D 3H QS QC 8S 7H AD KS KD 6H 5S 4D 9H JH 9S 3C JC 5D 5C 8C 9D TD KH 7C 6C 2C TH QH 6D TC 4S 7S JD 7D 8H 9C 2H QD 4C 5H KC 8D 2S 3S
Objeck
class FreeCell {
function : Main(args : String[]) ~ Nil {
Deal(1)->PrintLine();
Deal(617)->PrintLine();
}
function : Deal(seed : Int) ~ String {
deck := Deck->New(seed)->ToString();
return "Game #{$seed}:\n{$deck}\n";
}
}
class Deck {
@cards : Card[];
New(seed : Int) {
r := Random->New(seed);
@cards := Card->New[52];
for(i := 0; i < 52; i+= 1;) {
@cards[i] := Card->New(51 - i);
};
for(i := 0; i < 51; i += 1;) {
j := 51 - r->Next() % (52 - i);
tmp := @cards[i]; @cards[i] := @cards[j]; @cards[j] := tmp;
};
}
method : public : ToString() ~ String {
buffer := "";
each(i : @cards) {
buffer += @cards[i]->ToString();
buffer += (i % 8 = 7 ? "\n" : " ");
};
return buffer;
}
}
class Random {
@seed : Int;
New(seed : Int) {
@seed := seed;
}
method : public : Next() ~ Int {
@seed := (@seed * 214013 + 2531011) and Int->MaxSize();
return @seed >> 16;
}
}
class Card {
@value : Int;
@suit : Int;
New(value : Int) {
@value := value / 4; @suit := value % 4;
}
method : public : ToString() ~ String {
suits := "♣♦♥♠"; values := "A23456789TJQK";
value := values->Get(@value); suit := suits->Get(@suit);
return "{$value}{$suit}";
}
}
Output:
Game #1: J♦ 2♦ 9♥ J♣ 5♦ 7♥ 7♣ 5♥ K♦ K♣ 9♠ 5♠ A♦ Q♣ K♥ 3♥ 2♠ K♠ 9♦ Q♦ J♠ A♠ A♥ 3♣ 4♣ 5♣ T♠ Q♥ 4♥ A♣ 4♦ 7♠ 3♠ T♦ 4♠ T♥ 8♥ 2♣ J♥ 7♦ 6♦ 8♠ 8♦ Q♠ 6♣ 3♦ 8♣ T♣ 6♠ 9♣ 2♥ 6♥ Game #617: 7♦ A♦ 5♣ 3♠ 5♠ 8♣ 2♦ A♥ T♦ 7♠ Q♦ A♣ 6♦ 8♥ A♠ K♥ T♥ Q♣ 3♥ 9♦ 6♠ 8♦ 3♦ T♣ K♦ 5♥ 9♠ 3♣ 8♠ 7♥ 4♦ J♠ 4♣ Q♠ 9♣ 9♥ 7♣ 6♥ 2♣ 2♠ 4♠ T♠ 2♥ 5♦ J♣ 6♣ J♥ Q♥ J♦ K♠ K♣ 4♥
Objective-C
Based on the shorter C# version. Objective-C can use the C code as-is, but this example uses some NS foundation classes. The latest clang compiler is assumed with ARC enabled. For the sake of clarity & simplicity, method prototypes have been omitted from @interface sections: they are not necessary if everything is in one file.
#define RMAX32 ((1U << 31) - 1)
//--------------------------------------------------------------------
@interface Rand : NSObject
-(instancetype) initWithSeed: (int)seed;
-(int) next;
@property (nonatomic) long seed;
@end
@implementation Rand
-(instancetype) initWithSeed: (int)seed {
if ((self = [super init])) {
self.seed = seed;
}
return self;
}
-(int) next {
return (int) ((_seed = (_seed * 214013 + 2531011) & RMAX32) >> 16);
}
@end
//--------------------------------------------------------------------
@interface Card : NSObject
-(instancetype) initWithSequence: (int)n;
-(instancetype) initWithValue: (int)v suit: (int)s;
@property (nonatomic) int value;
@property (nonatomic) int suit;
@end
@implementation Card
-(instancetype) initWithSequence: (int)n {
return [self initWithValue:n/4 suit:n%4];
}
-(instancetype) initWithValue: (int)v suit: (int)s {
if ((self = [super init])) {
_value = v; _suit = s;
}
return self;
}
-(NSString *) description {
static NSString * const kSuits = @"♣♦♥♠";
static NSString * const kValues = @"A23456789TJQK";
return [NSString stringWithFormat:@"%C%C",
[kValues characterAtIndex:_value],
[kSuits characterAtIndex:_suit]];
}
@end
//--------------------------------------------------------------------
@interface Deck : NSObject
-(instancetype) initWithSeed: (int)seed;
@property (nonatomic, strong) NSMutableArray *cards;
@end
@implementation Deck
-(instancetype) initWithSeed: (int)seed {
if ((self = [super init])) {
Rand *r = [[Rand alloc] initWithSeed:seed];
_cards = [NSMutableArray array];
for (int i = 0; i < 52; i++)
[_cards addObject:[[Card alloc] initWithSequence:51 - i]];
for (int i = 0; i < 51; i++)
[_cards exchangeObjectAtIndex:i withObjectAtIndex:51 - [r next] % (52 - i)];
}
return self;
}
-(NSString *) description {
NSMutableString *s = [NSMutableString string];
for (int i = 0; i < [_cards count]; i++) {
[s appendString:[_cards[i] description]];
[s appendString:i%8==7 ? @"\n" : @" "];
}
return s;
}
@end
//--------------------------------------------------------------------
int main(int argc, const char * argv[])
{
@autoreleasepool {
NSLog(@"Deck 1\n%@\n", [[Deck alloc] initWithSeed:1]);
NSLog(@"Deck 617\n%@\n", [[Deck alloc] initWithSeed:617]);
}
return 0;
}
- Output:
Deck 1 J♦ 2♦ 9♥ J♣ 5♦ 7♥ 7♣ 5♥ K♦ K♣ 9♠ 5♠ A♦ Q♣ K♥ 3♥ 2♠ K♠ 9♦ Q♦ J♠ A♠ A♥ 3♣ 4♣ 5♣ T♠ Q♥ 4♥ A♣ 4♦ 7♠ 3♠ T♦ 4♠ T♥ 8♥ 2♣ J♥ 7♦ 6♦ 8♠ 8♦ Q♠ 6♣ 3♦ 8♣ T♣ 6♠ 9♣ 2♥ 6♥ Deck 617 7♦ A♦ 5♣ 3♠ 5♠ 8♣ 2♦ A♥ T♦ 7♠ Q♦ A♣ 6♦ 8♥ A♠ K♥ T♥ Q♣ 3♥ 9♦ 6♠ 8♦ 3♦ T♣ K♦ 5♥ 9♠ 3♣ 8♠ 7♥ 4♦ J♠ 4♣ Q♠ 9♣ 9♥ 7♣ 6♥ 2♣ 2♠ 4♠ T♠ 2♥ 5♦ J♣ 6♣ J♥ Q♥ J♦ K♠ K♣ 4♥
OCaml
let srnd x =
(* since OCaml's built-in int type is at least 31 (note: not 32) bits wide,
and this problem takes mod 2^31, it is just enough if we treat it as
an unsigned integer, which means taking the logical right shift *)
let seed = ref x in
fun () ->
seed := (!seed * 214013 + 2531011) land 0x7fffffff;
!seed lsr 16
let deal s =
let rnd = srnd s in
let t = Array.init 52 (fun i -> i) in
let cards =
Array.init 52 (fun j ->
let n = 52 - j in
let i = rnd() mod n in
let this = t.(i) in
t.(i) <- t.(pred n);
this)
in
(cards)
let show cards =
let suits = "CDHS"
and nums = "A23456789TJQK" in
Array.iteri (fun i card ->
Printf.printf "%c%c%c"
nums.[card / 4]
suits.[card mod 4]
(if (i mod 8) = 7 then '\n' else ' ')
) cards;
print_newline()
let () =
let s =
try int_of_string Sys.argv.(1)
with _ -> 11982
in
Printf.printf "Deal %d:\n" s;
let cards = deal s in
show cards
- Execution:
$ ocaml freecell.ml 617 Deal 617: 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
PARI/GP
The use of local
is critical here, so that nextrand()
has access to the current state unaffected by whatever the user may have stored in the variable 'state
.
