Continued fraction: Difference between revisions

From Rosetta Code
Content added Content deleted
(add FreeBASIC)
m (added whitespace.)
Line 17: Line 17:
:<math>\pi = 3 + \cfrac{1}{6 + \cfrac{9}{6 + \cfrac{25}{6 + \ddots}}}</math>
:<math>\pi = 3 + \cfrac{1}{6 + \cfrac{9}{6 + \cfrac{25}{6 + \ddots}}}</math>



;See also<nowiki>:</nowiki>
;See also:
* [[Continued fraction/Arithmetic]] for tasks that do arithmetic over continued fractions.
:* &nbsp; [[Continued fraction/Arithmetic]] for tasks that do arithmetic over continued fractions.
<br><br>


=={{header|11l}}==
=={{header|11l}}==

Revision as of 23:22, 27 May 2020

Task
Continued fraction
You are encouraged to solve this task according to the task description, using any language you may know.

A number may be represented as a continued fraction (see Mathworld for more information) as follows:

The task is to write a program which generates such a number and prints a real representation of it. The code should be tested by calculating and printing the square root of 2, Napier's Constant, and Pi, using the following coefficients:

For the square root of 2, use then . is always .

For Napier's Constant, use , then . then .

For Pi, use then . .


See also



11l

<lang 11l>F calc(f_a, f_b, =n = 1000)

  V r = 0.0
  L n > 0
     r = f_b(n) / (f_a(n) + r)
     n--
  R f_a(0) + r

print(calc(n -> I n > 0 {2} E 1, n -> 1)) print(calc(n -> I n > 0 {n} E 2, n -> I n > 1 {n - 1} E 1)) print(calc(n -> I n > 0 {6} E 3, n -> (2 * n - 1) ^ 2))</lang>

Ada

(The source text for these examples can also be found on Bitbucket.)

Generic function for estimating continued fractions: <lang Ada>generic

  type Scalar is digits <>;
  with function A (N : in Natural)  return Natural;
  with function B (N : in Positive) return Natural;

function Continued_Fraction (Steps : in Natural) return Scalar;</lang>

<lang Ada>function Continued_Fraction (Steps : in Natural) return Scalar is

  function A (N : in Natural)  return Scalar is (Scalar (Natural'(A (N))));
  function B (N : in Positive) return Scalar is (Scalar (Natural'(B (N))));
  Fraction : Scalar := 0.0;

begin

  for N in reverse Natural range 1 .. Steps loop
     Fraction := B (N) / (A (N) + Fraction);
  end loop;
  return A (0) + Fraction;

end Continued_Fraction;</lang> Test program using the function above to estimate the square root of 2, Napiers constant and pi: <lang Ada>with Ada.Text_IO;

with Continued_Fraction;

procedure Test_Continued_Fractions is

  type Scalar is digits 15;
  package Square_Root_Of_2 is
     function A (N : in Natural)  return Natural is (if N = 0 then 1 else 2);
     function B (N : in Positive) return Natural is (1);
     function Estimate is new Continued_Fraction (Scalar, A, B);
  end Square_Root_Of_2;
  package Napiers_Constant is
     function A (N : in Natural)  return Natural is (if N = 0 then 2 else N);
     function B (N : in Positive) return Natural is (if N = 1 then 1 else N-1);
     function Estimate is new Continued_Fraction (Scalar, A, B);
  end Napiers_Constant;
  package Pi is
     function A (N : in Natural)  return Natural is  (if N = 0 then 3 else 6);
     function B (N : in Positive) return Natural is ((2 * N - 1) ** 2);
     function Estimate is new Continued_Fraction (Scalar, A, B);
  end Pi;
  package Scalar_Text_IO is new Ada.Text_IO.Float_IO (Scalar);
  use Ada.Text_IO, Scalar_Text_IO;

begin

  Put (Square_Root_Of_2.Estimate (200), Exp => 0); New_Line;
  Put (Napiers_Constant.Estimate (200), Exp => 0); New_Line;
  Put (Pi.Estimate (10000),             Exp => 0); New_Line;

end Test_Continued_Fractions;</lang>

Using only Ada 95 features

This example is exactly the same as the preceding one, but implemented using only Ada 95 features. <lang Ada>generic

  type Scalar is digits <>;
  with function A (N : in Natural)  return Natural;
  with function B (N : in Positive) return Natural;

function Continued_Fraction_Ada95 (Steps : in Natural) return Scalar;</lang>

<lang Ada>function Continued_Fraction_Ada95 (Steps : in Natural) return Scalar is

  function A (N : in Natural)  return Scalar is
  begin
     return Scalar (Natural'(A (N)));
  end A;
  function B (N : in Positive) return Scalar is
  begin
     return Scalar (Natural'(B (N)));
  end B;
  Fraction : Scalar := 0.0;

begin

  for N in reverse Natural range 1 .. Steps loop
     Fraction := B (N) / (A (N) + Fraction);
  end loop;
  return A (0) + Fraction;

end Continued_Fraction_Ada95;</lang> <lang Ada>with Ada.Text_IO;

with Continued_Fraction_Ada95;

procedure Test_Continued_Fractions_Ada95 is

  type Scalar is digits 15;
  package Square_Root_Of_2 is
     function A (N : in Natural)  return Natural;
     function B (N : in Positive) return Natural;
     function Estimate is new Continued_Fraction_Ada95 (Scalar, A, B);
  end Square_Root_Of_2;
  package body Square_Root_Of_2 is
     function A (N : in Natural) return Natural is
     begin
        if N = 0 then
           return 1;
        else
           return 2;
        end if;
     end A;
     function B (N : in Positive) return Natural is
     begin
        return 1;
     end B;
  end Square_Root_Of_2;
  package Napiers_Constant is
     function A (N : in Natural)  return Natural;
     function B (N : in Positive) return Natural;
     function Estimate is new Continued_Fraction_Ada95 (Scalar, A, B);
  end Napiers_Constant;
  package body Napiers_Constant is
     function A (N : in Natural) return Natural is
     begin
        if N = 0 then
           return 2;
        else
           return N;
        end if;
     end A;
     function B (N : in Positive) return Natural is
     begin
         if N = 1 then
            return 1;
         else
            return N - 1;
         end if;
     end B;
  end Napiers_Constant;
  package Pi is
     function A (N : in Natural)  return Natural;
     function B (N : in Positive) return Natural;
     function Estimate is new Continued_Fraction_Ada95 (Scalar, A, B);
  end Pi;
  package body Pi is
     function A (N : in Natural) return Natural is
     begin
        if N = 0 then
           return 3;
        else
           return 6;
        end if;
     end A;
     function B (N : in Positive) return Natural is
     begin
        return (2 * N - 1) ** 2;
     end B;
  end Pi;
  package Scalar_Text_IO is new Ada.Text_IO.Float_IO (Scalar);
  use Ada.Text_IO, Scalar_Text_IO;

begin

  Put (Square_Root_Of_2.Estimate (200), Exp => 0); New_Line;
  Put (Napiers_Constant.Estimate (200), Exp => 0); New_Line;
  Put (Pi.Estimate (10000),             Exp => 0); New_Line;

end Test_Continued_Fractions_Ada95;</lang>

Output:
 1.41421356237310
 2.71828182845905
 3.14159265358954

ALGOL 68

Works with: Algol 68 Genie version 2.8

<lang ALGOL68> PROC cf = (INT steps, PROC (INT) INT a, PROC (INT) INT b) REAL: BEGIN

 REAL result;
 result := 0;
 FOR n FROM steps BY -1 TO 1 DO
     result := b(n) / (a(n) + result)
 OD;
 a(0) + result

END;

PROC asqr2 = (INT n) INT: (n = 0 | 1 | 2); PROC bsqr2 = (INT n) INT: 1;

PROC anap = (INT n) INT: (n = 0 | 2 | n); PROC bnap = (INT n) INT: (n = 1 | 1 | n - 1);

PROC api = (INT n) INT: (n = 0 | 3 | 6); PROC bpi = (INT n) INT: (n = 1 | 1 | (2 * n - 1) ** 2);

INT precision = 10000;

print (("Precision: ", precision, newline)); print (("Sqr(2): ", cf(precision, asqr2, bsqr2), newline)); print (("Napier: ", cf(precision, anap, bnap), newline)); print (("Pi: ", cf(precision, api, bpi))) </lang>

Output:
 
Precision:      +10000
Sqr(2):    +1.41421356237310e  +0
Napier:    +2.71828182845905e  +0
Pi:        +3.14159265358954e  +0

ATS

A fairly direct translation of the C version without using advanced features of the type system: <lang ATS>#include "share/atspre_staload.hats" // (* ****** ****** *) // (*

    • a coefficient function creates double values from in paramters
  • )

typedef coeff_f = int -> double // (*

    • a continued fraction is described by a record of two coefficent
    • functions a and b
  • )

typedef frac = @{a= coeff_f, b= coeff_f} // (* ****** ****** *)

fun calc (

 f: frac, n: int

) : double = let // (*

    • recursive definition of the approximation
  • )

fun loop (

 n: int, r: double

) : double = ( if n = 0

 then f.a(0) + r
 else loop (n - 1, f.b(n) / (f.a(n) + r))

// end of [if] ) // in

 loop (n, 0.0)

end // end of [calc]

(* ****** ****** *)

val sqrt2 = @{

 a= lam (n: int): double => if n = 0 then 1.0 else 2.0

,

 b= lam (n: int): double => 1.0

} (* end of [val] *)

val napier = @{

 a= lam (n: int): double => if n = 0 then 2.0 else 1.0 * n

,

 b= lam (n: int): double => if n = 1 then 1.0 else n - 1.0

} (* end of [val] *)

val pi = @{

 a= lam (n: int): double => if n = 0 then 3.0 else 6.0

,

 b= lam (n: int): double => let val x = 2.0 * n - 1 in x * x end

}

(* ****** ****** *)

implement main0 () = (

 println! ("sqrt2  = ", calc(sqrt2,  100));
 println! ("napier = ", calc(napier, 100));
 println! ("  pi   = ", calc(  pi  , 100));

) (* end of [main0] *)</lang>

AutoHotkey

<lang AutoHotkey>sqrt2_a(n) ; function definition is as simple as that { return n?2.0:1.0 }

sqrt2_b(n) { return 1.0 }

napier_a(n) { return n?n:2.0 }

napier_b(n) { return n>1.0?n-1.0:1.0 }

pi_a(n) { return n?6.0:3.0 }

pi_b(n) { return (2.0*n-1.0)**2.0 ; exponentiation operator }

calc(f,expansions) { r:=0,i:=expansions

A nasty trick
the names of the two coefficient functions are generated dynamically
a dot surrounded by spaces means string concatenation

f_a:=f . "_a",f_b:=f . "_b"

while i>0 {

You can see two dynamic function calls here

r:=%f_b%(i)/(%f_a%(i)+r) i-- }

return %f_a%(0)+r }

Msgbox, % "sqrt 2 = " . calc("sqrt2", 1000) . "`ne = " . calc("napier", 1000) . "`npi = " . calc("pi", 1000)</lang> Output with Autohotkey v1 (currently 1.1.16.05): <lang AutoHotkey>sqrt 2 = 1.414214 e = 2.718282 pi = 3.141593</lang> Output with Autohotkey v2 (currently alpha 56): <lang AutoHotkey>sqrt 2 = 1.4142135623730951 e = 2.7182818284590455 pi = 3.1415926533405418</lang> Note the far superiour accuracy of v2.

Axiom

Axiom provides a ContinuedFraction domain: <lang Axiom>get(obj) == convergents(obj).1000 -- utility to extract the 1000th value get continuedFraction(1, repeating [1], repeating [2]) :: Float get continuedFraction(2, cons(1,[i for i in 1..]), [i for i in 1..]) :: Float get continuedFraction(3, [i^2 for i in 1.. by 2], repeating [6]) :: Float</lang> Output:<lang Axiom> (1) 1.4142135623 730950488

                                                                 Type: Float
  (2)  2.7182818284 590452354
                                                                 Type: Float
  (3)  3.1415926538 39792926
                                                                 Type: Float</lang>

The value for has an accuracy to only 9 decimal places after 1000 iterations, with an accuracy to 12 decimal places after 10000 iterations.

