This page uses content from Wikipedia. The original article was at Brownian_tree. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)

Generate and draw a   Brownian Tree.

Task
Brownian tree
You are encouraged to solve this task according to the task description, using any language you may know.


Task


A Brownian Tree is generated as a result of an initial seed, followed by the interaction of two processes.

  1. The initial "seed" is placed somewhere within the field. Where is not particularly important; it could be randomized, or it could be a fixed point.
  2. Particles are injected into the field, and are individually given a (typically random) motion pattern.
  3. When a particle collides with the seed or tree, its position is fixed, and it's considered to be part of the tree.


Because of the lax rules governing the random nature of the particle's placement and motion, no two resulting trees are really expected to be the same, or even necessarily have the same general shape.

Ada

Library: SDLAda

<lang Ada>with Ada.Numerics.Discrete_Random;

with SDL.Video.Windows.Makers; with SDL.Video.Renderers.Makers; with SDL.Events.Events;

procedure Brownian_Tree is

  Width   : constant := 800;
  Height  : constant := 600;
  Points  : constant := 50_000;
  subtype Width_Range  is Integer range 1 .. Width;
  subtype Height_Range is Integer range 1 .. Height;
  type    Direction    is (N, NE, E, SE, S, SW, W, NW);
  package Random_Width   is new Ada.Numerics.Discrete_Random (Width_Range);
  package Random_Height  is new Ada.Numerics.Discrete_Random (Height_Range);
  package Random_Direc   is new Ada.Numerics.Discrete_Random (Direction);
  Window   : SDL.Video.Windows.Window;
  Renderer : SDL.Video.Renderers.Renderer;
  Event    : SDL.Events.Events.Events;
  Width_Gen  : Random_Width.Generator;
  Height_Gen : Random_Height.Generator;
  Direc_Gen  : Random_Direc.Generator;
  function Poll_Quit return Boolean is
     use type SDL.Events.Event_Types;
  begin
     while SDL.Events.Events.Poll (Event) loop
        if Event.Common.Event_Type = SDL.Events.Quit then
           return True;
        end if;
     end loop;
     return False;
  end Poll_Quit;
  procedure Draw_Brownian_Tree is
     Field : array (Width_Range, Height_Range) of Boolean := (others => (others => False));
     X     : Width_Range;
     Y     : Height_Range;
     Direc : Direction;
     procedure Random_Free (X : out Width_Range; Y : out Height_Range) is
     begin
        --  Find free random spot
        loop
           X := Random_Width.Random (Width_Gen);
           Y := Random_Height.Random (Height_Gen);
           exit when Field (X, Y) = False;
        end loop;
     end Random_Free;
  begin
     --  Seed
     Field (Random_Width.Random  (Width_Gen),
            Random_Height.Random (Height_Gen)) := True;
     for I in 0 .. Points loop
        Random_Free (X, Y);
        loop
           --  If collide with wall then new random start
           while
             X = Width_Range'First  or X = Width_Range'Last or
             Y = Height_Range'First or Y = Height_Range'Last
           loop
              Random_Free (X, Y);
           end loop;
           exit when Field (X - 1, Y - 1) or Field (X, Y - 1) or Field (X + 1, Y - 1);
           exit when Field (X - 1, Y)     or                     Field (X + 1, Y);
           exit when Field (X - 1, Y + 1) or Field (X, Y + 1) or Field (X + 1, Y + 1);
           Direc := Random_Direc.Random (Direc_Gen);
           case Direc is
              when NW | N | NE => Y := Y - 1;
              when SW | S | SE => Y := Y + 1;
              when others => null;
           end case;
           case Direc is
              when NW | W | SW => X := X - 1;
              when SE | E | NE => X := X + 1;
              when others => null;
           end case;
        end loop;
        Field (X, Y) := True;
        Renderer.Draw (Point => (SDL.C.int (X), SDL.C.int (Y)));
        if I mod 100 = 0 then
           if Poll_Quit then
              return;
           end if;
           Window.Update_Surface;
        end if;
     end loop;
  end Draw_Brownian_Tree;

begin

  Random_Width.Reset  (Width_Gen);
  Random_Height.Reset (Height_Gen);
  Random_Direc.Reset  (Direc_Gen);
  if not SDL.Initialise (Flags => SDL.Enable_Screen) then
     return;
  end if;
  SDL.Video.Windows.Makers.Create (Win      => Window,
                                   Title    => "Brownian tree",
                                   Position => SDL.Natural_Coordinates'(X => 10, Y => 10),
                                   Size     => SDL.Positive_Sizes'(Width, Height),
                                   Flags    => 0);
  SDL.Video.Renderers.Makers.Create (Renderer, Window.Get_Surface);
  Renderer.Set_Draw_Colour ((0, 0, 0, 255));
  Renderer.Fill (Rectangle => (0, 0, Width, Height));
  Renderer.Set_Draw_Colour ((200, 200, 200, 255));
  Draw_Brownian_Tree;
  Window.Update_Surface;
  loop
     exit when Poll_Quit;
     delay 0.050;
  end loop;
  Window.Finalize;
  SDL.Finalise;

end Brownian_Tree;</lang>

Applesoft BASIC

Uses XDRAW to plot to Hi-res GRaphics, in fullscreen [POKE 49234,0] 280 x 192, effectively 140 x 192 because colors stretch over two pixels, using a single pixel shape. The POKEs create one shape in a shape table starting at address 768 and point addresses 232 and 233 to this address. Address 234 is the collision counter which is used to detect if the randomly placed seed has hit anything and if the moving seed has collided with the tree. Plotting the seed creates an animation effect of the seed moving around in it's Brownian way.<lang applesoftbasic>0GOSUB2:FORQ=0TOTSTEP0:X=A:Y=B:FORO=0TOTSTEP0:XDRAWTATX,Y:X=INT(RND(T)*J)*Z:Y=INT(RND(T)*H):XDRAWTATX,Y:O=PEEK(C)>0:NEXTO:FORP=0TOTSTEP0:A=X:B=Y:R=INT(RND(T)*E):X=X+X(R):Y=Y+Y(R):IFX<0ORX>MORY<0ORY>NTHENNEXTQ

1  XDRAW T AT X,Y:P =  NOT  PEEK (C): XDRAW T AT A,B: NEXT P: XDRAW T AT X,Y:Q = A = 0 OR A = M OR B = 0 OR B = N: NEXT Q: END
2 T = 1:Z = 2:E = 8:C = 234
3 W = 280:A = W / 2:J = A
4 H = 192:B = H / 2:M = W - 2
5 N = H - 1:U =  - 1:V =  - 2
6 Y(0) = U:X(0) = V:Y(1) = U
7 Y(2) = U:X(2) = 2:X(3) = 2
8 Y(4) = 1:X(4) = 2:Y(5) = 1
9 X(6) = V:Y(6) = 1:X(7) = V
10  POKE 768,1: POKE 769,0
11  POKE 770,4: POKE 771,0
12  POKE 772,5: POKE 773,0
13  POKE 232,0: POKE 233,3
14  HGR : POKE 49234,0
15  ROT= 0: SCALE= 1: RETURN</lang>

AutoHotkey

Works with: AutoHotkey_L

Takes a little while to run, be patient. Requires the GDI+ Standard Library by Tic <lang AHK>SetBatchLines -1 Process, Priority,, high size := 400 D  := .08 num  := size * size * d field:= Object() field[size//2, size//2] := true ; set the seed lost := 0

Loop % num { x := Rnd(1, size), y := Rnd(1, size) Loop { oldX := X, oldY := Y x += Rnd(-1, 1), y += Rnd(1, -1) If ( field[x, y] ) { field[oldX, oldY] := true break } If ( X > Size ) or ( Y > Size) or ( X < 1 ) or ( Y < 1 ) { lost++ break } } }

pToken  := Gdip_startup() pBitmap := Gdip_CreateBitmap(size, size) loop %size% { x := A_index Loop %size% { If ( field[x, A_Index] ) { Gdip_SetPixel(pBitmap, x, A_Index, 0xFF0000FF) } } } Gdip_SaveBitmapToFile(pBitmap, "brownian.png") Gdip_DisposeImage(pBitmap) Gdip_Shutdown(pToken) Run brownian.png

MsgBox lost %lost%

Rnd(min, max){ Random, r, min, max return r }</lang>Sample output file here

BBC BASIC

<lang bbcbasic> SYS "SetWindowText", @hwnd%, "Brownian Tree"

     SIZE = 400
     
     VDU 23,22,SIZE;SIZE;8,16,16,0
     GCOL 10
     
     REM set the seed:
     PLOT SIZE, SIZE
     
     OFF
     REPEAT
       
       REM set particle's initial position:
       REPEAT
         X% = RND(SIZE)-1
         Y% = RND(SIZE)-1
       UNTIL POINT(2*X%,2*Y%) = 0
       
       REPEAT
         oldX% = X%
         oldY% = Y%
         X% += RND(3) - 2
         Y% += RND(3) - 2
       UNTIL POINT(2*X%,2*Y%)
       IF X%>=0 IF X%<SIZE IF Y%>=0 IF Y%<SIZE PLOT 2*oldX%,2*oldY%
       
     UNTIL FALSE
     

</lang>  

C

Library: FreeImage

<lang c>#include <string.h>

  1. include <stdlib.h>
  2. include <time.h>
  3. include <math.h>
  4. include <FreeImage.h>
  1. define NUM_PARTICLES 1000
  2. define SIZE 800

void draw_brownian_tree(int world[SIZE][SIZE]){

 int px, py; // particle values
 int dx, dy; // offsets
 int i;

 // set the seed
 world[rand() % SIZE][rand() % SIZE] = 1;
 for (i = 0; i < NUM_PARTICLES; i++){
   // set particle's initial position
   px = rand() % SIZE;
   py = rand() % SIZE;
   while (1){
     // randomly choose a direction
     dx = rand() % 3 - 1;
     dy = rand() % 3 - 1;
     if (dx + px < 0 || dx + px >= SIZE || dy + py < 0 || dy + py >= SIZE){
       // plop the particle into some other random location
       px = rand() % SIZE;
       py = rand() % SIZE;
     }else if (world[py + dy][px + dx] != 0){
       // bumped into something
       world[py][px] = 1;
       break;
     }else{
       py += dy;
       px += dx;
     }
   }
 }

}

int main(){

 int world[SIZE][SIZE];
 FIBITMAP * img;
 RGBQUAD rgb;
 int x, y;

 memset(world, 0, sizeof world);
 srand((unsigned)time(NULL));
 draw_brownian_tree(world);
 img = FreeImage_Allocate(SIZE, SIZE, 32, 0, 0, 0);
 for (y = 0; y < SIZE; y++){
   for (x = 0; x < SIZE; x++){
     rgb.rgbRed = rgb.rgbGreen = rgb.rgbBlue = (world[y][x] ? 255 : 0);
     FreeImage_SetPixelColor(img, x, y, &rgb);
   }
 }
 FreeImage_Save(FIF_BMP, img, "brownian_tree.bmp", 0);
 FreeImage_Unload(img);

}</lang>

Bold text

Alternative Version

Translation of: D

This version writes the image as Portable Bit Map to stdout and doesn't move already set particles. <lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <time.h>
  3. include <stdbool.h>
  1. define SIDE 600
  2. define NUM_PARTICLES 10000

bool W[SIDE][SIDE];

int main() {

   srand((unsigned)time(NULL));
   W[SIDE / 2][SIDE / 2] = true;
   for (int i = 0; i < NUM_PARTICLES; i++) {
       unsigned int x, y;
       OVER: do {
           x = rand() % (SIDE - 2) + 1;
           y = rand() % (SIDE - 2) + 1;
       } while (W[y][x]);
       while (W[y-1][x-1] + W[y-1][x] + W[y-1][x+1] +
              W[y][x-1]               + W[y][x+1] +
              W[y+1][x-1] + W[y+1][x] + W[y+1][x+1] == 0) {
           unsigned int dxy = rand() % 8;
           if (dxy > 3) dxy++;
           x += (dxy % 3) - 1;
           y += (dxy / 3) - 1;
           if (x < 1 || x >= SIDE - 1 || y < 1 || y >= SIDE - 1)
               goto OVER;
       }
       W[y][x] = true;
   }
   printf("P1\n%d %d\n", SIDE, SIDE);
   for (int r = 0; r < SIDE; r++) {
       for (int c = 0; c < SIDE; c++)
           printf("%d ", W[r][c]);
       putchar('\n');
   }
   return 0;

}</lang> Run-time about 12.4 seconds with SIDE=600, NUM_PARTICLES=10000.

C#

Works with: C# version 3.0

<lang csharp>using System; using System.Drawing;

namespace BrownianTree {

   class Program
   {
       static Bitmap BrownianTree(int size, int numparticles)
       {
           Bitmap bmp = new Bitmap(size, size);
           Rectangle bounds = new Rectangle { X = 0, Y = 0, Size = bmp.Size };
           using (Graphics g = Graphics.FromImage(bmp))
           {
               g.Clear(Color.Black);
           }
           Random rnd = new Random();
           bmp.SetPixel(rnd.Next(size), rnd.Next(size), Color.White);
           Point pt = new Point(), newpt = new Point();
           for (int i = 0; i < numparticles; i++)
           {
               pt.X = rnd.Next(size);
               pt.Y = rnd.Next(size);
               do
               {
                   newpt.X = pt.X + rnd.Next(-1, 2);
                   newpt.Y = pt.Y + rnd.Next(-1, 2);
                   if (!bounds.Contains(newpt))
                   {
                       pt.X = rnd.Next(size);
                       pt.Y = rnd.Next(size);
                   }
                   else if (bmp.GetPixel(newpt.X, newpt.Y).R > 0)
                   {
                       bmp.SetPixel(pt.X, pt.Y, Color.White);
                       break;
                   }
                   else
                   {
                       pt = newpt;
                   }
               } while (true);
           }
           return bmp;
       }
       static void Main(string[] args)
       {
           BrownianTree(300, 3000).Save("browniantree.png");
       }
   }

}</lang>

C++

 

For an animated version based on this same code see: Brownian tree/C++ animated <lang cpp>#include <windows.h>

  1. include <iostream>
  2. include <string>

//-------------------------------------------------------------------- using namespace std;

//-------------------------------------------------------------------- enum states { SEED, GROWING, MOVING, REST }; enum treeStates { NONE, MOVER, TREE }; const int MAX_SIDE = 480, MAX_MOVERS = 511, MAX_CELLS = 15137;

//-------------------------------------------------------------------- class point { public:

   point()                  { x = y = 0; }
   point( int a, int b )    { x = a; y = b; }
   void set( int a, int b ) { x = a; y = b; }
   int x, y;

}; //-------------------------------------------------------------------- class movers { public:

   point pos;
   bool moving;
   movers() : moving( false ){}

}; //-------------------------------------------------------------------- class myBitmap { public:

   myBitmap() : pen( NULL ) {}
   ~myBitmap()
   {

DeleteObject( pen ); DeleteDC( hdc ); DeleteObject( bmp );

   }
   bool create( int w, int h )
   {

BITMAPINFO bi; ZeroMemory( &bi, sizeof( bi ) );

bi.bmiHeader.biSize = sizeof( bi.bmiHeader ); bi.bmiHeader.biBitCount = sizeof( DWORD ) * 8; bi.bmiHeader.biCompression = BI_RGB; bi.bmiHeader.biPlanes = 1; bi.bmiHeader.biWidth = w; bi.bmiHeader.biHeight = -h;

HDC dc = GetDC( GetConsoleWindow() ); bmp = CreateDIBSection( dc, &bi, DIB_RGB_COLORS, &pBits, NULL, 0 ); if( !bmp ) return false;

hdc = CreateCompatibleDC( dc ); SelectObject( hdc, bmp ); ReleaseDC( GetConsoleWindow(), dc );

width = w; height = h;

return true;

   }
   void clear()
   {

ZeroMemory( pBits, width * height * sizeof( DWORD ) );

   }
   void setPenColor( DWORD clr )
   {

if( pen ) DeleteObject( pen ); pen = CreatePen( PS_SOLID, 1, clr ); SelectObject( hdc, pen );

   }
   void saveBitmap( string path )
   {

BITMAPFILEHEADER fileheader; BITMAPINFO infoheader; BITMAP bitmap; DWORD* dwpBits; DWORD wb; HANDLE file;

GetObject( bmp, sizeof( bitmap ), &bitmap );

dwpBits = new DWORD[bitmap.bmWidth * bitmap.bmHeight]; ZeroMemory( dwpBits, bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD ) ); ZeroMemory( &infoheader, sizeof( BITMAPINFO ) ); ZeroMemory( &fileheader, sizeof( BITMAPFILEHEADER ) );

infoheader.bmiHeader.biBitCount = sizeof( DWORD ) * 8; infoheader.bmiHeader.biCompression = BI_RGB; infoheader.bmiHeader.biPlanes = 1; infoheader.bmiHeader.biSize = sizeof( infoheader.bmiHeader ); infoheader.bmiHeader.biHeight = bitmap.bmHeight; infoheader.bmiHeader.biWidth = bitmap.bmWidth; infoheader.bmiHeader.biSizeImage = bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD );

fileheader.bfType = 0x4D42; fileheader.bfOffBits = sizeof( infoheader.bmiHeader ) + sizeof( BITMAPFILEHEADER ); fileheader.bfSize = fileheader.bfOffBits + infoheader.bmiHeader.biSizeImage;

GetDIBits( hdc, bmp, 0, height, ( LPVOID )dwpBits, &infoheader, DIB_RGB_COLORS );

file = CreateFile( path.c_str(), GENERIC_WRITE, 0, NULL,

                          CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL );

WriteFile( file, &fileheader, sizeof( BITMAPFILEHEADER ), &wb, NULL ); WriteFile( file, &infoheader.bmiHeader, sizeof( infoheader.bmiHeader ), &wb, NULL ); WriteFile( file, dwpBits, bitmap.bmWidth * bitmap.bmHeight * 4, &wb, NULL ); CloseHandle( file );

delete [] dwpBits;

   }
   HDC getDC()     { return hdc; }
   int getWidth()  { return width; }
   int getHeight() { return height; }

private:

   HBITMAP bmp;
   HDC	    hdc;
   HPEN    pen;
   void    *pBits;
   int	    width, height;

}; //-------------------------------------------------------------------- class brownianTree { public:

   brownianTree()         
   { 

_bmp.create( MAX_SIDE, MAX_SIDE ); init();

   }
   void init()
   {

_cellCount = 0; ZeroMemory( _grid, sizeof( _grid ) ); _bmp.clear(); _state = SEED;

   }

bool mainLoop()

   {

switch( _state ) { case REST: saveTree(); return false; case SEED: doSeed(); break; case GROWING: startMovers(); break; case MOVING: moveMovers(); } return true; }

   myBitmap* getBmp() { return &_bmp; }

private:

   void saveTree()
   {

for( int y = 0; y < MAX_SIDE; y++ ) for( int x = 0; x < MAX_SIDE; x++ ) if( _grid[x][y] == TREE ) SetPixel( _bmp.getDC(), x, y, RGB( 255, 120, 0 ) );

       _bmp.saveBitmap( "f:\\rc\\tree.bmp" );
   }
   void doSeed()
   {

int x = MAX_SIDE - MAX_SIDE / 2, y = MAX_SIDE / 4; _grid[rand() % x + y][rand() % x + y] = TREE; _cellCount++; _state = GROWING;

   }
   void addMover( movers* m )
   {

m->moving = true; int x = MAX_SIDE - MAX_SIDE / 2, y = MAX_SIDE / 4, a, b; while( true ) { a = rand() % x + y; b = rand() % x + y; if( _grid[a][b] == NONE ) break; }

m->pos.set( a, b ); _grid[a][b] = MOVER;

   }
   void startMovers()
   {

movers* m; for( int c = 0; c < MAX_MOVERS; c++ ) { m = &_movers[c]; addMover( m ); } _state = MOVING;

   }
   void addToTree( movers* m )
   {

m->moving = false; _grid[m->pos.x][m->pos.y] = TREE; if( ++_cellCount >= MAX_CELLS ) _state = REST;

COORD c = { 0, 1 }; SetConsoleCursorPosition( GetStdHandle( STD_OUTPUT_HANDLE ), c ); cout << "Cells added: " << _cellCount

            << " from " << MAX_CELLS << " => "
            <<  static_cast<float>( 100 * _cellCount ) /
                static_cast<float>( MAX_CELLS )
            << "%              ";
   }
   bool moveIt( movers* m )
   {

point f[8]; int ff = 0; for( int y = -1; y < 2; y++ ) { for( int x = -1; x < 2; x++ ) { if( !x && !y ) continue; int a = m->pos.x + x, b = m->pos.y + y; if( a < 0 || b < 0 || a >= MAX_SIDE || b >= MAX_SIDE ) { addToTree( m ); return true; } switch( _grid[a][b] ) { case TREE: addToTree( m ); return true; case NONE: f[ff++].set( a, b ); } }

       }

if( ff < 1 ) return false;

_grid[m->pos.x][m->pos.y] = NONE; m->pos = f[rand() % ff]; _grid[m->pos.x][m->pos.y] = MOVER;

return false;

   }
   void moveMovers()
   {

movers* mm; for( int m = 0; m < MAX_MOVERS; m++ ) { mm = &_movers[m]; if( !mm->moving ) continue; if( moveIt( mm ) && _cellCount < MAX_CELLS ) addMover( mm ); }

   }
   states   _state;
   BYTE     _grid[MAX_SIDE][MAX_SIDE];
   myBitmap _bmp;
   int      _cellCount;
   movers   _movers[MAX_MOVERS];

}; //-------------------------------------------------------------------- int main( int argc, char* argv[] ) {

   ShowWindow( GetConsoleWindow(), SW_MAXIMIZE );
   srand( GetTickCount() );
   brownianTree tree;
   DWORD now = GetTickCount();
   while( tree.mainLoop() );
   now = GetTickCount() - now;
   cout << endl << endl << "It took "
        << now / 1000
        << " seconds to complete the task!" << endl << endl;
   BitBlt( GetDC( GetConsoleWindow() ), 20, 90, MAX_SIDE, MAX_SIDE,
           tree.getBmp()->getDC(), 0, 0, SRCCOPY );
   system( "pause" );
   return 0;