card(n)=concat(["A","2","3","4","5","6","7","8","9","T","J","Q","K"][n\4+1],["C","D","H","S"][n%4+1]);
nextrand()={
(state=(214013*state+2531011)%2^31)>>16
};
deal(seed)={
my(deck=vector(52,n,n-1),t);
local(state=seed);
forstep(last=52,1,-1,
t=nextrand()%last+1;
print1(card(deck[t]),if(last%8==5,"\n"," "));
deck[t]=deck[last]
)
};
Perl
#!/usr/bin/perl
use strict;
use warnings;
use utf8;
sub deal {
my $s = shift;
my $rnd = sub {
return (($s = ($s * 214013 + 2531011) & 0x7fffffff) >> 16 );
};
my @d;
for my $b (split "", "A23456789TJQK") {
push @d, map("$_$b", qw/♣ ♦ ♥ ♠/);
}
for my $idx (reverse 0 .. $#d) {
my $r = $rnd->() % ($idx + 1);
@d[$r, $idx] = @d[$idx, $r];
}
return [reverse @d];
}
my $hand_idx = shift(@ARGV) // 11_982;
my $cards = deal($hand_idx);
my $num_cards_in_height = 8;
my $string = '';
while (@$cards)
{
$string .= join(' ', splice(@$cards, 0, 8)) . "\n";
}
binmode STDOUT, ':encoding(utf-8)';
print "Hand $hand_idx\n";
print $string;
Phix
with javascript_semantics atom seed function xrnd() seed = and_bits(seed*214013+2531011,#7FFFFFFF) return floor(seed/power(2,16)) end function sequence cards = repeat(0,52) procedure deal(integer game_num) seed = game_num for i=1 to 52 do cards[i] = 52-i end for for i=1 to 51 do integer j = 52-mod(xrnd(),53-i) integer s = cards[i] cards[i] = cards[j] cards[j] = s end for end procedure constant suits = "CDHS", ranks = "A23456789TJQK" procedure show() for idx=1 to 52 do integer rank = floor(cards[idx]/4)+1 integer suit = mod(cards[idx],4)+1 integer eol = remainder(idx-1,13)=12 printf(1,"%c%c%s",{ranks[rank],suits[suit],iff(eol?"\n":" ")}) end for end procedure integer game_num = 1 --integer game_num=617 deal(game_num) printf(1,"hand %d\n",{game_num}) show()
- Output:
hand 1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H hand 617 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
PHP
class FreeCell_Deal {
protected $deck = array(
'AC', 'AD', 'AH', 'AS', '2C', '2D', '2H', '2S', '3C', '3D', '3H', '3S',
'4C', '4D', '4H', '4S', '5C', '5D', '5H', '5S', '6C', '6D', '6H', '6S',
'7C', '7D', '7H', '7S', '8C', '8D', '8H', '8S', '9C', '9D', '9H', '9S',
'TC', 'TD', 'TH', 'TS', 'JC', 'JD', 'JH', 'JS', 'QC', 'QD', 'QH', 'QS',
'KC', 'KD', 'KH', 'KS'
);
protected $game; // Freecell Game Number
protected $state; // Current state of the LCG
public $deal = array(); // Generated card sequence to deal
function __construct( $game ) {
$this->game = max( min( $game, 32000 ), 1 );
// seed RNG with game number
$this->state = $this->game;
while ( ! empty( $this->deck ) ) {
// choose random card
$i = $this->lcg_rnd() % count( $this->deck );
// move random card to game deal pile
$this->deal[] = $this->deck[ $i ];
// move last card to random card spot
$this->deck[ $i ] = end( $this->deck );
// remove last card from deck
array_pop( $this->deck );
}
}
protected function lcg_rnd() {
return ( $this->state = ( $this->state * 214013 + 2531011 ) % 2147483648 ) >> 16;
}
function print( $cols = 8 ) {
echo str_pad( " Game " . $this->game . " ", $cols * 3 - 1, '=', STR_PAD_BOTH ), PHP_EOL;
foreach ( array_chunk( $this->deal, $cols ) as $row ) {
echo implode( " ", $row ), PHP_EOL;
}
echo PHP_EOL;
}
}
$tests = array( 1, 617, 11982 );
foreach ( $tests as $game_num ) {
$deal = new FreeCell_Deal( $game_num );
$deal->print();
}
- Output:
======= Game 1 ======== JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H ====== Game 617 ======= 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H ===== Game 11982 ====== AH AS 4H AC 2D 6S TS JS 3D 3H QS QC 8S 7H AD KS KD 6H 5S 4D 9H JH 9S 3C JC 5D 5C 8C 9D TD KH 7C 6C 2C TH QH 6D TC 4S 7S JD 7D 8H 9C 2H QD 4C 5H KC 8D 2S 3S
PicoLisp
Using the random generator from Linear congruential generator#PicoLisp:
(setq *MsSeed 11982)
(de msRand ()
(>> 16
(setq *MsSeed
(& (+ 2531011 (* 214013 *MsSeed)) `(dec (** 2 31))) ) ) )
(let L
(make
(for Num (range 13 1)
(for Suit '((32 . "♠") (31 . "♥") (31 . "♦") (32 . "♣"))
(link (cons (get '`(chop "A23456789TJQK") Num) Suit)) ) ) )
(for I 51
(xchg
(nth L I)
(nth L (- 52 (% (msRand) (- 53 I)))) ) )
(for C L
(prin " ^[[" (cadr C) "m" (cddr C) "^[[m" (car C))
(at (0 . 8) (prinl)) )
(prinl) )
PureBasic
#MaxCardNum = 51 ;zero-based count of cards in a deck
Global deckSize
Global Dim cards(#MaxCardNum) ;card with highest index is at the top of deck
Procedure RNG(seed.q = -1)
Static state.q
If seed >= 0
state = seed
Else
state = (state * 214013 + 2531011) % (1 << 31)
ProcedureReturn state >> 16
EndIf
EndProcedure
Procedure makeDeck(hand)
Protected i, c
For i = 0 To #MaxCardNum: cards(i) = i: Next
RNG(hand) ;set seed value
deckSize = #MaxCardNum
While deckSize
c = RNG() % (deckSize + 1)
Swap cards(c), cards(deckSize)
deckSize - 1
Wend
deckSize = #MaxCardNum
EndProcedure
Procedure showDeck(hand)
Protected i, c
PrintN("Hand #" + Str(hand))
makeDeck(hand)
For i = 0 To #MaxCardNum
c = cards(#MaxCardNum - i)