We could re-implement this, with the same output: <lang Axiom>cf(initial, a, b, n) ==

 n=1 => initial
 temp := 0
 for i in (n-1)..1 by -1 repeat
   temp := a.i/(b.i+temp)
 initial+temp

cf(1, repeating [1], repeating [2], 1000) :: Float cf(2, cons(1,[i for i in 1..]), [i for i in 1..], 1000) :: Float cf(3, [i^2 for i in 1.. by 2], repeating [6], 1000) :: Float</lang>

BBC BASIC

<lang bbcbasic> *FLOAT64

     @% = &1001010
     
     PRINT "SQR(2) = " ; FNcontfrac(1, 1, "2", "1")
     PRINT "     e = " ; FNcontfrac(2, 1, "N", "N")
     PRINT "    PI = " ; FNcontfrac(3, 1, "6", "(2*N+1)^2")
     END
     
     REM a$ and b$ are functions of N
     DEF FNcontfrac(a0, b1, a$, b$)
     LOCAL N, expr$
     REPEAT
       N += 1
       expr$ += STR$(EVAL(a$)) + "+" + STR$(EVAL(b$)) + "/("
     UNTIL LEN(expr$) > (65500 - N)
     = a0 + b1 / EVAL (expr$ + "1" + STRING$(N, ")"))</lang>
Output:
SQR(2) = 1.414213562373095
     e = 2.718281828459046
    PI = 3.141592653588017

C

Works with: ANSI C

<lang c>/* calculate approximations for continued fractions */

  1. include <stdio.h>

/* kind of function that returns a series of coefficients */ typedef double (*coeff_func)(unsigned n);

/* calculates the specified number of expansions of the continued fraction

* described by the coefficient series f_a and f_b */

double calc(coeff_func f_a, coeff_func f_b, unsigned expansions) { double a, b, r; a = b = r = 0.0;

unsigned i; for (i = expansions; i > 0; i--) { a = f_a(i); b = f_b(i); r = b / (a + r); } a = f_a(0);

return a + r; }

/* series for sqrt(2) */ double sqrt2_a(unsigned n) { return n ? 2.0 : 1.0; }

double sqrt2_b(unsigned n) { return 1.0; }

/* series for the napier constant */ double napier_a(unsigned n) { return n ? n : 2.0; }

double napier_b(unsigned n) { return n > 1.0 ? n - 1.0 : 1.0; }

/* series for pi */ double pi_a(unsigned n) { return n ? 6.0 : 3.0; }

double pi_b(unsigned n) { double c = 2.0 * n - 1.0;

return c * c; }

int main(void) { double sqrt2, napier, pi;

sqrt2 = calc(sqrt2_a, sqrt2_b, 1000); napier = calc(napier_a, napier_b, 1000); pi = calc(pi_a, pi_b, 1000);

printf("%12.10g\n%12.10g\n%12.10g\n", sqrt2, napier, pi);

return 0; }</lang>

Output:
 1.414213562
 2.718281828
 3.141592653

C#

Translation of: Java

<lang csharp>using System; using System.Collections.Generic;

namespace ContinuedFraction {

   class Program {
       static double Calc(Func<int, int[]> f, int n) {
           double temp = 0.0;
           for (int ni = n; ni >= 1; ni--) {
               int[] p = f(ni);
               temp = p[1] / (p[0] + temp);
           }
           return f(0)[0] + temp;
       }
       static void Main(string[] args) {
           List<Func<int, int[]>> fList = new List<Func<int, int[]>>();
           fList.Add(n => new int[] { n > 0 ? 2 : 1, 1 });
           fList.Add(n => new int[] { n > 0 ? n : 2, n > 1 ? (n - 1) : 1 });
           fList.Add(n => new int[] { n > 0 ? 6 : 3, (int) Math.Pow(2 * n - 1, 2) });
           foreach (var f in fList) {
               Console.WriteLine(Calc(f, 200));
           }
       }
   }

}</lang>

Output:
1.4142135623731
2.71828182845905
3.14159262280485

C++

<lang cpp>#include <iomanip>

  1. include <iostream>
  2. include <tuple>

typedef std::tuple<double,double> coeff_t; // coefficients type typedef coeff_t (*func_t)(int); // callback function type

double calc(func_t func, int n) {

   double a, b, temp = 0;
   for (; n > 0; --n) {
       std::tie(a, b) = func(n);
       temp = b / (a + temp);
   }
   std::tie(a, b) = func(0);
   return a + temp;

}

coeff_t sqrt2(int n) {

   return coeff_t(n > 0 ? 2 : 1, 1);

}

coeff_t napier(int n) {

   return coeff_t(n > 0 ? n : 2, n > 1 ? n - 1 : 1);

}

coeff_t pi(int n) {

   return coeff_t(n > 0 ? 6 : 3, (2 * n - 1) * (2 * n - 1));

}

int main() {

   std::streamsize old_prec = std::cout.precision(15); // set output digits
   std::cout 
       << calc(sqrt2, 20) << '\n'
       << calc(napier, 15) << '\n'
       << calc(pi, 10000) << '\n'
       << std::setprecision(old_prec); // reset precision

}</lang>

Output:
1.41421356237309
2.71828182845905
3.14159265358954

Chapel

Functions don't take other functions as arguments, so I wrapped them in a dummy record each. <lang chapel>proc calc(f, n) {

       var r = 0.0;
       for k in 1..n by -1 {
               var v = f.pair(k);
               r = v(2) / (v(1) + r);
       }
       return f.pair(0)(1) + r;

}

record Sqrt2 {

       proc pair(n) {
               return (if n == 0 then 1 else 2, 
                       1);
       }

}

record Napier {

       proc pair(n) {
               return (if n == 0 then 2 else n,
                       if n == 1 then 1 else n - 1);
       }

} record Pi {

       proc pair(n) {
               return (if n == 0 then 3 else 6,
                       (2*n - 1)**2);
       }

}

config const n = 200; writeln(calc(new Sqrt2(), n)); writeln(calc(new Napier(), n)); writeln(calc(new Pi(), n));</lang>

Clojure

<lang clojure> (defn cfrac

 [a b n]
 (letfn [(cfrac-iter x k [(+ (a k) (/ (b (inc k)) x)) (dec k)])]
   (ffirst (take 1 (drop (inc n) (iterate cfrac-iter [1 n]))))))

(def sq2 (cfrac #(if (zero? %) 1.0 2.0) (constantly 1.0) 100)) (def e (cfrac #(if (zero? %) 2.0 %) #(if (= 1 %) 1.0 (double (dec %))) 100)) (def pi (cfrac #(if (zero? %) 3.0 6.0) #(let [x (- (* 2.0 %) 1.0)] (* x x)) 900000)) </lang>

Output:
user=> sq2 e pi
1.4142135623730951
2.7182818284590455
3.141592653589793

COBOL

Works with: GnuCOBOL

<lang COBOL> identification division.

      program-id. show-continued-fractions.
      environment division.
      configuration section.
      repository.
          function continued-fractions
          function all intrinsic.
      procedure division.
      fractions-main.
      display "Square root 2 approximately   : "
              continued-fractions("sqrt-2-alpha", "sqrt-2-beta", 100)
      display "Napier constant approximately : "
              continued-fractions("napier-alpha", "napier-beta", 40)
      display "Pi approximately              : "
              continued-fractions("pi-alpha", "pi-beta", 10000)
      goback.
      end program show-continued-fractions.
     *> **************************************************************
      identification division.
      function-id. continued-fractions.
     
      data division.
      working-storage section.
      01 alpha-function       usage program-pointer.
      01 beta-function        usage program-pointer.
      01 alpha                usage float-long.
      01 beta                 usage float-long.
      01 running              usage float-long.
      01 i                    usage binary-long.
      linkage section.
      01 alpha-name           pic x any length.
      01 beta-name            pic x any length.
      01 iterations           pic 9 any length.
      01 approximation        usage float-long.
      procedure division using
          alpha-name beta-name iterations
          returning approximation.
      set alpha-function to entry alpha-name
      if alpha-function = null then
          display "error: no " alpha-name " function" upon syserr
          goback
      end-if
      set beta-function to entry beta-name
      if beta-function = null then
          display "error: no " beta-name " function" upon syserr
          goback
      end-if
      move 0 to alpha beta running
      perform varying i from iterations by -1 until i = 0
          call alpha-function using i returning alpha
          call beta-function using i returning beta
          compute running = beta / (alpha + running)
      end-perform
      call alpha-function using 0 returning alpha
      compute approximation = alpha + running
      goback.
      end function continued-fractions.
     *> ******************************
      identification division.
      program-id. sqrt-2-alpha.
      data division.
      working-storage section.
      01 result               usage float-long.
      linkage section.
      01 iteration            usage binary-long unsigned.
      procedure division using iteration returning result.
      if iteration equal 0 then
          move 1.0 to result
      else
          move 2.0 to result
      end-if
      goback.
      end program sqrt-2-alpha.
     *> ******************************
      identification division.
      program-id. sqrt-2-beta.
      data division.
      working-storage section.
      01 result               usage float-long.
      linkage section.
      01 iteration            usage binary-long unsigned.
      procedure division using iteration returning result.
      move 1.0 to result
      goback.
      end program sqrt-2-beta.
     *> ******************************
      identification division.
      program-id. napier-alpha.
      data division.
      working-storage section.
      01 result               usage float-long.
      linkage section.
      01 iteration            usage binary-long unsigned.
      procedure division using iteration returning result.
      if iteration equal 0 then
          move 2.0 to result
      else
          move iteration to result
      end-if
      goback.
      end program napier-alpha.
     *> ******************************
      identification division.
      program-id. napier-beta.
      data division.
      working-storage section.
      01 result               usage float-long.
      linkage section.
      01 iteration            usage binary-long unsigned.
      procedure division using iteration returning result.
      if iteration = 1 then
          move 1.0 to result
      else
          compute result = iteration - 1.0
      end-if
      goback.
      end program napier-beta.
     *> ******************************
      identification division.
      program-id. pi-alpha.
      data division.
      working-storage section.
      01 result               usage float-long.
      linkage section.
      01 iteration            usage binary-long unsigned.
      procedure division using iteration returning result.
      if iteration equal 0 then
          move 3.0 to result
      else
          move 6.0 to result
      end-if
      goback.
      end program pi-alpha.
     *> ******************************
      identification division.
      program-id. pi-beta.
      data division.
      working-storage section.
      01 result               usage float-long.
      linkage section.
      01 iteration            usage binary-long unsigned.
      procedure division using iteration returning result.
      compute result = (2 * iteration - 1) ** 2
      goback.
      end program pi-beta.

</lang>

Output:
prompt$ cobc -xj continued-fractions.cob
Square root 2 approximately   : 1.414213562373095
Napier constant approximately : 2.718281828459045
Pi approximately              : 3.141592653589543

CoffeeScript

<lang coffeescript># Compute a continuous fraction of the form

  1. a0 + b1 / (a1 + b2 / (a2 + b3 / ...

continuous_fraction = (f) ->

 a = f.a
 b = f.b
 c = 1
 for n in [100000..1]
   c = b(n) / (a(n) + c)
 a(0) + c
  1. A little helper.

p = (a, b) ->

 console.log a
 console.log b
 console.log "---"

do ->

 fsqrt2 =
   a: (n) -> if n is 0 then 1 else 2
   b: (n) -> 1
 p Math.sqrt(2), continuous_fraction(fsqrt2)
 fnapier =
   a: (n) -> if n is 0 then 2 else n
   b: (n) -> if n is 1 then 1 else n - 1
 p Math.E, continuous_fraction(fnapier)
 fpi =
   a: (n) ->
     return 3 if n is 0
     6
   b: (n) ->
     x = 2*n - 1
     x * x
 p Math.PI, continuous_fraction(fpi)</lang>
Output:
> coffee continued_fraction.coffee 
1.4142135623730951
1.4142135623730951
---
2.718281828459045
2.7182818284590455
---
3.141592653589793
3.141592653589793
---

Common Lisp

Translation of: C++

<lang lisp>(defun estimate-continued-fraction (generator n)

 (let ((temp 0))
   (loop for n1 from n downto 1
      do (multiple-value-bind (a b) 

(funcall generator n1) (setf temp (/ b (+ a temp)))))

   (+ (funcall generator 0) temp)))

(format t "sqrt(2) = ~a~%" (coerce (estimate-continued-fraction (lambda (n) (values (if (> n 0) 2 1) 1)) 20) 'double-float)) (format t "napier's = ~a~%" (coerce (estimate-continued-fraction (lambda (n) (values (if (> n 0) n 2) (if (> n 1) (1- n) 1))) 15) 'double-float))

(format t "pi = ~a~%" (coerce (estimate-continued-fraction (lambda (n) (values (if (> n 0) 6 3) (* (1- (* 2 n)) (1- (* 2 n))))) 10000) 'double-float))</lang>

Output:
sqrt(2) = 1.4142135623730947d0
napier's = 2.7182818284590464d0
pi = 3.141592653589543d0

D

<lang d>import std.stdio, std.functional, std.traits;

FP calc(FP, F)(in F fun, in int n) pure nothrow if (isCallable!F) {

   FP temp = 0;
   foreach_reverse (immutable ni; 1 .. n + 1) {
       immutable p = fun(ni);
       temp = p[1] / (FP(p[0]) + temp);
   }
   return fun(0)[0] + temp;

}

int[2] fSqrt2(in int n) pure nothrow {

   return [n > 0 ? 2 : 1,   1];

}

int[2] fNapier(in int n) pure nothrow {

   return [n > 0 ? n : 2,   n > 1 ? (n - 1) : 1];

}

int[2] fPi(in int n) pure nothrow {

   return [n > 0 ? 6 : 3,   (2 * n - 1) ^^ 2];

}

alias print = curry!(writefln, "%.19f");

void main() {

   calc!real(&fSqrt2, 200).print;
   calc!real(&fNapier, 200).print;
   calc!real(&fPi, 200).print;

}</lang>

Output:
1.4142135623730950487
2.7182818284590452354
3.1415926228048469486

Erlang

<lang erlang> -module(continued). -compile([export_all]).

pi_a (0) -> 3; pi_a (_N) -> 6.

pi_b (N) ->

   (2*N-1)*(2*N-1).

sqrt2_a (0) ->

   1;

sqrt2_a (_N) ->

   2.

sqrt2_b (_N) ->

   1.

nappier_a (0) ->

   2;

nappier_a (N) ->

   N.

nappier_b (1) ->

   1;

nappier_b (N) ->

   N-1.

continued_fraction(FA,_FB,0) -> FA(0); continued_fraction(FA,FB,N) ->

   continued_fraction(FA,FB,N-1,FB(N)/FA(N)).

continued_fraction(FA,_FB,0,Acc) -> FA(0) + Acc; continued_fraction(FA,FB,N,Acc) ->

   continued_fraction(FA,FB,N-1,FB(N)/ (FA(N) + Acc)).

test_pi (N) ->

   continued_fraction(fun pi_a/1,fun pi_b/1,N).                                                                                                                                                                                                                                                                              

test_sqrt2 (N) ->

   continued_fraction(fun sqrt2_a/1,fun sqrt2_b/1,N).

test_nappier (N) ->

   continued_fraction(fun nappier_a/1,fun nappier_b/1,N).