} //--------------------------------------------------------------------</lang>

Common Lisp

When the random walk lands on a set pixel it sets the pixel at the previous position. An alternate method sets a pixel if the current position is vacant and at least one neighbour is set. The former produces denser trees than the latter. If compiled with SBCL, providing a command line argument will invoke the latter method. Requires Quicklisp library manager and the CL-GD package for producing PNG images. <lang lisp>;;; brownian.lisp

sbcl compile
first load and then (sb-ext
save-lisp-and-die "brownian"
executable t :toplevel #'brownian::main)

(ql:quickload "cl-gd")

(defpackage #:brownian

 (:use #:cl #:cl-gd))

(in-package #:brownian)

(defvar *size* 512) (defparameter bitmap (make-array *size*)) (dotimes (i *size*)

 (setf (svref bitmap i) (make-array *size* :element-type 'bit)))
is pixel at coord set? returns coord if so otherwise nil if not set or invalid
type
pair->pair|nil

(defun set-p (coord)

 (and coord (= (sbit (svref bitmap (car coord)) (cdr coord)) 1) coord))
valid coord predicate, return its arg if valid or nil otherwise
type
pair->pair|nil

(defun coord-p (coord)

 (and ((lambda (v hi) (and (>= v 0) (< v hi))) (car coord) *size*)
      ((lambda (v hi) (and (>= v 0) (< v hi))) (cdr coord) *size*)
      coord))
valid coord predicate for the ith neighbour, return its arg if valid or nil otherwise
type
pair->pair|nil

(defun coordi-p (coord i)

 (coord-p (cons (+ (car coord) (nth i '(-1 -1 -1 0 0 1 1 1)))
                (+ (cdr coord) (nth i '(-1 0 1 -1 1 -1 0 1))))))
random walk until out of bounds or hit occupied pixel
assumes start is valid vacant coord, return start or nil if off-grid
type
pair->pair|nil

(defun random-walk (start)

 (let ((next (coordi-p start (random 8))))
   (if (set-p next) start
       (and next (random-walk next)))))
random walk until out of bounds or or adjacent to occupied pixel
assumes start is valid vacant coord, return start or nil if off-grid
type
pair->pair|nil

(defun random-walk2 (start)

 (if (some #'set-p
           (remove-if #'null (mapcar (lambda (i) (coordi-p start i)) '(0 1 2 3 4 5 6 7))))
     start
     (let ((next (coordi-p start (random 8))))
       (and next (random-walk2 next)))))
     

(defparameter use-walk2 nil) (defun main ()

 (setf *random-state* (make-random-state t)) ;; randomize
 (when (cdr sb-ext:*posix-argv*) (setf use-walk2 t)) ;; any cmd line arg -> use alt walk algorithm
 (with-image* (*size* *size*)   
   (allocate-color 0 0 0) ; background color
   ;;; set the desired number of pixels in image as a pct (10%) of total 
   (let ((target (truncate (* 0.10 (* *size* *size*))))
         (green (allocate-color 104 156 84)))
       
     (defun write-pixel (coord)
       (set-pixel (car coord) (cdr coord) :color green)
       (setf (sbit (svref bitmap (car coord)) (cdr coord)) 1)
       coord)
     
     ;; initial point set
     (write-pixel (cons (truncate (/ *size* 2)) (truncate (/ *size* 2))))
     
     ;; iterate until target # of pixels are set
     (do ((i 0 i)
          (seed (cons (random *size*) (random *size*))  (cons (random *size*) (random *size*))))            
         ((= i target) )
        
       (let ((newcoord (and (not (set-p seed)) (if use-walk2 (random-walk2 seed) (random-walk seed)))))
         (when newcoord
           (write-pixel newcoord)
           (incf i)
       
           ;; report every 5% of progress
           (when (zerop (rem i (round (* target 0.05))))
             (format t "~A% done.~%" (round (/ i target 0.01))))))))
        
   (write-image-to-file "brownian.png"
                        :compression-level 6 :if-exists :supersede)))
</lang>

D

Uses the module of the Grayscale Image task. Partial

Translation of: PureBasic

<lang d>void main() {

   import core.stdc.stdio, std.random, grayscale_image;
   enum uint side = 600; // Square world side.
   enum uint num_particles = 10_000;
   static assert(side > 2 && num_particles < (side ^^ 2 * 0.7));
   auto rng = unpredictableSeed.Xorshift;
   ubyte[side][side] W;       // World.
   W[side / 2][side / 2] = 1; // Set tree root.
   foreach (immutable _; 0 .. num_particles) {
       // Random initial particle position.
       OVER: uint x, y;
       do {
           x = uniform(1, side - 1, rng);
           y = uniform(1, side - 1, rng);
       } while (W[y][x]); // Assure the chosen cell is empty.
       while (W[y-1][x-1] + W[y-1][x] + W[y-1][x+1] +
              W[y][x-1]               + W[y][x+1] +
              W[y+1][x-1] + W[y+1][x] + W[y+1][x+1] == 0) {
           // Randomly choose a direction (Moore neighborhood).
           uint dxy = uniform(0, 8, rng);
           if (dxy > 3) dxy++; // To avoid the center.
           x += (dxy % 3) - 1;
           y += (dxy / 3) - 1;
           if (x < 1 || x >= side - 1 || y < 1 || y >= side - 1)
               goto OVER;
       }
       W[y][x] = 1; // Touched, set the cell.
   }
   ubyte[] data = (&W[0][0])[0 .. side ^^ 2]; // Flat view.
   data[] += 255;
   Image!ubyte.fromData(data, side, side).savePGM("brownian_tree.pgm");

}</lang> World side = 600, num_particles = 10_000, cropped (about 20 seconds run-time with dmd, about 4.3 seconds with ldc2):

 

Delphi

<lang delphi>const

   SIZE = 256;
   NUM_PARTICLES = 1000;

procedure TForm1.Button1Click(Sender: TObject); type

   TByteArray = array[0..0] of Byte;
   PByteArray = ^TByteArray;

var

   B: TBitmap;
   I: Integer;
   P, D: TPoint;

begin

   Randomize;
   B := TBitmap.Create;
   try
       B.Width := SIZE;
       B.Height := SIZE;
       B.PixelFormat := pf8bit;
       B.Canvas.Brush.Color := clBlack;
       B.Canvas.FillRect(B.Canvas.ClipRect);
       B.Canvas.Pixels[Random(SIZE), Random(SIZE)] := clWhite;
       For I := 0 to NUM_PARTICLES - 1 do
       Begin
           P.X := Random(SIZE);
           P.Y := Random(SIZE);
           While true do
           Begin
               D.X := Random(3) - 1;
               D.Y := Random(3) - 1;
               Inc(P.X, D.X);
               Inc(P.Y, D.Y);
               If ((P.X or P.Y) < 0) or (P.X >= SIZE) or (P.Y >= SIZE) Then
               Begin
                   P.X := Random(SIZE);
                   P.Y := Random(SIZE);
               end
               else if PByteArray(B.ScanLine[P.Y])^[P.X] <> 0 then
               begin
                   PByteArray(B.ScanLine[P.Y-D.Y])^[P.X-D.X] := $FF;
                   Break;
               end;
           end;
       end;
       Canvas.Draw(0, 0, B);
   finally
       FreeAndNil(B);
   end;

end;</lang>

EasyLang

Run it

<lang>set_color 099 len f[] 200 * 200 move_pen 50 50 draw_rect 0.5 0.5 f[100 * 200 + 100] = 1 n = 9000 while i < n

 x = random 200
 y = random 200
 while f[y * 200 + x] = 1
   x = random 200
   y = random 200
 .
 while x <> -1
   xo = x
   yo = y
   x += random 3 - 1
   y += random 3 - 1
   if x < 0 or y < 0 or x >= 200 or y >= 200
     x = -1
   else
     if f[y * 200 + x] = 1
       move_pen xo / 2 yo / 2
       draw_rect 0.5 0.5
       f[yo * 200 + xo] = 1
       i += 1
       if i mod 16 = 0
         set_red 0.2 + i / n
         sleep 0
       .
       x = -1
     .
   .
 .

.</lang>

Factor

This example sets four spawn points, one in each corner of the image, giving the result a vague x-shaped appearance. For visual reasons, movement is restricted to diagonals. So be careful if you change the seed or spawns — they should all fall on the same diagonal. <lang factor>USING: accessors images images.loader kernel literals math math.vectors random sets ; FROM: sets => in? ; EXCLUDE: sequences => move ; IN: rosetta-code.brownian-tree

CONSTANT: size 512 CONSTANT: num-particles 30000 CONSTANT: seed { 256 256 } CONSTANT: spawns { { 10 10 } { 502 10 } { 10 502 } { 502 502 } } CONSTANT: bg-color B{ 0 0 0 255 } CONSTANT: fg-color B{ 255 255 255 255 }

in-bounds? ( loc -- ? )
   dup { 0 0 } ${ size 1 - dup } vclamp = ;
move ( loc -- loc' )
   dup 2 [ { 1 -1 } random ] replicate v+ dup in-bounds?
   [ nip ] [ drop ] if ;
grow ( particles -- particles' )
   spawns random dup
   [ 2over swap in? ] [ drop dup move swap ] until nip
   swap [ adjoin ] keep ;
brownian-data ( -- seq )
   HS{ $ seed } clone num-particles 1 - [ grow ] times { }
   set-like ;
blank-bitmap ( -- bitmap )
   size sq [ bg-color ] replicate B{ } concat-as ;
init-img ( -- img )
   <image>
   ${ size size }   >>dim
   BGRA             >>component-order
   ubyte-components >>component-type
   blank-bitmap     >>bitmap ;
brownian-img ( -- img )
   init-img dup brownian-data
   [ swap [ fg-color swap first2 ] dip set-pixel-at ] with each
   ;
save-brownian-tree-image ( -- )
   brownian-img "brownian.png" save-graphic-image ;

MAIN: save-brownian-tree-image</lang>

Output:

image

Fantom

<lang fantom> using fwt using gfx

class Main {

 public static Void main ()
 {
   particles := Particles (300, 200)
   1000.times { particles.addParticle } // add 1000 particles
   Window // open up a display for the final tree
   {
     title = "Brownian Tree"
     EdgePane
     {
       center = ScrollPane { content = ParticleCanvas(particles) }
     },
   }.open
 }

}

class Particles {

 Bool[][] image
 Int height
 Int width
 new make (Int height, Int width) 
 {
   this.height = height
   this.width = width
   // set up initial image as an array of booleans with one set cell 
   image = [,]
   width.times |w|
   {
     row := [,] 
     height.times { row.add (false) }
     image.add (row)
   }
   image[Int.random(0..<width)][Int.random(0..<height)] = true
 }
 Bool get (Int w, Int h) { return image[w][h] }
 Void addParticle ()
 { 
   x := Int.random(0..<width)
   y := Int.random(0..<height)
   Int dx := 0
   Int dy := 0 
   while (!image[x][y]) // loop until hit existing part of the tree
   {
     dx = [-1,0,1].random
     dy = [-1,0,1].random
     if ((0..<width).contains(x + dx))  
       x += dx
     else // did not change x, so set dx = 0
       dx = 0
     if ((0..<height).contains(y + dy)) 
       y += dy
     else
       dy = 0
   }
   // put x,y back to just before move onto existing part of tree
   x -= dx
   y -= dy
   image[x][y] = true
 }

}

class ParticleCanvas : Canvas {

 Particles particles
 
 new make (Particles particles) { this.particles = particles }
 // provides canvas size for parent scrollpane 
 override Size prefSize(Hints hints := Hints.defVal)
 { 
   Size(particles.width, particles.height)
 }
 // repaint the display
 override Void onPaint (Graphics g)
 { 
   g.brush = Color.black
   g.fillRect(0, 0, size.w, size.h)
   g.brush = Color.green
   particles.width.times |w|
   {
     particles.height.times |h|
     { 
       if (particles.get(w, h)) // draw a 1x1 square for each set particle
         g.fillRect (w, h, 1, 1)
     }
   }
 }

} </lang>

Fortran

Works with: Fortran version 95 and later
Translation of: C

For RCImageBasic and RCImageIO, see Basic bitmap storage/Fortran and Write ppm file#Fortran

<lang fortran>program BrownianTree

 use RCImageBasic
 use RCImageIO
 implicit none
 integer, parameter :: num_particles = 1000
 integer, parameter :: wsize         = 800
 integer, dimension(wsize, wsize) :: world
 type(rgbimage) :: gworld
 integer :: x, y
 ! init seed
 call init_random_seed
 
 world = 0
 call draw_brownian_tree(world)
 call alloc_img(gworld, wsize, wsize)
 call fill_img(gworld, rgb(0,0,0))
 
 do y = 1, wsize
    do x = 1, wsize
       if ( world(x, y) /= 0 ) then
          call put_pixel(gworld, x, y, rgb(255, 255, 255))
       end if
    end do
 end do
 open(unit=10, file='browniantree.ppm', action='write')
 call output_ppm(10, gworld)
 close(10)
 call free_img(gworld)

contains

 ! this code is taken from the GNU gfortran online doc
 subroutine init_random_seed
   integer :: i, n, clock
   integer, dimension(:), allocatable :: seed
   call random_seed(size = n)
   allocate(seed(n))
   call system_clock(count = clock)
   seed = clock + 37 * (/ ( i - 1, i = 1, n) /)
   call random_seed(put = seed)
   deallocate(seed)
 end subroutine init_random_seed


 function randbetween(a, b) result(res) ! suppose a < b
   integer, intent(in) :: a, b
   integer :: res
   real :: r
   call random_number(r)
   res = a + int((b-a)*r + 0.5)
 end function randbetween
 function bounded(v, ll, ul) result(res)
   integer, intent(in) :: v, ll, ul
   logical res
   res = ( v >= ll ) .and. ( v <= ul )
 end function bounded


 subroutine draw_brownian_tree(w)
   integer, dimension(:,:), intent(inout) :: w
   integer :: px, py, dx, dy, i
   integer :: xsize, ysize
   xsize = size(w, 1)
   ysize = size(w, 2)
   w(randbetween(1, xsize), randbetween(1, ysize)) = 1
   
   do i = 1, num_particles
      px = randbetween(1, xsize)
      py = randbetween(1, ysize)
      
      do
         dx = randbetween(-1, 1)
         dy = randbetween(-1, 1)
         if ( .not. bounded(dx+px, 1, xsize) .or. .not. bounded(dy+py, 1, ysize) ) then
            px = randbetween(1, xsize)
            py = randbetween(1, ysize)
         else if ( w(px+dx, py+dy) /= 0 ) then
            w(px, py) = 1
            exit
         else
            py = py + dy
            px = px + dx
         end if
      end do
   end do
   
 end subroutine draw_brownian_tree

end program</lang>

FreeBASIC

<lang freebasic>' version 16-03-2017 ' compile with: fbc -s gui

Const As ULong w = 400 Const As ULong w1 = w -1

Dim As Long x, y, lastx, lasty Dim As Long count, max = w * w \ 4

ScreenRes w, w, 8 ' windowsize 400 * 400, 8bit ' hit any key to stop or mouseclick on close window [X] WindowTitle "hit any key to stop and close the window"

Palette 0, 0 ' black Palette 1, RGB( 1, 1, 1) ' almost black Palette 2, RGB(255, 255, 255) ' white Palette 3, RGB( 0, 255, 0) ' green

Line (0, 0) - (w1, w1), 0, BF ' make field black Line (0, 0) - (w1, w1), 1, B ' draw border in almost black color

Randomize Timer x = Int(Rnd * 11) - 5 y = Int(Rnd * 11) - 5

PSet(w \ 2 + x, w \ 2 + y), 3 ' place seed near center

Do

   Do  ' create new particle
       x = Int(Rnd * w1) + 1
       y = Int(Rnd * w1) + 1
   Loop Until Point(x, y) = 0 ' black
   PSet(x, y), 2
   Do
       lastx = x
       lasty = y
       Do
           x = lastx + Int(Rnd * 3) -1
           y = lasty + Int(Rnd * 3) -1
       Loop Until Point(x, y) <> 1
       If Point(x, y) = 3 Then
           PSet(lastx, lasty), 3
           Exit Do ' exit do loop and create new particle
       End If
       PSet(lastx, lasty), 0
       PSet(x,y), 2
       If Inkey <> "" Or Inkey = Chr(255) + "k" Then
           End
       End If
   Loop
   count += 1

Loop Until count > max

Beep : Sleep 5000 End</lang>

Gnuplot

Works with: gnuplot version 5.0 (patchlevel 3) and above

Plotting helper file for load command

plotff.gp - Plotting from any data-file with 2 columns (space delimited), and writing to png-file.
Especially useful to plot colored fractals using points. <lang gnuplot>

    1. plotff.gp 11/27/16 aev
    2. Plotting from any data-file with 2 columns (space delimited), and writing to png-file.
    3. Especially useful to plot colored fractals using points.
    4. Note: assign variables: clr, filename and ttl (before using load command).

reset set terminal png font arial 12 size 640,640 ofn=filename.".png" set output ofn unset border; unset xtics; unset ytics; unset key; set size square dfn=filename.".dat" set title ttl font "Arial:Bold,12" plot dfn using 1:2 with points pt 7 ps 0.5 lc @clr set output </lang>

Versions #1 - #4. Plotting from PARI/GP generated dat-files

Note: dat-files are [PARI/GP] generated output files.

File:BT1gp.png
Output BT1gp.png
File:BT2gp.png
Output BT2gp.png
File:BT3gp.png
Output BT3gp.png
File:BT41gp.png
Output BT41gp.png
File:BT42gp.png
Output BT42gp.png
File:BT43gp.png
Output BT43gp.png

<lang gnuplot>

    1. BTff.gp 11/27/16 aev
    2. Plotting 6 Brownian tree pictures.
    3. dat-files are PARI/GP generated output files:
    4. http://rosettacode.org/wiki/Brownian_tree#PARI.2FGP
  1. cd 'C:\gnupData'
    1. BT1

clr = '"dark-green"' filename = "BTAH1" ttl = "Brownian Tree v.#1" load "plotff.gp"

    1. BT2

clr = '"brown"' filename = "BTOC1" ttl = "Brownian Tree v.#2" load "plotff.gp"

    1. BT3

clr = '"navy"' filename = "BTSE1" ttl = "Brownian Tree v.#3" load "plotff.gp"

    1. BT41

clr = '"red"' filename = "BTPB1" ttl = "Brownian Tree v.#4-1" load "plotff.gp"

    1. BT42

clr = '"red"' filename = "BTPB2" ttl = "Brownian Tree v.#4-2" load "plotff.gp"

    1. BT43

clr = '"red"' filename = "BTPB3" ttl = "Brownian Tree v.#4-3" load "plotff.gp" </lang>

Output:
1. All BTff.gp commands.
2. All plotted png-files:
   BT1gp.png, BT2gp.png, BT3gp.png, BT41gp.png, BT43gp.png, BT43gp.png. 

Go

 
Output png

The interpretation here of "collide" in the case of a new particle generated on top of a pixel of the existing tree is not to ignore the particle, but to find a place for it nearby. This properly increases the brightness of the area, reflecting that a particle was generated in the area. Visually, it appears to strengthen existing spines of the tree.

Using standard image library: <lang go>package main

import (

   "fmt"
   "image"
   "image/color"
   "image/png"
   "math/rand"
   "os"

)

const w = 400 // image width const h = 300 // image height const n = 15000 // number of particles to add const frost = 255 // white

var g *image.Gray

func main() {

   g = image.NewGray(image.Rectangle{image.Point{0, 0}, image.Point{w, h}})
   // off center seed position makes pleasingly asymetrical tree
   g.SetGray(w/3, h/3, color.Gray{frost})

generate:

   for a := 0; a < n; {
       // generate random position for new particle
       rp := image.Point{rand.Intn(w), rand.Intn(h)}
       if g.At(rp.X, rp.Y).(color.Gray).Y == frost {
           // position is already set.  find a nearby free position.
           for {
               rp.X += rand.Intn(3) - 1
               rp.Y += rand.Intn(3) - 1
               // execpt if we run out of bounds, consider the particle lost.
               if !rp.In(g.Rect) {
                   continue generate
               }
               if g.At(rp.X, rp.Y).(color.Gray).Y != frost {
                   break
               }
           }
       } else {
           // else particle is in free space.  let it wander
           // until it touches tree
           for !hasNeighbor(rp) {
               rp.X += rand.Intn(3) - 1
               rp.Y += rand.Intn(3) - 1
               // but again, if it wanders out of bounds consider it lost.
               if !rp.In(g.Rect) {
                   continue generate
               }
           }
       }
       // x, y now specify a free position toucing the tree.
       g.SetGray(rp.X, rp.Y, color.Gray{frost})
       a++
       // progress indicator
       if a%100 == 0 {
           fmt.Println(a, "of", n)
       }
   }
   f, err := os.Create("tree.png")
   if err != nil {
       fmt.Println(err)
       return
   }
   err = png.Encode(f, g)
   if err != nil {
       fmt.Println(err)
   }
   f.Close()

}

var n8 = []image.Point{

   {-1, -1}, {-1, 0}, {-1, 1},
   {0, -1}, {0, 1},
   {1, -1}, {1, 0}, {1, 1}}

func hasNeighbor(p image.Point) bool {

   for _, n := range n8 {
       o := p.Add(n)
       if o.In(g.Rect) && g.At(o.X, o.Y).(color.Gray).Y == frost {
           return true
       }
   }
   return false

}</lang> Nearly the same, version below works with code from the bitmap task: <lang go>package main

// Files required to build supporting package raster are found in: // * Bitmap // * Grayscale image // * Write a PPM file

import (

   "fmt"
   "math/rand"
   "raster"

)

const w = 400 // image width const h = 300 // image height const n = 15000 // number of particles to add const frost = 65535 // white

var g *raster.Grmap

func main() {

   g = raster.NewGrmap(w, h)
   // off center seed position makes pleasingly asymetrical tree
   g.SetPx(w/3, h/3, frost)
   var x, y int

generate:

   for a := 0; a < n; {
       // generate random position for new particle
       x, y = rand.Intn(w), rand.Intn(h)
       switch p, ok := g.GetPx(x, y); p {
       case frost:
           // position is already set.  find a nearby free position.
           for p == frost {
               x += rand.Intn(3) - 1
               y += rand.Intn(3) - 1
               p, ok = g.GetPx(x, y)
               // execpt if we run out of bounds, consider the particle lost.
               if !ok {
                   continue generate
               }
           }
       default:
           // else particle is in free space.  let it wander
           // until it touches tree
           for !hasNeighbor(x, y) {
               x += rand.Intn(3) - 1
               y += rand.Intn(3) - 1
               // but again, if it wanders out of bounds consider it lost.
               _, ok = g.GetPx(x, y)
               if !ok {
                   continue generate
               }
           }
       }
       // x, y now specify a free position toucing the tree.
       g.SetPx(x, y, frost)
       a++
       // progress indicator
       if a%100 == 0 {
           fmt.Println(a, "of", n)
       }
   }
   g.Bitmap().WritePpmFile("tree.ppm")

}

var n8 = [][]int{

   {-1, -1}, {-1, 0}, {-1, 1},
   { 0, -1},          { 0, 1},
   { 1, -1}, { 1, 0}, { 1, 1}}

func hasNeighbor(x, y int) bool {

   for _, n := range n8 {
       if p, ok := g.GetPx(x+n[0], y+n[1]); ok && p == frost {
           return true
       }
   }
   return false

}</lang>

Haskell

The modules Bitmap, Bitmap.Netpbm, and Bitmap.BW are on Rosetta Code. The commented-out type signatures require scoped type variables in order to function.