Print(" " + Mid("A23456789TJQK", (c / 4) + 1, 1) + Mid("CDHS",(c % 4) + 1, 1))
If (i + 1) % 8 = 0 Or i = #MaxCardNum: PrintN(""): EndIf
Next
EndProcedure
If OpenConsole()
showDeck(1)
showDeck(617)
showDeck(11982)
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
CloseConsole()
EndIf
- Sample output:
Hand #1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H Hand #617 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H Hand #11982 AH AS 4H AC 2D 6S TS JS 3D 3H QS QC 8S 7H AD KS KD 6H 5S 4D 9H JH 9S 3C JC 5D 5C 8C 9D TD KH 7C 6C 2C TH QH 6D TC 4S 7S JD 7D 8H 9C 2H QD 4C 5H KC 8D 2S 3S
Python
def randomGenerator(seed=1):
max_int32 = (1 << 31) - 1
seed = seed & max_int32
while True:
seed = (seed * 214013 + 2531011) & max_int32
yield seed >> 16
def deal(seed):
nc = 52
cards = list(range(nc - 1, -1, -1))
rnd = randomGenerator(seed)
for i, r in zip(range(nc), rnd):
j = (nc - 1) - r % (nc - i)
cards[i], cards[j] = cards[j], cards[i]
return cards
def show(cards):
l = ["A23456789TJQK"[int(c/4)] + "CDHS"[c%4] for c in cards]
for i in range(0, len(cards), 8):
print(" ".join(l[i : i+8]))
if __name__ == '__main__':
from sys import argv
seed = int(argv[1]) if len(argv) == 2 else 11982
print("Hand {}".format(seed))
deck = deal(seed)
show(deck)
- Output:
Hand 11982 AH AS 4H AC 2D 6S TS JS 3D 3H QS QC 8S 7H AD KS KD 6H 5S 4D 9H JH 9S 3C JC 5D 5C 8C 9D TD KH 7C 6C 2C TH QH 6D TC 4S 7S JD 7D 8H 9C 2H QD 4C 5H KC 8D 2S 3S
Quackery
MCR-seed
and MCR-rand
are defined at Linear congruential generator#Quackery.
[ [ [] 52 times
[ i^ join ] ]
constant ] is newpack ( --> n )
[ 2dup peek
dip [ over -1 peek ]
swap 2swap poke
-1 poke ] is to-end ( [ n --> [ )
[ [] swap
52 times
[ MCR-rand
over size mod
to-end
-1 split
swap dip join ]
drop ] is mixem ( [ --> [ )
[ 4 /mod
$ "A23456789TJQK"
rot peek emit
$ "CDHS"
swap peek emit ] is echocard ( n --> )
[ witheach
[ echocard
i^ 8 mod 7 =
iff cr else sp ] ] is echopack ( [ --> )
[ MCR-seed replace
newpack
mixem
echopack ] is deal ( n --> )
' [ 1 617 11982 ]
witheach
[ say "Deal #"
dup echo cr
deal cr cr ]
- Output:
Deal #1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H Deal #617 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H Deal #11982 AH AS 4H AC 2D 6S TS JS 3D 3H QS QC 8S 7H AD KS KD 6H 5S 4D 9H JH 9S 3C JC 5D 5C 8C 9D TD KH 7C 6C 2C TH QH 6D TC 4S 7S JD 7D 8H 9C 2H QD 4C 5H KC 8D 2S 3S
R
## Linear congruential generator code not original -
## copied from
## http://www.rosettacode.org/wiki/Linear_congruential_generator#R
## altered to allow seed as an argument
library(gmp) # for big integers
rand_MS <- function(n = 1, seed = 1) {
a <- as.bigz(214013)
c <- as.bigz(2531011)
m <- as.bigz(2^31)
x <- rep(as.bigz(0), n)
x[1] <- (a * as.bigz(seed) + c) %% m
i <- 1
while (i < n) {
x[i+1] <- (a * x[i] + c) %% m
i <- i + 1
}
as.integer(x / 2^16)
}
## =============================
## New code follows:
## =============================
dealFreeCell <- function(seedNum) {
deck <- paste(rep(c("A",2,3,4,5,6,7,8,9,10,"J","Q","K"), each = 4), c("C","D","H","S"), sep = "")
cards = rand_MS(52,seedNum)
for (i in 52:1) {
cardToPick <- (cards[53-i]%% i)+1 # R indexes from 1, not 0
deck[c(cardToPick,i)] <- deck[c(i, cardToPick)]
}
deck <- rev(deck) # flip the deck to deal
deal = matrix(c(deck,NA,NA,NA,NA),ncol = 8, byrow = TRUE)
# using a matrix for simple printing, but requires filling with NA
# if implementing as a game, a list for each pile would make more sense
print(paste("Hand numer:",seedNum), quote = FALSE)
print(deal, quote = FALSE, na.print = "")
}
- Output:
> dealFreeCell(1) [1] Hand numer: 1 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [1,] JD 2D 9H JC 5D 7H 7C 5H [2,] KD KC 9S 5S AD QC KH 3H [3,] 2S KS 9D QD JS AS AH 3C [4,] 4C 5C 10S QH 4H AC 4D 7S [5,] 3S 10D 4S 10H 8H 2C JH 7D [6,] 6D 8S 8D QS 6C 3D 8C 10C [7,] 6S 9C 2H 6H > dealFreeCell(617) [1] Hand numer: 617 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [1,] 7D AD 5C 3S 5S 8C 2D AH [2,] 10D 7S QD AC 6D 8H AS KH [3,] 10H QC 3H 9D 6S 8D 3D 10C [4,] KD 5H 9S 3C 8S 7H 4D JS [5,] 4C QS 9C 9H 7C 6H 2C 2S [6,] 4S 10S 2H 5D JC 6C JH QH [7,] JD KS KC 4H
Racket
#lang racket
(module Linear_congruential_generator racket
;; taken from http://rosettacode.org/wiki/Linear_congruential_generator#Racket
;; w/o BSD generator
(require racket/generator)
(provide ms-rand)
(define (ms-update state_n)
(modulo (+ (* 214013 state_n) 2531011)
(expt 2 31)))
(define ((rand update ->rand) seed)
(generator () (let loop ([state_n seed])
(define state_n+1 (update state_n))
(yield (->rand state_n+1))
(loop state_n+1))))
(define ms-rand (rand ms-update (lambda (x) (quotient x (expt 2 16))))))
(require (submod "." Linear_congruential_generator))
;; Personally I prefer CDHS to the unicode characters (on an aesthetic basis,
;; rather than anything else. Plus it helps match with the examples given at the
;; head of the task.