</lang>

Output:

<lang erlang> 29> continued:test_pi(1000). 3.141592653340542 30> continued:test_sqrt2(1000). 1.4142135623730951 31> continued:test_nappier(1000). 2.7182818284590455 </lang>

F#

The Functions

<lang fsharp> // I provide four functions:- // cf2S general purpose continued fraction to sequence of float approximations // cN2S Normal continued fractions (a-series always 1) // cfSqRt uses cf2S to calculate sqrt of float // π takes a sequence of b values returning the next until the list is exhausted after which it injects infinity // Nigel Galloway: December 19th., 2018 let cf2S α β=let n0,g1,n1,g2=β(),α(),β(),β()

            seq{let (Π:decimal)=g1/n1 in yield n0+Π; yield! Seq.unfold(fun(n,g,Π)->let a,b=α(),β() in let Π=Π*g/n in Some(n0+Π,(b+a/n,b+a/g,Π)))(g2+α()/n1,g2,Π)}

let cN2S = cf2S (fun()->1M) let cfSqRt n=(cf2S (fun()->n-1M) (let mutable n=false in fun()->if n then 2M else (n<-true; 1M))) let π n=let mutable π=n in (fun ()->match π with h::t->π<-t; h |_->9999999999999999999999999999M) </lang>

The Tasks

<lang fsharp> cfSqRt 2M |> Seq.take 10 |> Seq.pairwise |> Seq.iter(fun(n,g)->printfn "%1.14f < √2 < %1.14f" (min n g) (max n g)) </lang>

Output:
1.40000000000000 < √2 < 1.50000000000000
1.40000000000000 < √2 < 1.41666666666667
1.41379310344828 < √2 < 1.41666666666667
1.41379310344828 < √2 < 1.41428571428571
1.41420118343195 < √2 < 1.41428571428571
1.41420118343195 < √2 < 1.41421568627451
1.41421319796954 < √2 < 1.41421568627451
1.41421319796954 < √2 < 1.41421362489487
1.41421355164605 < √2 < 1.41421362489487

<lang fsharp> cfSqRt 0.25M |> Seq.take 30 |> Seq.iter (printfn "%1.14f") </lang>

Output:
0.62500000000000
0.53846153846154
0.51250000000000
0.50413223140496
0.50137362637363
0.50045745654163
0.50015243902439
0.50005080784473
0.50001693537461
0.50000564506114
0.50000188167996
0.50000062722587
0.50000020907520
0.50000006969172
0.50000002323057
0.50000000774352
0.50000000258117
0.50000000086039
0.50000000028680
0.50000000009560
0.50000000003187
0.50000000001062
0.50000000000354
0.50000000000118
0.50000000000039
0.50000000000013
0.50000000000004
0.50000000000001
0.50000000000000
0.50000000000000

<lang fsharp> let aπ()=let mutable n=0M in (fun ()->n<-n+1M;let b=n+n-1M in b*b) let bπ()=let mutable n=true in (fun ()->match n with true->n<-false;3M |_->6M) cf2S (aπ()) (bπ()) |> Seq.take 10 |> Seq.pairwise |> Seq.iter(fun(n,g)->printfn "%1.14f < π < %1.14f" (min n g) (max n g)) </lang>

Output:
3.13333333333333 < π < 3.16666666666667
3.13333333333333 < π < 3.14523809523810
3.13968253968254 < π < 3.14523809523810
3.13968253968254 < π < 3.14271284271284
3.14088134088134 < π < 3.14271284271284
3.14088134088134 < π < 3.14207181707182
3.14125482360776 < π < 3.14207181707182
3.14125482360776 < π < 3.14183961892940
3.14140671849650 < π < 3.14183961892940

<lang fsharp> let pi = π [3M;7M;15M;1M;292M;1M;1M;1M;2M;1M;3M;1M;14M;2M;1M;1M;2M;2M;2M;2M] cN2S pi |> Seq.take 10 |> Seq.pairwise |> Seq.iter(fun(n,g)->printfn "%1.14f < π < %1.14f" (min n g) (max n g)) </lang>

Output:
3.14150943396226 < π < 3.14285714285714
3.14150943396226 < π < 3.14159292035398
3.14159265301190 < π < 3.14159292035398
3.14159265301190 < π < 3.14159265392142
3.14159265346744 < π < 3.14159265392142
3.14159265346744 < π < 3.14159265361894
3.14159265358108 < π < 3.14159265361894
3.14159265358108 < π < 3.14159265359140
3.14159265358939 < π < 3.14159265359140

<lang fsharp> let ae()=let mutable n=0.5M in (fun ()->match n with 0.5M->n<-0M; 1M |_->n<-n+1M; n) let be()=let mutable n=0.5M in (fun ()->match n with 0.5M->n<-0M; 2M |_->n<-n+1M; n) cf2S (ae()) (be()) |> Seq.take 10 |> Seq.pairwise |> Seq.iter(fun(n,g)->printfn "%1.14f < e < %1.14f" (min n g) (max n g)) </lang>

Output:
2.66666666666667 < e < 3.00000000000000
2.66666666666667 < e < 2.72727272727273
2.71698113207547 < e < 2.72727272727273
2.71698113207547 < e < 2.71844660194175
2.71826333176026 < e < 2.71844660194175
2.71826333176026 < e < 2.71828369389345
2.71828165766640 < e < 2.71828369389345
2.71828165766640 < e < 2.71828184277783
2.71828182735187 < e < 2.71828184277783

Factor

cfrac-estimate uses rational arithmetic and never truncates the intermediate result. When terms is large, cfrac-estimate runs slow because numerator and denominator grow big. <lang factor>USING: arrays combinators io kernel locals math math.functions

 math.ranges prettyprint sequences ;

IN: rosetta.cfrac

! Every continued fraction must implement these two words. GENERIC: cfrac-a ( n cfrac -- a ) GENERIC: cfrac-b ( n cfrac -- b )

! square root of 2 SINGLETON: sqrt2 M: sqrt2 cfrac-a

   ! If n is 1, then a_n is 1, else a_n is 2.
   drop { { 1 [ 1 ] } [ drop 2 ] } case ;

M: sqrt2 cfrac-b

   ! Always b_n is 1.
   2drop 1 ;

! Napier's constant SINGLETON: napier M: napier cfrac-a

   ! If n is 1, then a_n is 2, else a_n is n - 1. 
   drop { { 1 [ 2 ] } [ 1 - ] } case ;

M: napier cfrac-b

   ! If n is 1, then b_n is 1, else b_n is n - 1.
   drop { { 1 [ 1 ] } [ 1 - ] } case ;

SINGLETON: pi M: pi cfrac-a

   ! If n is 1, then a_n is 3, else a_n is 6.
   drop { { 1 [ 3 ] } [ drop 6 ] } case ;

M: pi cfrac-b

   ! Always b_n is (n * 2 - 1)^2.
   drop 2 * 1 - 2 ^ ;
cfrac-estimate ( cfrac terms -- number )
   terms cfrac cfrac-a             ! top = last a_n
   terms 1 - 1 [a,b] [ :> n
       n cfrac cfrac-b swap /      ! top = b_n / top
       n cfrac cfrac-a +           ! top = top + a_n
   ] each ;
decimalize ( rational prec -- string )
   rational 1 /mod             ! split whole, fractional parts
   prec 10^ *                  ! multiply fraction by 10 ^ prec
   [ >integer unparse ] bi@    ! convert digits to strings
   :> fraction
   "."                         ! push decimal point
   prec fraction length -
   dup 0 < [ drop 0 ] when
   "0" <repetition> concat     ! push padding zeros
   fraction 4array concat ;

<PRIVATE

main ( -- )
   " Square root of 2: " write
   sqrt2 50 cfrac-estimate 30 decimalize print
   "Napier's constant: " write
   napier 50 cfrac-estimate 30 decimalize print
   "               Pi: " write
   pi 950 cfrac-estimate 10 decimalize print ;

PRIVATE>

MAIN: main</lang>

Output:
 Square root of 2: 1.414213562373095048801688724209
Napier's constant: 2.718281828459045235360287471352
               Pi: 3.1415926538

Felix

<lang felix>fun pi (n:int) : (double*double) =>

   let a = match n with | 0 => 3.0 | _ => 6.0 endmatch in 
   let b = pow(2.0 * n.double - 1.0, 2.0) in
   (a,b);

fun sqrt_2 (n:int) : (double*double) =>

   let a = match n with | 0 => 1.0 | _ => 2.0 endmatch in
   let b = 1.0 in
   (a,b);

fun napier (n:int) : (double*double) =>

   let a = match n with | 0 => 2.0 | _ => n.double endmatch in
   let b = match n with | 1 => 1.0 | _ => (n.double - 1.0) endmatch in
   (a,b);

fun cf_iter (steps:int) (f:int -> double*double) = {

   var acc = 0.0;
   for var n in steps downto 0 do
       var a, b = f(n);
       acc = if (n > 0) then (b / (a + acc)) else (acc + a);
   done
   return acc;

}

println$ cf_iter 200 sqrt_2; // => 1.41421 println$ cf_iter 200 napier; // => 2.71818 println$ cf_iter 1000 pi; // => 3.14159</lang>

Forth

Translation of: D

<lang forth>: fsqrt2 1 s>f 0> if 2 s>f else fdup then ;

fnapier dup dup 1 > if 1- else drop 1 then s>f dup 1 < if drop 2 then s>f ;
fpi dup 2* 1- dup * s>f 0> if 6 else 3 then s>f ;
                                      ( n -- f1 f2)
cont.fraction ( xt n -- f)
 1 swap 1+ 0 s>f                      \ calculate for 1 .. n
 do i over execute frot f+ f/ -1 +loop
 0 swap execute fnip f+               \ calcucate for 0
</lang>
Output:
' fsqrt2  200 cont.fraction f. cr 1.4142135623731
 ok
' fnapier 200 cont.fraction f. cr 2.71828182845905
 ok
' fpi     200 cont.fraction f. cr 3.14159268391981
 ok

Fortran

<lang Fortran>module continued_fractions

 implicit none
 
 integer, parameter :: long = selected_real_kind(7,99)
 type continued_fraction
   integer                            :: a0, b1
   procedure(series), pointer, nopass :: a, b
 end type
 interface
   pure function series (n)
     integer, intent(in) :: n
     integer             :: series
   end function
 end interface

contains

 pure function define_cf (a0,a,b1,b) result(x)
   integer, intent(in)           :: a0
   procedure(series)             :: a
   integer, intent(in), optional :: b1
   procedure(series),   optional :: b
   type(continued_fraction)      :: x
   x%a0 = a0
   x%a => a
   if ( present(b1) ) then
      x%b1 = b1
   else
      x%b1 = 1
   end if
   if ( present(b) ) then
      x%b => b
   else
      x%b => const_1
   end if
 end function define_cf
 pure integer function const_1(n)
   integer,intent(in) :: n
   const_1 = 1  
 end function
 pure real(kind=long) function output(x,iterations)
   type(continued_fraction), intent(in) :: x
   integer,                  intent(in) :: iterations
   integer                              :: i
   output = x%a(iterations)
   do i = iterations-1,1,-1
     output = x%a(i) + (x%b(i+1) / output)
   end do
   output = x%a0 + (x%b1 / output)
 end function output
 

end module continued_fractions


program examples

 use continued_fractions
 type(continued_fraction) :: sqr2,napier,pi
 sqr2   = define_cf(1,a_sqr2)
 napier = define_cf(2,a_napier,1,b_napier)
 pi     = define_cf(3,a=a_pi,b=b_pi)
 write (*,*) output(sqr2,10000)
 write (*,*) output(napier,10000)
 write (*,*) output(pi,10000)

contains

 pure integer function a_sqr2(n)
   integer,intent(in) :: n
   a_sqr2 = 2
 end function
 pure integer function a_napier(n)
   integer,intent(in) :: n
   a_napier = n
 end function
 pure integer function b_napier(n)
   integer,intent(in) :: n
   b_napier = n-1
 end function
 pure integer function a_pi(n)
   integer,intent(in) :: n
   a_pi = 6
 end function
 pure integer function b_pi(n)
   integer,intent(in) :: n
   b_pi = (2*n-1)*(2*n-1)
 end function

end program examples</lang>

Output:
   1.4142135623730951
   2.7182818284590455
   3.1415926535895435

FreeBASIC

<lang freebasic>#define MAX 70000

function sqrt2_a( n as uinteger ) as uinteger

   return iif(n,2,1)

end function

function sqrt2_b( n as uinteger ) as uinteger

   return 1

end function

function napi_a( n as uinteger ) as uinteger

  return iif(n,n,2)

end function

function napi_b( n as uinteger ) as uinteger

  return iif(n>1,n-1,1)

end function

function pi_a( n as uinteger ) as uinteger

   return iif(n,6,3)

end function

function pi_b( n as uinteger ) as uinteger

   return (2*n-1)^2

end function

function calc_contfrac( an as function (as uinteger) as uinteger, bn as function (as uinteger) as uinteger, byval iter as uinteger ) as double

   dim as double r
   dim as integer i
   for i = iter to 1 step -1
       r = bn(i)/(an(i)+r)
   next i
   return an(0)+r

end function

print calc_contfrac( @sqrt2_a, @sqrt2_b, MAX ) print calc_contfrac( @napi_a, @napi_b, MAX ) print calc_contfrac( @pi_a, @pi_b, MAX )</lang>

Fōrmulæ

In this page you can see the solution of this task.