<lang haskell>import Control.Monad import Control.Monad.ST import Data.STRef import Data.Array.ST import System.Random import Bitmap import Bitmap.BW import Bitmap.Netpbm

main = do

   g <- getStdGen
   (t, _) <- stToIO $ drawTree (50, 50) (25, 25) 300 g
   writeNetpbm "/tmp/tree.pbm" t

drawTree :: (Int, Int) -> (Int, Int) -> Int -> StdGen -> ST s (Image s BW, StdGen) drawTree (width, height) start steps stdgen = do

   img <- image width height off
   setPix img (Pixel start) on
   gen <- newSTRef stdgen
   let -- randomElem :: [a] -> ST s a
       randomElem l = do
           stdgen <- readSTRef gen
           let (i, stdgen') = randomR (0, length l - 1) stdgen
           writeSTRef gen stdgen'
           return $ l !! i
       -- newPoint :: ST s (Int, Int)
       newPoint = do
           p <- randomElem border
           c <- getPix img $ Pixel p
           if c == off then return p else newPoint
       -- wander :: (Int, Int) -> ST s ()
       wander p = do
           next <- randomElem $ filter (inRange pointRange) $ adjacent p
           c <- getPix img $ Pixel next
           if c == on then setPix img (Pixel p) on else wander next
   replicateM_ steps $ newPoint >>= wander
   stdgen <- readSTRef gen
   return (img, stdgen)
 where pointRange = ((0, 0), (width - 1, height - 1))
       adjacent (x, y) = [(x - 1, y - 1), (x, y - 1), (x + 1, y - 1),
                          (x - 1, y),                 (x + 1, y),
                          (x - 1, y + 1), (x, y + 1), (x + 1, y + 1)]
       border = liftM2 (,) [0, width - 1] [0 .. height - 1] ++
                liftM2 (,) [1 .. width - 2] [0, height - 1]
       off = black
       on = white</lang>

Icon and Unicon

 
400x400 PA=70% SA=50% D=8%

In this version the seed is randomly set within an inner area and particles are injected in an outer ring.

<lang Icon>link graphics,printf

procedure main() # brownian tree

Density  := .08 # % particles to area SeedArea := .5 # central area to confine seed ParticleArea := .7 # central area to exclude particles appearing Height := Width := 400 # canvas

Particles := Height * Width * Density Field := list(Height) every !Field := list(Width)

Size := sprintf("size=%d,%d",Width,Height) Fg  := sprintf("fg=%s",?["green","red","blue"]) Label := sprintf("label=Brownian Tree %dx%d PA=%d%% SA=%d%% D=%d%%",

        Width,Height,ParticleArea*100,SeedArea*100,Density*100)

WOpen(Label,Size,Fg,"bg=black") | stop("Unable to open Window")

sx := Height * SetInside(SeedArea) sy := Width * SetInside(SeedArea) Field[sx,sy] := 1 DrawPoint(sx,sy) # Seed the field

Lost := 0

every 1 to Particles do {

  repeat {
     px := Height * SetOutside(ParticleArea)
     py := Width  * SetOutside(ParticleArea)
     if /Field[px,py] then 
        break               # don't materialize in the tree
     }      
  repeat {
     dx := delta() 
     dy := delta()
     if not ( xy := Field[px+dx,py+dy] ) then {
        Lost +:= 1
        next                # lost try again
        }
     if \xy then
        break               # collision
   
     px +:= dx              # move to clear spot
     py +:= dy
     }
  Field[px,py] := 1
  DrawPoint(px,py)          # Stick the particle  
  }

printf("Brownian Tree Complete: Particles=%d Lost=%d.\n",Particles,Lost) WDone() end

procedure delta() #: return a random 1 pixel perturbation

  return integer(?0 * 3) - 1

end

procedure SetInside(core) #: set coord inside area

  return core * ?0 + (1-core)/2

end

procedure SetOutside(core) #: set coord outside area

  pt := ?0 * (1 - core)  
  pt +:= ( pt > (1-core)/2, core)
  return pt

end</lang>

graphics.icn provides graphics printf.icn provides printf

J

<lang j>brtr=:4 :0

 seed=. ?x
 clip=. 0 >. (<:x) <."1 ]
 near=. [: clip +"1/&(,"0/~i:1)
 p=.i.0 2
 mask=. 1 (<"1 near seed)} x$0
 field=.1 (<seed)} x$0
 for.i.y do.
   p=. clip (p +"1 <:?3$~$p),?x
   b=.(<"1 p) { mask
   fix=. b#p
   if.#fix do. NB. if. works around j602 bug: 0(0#a:)}i.0 0
     p=. (-.b)# p
     mask=. 1 (<"1 near fix)} mask
     field=. 1 (<"1 fix)} field
   end.
 end.
 field

)</lang>

Example use:

<lang j> require'viewmat'

  viewmat 480 640 brtr 30000</lang>

Note that building a brownian tree like this takes a while and would be more interesting if this were animated.

Java

Library: Swing
Library: AWT

<lang java>import java.awt.Graphics; import java.awt.image.BufferedImage; import java.util.*; import javax.swing.JFrame;

public class BrownianTree extends JFrame implements Runnable {

   BufferedImage I;
   private List<Particle> particles;
   static Random rand = new Random();
   public BrownianTree() {
       super("Brownian Tree");
       setBounds(100, 100, 400, 300);
       setDefaultCloseOperation(EXIT_ON_CLOSE);
       I = new BufferedImage(getWidth(), getHeight(), BufferedImage.TYPE_INT_RGB);
       I.setRGB(I.getWidth() / 2, I.getHeight() / 2, 0xff00);
       particles = new LinkedList<Particle>();
   }
   @Override
   public void paint(Graphics g) {
       g.drawImage(I, 0, 0, this);
   }
   public void run() {
       for (int i = 0; i < 20000; i++) {
           particles.add(new Particle());
       }
       while (!particles.isEmpty()) {
           for (Iterator<Particle> it = particles.iterator(); it.hasNext();) {
               if (it.next().move()) {
                   it.remove();
               }
           }
           repaint();
       }
   }
   public static void main(String[] args) {
       BrownianTree b = new BrownianTree();
       b.setVisible(true);
       new Thread(b).start();
   }
   private class Particle {
       private int x, y;
       private Particle() {
           x = rand.nextInt(I.getWidth());
           y = rand.nextInt(I.getHeight());
       }
       /* returns true if either out of bounds or collided with tree */
       private boolean move() {
           int dx = rand.nextInt(3) - 1;
           int dy = rand.nextInt(3) - 1;
           if ((x + dx < 0) || (y + dy < 0)
                   || (y + dy >= I.getHeight()) || (x + dx >= I.getWidth())) {
               return true;
           }
           x += dx;
           y += dy;
           if ((I.getRGB(x, y) & 0xff00) == 0xff00) {
               I.setRGB(x - dx, y - dy, 0xff00);
               return true;
           }
           return false;
       }
   }

}</lang>

This is an alternate version which is a port of most of the code here. This code does not use a GUI and saves the output to image.png. <lang Java>import java.awt.Point; import java.awt.image.BufferedImage; import java.io.File; import java.io.IOException;

import javax.imageio.ImageIO;

public class BasicBrownianTree {

   private int pixelsLost;
   private Point p;
   private Point nextP;
   private int pixelCount;
   private int width;
   private int height;
   private int color;
   private BufferedImage img;
   public BasicBrownianTree( int argb, int size, double density ) {
       pixelsLost = 0;
       p = new Point();
       nextP = new Point();
       width = size;
       height = size;
       color = argb;
       pixelCount = (int) ( width * height * density );
       img = new BufferedImage( width, height, BufferedImage.TYPE_INT_ARGB );
   }
   public void generate() {
       // print text to the console
       System.out.println( "Drawing " + pixelCount + " pixels" );
       int background = img.getRGB( 0, 0 );
       img.setRGB( width / 2, height / 2, color );
       for( int i = 0; i < pixelCount; i++ ) {
           p.x = (int) ( Math.random() * width );
           p.y = (int) ( Math.random() * height );
           while ( true ) {
               int dx = (int) ( Math.random() * 3 ) - 1;
               int dy = (int) ( Math.random() * 3 ) - 1;
               nextP.setLocation( p.x + dx, p.y + dy );
               // handle out-of-bounds
               if ( nextP.x < 0 || nextP.x >= width || nextP.y < 0
                       || nextP.y >= height ) {
                       // increment the number of pixels lost and escape the loop
                   pixelsLost++;
                   break;
               }
               if ( img.getRGB( nextP.x, nextP.y ) != background ) {
                   img.setRGB( p.x, p.y, color );
                   break;
               }
               p.setLocation( nextP );
           }
           // Print a message every 2%
           if ( i % ( pixelCount / 50 ) == 0 ) {
               System.out.println( "Done with " + i + " pixels" );
           }
       }
       // We're done. Let the user know how many pixels were lost
       System.out.println( "Finished. Pixels lost = " + pixelsLost );
   }
   public BufferedImage getImage() {
       return img;
   }
   public int getWidth() {
       return width;
   }
   public int getHeight() {
       return height;
   }
   public static void main( String[] args ) {
       // create the new generator
       BasicBrownianTree generator = new BasicBrownianTree( 0x664444ff, 400, 0.4 );
       // generate the image
       generator.generate();
       try {
           // save the image to the file "image.png"
           ImageIO.write( generator.getImage(), "png", new File( "image.png" ) );
       } catch ( IOException e ) {
           e.printStackTrace();
       }
   }

}</lang>

JavaScript + <canvas>

Live version <lang javascript>function brownian(canvasId, messageId) {

 var canvas = document.getElementById(canvasId);
 var ctx = canvas.getContext("2d");
 // Options
 var drawPos = true;
 var seedResolution = 50;
 var clearShade = 0; // 0..255
 
 // Static state
 var width = canvas.width;
 var height = canvas.height;
 var cx = width/2;
 var cy = height/2;
 var clearStyle = "rgba("+clearShade+", "+clearShade+", "+clearShade+", 1)";
 // Utilities
 function radius(x,y) {
   return Math.sqrt((x-cx)*(x-cy)+(y-cx)*(y-cy));
 }
 function test(x, y) {
   if (x < 0 || y < 0 || x >= width || y >= height)
     return false;
   var data = ctx.getImageData(x, y, 1, 1).data;
   return data[0] != clearShade || data[1] != clearShade || data[2] != clearShade;
 }
 var shade = 120;
 function setc(x, y, c) {
   //var imgd = ctx.createImageData(1, 1);
   //var pix = imgd.data;
   //pix[0] = pix[1] = pix[2] = c == 255 ? 255 : shade;
   //pix[3] = 255;
   //shade = (shade + 1) % 254;
   //ctx.putImageData(imgd, x, y);
   //ctx.fillStyle = "rgba("+c+", "+c+", "+c+", 1)";
   shade = (shade + 0.02) % 360;
   if (c) {
     ctx.fillStyle = "hsl("+shade+", 100%, 50%)";
   } else {
     ctx.fillStyle = clearStyle;
   }
   ctx.fillRect (x, y, 1, 1);
 }
 function set(x,y) {
   setc(x,y,true);
 }
 function clear(x,y) {
   setc(x,y,false);
 }
 // Initialize canvas to blank opaque
 ctx.fillStyle = clearStyle;
 ctx.fillRect (0, 0, width, height);
 // Current position
 var x;
 var y;
 // Farthest distance from center a particle has yet been placed.
 var closeRadius = 1;
 // Place seed
 set(cx, cy);
 // Choose a new random position for a particle (not necessarily unoccupied)
 function newpos() {
   // Wherever particles are injected, the tree will tend to grow faster 
   // toward it. Ideally, particles wander in from infinity; the best we
   // could do is to have them wander in from the edge of the field.
   // But in order to have the rendering occur in a reasonable time when
   // the seed is small, without too much visible bias, we instead place 
   // the particles in a coarse grid. The final tree will cover every
   // point on the grid.
   //
   // There's probably a better strategy than this.
   x = Math.floor(Math.random()*(width/seedResolution))*seedResolution;
   y = Math.floor(Math.random()*(height/seedResolution))*seedResolution;
 }
 newpos();
 var animation;
 animation = window.setInterval(function () {
   if (drawPos) clear(x,y);
   for (var i = 0; i < 10000; i++) {
     var ox = x;
     var oy = y;
     
     // Changing this to use only the first four directions will result
     // in a denser tree.
     switch (Math.floor(Math.random()*8)) {
       case 0: x++; break;
       case 1: x--; break;
       case 2: y++; break;
       case 3: y--; break;
       case 4: x++; y++; break;
       case 5: x--; y++; break;
       case 6: x++; y--; break;
       case 7: x--; y--; break;
     }
     if (x < 0 || y < 0 ||
         x >= width || y >= height ||
         radius(x,y) > closeRadius+seedResolution+2) {
       // wandered out of bounds or out of interesting range of the
       // tree, so pick a new spot
       var progress = 1000;
       do {
         newpos();
         progress--;
       } while ((test(x-1,y-1) || test(x,y-1) || test(x+1,y-1) ||
                 test(x-1,y  ) || test(x,y  ) || test(x+1,y  ) ||
                 test(x-1,y+1) || test(x,y+1) || test(x+1,y+1)) && progress > 0);
       if (progress <= 0) {
         document.getElementById(messageId).appendChild(
             document.createTextNode("Stopped for lack of room."));
         clearInterval(animation);
         break;
       }
     }
     if (test(x, y)) {
       // hit something, mark where we came from and pick a new spot
       set(ox,oy);
       closeRadius = Math.max(closeRadius, radius(ox,oy));
       newpos();
     }
  }
  if (drawPos) set(x,y);
 }, 1);

}</lang>

<lang html><html>

<head>
 <script src="brownian.js"></script>
</head>
<body onload="brownian('canvas', 'message')">
  <canvas id="canvas" width="402" height="402" style="border: 2px inset;"></canvas>
</body>

</html></lang>

Julia

Works with: Julia version 0.6

This solution puts the seed in the center of the canvas. Motes are generated randomly in space and do a simple drunkard's walk until they hit the tree or leave the canvas (unless the sides are made side). The Motes are colorized according to their θ in polar coordinates.

<lang julia>using Images, FileIO

function main(h::Integer, w::Integer, side::Bool=false)

   W0 = w >> 1
   H0 = h >> 1
   @inline function motecolor(x::Integer, y::Integer)
       h = clamp(180 * (atan2(y - H0, x - W0) / π + 1.0), 0.0, 360.0)
       return HSV(h, 0.5, 0.5)
   end
   img = zeros(RGB{N0f8}, h, w)
   img[H0, W0] = RGB(1, 1, 1)
   free = trues(h, w)
   free[H0, W0] = false
   for i in eachindex(img)
       x = rand(1:h)
       y = rand(1:w)
       free[x, y] || continue
       mc = motecolor(x, y)
       for j in 1:1000
           xp = x + rand(-1:1)
           yp = y + rand(-1:1)
           contained = checkbounds(Bool, img, xp, yp)
           if contained && free[xp, yp]
               x, y = xp, yp
               continue
           else
               if side || (contained && !free[xp, yp])
                   free[x, y] = false
                   img[x, y] = mc
               end
               break
           end
       end
   end
   return img

end

imgnoside = main(256, 256) imgwtside = main(256, 256, true) save("data/browniantree_noside.jpg", imgnoside) save("data/browniantree_wtside.jpg", imgwtside)</lang>

Kotlin

Translation of: Java

<lang scala>// version 1.1.2

import java.awt.Graphics import java.awt.image.BufferedImage import java.util.* import javax.swing.JFrame

class BrownianTree : JFrame("Brownian Tree"), Runnable {

   private val img: BufferedImage 
   private val particles = LinkedList<Particle>()
   private companion object { 
       val rand = Random()
   } 
   private inner class Particle {
       private var x = rand.nextInt(img.width)
       private var y = rand.nextInt(img.height)
       /* returns true if either out of bounds or collided with tree */
       fun move(): Boolean {
           val dx = rand.nextInt(3) - 1
           val dy = rand.nextInt(3) - 1
           if ((x + dx < 0) || (y + dy < 0) || (y + dy >= img.height) ||
               (x + dx >= img.width)) return true
           x += dx
           y += dy
           if ((img.getRGB(x, y) and 0xff00) == 0xff00) {
               img.setRGB(x - dx, y - dy, 0xff00)
               return true
           }
           return false
       }
   } 
   
   init {
       setBounds(100, 100, 400, 300)     
       defaultCloseOperation = EXIT_ON_CLOSE
       img = BufferedImage(width, height, BufferedImage.TYPE_INT_RGB) 
       img.setRGB(img.width / 2, img.height / 2, 0xff00)
   }
   override fun paint(g: Graphics) {    
       g.drawImage(img, 0, 0, this)
   }
   override fun run() {
       (0 until 20000).forEach { particles.add(Particle()) }        

       while (!particles.isEmpty()) {
           val iter = particles.iterator()
           while (iter.hasNext()) {
               if (iter.next().move()) iter.remove()
           }            
           repaint()
       }
   }

}

fun main(args: Array<String>) {

   val b = BrownianTree()
   b.isVisible = true
   Thread(b).start()

}</lang>

Liberty BASIC

<lang lb>'[RC]Brownian motion tree

   nomainwin
   dim screen(600,600)
   WindowWidth = 600
   WindowHeight = 600
   open "Brownian" for graphics_nsb_nf as #1
   #1 "trapclose [quit]"
   #1 "down ; fill blue"
   rad=57.29577951
   particles=500
   'draw starting circle and mid point
   for n= 1 to 360
           x=300-(200*sin(n/rad))
           y=300-(200*cos(n/rad))
           #1, "color white ; set ";x;" ";y
           screen(x,y)=1
   next n
   #1, "color white ; set 300 300"
   screen(300,300)=1
   'set up initial particles
   dim particle(particles,9)'x y deltax deltay rotx roty
   for n = 1 to particles
       gosub [randomparticle]
   next
   'start timed drawing loop
   timer 17, [draw]
   wait


   [draw]
   #1 "discard"
   scan
   for n = 1 to particles
       oldx=particle(n,1)
       oldy=particle(n,2)
       'erase particle
       if not(screen(oldx,oldy)) then
           #1 "color blue ; set ";oldx;" ";oldy
       end if
       'move particle x
       particle(n,1)=particle(n,1)+int((sin(particle(n,6)/rad)*10)+particle(n,3))
       particle(n,5)=particle(n,5)+6 mod 360
       if particle(n,1)>599 or particle(n,1)<1 then gosub [randomparticle]
       'move particle y
       particle(n,2)=particle(n,2)+int((sin(particle(n,5)/rad)*10)+particle(n,4))
       particle(n,6)=particle(n,6)+6 mod 360
       if particle(n,2)>599 or particle(n,2)<1 then gosub [randomparticle]
       'checkhit
       x=particle(n,1)
       y=particle(n,2)
       if screen(x-1,y-1) or screen(x-1,y) or screen(x-1,y+1)_
       or screen(x,y-1) or screen(x,y) or screen(x,y+1)_
       or screen(x+1,y-1) or screen(x+1,y) or screen(x+1,y+1) then
           #1 "color white ; set ";particle(n,1);" ";particle(n,2)
           screen(particle(n,1),particle(n,2))=1
       else
           #1 "color red ; set ";particle(n,1);" ";particle(n,2)
       end if
   next
   wait


   [randomparticle]
   particle(n,1)=int(rnd(0)*599)+1
   particle(n,2)=int(rnd(0)*599)+1
   particle(n,3)=int(2-rnd(0)*4)
   particle(n,4)=int(2-rnd(0)*4)
   particle(n,5)=int(rnd(0)*360)
   particle(n,6)=int(rnd(0)*360)
   return
   [quit]
   timer 0
   close #1
   end</lang>

Locomotive Basic

Translation of: ZX Spectrum Basic

This program is ideally run in CPCBasic and should finish after about 20 to 25 minutes (Chrome, desktop CPU). At normal CPC speed, it would probably take several days to run when set to 10000 particles. <lang locobasic>10 MODE 1:DEFINT a-z:RANDOMIZE TIME:np=10000 20 INK 0,0:INK 1,26:BORDER 0 30 PLOT 320,200 40 FOR i=1 TO np 50 GOSUB 1000 60 IF TEST(x+1,y+1)+TEST(x,y+1)+TEST(x+1,y)+TEST(x-1,y-1)+TEST(x-1,y)+TEST(x,y-1)<>0 THEN 100 70 x=x+RND*2-1: y=y+RND*2-1 80 IF x<1 OR x>640 OR y<1 OR y>400 THEN GOSUB 1000 90 GOTO 60 100 PLOT x,y 110 NEXT 120 END 1000 ' Calculate new position 1010 x=RND*640 1020 y=RND*400 1030 RETURN</lang>

Lua

The output is stored in as a ppm-image. The source code of these output-functions is located at Bitmap/Write a PPM file#Lua, Grayscale image#Lua, Basic bitmap storage#Lua. <lang lua>function SetSeed( f )

   for i = 1, #f[1] do         -- the whole boundary of the scene is used as the seed
       f[1][i]  = 1
       f[#f][i] = 1
   end
   for i = 1, #f do
       f[i][1]     = 1
       f[i][#f[1]] = 1
   end

end

function SetParticle( f )

   local pos_x, pos_y
   repeat
       pos_x = math.random( #f )
       pos_y = math.random( #f[1] )
   until f[pos_x][pos_y] == 0
   
   return pos_x, pos_y

end


function Iterate( f, num_particles )

   for i = 1, num_particles do
       local pos_x, pos_y = SetParticle( f )
       
       while true do
           local dx = math.random(5) - 3
           local dy = math.random(5) - 3
           if ( pos_x+dx >= 1 and pos_x+dx <= #f and pos_y+dy >= 1 and pos_y+dy <= #f[1] ) then
               if f[pos_x+dx][pos_y+dy] ~= 0 then
                   f[pos_x][pos_y] = 1
                   break
               else
                   pos_x = pos_x + dx
                   pos_y = pos_y + dy
               end            
           end
       end
   end

end


size_x, size_y = 400, 400 -- size of the scene num_particles = 16000

math.randomseed( os.time() )

f = {} for i = 1, size_x do

   f[i] = {}
   for j = 1, size_y do
       f[i][j] = 0
   end

end

SetSeed( f ) Iterate( f, num_particles )

-- prepare the data for writing into a ppm-image file for i = 1, size_x do

   for j = 1, size_y do
       if f[i][j] == 1 then f[i][j] = 255 end
   end

end Write_PPM( "brownian_tree.ppm", ConvertToColorImage(f) )</lang>

Mathematica

There is a prettier version at the Mathematica demo site. Its source code is also available there but it is not mine.