(define suits "CDHS")
(define (initial-deck)
(for*/vector #:length 52
((face "A23456789TJQK")
(suit suits))
(cons face suit)))
;; srfi/43 has one of these, but is quick enough to reimplement!
(define (vector-swap! v i j)
(let ((t (vector-ref v i)))
(vector-set! v i (vector-ref v j))
(vector-set! v j t)))
(define (deal hand)
(define pack (initial-deck))
(define rnd (ms-rand hand))
(define (deal-nth-card pack-sz card-no deal)
(vector-swap! pack card-no (sub1 pack-sz))
(cons (vector-ref pack (sub1 pack-sz)) deal))
(let inner-deal ((pack-sz (vector-length pack)) (deal null))
(if (zero? pack-sz) (reverse deal) ;; we accumulated this backwards!
(inner-deal (sub1 pack-sz)
(deal-nth-card pack-sz (modulo (rnd) pack-sz) deal)))))
(define (present-deal hand)
(printf "Game #~a~%" hand)
(let inner-present-deal ((pile 0) (deck (deal hand)))
(unless (null? deck)
(printf "~a~a~a" (caar deck) (cdar deck)
(if (or (null? (cdr deck)) (= 7 (modulo pile 8))) "\n" " "))
(inner-present-deal (add1 pile) (cdr deck)))))
;; Run it so we get some output:
(present-deal 1)
(newline)
(present-deal 617)
- Output:
Game #1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H Game #617 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Raku
(formerly Perl 6)
sub dealgame ($game-number = 1) {
sub ms-lcg-method($seed = $game-number) { ( 214013 * $seed + 2531011 ) % 2**31 }
# lazy list of the random sequence
my @ms-lcg = |(&ms-lcg-method ... *).map: * +> 16;
constant CardBlock = '🂠'.ord;
my @deck = gather for flat(1..11,13,14) X+ (48,32...0) -> $off {
take chr CardBlock + $off;
}
my @game = gather while @deck {
@deck[@ms-lcg.shift % @deck, @deck-1] .= reverse;
take @deck.pop;
}
say "Game #$game-number";
say @game.splice(0, 8 min +@game) while @game;
}
dealgame;
dealgame 617;
- Output:
Game #1 🃋 🃂 🂹 🃛 🃅 🂷 🃗 🂵 🃎 🃞 🂩 🂥 🃁 🃝 🂾 🂳 🂢 🂮 🃉 🃍 🂫 🂡 🂱 🃓 🃔 🃕 🂪 🂽 🂴 🃑 🃄 🂧 🂣 🃊 🂤 🂺 🂸 🃒 🂻 🃇 🃆 🂨 🃈 🂭 🃖 🃃 🃘 🃚 🂦 🃙 🂲 🂶 Game #617 🃇 🃁 🃕 🂣 🂥 🃘 🃂 🂱 🃊 🂧 🃍 🃑 🃆 🂸 🂡 🂾 🂺 🃝 🂳 🃉 🂦 🃈 🃃 🃚 🃎 🂵 🂩 🃓 🂨 🂷 🃄 🂫 🃔 🂭 🃙 🂹 🃗 🂶 🃒 🂢 🂤 🂪 🂲 🃅 🃛 🃖 🂻 🂽 🃋 🂮 🃞 🂴
REXX
This REXX version supports EBCDIC and ASCII symbols (used for the cards).
It also supports any number for the number of columns (default is 8).
See the discussion page for support for game = ─1 and game= ─2 (minus one and minus two).
/*REXX program deals cards for a specific FreeCell solitaire card game (0 ──► 32767).*/
numeric digits 15 /*ensure enough digits for the random #*/
parse arg game cols . /*obtain optional arguments from the CL*/
if game=='' | game=="," then game=1 /*No game specified? Then use default.*/
if cols=='' | cols=="," then cols=8 /* " cols " " " " */
state=game /*seed random # generator with game num*/
if 8=='f8'x then suit= "cdhs" /*EBCDIC? Then use letters for suits.*/
else suit= "♣♦♥♠" /* ASCII? " " symbols " " */
rank= 'A23456789tJQK' /*t in the rank represents a ten (10).*/
pad=left('', 13) /*used for indentation for the tableau.*/
say center('tableau for FreeCell game' game, 50, "─") /*show title for FreeCell game #*/
say /* [↓] @ is an array of all 52 cards.*/
#=-1; do r=1 for length(rank) /*build the deck first by the rank. */
do s=1 for length(suit); #=#+1 /* " " " secondly " " suit. */
@.#=substr(rank, r,1)substr(suit, s,1) /*build the $ array one card at at time*/
end /*s*/ /* [↑] first card is number 0 (zero).*/
end /*r*/ /* [↑] build deck per FreeCell rules. */
$=pad /*@: cards to be dealt, eight at a time*/
do cards=51 by -1 for 52 /* [↓] deal the cards for the tableau.*/
?=rand() // (cards+1) /*get next rand#; card # is remainder.*/
$=$ @.?; @.?=@.cards /*swap two cards: use random and last.*/
if words($)==cols then do; say $; $=pad /*deal FreeCell cards for the tableau. */
end
end /*cards*/ /*normally, 8 cards are dealt to a row.*/
/* [↓] residual cards may exist. */
if $\='' then say $ /*Any residual cards in the tableau ? */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
rand: state=(214013*state + 2531011) // 2**31; return state % 2**16 /*FreeCell rand#*/
output when using the default game number: 1
───────────tableau for FreeCell game 1──────────── J♦ 2♦ 9♥ J♣ 5♦ 7♥ 7♣ 5♥ K♦ K♣ 9♠ 5♠ A♦ Q♣ K♥ 3♥ 2♠ K♠ 9♦ Q♦ J♠ A♠ A♥ 3♣ 4♣ 5♣ t♠ Q♥ 4♥ A♣ 4♦ 7♠ 3♠ t♦ 4♠ t♥ 8♥ 2♣ J♥ 7♦ 6♦ 8♠ 8♦ Q♠ 6♣ 3♦ 8♣ t♣ 6♠ 9♣ 2♥ 6♥
output when using the game number: 617
──────────tableau for FreeCell game 617─────────── 7♦ A♦ 5♣ 3♠ 5♠ 8♣ 2♦ A♥ t♦ 7♠ Q♦ A♣ 6♦ 8♥ A♠ K♥ t♥ Q♣ 3♥ 9♦ 6♠ 8♦ 3♦ t♣ K♦ 5♥ 9♠ 3♣ 8♠ 7♥ 4♦ J♠ 4♣ Q♠ 9♣ 9♥ 7♣ 6♥ 2♣ 2♠ 4♠ t♠ 2♥ 5♦ J♣ 6♣ J♥ Q♥ J♦ K♠ K♣ 4♥
RPL
« R→B { } 1 13 FOR v "A23456789TJQK" v DUP SUB 1 4 FOR c SWAP OVER "CDHS" c DUP SUB + + SWAP NEXT DROP NEXT 52 2 FOR j DUP j GET SWAP ROT 214013 * 2531011 + # 7FFFFFFFh AND DUP 4 ROLLD SRB SRB B→R j MOD 1 + GET LASTARG 4 ROLL PUT j ROT PUT -1 STEP REVLIST SWAP DROP » 'DEAL' STO @ ( game → { "card" .. "card" } )
1 DEAL 617 DEAL
- Output:
2: { "JD" "2D" "9H" "JC" "5D" "7H" "7C" "5H" "KD" "KC" "9S" "5S" "AD" "QC" "KH" "3H" "2S" "KS" "9D" "QD" "JS" "AS" "AH" "3C" "4C" "5C" "TS" "QH" "4H" "AC" "4D" "7S" "3S" "TD" "4S" "TH" "8H" "2C" "JH" "7D" "6D" "8S" "8D" "QS" "6C" "3D" "8C" "TC" "6S" "9C" "2H" "6H" } 1: { "7D" "AD" "5C" "3S" "5S" "8C" "2D" "AH" "TD" "7S" "QD" "AC" "6D" "8H" "AS" "KH" "TH" "QC" "3H" "9D" "6S" "8D" "3D" "TC" "KD" "5H" "9S" "3C" "8S" "7H" "4D" "JS" "4C" "QS" "9C" "9H" "7C" "6H" "2C" "2S" "4S" "TS" "2H" "5D" "JC" "6C" "JH" "QH" "JD" "KS" "KC" "4H" }
RPL output device is limited to 22 characters per line, which prevents to display the deck as required.