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text (more info). Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for transportation effects more than visualization and edition.

The option to show Fōrmulæ programs and their results is showing images. Unfortunately images cannot be uploaded in Rosetta Code.

Go

<lang go>package main

import "fmt"

type cfTerm struct {

   a, b int

}

// follows subscript convention of mathworld and WP where there is no b(0). // cf[0].b is unused in this representation. type cf []cfTerm

func cfSqrt2(nTerms int) cf {

   f := make(cf, nTerms)
   for n := range f {
       f[n] = cfTerm{2, 1}
   }
   f[0].a = 1
   return f

}

func cfNap(nTerms int) cf {

   f := make(cf, nTerms)
   for n := range f {
       f[n] = cfTerm{n, n - 1}
   }
   f[0].a = 2
   f[1].b = 1
   return f

}

func cfPi(nTerms int) cf {

   f := make(cf, nTerms)
   for n := range f {
       g := 2*n - 1
       f[n] = cfTerm{6, g * g}
   }
   f[0].a = 3
   return f

}

func (f cf) real() (r float64) {

   for n := len(f) - 1; n > 0; n-- {
       r = float64(f[n].b) / (float64(f[n].a) + r)
   }
   return r + float64(f[0].a)

}

func main() {

   fmt.Println("sqrt2:", cfSqrt2(20).real())
   fmt.Println("nap:  ", cfNap(20).real())
   fmt.Println("pi:   ", cfPi(20).real())

}</lang>

Output:
sqrt2: 1.4142135623730965
nap:   2.7182818284590455
pi:    3.141623806667839

Haskell

<lang haskell>import Data.List (unfoldr) import Data.Char (intToDigit)

-- continued fraction represented as a (possibly infinite) list of pairs sqrt2, napier, myPi :: [(Integer, Integer)] sqrt2 = zip (1 : [2,2..]) [1,1..] napier = zip (2 : [1..]) (1 : [1..]) myPi = zip (3 : [6,6..]) (map (^2) [1,3..])

-- approximate a continued fraction after certain number of iterations approxCF :: (Integral a, Fractional b) => Int -> [(a, a)] -> b approxCF t =

 foldr (\(a,b) z -> fromIntegral a + fromIntegral b / z) 1 . take t

-- infinite decimal representation of a real number decString :: RealFrac a => a -> String decString frac = show i ++ '.' : decString' f where

 (i,f) = properFraction frac
 decString' = map intToDigit . unfoldr (Just . properFraction . (10*))

main :: IO () main = mapM_ (putStrLn . take 200 . decString .

             (approxCF 950 :: [(Integer, Integer)] -> Rational))
            [sqrt2, napier, myPi]</lang>
Output:
1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641572735013846230912297024924836055850737212644121497099935831413222665927505592755799950501152782060571
2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921817413596629043572900334295260595630738132328627943490763233829880753195251019
3.141592653297590947683406834261190738869139611505752231394089152890909495973464508817163306557131591579057202097715021166512662872910519439747609829479577279606075707015622200744006783543589980682386

<lang haskell>import Data.Ratio

-- ignoring the task-given pi sequence: sucky convergence -- pie = zip (3:repeat 6) (map (^2) [1,3..])

pie = zip (0:[1,3..]) (4:map (^2) [1..]) sqrt2 = zip (1:repeat 2) (repeat 1) napier = zip (2:[1..]) (1:[1..])

-- truncate after n terms cf2rat n = foldr (\(a,b) f -> (a%1) + ((b%1) / f)) (1%1) . take n

-- truncate after error is at most 1/p cf2rat_p p s = f $ map (\i -> (cf2rat i s, cf2rat (1+i) s)) $ map (2^) [0..] where f ((x,y):ys) = if abs (x-y) < (1/fromIntegral p) then x else f ys

-- returns a decimal string of n digits after the dot; all digits should -- be correct (doesn't mean it's the best approximation! the decimal -- string is simply truncated to given digits: pi=3.141 instead of 3.142) cf2dec n = (ratstr n) . cf2rat_p (10^n) where ratstr l a = (show t) ++ '.':fracstr l n d where d = denominator a (t, n) = quotRem (numerator a) d fracstr 0 _ _ = [] fracstr l n d = (show t)++ fracstr (l-1) n1 d where (t,n1) = quotRem (10 * n) d

main = do putStrLn $ cf2dec 200 sqrt2 putStrLn $ cf2dec 200 napier putStrLn $ cf2dec 200 pie</lang>

J

<lang J> cfrac=: +`% / NB. Evaluate a list as a continued fraction

  sqrt2=: cfrac 1 1,200$2 1x
  pi=:cfrac 3, , ,&6"0 *:<:+:>:i.100x
  e=: cfrac 2 1, , ,~"0 >:i.100x
  NB. translate from fraction to decimal string
  NB. translated from factor
  dec =: (-@:[ (}.,'.',{.) ":@:<.@:(* 10x&^)~)"0
  100 10 100 dec sqrt2, pi, e

1.4142135623730950488016887242096980785696718753769480731766797379907324784621205551109457595775322165 3.1415924109 2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274</lang>

Note that there are two kinds of continued fractions. The kind here where we alternate between a and b values, but in some other tasks b is always 1 (and not included in the list we use to represent the continued fraction). The other kind is evaluated in J using (+%)/ instead of +`%/.

Java

Translation of: D
Works with: Java version 8

<lang java>import static java.lang.Math.pow; import java.util.*; import java.util.function.Function;

public class Test {

   static double calc(Function<Integer, Integer[]> f, int n) {
       double temp = 0;
       for (int ni = n; ni >= 1; ni--) {
           Integer[] p = f.apply(ni);
           temp = p[1] / (double) (p[0] + temp);
       }
       return f.apply(0)[0] + temp;
   }
   public static void main(String[] args) {
       List<Function<Integer, Integer[]>> fList = new ArrayList<>();
       fList.add(n -> new Integer[]{n > 0 ? 2 : 1, 1});
       fList.add(n -> new Integer[]{n > 0 ? n : 2, n > 1 ? (n - 1) : 1});
       fList.add(n -> new Integer[]{n > 0 ? 6 : 3, (int) pow(2 * n - 1, 2)});
       for (Function<Integer, Integer[]> f : fList)
           System.out.println(calc(f, 200));
   }

}</lang>

1.4142135623730951
2.7182818284590455
3.141592622804847

jq

Works with: jq version 1.4

We take one of the points of interest here to be the task of representing the infinite series a0, a1, .... and b0, b1, .... compactly, preferably functionally. For the type of series typically encountered in continued fractions, this is most readily accomplished in jq 1.4 using a filter (a function), here called "next", which, given the triple [i, [a[i], b[i]], will produce the next triple [i+1, a[i+1], b[i+1]].

Another point of interest is avoiding having to specify the number of iterations. The approach adopted here allows one to specify the desired accuracy; in some cases, it is feasible to specify that the computation should continue until the accuracy permitted by the underlying floating point representation is achieved. This is done by specifying delta as 0, as shown in the examples.

We therefore proceed in two steps: continued_fraction( first; next; count ) computes an approximation based on the first "count" terms; and then continued_fraction_delta(first; next; delta) computes the continued fraction until the difference in approximations is less than or equal to delta, which may be 0, as previously noted. <lang jq>

  1. "first" is the first triple,
  2. e.g. [1,a,b]; count specifies the number of terms to use.

def continued_fraction( first; next; count ):

 # input: [i, a, b]]
 def cf:
     if .[0] == count then 0
     else next as $ab
     | .[1] + (.[2] / ($ab | cf))
     end ;
 first | cf;
  1. "first" and "next" are as above;
  2. if delta is 0 then continue until there is no detectable change.

def continued_fraction_delta(first; next; delta):

 def abs: if . < 0 then -. else . end;
 def cf:
   # state: [n, prev]
   .[0] as $n | .[1] as $prev
   |  continued_fraction(first; next; $n+1) as $this
   | if $prev == null then [$n+1, $this] | cf
     elif delta <= 0 and ($prev == $this) then $this
     elif (($prev - $this)|abs) <= delta then $this
     else [$n+1, $this] | cf
     end;
 [2,null] | cf;

</lang> Examples:

The convergence for pi is slow so we select delta = 1e-12 in that case. <lang jq>"Value  : Direct  : Continued Fraction",

"2|sqrt : \(2|sqrt) : \(continued_fraction_delta( [1,1,1]; [.[0]+1, 2, 1]; 0))",
"1|exp  : \(1|exp)  : \(2 + (1 / (continued_fraction_delta( [1,1,1]; [.[0]+1, .[1]+1, .[2]+1]; 0))))",
"pi     : \(1|atan * 4)  : \(continued_fraction_delta( [1,3,1]; .[0]+1 | [., 6, ((2*. - 1) | (.*.))]; 1e-12)) (1e-12)"

</lang>

Output:

<lang sh>$ jq -M -n -r -f Continued_fraction.jq Value  : Direct  : Continued Fraction 2|sqrt : 1.4142135623730951 : 1.4142135623730951 1|exp  : 2.718281828459045  : 2.7182818284590455 pi  : 3.141592653589793  : 3.1415926535892935 (1e-12)</lang>

Julia

Works with: Julia version 0.6

<lang julia>function _sqrt(a::Bool, n)

   if a
       return n > 0 ? 2.0 : 1.0
   else
       return 1.0
   end

end

function _napier(a::Bool, n)

   if a
       return n > 0 ? Float64(n) : 2.0
   else
       return n > 1 ? n - 1.0 : 1.0
   end

end

function _pi(a::Bool, n)

   if a
       return n > 0 ? 6.0 : 3.0
   else
       return (2.0 * n - 1.0) ^ 2.0 # exponentiation operator
   end

end

function calc(f::Function, expansions::Integer)

   a, b = true, false
   r = 0.0
   for i in expansions:-1:1
       r = f(b, i) / (f(a, i) + r)
   end
   return f(a, 0) + r

end

for (v, f) in (("√2", _sqrt), ("e", _napier), ("π", _pi))

   @printf("%3s = %f\n", v, calc(f, 1000))

end</lang>

Output:
 √2 = 1.414214
  e = 2.718282
  π = 3.141593

Klong

<lang K> cf::{[f g i];f::x;g::y;i::z;

    f(0)+z{i::i-1;g(i+1)%f(i+1)+x}:*0}

cf({:[0=x;1;2]};{x;1};1000) cf({:[0=x;2;x]};{:[x>1;x-1;x]};1000) cf({:[0=x;3;6]};{((2*x)-1)^2};1000) </lang>

Output:
:triad
1.41421356237309504
2.71828182845904523
3.14159265334054205

Kotlin

Translation of: D

<lang scala>// version 1.1.2

typealias Func = (Int) -> IntArray

fun calc(f: Func, n: Int): Double {

   var temp = 0.0
   for (i in n downTo 1) {
       val p = f(i)
       temp = p[1] / (p[0] + temp)
   }
   return f(0)[0] + temp

}

fun main(args: Array<String>) {

   val pList = listOf<Pair<String, Func>>(
       "sqrt(2)" to { n -> intArrayOf(if (n > 0) 2 else 1, 1) },
       "e      " to { n -> intArrayOf(if (n > 0) n else 2, if (n > 1) n - 1 else 1) },
       "pi     " to { n -> intArrayOf(if (n > 0) 6 else 3, (2 * n - 1) * (2 * n - 1)) }
   )
   for (pair in pList) println("${pair.first} = ${calc(pair.second, 200)}")

}</lang>

Output:
sqrt(2) = 1.4142135623730951
e       = 2.7182818284590455
pi      = 3.141592622804847

Lua

Translation of: C

<lang lua>function calc(fa, fb, expansions)

   local a = 0.0
   local b = 0.0
   local r = 0.0
   local i = expansions
   while i > 0 do
       a = fa(i)
       b = fb(i)
       r = b / (a + r)
       i = i - 1
   end
   a = fa(0)
   return a + r

end

function sqrt2a(n)

   if n ~= 0 then
       return 2.0
   else
       return 1.0
   end

end

function sqrt2b(n)

   return 1.0

end

function napiera(n)

   if n ~= 0 then
       return n
   else
       return 2.0
   end

end

function napierb(n)

   if n > 1.0 then
       return n - 1.0
   else
       return 1.0
   end

end

function pia(n)

   if n ~= 0 then
       return 6.0
   else
       return 3.0
   end

end

function pib(n)

   local c = 2.0 * n - 1.0
   return c * c

end

function main()

   local sqrt2  = calc(sqrt2a,  sqrt2b,  1000)
   local napier = calc(napiera, napierb, 1000)
   local pi     = calc(pia,     pib,     1000)
   print(sqrt2)
   print(napier)
   print(pi)

end

main()</lang>

Output:
1.4142135623731
2.718281828459
3.1415926533405

Maple

<lang Maple> contfrac:=n->evalf(Value(NumberTheory:-ContinuedFraction(n))); contfrac(2^(0.5)); contfrac(Pi); contfrac(exp(1)); </lang>