Loose

Translation of: D

<lang Mathematica>canvasdim = 1000; n = 0.35*canvasdim^2; canvas = ConstantArray[0, {canvasdim, canvasdim}]; init = Floor@(0.5*{canvasdim, canvasdim}); (*RandomInteger[canvasdim,2]*) canvas[[init1, init2]] = 1; (*1st particle initialized to midpoint*)

Monitor[ (*Provides real-time intermediate result monitoring*)

Do[
 particle = RandomInteger[canvasdim, 2];
 While[True,
  ds = RandomInteger[{-1, 1}, 2];
  While[                                   (*New Particle Domain Limit Section*)
   !And @@ (0 < (particle + ds)# <= canvasdim & /@ {1, 2}),
   particle = RandomInteger[canvasdim, 2];
   ];
                                           (* Particle Aggregation Section *)
  If[canvas[[(particle + ds)1, (particle + ds)2]] > 0,
   canvas[[particle1, particle2]] = i;
   Break[],
   particle += ds
   ];
  ],
 {i, n}],
{i, (particle + ds), MatrixPlot@canvas}
]

MatrixPlot[canvas,FrameTicks->None,ColorFunction->"DarkRainbow",ColorRules->{0 -> None}]</lang>

Result:

 

Nim

Library: nimPNG

Using "bitmap.nim" created for Rosetta Bitmap task.

<lang Nim>import bitmap import random import nimPNG

const

 Size = 400                          # Area size.
 MaxXY = Size - 1                    # Maximum possible value for x and y.
 NPart = 25_000                      # Number of particles.
 Background = Black                  # Background color.
 Foreground = color(50, 150, 255)    # Foreground color.

randomize() let image = newImage(Size, Size) image.fill(Background) image[Size div 2, Size div 2] = Foreground

for _ in 1..NPart:

 block ProcessParticle:
   while true:   # Repeat until the particle is freezed.
     # Choose position of particle.
     var x, y = rand(MaxXY)
     if image[x, y] == Foreground:
       continue  # Not free. Try again.
     # Move the particle.
     while true:
       # Choose a motion.
       let dx, dy = rand(-1..1)
       inc x, dx
       inc y, dy
       if x notin 0..MaxXY or y notin 0..MaxXY:
         break  # Out of limits. Try again.
       # Valid move.
       if image[x, y] == Foreground:
         # Not free. Freeze the particle at its previous position.
         image[x - dx, y - dy] = Foreground
         break ProcessParticle   # Done. Process next particle.
  1. Save into a PNG file.
  2. Unfortunately, nimPNG expects a sequence of bytes, not a sequence of colors.
  3. So, we have to make a copy.

var data = newSeqOfCap[byte](image.pixels.len * 3) for color in image.pixels:

 data.add([color.r, color.g, color.b])

echo savePNG24("brownian.png", data, image.w, image.h)</lang>

OCaml

Translation of: D

<lang ocaml>let world_width = 400 let world_height = 400 let num_particles = 20_000

let () =

 assert(num_particles > 0);
 assert(world_width * world_height > num_particles);

let dla ~world =

 (* put the tree seed *)
 world.(world_height / 2).(world_width / 2) <- 1;

 for i = 1 to num_particles do
   (* looping helper function *)
   let rec aux px py =
     (* randomly choose a direction *)
     let dx = (Random.int 3) - 1  (* offsets *)
     and dy = (Random.int 3) - 1 in
     if dx + px < 0 || dx + px >= world_width ||
        dy + py < 0 || dy + py >= world_height then
       (* plop the particle into some other random location *)
       aux (Random.int world_width) (Random.int world_height)
     else if world.(py + dy).(px + dx) <> 0 then
       (* bumped into something, particle set *)
       world.(py).(px) <- 1
     else
       aux (px + dx) (py + dy)
   in
   (* set particle's initial position *)
   aux (Random.int world_width) (Random.int world_height)
 done

let to_pbm ~world =

 print_endline "P1";  (* Type=Portable bitmap, Encoding=ASCII *)
 Printf.printf "%d %d\n" world_width world_height;
 Array.iter (fun line ->
   Array.iter print_int line;
   print_newline()
 ) world

let () =

 Random.self_init();
 let world = Array.make_matrix world_width world_height 0 in
 dla ~world;
 to_pbm ~world;
</lang>

better to compile to native code to get a faster program:

$ ocamlopt -o brownian_tree.opt brownian_tree.ml
$ ./brownian_tree.opt | display -

Octave

Translation of: C

<lang octave>function r = browniantree(xsize, ysize = xsize, numparticle = 1000)

 r = zeros(xsize, ysize, "uint8");
 r(unidrnd(xsize), unidrnd(ysize)) = 1;
 
 for i = 1:numparticle
   px = unidrnd(xsize-1)+1;
   py = unidrnd(ysize-1)+1;
   while(1)
     dx = unidrnd(2) - 1;
     dy = unidrnd(2) - 1;
     if ( (dx+px < 1) || (dx+px > xsize) || (dy+py < 1) || (dy+py > ysize) )

px = unidrnd(xsize-1)+1; py = unidrnd(ysize-1)+1;

     elseif ( r(px+dx, py+dy) != 0 )

r(px, py) = 1; break;

     else

px += dx; py += dy;

     endif
   endwhile
 endfor

endfunction

r = browniantree(200); r( r > 0 ) = 255; jpgwrite("browniantree.jpg", r, 100); % image package</lang>

PARI/GP

All versions #1 - #4 are based on using 4 small plotting helper functions, which are allowing to unify all upgraded BrownianTreeX() functions and make them shorter.
Note: all pictures are still almost the same after upgrading.

Works with: PARI/GP version 2.9.1 and above

Plotting helper functions

<lang parigp> \\ 2 old plotting helper functions 3/2/16 aev \\ insm(): Check if x,y are inside matrix mat (+/- p deep). insm(mat,x,y,p=0)={my(xz=#mat[1,],yz=#mat[,1]);

 return(x+p>0 && x+p<=xz && y+p>0 && y+p<=yz && x-p>0 && x-p<=xz && y-p>0 && y-p<=yz)}

\\ plotmat(): Simple plotting using a square matrix mat (filled with 0/1). plotmat(mat)={

 my(xz=#mat[1,],yz=#mat[,1],vx=List(),vy=vx,x,y);
 for(i=1,yz, for(j=1,xz, if(mat[i,j]==0, next, listput(vx,i); listput(vy,j))));
 print(" *** matrix(",xz,"x",yz,") ",#vy, " DOTS");
 plothraw(Vec(vx),Vec(vy));

} \\ 2 new plotting helper functions 11/27/16 aev \\ wrtmat(): Writing file fn containing X,Y coordinates from matrix mat. \\ Created primarily for using file in Gnuplot, also for re-plotting. wrtmat(mat, fn)={

 my(xz=#mat[1,],yz=#mat[,1],ws,d=0);
 for(i=1,yz, for(j=1,xz, if(mat[i,j]==0, next, d++; ws=Str(i," ",j); write(fn,ws))));
 print(" *** matrix(",xz,"x",yz,") ",d, " DOTS put in ",fn);

} \\ plotff(): Plotting from a file written by the wrtmat(). \\ Saving possibly huge generation time if re-plotting needed. plotff(fn)={

 my(F,nf,vx=List(),vy=vx,Vr);
 F=readstr(fn); nf=#F;
 print(" *** Plotting from: ", fn, " - ", nf, " DOTS");
 for(i=1,nf, Vr=stok(F[i],","); listput(vx,eval(Vr[1])); listput(vy,eval(Vr[2])));
 plothraw(Vec(vx),Vec(vy));

} </lang>

Version #1. Translated from AutoHotkey.

Translation of: AutoHotkey
 
Output BTAH1.png

<lang parigp> \\ Brownian tree v.#1. Translated from AutoHotkey \\ 3/8/2016, upgraded 11/27/16 aev \\ Where: size - size of a square matrix; lim - limit of testing dots; \\ fn - file name (fn=""-only plot, fn!=""-only writing file).. BrownianTree1(size,lim, fn="")={

 my(Myx=matrix(size,size),sz=size-1,sz2=sz\2,x,y,ox,oy);
 x=sz2; y=sz2; Myx[y,x]=1;  \\ seed in center
 print(" *** BT1 SEED: ",x,"/",y);
 for(i=1,lim,
   x=random(sz)+1; y=random(sz)+1;
   while(1,
     ox=x; oy=y;
     x+=random(3)-1; y+=random(3)-1;
     if(insm(Myx,x,y)&&Myx[y,x],
        if(insm(Myx,ox,oy), Myx[oy,ox]=1; break));
     if(!insm(Myx,x,y), break);
   );\\wend
 );\\ fend i
 if(fn=="", plotmat(Myx), wrtmat(Myx, fn)); 

} \\ Executing 1 or 2 lines below:

BrownianTree1(400,15000); \\BTAH1.png

{BrownianTree1(400,15000,"c:\\pariData\\BTAH1.dat"); plotff("c:\\pariData\\BTAH1.dat");} \\BTAH1.png </lang>

Output:
> BrownianTree1(400,15000);     \\BTAH1.png
 *** BT1 SEED: 199/199
 *** matrix(400x400) 3723 DOTS
  ***   last result computed in 25min, 53,141 ms.

 *** BT1 SEED: 199/199
 *** matrix(400x400) 3723 DOTS put in c:\pariData\BTAH1.dat
 *** Plotting from: c:\pariData\BTAH1.dat - 3723 DOTS

Version #2. Translated from Octave.

Translation of: Octave

Octave:

Translation of: C
 
Output BTOC1.png

<lang parigp> \\ Brownian tree v.#2. Translated from Octave \\ 3/8/2016, upgraded 11/27/16 aev \\ Where: size - size of a square matrix; lim - limit of testing dots; \\ fn - file name (fn=""-only plot, fn!=""-only writing file).. BrownianTree2(size,lim, fn="")={

 my(Myx=matrix(size,size),sz=size-1,dx,dy,x,y);
 x=random(sz); y=random(sz); Myx[y,x]=1; \\ random seed
 print(" *** BT2 SEED: ",x,"/",y);
 for(i=1,lim,
   x=random(sz)+1; y=random(sz)+1;
   while(1,
     dx=random(3)-1; dy=random(3)-1;
     if(!insm(Myx,x+dx,y+dy), x=random(sz)+1; y=random(sz)+1,
        if(Myx[y+dy,x+dx], Myx[y,x]=1; break, x+=dx; y+=dy));
   );\\wend
 );\\fend i
 if(fn=="", plotmat(Myx), wrtmat(Myx, fn)); 

} \\ Executing 1 or 2 lines below:

BrownianTree2(1000,3000); \\BTOC1.png

{BrownianTree2(1000,3000,"c:\\pariData\\BTOC1.dat"); plotff("c:\\pariData\\BTOC1.dat");} \\BTOC1.png </lang>

Output:
> BrownianTree2(1000,3000);     \\BTOC1.png
 *** BT2 SEED: 697/753
 *** matrix(1000x1000) 2984 DOTS
  ***   last result computed in 4h, 35min, 24,781 ms.

 *** BT2 SEED: 434/407
 *** matrix(1000x1000) 2981 DOTS put in c:\pariData\BTOC1.dat
 *** Plotting from: c:\pariData\BTOC1.dat - 2981 DOTS

Version #3. Translated from Seed7.

Translation of: Seed7
 
Output BTSE1.png

<lang parigp> \\ Brownian tree v.#3. Translated from Seed7 \\ 3/8/2016, upgraded 11/27/16 aev \\ Where: size - size of a square matrix; lim - limit of testing dots; \\ fn - file name (fn=""-only plot, fn!=""-only writing file).. BrownianTree3(size,lim, fn="")={

 my(Myx=matrix(size,size),sz=size-2,x,y,dx,dy,b=0);
 x=random(sz); y=random(sz); Myx[y,x]=1; \\ random seed
 print("*** BT3 SEED: ", x,"/",y);
 for(i=1,lim,
   x=random(sz); y=random(sz);
   b=0; \\ bumped not
   while(!b,
      dx=random(3)-1; dy=random(3)-1;
      if(!insm(Myx,x+dx,y+dy), x=random(sz); y=random(sz),
         if(Myx[y+dy,x+dx]==1, Myx[y,x]=1; b=1, x+=dx; y+=dy);
        );
   );\\wend
 );\\fend i
 if(fn=="", plotmat(Myx), wrtmat(Myx, fn)); 

} \\ Executing 1 or 2 lines below:

BrownianTree3(400,5000); \\BTSE1.png

{BrownianTree3(400,5000,"c:\\pariData\\BTSE1.dat"); plotff("c:\\pariData\\BTSE1.dat");} \\BTSE1.png </lang>

Output:
> BrownianTree3(400,5000);     \\BTSE1.png
 *** BT3 SEED: 367/60
 *** matrix(400x400) 4797 DOTS
  ***   last result computed in 57min, 57,375 ms.

 *** BT3 SEED: 46/293
 *** matrix(400x400) 4841 DOTS put in c:\pariData\BTSE1.dat
 *** Plotting from: c:\pariData\BTSE1.dat - 4841 DOTS

Version #4. Translated from PureBasic.

Translation of: PureBasic
 
Output BTPB1.png
 
Output BTPB2.png
 
Output BTPB3.png

<lang parigp> \\ Brownian tree v.#4. Translated from PureBasic \\ 3/8/2016, upgraded 11/27/16 aev \\ Where: size - size of a square matrix; lim - limit of testing dots; \\ fn - file name (fn=""-only plot, fn!=""-only writing file).. \\ s=1/2(random seed/seed in the center); p=0..n (level of the "deep" checking). BrownianTree4(size,lim, fn="",s=1,p=0)={

 my(Myx=matrix(size,size),sz=size-3,x,y);
 \\ seed s=1 for BTPB1, s=2 for BTPB2, BTPB3
 if(s==1,x=random(sz); y=random(sz), x=sz\2; y=sz\2); Myx[y,x]=1; 
 print(" *** BT4 SEED: ",x,"/",y);
 for(i=1,lim,
   if(!(i==1&&s==2), x=random(sz)+1; y=random(sz)+1);
   while(insm(Myx,x,y,1)&&
       (Myx[y+1,x+1]+Myx[y+1,x]+Myx[y+1,x-1]+Myx[y,x+1]+
        Myx[y-1,x-1]+Myx[y,x-1]+Myx[y-1,x]+Myx[y-1,x+1])==0,
     x+=random(3)-1; y+=random(3)-1;
     \\ p=0 for BTPB1, BTPB2; p=5 for BTPB3
     if(!insm(Myx,x,y,p), x=random(sz)+1; y=random(sz)+1;);
   );\\wend
   Myx[y,x]=1;  
 );\\fend i
 if(fn=="", plotmat(Myx), wrtmat(Myx, fn)); 

} \\ Executing 1 or 2 lines below:

BrownianTree4(200,4000); \\BTPB1.png

{BrownianTree4(200,4000,"c:\\pariData\\BTPB1.dat"); plotff("c:\\pariData\\BTPB1.dat");} \\BTPB1.png

BrownianTree4(200,4000,,2); \\BTPB2.png

{BrownianTree4(200,4000,"c:\\pariData\\BTPB2.dat",2); plotff("c:\\pariData\\BTPB2.dat");} \\BTPB2.png

BrownianTree4(200,4000,,2,5); \\BTPB3.png

{BrownianTree4(200,4000,"c:\\pariData\\BTPB3.dat",2,5); plotff("c:\\pariData\\BTPB3.dat");} \\BTPB3.png </lang>

Output:
> BrownianTree4(200,4000);     \\BTPB1.png
 *** BT4 SEED: 133/133
 *** matrix(200x200) 3813 DOTS
  ***   last result computed in 49,923 ms.

 *** BT4 SEED: 184/104
 *** matrix(200x200) 3805 DOTS put in c:\pariData\BTPB1.dat
 *** Plotting from: c:\pariData\BTPB1.dat - 3805 DOTS
 
> BrownianTree4(200,4000,,2);    \\BTPB2.png
 *** BT4 SEED: 98/98
 *** matrix(200x200) 3820 DOTS
  ***   last result computed in 40,047 ms.
  
 *** BT4 SEED: 98/98
 *** matrix(200x200) 3814 DOTS put in c:\pariData\BTPB2.dat
 *** Plotting from: c:\pariData\BTPB2.dat - 3814 DOTS
 
> BrownianTree4(200,4000,,2,5);  \\BTPB3.png
 *** BT4 SEED: 98/98
 *** matrix(200x200) 3622 DOTS
  ***   last result computed in 1min, 16,390 ms.
  
 *** BT4 SEED: 98/98
 *** matrix(200x200) 3641 DOTS put in c:\pariData\BTPB3.dat
 *** Plotting from: c:\pariData\BTPB3.dat - 3641 DOTS

Perl

 
 
 

Simulation code. Showing three sample images with different STEP and ATTRACT parameters, to demonstrate how sensitive the result is to them.