Ruby
# games = ARGV converted to Integer
# No arguments? Pick any of first 32000 games.
begin
games = ARGV.map {|s| Integer(s)}
rescue => err
$stderr.puts err.inspect
$stderr.puts "Usage: #{__FILE__} number..."
abort
end
games.empty? and games = [rand(32000)]
# Create original deck of 52 cards, not yet shuffled.
orig_deck = %w{A 2 3 4 5 6 7 8 9 T J Q K}.product(%w{C D H S}).map(&:join)
games.each do |seed|
deck = orig_deck.dup
# Shuffle deck with random index from linear congruential
# generator like Microsoft.
state = seed
52.downto(2) do |len|
state = ((214013 * state) + 2531011) & 0x7fff_ffff
index = (state >> 16) % len
last = len - 1
deck[index], deck[last] = deck[last], deck[index]
end
deck.reverse! # Shuffle did reverse deck. Do reverse again.
# Deal cards.
puts "Game ##{seed}"
deck.each_slice(8) {|row| puts " " + row.join(" ")}
puts
end
- Output:
$ ruby freecell.rb 1 165 Game #1 JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H Game #165 2D 2C 2H 5D 3C 6S JC 7S 7H QD 6D KC 3D 9H 8H QC TS 5H JD 7D 6H 7C KH 4D QS 8S QH 9S 8D 3H JS AH AD KS TC KD 9D 4S 2S 3S TH 4C 9C 6C TD 4H 8C AC 5C 5S JH AS
Run BASIC
projectDir$ = "a_project" ' project directory
imageDir$ = DefaultDir$ + "\projects\" + projectDir$ + "\image\" ' directory of deck images
imagePath$ = "../";projectDir$;"/image/" ' path of deck images
suite$ = "C,D,H,S" ' Club,Diamond,Heart,Spades
card$ = "A,2,3,4,5,6,7,8,9,T,J,Q,K" ' Cards Ace to King
dim n(55) ' make ordered deck
for i = 1 to 52 ' of 52 cards
n(i) = i
next i
for i = 1 to 52 * 3 ' shuffle deck 3 times
i1 = int(rnd(1)*52) + 1
i2 = int(rnd(1)*52) + 1
h2 = n(i1)
n(i1) = n(i2)
n(i2) = h2
next i
for yy = 1 to 8 ' display 7 across and 8 down
for xx = 1 to 7
card = card + 1
s = (n(card) mod 4) + 1 ' determine suite
c = (n(card) mod 13) + 1 ' determine card
cardId$ = word$(card$,c,",");word$(suite$,s,",");".gif"
html "<div style='position: relative; left:";(xx -1) * 80;"px; top:";(yy -1) * 20;"px; height:0px; width:0px;>"
html "<div style='width:100px; height:100px; border:solid 0px #000;'>"
html "<img src=";imagePath$;cardId$;" width=70px >"
html "</div></div>"
if card = 52 then end ' out of cards
next xx
next yy
Rust
Based on JavaScript.
// Code available at https://rosettacode.org/wiki/Linear_congruential_generator#Rust
extern crate linear_congruential_generator;
use linear_congruential_generator::{MsLcg, Rng, SeedableRng};
// We can't use `rand::Rng::shuffle` because it uses the more uniform `rand::Rng::gen_range`
// (`% range` is subject to modulo bias). If an exact match of the old dealer is not needed,
// `rand::Rng::shuffle` should be used.