Mathematica / Wolfram Language

<lang Mathematica>sqrt2=Function[n,{1,Transpose@{Array[2&,n],Array[1&,n]}}]; napier=Function[n,{2,Transpose@{Range[n],Prepend[Range[n-1],1]}}]; pi=Function[n,{3,Transpose@{Array[6&,n],Array[(2#-1)^2&,n]}}]; approx=Function[l, N[Divide@@First@Fold[{{#2.#;;,1,#2.#;;,2},#1}&,{{l2,1,1l1+l2,1,2,l2,1,1},{l1,1}},l2,2;;],10]]; r2=approx/@{sqrt2@#,napier@#,pi@#}&@10000;r2//TableForm</lang>

Output:
1.414213562
2.718281828
3.141592654

Maxima

<lang maxima>cfeval(x) := block([a, b, n, z], a: x[1], b: x[2], n: length(a), z: 0,

  for i from n step -1 thru 2 do z: b[i]/(a[i] + z), a[1] + z)$

cf_sqrt2(n) := [cons(1, makelist(2, i, 2, n)), cons(0, makelist(1, i, 2, n))]$

cf_e(n) := [cons(2, makelist(i, i, 1, n - 1)), append([0, 1], makelist(i, i, 1, n - 2))]$

cf_pi(n) := [cons(3, makelist(6, i, 2, n)), cons(0, makelist((2*i - 1)^2, i, 1, n - 1))]$

cfeval(cf_sqrt2(20)), numer; /* 1.414213562373097 */ % - sqrt(2), numer; /* 1.3322676295501878*10^-15 */

cfeval(cf_e(20)), numer; /* 2.718281828459046 */ % - %e, numer; /* 4.4408920985006262*10^-16 */

cfeval(cf_pi(20)), numer; /* 3.141623806667839 */ % - %pi, numer; /* 3.115307804568701*10^-5 */


/* convergence is much slower for pi */ fpprec: 20$ x: cfeval(cf_pi(10000))$ bfloat(x - %pi); /* 2.4999999900104930006b-13 */</lang>

NetRexx

<lang netrexx>/* REXX ***************************************************************

  • Derived from REXX ... Derived from PL/I with a little "massage"
  • SQRT2= 1.41421356237309505 <- PL/I Result
  • 1.41421356237309504880168872421 <- NetRexx Result 30 digits
  • NAPIER= 2.71828182845904524
  • 2.71828182845904523536028747135
  • PI= 3.14159262280484695
  • 3.14159262280484694855146925223
  • 07.09.2012 Walter Pachl
  • 08.09.2012 Walter Pachl simplified (with the help of a friend)
                                                                                                                                            • /

options replace format comments java crossref savelog symbols

 class CFB public

properties static

 Numeric Digits 30
 Sqrt2 =1
 napier=2
 pi    =3
 a     =0
 b     =0

method main(args = String[]) public static

 Say 'SQRT2='.left(7)  calc(sqrt2,  200)
 Say 'NAPIER='.left(7) calc(napier, 200)
 Say 'PI='.left(7)     calc(pi,     200)
 Return

method get_Coeffs(form,n) public static

 select
   when form=Sqrt2 Then do
     if n > 0 then a = 2; else a = 1
     b = 1
     end
   when form=Napier Then do
     if n > 0 then a = n; else a = 2
     if n > 1 then b = n - 1; else b = 1
     end
   when form=pi Then do
     if n > 0 then a = 6; else a = 3
     b = (2*n - 1)**2
     end
   end
 Return

method calc(form,n) public static

 temp=0
 loop ni = n to 1 by -1
   Get_Coeffs(form,ni)
   temp = b/(a + temp)
   end
 Get_Coeffs(form,0)
 return (a + temp)</lang>

Who could help me make a,b,sqrt2,napier,pi global (public) variables? This would simplify the solution:-)

I got this help and simplified the program.

However, I am told that 'my' value of pi is incorrect. I will investigate!

Apparently the coefficients given in the task description are only good for an approximation. One should, therefore, not SHOW more that 15 digits. See http://de.wikipedia.org/wiki/Kreiszahl

See Rexx for a better computation

Nim

<lang nim>proc calc(f: proc(n: int): tuple[a, b: float], n: int): float =

 var a, b, temp = 0.0
 for i in countdown(n, 1):
   (a, b) = f(i)
   temp = b / (a + temp)
 (a, b) = f(0)
 a + temp

proc sqrt2(n: int): tuple[a, b: float] =

 if n > 0:
   (2.0, 1.0)
 else:
   (1.0, 1.0)

proc napier(n: int): tuple[a, b: float] =

 let a = if n > 0: float(n) else: 2.0
 let b = if n > 1: float(n - 1) else: 1.0
 (a, b)

proc pi(n: int): tuple[a, b: float] =

 let a = if n > 0: 6.0 else: 3.0
 let b = (2 * float(n) - 1) * (2 * float(n) - 1)
 (a, b)

echo $calc(sqrt2, 20) echo $calc(napier, 15) echo $calc(pi, 10000)</lang>

Output:
1.414213562373095
2.718281828459046
3.141592653589544

OCaml

<lang ocaml>let pi = 3, fun n -> ((2*n-1)*(2*n-1), 6) and nap = 2, fun n -> (max 1 (n-1), n) and root2 = 1, fun n -> (1, 2) in

let eval (i,f) k =

 let rec frac n =
   let a, b = f n in
   float a /. (float b +.
     if n >= k then 0.0 else frac (n+1)) in
 float i +. frac 1 in

Printf.printf "sqrt(2)\t= %.15f\n" (eval root2 1000); Printf.printf "e\t= %.15f\n" (eval nap 1000); Printf.printf "pi\t= %.15f\n" (eval pi 1000);</lang> Output (inaccurate due to too few terms):

sqrt(2)	= 1.414213562373095
e	= 2.718281828459046
pi	= 3.141592653340542

PARI/GP

Partial solution for simple continued fractions. <lang parigp>back(v)=my(t=contfracpnqn(v));t[1,1]/t[2,1]*1. back(vector(100,i,2-(i==1)))</lang>

Output:

%1 = 1.4142135623730950488016887242096980786

Perl

We'll use closures to implement the infinite lists of coeffficients.

<lang perl>sub continued_fraction {

   my ($a, $b, $n) = (@_[0,1], $_[2] // 100);
   $a->() + ($n && $b->() / continued_fraction($a, $b, $n-1));

}

printf "√2 ≈ %.9f\n", continued_fraction do { my $n; sub { $n++ ? 2 : 1 } }, sub { 1 }; printf "e ≈ %.9f\n", continued_fraction do { my $n; sub { $n++ || 2 } }, do { my $n; sub { $n++ || 1 } }; printf "π ≈ %.9f\n", continued_fraction do { my $n; sub { $n++ ? 6 : 3 } }, do { my $n; sub { (2*$n++ + 1)**2 } }, 1_000; printf "π/2 ≈ %.9f\n", continued_fraction do { my $n; sub { 1/($n++ || 1) } }, sub { 1 }, 1_000;</lang>

Output:
√2  ≈ 1.414213562
e   ≈ 2.718281828
π   ≈ 3.141592653
π/2 ≈ 1.570717797

Phix

Translation of: ALGOL_68

<lang Phix>function continued_fraction(integer steps, fa, fb) atom res = 0

 for n=steps to 1 by -1 do
    res := fb(n) / (fa(n) + res)
 end for
 return fa(0) + res

end function

function sqr2_a(integer n) return iff(n=0?1:2) end function function sqr2_b(integer n) return 1 end function

function nap_a(integer n) return iff(n=0?2:n) end function function nap_b(integer n) return iff(n=1?1:n-1) end function

function pi_a(integer n) return iff(n=0?3:6) end function function pi_b(integer n) return iff(n=1?1:power(2*n-1,2)) end function

constant precision = 10000

printf(1,"Precision: %d\n", {precision}) printf(1,"Sqr(2):  %.10g\n", {continued_fraction(precision, sqr2_a, sqr2_b)}) printf(1,"Napier:  %.10g\n", {continued_fraction(precision, nap_a, nap_b)}) printf(1,"Pi:  %.10g\n", {continued_fraction(precision, pi_a, pi_b)})</lang>

Output:
Precision: 10000
Sqr(2):    1.414213562
Napier:    2.718281828
Pi:        3.141592654

PicoLisp

<lang PicoLisp>(scl 49) (de fsqrt2 (N A)

  (default A 1)
  (cond
     ((> A (inc N)) 2)
     (T
        (+
           (if (=1 A) 1.0 2.0)
           (*/ `(* 1.0 1.0) (fsqrt2 N (inc A))) ) ) ) )

(de pi (N A)

  (default A 1)
  (cond
     ((> A (inc N)) 6.0)
     (T
        (+
           (if (=1 A) 3.0 6.0)
           (*/
              (* (** (dec (* 2 A)) 2) 1.0)
              1.0 
              (pi N (inc A)) ) ) ) ) ) 

(de napier (N A)

  (default A 0)
  (cond
     ((> A N) (* A 1.0))
     (T
        (+
           (if (=0 A) 2.0 (* A 1.0))
           (*/ 
              (if (> 1 A) 1.0 (* A 1.0)) 
              1.0 
              (napier N (inc A)) ) ) ) ) )

(prinl (format (fsqrt2 200) *Scl)) (prinl (format (napier 200) *Scl)) (prinl (format (pi 200) *Scl))</lang>

Output:
1.4142135623730950488016887242096980785696718753770
2.7182818284590452353602874713526624977572470937000
3.1415926839198062649342019294083175420335002640134

PL/I

<lang PLI>/* Version for SQRT(2) */ test: proc options (main);

  declare n fixed;

denom: procedure (n) recursive returns (float (18));

  declare n fixed;
  n = n + 1;
  if n > 100 then return (2);
  return (2 + 1/denom(n));

end denom;

  put (1 + 1/denom(2));

end test;</lang>

Output:
 1.41421356237309505E+0000 

Version for NAPIER: <lang PLI>test: proc options (main);

  declare n fixed;

denom: procedure (n) recursive returns (float (18));

  declare n fixed;
  n = n + 1;
  if n > 100 then return (n);
  return (n + n/denom(n));

end denom;

  put (2 + 1/denom(0));

end test;</lang>

 2.71828182845904524E+0000 

Version for SQRT2, NAPIER, PI <lang PLI>/* Derived from continued fraction in Wiki Ada program */

continued_fractions: /* 6 Sept. 2012 */

  procedure options (main);
  declare (Sqrt2 initial (1), napier initial (2), pi initial (3)) fixed (1);

Get_Coeffs: procedure (form, n, coefA, coefB);

     declare form fixed (1), n fixed, (coefA, coefB) float (18);
     select (form);
        when (Sqrt2) do;
              if n > 0 then coefA = 2; else coefA = 1;
              coefB = 1;
           end;
        when (Napier) do;
              if n > 0 then coefA = n; else coefA = 2;
              if n > 1 then coefB = n - 1; else coefB = 1;
           end;
        when (Pi) do;
              if n > 0 then coefA = 6; else coefA = 3;
              coefB = (2*n - 1)**2;
           end;
     end;
  end Get_Coeffs;
  Calc: procedure (form, n) returns (float (18));
     declare form fixed (1), n fixed;
     declare (A, B) float (18);
     declare Temp float (18) initial (0);
     declare ni fixed;
     do ni = n to 1 by -1;
        call Get_Coeffs (form, ni, A, B);
        Temp = B/(A + Temp);
     end;
     call Get_Coeffs (form, 0, A, B);
     return (A + Temp);
  end Calc;
  put      edit ('SQRT2=',  calc(sqrt2,  200)) (a(10), f(20,17));
  put skip edit ('NAPIER=', calc(napier, 200)) (a(10), f(20,17));
  put skip edit ('PI=',     calc(pi,   99999)) (a(10), f(20,17));

end continued_fractions;</lang>

Output:
SQRT2=     1.41421356237309505
NAPIER=    2.71828182845904524
PI=        3.14159265358979349

Prolog

<lang Prolog>continued_fraction :- % square root 2 continued_fraction(200, sqrt_2_ab, V1), format('sqrt(2) = ~w~n', [V1]),

% napier continued_fraction(200, napier_ab, V2), format('e = ~w~n', [V2]),

% pi continued_fraction(200, pi_ab, V3), format('pi = ~w~n', [V3]).


% code for continued fractions continued_fraction(N, Compute_ab, V) :- continued_fraction(N, Compute_ab, 0, V).

continued_fraction(0, Compute_ab, Temp, V) :- call(Compute_ab, 0, A, _), V is A + Temp.

continued_fraction(N, Compute_ab, Tmp, V) :- call(Compute_ab, N, A, B), Tmp1 is B / (A + Tmp), N1 is N - 1, continued_fraction(N1, Compute_ab, Tmp1, V).

% specific codes for examples % definitions for square root of 2 sqrt_2_ab(0, 1, 1). sqrt_2_ab(_, 2, 1).

% definitions for napier napier_ab(0, 2, _). napier_ab(1, 1, 1). napier_ab(N, N, V) :- V is N - 1.

% definitions for pi pi_ab(0, 3, _). pi_ab(N, 6, V) :- V is (2 * N - 1)*(2 * N - 1).</lang>

Output:
 ?- continued_fraction.
sqrt(2) = 1.4142135623730951
e       = 2.7182818284590455
pi      = 3.141592622804847
true .