Code runs until the tree reached specified radius. Output is written to "test.eps" of wherever the current directory is. <lang perl>sub PI() { atan2(1,1) * 4 } # The, er, pi sub STEP() { .5 } # How far does the particle move each step. Affects

                               #       both speed and accuracy greatly

sub STOP_RADIUS() { 100 } # When the tree reaches this far from center, end

  1. At each step, move this much towards center. Bigger numbers help the speed because
  2. particles are less likely to wander off, but greatly affects tree shape.
  3. Should be between 0 and 1 ish. Set to 0 for pain.

sub ATTRACT() { .2 }

my @particles = map([ map([], 0 .. 2 * STOP_RADIUS) ], 0 .. 2 * STOP_RADIUS); push @{ $particles[STOP_RADIUS][STOP_RADIUS] }, [0, 0];

my $r_start = 3; my $max_dist = 0;

sub dist2 {

       my ($dx, $dy) = ($_[0][0] - $_[1][0], $_[0][1] - $_[1][1]);
       $dx * $dx + $dy * $dy

}

sub move {

       my $p = shift;
       # moved too far, kill particle
       # return if dist2($p, [0, 0]) > 2 * $r_start * $r_start;
       $p->[0] += 2 * $r_start while $p->[0] < -$r_start;
       $p->[0] -= 2 * $r_start while $p->[0] >  $r_start;
       $p->[1] += 2 * $r_start while $p->[1] < -$r_start;
       $p->[1] -= 2 * $r_start while $p->[1] >  $r_start;
       my ($ix, $iy) = (int($p->[0]), int($p->[1]));
       my $dist = 2 * $r_start * $r_start;
       my $nearest;
       # see if the particle is close enough to stick to an exist one
       for ($ix - 1 .. $ix + 1) {
               my $idx = STOP_RADIUS + $_;
               next if $idx > 2 * STOP_RADIUS || $idx < 0;
               my $xs = $particles[ $idx ];
               for ($iy - 1 .. $iy + 1) {
                       my $idx = STOP_RADIUS + $_;
                       next if $idx > 2 * STOP_RADIUS || $idx < 0;
                       for (@{ $xs->[ $idx ] }) {
                               my $d = dist2($p, $_);
                               next if $d > 2;
                               next if $d > $dist;
                               $dist = $d;
                               $nearest = $_;
                       }
               }
       }
       # yes, found one
       if ($nearest) {
               my $displace = [ $p->[0] - $nearest->[0],
                                $p->[1] - $nearest->[1] ];
               my $angle = atan2($displace->[1], $displace->[0]);
               $p->[0] = $nearest->[0] + cos($angle);
               $p->[1] = $nearest->[1] + sin($angle);
               push @{$particles[$ix + STOP_RADIUS][$iy + STOP_RADIUS]}, [ @$p ];
               $dist = sqrt dist2($p);
               if ($dist + 10 > $r_start && $r_start < STOP_RADIUS + 10) {
                       $r_start = $dist + 10
               }
               if (int($dist + 1) > $max_dist) {
                       $max_dist = int($dist + 1);
                       # write_eps();
                       # system('pstopnm -portrait -xborder 0 -yborder 0 test.eps 2> /dev/null');
                       # system('pnmtopng test.eps001.ppm 2>/dev/null > test.png');
                       return 3 if $max_dist >= STOP_RADIUS;
               }
               return 2;
       }
       # random walk
       my $angle = rand(2 * PI);
       $p->[0] += STEP * cos($angle);
       $p->[1] += STEP * sin($angle);
       # drag particle towards center by some distance
       my $nudge;
       if (sqrt(dist2($p, [0, 0])) > STOP_RADIUS + 1) {
               $nudge = 1;
       } else {
               $nudge = STEP * ATTRACT;
       }
       if ($nudge) {
               $angle = atan2($p->[1], $p->[0]);
               $p->[0] -= $nudge * cos($angle);
               $p->[1] -= $nudge * sin($angle);
       }
       return 1;

}

my $count; PARTICLE: while (1) {

       my $a = rand(2 * PI);
       my $p = [ $r_start * cos($a), $r_start * sin($a) ];
       while (my $m = move($p)) {
               if    ($m == 1) { next }
               elsif ($m == 2) { $count++; last; }
               elsif ($m == 3) { last PARTICLE }
               else            { last }
       }
       print STDERR "$count $max_dist/@{[int($r_start)]}/@{[STOP_RADIUS]}\r" unless $count% 7;

}

sub write_eps {

       my $size = 128;
       my $p = $size / (STOP_RADIUS * 1.05);
       my $b = STOP_RADIUS * $p;
       if ($p < 1) {
               $size = STOP_RADIUS * 1.05;
               $b = STOP_RADIUS;
               $p = 1;
       }
       my $hp = $p / 2;
       open OUT, ">", "test.eps";
       # print EPS to standard out
       print OUT <<"HEAD";

%!PS-Adobe-3.0 EPSF-3.0 %%BoundingBox: 0 0 @{[$size*2, $size*2]} $size $size translate /l{ rlineto }def /c{ $hp 0 360 arc fill }def -$size -$size moveto $size 2 mul 0 l 0 $size 2 mul l -$size 2 mul 0 l closepath 0 setgray fill 0 setlinewidth .1 setgray 0 0 $b 0 360 arc stroke .8 setgray /TimesRoman findfont 16 scalefont setfont -$size 10 add $size -16 add moveto (Step = @{[STEP]} Attract = @{[ATTRACT]}) show 0 1 0 setrgbcolor newpath HEAD

       for (@particles) {
               for (@$_) {
                       printf OUT "%.3g %.3g c ", map { $_ * $p } @$_ for @$_;
               }
       }
       print OUT "\n%%EOF";
       close OUT;

}

write_eps;</lang>

Phix

As-is, runs in about 2s, but can be very slow when bigger or (even worse) resize-able.

Library: Phix/pGUI

<lang Phix>-- demo\rosetta\BrownianTree.exw include pGUI.e

Ihandle dlg, canvas cdCanvas cddbuffer, cdcanvas

function redraw_cb(Ihandle /*ih*/, integer /*posx*/, integer /*posy*/) integer x,y,ox,oy integer {width, height} = IupGetIntInt(canvas, "DRAWSIZE") sequence grid = repeat(repeat(0,width),height) integer xy = floor(width*height*0.8) --atom t = time()+1

   grid[floor(width/2)][floor(height/2)] = 1
   cdCanvasActivate(cddbuffer)
   cdCanvasClear(cddbuffer)
   for i=1 to xy do
       x = rand(width) y = rand(height)
       ox = x          oy = y
       while x>=1 and x<=width 
         and y>=1 and y<=height do
           if grid[y][x] then
               grid[oy][ox] = 1
               cdCanvasPixel(cddbuffer, ox, oy, #00FF00) 
               exit
           end if
           ox = x  x += rand(3)-2
           oy = y  y += rand(3)-2
       end while

-- -- if making the canvas bigger/resizeable, -- -- put this in so that you can kill it. -- if time()>=t then --  ?{i,xy} -- t = time()+1 -- end if

   end for
   cdCanvasFlush(cddbuffer)
   return IUP_DEFAULT

end function

function map_cb(Ihandle ih)

   cdcanvas = cdCreateCanvas(CD_IUP, ih)
   cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
   cdCanvasSetBackground(cddbuffer, CD_WHITE)
   cdCanvasSetForeground(cddbuffer, CD_RED)
   return IUP_DEFAULT

end function

procedure main()

   IupOpen()
   canvas = IupCanvas(NULL)
   IupSetAttribute(canvas, "RASTERSIZE", "200x200") -- fixed size
   IupSetCallback(canvas, "MAP_CB", Icallback("map_cb"))
   dlg = IupDialog(canvas, "RESIZE=NO")
   IupSetAttribute(dlg, "TITLE", "Brownian Tree")
   IupCloseOnEscape(dlg)
   IupSetCallback(canvas, "ACTION", Icallback("redraw_cb"))
   IupMap(dlg)
   IupShowXY(dlg,IUP_CENTER,IUP_CENTER)
   IupMainLoop()
   IupClose()

end procedure

main()</lang>

PicoLisp

<lang PicoLisp>(load "@lib/simul.l")

(de brownianTree (File Size Cnt)

  (let Img (grid Size Size)
     (put Img (/ Size 2) (/ Size 2) 'pix T)
     (use (P Q)
        (do Cnt
           (setq P (get Img (rand 1 Size) (rand 1 Size)))
           (loop
              (setq Q ((if2 (rand T) (rand T) north east south west) P))
              (T (; Q pix) (put P 'pix T))
              (setq P (or Q (get Img (rand 1 Size) (rand 1 Size)))) ) ) )
     (out "img.pbm"
        (prinl "P1")
        (prinl Size " " Size)
        (for L Img
           (for This L
              (prin (if (: pix) 1 0)) )
           (prinl) ) ) ) )</lang>

Use:

(brownianTree "img.pbm" 300 9000)
(call 'display "img.pbm")

Processing

<lang java>boolean SIDESTICK = false; boolean[][] isTaken;

void setup() {

 size(512, 512);
 background(0);
 isTaken = new boolean[width][height];
 isTaken[width/2][height/2] = true;

}

void draw() {

 int x = floor(random(width));
 int y = floor(random(height));
 if (isTaken[x][y]) { 
   return;
 }
 while (true) {
   int xp = x + floor(random(-1, 2));
   int yp = y + floor(random(-1, 2));
   boolean iscontained = (
     0 <= xp && xp < width  && 
     0 <= yp && yp < height
     );
   if (iscontained && !isTaken[xp][yp]) {
     x = xp;
     y = yp;
     continue;
   } else {
     if (SIDESTICK || (iscontained && isTaken[xp][yp])) {
       isTaken[x][y] = true;
       set(x, y, #FFFFFF);
     }
     break;
   }
 }
 if (frameCount > width * height) {
   noLoop();
 }

}</lang>

Processing Python mode

Translation of: Processing

<lang python>SIDESTICK = False

def setup() :

   global is_taken
   size(512, 512)
   background(0)
   is_taken = [[False] * height for _ in range(width)]
   is_taken[width/2][height/2] = True


def draw() :

   x = floor(random(width))
   y = floor(random(height))
   if is_taken[x][y]: 
       return
   while True:
       xp = x + floor(random(-1, 2))
       yp = y + floor(random(-1, 2))
       is_contained = 0 <= xp < width and 0 <= yp < height
       if is_contained and not is_taken[xp][yp]:
           x = xp
           y = yp
           continue
       else:
           if SIDESTICK or (is_contained and is_taken[xp][yp]):
               is_taken[x][y] = True
               set(x, y, color(255))            
           break
       
   if frameCount > width * height:
       noLoop()</lang>

PureBasic

<lang PureBasic>#Window1 = 0

  1. Image1 = 0
  2. ImgGadget = 0
  1. NUM_PARTICLES = 3000
  2. width = 200
  3. height = 200
  4. xmax = #width -3
  5. ymax = #height -3

Define.i Event ,i ,x,y

If OpenWindow(#Window1, 0, 0, #width, #height, "Brownian Tree PureBasic Example", #PB_Window_SystemMenu )

  If CreateImage(#Image1, #width, #height)
     ImageGadget(#ImgGadget, 0, 0, #width, #height, ImageID(#Image1))
     StartDrawing(ImageOutput(#Image1))
     FrontColor($FFFFFF)
     Plot( Random(#xmax) , Random(#ymax ))
     StopDrawing()
     SetGadgetState(#ImgGadget, ImageID(#Image1))
     For i = 1 To #NUM_PARTICLES
         x = Random(#xmax)+1 : y = Random (#ymax)+1
         StartDrawing(ImageOutput(#Image1))
         While Point(x+1, y+1) + Point(x, y+1)+Point(x+1, y)+Point(x-1, y-1)+Point(x-1, y)+Point(x, y-1) = 0
             x = x + (Random(2)-1) : y = y + (Random(2)-1) 
             If x < 1 Or x > #xmax Or y < 1 Or y > #ymax
                 x = Random(#xmax)+1 : y = Random (#ymax)+1
             EndIf   
         Wend
         Plot(x,y) 
         StopDrawing()
         SetGadgetState(#ImgGadget, ImageID(#Image1))          
     Next
     
  EndIf
   Repeat
     Event = WaitWindowEvent()
   Until Event = #PB_Event_CloseWindow

EndIf</lang> 

Python

Library: pygame

<lang python>import pygame, sys, os from pygame.locals import * from random import randint pygame.init()

MAXSPEED = 15 SIZE = 3 COLOR = (45, 90, 45) WINDOWSIZE = 400 TIMETICK = 1 MAXPART = 50

freeParticles = pygame.sprite.Group() tree = pygame.sprite.Group()

window = pygame.display.set_mode((WINDOWSIZE, WINDOWSIZE)) pygame.display.set_caption("Brownian Tree")

screen = pygame.display.get_surface()


class Particle(pygame.sprite.Sprite):

   def __init__(self, vector, location, surface):
       pygame.sprite.Sprite.__init__(self)
       self.vector = vector
       self.surface = surface
       self.accelerate(vector)
       self.add(freeParticles)
       self.rect = pygame.Rect(location[0], location[1], SIZE, SIZE)
       self.surface.fill(COLOR, self.rect)
   def onEdge(self):
       if self.rect.left <= 0:
           self.vector = (abs(self.vector[0]), self.vector[1])
       elif self.rect.top <= 0:
           self.vector = (self.vector[0], abs(self.vector[1]))
       elif self.rect.right >= WINDOWSIZE:
           self.vector = (-abs(self.vector[0]), self.vector[1])
       elif self.rect.bottom >= WINDOWSIZE:
           self.vector = (self.vector[0], -abs(self.vector[1]))
   def update(self):
       if freeParticles in self.groups():
           self.surface.fill((0,0,0), self.rect)
           self.remove(freeParticles)
           if pygame.sprite.spritecollideany(self, freeParticles):
               self.accelerate((randint(-MAXSPEED, MAXSPEED), 
                                randint(-MAXSPEED, MAXSPEED)))
               self.add(freeParticles)
           elif pygame.sprite.spritecollideany(self, tree):
               self.stop()
           else:
               self.add(freeParticles)
               
           self.onEdge()
           if (self.vector == (0,0)) and tree not in self.groups():
               self.accelerate((randint(-MAXSPEED, MAXSPEED), 
                                randint(-MAXSPEED, MAXSPEED)))
           self.rect.move_ip(self.vector[0], self.vector[1])
       self.surface.fill(COLOR, self.rect)
   def stop(self):
       self.vector = (0,0)
       self.remove(freeParticles)
       self.add(tree)
   def accelerate(self, vector):
       self.vector = vector

NEW = USEREVENT + 1 TICK = USEREVENT + 2

pygame.time.set_timer(NEW, 50) pygame.time.set_timer(TICK, TIMETICK)


def input(events):

   for event in events:
       if event.type == QUIT:
           sys.exit(0)
       elif event.type == NEW and (len(freeParticles) < MAXPART):
           Particle((randint(-MAXSPEED,MAXSPEED),
                     randint(-MAXSPEED,MAXSPEED)),
                    (randint(0, WINDOWSIZE), randint(0, WINDOWSIZE)), 
                    screen)
       elif event.type == TICK:
           freeParticles.update()


half = WINDOWSIZE/2 tenth = WINDOWSIZE/10

root = Particle((0,0),

               (randint(half-tenth, half+tenth), 
                randint(half-tenth, half+tenth)), screen)

root.stop()

while True:

   input(pygame.event.get())
   pygame.display.flip()</lang>

R

All versions #1 - #4 are based on using 2 small plotting helper functions, which are allowing to unify all gpBrownianTreeX() functions and make them shorter.

Note
  • All pictures are ready to be uploaded when it would be allowed again.
Translation of: PARI/GP
Works with: R version 3.3.1 and above
File:BT1R.png
Output BT1R.png
File:BT2R.png
Output BT2R.png
File:BT2aR.png
Output BT2aR.png
File:BT3R.png
Output BT3R.png
File:BT4R.png
Output BT4R.png

Plotting helper functions

Note
  • All plotting helper functions are using a square matrix mat or 2 vectors X,Y from the dump file created by plotmat()
  • The file names used are without extension (which will be added as ".png", ".dmp" and ".dat" when needed).
  • Requesting dump file is useful if the generating/plotting time

is big. Having a dump file makes it easy and fast to repeat plotting with different colors, titles, etc.

  • If number of generated dots is very big then plotting from a dump

file could be very slow too. Actually, plotv2() shows almost "pure" plotting time.

<lang r>

  1. plotmat(): Simple plotting using a square matrix mat (filled with 0/1). v. 8/31/16
  2. Where: mat - matrix; fn - file name; clr - color; ttl - plot title;
  3. dflg - writing dump file flag (0-no/1-yes): psz - picture size.

plotmat <- function(mat, fn, clr, ttl, dflg=0, psz=600) {

 m <- nrow(mat); d <- 0;
 X=NULL; Y=NULL;
 pf = paste0(fn, ".png"); df = paste0(fn, ".dmp");
 for (i in 1:m) {
   for (j in 1:m) {if(mat[i,j]==0){next} else {d=d+1; X[d] <- i; Y[d] <- j;} }
 };
 cat(" *** Matrix(", m,"x",m,")", d, "DOTS\n");
 # Dumping if requested (dflg=1).
 if (dflg==1) {dump(c("X","Y"), df); cat(" *** Dump file:", df, "\n")};
 # Plotting
 plot(X,Y, main=ttl, axes=FALSE, xlab="", ylab="", col=clr, pch=20);
 dev.copy(png, filename=pf, width=psz, height=psz);
 # Cleaning 
 dev.off(); graphics.off();

}

  1. plotv2(): Simple plotting using 2 vectors (dumped into ".dmp" file by plotmat()).
  2. Where: fn - file name; clr - color; ttl - plot title; psz - picture size.
  3. v. 8/31/16

plotv2 <- function(fn, clr, ttl, psz=600) {

 cat(" *** START:", date(), "clr=", clr, "psz=", psz, "\n");
 cat(" *** File name -", fn, "\n");
 pf = paste0(fn, ".png"); df = paste0(fn, ".dmp");
 source(df);
 d <- length(X);
 cat(" *** Source dump-file:", df, d, "DOTS\n");
 cat(" *** Plot file -", pf, "\n");
 # Plotting
 plot(X, Y, main=ttl, axes=FALSE, xlab="", ylab="", col=clr, pch=20);
 # Writing png-file
 dev.copy(png, filename=pf, width=psz, height=psz);
 # Cleaning 
 dev.off(); graphics.off();
 cat(" *** END:", date(), "\n");

} </lang>

Versions #1- #4.

All functions are translated from PARI/GP.

Note
  • All generating functions are using a square matrix mat to fill it with 0/1.

Version #1.

<lang r>

  1. Generate and plot Brownian tree. Version #1.
  2. 7/27/16 aev
  3. gpBrownianTree1(m, n, clr, fn, ttl, dflg, psz)
  4. Where: m - defines matrix m x m; n - limit of the number of moves;
  5. fn - file name (.ext will be added); ttl - plot title; dflg - 0-no dump,
  6. 1-dump: psz - picture size.

gpBrownianTree1 <- function(m, n, clr, fn, ttl, dflg=0, psz=600) {

 cat(" *** START:", date(), "m=",m, "n=",n, "clr=",clr, "psz=", psz, "\n");
 M <- matrix(c(0), ncol=m, nrow=m, byrow=TRUE);
 # Seed in center
 x <- m%/%2; y <- m%/%2;
 M[x,y]=1;
 pf=paste0(fn, ".png");
 cat(" *** Plot file -", pf, "\n");
 # Main loops
 for (i in 1:n) {
   if(i>1) {
     x <- sample(1:m, 1, replace=FALSE)
     y <- sample(1:m, 1, replace=FALSE)}
   while(1) {
     ox = x; oy = y;
     x <- x + sample(-1:1, 1, replace=FALSE);
     y <- y + sample(-1:1, 1, replace=FALSE);
     if(x<=m && y<=m && x>0 && y>0 && M[x,y]) 
       {if(ox<=m && oy<=m && ox>0 && oy>0) {M[ox,oy]=1; break}}
     if(!(x<=m && y<=m && x>0 && y>0)) {break}
   }
 }
 plotmat(M, fn, clr, ttl, dflg, psz);
 cat(" *** END:",date(),"\n");

} gpBrownianTree1(400,15000,"red", "BT1R", "Brownian Tree v.1", 1); </lang>

Output:
> gpBrownianTree1(400,15000,"red", "BT1R", "Brownian Tree v.1", 1);
 *** START: Mon Sep 05 13:07:27 2016 m= 400 n= 15000 clr= red psz= 600 
 *** Plot file - BT1R.png 
 *** Matrix( 400 x 400 ) 3639 DOTS
 *** Dump file: BT1R.dmp 
 *** END: Mon Sep 05 14:06:55 2016 

Version #2.

<lang r>

  1. Generate and plot Brownian tree. Version #2.
  2. 7/27/16 aev
  3. gpBrownianTree2(m, n, clr, fn, ttl, dflg, psz)
  4. Where: m - defines matrix m x m; n - limit of the number of moves;
  5. fn - file name (.ext will be added); ttl - plot title; dflg - 0-no dump,
  6. 1-dump; psz - picture size.

gpBrownianTree2 <- function(m, n, clr, fn, ttl, dflg=0, psz=600) {

 cat(" *** START:", date(), "m=",m, "n=",n, "clr=",clr, "psz=", psz, "\n");
 M <- matrix(c(0), ncol=m, nrow=m, byrow=TRUE);
 # Random seed always
 x <- sample(1:m, 1, replace=FALSE); y <- sample(1:m, 1, replace=FALSE); 
 M[x,y]=1;
 pf=paste0(fn,".png");
 cat(" *** Plot file -",pf,"Seed:",x,"/",y,"\n");
 # Main loops
 for (i in 1:n) {
   if(i>1) {
     x <- sample(1:m, 1, replace=FALSE)
     y <- sample(1:m, 1, replace=FALSE)}
   while(1) {
     dx <- sample(-1:1, 1, replace=FALSE);
     dy <- sample(-1:1, 1, replace=FALSE);
     nx=x+dx; ny=y+dy;
     if(!(nx<=m && ny<=m && nx>0 && ny>0)) {
       x <- sample(1:m, 1, replace=FALSE); y <- sample(1:m, 1, replace=FALSE)}
     else {if(M[nx,ny]) {M[x,y]=1; break}
       else{x=nx; y=ny;}}
   }
 }
 plotmat(M, fn, clr, ttl, dflg, psz);
 cat(" *** END:",date(),"\n");

} gpBrownianTree2(400,5000,"brown", "BT2R", "Brownian Tree v.2", 1);

    1. Rename BT2R.dmp to BT2aR.dmp

plotv2("BT2aR", "orange", "Brownian Tree v.2a", 640) </lang>

Output:
> gpBrownianTree2(400,5000,"brown", "BT2R", "Brownian Tree v.2", 1);
 *** START: Mon Sep 05 20:11:02 2016 m= 400 n= 5000 clr= brown psz= 600 
 *** Plot file - BT2R.png Seed: 371 / 135 
 *** Matrix( 400 x 400 ) 4824 DOTS
 *** Dump file: BT2R.dmp 
 *** END: Mon Sep 05 22:32:09 2016 
 
> plotv2("BT2aR", "orange", "Brownian Tree v.2a", 640) 
 *** START: Mon Sep 05 22:21:26 2017 clr= orange psz= 640 
 *** File name - BT2aR 
 *** Source dump-file: BT2aR.dmp 4824 DOTS
 *** Plot file - BT2aR.png 
 *** END: Mon Sep 05 22:21:27 2017 

Version #3.