fn shuffle<T>(rng: &mut MsLcg, deck: &mut [T]) {
let len = deck.len() as u32;
for i in (1..len).rev() {
let j = rng.next_u32() % (i + 1);
deck.swap(i as usize, j as usize);
}
}
fn gen_deck() -> Vec<String> {
const RANKS: [char; 13] = ['A','2','3','4','5','6','7','8','9','T','J','Q','K'];
const SUITS: [char; 4] = ['C', 'D', 'H', 'S'];
let render_card = |card: usize| {
let (suit, rank) = (card % 4, card / 4);
format!("{}{}", RANKS[rank], SUITS[suit])
};
(0..52).map(render_card).collect()
}
fn deal_ms_fc_board(seed: u32) -> Vec<String> {
let mut rng = MsLcg::from_seed(seed);
let mut deck = gen_deck();
shuffle(&mut rng, &mut deck);
deck.reverse();
deck.chunks(8).map(|row| row.join(" ")).collect::<Vec<_>>()
}
fn main() {
let seed = std::env::args()
.nth(1)
.and_then(|n| n.parse().ok())
.expect("A 32-bit seed is required");
for row in deal_ms_fc_board(seed) {
println!(": {}", row);
}
}
Scala
object Shuffler extends App {
private val suits = Array("C", "D", "H", "S")
private val values = Array("A", "2", "3", "4", "5", "6", "7", "8", "9", "T", "J", "Q", "K")
private val deck = values.flatMap(v => suits.map(s => s"$v$s"))
private var seed: Int = _
private def random() = {
seed = (214013 * seed + 2531011) & Integer.MAX_VALUE
seed >> 16
}
private def getShuffledDeck = {
val d = deck.map(c => c)
for(i <- deck.length - 1 until 0 by -1) {
val r = random() % (i + 1)
val card = d(r)
d(r) = d(i)
d(i) = card
}
d.reverse
}
def deal(seed: Int): Unit = {
this.seed = seed
getShuffledDeck.grouped(8).foreach(e => println(e.mkString(" ")))
}
deal(1)
println
deal(617)
}
- Output:
JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Seed7
$ include "seed7_05.s7i";
include "console.s7i";
const string: suits is "♣♦♥♠";
const string: nums is "A23456789TJQK";
var integer: randomSeed is 1;
const func integer: random is func
result
var integer: rand is 1;
begin
randomSeed := (randomSeed * 214013 + 2531011) mod 2 ** 31;
rand := randomSeed >> 16;
end func;
const proc: show (in array integer: cards) is func
local
var integer: index is 0;
begin
for index range 1 to 52 do
write(" " <& suits[succ(cards[index] rem 4)] <& nums[succ(cards[index] div 4)]);
if index rem 8 = 0 or index = 52 then
writeln;
end if;
end for;
end func;
const func array integer: deal (in integer: gameNum) is func
result
var array integer: cards is 52 times 0;
local
var integer: i is 0;
var integer: j is 0;
var integer: s is 0;
begin
randomSeed := gameNum;
for i range 1 to 52 do
cards[i] := 52 - i;
end for;
for i range 1 to 51 do
j := 52 - random mod (53 - i);
s := cards[i];
cards[i] := cards[j];
cards[j] := s;
end for;
end func;
const proc: main is func
local
var integer: gameNum is 11982;
var array integer: cards is 0 times 0;
begin
OUT := STD_CONSOLE;
if length(argv(PROGRAM)) >= 1 then
block
gameNum := integer parse (argv(PROGRAM)[1]);
exception
catch RANGE_ERROR: noop;
end block;
end if;
cards := deal(gameNum);
writeln("Hand " <& gameNum);
show(cards);
end func;
- Output:
Hand 1 ♦J ♦2 ♥9 ♣J ♦5 ♥7 ♣7 ♥5 ♦K ♣K ♠9 ♠5 ♦A ♣Q ♥K ♥3 ♠2 ♠K ♦9 ♦Q ♠J ♠A ♥A ♣3 ♣4 ♣5 ♠T ♥Q ♥4 ♣A ♦4 ♠7 ♠3 ♦T ♠4 ♥T ♥8 ♣2 ♥J ♦7 ♦6 ♠8 ♦8 ♠Q ♣6 ♦3 ♣8 ♣T ♠6 ♣9 ♥2 ♥6
Hand 617 ♦7 ♦A ♣5 ♠3 ♠5 ♣8 ♦2 ♥A ♦T ♠7 ♦Q ♣A ♦6 ♥8 ♠A ♥K ♥T ♣Q ♥3 ♦9 ♠6 ♦8 ♦3 ♣T ♦K ♥5 ♠9 ♣3 ♠8 ♥7 ♦4 ♠J ♣4 ♠Q ♣9 ♥9 ♣7 ♥6 ♣2 ♠2 ♠4 ♠T ♥2 ♦5 ♣J ♣6 ♥J ♥Q ♦J ♠K ♣K ♥4
Swift
Swift 4.2. Largely based on the Objective-C example.
enum Suit : String, CustomStringConvertible, CaseIterable {
case clubs = "C", diamonds = "D", hearts = "H", spades = "S"
var description: String {
return self.rawValue
}
}
enum Rank : Int, CustomStringConvertible, CaseIterable {
case ace=1, two, three, four, five, six, seven
case eight, nine, ten, jack, queen, king
var description: String {
let d : [Rank:String] = [.ace:"A", .king:"K", .queen:"Q", .jack:"J", .ten:"T"]
return d[self] ?? String(self.rawValue)
}
}
struct Card : CustomStringConvertible {
let rank : Rank, suit : Suit
var description : String {
return String(describing:self.rank) + String(describing:self.suit)
}
init(rank:Rank, suit:Suit) {
self.rank = rank; self.suit = suit
}
init(sequence n:Int) {
self.init(rank:Rank.allCases[n/4], suit:Suit.allCases[n%4])
}
}
struct Deck : CustomStringConvertible {
var cards = [Card]()
init(seed:Int) {
for i in (0..<52).reversed() {
self.cards.append(Card(sequence:i))
}
struct MicrosoftLinearCongruentialGenerator {
var seed : Int
mutating func next() -> Int {
self.seed = (self.seed * 214013 + 2531011) % (Int(Int32.max)+1)
return self.seed >> 16
}
}
var r = MicrosoftLinearCongruentialGenerator(seed: seed)
for i in 0..<51 {
self.cards.swapAt(i, 51-r.next()%(52-i))
}
}
var description : String {
var s = ""
for (ix,c) in self.cards.enumerated() {
s.write(String(describing:c))
s.write(ix % 8 == 7 ? "\n" : " ")
}
return s
}
}
let d1 = Deck(seed: 1)
print(d1)
let d617 = Deck(seed: 617)
print(d617)
- Output:
JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H
7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Tcl
proc rnd {{*r seed}} {
upvar 1 ${*r} r
expr {[set r [expr {($r * 214013 + 2531011) & 0x7fffffff}]] >> 16}
}
proc show cards {
set suits {\u2663 \u2666 \u2665 \u2660}
set values {A 2 3 4 5 6 7 8 9 T J Q K}
for {set i 0} {$i < 52} {incr i} {
set c [lindex $cards $i]
puts -nonewline [format " \033\[%dm%s\033\[m%s" [expr {32-(1+$c)%4/2}] \
[lindex $suits [expr {$c % 4}]] [lindex $values [expr {$c / 4}]]]
if {($i&7)==7 || $i==51} {puts ""}
}
}
proc deal {seed} {
for {set i 0} {$i < 52} {incr i} {lappend cards [expr {51 - $i}]}
for {set i 0} {$i < 51} {incr i} {
set j [expr {51 - [rnd]%(52-$i)}]
set tmp [lindex $cards $i]
lset cards $i [lindex $cards $j]
lset cards $j $tmp
}
return $cards
}
if {![scan =[lindex $argv 0]= =%d= s] || $s <= 0} {
set s 11982
}
set cards [deal $s]
puts "Hand $s"
show $cards
TypeScript
/* TypeScript code for dealing Microsoft FreeCell / FreeCell Pro deals.
* Copyright by Shlomi Fish, 2011.
* Released under the MIT/Expat License
* ( http://en.wikipedia.org/wiki/MIT_License ).