Python

Works with: Python version 2.6+ and 3.x

<lang python>from fractions import Fraction import itertools try: zip = itertools.izip except: pass

  1. The Continued Fraction

def CF(a, b, t):

 terms = list(itertools.islice(zip(a, b), t))
 z = Fraction(1,1)
 for a, b in reversed(terms):
   z = a + b / z
 return z

  1. Approximates a fraction to a string

def pRes(x, d):

 q, x = divmod(x, 1)
 res = str(q)
 res += "."
 for i in range(d):
   x *= 10
   q, x = divmod(x, 1)
   res += str(q)
 return res

  1. Test the Continued Fraction for sqrt2

def sqrt2_a():

 yield 1
 for x in itertools.repeat(2):
   yield x

def sqrt2_b():

 for x in itertools.repeat(1):
   yield x

cf = CF(sqrt2_a(), sqrt2_b(), 950) print(pRes(cf, 200))

  1. 1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147


  1. Test the Continued Fraction for Napier's Constant

def Napier_a():

 yield 2
 for x in itertools.count(1):
   yield x

def Napier_b():

 yield 1
 for x in itertools.count(1):
   yield x

cf = CF(Napier_a(), Napier_b(), 950) print(pRes(cf, 200))

  1. 2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138217852516642742746639193200305992181741359662904357290033429526059563073813232862794349076323382988075319525101901
  1. Test the Continued Fraction for Pi

def Pi_a():

 yield 3
 for x in itertools.repeat(6):
   yield x

def Pi_b():

 for x in itertools.count(1,2):
   yield x*x

cf = CF(Pi_a(), Pi_b(), 950) print(pRes(cf, 10))

  1. 3.1415926532</lang>

Fast iterative version

Translation of: D

<lang python>from decimal import Decimal, getcontext

def calc(fun, n):

   temp = Decimal("0.0")
   for ni in xrange(n+1, 0, -1):
       (a, b) = fun(ni)
       temp = Decimal(b) / (a + temp)
   return fun(0)[0] + temp

def fsqrt2(n):

   return (2 if n > 0 else 1, 1)

def fnapier(n):

   return (n if n > 0 else 2, (n - 1) if n > 1 else 1)

def fpi(n):

   return (6 if n > 0 else 3, (2 * n - 1) ** 2)

getcontext().prec = 50 print calc(fsqrt2, 200) print calc(fnapier, 200) print calc(fpi, 200)</lang>

Output:
1.4142135623730950488016887242096980785696718753770
2.7182818284590452353602874713526624977572470937000
3.1415926839198062649342019294083175420335002640134

Racket

Using Doubles

This version uses standard double precision floating point numbers: <lang racket>

  1. lang racket

(define (calc cf n)

 (match/values (cf 0)
   [(a0 b0)
    (+ a0
       (for/fold ([t 0.0]) ([i (in-range (+ n 1) 0 -1)])
         (match/values (cf i)
                       [(a b) (/ b (+ a t))])))]))

(define (cf-sqrt i) (values (if (> i 0) 2 1) 1)) (define (cf-napier i) (values (if (> i 0) i 2) (if (> i 1) (- i 1) 1))) (define (cf-pi i) (values (if (> i 0) 6 3) (sqr (- (* 2 i) 1))))

(calc cf-sqrt 200) (calc cf-napier 200) (calc cf-pi 200) </lang> Output: <lang racket> 1.4142135623730951 2.7182818284590455 3.1415926839198063 </lang>

Version - Using Doubles

This versions uses big floats (arbitrary precision floating point): <lang racket>

  1. lang racket

(require math) (bf-precision 2048) ; in bits

(define (calc cf n)

 (match/values (cf 0)
   [(a0 b0)
    (bf+ (bf a0)
       (for/fold ([t (bf 0)]) ([i (in-range (+ n 1) 0 -1)])
         (match/values (cf i)
                       [(a b) (bf/ (bf b) (bf+ (bf a) t))])))]))

(define (cf-sqrt i) (values (if (> i 0) 2 1) 1)) (define (cf-napier i) (values (if (> i 0) i 2) (if (> i 1) (- i 1) 1))) (define (cf-pi i) (values (if (> i 0) 6 3) (sqr (- (* 2 i) 1))))

(calc cf-sqrt 200) (calc cf-napier 200) (calc cf-pi 200) </lang> Output: <lang racket> (bf #e1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358960036439214262599769155193770031712304888324413327207659690547583107739957489062466508437105234564161085482146113860092820802430986649987683947729823677905101453725898480737256099166805538057375451207262441039818826744940289448489312217214883459060818483750848688583833366310472320771259749181255428309841375829513581694269249380272698662595131575038315461736928338289219865139248048189188905788104310928762952913687232022557677738108337499350045588767581063729) (bf #e2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138217852516642742746639193200305992181741359662904357290033429526059563073813232862794349076323382988075319525101901157383418793070215408914993488416750924476146066808226480016847741185374234544243710753907774499206955170276183860626133138458300075204493382656029760673711320070932870912744374704723624212700454495421842219077173525899689811474120614457405772696521446961165559468253835854362096088934714907384964847142748311021268578658461064714894910680584249490719358138073078291397044213736982988247857479512745588762993966446075) (bf #e3.14159268391980626493420192940831754203350026401337226640663040854412059241988978103217808449508253393479795573626200366332733859609651462659489470805432281782785922056335606047700127154963266242144951481397480765182268219697420028007903565511884267297358842935537138583640066772149177226656227031792115896439889412205871076985598822285367358003457939603015797225018209619662200081521930463480571130673429337524564941105654923909951299948539893933654293161126559643573974163405197696633200469475250152247413175932572922175467223988860975105100904322239324381097207835036465269418118204894206705789759765527734394105147) </lang>

Raku

(formerly Perl 6)

Works with: rakudo version 2015-10-31

<lang perl6>sub continued-fraction(:@a, :@b, Int :$n = 100) {

   my $x = @a[$n - 1];
   $x = @a[$_ - 1] + @b[$_] / $x for reverse 1 ..^ $n;
   $x;

}

printf "√2 ≈%.9f\n", continued-fraction(:a(1, |(2 xx *)), :b(Nil, |(1 xx *))); printf "e ≈%.9f\n", continued-fraction(:a(2, |(1 .. *)), :b(Nil, 1, |(1 .. *))); printf "π ≈%.9f\n", continued-fraction(:a(3, |(6 xx *)), :b(Nil, |((1, 3, 5 ... *) X** 2)));</lang>

Output:
√2 ≈ 1.414213562
e  ≈ 2.718281828
π  ≈ 3.141592654

A more original and a bit more abstract method would consist in viewing a continued fraction on rank n as a function of a variable x:

Or, more consistently:

Viewed as such, could be written recursively:

Or in other words:

where

Raku has a builtin composition operator. We can use it with the triangular reduction metaoperator, and evaluate each resulting function at infinity (any value would do actually, but infinite makes it consistent with this particular task). <lang perl6>sub continued-fraction(@a, @b) {

   map { .(Inf) }, [\o] map { @a[$_] + @b[$_] / * }, ^Inf

}

printf "√2 ≈ %.9f\n", continued-fraction((1, |(2 xx *)), (1 xx *))[10]; printf "e ≈ %.9f\n", continued-fraction((2, |(1 .. *)), (1, |(1 .. *)))[10]; printf "π ≈ %.9f\n", continued-fraction((3, |(6 xx *)), ((1, 3, 5 ... *) X** 2))[100];</lang>

Output:
√2 ≈ 1.414213552
e  ≈ 2.718281827
π  ≈ 3.141592411

REXX

version 1

The   cf   subroutine   (for Continued Fractions)   isn't limited to positive integers.
Any form of REXX numbers (negative, exponentiated, decimal fractions) can be used.
Note the use of negative fractions for the   ß   terms when computing   ½  .

There isn't any practical limit for the decimal digits that can be used, although 100k digits would be a bit unwieldy to display.

A generalized       function was added to calculate a few low integers   (and also   1/2).


More code is used for nicely formatting the output than the continued fraction calculation. <lang rexx>/*REXX program calculates and displays values of various continued fractions. */ parse arg terms digs . if terms== | terms=="," then terms=500 if digs== | digs=="," then digs=100 numeric digits digs /*use 100 decimal digits for display.*/ b.=1 /*omitted ß terms are assumed to be 1.*/ /*══════════════════════════════════════════════════════════════════════════════════════*/ a.=2; call tell '√2', cf(1) /*══════════════════════════════════════════════════════════════════════════════════════*/ a.=1; do N=2 by 2 to terms; a.N=2; end; call tell '√3', cf(1) /*also: 2∙sin(π/3) */ /*══════════════════════════════════════════════════════════════════════════════════════*/ a.=2 /* ___ */

     do N=2  to 17   /*generalized  √ N  */
     b.=N-1;                          NN=right(N, 2);          call tell 'gen √'NN, cf(1)
     end   /*N*/

/*══════════════════════════════════════════════════════════════════════════════════════*/ a.=2; b.=-1/2; call tell 'gen √ ½', cf(1) /*══════════════════════════════════════════════════════════════════════════════════════*/

 do j=1 for terms; a.j=j;  if j>1   then b.j=a.p; p=j; end;    call tell 'e',       cf(2)

/*══════════════════════════════════════════════════════════════════════════════════════*/ a.=1; call tell 'φ, phi', cf(1) /*══════════════════════════════════════════════════════════════════════════════════════*/ a.=1; do j=1 for terms; if j//2 then a.j=j; end; call tell 'tan(1)', cf(1) /*══════════════════════════════════════════════════════════════════════════════════════*/

        do j=1 for terms;                a.j=2*j+1;    end;    call tell 'coth(1)', cf(1)

/*══════════════════════════════════════════════════════════════════════════════════════*/

        do j=1 for terms;                a.j=4*j+2;    end;    call tell 'coth(½)', cf(2)    /*also:  [e+1]÷[e-1] */

/*══════════════════════════════════════════════════════════════════════════════════════*/

                    terms=100000

a.=6; do j=1 for terms; b.j=(2*j-1)**2; end; call tell 'π, pi', cf(3) exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ cf: procedure expose a. b. terms; parse arg C;  !=0; numeric digits 9+digits()

                                         do k=terms  by -1  for terms;  d=a.k+!;  !=b.k/d
                                         end   /*k*/
        return !+C

/*──────────────────────────────────────────────────────────────────────────────────────*/ tell: parse arg ?,v; $=left(format(v)/1,1+digits()); w=50 /*50 bytes of terms*/

        aT=;     do k=1;  _=space(aT a.k);  if length(_)>w  then leave;  aT=_;  end /*k*/
        bT=;     do k=1;  _=space(bT b.k);  if length(_)>w  then leave;  bT=_;  end /*k*/
                         say right(?,8)   "="    $     '  α terms='aT  ...
        if b.1\==1  then say right("",12+digits())     '  ß terms='bT  ...
        a=;   b.=1;  return       /*only 50 bytes of  α & ß terms  ↑   are displayed.  */</lang>

output

      √2 = 1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641573   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
      √3 = 1.732050807568877293527446341505872366942805253810380628055806979451933016908800037081146186757248576   α terms=1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ...
 gen √ 2 = 1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641573   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
 gen √ 3 = 1.732050807568877293527446341505872366942805253810380628055806979451933016908800037081146186757248576   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
 gen √ 4 = 2                                                                                                       α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ...
 gen √ 5 = 2.236067977499789696409173668731276235440618359611525724270897245410520925637804899414414408378782275   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ...
 gen √ 6 = 2.449489742783178098197284074705891391965947480656670128432692567250960377457315026539859433104640235   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 ...
 gen √ 7 = 2.645751311064590590501615753639260425710259183082450180368334459201068823230283627760392886474543611   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 ...
 gen √ 8 = 2.828427124746190097603377448419396157139343750753896146353359475981464956924214077700775068655283145   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ...
 gen √ 9 = 3                                                                                                       α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 ...
 gen √10 = 3.162277660168379331998893544432718533719555139325216826857504852792594438639238221344248108379300295   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 ...
 gen √11 = 3.316624790355399849114932736670686683927088545589353597058682146116484642609043846708843399128290651   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ...
 gen √12 = 3.464101615137754587054892683011744733885610507620761256111613958903866033817600074162292373514497151   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 ...
 gen √13 = 3.605551275463989293119221267470495946251296573845246212710453056227166948293010445204619082018490718   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 ...
 gen √14 = 3.741657386773941385583748732316549301756019807778726946303745467320035156306939027976809895194379572   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 ...
 gen √15 = 3.872983346207416885179265399782399610832921705291590826587573766113483091936979033519287376858673518   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
 gen √16 = 4                                                                                                       α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 ...
 gen √17 = 4.123105625617660549821409855974077025147199225373620434398633573094954346337621593587863650810684297   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 ...
 gen √ ½ = 0.707106781186547524400844362104849039284835937688474036588339868995366239231053519425193767163820786   α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
                                                                                                                   ß terms=-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 ...
       e = 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427   α terms=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
  φ, phi = 1.618033988749894848204586834365638117720309179805762862135448622705260462818902449707207204189391137   α terms=1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
  tan(1) = 1.557407724654902230506974807458360173087250772381520038383946605698861397151727289555099965202242984   α terms=1 1 3 1 5 1 7 1 9 1 11 1 13 1 15 1 17 1 19 1 21 1 ...
 coth(1) = 1.313035285499331303636161246930847832912013941240452655543152967567084270461874382674679241480856303   α terms=3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 ...
 coth(½) = 2.163953413738652848770004010218023117093738602150792272533574119296087634783339486574409418809750115   α terms=6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 ...
   π, pi = 3.141592653589792988470143264530440384041017830472772036746332303472711537960073664096818977224037083   α terms=6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 ...