<lang r>

  1. Generate and plot Brownian tree. Version #3.
  2. 7/27/16 aev
  3. gpBrownianTree3(m, n, clr, fn, ttl, dflg, seed, psz):
  4. Where: m - defines matrix m x m; n - limit of the number of moves;
  5. fn - file name (.ext will be added); ttl - plot title; dflg - 0-no dump,
  6. 1-dump; seed - 0-center, 1-random: psz - picture size.

gpBrownianTree3 <- function(m, n, clr, fn, ttl, dflg=0, seed=0, psz=600) {

 cat(" *** START:", date(),"m=",m,"n=",n,"clr=",clr, "psz=",psz, "\n");
 M <- matrix(c(0), ncol=m, nrow=m, byrow=TRUE);
 # Random seed
 if(seed==1)
   {x <- sample(1:m, 1, replace=FALSE);y <- sample(1:m, 1, replace=FALSE)} 
 # Seed in center
 else {x <- m%/%2; y <- m%/%2}
 M[x,y]=1;
 pf=paste0(fn,". png");
 cat(" *** Plot file -", pf, "Seed:",x,"/",y, "\n");
 # Main loops
 for (i in 1:n) {
   if(i>1) {
     x <- sample(1:m, 1, replace=FALSE)
     y <- sample(1:m, 1, replace=FALSE)}
   b <- 0;
   while(b==0) {
     dx <- sample(-1:1, 1, replace=FALSE)
     dy <- sample(-1:1, 1, replace=FALSE)
     if(!(x+dx<=m && y+dy<=m && x+dx>0 && y+dy>0))
       { x <- sample(1:m, 1, replace=FALSE)
         y <- sample(1:m, 1, replace=FALSE)
       }
     else{if(M[x+dx,y+dy]==1) {M[x,y]=1; b=1}
       else {x=x+dx; y=y+dy;} } 
   }
 }
 plotmat(M, fn, clr, ttl, dflg, psz);
 cat(" *** END:", date(), "\n");

} gpBrownianTree3(400,5000,"dark green", "BT3R", "Brownian Tree v.3", 1); </lang>

Output:
> gpBrownianTree3(400,5000,"dark green", "BT3R", "Brownian Tree v.3", 1);
 *** START: Mon Sep 05 10:06:18 2016 m= 400 n= 5000 clr= dark green psz= 600 
 *** Plot file - BT3R. png Seed: 200 / 200 
 *** Matrix( 400 x 400 ) 4880 DOTS
 *** Dump file: BT3R.dmp 
 *** END: Mon Sep 05 11:21:54 2016

Version #4.

<lang r>

  1. Generate and plot Brownian tree. Version #4.
  2. 7/27/16 aev
  3. gpBrownianTree4(m, n, clr, fn, ttl, dflg, seed, psz)
  4. Where: m - defines matrix m x m; n - limit of the number of moves;
  5. fn - file name (.ext will be added); ttl - plot title; dflg - 0-no dump,
  6. 1-dump; seed - 0-center, 1-random: psz - picture size.

gpBrownianTree4 <- function(m, n, clr, fn, ttl, dflg=0, seed=0, psz=600) {

 cat(" *** START:", date(), "m=",m, "n=",n, "clr=",clr, "psz=",psz, "\n");
 M <- matrix(c(0), ncol=m, nrow=m, byrow=TRUE);
 # Random seed
 if(seed==1)
   {x <- sample(1:m, 1, replace=FALSE);y <- sample(1:m, 1, replace=FALSE)} 
 # Seed in center
 else {x <- m%/%2; y <- m%/%2}
 M[x,y]=1;
 pf=paste0(fn,".png");
 cat(" *** Plot file -",pf,"Seed:",x,"/",y,"\n");
 # Main loops
 for (i in 1:n) {
   if(i>1) {
     x <- sample(1:m, 1, replace=FALSE)
     y <- sample(1:m, 1, replace=FALSE)}
   while((x<=m && y<=m && x>0 && y>0)) {
     if(!(x+1<=m && y+1<=m && x-1>0 && y-1>0)) {break;}
     b=M[x+1,y+1]+M[x,y+1]+M[x-1,y+1]+M[x+1,y];
     b=b+M[x-1,y-1]+M[x-1,y]+M[x,y-1]+M[x+1,y-1];
     if(b!=0) {break;}
     x <- x + sample(-1:1, 1, replace=FALSE)
     y <- y + sample(-1:1, 1, replace=FALSE)
     if(!(x<=m && y<=m && x>0 && y>0))
       { x <- sample(1:m, 1, replace=FALSE)
         y <- sample(1:m, 1, replace=FALSE)
       }
   }
   M[x,y]=1;
 }
 plotmat(M, fn, clr, ttl, dflg, psz);
 cat(" *** END:",date(),"\n");

} gpBrownianTree4(400,15000,"navy", "BT4R", "Brownian Tree v.4", 1); </lang>

Output:
> gpBrownianTree4(400,15000,"navy", "BT4R", "Brownian Tree v.4", 1);
 *** START: Mon Sep 05 11:12:39 2016 m= 400 n= 15000 clr= navy psz= 600 
 *** Plot file - BT4R.png Seed: 200 / 200 
 *** Matrix( 400 x 400 ) 14327 DOTS
 *** Dump file: BT4R.dmp 
 *** END: Mon Sep 05 11:50:47 2016 

Racket

<lang racket>#lang racket (require 2htdp/image)

The unsafe fixnum ops are faster than the checked ones,
but if you get anything wrong with them, they'll bite.
If you experience any problems reactivate the
(require racket/fixnum) and instead of the unsafe requirement
below...
we have tested this...
  1. (require racket/fixnum)
so we can use this...

(require racket/require

          (only-in racket/fixnum make-fxvector in-fxvector)
          (filtered-in
           (? (name) (regexp-replace #rx"unsafe-" name ""))
           racket/unsafe/ops))
This implementation uses a 1d, mutable, fixnum vector
there's a lot of work done making the tree, so this optimisation
at the expense of clarity has been made. Sorry, guys!

(define (brownian-tree w h collisions n-particles seed-tree

                      generate-particle walk-particle)
 (define w*h (fx* w h))
 (define V (make-fxvector w*h))
 (define (collision? x.y) (fx> (fxvector-ref V x.y) 0))
 
 ;; The main loop
 (define (inner-b-t collisions particles)
   (cond
     [(fx= 0 collisions) V]
     [else
      (define-values (new-particles new-collisions)
        (for/fold
            ((prtcls null)
             (clsns 0))
          ((x.y particles)
           #:break (fx= collisions clsns))
          (define new-particle (walk-particle x.y w h w*h))
          (cond 
            [(not new-particle) ; it died!
             (values (cons (generate-particle V w h w*h) prtcls) clsns)]
            [(collision? new-particle)                
             (fxvector-set! V x.y 1)
             (values (cons (generate-particle V w h w*h) prtcls) (add1 clsns))]
            [else
             (values (cons new-particle prtcls) clsns)])))
      (when (fx> new-collisions 0)
        (define remain (fx- collisions new-collisions))
        (unless (fx= (exact-floor (* 10 (log collisions)))
                     (exact-floor (* 10 (log (fxmax 1 remain)))))
          (eprintf "~a (e^~a)~%" remain (log (fxmax 1 remain))))
        (log-info "~a new collisions: ~a remain~%" new-collisions remain))
      (inner-b-t (fxmax 0 (fx- collisions new-collisions)) new-particles)]))
 
 ;; Seed the tree
 (seed-tree V w h)
 (inner-b-t collisions
            (build-list n-particles
                        (lambda (x) (generate-particle V w h w*h)))))
See below for why we do the (fxremainder ...) test

(define (uniform-particle-generator v w h w*h)

 (define x.y (random w*h))
 (define valid-x.y?
   (and
    (fx= (fxvector-ref v x.y) 0) ; start on empty cell
    (fx> (fxremainder x.y w) 0))) ; not on left edge
 ; if it's valid take it otherwise regenerate
 (if valid-x.y? x.y (uniform-particle-generator v w h w*h)))
The boundaries to the walker are to remain within the limits of
the vector... however, unless we stop particles going off the
east/west edges, the tree will be formed on a cylinder as the
particles wrap. So we kill particles that reach the left edge
either by decrement from the right or by incrementing and wrapping.
This is is tested with (= 0 (remainder x.y w)).

(define (brownian-particle-walker x.y w h w*h)

 (define dx (fx- (random 3) 1))
 (define dy (fx- (random 3) 1))
 (define new-x.y (fx+ x.y (fx+ dx (fx* w dy))))
 (and (fx> new-x.y 0) (fx< new-x.y w*h)
      (fx> (fxremainder new-x.y w) 0)
      new-x.y))
These seed functions modify v however you want!

(define (seed-middle v w h)

 (fxvector-set! v (+ (quotient w 2) (* w (quotient h 2))) 1))

(define (seed-circle v w h)

 (for ((a (in-range 0 360 120)))
   (define x (exact-floor (* w 1/8 (+ 4 (sin (* pi 1/180 a))))))
   (define y (exact-floor (* h 1/8 (+ 4 (cos (* pi 1/180 a))))))
   (fxvector-set! v (+ x (* w y)) 1)))
SCALE is a general purpose knob for modifying the size of the problem
complexity increases with the sqaure of SCALE (at least)

(define SCALE 1) (define tree-W (* SCALE 320)) (define tree-H (* SCALE 240)) (define tree-W.H (* tree-W tree-H))

play with tree-PARTICLES -- small values will lead to a smaller tree
as the tree moves towards the edges, more particles might affect its shape

(define tree-PARTICLES (quotient tree-W.H 4))

these are the particles that are bimbling around at any one time. If it's
too low, you might get bored waiting for a collision... if it's too high
you might get inappropriate collisions

(define working-PARTICLES (quotient tree-W.H 300))

(define b-t (time

            (brownian-tree
             tree-W tree-H tree-PARTICLES working-PARTICLES
             seed-middle
             uniform-particle-generator
             brownian-particle-walker)))

(define (b-t-value->color c) (case c ((1) "black") (else "white"))) (define img (color-list->bitmap

            (for*/list ((x (in-fxvector b-t)))
              (b-t-value->color x))
            tree-W tree-H))

img (save-image img "brownian-tree.png")</lang>

Raku

(formerly Perl 6)

 

This solution spawns new Particles at a growing square border and displays the Tree every 50 particles and at the end using unicode UPPER/LOWER HALF BLOCK and FULL BLOCK.

Works with: Rakudo version 2015.12

<lang perl6>constant size = 100; constant particlenum = 1_000;


constant mid = size div 2;

my $spawnradius = 5; my @map;

sub set($x, $y) {

   @map[$x][$y] = True;

}

sub get($x, $y) {

   return @map[$x][$y] || False;

}

set(mid, mid); my @blocks = " ","\c[UPPER HALF BLOCK]", "\c[LOWER HALF BLOCK]","\c[FULL BLOCK]";

sub infix:<█>($a, $b) {

   @blocks[$a + 2 * $b]

}

sub display {

   my $start = 0;
   my $end = size;
   say (for $start, $start + 2 ... $end -> $y {
       (for $start..$end -> $x {
           if abs(($x&$y) - mid) < $spawnradius {
               get($x, $y) █ get($x, $y+1);
           } else {
               " "
           }
       }).join
   }).join("\n")

}

for ^particlenum -> $progress {

   my Int $x;
   my Int $y;
   my &reset = {
       repeat {
           ($x, $y) = (mid - $spawnradius..mid + $spawnradius).pick, (mid - $spawnradius, mid + $spawnradius).pick;
           ($x, $y) = ($y, $x) if (True, False).pick();
       } while get($x,$y);
   }
   reset;
   while not get($x-1|$x|$x+1, $y-1|$y|$y+1) {
       $x = ($x-1, $x, $x+1).pick;
       $y = ($y-1, $y, $y+1).pick;
       if (False xx 3, True).pick {
           $x = $x >= mid ?? $x - 1 !! $x + 1;
           $y = $y >= mid ?? $y - 1 !! $y + 1;
       }
       if abs(($x | $y) - mid) > $spawnradius {
           reset;
       }
   }
   set($x,$y);
   if $spawnradius < mid && abs(($x|$y) - mid) > $spawnradius - 5 {
       $spawnradius = $spawnradius + 1;
   }

}

display;</lang>

REXX

A large part of the REXX program's prologue was to handle the various options.

With a little more REXX code, a   petri dish   option could be added, that is, when a particle hits the edge,
it "bounces" back.   Also, the field could then be displayed as a round area   (like a petri dish).

REXX code was added to display snapshots of the field, either after so many cycles, and/or after some
elapsed time has elapsed (whole seconds only).   This makes for some fascinating observations.

Program note:   to keep things simple, the (system) command to clear the screen was hard-coded as   CLS. <lang rexx>/*REXX program animates and displays Brownian motion of dust in a field (with one seed).*/ mote = '·' /*character for a loose mote (of dust).*/ hole = ' ' /* " " an empty spot in field.*/ clearScr = 'CLS' /*(DOS) command to clear the screen. */ eons = 1000000 /*number cycles for Brownian movement.*/ snapshot = 0 /*every N winks, display a snapshot.*/ snaptime = 1 /* " " secs, " " " */ seedPos = 30 45 /*place a seed in this field position. */ seedPos = 0 /*if =0, then use middle of the field.*/

                                                /* " -1,    "   "   a random placement.*/
                                                /*otherwise, place the seed at seedPos.*/
                                                /*use RANDSEED for RANDOM repeatability*/

parse arg height width motes tree randSeed . /*obtain optional arguments from the CL*/ if height== | height=="," then height=0 /*Not specified? Then use the default.*/ if width== | width=="," then width=0 /* " " " " " " */ if motes== | motes=="," then motes='10%' /*The  % dust motes in the field, */

                                                /* [↑]  either a #  -or-  a # with a %.*/

if tree== | tree==mote then tree='*' /*the character used to show the tree. */ if length(tree)==2 then tree=x2c(tree) /*tree character was specified in hex. */ if datatype(randSeed,'W') then call random ,,randSeed /*if an integer, use the seed.*/

                                                /* [↑]  set the first  random  number. */

if height==0 | width==0 then _=scrsize() /*Note: not all REXXes have SCRSIZE BIF*/ if height==0 then height=word(_, 1)-3 /*adjust useable height for the border.*/ if width==0 then width=word(_, 2)-1 /* " " width " " " */

                    seedAt=seedPos

if seedPos== 0 then seedAt=width%2 height%2 /*if it's a zero, start in the middle.*/ if seedPos==-1 then seedAt=random(1, width) random(1,height) /*if negative, use random*/ parse var seedAt xs ys . /*obtain the X and Y seed coördinates*/

                                                /* [↓]  if right-most ≡ '%', then use %*/

if right(motes, 1) == '%' then motes=height * width * strip(motes, , '%')  % 100 @.=hole /*create the Brownian field, all empty.*/

 do j=1  for motes                              /*sprinkle a  # of dust motes randomly.*/
 rx=random(1, width);         ry=random(1, height);            @.rx.ry=mote
 end   /*j*/                                    /* [↑]  place a mote at random in field*/
                                                /*plant the seed from which the tree   */
                                                /*      will grow from dust motes that */

@.xs.ys=tree /* affixed themselves to others. */ call show /*show field before we mess it up again*/ tim=0 /*the time in seconds of last display. */ loX=1; hiX= width /*used to optimize the mote searching.*/ loY=1; hiY=height /* " " " " " " */

    /*▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ soooo, this is Brownian motion.*/
 do winks=1  for eons  until \motion            /*EONs is used instead of ∞; close 'nuf*/
 motion=0                                       /*turn off the  Brownian motion  flag. */
 if snapshot\==0  then  if winks//snapshot==0  then call show
 if snaptime\==0  then  do;   t=time('S')
                              if t\==tim & t//snaptime==0  then do;   tim=t;    call show
                                                                end
                        end
 minX=loX;     maxX=hiX                         /*as the tree grows, the search for    */
 minY=loY;     maxY=hiY                         /*             dust motes gets faster. */
 loX= width;   hiX=1                            /*used to limit the mote searching.    */
 loY=height;   hiY=1                            /*  "   "   "    "    "      "         */
   do x  =minX  to maxX;    xm=x-1;        xp=x+1         /*a couple handy-dandy values*/
     do y=minY  to maxY;    if @.x.y\==mote  then iterate /*Not a mote:  keep looking. */
     if x<loX  then loX=x;  if x>hiX  then hiX=x          /*faster than: hiX=max(X,hiX)*/
     if y<loY  then loY=y;  if y>hiY  then hiY=y          /*faster than: hiY=max(y,hiY)*/
     if @.xm.y ==tree  then do; @.x.y=tree; iterate; end  /*there a neighbor of tree?  */
     if @.xp.y ==tree  then do; @.x.y=tree; iterate; end  /*there a neighbor of tree?  */
            ym=y-1
     if @.x.ym ==tree  then do; @.x.y=tree; iterate; end  /*there a neighbor of tree?  */
     if @.xm.ym==tree  then do; @.x.y=tree; iterate; end  /*there a neighbor of tree?  */
     if @.xp.ym==tree  then do; @.x.y=tree; iterate; end  /*there a neighbor of tree?  */
            yp=y+1
     if @.x.yp ==tree  then do; @.x.y=tree; iterate; end  /*there a neighbor of tree?  */
     if @.xm.yp==tree  then do; @.x.y=tree; iterate; end  /*there a neighbor of tree?  */
     if @.xp.yp==tree  then do; @.x.y=tree; iterate; end  /*there a neighbor of tree?  */
     motion=1                                   /* [↓]  Brownian motion is coming.     */
     xb=x + random(1, 3)  - 2                   /*     apply Brownian motion for  X.   */
     yb=y + random(1, 3)  - 2                   /*       "       "       "    "   Y.   */
     if @.xb.yb\==hole  then iterate            /*can the mote actually move to there ?*/
     @.x.y=hole                                 /*"empty out"  the old mote position.  */
     @.xb.yb=mote                               /*move the mote  (or possibly not).    */
     if xb<loX  then loX=max(1, xb);     if xb>hiX  then hiX=min( width, xb)
     if yb<loY  then loY=max(1, yb);     if yb>hiY  then hiY=min(height, yb)
     end   /*y*/                                /* [↑]  limit mote's movement to field.*/
   end     /*x*/
 call crop                                      /*crops (or truncates)  the mote field.*/
 end       /*winks*/     /*▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒*/

call show exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ crop: if loX>1 & hiX<width & loY>1 & hiY<height then return /*are we cropping?*/

                                                /* [↓]  delete motes (moved off field).*/
             do yc=-1  to height+1  by height+2
                 do xc=-1  to width+1;   if @.xc.yc==hole  then iterate;     @.xc.yc=hole
                 end   /*xc*/
             end       /*yc*/
                                                /* [↓]  delete motes (moved off field).*/
             do xc=-1  to width+1   by width+2
                 do yc=-1  to height+1;  if @.xc.yc==hole  then iterate;     @.xc.yc=hole
                 end   /*yc*/
             end       /*xc*/
     return

/*──────────────────────────────────────────────────────────────────────────────────────*/ show: clearScr /*¬ necessary, but everything speeds up*/

             do ys=height      for height  by -1;   aRow=
                      do xs=1  for width;           aRow=aRow || @.xs.ys
                      end   /*xs*/
             say aRow
             end            /*ys*/
     return</lang>

This REXX program makes use of scrsize REXX program (or BIF) which is used to determine the screen size of the terminal (console).

The SCRSIZE.REX REXX program is included at SCRSIZE.REX.

Final output when using the following inputs (screen size was 160×160):     ,   ,   ,   fe (Shown at one-sixthth size.)