*/
function perl_range(start: number, end: number): number[] {
const ret: number[] = [];
for (let i = start; i <= end; ++i) {
ret.push(i);
}
return ret;
}
// 33 bit
const MAX_SEED: bigint = (BigInt(1) << BigInt(31 + 2)) - BigInt(1);
const X = BigInt(1) << BigInt(32);
/*
* Microsoft C Run-time-Library-compatible Random Number Generator
* */
class MSRand {
private gamenumber: string;
private _seed: bigint;
private _seedx: bigint;
constructor(args) {
const that = this;
that.gamenumber = args.gamenumber;
const _seed = BigInt(that.gamenumber);
that._seed = _seed;
that._seedx = _seed < X ? _seed : _seed - X;
return;
}
public getSeed(): bigint {
const that = this;
return that._seed;
}
private setSeed(seed: bigint): void {
const that = this;
that._seed = seed;
return;
}
private _rando(): bigint {
const that = this;
that._seedx =
(that._seedx * BigInt(214013) + BigInt(2531011)) & MAX_SEED;
return (that._seedx >> BigInt(16)) & BigInt(0x7fff);
}
private _randp(): bigint {
const that = this;
that._seedx =
(that._seedx * BigInt(214013) + BigInt(2531011)) & MAX_SEED;
return (that._seedx >> BigInt(16)) & BigInt(0xffff);
}
public raw_rand(): bigint {
const that = this;
if (that._seed < X) {
const ret = that._rando();
return that._seed < BigInt(0x8) << BigInt(28)
? ret
: ret | BigInt(0x8000);
} else {
return that._randp() + BigInt(1);
}
}
public max_rand(mymax: bigint): bigint {
const that = this;
return that.raw_rand() % mymax;
}
public shuffle(deck: Array<any>): Array<any> {
const that = this;
if (deck.length) {
let i = deck.length;
while (--i) {
const j = Number(that.max_rand(BigInt(i + 1)));
const tmp = deck[i];
deck[i] = deck[j];
deck[j] = tmp;
}
}
return deck;
}
}
/*
* Microsoft Windows Freecell / Freecell Pro boards generation.
*
* See:
*
* - http://rosettacode.org/wiki/Deal_cards_for_FreeCell
*
* - http://www.solitairelaboratory.com/mshuffle.txt
*
* Under MIT/Expat Licence.
*
* */
export function deal_ms_fc_board(gamenumber: string): string {
const randomizer = new MSRand({
gamenumber: gamenumber,
});
const num_cols: number = 8;
const columns: Array<Array<number>> = perl_range(0, num_cols - 1).map(
() => {
return [];
},
);
let deck: Array<number> = perl_range(0, 4 * 13 - 1);
randomizer.shuffle(deck);
deck = deck.reverse();
for (let i = 0; i < 52; ++i) {
columns[i % num_cols].push(deck[i]);
}
function render_card(card: number): String {
const suit = card % 4;
const rank = Math.floor(card / 4);
return "A23456789TJQK".charAt(rank) + "CDHS".charAt(suit);
}
function render_column(col: Array<number>): String {
return ": " + col.map(render_card).join(" ") + "\n";
}
return columns.map(render_column).join("");
}
UNIX Shell
test $# -gt 0 || set -- $((RANDOM % 32000))
for seed; do
print Game $seed:
# Shuffle deck.
deck=({A,{2..9},T,J,Q,K}{C,D,H,S})
for i in {52..1}; do
((seed = (214013 * seed + 2531011) & 0x7fffffff))
((j = (seed >> 16) % i + 1))
t=$deck[$i]
deck[$i]=$deck[$j]
deck[$j]=$t
done
# Deal cards.
print -n ' '
for i in {52..1}; do
print -n ' '$deck[$i]
((i % 8 == 5)) && print -n $'\n '
done
print
done
- Output:
$ zsh freecell.sh 80388 Game 80388: QC 5H AS 7H 8S 4S 4H 3H QD 3S 2C 2S 7D AH 6D 3D QS TH QH 3C 2H JS 5D 5C AD TD 6H JD 5S 7S 4D 7C 9S KC TC KH 8C 9D 8D JH KS AC KD 9C 9H 6C JC 2D 4C 8H TS 6S
VBA
Option Explicit
Private stateMS As Variant
Private Function ms() As Integer
Dim temp1 As Variant, temp2 As Variant, temp3 As Variant
temp1 = CDec(214013 * stateMS + 2531011)
temp2 = temp1 / 2 ^ 31
temp3 = CDec(WorksheetFunction.Floor_Precise(temp2))
stateMS = temp1 - (2 ^ 31) * temp3
ms = stateMS \ 2 ^ 16
End Function
Public Sub main()
Dim i As Integer, j As Integer, k As Integer, s As Integer, v As Integer, no As Integer
Dim tmpArr(0 To 51) As Integer
Dim suit As String, value As String, row As String
Dim gameNumbers As Variant
suit = "CDHS"
value = "A23456789TJQK"
gameNumbers = Array(1, 617)
For i = 0 To UBound(gameNumbers)
stateMS = CDec(gameNumbers(i))
For j = 0 To 51
tmpArr(j) = j
Next j
For j = 51 To 0 Step -1
no = ms Mod (j + 1)
Call changePosition(tmpArr(), j, no)
Next j
Debug.Print "Game " & gameNumbers(i) & ":"
k = 0
Do While k < 52
For j = 0 To 7
s = 1 + tmpArr(51 - k) Mod 4
v = 1 + tmpArr(51 - k) \ 4
row = row & Mid(value, v, 1) & Mid(suit, s, 1) & IIf(j < 7 and k < 51, " ", "")
k = k + 1
If k > 51 Then Exit For
Next j
Debug.Print row
row = ""
Loop
Debug.Print
Next i
End Sub
Private Sub changePosition(ByRef arr() As Integer, pos1 As Integer, pos2 As Integer)
Dim tempPos As String
tempPos = arr(pos1)
arr(pos1) = arr(pos2)
arr(pos2) = tempPos
End Sub
- Output:
Game 1: JD 2D 9H JC 5D 7H 7C 5H KD KC 9S 5S AD QC KH 3H 2S KS 9D QD JS AS AH 3C 4C 5C TS QH 4H AC 4D 7S 3S TD 4S TH 8H 2C JH 7D 6D 8S 8D QS 6C 3D 8C TC 6S 9C 2H 6H Game 617: 7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Wren
class Lcg {
construct new(a, c, m, d, s) {
_a = a
_c = c
_m = m
_d = d
_s = s
}
nextInt() {
_s = (_a * _s + _c) % _m
return _s / _d
}
}
var CARDS = "A23456789TJQK"
var SUITS = "♣♦♥♠".toList
var deal = Fn.new {
var cards = List.filled(52, null)
for (i in 0...52) {
var card = CARDS[(i/4).floor]
var suit = SUITS[i%4]
cards[i] = card + suit
}
return cards
}
var game = Fn.new { |n|
if (n.type != Num || !n.isInteger || n <= 0) {
Fiber.abort("Game number must be a positive integer.")