Note:   even with 200 digit accuracy and 100,000 terms, the last calculation of pi is only accurate to 15 digits.

version 2 derived from PL/I

<lang rexx>/* REXX **************************************************************

  • Derived from PL/I with a little "massage"
  • SQRT2= 1.41421356237309505 <- PL/I Result
  • 1.41421356237309504880168872421 <- REXX Result 30 digits
  • NAPIER= 2.71828182845904524
  • 2.71828182845904523536028747135
  • PI= 3.14159262280484695
  • 3.14159262280484694855146925223
  • 06.09.2012 Walter Pachl
                                                                                                                                            • /
 Numeric Digits 30
 Parse Value '1 2 3 0 0' with Sqrt2 napier pi a b
 Say left('SQRT2=' ,10) calc(sqrt2,  200)
 Say left('NAPIER=',10) calc(napier, 200)
 Say left('PI='    ,10) calc(pi,     200)
 Exit

Get_Coeffs: procedure Expose a b Sqrt2 napier pi

 Parse Arg form, n
 select
   when form=Sqrt2 Then do
     if n > 0 then a = 2; else a = 1
     b = 1
     end
   when form=Napier Then do
     if n > 0 then a = n; else a = 2
     if n > 1 then b = n - 1; else b = 1
     end
   when form=pi Then do
     if n > 0 then a = 6; else a = 3
     b = (2*n - 1)**2
     end
   end
 Return

Calc: procedure Expose a b Sqrt2 napier pi

 Parse Arg form,n
 Temp=0
 do ni = n to 1 by -1
   Call Get_Coeffs form, ni
   Temp = B/(A + Temp)
   end
 call Get_Coeffs  form, 0
 return (A + Temp)</lang>

version 3 better approximation

<lang rexx>/* REXX *************************************************************

  • The task description specifies a continued fraction for pi
  • that gives a reasonable approximation.
  • Literature shows a better CF that yields pi with a precision of
  • 200 digits.
  • http://de.wikipedia.org/wiki/Kreiszahl
  • 1
  • pi = 3 + ------------------------
  • 1
  • 7 + --------------------
  • 1
  • 15 + ---------------
  • 1
  • 1 + -----------
  • 292 + ...
  • This program uses that CF and shows the first 50 digits
  • PI =3.1415926535897932384626433832795028841971693993751...
  • PIX=3.1415926535897932384626433832795028841971693993751...
  • 201 correct digits
  • 18.09.2012 Walter Pachl
                                                                                                                                            • /
 pi='3.1415926535897932384626433832795028841971'||,
    '693993751058209749445923078164062862089986280348'||,
    '253421170679821480865132823066470938446095505822'||,
    '317253594081284811174502841027019385211055596446'||,
    '229489549303819644288109756659334461284756482337'||,
    '867831652712019091456485669234603486104543266482'||,
    '133936072602491412737245870066063155881748815209'||,
    '209628292540917153643678925903600113305305488204'||,
    '665213841469519415116094330572703657595919530921'||,
    '861173819326117931051185480744623799627495673518'||,
    '857527248912279381830119491298336733624'
 Numeric Digits 1000
 al='7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2 1 84 2',
    '1 1 15 3 13 1 4 2 6 6 99 1 2 2 6 3 5 1 1 6 8 1 7 1 2',
    '3 7 1 2 1 1 12 1 1 1 3 1 1 8 1 1 2 1 6 1 1 5 2 2 3 1',
    '2 4 4 16 1 161 45 1 22 1 2 2 1 4 1 2 24 1 2 1 3 1 2',
    '1 1 10 2 5 4 1 2 2 8 1 5 2 2 26 1 4 1 1 8 2 42 2 1 7',
    '3 3 1 1 7 2 4 9 7 2 3 1 57 1 18 1 9 19 1 2 18 1 3 7',
    '30 1 1 1 3 3 3 1 2 8 1 1 2 1 15 1 2 13 1 2 1 4 1 12',
    '1 1 3 3 28 1 10 3 2 20 1 1 1 1 4 1 1 1 5 3 2 1 6 1 4'
 a.=3
 Do i=1 By 1 while al<>
   Parse Var al a.i al
   End
 pix=calc(194)
 Do e=1 To length(pi)
   If substr(pix,e,1)<>substr(pi,e,1) Then Leave
   End
 Numeric Digits 50
 Say 'PI ='||(pi+0)||'...'
 Say 'PIX='||(pix+0)||'...'
 Say (e-1) 'correct digits'
 Exit

Get_Coeffs: procedure Expose a b a.

 Parse Arg n
 a=a.n
 b=1
 Return

Calc: procedure Expose a b a.

 Parse Arg n
 Temp=0
 do ni = n to 1 by -1
   Call Get_Coeffs ni
   Temp = B/(A + Temp)
   end
 call Get_Coeffs 0
 return (A + Temp)</lang>

Ring

<lang ring>

  1. Project : Continued fraction

see "SQR(2) = " + contfrac(1, 1, "2", "1") + nl see " e = " + contfrac(2, 1, "n", "n") + nl see " PI = " + contfrac(3, 1, "6", "(2*n+1)^2") + nl

func contfrac(a0, b1, a, b)

       expr = ""
       n = 0
       while len(expr) < (700 - n)
                n = n + 1
                eval("temp1=" + a)
                eval("temp2=" + b)
                expr = expr + string(temp1) + char(43) + string(temp2) + "/("
       end 
       str = copy(")",n)
       eval("temp3=" + expr + "1" + str)
       return a0 + b1 / temp3

</lang> Output:

SQR(2) = 1.414213562373095
         e = 2.718281828459046
        PI = 3.141592653588017

Ruby

<lang ruby>require 'bigdecimal'

  1. square root of 2

sqrt2 = Object.new def sqrt2.a(n); n == 1 ? 1 : 2; end def sqrt2.b(n); 1; end

  1. Napier's constant

napier = Object.new def napier.a(n); n == 1 ? 2 : n - 1; end def napier.b(n); n == 1 ? 1 : n - 1; end

pi = Object.new def pi.a(n); n == 1 ? 3 : 6; end def pi.b(n); (2*n - 1)**2; end

  1. Estimates the value of a continued fraction _cfrac_, to _prec_
  2. decimal digits of precision. Returns a BigDecimal. _cfrac_ must
  3. respond to _cfrac.a(n)_ and _cfrac.b(n)_ for integer _n_ >= 1.

def estimate(cfrac, prec)

 last_result = nil
 terms = prec
 loop do
   # Estimate continued fraction for _n_ from 1 to _terms_.
   result = cfrac.a(terms)
   (terms - 1).downto(1) do |n|
     a = BigDecimal cfrac.a(n)
     b = BigDecimal cfrac.b(n)
     digits = [b.div(result, 1).exponent + prec, 1].max
     result = a + b.div(result, digits)
   end
   result = result.round(prec)
   if result == last_result
     return result
   else
     # Double _terms_ and try again.
     last_result = result
     terms *= 2
   end
 end

end

puts estimate(sqrt2, 50).to_s('F') puts estimate(napier, 50).to_s('F') puts estimate(pi, 10).to_s('F')</lang>

Output:
$ ruby cfrac.rb                                                              
1.41421356237309504880168872420969807856967187537695
2.71828182845904523536028747135266249775724709369996
3.1415926536

Rust

<lang rust> use std::iter;

// Calculating a continued fraction is quite easy with iterators, however // writing a proper iterator adapter is less so. We settle for a macro which // for most purposes works well enough. // // One limitation with this iterator based approach is that we cannot reverse // input iterators since they are not usually DoubleEnded. To circumvent this // we can collect the elements and then reverse them, however this isn't ideal // as we now have to store elements equal to the number of iterations. // // Another is that iterators cannot be resused once consumed, so it is often // required to make many clones of iterators. macro_rules! continued_fraction {

   ($a:expr, $b:expr ; $iterations:expr) => (
       ($a).zip($b)
           .take($iterations)
           .collect::<Vec<_>>().iter()
           .rev()
           .fold(0 as f64, |acc: f64, &(x, y)| {
               x as f64 + (y as f64 / acc)
           })
   );
   ($a:expr, $b:expr) => (continued_fraction!($a, $b ; 1000));

}

fn main() {

   // Sqrt(2)
   let sqrt2a = (1..2).chain(iter::repeat(2));
   let sqrt2b = iter::repeat(1);
   println!("{}", continued_fraction!(sqrt2a, sqrt2b));


   // Napier's Constant
   let napiera = (2..3).chain(1..);
   let napierb = (1..2).chain(1..);
   println!("{}", continued_fraction!(napiera, napierb));


   // Pi
   let pia = (3..4).chain(iter::repeat(6));
   let pib = (1i64..).map(|x| (2 * x - 1).pow(2));
   println!("{}", continued_fraction!(pia, pib));

} </lang>

Output:
1.4142135623730951
2.7182818284590455
3.141592653339042

Scala

Works with: Scala version 2.9.1

Note that Scala-BigDecimal provides a precision of 34 digits. Therefore we take a limitation of 32 digits to avoiding rounding problems. <lang Scala>object CF extends App {

 import Stream._
 val sqrt2 = 1 #:: from(2,0) zip from(1,0)
 val napier = 2 #:: from(1) zip (1 #:: from(1))
 val pi = 3 #:: from(6,0) zip (from(1,2) map {x=>x*x})
 // reference values, source: wikipedia
 val refPi     = "3.14159265358979323846264338327950288419716939937510"
 val refNapier = "2.71828182845904523536028747135266249775724709369995"
 val refSQRT2  = "1.41421356237309504880168872420969807856967187537694"
 def calc(cf: Stream[(Int, Int)], numberOfIters: Int=200): BigDecimal = {
   (cf take numberOfIters toList).foldRight[BigDecimal](1)((a, z) => a._1+a._2/z)
 }
 
 def approx(cfV: BigDecimal, cfRefV: String): String = {
   val p: Pair[Char,Char] => Boolean = pair =>(pair._1==pair._2)
   ((cfV.toString+" "*34).substring(0,34) zip cfRefV.toString.substring(0,34))
     .takeWhile(p).foldRight[String]("")((a:Pair[Char,Char],z)=>a._1+z)
 }
 List(("sqrt2",sqrt2,50,refSQRT2),("napier",napier,50,refNapier),("pi",pi,3000,refPi)) foreach {t=>
   val (name,cf,iters,refV) = t
   val cfV = calc(cf,iters)
   println(name+":")
   println("ref value: "+refV.substring(0,34))
   println("cf value:  "+(cfV.toString+" "*34).substring(0,34))
   println("precision: "+approx(cfV,refV))
   println()
 }

}</lang>

Output:
sqrt2:
ref value: 1.41421356237309504880168872420969
cf value:  1.41421356237309504880168872420969
precision: 1.41421356237309504880168872420969

napier:
ref value: 2.71828182845904523536028747135266
cf value:  2.71828182845904523536028747135266
precision: 2.71828182845904523536028747135266

pi:
ref value: 3.14159265358979323846264338327950
cf value:  3.14159265358052780404906362935452
precision: 3.14159265358

For higher accuracy of pi we have to take more iterations. Unfortunately the foldRight function in calc isn't tail recursiv - therefore a stack overflow exception will be thrown for higher numbers of iteration, thus we have to implement an iterative way for calculation: <lang Scala>object CFI extends App {

 import Stream._
 val sqrt2 = 1 #:: from(2,0) zip from(1,0)
 val napier = 2 #:: from(1) zip (1 #:: from(1))
 val pi = 3 #:: from(6,0) zip (from(1,2) map {x=>x*x})
 // reference values, source: wikipedia
 val refPi     = "3.14159265358979323846264338327950288419716939937510"
 val refNapier = "2.71828182845904523536028747135266249775724709369995"
 val refSQRT2  = "1.41421356237309504880168872420969807856967187537694"
 def calc_i(cf: Stream[(Int, Int)], numberOfIters: Int=50): BigDecimal = {
   val cfl = cf take numberOfIters toList
   var z: BigDecimal = 1.0
   for (i <- 0 to cfl.size-1 reverse) 
     z=cfl(i)._1+cfl(i)._2/z
   z
 }
 
 def approx(cfV: BigDecimal, cfRefV: String): String = {
   val p: Pair[Char,Char] => Boolean = pair =>(pair._1==pair._2)
   ((cfV.toString+" "*34).substring(0,34) zip cfRefV.toString.substring(0,34))
     .takeWhile(p).foldRight[String]("")((a:Pair[Char,Char],z)=>a._1+z)
 }
 List(("sqrt2",sqrt2,50,refSQRT2),("napier",napier,50,refNapier),("pi",pi,50000,refPi)) foreach {t=>
   val (name,cf,iters,refV) = t
   val cfV = calc_i(cf,iters)
   println(name+":")
   println("ref value: "+refV.substring(0,34))
   println("cf value:  "+(cfV.toString+" "*34).substring(0,34))
   println("precision: "+approx(cfV,refV))
   println()
 }

}</lang>

Output:
sqrt2:
ref value: 1.41421356237309504880168872420969
cf value:  1.41421356237309504880168872420969
precision: 1.41421356237309504880168872420969

napier:
ref value: 2.71828182845904523536028747135266
cf value:  2.71828182845904523536028747135266
precision: 2.71828182845904523536028747135266

pi:
ref value: 3.14159265358979323846264338327950
cf value:  3.14159265358983426214354599901745
precision: 3.141592653589

Scheme

The following code relies on a library implementing SRFI 41 (lazy streams). Most Scheme interpreters include an implementation.