 
                                                                        ■
                                                                       ■ ■              ■
                                                                    ■ ■   ■            ■
                                                                     ■     ■          ■ ■
                                                                          ■■           ■
                                                                        ■■ ■            ■■
                                                                            ■  ■        ■    ■
                                                                            ■ ■■       ■■ ■ ■
                                                                             ■  ■        ■ ■    ■
                                                                            ■            ■     ■          ■
                                                                     ■     ■ ■         ■■ ■   ■          ■
                                                                      ■   ■ ■         ■ ■     ■       ■ ■
                                                                     ■ ■   ■        ■  ■ ■  ■ ■     ■ ■■
                                                                    ■  ■  ■ ■        ■■   ■■  ■  ■■■ ■  ■■
                                                                        ■    ■ ■    ■ ■  ■  ■■ ■■   ■
                                                                     ■ ■      ■ ■  ■ ■           ■
                                                                      ■ ■■    ■  ■■
                                                                       ■  ■  ■     ■                                ■
                                                                           ■■                                       ■■
                                                                             ■■■                                   ■
                                                                            ■  ■                                  ■
                                                                  ■      ■ ■                                       ■
                                                                 ■ ■      ■■                                      ■
                                                                  ■ ■    ■■                                 ■    ■
                                                                     ■  ■             ■                     ■   ■
                                                  ■                  ■■ ■           ■■                      ■■  ■
                                                 ■■    ■               ■ ■          ■            ■            ■ ■     ■
                                                   ■  ■              ■■ ■            ■   ■ ■    ■              ■    ■■
                                                    ■■              ■    ■        ■ ■■    ■     ■ ■           ■     ■  ■■
                                                     ■    ■■              ■ ■  ■   ■     ■   ■ ■ ■             ■   ■   ■ ■
                                                      ■   ■              ■ ■  ■     ■■   ■    ■                ■ ■■     ■     ■■
                                                       ■■ ■            ■■   ■■        ■■■     ■                ■ ■ ■   ■    ■ ■
                          ■   ■        ■                ■■                ■  ■        ■  ■   ■                 ■■ ■ ■■■■   ■ ■■
                   ■       ■ ■          ■                ■                ■ ■        ■■      ■    ■  ■        ■         ■ ■
                    ■  ■    ■            ■               ■                ■ ■         ■     ■    ■ ■■ ■       ■          ■
                   ■■ ■    ■              ■               ■■■  ■        ■■ ■      ■ ■  ■■ ■■      ■■          ■           ■■
                     ■■   ■               ■    ■       ■■■   ■■■          ■        ■  ■  ■      ■ ■           ■■         ■ ■■■■
                       ■ ■               ■ ■■   ■         ■■■   ■        ■         ■■■           ■         ■■   ■■   ■         ■■
                        ■      ■         ■■■   ■         ■   ■          ■           ■ ■          ■     ■    ■   ■  ■■
                         ■     ■            ■   ■           ■            ■           ■            ■   ■      ■ ■  ■  ■
                     ■   ■   ■■            ■ ■  ■  ■       ■ ■   ■      ■   ■        ■■        ■   ■ ■ ■  ■■■ ■ ■ ■
                     ■  ■      ■ ■            ■■ ■■ ■       ■ ■   ■■    ■■ ■         ■          ■■■ ■ ■  ■       ■ ■
                   ■■ ■■ ■■     ■                    ■       ■   ■ ■■  ■  ■         ■ ■■ ■ ■   ■   ■   ■■     ■■ ■  ■■
          ■       ■        ■■  ■                      ■■    ■     ■■  ■                 ■ ■■  ■ ■        ■■  ■      ■
          ■■           ■     ■■ ■                       ■  ■■       ■■                   ■ ■■■             ■■
           ■■■        ■ ■   ■ ■                        ■ ■   ■     ■ ■     ■             ■ ■■ ■■           ■
              ■   ■     ■  ■  ■                         ■ ■  ■  ■ ■   ■■  ■■   ■        ■■   ■             ■
           ■   ■ ■ ■■   ■■■  ■ ■                       ■  ■   ■■ ■      ■ ■   ■   ■  ■ ■    ■ ■            ■
         ■■■■■■■  ■  ■■■■     ■■                         ■■    ■ ■       ■    ■  ■ ■  ■        ■ ■■ ■      ■■
                ■■ ■   ■■■      ■                        ■ ■■■■         ■ ■ ■■■■■   ■■■         ■  ■      ■  ■
               ■       ■        ■■■  ■                  ■    ■        ■■   ■   ■      ■ ■          ■          ■
                       ■       ■  ■ ■                    ■           ■      ■ ■        ■ ■          ■          ■■■
                             ■■    ■ ■   ■             ■ ■         ■■      ■  ■        ■  ■■                  ■■■
                                      ■ ■ ■  ■        ■ ■        ■■■      ■    ■          ■■                  ■
                                     ■ ■   ■■■■■ ■  ■■   ■      ■            ■■             ■■               ■
                                 ■ ■ ■■   ■     ■ ■ ■ ■   ■■     ■            ■             ■
                                ■ ■ ■    ■         ■ ■     ■                   ■            ■
                               ■       ■■■         ■        ■                 ■ ■            ■
                              ■                   ■         ■             ■  ■   ■   ■       ■
                                                   ■                       ■■ ■   ■ ■       ■ ■■
                          ■                         ■                         ■    ■■■      ■   ■
                 ■        ■                          ■■                      ■■■  ■  ■■        ■ ■  ■■■
              ■ ■          ■                       ■■                          ■      ■         ■■■■
             ■ ■ ■■■       ■■     ■                ■■                         ■ ■     ■■            ■
                ■   ■        ■■■ ■      ■       ■ ■  ■                 ■     ■  ■    ■  ■           ■  ■   ■
               ■     ■      ■ ■ ■ ■■     ■      ■■                      ■ ■■■   ■  ■■    ■        ■■ ■■   ■ ■  ■
                      ■   ■■   ■  ■■  ■ ■       ■ ■                     ■■   ■          ■        ■   ■ ■ ■   ■■ ■
                       ■  ■    ■    ■■ ■ ■   ■ ■ ■■                    ■  ■  ■          ■  ■        ■   ■ ■ ■ ■
                     ■ ■■ ■        ■      ■   ■  ■                    ■■  ■  ■          ■ ■ ■■      ■   ■  ■   ■
                      ■  ■                 ■■■  ■                    ■  ■     ■        ■■■    ■    ■       ■
                       ■  ■               ■ ■    ■■■                  ■ ■      ■       ■          ■         ■
       ■■    ■ ■ ■       ■           ■   ■■     ■■                   ■ ■               ■           ■■       ■      ■
      ■  ■  ■ ■ ■■■      ■            ■ ■     ■■ ■                  ■   ■■          ■ ■ ■          ■         ■    ■ ■
          ■■   ■  ■     ■        ■■   ■ ■■     ■                   ■              ■  ■ ■                      ■■ ■■
         ■       ■ ■   ■■       ■  ■■■ ■  ■     ■               ■ ■               ■■■                        ■  ■
        ■       ■   ■■■  ■         ■  ■                        ■ ■                   ■                         ■
               ■   ■   ■         ■■    ■■                    ■■  ■■                  ■                          ■
              ■       ■            ■   ■                  ■ ■      ■                 ■  ■                      ■■■■■■
                     ■ ■          ■  ■  ■                  ■        ■                ■ ■                    ■ ■    ■
                    ■   ■       ■■    ■■                   ■        ■■                ■                      ■■    ■
                    ■          ■  ■     ■■                 ■        ■                ■ ■■                      ■    ■
                    ■          ■       ■  ■■            ■ ■ ■      ■                ■ ■ ■■■                   ■■     ■
                ■  ■          ■ ■       ■  ■             ■   ■■     ■              ■     ■■                   ■       ■
             ■   ■■          ■   ■     ■    ■             ■ ■■                      ■   ■■                   ■
             ■  ■           ■ ■   ■   ■      ■          ■■                          ■   ■                     ■
            ■ ■■               ■   ■        ■■        ■■  ■                         ■   ■                 ■■■■ ■■
             ■  ■              ■    ■                    ■ ■  ■                  ■ ■     ■               ■ ■ ■
         ■ ■ ■  ■             ■      ■                   ■  ■■                    ■       ■                ■  ■
          ■■■  ■             ■      ■                    ■                     ■ ■       ■                 ■
              ■ ■           ■      ■                     ■                      ■         ■               ■ ■ ■■
             ■■             ■     ■                     ■ ■                   ■ ■                         ■  ■■
            ■  ■           ■     ■ ■                       ■                 ■ ■■                          ■
           ■  ■ ■        ■■■    ■  ■                       ■■                   ■■
          ■■ ■        ■ ■   ■      ■                       ■                   ■ ■ ■
          ■■           ■     ■      ■  ■                   ■                  ■   ■
         ■■ ■         ■              ■■                                     ■■■   ■
        ■           ■■           ■  ■       ■■■                             ■      ■
        ■          ■■             ■■ ■     ■                               ■      ■ ■
         ■     ■    ■■            ■ ■   ■ ■ ■                                        ■
        ■     ■ ■■ ■             ■   ■  ■■
                 ■■ ■          ■■■■   ■■  ■
                  ■  ■        ■  ■   ■  ■  ■
                 ■    ■      ■ ■     ■ ■
                ■    ■■      ■  ■   ■
               ■    ■  ■        ■
               ■   ■  ■ ■       ■
                ■ ■     ■      ■ ■■
                ■  ■   ■      ■ ■  ■
                       ■        ■ ■
                                ■  ■
                                ■

Ring

<lang ring>

  1. Project : Brownian tree

load "stdlib.ring" load "guilib.ring"

paint = null

new qapp

       {
       win1 = new qwidget() {
                 setwindowtitle("")
                 setgeometry(100,100,800,600)
                 label1 = new qlabel(win1) {
                             setgeometry(10,10,800,600)
                             settext("")
                 }
                 new qpushbutton(win1) {
                         setgeometry(150,500,100,30)
                         settext("draw")
                         setclickevent("draw()")
                 }
                 show()
       }
       exec()
       }

func draw

       p1 = new qpicture()
              color = new qcolor() {
              setrgb(0,0,255,255)
       }
       pen = new qpen() {
                setcolor(color)
                setwidth(1)
       }
       paint = new qpainter() {
                  begin(p1)
                  color = new qcolor()
                  color.setrgb(255,0,0,255)    
                  pen = new qpen() {
                  setcolor(color)
                  setwidth(1)}
                  setpen(pen)
       browniantree()
       endpaint()
       }
       label1 { setpicture(p1) show() }
       return

func browniantree()

       numparticles = 3000
       canvas = newlist(210,210)
       canvas[randomf() * 100][randomf() * 200] = 1 
       for i = 1 to numparticles
            x = floor((randomf() * 199)) + 1 
            y = floor((randomf() * 199)) + 1
            if x = 1
               x = 2
            ok
            if y = 1
               y = 2
            ok
            while canvas[x+1][y+1]+canvas[x][y+1]+canvas[x+1][y]+canvas[x-1][y-1]+canvas[x-1][y]+canvas[x][y-1] = 0 
                    x = x + floor((randomf() * 2)) + 1     
                    y = y + floor((randomf() * 2)) + 1 
                    if x = 1
                       x = 2
                    ok
                    if y = 1
                       y = 2
                    ok
                    if x < 1 or x > 200 or y < 1 or y > 200 
                       x = floor((randomf()  * 199)) + 1 
                       y = floor((randomf()  * 199)) + 1
                       if x = 1
                          x = 2
                       ok
                       if y = 1
                          y = 2
                       ok
                    ok
            end
            canvas[x][y] = 1
            paint.drawpoint(x,y)
            paint.drawpoint(x,y+1)
            paint.drawpoint(x,y+2)
       next 

func randomf()

      decimals(10)
      str = "0."
      for i = 1 to 10
           nr = random(9)
           str = str + string(nr)
      next
      return number(str)

</lang> Output:

Brownian tree

Ruby

Library: RMagick

<lang ruby>require 'rubygems' require 'RMagick'

NUM_PARTICLES = 1000 SIZE = 800

def draw_brownian_tree world

 # set the seed
 world[rand SIZE][rand SIZE] = 1
 NUM_PARTICLES.times do
   # set particle's position
   px = rand SIZE
   py = rand SIZE
   loop do
     # randomly choose a direction
     dx = rand(3) - 1
     dy = rand(3) - 1
     if dx + px < 0 or dx + px >= SIZE or dy + py < 0 or dy + py >= SIZE
       # plop the particle into some other random location
       px = rand SIZE
       py = rand SIZE
     elsif world[py + dy][px + dx] != 0
       # bumped into something
       world[py][px] = 1
       break
     else
       py += dy
       px += dx
     end
   end
 end

end

world = Array.new(SIZE) { Array.new(SIZE, 0) } srand Time.now.to_i

draw_brownian_tree world

img = Magick::Image.new(SIZE, SIZE) do

 self.background_color = "black"

end

draw = Magick::Draw.new draw.fill "white"

world.each_with_index do |row, y|

 row.each_with_index do |colour, x|
   draw.point x, y if colour != 0
 end

end

draw.draw img img.write "brownian_tree.bmp"</lang>

Run BASIC

 

<lang runbasic>numParticles = 3000 dim canvas(201,201) graphic #g, 200,200

  1. g fill("blue")

canvas(rnd(1) * 100 , rnd(1) * 200) = 1 'start point for i = 1 To numParticles

   x = (rnd(1) * 199) + 1 
   y = (rnd(1) * 199) + 1
   while canvas(x+1, y+1)+canvas(x, y+1)+canvas(x+1, y)+canvas(x-1, y-1)+canvas(x-1, y)+canvas(x, y-1) = 0
       x = x + (rnd(1)* 2) + 1 
       y = y + (rnd(1)* 2) + 1 
       If x < 1 Or x > 200 Or y < 1 Or y > 200 then
           x = (rnd(1) * 199) + 1 
           y = (rnd(1) * 199) + 1
       end if   
   wend
  canvas(x,y) = 1
  #g "color green ; set "; x; " "; y

next i render #g

  1. g "flush"</lang>

Rust

Translation of: D
Library: rand
Library: image

<lang rust> extern crate image; extern crate rand;

use image::ColorType; use rand::distributions::{IndependentSample, Range}; use std::cmp::{min, max}; use std::env; use std::path::Path; use std::process;

fn help() {

   println!("Usage: brownian_tree <output_path> <mote_count> <edge_length>");

}

fn main() {

   let args: Vec<String> = env::args().collect();
   let mut output_path = Path::new("out.png");
   let mut mote_count: u32 = 10000;
   let mut width: usize = 512;
   let mut height: usize = 512;
   match args.len() {
       1 => {}
       4 => {
           output_path = Path::new(&args[1]);
           mote_count = args[2].parse::<u32>().unwrap();
           width = args[3].parse::<usize>().unwrap();
           height = width;
       }
       _ => {
           help();
           process::exit(0);
       }
   }
   assert!(width >= 2);
   // Base 1d array
   let mut field_raw = vec![0u8; width * height];
   populate_tree(&mut field_raw, width, height, mote_count);
   // Balance image for 8-bit grayscale
   let our_max = field_raw.iter().fold(0u8, |champ, e| max(champ, *e));
   let fudge = std::u8::MAX / our_max;
   let balanced: Vec<u8> = field_raw.iter().map(|e| e * fudge).collect();
   match image::save_buffer(output_path,
                            &balanced,
                            width as u32,
                            height as u32,
                            ColorType::Gray(8)) {
       Err(e) => println!("Error writing output image:\n{}", e),
       Ok(_) => println!("Output written to:\n{}", output_path.to_str().unwrap()),
   }

}


fn populate_tree(raw: &mut Vec<u8>, width: usize, height: usize, mc: u32) {

   // Vector of 'width' elements slices
   let mut field_base: Vec<_> = raw.as_mut_slice().chunks_mut(width).collect();
   // Addressable 2d vector
   let mut field: &mut [&mut [u8]] = field_base.as_mut_slice();
   // Seed mote
   field[width / 2][height / 2] = 1;
   let walk_range = Range::new(-1i32, 2i32);
   let x_spawn_range = Range::new(1usize, width - 1);
   let y_spawn_range = Range::new(1usize, height - 1);
   let mut rng = rand::thread_rng();
   for i in 0..mc {
       if i % 100 == 0 {
           println!("{}", i)
       }
       // Spawn mote
       let mut x = x_spawn_range.ind_sample(&mut rng);
       let mut y = y_spawn_range.ind_sample(&mut rng);
       // Increment field value when motes spawn on top of the structure
       if field[x][y] > 0 {
           field[x][y] = min(field[x][y] as u32 + 1, std::u8::MAX as u32) as u8;
           continue;
       }
       loop {
           let contacts = field[x - 1][y - 1] + field[x][y - 1] + field[x + 1][y - 1] +
                          field[x - 1][y] + field[x + 1][y] +
                          field[x - 1][y + 1] + field[x][y + 1] +
                          field[x + 1][y + 1];
           if contacts > 0 {
               field[x][y] = 1;
               break;
           } else {
               let xw = walk_range.ind_sample(&mut rng) + x as i32;
               let yw = walk_range.ind_sample(&mut rng) + y as i32;
               if xw < 1 || xw >= (width as i32 - 1) || yw < 1 || yw >= (height as i32 - 1) {
                   break;
               }
               x = xw as usize;
               y = yw as usize;
           }
       }
   }

}</lang> For a 512 x 512 field and 65k motes, run time is 25 s on ~2011 hardware (Phenom II X4).

File:Rust-Brownian-512-20k.png

Scala

Java Swing Interoperability

<lang Scala>import java.awt.Graphics import java.awt.image.BufferedImage

import javax.swing.JFrame

import scala.collection.mutable.ListBuffer

object BrownianTree extends App {

 val rand = scala.util.Random
 class BrownianTree extends JFrame("Brownian Tree") with Runnable {
   setBounds(100, 100, 400, 300)
   val img = new BufferedImage(getWidth, getHeight, BufferedImage.TYPE_INT_RGB)
   override def paint(g: Graphics): Unit = g.drawImage(img, 0, 0, this)
   override def run(): Unit = {
     class Particle(var x: Int = rand.nextInt(img.getWidth),
                    var y: Int = rand.nextInt(img.getHeight)) {
       /* returns false if either out of bounds or collided with tree */
       def move: Boolean = {
         val (dx, dy) = (rand.nextInt(3) - 1, rand.nextInt(3) - 1)
         if ((x + dx < 0) || (y + dy < 0) ||
           (y + dy >= img.getHeight) || (x + dx >= img.getWidth)) false
         else {
           x += dx
           y += dy
           if ((img.getRGB(x, y) & 0xff00) == 0xff00) {
             img.setRGB(x - dx, y - dy, 0xff00)
              false
           } else true
         }
       }
     }
     var particles = ListBuffer.fill(20000)(new Particle)
     while (particles.nonEmpty) {
       particles = particles.filter(_.move)
       repaint()
     }
   }
   setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE)
   img.setRGB(img.getWidth / 2, img.getHeight / 2, 0xff00)
   setVisible(true)
 }
 new Thread(new BrownianTree).start()

}</lang>

Scheme

Works with: Guile

<lang scheme>; Save bitmap to external file (define (save-pbm bitmap filename) (define f (open-output-file filename)) (simple-format f "P1\n~A ~A\n" (list-ref (array-dimensions bitmap) 0) (list-ref (array-dimensions bitmap) 1)) (do ((c 0 (+ c 1))) ((eqv? c (list-ref (array-dimensions bitmap) 1))) (do ((r 0 (+ r 1))) ((eqv? r (list-ref (array-dimensions bitmap) 0))) (display (array-ref bitmap r c) f)) (newline f)) (close-output-port f) )

Return a random coordinate in the bitmap that isn't filled yet along with a direction

(define (new-particle bitmap) (define x (random (list-ref (array-dimensions bitmap) 0))) (define y (random (list-ref (array-dimensions bitmap) 1))) (define dx (- (random 3) 1)) (define dy (- (random 3) 1)) ;Repeat until we find an unused location (if (> (array-ref bitmap x y) 0) (new-particle bitmap) (list (list x y) (list dx dy))))

Check neighboring coordinates to see if a collision occured

(define (collision-check bitmap p) (define c #f) (define oob #f) (define x (list-ref (car p) 0)) (define y (list-ref (car p) 1)) (define dx (list-ref (cadr p) 0)) (define dy (list-ref (cadr p) 1)) (define w (list-ref (array-dimensions bitmap) 0)) (define h (list-ref (array-dimensions bitmap) 1))

; If the particle hasn't gone out of bounds keep checking for a collision (if (or (> 0 x) (> 0 y) (<= w x) (<= h y)) (set! oob #t) (do ((x (- (list-ref (car p) 0) 1) (+ x 1))) ((eqv? x (+ (list-ref (car p) 0) 2))) (do ((y (- (list-ref (car p) 1) 1) (+ y 1))) ((eqv? y (+ (list-ref (car p) 1) 2))) ; Check existing neighbors for collisions (if (and (<= 0 x) (<= 0 y) (> w x) (> h y)) (if (not (zero? (array-ref bitmap x y))) (set! c #t)))))) (if oob #f ; Return false if out of bounds (if c p ; Return the point of collision if a collision occured (if (and (zero? dx) (zero? dy)) #f ; Return false if particle is motionless with no collision (collision-check bitmap (particle-move p))))))

Plot a particle on the bitmap

(define (particle-plot! bitmap p) (array-set! bitmap 1 (list-ref (car p) 0) (list-ref (car p) 1)))

Move a particle along its slope

(define (particle-move p) (list (list (+ (list-ref (car p) 0) (list-ref (cadr p) 0)) (+ (list-ref (car p) 1) (list-ref (cadr p) 1))) (cadr p)))

Grow a brownian tree

(define (grow-brownian-tree! bitmap collisions) (define w (list-ref (array-dimensions bitmap) 0)) (define h (list-ref (array-dimensions bitmap) 1))

; Generate a new particle at a random location (define p (new-particle bitmap))

; Find a collision or lack of one and plot it on the bitmap (set! p (collision-check bitmap p)) (if p (begin ; Display collision number and the place it happened (display collisions)(display ": ")(display (car p))(newline) (set! collisions (- collisions 1)) ; Plot the point (particle-plot! bitmap p)))

; If we're done say so (if (zero? collisions) (display "Done\n"))

; Keep going until we have enough collisions ; or have filled the bitmap (if (and (< 0 collisions) (memq 0 (array->list (array-contents bitmap)))) (grow-brownian-tree! bitmap collisions)))

Plot a random point to seed the brownian tree

(define (seed-brownian-tree! bitmap) (define p (new-particle bitmap)) (particle-plot! bitmap p))

Example usage ;;;
Seed the random number generator

(let ((time (gettimeofday))) (set! *random-state* (seed->random-state (+ (car time) (cdr time)))))

Generate a tree with 320*240 collisions on a bitmap of the size 640x480
The bitmap is zeroed to start and written with a one where a collision occurs

(define bitmap (make-array 0 640 480)) (seed-brownian-tree! bitmap) (grow-brownian-tree! bitmap (* 320 240))

Save to a portable bitmap file

(save-pbm bitmap "brownian-tree.pbm")</lang>  

Seed7

 
Simple brownian tree produced with Seed7 program

The program below generates a small brownian tree. You can watch how it grows.