}
System.print("Game #%(n):")
var msc = Lcg.new(214013, 2531011, 1<<31, 1<<16, n)
var cards = deal.call()
for (m in 52..1) {
var index = (msc.nextInt() % m).floor
var temp = cards[index]
cards[index] = cards[m - 1]
System.write("%(temp) ")
if ((53 - m) % 8 == 0) System.print()
}
System.print("\n")
}
game.call(1)
game.call(617)
- Output:
Game #1: J♦ 2♦ 9♥ J♣ 5♦ 7♥ 7♣ 5♥ K♦ K♣ 9♠ 5♠ A♦ Q♣ K♥ 3♥ 2♠ K♠ 9♦ Q♦ J♠ A♠ A♥ 3♣ 4♣ 5♣ T♠ Q♥ 4♥ A♣ 4♦ 7♠ 3♠ T♦ 4♠ T♥ 8♥ 2♣ J♥ 7♦ 6♦ 8♠ 8♦ Q♠ 6♣ 3♦ 8♣ T♣ 6♠ 9♣ 2♥ 6♥ Game #617: 7♦ A♦ 5♣ 3♠ 5♠ 8♣ 2♦ A♥ T♦ 7♠ Q♦ A♣ 6♦ 8♥ A♠ K♥ T♥ Q♣ 3♥ 9♦ 6♠ 8♦ 3♦ T♣ K♦ 5♥ 9♠ 3♣ 8♠ 7♥ 4♦ J♠ 4♣ Q♠ 9♣ 9♥ 7♣ 6♥ 2♣ 2♠ 4♠ T♠ 2♥ 5♦ J♣ 6♣ J♥ Q♥ J♦ K♠ K♣ 4♥
XPL0
include c:\cxpl\codes; \intrinsic 'code' declarations
string 0; \use zero-terminated string convention
int RandState;
func Rand; \Random number in range 0 to 32767
[RandState:= (214013*RandState + 2531011) & $7FFF_FFFF;
return RandState >> 16;
];
int Card, Deck(52), Size;
char Suit, Rank;
[RandState:= IntIn(8); \seed RNG with number from command line
for Card:= 0 to 52-1 do Deck(Card):= Card; \create array of 52 cards
Rank:= "A23456789TJQK";
Suit:= "CDHS";
Size:= 52;
repeat Card:= rem(Rand/Size); \choose a random card
ChOut(0, Rank(Deck(Card)/4)); \deal it by showing it
ChOut(0, Suit(rem(0)));
if rem(Size/8)=5 then CrLf(0) else ChOut(0, ^ );
Size:= Size-1; \one less card in deck
Deck(Card):= Deck(Size); \replace dealt card with last card
until Size = 0; \all cards have been dealt
]
Output:
7D AD 5C 3S 5S 8C 2D AH TD 7S QD AC 6D 8H AS KH TH QC 3H 9D 6S 8D 3D TC KD 5H 9S 3C 8S 7H 4D JS 4C QS 9C 9H 7C 6H 2C 2S 4S TS 2H 5D JC 6C JH QH JD KS KC 4H
Zig
const std = @import("std");
const Card = struct {
value: u6 = 0,
pub fn print(card: Card) void {
const n: u8 = switch (card.value >> 2) {
0 => 'A',
1 => '2',
2 => '3',
3 => '4',
4 => '5',
5 => '6',
6 => '7',
7 => '8',
8 => '9',
9 => 'T',
10 => 'J',
11 => 'Q',
12 => 'K',
else => unreachable,
};
const s: u21 = switch (card.value & 0x3) {
0 => '\u{2663}', // Club
1 => '\u{2666}', // Diamond
2 => '\u{2665}', // Heart
3 => '\u{2660}', // Spade
else => unreachable,
};
std.debug.print("{c}{u} ", .{ n, s });
}
};
const Rand = struct {
seed: u31 = 0,
pub fn seed(rand: *Rand, value: u31) void {
rand.seed = value;
}
pub fn next(rand: *Rand) u16 {
const new_seed = rand.seed *% 214013 +% 2531011;
rand.seed = new_seed;
return @truncate(new_seed >> 16);
}
};
pub fn deal(n: u31) void {
const print = std.debug.print;
var buffer: [52]u8 = undefined;
var fba = std.heap.FixedBufferAllocator.init(&buffer);
const allocator = fba.allocator();
var deck = std.ArrayListUnmanaged(Card).initCapacity(allocator, 52) catch unreachable;
var card: Card = .{};
while (card.value < 52) : (card.value += 1) {
deck.appendAssumeCapacity(card);
}
var col: usize = 0;
var rand = Rand{ .seed = n };
print("Deal {d}:\n", .{n});
while (deck.items.len > 0) {
card = deck.swapRemove(rand.next() % deck.items.len);
card.print();
col = (col + 1) % 8;
if (col == 0)
print("\n", .{});
}
print("\n\n", .{});
}
pub fn main() !void {
deal(1);
deal(617);
}
- Output:
Deal 1: J♦ 2♦ 9♥ J♣ 5♦ 7♥ 7♣ 5♥ K♦ K♣ 9♠ 5♠ A♦ Q♣ K♥ 3♥ 2♠ K♠ 9♦ Q♦ J♠ A♠ A♥ 3♣ 4♣ 5♣ T♠ Q♥ 4♥ A♣ 4♦ 7♠ 3♠ T♦ 4♠ T♥ 8♥ 2♣ J♥ 7♦ 6♦ 8♠ 8♦ Q♠ 6♣ 3♦ 8♣ T♣ 6♠ 9♣ 2♥ 6♥ Deal 617: 7♦ A♦ 5♣ 3♠ 5♠ 8♣ 2♦ A♥ T♦ 7♠ Q♦ A♣ 6♦ 8♥ A♠ K♥ T♥ Q♣ 3♥ 9♦ 6♠ 8♦ 3♦ T♣ K♦ 5♥ 9♠ 3♣ 8♠ 7♥ 4♦ J♠ 4♣ Q♠ 9♣ 9♥ 7♣ 6♥ 2♣ 2♠ 4♠ T♠ 2♥ 5♦ J♣ 6♣ J♥ Q♥ J♦ K♠ K♣ 4♥
zkl
var suits=T(0x1F0D1,0x1F0C1,0x1F0B1,0x1F0A1); //unicode 🃑,🃁,🂱,🂡
var seed=1; const RMAX32=(1).shiftLeft(31) - 1;
fcn rnd{ (seed=((seed*214013 + 2531011).bitAnd(RMAX32))).shiftRight(16) }
fcn game(n){
seed=n;
deck:=(0).pump(52,List,'wrap(n){ if(n>=44) n+=4; // I want JQK, not JCQ
(suits[n%4] + n/4).toString(8) }).copy(); // int-->UTF-8
[52..1,-1].pump(Void,'wrap(len){ deck.swap(len-1,rnd()%len); });
deck.reverse();
println("Game #",n);
foreach n in ([0..51,8]){ deck[n,8].concat(" ").println(); }
}
game(1);
game(617);
- Output:
Game #1 🃋 🃂 🂹 🃛 🃅 🂷 🃗 🂵 🃎 🃞 🂩 🂥 🃁 🃝 🂾 🂳 🂢 🂮 🃉 🃍 🂫 🂡 🂱 🃓 🃔 🃕 🂪 🂽 🂴 🃑 🃄 🂧 🂣 🃊 🂤 🂺 🂸 🃒 🂻 🃇 🃆 🂨 🃈 🂭 🃖 🃃 🃘 🃚 🂦 🃙 🂲 🂶 Game #617 🃇 🃁 🃕 🂣 🂥 🃘 🃂 🂱 🃊 🂧 🃍 🃑 🃆 🂸 🂡 🂾 🂺 🃝 🂳 🃉 🂦 🃈 🃃 🃚 🃎 🂵 🂩 🃓 🂨 🂷 🃄 🂫 🃔 🂭 🃙 🂹 🃗 🂶 🃒 🂢 🂤 🂪 🂲 🃅 🃛 🃖 🂻 🂽 🃋 🂮 🃞 🂴