<lang scheme>#!r6rs (import (rnrs base (6))

       (srfi :41 streams))

(define nats (stream-cons 0 (stream-map (lambda (x) (+ x 1)) nats)))

(define (build-stream fn) (stream-map fn nats))

(define (stream-cycle s . S)

 (cond
   ((stream-null? (car S)) stream-null)
   (else (stream-cons (stream-car s)
                      (apply stream-cycle (append S (list (stream-cdr s))))))))

(define (cf-floor cf) (stream-car cf)) (define (cf-num cf) (stream-car (stream-cdr cf))) (define (cf-denom cf) (stream-cdr (stream-cdr cf)))

(define (cf-integer? x) (stream-null? (stream-cdr x)))

(define (cf->real x)

 (let refine ((x x) (n 65536))
   (cond
     ((= n 0) +inf.0)
     ((cf-integer? x) (cf-floor x))
     (else (+ (cf-floor x)
              (/ (cf-num x)
                 (refine (cf-denom x) (- n 1))))))))

(define (real->cf x)

 (let-values (((integer-part fractional-part) (div-and-mod x 1)))
   (if (= fractional-part 0.0)
       (stream (exact integer-part))
       (stream-cons
        (exact integer-part)
        (stream-cons
         1
         (real->cf (/ fractional-part)))))))


(define sqrt2 (stream-cons 1 (stream-constant 1 2)))

(define napier

 (stream-append (stream 2 1)
                (stream-cycle (stream-cdr nats) (stream-cdr nats))))

(define pi

 (stream-cons 3
              (stream-cycle (build-stream (lambda (n) (expt (- (* 2 (+ n 1)) 1) 2)))
                            (stream-constant 6))))</lang>

Test: <lang scheme>> (cf->real sqrt2) 1.4142135623730951 > (cf->real napier) 2.7182818284590455 > (cf->real pi) 3.141592653589794</lang>

Sidef

<lang ruby>func continued_fraction(a, b, f, n = 1000, r = 1) {

   f(func (r) {
       r < n ? (a(r) / (b(r) + __FUNC__(r+1))) : 0
   }(r))

}

var params = Hash(

   "φ"  => [ { 1 }, { 1 }, { 1 + _ } ],
   "√2" => [ { 1 }, { 2 }, { 1 + _ } ],
   "e"  => [ { _ }, { _ }, { 1 + 1/_ } ],
   "π"  => [ { (2*_ - 1)**2 }, { 6 }, { 3 + _ } ],
   "τ"  => [ { _**2 }, { 2*_ + 1 }, { 8 / (1 + _) } ],

)

for k in (params.keys.sort) {

   printf("%2s ≈ %s\n", k, continued_fraction(params{k}...))

}</lang>

Output:
 e ≈ 2.7182818284590452353602874713526624977572470937
 π ≈ 3.14159265383979292596359650286939597045138933078
 τ ≈ 6.28318530717958647692528676655900576839433879875
 φ ≈ 1.61803398874989484820458683436563811772030917981
√2 ≈ 1.41421356237309504880168872420969807856967187538

Swift

Translation of: Rust

<lang swift>extension BinaryInteger {

 @inlinable
 public func power(_ n: Self) -> Self {
   return stride(from: 0, to: n, by: 1).lazy.map({_ in self }).reduce(1, *)
 }

}

public struct CycledSequence<WrappedSequence: Sequence> {

 private var seq: WrappedSequence
 private var iter: WrappedSequence.Iterator
 init(seq: WrappedSequence) {
   self.seq = seq
   self.iter = seq.makeIterator()
 }

}

extension CycledSequence: Sequence, IteratorProtocol {

 public mutating func next() -> WrappedSequence.Element? {
   if let ele = iter.next() {
     return ele
   } else {
     iter = seq.makeIterator()
     return iter.next()
   }
 }

}

extension Sequence {

 public func cycled() -> CycledSequence<Self> {
   return CycledSequence(seq: self)
 }

}

public struct ChainedSequence<Element> {

 private var sequences: [AnySequence<Element>]
 private var iter: AnyIterator<Element>
 private var curSeq = 0
 init(chain: ChainedSequence) {
   self.sequences = chain.sequences
   self.iter = chain.iter
   self.curSeq = chain.curSeq
 }
 init<Seq: Sequence>(_ seq: Seq) where Seq.Element == Element {
   sequences = [AnySequence(seq)]
   iter = sequences[curSeq].makeIterator()
 }
 func chained<Seq: Sequence>(with seq: Seq) -> ChainedSequence where Seq.Element == Element {
   var res = ChainedSequence(chain: self)
   res.sequences.append(AnySequence(seq))
   return res
 }

}

extension ChainedSequence: Sequence, IteratorProtocol {

 public mutating func next() -> Element? {
   if let el = iter.next() {
     return el
   }
   curSeq += 1
   guard curSeq != sequences.endIndex else {
     return nil
   }
   iter = sequences[curSeq].makeIterator()
   return iter.next()
 }

}

extension Sequence {

 public func chained<Seq: Sequence>(with other: Seq) -> ChainedSequence<Element> where Seq.Element == Element {
   return ChainedSequence(self).chained(with: other)
 }

}

func continuedFraction<T: Sequence, V: Sequence>(

 _ seq1: T,
 _ seq2: V,
 iterations: Int = 1000

) -> Double where T.Element: BinaryInteger, T.Element == V.Element {

 return zip(seq1, seq2).prefix(iterations).reversed().reduce(0.0, { Double($1.0) + (Double($1.1) / $0) })

}

let sqrtA = [1].chained(with: [2].cycled()) let sqrtB = [1].cycled()

print("√2 ≈ \(continuedFraction(sqrtA, sqrtB))")

let napierA = [2].chained(with: 1...) let napierB = [1].chained(with: 1...)

print("e ≈ \(continuedFraction(napierA, napierB))")

let piA = [3].chained(with: [6].cycled()) let piB = (1...).lazy.map({ (2 * $0 - 1).power(2) })

print("π ≈ \(continuedFraction(piA, piB))") </lang>

Output:
√2 ≈ 1.4142135623730951
e ≈ 2.7182818284590455
π ≈ 3.141592653339042

Tcl

Works with: tclsh version 8.6
Translation of: Python

Note that Tcl does not provide arbitrary precision floating point numbers by default, so all result computations are done with IEEE doubles. <lang tcl>package require Tcl 8.6

  1. Term generators; yield list of pairs

proc r2 {} {

   yield {1 1}
   while 1 {yield {2 1}}

} proc e {} {

   yield {2 1}
   while 1 {yield [list [incr n] $n]}

} proc pi {} {

   set n 0; set a 3
   while 1 {

yield [list $a [expr {(2*[incr n]-1)**2}]] set a 6

   }

}

  1. Continued fraction calculator

proc cf {generator {termCount 50}} {

   # Get the chunk of terms we want to work with
   set terms [list [coroutine cf.c $generator]]
   while {[llength $terms] < $termCount} {

lappend terms [cf.c]

   }
   rename cf.c {}
   # Merge the terms to compute the result
   set val 0.0
   foreach pair [lreverse $terms] {

lassign $pair a b set val [expr {$a + $b/$val}]

   }
   return $val

}

  1. Demonstration

puts [cf r2] puts [cf e] puts [cf pi 250]; # Converges more slowly</lang>

Output:
1.4142135623730951
2.7182818284590455
3.1415926373965735

VBA

Translation of: Phix

<lang vb>Public Const precision = 10000

Private Function continued_fraction(steps As Integer, rid_a As String, rid_b As String) As Double

   Dim res As Double
   res = 0
   For n = steps To 1 Step -1
      res = Application.Run(rid_b, n) / (Application.Run(rid_a, n) + res)
   Next n
   continued_fraction = Application.Run(rid_a, 0) + res

End Function

Function sqr2_a(n As Integer) As Integer

   sqr2_a = IIf(n = 0, 1, 2)

End Function

Function sqr2_b(n As Integer) As Integer

   sqr2_b = 1

End Function

Function nap_a(n As Integer) As Integer

   nap_a = IIf(n = 0, 2, n)

End Function

Function nap_b(n As Integer) As Integer

   nap_b = IIf(n = 1, 1, n - 1)

End Function

Function pi_a(n As Integer) As Integer

   pi_a = IIf(n = 0, 3, 6)

End Function

Function pi_b(n As Integer) As Long

   pi_b = IIf(n = 1, 1, (2 * n - 1) ^ 2)

End Function

Public Sub main()

   Debug.Print "Precision:", precision
   Debug.Print "Sqr(2):", continued_fraction(precision, "sqr2_a", "sqr2_b")
   Debug.Print "Napier:", continued_fraction(precision, "nap_a", "nap_b")
   Debug.Print "Pi:", continued_fraction(precision, "pi_a", "pi_b")

End Sub</lang>

Output:
Precision:     10000 
Sqr(2):        1,4142135623731 
Napier:        2,71828182845905 
Pi:            3,14159265358954 

Visual Basic .NET

Translation of: C#

<lang vbnet>Module Module1

   Function Calc(f As Func(Of Integer, Integer()), n As Integer) As Double
       Dim temp = 0.0
       For ni = n To 1 Step -1
           Dim p = f(ni)
           temp = p(1) / (p(0) + temp)
       Next
       Return f(0)(0) + temp
   End Function
   Sub Main()
       Dim fList = {
           Function(n As Integer) New Integer() {If(n > 0, 2, 1), 1},
           Function(n As Integer) New Integer() {If(n > 0, n, 2), If(n > 1, n - 1, 1)},
           Function(n As Integer) New Integer() {If(n > 0, 6, 3), Math.Pow(2 * n - 1, 2)}
           }
       For Each f In fList
           Console.WriteLine(Calc(f, 200))
       Next
   End Sub

End Module</lang>

Output:
1.4142135623731
2.71828182845905
3.14159262280485

XPL0

The number of iterations (N) needed to get the 13 digits of accuracy was determined by experiment. <lang XPL0>include c:\cxpl\codes; int N; real A, B, F; [Format(1, 15); A:= 2.0; B:= 1.0; N:= 16; IntOut(0, N); CrLf(0); F:= 0.0; while N>=1 do [F:= B/(A+F); N:= N-1]; RlOut(0, 1.0+F); CrLf(0); RlOut(0, sqrt(2.0)); CrLf(0);

N:= 13; IntOut(0, N); CrLf(0); F:= 0.0; while N>=2 do [F:= float(N-1)/(float(N)+F); N:= N-1]; RlOut(0, 2.0 + 1.0/(1.0+F)); CrLf(0); RlOut(0, Exp(1.0)); CrLf(0);

N:= 10000; IntOut(0, N); CrLf(0); F:= 0.0; while N>=1 do [F:= float(sq(2*N-1))/(6.0+F); N:= N-1]; RlOut(0, 3.0+F); CrLf(0); RlOut(0, ACos(-1.0)); CrLf(0); ]</lang>

Output:
16
1.414213562372820
1.414213562373100
13
2.718281828459380
2.718281828459050
10000
3.141592653589540
3.141592653589790

zkl

<lang zkl>fcn cf(fa,fb,a0){fcn(fa,fb,a0,n){

  a0 + [n..1,-1].reduce(
       'wrap(p,n){ fb(n)/(fa(n)+p) },0.0) }.fp(fa,fb,a0)

}</lang> cf creates a function that calculates the continued fraction from the bottom up. The new function takes a single parameter, n, which is used to calculate the nth term. <lang zkl>sqrt2:=cf((2.0).noop,(1.0).noop,1.0);

  sqrt2(200) : "%.20e".fmt(_).println();

nap:=cf((0.0).create,fcn(n){ (n==1) and 1.0 or (n-1).toFloat() },2.0);

  println(nap(15) - (1.0).e);

pi:=cf((6.0).noop,fcn(n){ n=2*n-1; (n*n).toFloat() },3.0);

  println(pi(1000) - (1.0).pi);</lang>

(1.0).create(n) --> n, (1.0).noop(n) --> 1.0

Output:
1.41421356237309514547e+00
1.33227e-15
-2.49251e-10

ZX Spectrum Basic

Translation of: BBC_BASIC

<lang zxbasic>10 LET a0=1: LET b1=1: LET a$="2": LET b$="1": PRINT "SQR(2) = ";: GO SUB 1000 20 LET a0=2: LET b1=1: LET a$="N": LET b$="N": PRINT "e = ";: GO SUB 1000 30 LET a0=3: LET b1=1: LET a$="6": LET b$="(2*N+1)^2": PRINT "PI = ";: GO SUB 1000 100 STOP 1000 LET n=0: LET e$="": LET p$="" 1010 LET n=n+1 1020 LET e$=e$+STR$ VAL a$+"+"+STR$ VAL b$+"/(" 1030 IF LEN e$<(4000-n) THEN GO TO 1010 1035 FOR i=1 TO n: LET p$=p$+")": NEXT i 1040 PRINT a0+b1/VAL (e$+"1"+p$) 1050 RETURN</lang>