<lang seed7>$ include "seed7_05.s7i";

 include "draw.s7i";
 include "keybd.s7i";

const integer: SIZE is 300; const integer: SCALE is 1;

const proc: genBrownianTree (in integer: fieldSize, in integer: numParticles) is func

 local
   var array array integer: world is 0 times 0 times 0;
   var integer: px is 0;
   var integer: py is 0;
   var integer: dx is 0;
   var integer: dy is 0;
   var integer: i is 0;
   var boolean: bumped is FALSE;
 begin
   world := fieldSize times fieldSize times 0;
   world[rand(1, fieldSize)][rand(1, fieldSize)] := 1;  # Set the seed
   for i range 1 to numParticles do
     # Set particle's initial position
     px := rand(1, fieldSize);
     py := rand(1, fieldSize);
     bumped := FALSE;
     repeat
       # Randomly choose a direction
       dx := rand(-1, 1);
       dy := rand(-1, 1);
       if dx + px < 1 or dx + px > fieldSize or dy + py < 1 or dy + py > fieldSize then
         # Plop the particle into some other random location
         px := rand(1, fieldSize);
         py := rand(1, fieldSize);
       elsif world[py + dy][px + dx] <> 0 then
         # Bumped into something
         world[py][px] := 1;
         rect(SCALE * pred(px), SCALE * pred(py), SCALE, SCALE, white);
         DRAW_FLUSH;
         bumped := TRUE;
       else
         py +:= dy;
         px +:= dx;
       end if;
     until bumped;
   end for;
 end func;

const proc: main is func

 begin
   screen(SIZE * SCALE, SIZE * SCALE);
   KEYBOARD := GRAPH_KEYBOARD;
   genBrownianTree(SIZE, 20000);
   readln(KEYBOARD);
 end func;</lang>

Original source: [1]

SequenceL

SequenceL Code:
<lang sequencel>import <Utilities/Random.sl>; import <Utilities/Sequence.sl>;

POINT ::= (X: int, Y: int); RET_VAL ::= (World: int(2), Rand: RandomGenerator<int, int>, Point: POINT);

randomWalk(x, y, world(2), rand) := let randX := getRandom(rand); randY := getRandom(randX.Generator); nextX := x + (randX.Value mod 3) - 1; nextY := y + (randY.Value mod 3) - 1; newStartX := (randX.Value mod (size(world) - 2)) + 2; newStartY := (randY.Value mod (size(world) - 2)) + 2;

numNeighbors := world[y-1,x-1] + world[y-1,x] + world[y-1,x+1] + world[y,x-1] + world[y,x+1] + world[y+1,x-1] + world[y+1,x] + world[y+1,x+1];

outOfBounds := nextX <= 1 or nextY <= 1 or nextX >= size(world) or nextY >= size(world); in randomWalk(newStartX, newStartY, world, randY.Generator) when world[y,x] = 1 or outOfBounds else (X: x, Y: y) when numNeighbors > 0 else randomWalk(nextX, nextY, world, randY.Generator);

step(rand, world(2)) := let walkSeed := getRandom(rand); newParticle := randomWalk(size(world)/2,size(world)/2, world, seedRandom(walkSeed.Value));

newWorld[j] := world[j] when j /= newParticle.Y else setElementAt(world[j], newParticle.X, 1); in (World: newWorld, Rand: walkSeed.Generator, Point: newParticle);


initialWorld(worldSize, seed) := let world[i,j] := 1 when i = worldSize / 2 and j = worldSize / 2 else 0 foreach i within 1 ... worldSize, j within 1 ... worldSize; in (World: world, Rand: seedRandom(seed), Point: (X: worldSize / 2, Y: worldSize / 2));</lang>

C++ Driver Code:

Library: CImg

<lang c>#include <time.h>

  1. include <cstdlib>
  2. include "CImg.h"
  3. include "SL_Generated.h"

using namespace std; using namespace cimg_library;

int main(int argc, char ** argv) { int threads = 0; int worldSize = 300; if(argc > 1) worldSize = atoi(argv[1]); int seed = time(NULL); if(argc > 2) seed = atoi(argv[2]); int scale = 2; if(argc > 3) scale = atoi(argv[3]);

sl_init(threads);

_sl_RET_VAL current; _sl_RET_VAL result;

const unsigned char black[] = {0};

CImg<unsigned char> visu(worldSize * scale, worldSize * scale, 1, 1, 0); CImgDisplay draw_disp(visu); cout << "Brownian Tree in SequenceL" << endl << "Threads: " << threads << endl; draw_disp.set_title("Brownian Tree in SequenceL: %d Threads", threads);

visu.fill(255);

sl_initialWorld(worldSize, seed, threads, current);

while(!draw_disp.is_closed()) { visu.draw_circle((current.Point.val().Y - 1) * scale, (current.Point.val().X - 1) * scale, scale/2, black, 1); visu.display(draw_disp); sl_step(current.Rand.val(), current.World, threads, result); current = result; draw_disp.wait(1); }

sl_done();

return 0; }</lang>

Output:

Output Video

Sidef

Translation of: Raku

<lang ruby>const size = 100 const mid = size>>1 const particlenum = 1000

var map = [] var spawnradius = 5

func set(x, y) {

   map[x][y] = 1

}

func get(x, y) {

   map[x][y] \\ 0

}

set(mid, mid)

var blocks = [

   " ",
   "\N{UPPER HALF BLOCK}",
   "\N{LOWER HALF BLOCK}",
   "\N{FULL BLOCK}"

]

func block(a, b) {

   blocks[2*b + a]

}

func display {

   0..size `by` 2 -> map {|y|
       0..size -> map {|x|
           if ([x, y].all { .-mid < spawnradius }) {
               block(get(x, y), get(x, y+1))
           } else { " " }
       }.join
   }.join("\n").say

}

for progress in (^particlenum) {

   var (x=0, y=0)
   var reset = {
       do {
           (x, y) = (
               (mid-spawnradius .. mid+spawnradius  -> pick),
               [mid-spawnradius,   mid+spawnradius] -> pick
           )
           (x, y) = (y, x) if (1.rand < 0.5)
       } while(get(x, y))
   }
   reset.run
   while (-1, 0, 1*2 -> cartesian.any {|pair|
       get(x+pair[0], y+pair[1])
   } -> not) {
       x = [x-1, x, x+1].pick
       y = [y-1, y, y+1].pick
       if (1.rand < 0.25) {
           x = (x >= mid ? (x-1) : (x+1))
           y = (y >= mid ? (y-1) : (y+1))
       }
       if ([x,y].any { .-mid > spawnradius }) {
           reset.run
       }
   }
   set(x, y)
   display() if (progress %% 50)
   if ((spawnradius < mid) && [x,y].any { .-mid > spawnradius-5 }) {
       ++spawnradius
   }

}

display()</lang>

Output:
                                 ▄               ▄▀          ▄  ▀▄                                   
                         ▀█▄▄▀ █  █▄█▀        ▄  █▄          ▀▄█ █                                   
                        ▄▀  ▀▄█      █       ▄▀ ▄▀   █ ▄    ▄▀  ▀ ▀  ▄ ▄▀                            
                              ▀▀▄  ▄▀        █▄▀█     ▀█ ▄ ▄▀        ▄█▄▄                            
                              ▄▄▄▀ ▄▀      ▀▀ ▀  ▀▄   ▀▄▀ ▀        ▀▀▄▀  ▀                           
                             ▄▀ ▀▄▀▄           ▄ ▄▄▀   █▄▄     ▄ ▄  █                                
                                    █▄         ▄▀█     █  ▄  █▀ ▀▄█▀                                 
                                 ██▀ ▄▀▄▄▀▄   ▀▀█      ▄▀█  █   ▀                                    
                  ▀▄ ▀▄     ▀▀█          ▀▄  ▄▄▄ █▀     ▀▄▀▀                                         
                ▄ █▄▄▄▀     █▄▄▀     ▄▀▀▄ █▄▀▄ ▄▀▀▄  ▀▄▄█      ▄  ▄                                  
                ▀▀█▄▀          ▀▄▄     ▀▄▀  ██▄ ▀▄▀    █▀▄▄ ▄▄█ ▀▀                                   
               ▀▄▀▄█ ▄ ▄▀  ▄█    ▀█▀▄     ▄▀ ▄▀▄▀ █▀ █▀▀ ▄ ▄▀                                        
               ▄█  ▄▀▀▀▄ ▄ ▀▄ █ ▄  █        ▄ ▀█▀▄▀  █ ▄▄█▀▀      ▀▄▀                                
                     ▀█▄▀▀▄▀▄  ▀▄▄▀▀  ▄▄    ▀▄▀ ▀▄ ▄█▀█   ▀▄  ▄ ▄▄▀                                  
                   ▄▄▀  ▀    █▄  ▀▀▄▀ ▄█   █      ▀▄▄ ▄       ▄█  ▀▄▀      █                         
                 ▄    ▄  ▄▄▀▄▀ ▄ ▄▄▄█  ▄█ ▄▀      █▀██▀▄ ▄▀ ▄▀  ▄▄  ▀▀   ▄▀  ▄                       
            ▄▄▄▄▀     ▀▄     ▀▀▄   ▀ ▀▀▄ ▀ ▀█▀ ▀█▄▀  ▄   ▄▀▀   █▄▄     ▄▄▀▄▄▀    ▄▀                  
                ▀▄▄▄ █▀ ▀▀▄█    ▀▄▀▄▄ ▀▄▄▄  ▄█   ▀█▀▀▄▄ █    ▄▀▄▄ ▄▄  ▄▀        ▄▀                   
              ▀▄▀  ▄▀   ▄▄▄▄▀▄▄▄▄ ██▄  ▄▄▀▄▀▄▄▀ ▄▀ ▄▄▄▀▄▄█▄▄▀▀   █ ▄▄▀▄█▄    ▄ █▄▄▄                  
          ▀▄ █▀     ▀█▄▀ █▄▀ ▀▀ ▀█▄▀ ▀▄▄█▀ ▀▄▀█▄▄▀▀▄ ▀   ▄█▄█▀█   ▀   █ ▀█▄▀▀▄▀▀ ▄▀                  
           ▀▀       ▀ ▄  ▀▄▀     ▀▄ ▄▄▀ ▀ ▄▀  ▀  ▀▄        ▄▀  ▀▄ ▄     ▀ █▄▄                        
                   ▄▄█ ▀█▀     ▄  ▄▀█ ▀  █      ██ ▄▀     ▀▄▀ ▄▀▄▀▄▀█      ▀ ▀                       
                 ▀▀   █    ▄   ▀█▀ █   ▄▀   ▄▄█▀ ▀▀▄        ▀  █   ▄▀▄  ▄                            
              ▀▀▄▄          ▀▄ █     ▄▀▄   █   ▀█▄█ ▀▄▄▀▄▄      ▀ ▀   ▀▀▄                            
                 ▄█▄   ▀▄▀▄▄ ▄▀▀      ▀ ▀▄ ▄▀   ▄▀▄    █ █▄  ▄▀                                      
                   ▄▀▄█▀ █ █▀█           ▄    ▄▀ ▀▄▀      ▄█▀ █▄▄▀▀▄                                 
          ▄   ▄▀▄▄█     ▀▄   ▄▀▄        ▀ ▀▀▄▀   █       ▀ ▄█ ▀▄▀▄  █                                
           ▀▄▀  ▀▀█     █▄▄ ▀  ▄▀         █▀    ▀ ▀▄▀▀▄▄▀  █  ▄▀  ▀▄ ▀▄                              
          ▀▀       ▀   ██▀ ▀▄ ▄█       ▄▄▀▄▀      █▀                ▀                                
                     ▄▀  █   ▀▄         ▄▀   ▀▄ ▄█ ▀▀                                                
                    ▀▄  ▀█▄          ▄▄▀▄   ▄▀▀▀▄▄▄                                                  
                      ▀    ▀            ▀       ▄▀ █▀  ▄                                             
                                                  ▄▄▀█▄▀▄                                            
                                                ▄▀▄   █  ▀                                           
                                              ▄▀▄▄▄▀                                                 
                                             ▀   █ █                                                 
                                                 ▀█                                                  

Simula

<lang simula>BEGIN

   INTEGER NUM_PARTICLES;
   INTEGER LINES, COLUMNS;
   INTEGER SEED;
   NUM_PARTICLES := 1000;
   LINES := 46;
   COLUMNS := 80;
   SEED := ININT;
   BEGIN
    
       PROCEDURE DRAW_BROWNIAN_TREE(WORLD); INTEGER ARRAY WORLD;
       BEGIN
           INTEGER PX, PY;  COMMENT PARTICLE VALUES ;
           INTEGER DX, DY;  COMMENT OFFSETS ;
           INTEGER I;
           COMMENT SET THE SEED ;
           PX := RANDINT(0,LINES-1,SEED);
           PY := RANDINT(0,COLUMNS-1,SEED);
           WORLD(PX,PY) := 1;
        
           FOR I := 0 STEP 1 UNTIL NUM_PARTICLES - 1 DO BEGIN
               COMMENT SET PARTICLE'S INITIAL POSITION ;
               PX := RANDINT(0,LINES-1,SEED);
               PY := RANDINT(0,COLUMNS-1,SEED);
            
               WHILE TRUE DO BEGIN
                   COMMENT RANDOMLY CHOOSE A DIRECTION ;
                   DX := RANDINT(-1,1,SEED);
                   DY := RANDINT(-1,1,SEED);
              
                   IF DX + PX < 0 OR DX + PX >= LINES
                   OR DY + PY < 0 OR DY + PY >= COLUMNS THEN
                   BEGIN
                       COMMENT PLOP THE PARTICLE INTO SOME OTHER RANDOM LOCATION ;
                       PX := RANDINT(0,LINES-1,SEED);
                       PY := RANDINT(0,COLUMNS-1,SEED);
                   END ELSE IF WORLD(PX + DX, PY + DY) <> 0 THEN BEGIN
                       COMMENT BUMPED INTO SOMETHING ;
                       WORLD(PX, PY) := 1;
                       GO TO BREAK;
                   END ELSE BEGIN
                       PY := PY + DY;
                       PX := PX + DX;
                   END IF;
               END WHILE;
               BREAK:
           END FOR;
       END DRAW_BROWNIAN_TREE;
       INTEGER ARRAY WORLD(0:LINES-1,0:COLUMNS-1);
       INTEGER I,J;
       DRAW_BROWNIAN_TREE(WORLD);
       FOR I := 0 STEP 1 UNTIL LINES-1 DO
       BEGIN
           FOR J := 0 STEP 1 UNTIL COLUMNS-1 DO
           BEGIN
               OUTCHAR(IF WORLD(I,J)=0 THEN '.' ELSE '*');
           END;
           OUTIMAGE;
       END;
   END;

END.</lang>

Input:
656565
Output:
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
.........*.......***............*.*...**........................................
..........*......**..*.......*.****....*........................................
...........*******...**..*.*.*****....***.......................................
..........*.******....**.*.**.***....*.*........................................
.............****.****..**...***..*******............**.*.*.....................
..........*.*...**.*******...***...*****............***.****....................
...........*....*****.****..*..*****..***.*....*...*.*.****.....................
................*.****.*...****..*****.*****...*..******..*.....................
................*.********..**.*.*****.**.**..*.*.*****.***.....................
.........*...*...*.******..*.***.***...**********..**********...................
.........**.*......*******...********.*****.*****...**.*****.*.*................
..........**.*..*..***.*****.**.***.***.***.****.*.***.****.*.**................
..........*.*.****.**..**************.*..****.******.*..*******.................
...........*******.*.************.***********.****.*....*******.................
...........*.********..***.***.****.********.****.**....****.*..................
..........**..*****.**.***.*.***.*..*.**.**.********............................
...............*.*********..********..*.....**.****.*...........................
..............***.****.*****.*.***.*.**...*..*...***.*..........................
.........*...***.*.*..*****.***.********...**........*..........................
..........****...***.**.****************..**.**.*****...........................
.........***.***..****.*..******.******..***********............................
........***.**********....****.**.************.**.*.............................
........*.****.*..*******.***..**.**********.****..*............................
.......*........*.*.*...****..****.*******.*.***.*..............................
.......*.......*.......*****...**..****.****..***...............................
....................***.******..**..**.*****.....**.............................
.....................************.**..****.***..................................
...................*****.*.*.*.*****.**.******..................................
....................*.*.***...*****.**....**....................................
....................*.*****.....**.*..*..****...................................
......................*.***.....***......*****..................................
.........................*.*......****....**.**..*..............................
.................................*.......*..*.***.*.*...........................
..................................*.........******.*............................
..............................................**................................
................................................................................
................................................................................
................................................................................
................................................................................

Sinclair ZX81 BASIC

Requires at least 2k of RAM. If you have more, you can plot it on a larger grid—up to and including full-screen, provided you don't mind spending literally hours watching the first few dots maunder about without hitting anything. <lang basic> 10 DIM A$(20,20)

20 LET A$(10,10)="1"
30 FOR Y=42 TO 23 STEP -1
40 FOR X=0 TO 19
50 PLOT X,Y
60 NEXT X
70 NEXT Y
80 UNPLOT 9,33
90 FOR I=1 TO 80

100 LET X=INT (RND*18)+2 110 LET Y=INT (RND*18)+2 120 IF A$(X,Y)="1" THEN GOTO 100 130 UNPLOT X-1,43-Y 140 IF A$(X+1,Y+1)="1" OR A$(X+1,Y)="1" OR A$(X+1,Y-1)="1" OR A$(X,Y+1)="1" OR A$(X,Y-1)="1" OR A$(X-1,Y+1)="1" OR A$(X-1,Y)="1" OR A$(X-1,Y-1)="1" THEN GOTO 230 150 PLOT X-1,43-Y 160 LET X=X+INT (RND*3)-1 170 LET Y=Y+INT (RND*3)-1 180 IF X=1 THEN LET X=19 190 IF X=20 THEN LET X=2 200 IF Y=1 THEN LET Y=19 210 IF Y=20 THEN LET Y=2 220 GOTO 130 230 LET A$(X,Y)="1" 240 NEXT I</lang>

Output:

Screenshot here.

Tcl

Library: Tk

<lang tcl>package require Tcl 8.5 package require Tk

set SIZE 300

image create photo brownianTree -width $SIZE -height $SIZE interp alias {} plot {} brownianTree put white -to brownianTree put black -to 0 0 [expr {$SIZE-1}] [expr {$SIZE-1}] proc rnd {range} {expr {int(rand() * $range)}}

proc makeBrownianTree count {

   global SIZE
   # Set the seed
   plot [rnd $SIZE] [rnd $SIZE]
   for {set i 0} {$i<$count} {incr i} {

# Set a random particle's initial position set px [rnd $SIZE] set py [rnd $SIZE]

while 1 { # Randomly choose a direction set dx [expr {[rnd 3] - 1}] set dy [expr {[rnd 3] - 1}]

# If we are going out of bounds... if {$px+$dx < 0 || $px+$dx >= $SIZE || $py+$dy < 0 || $py+$dy>=$SIZE} { # Out of bounds, so move back in set dx [expr {[rnd 3] - 1}] set dy [expr {[rnd 3] - 1}] continue }

set ox $px set oy $py # Move/see if we would hit anything incr px $dx incr py $dy if {[lindex [brownianTree get $px $py] 0]} { # Hit something, so plot where we were plot $ox $oy break } } ## For display while things are processing, uncomment next line #update;puts -nonewline .;flush stdout

   }

}

pack [label .l -image brownianTree] update makeBrownianTree 1000 brownianTree write tree.ppm</lang>

TI-83 BASIC

<lang ti83b>:StoreGDB 0

ClrDraw
FnOff
AxesOff
Pxl-On(31,47)
For(I,1,50)
randInt(1,93)→X
randInt(1,61)→Y
1→A
While A
randInt(1,4)→D
Pxl-Off(Y,X)
If D=1 and Y≥2
Y-1→Y
If D=2 and X≤92
X+1→X
If D=3 and Y≤60
Y+1→Y
If D=4 and X≥2
X-1→X
Pxl-On(Y,X)
If pxl-Test(Y+1,X) or pxl-Test(Y+1,X+1) or pxl-Test(Y+1,X-1) or pxl-Test(Y,X+1) or pxl-Test(Y,X-1) or pxl-Test(Y-1,X) or pxl-Test(Y-1,X-1) or pxl-Test(Y-1,X+1)
0→A
End
End
Pause
RecallGDB 0</lang>

Visual Basic .NET

Windows Forms Application.

<lang vbnet> Imports System.Drawing.Imaging

Public Class Form1

 ReadOnly iCanvasColor As Integer = Color.Black.ToArgb
 ReadOnly iSeedColor As Integer = Color.White.ToArgb
 Dim iCanvasWidth As Integer = 0
 Dim iCanvasHeight As Integer = 0
 Dim iPixels() As Integer = Nothing
 Private Sub BrownianTree()
   Dim oCanvas As Bitmap = Nothing
   Dim oRandom As New Random(Now.Millisecond)
   Dim oXY As Point = Nothing
   Dim iParticleCount As Integer = 0
   iCanvasWidth = ClientSize.Width
   iCanvasHeight = ClientSize.Height
   oCanvas = New Bitmap(iCanvasWidth, iCanvasHeight, Imaging.PixelFormat.Format24bppRgb)
   Graphics.FromImage(oCanvas).Clear(Color.FromArgb(iCanvasColor))
   iPixels = GetData(oCanvas)
   ' We'll use about 10% of the total number of pixels in the canvas for the particle count.
   iParticleCount = CInt(iPixels.Length * 0.1)
   ' Set the seed to a random location on the canvas.
   iPixels(oRandom.Next(iPixels.Length)) = iSeedColor
   ' Run through the particles.
   For i As Integer = 0 To iParticleCount
     Do
       ' Find an open pixel.
       oXY = New Point(oRandom.Next(oCanvas.Width), oRandom.Next(oCanvas.Height))
     Loop While iPixels(oXY.Y * oCanvas.Width + oXY.X) = iSeedColor
     ' Jitter until the pixel bumps another.
     While Not CheckAdjacency(oXY)
       oXY.X += oRandom.Next(-1, 2)
       oXY.Y += oRandom.Next(-1, 2)
       ' Make sure we don't jitter ourselves out of bounds.
       If oXY.X < 0 Then oXY.X = 0 Else If oXY.X >= oCanvas.Width Then oXY.X = oCanvas.Width - 1
       If oXY.Y < 0 Then oXY.Y = 0 Else If oXY.Y >= oCanvas.Height Then oXY.Y = oCanvas.Height - 1
     End While
     iPixels(oXY.Y * oCanvas.Width + oXY.X) = iSeedColor
     ' If you'd like to see updates as each particle collides and becomes
     ' part of the tree, uncomment the next 4 lines (it does slow it down slightly).
     ' SetData(oCanvas, iPixels)
     ' BackgroundImage = oCanvas
     ' Invalidate()
     ' Application.DoEvents()
   Next
   oCanvas.Save("BrownianTree.bmp")
   BackgroundImage = oCanvas
 End Sub
 ' Check adjacent pixels for an illuminated pixel.
 Private Function CheckAdjacency(ByVal XY As Point) As Boolean
   Dim n As Integer = 0
   For y As Integer = -1 To 1
     ' Make sure not to drop off the top or bottom of the image.
     If (XY.Y + y < 0) OrElse (XY.Y + y >= iCanvasHeight) Then Continue For
     For x As Integer = -1 To 1
       ' Make sure not to drop off the left or right of the image.
       If (XY.X + x < 0) OrElse (XY.X + x >= iCanvasWidth) Then Continue For
       ' Don't run the test on the calling pixel.
       If y <> 0 AndAlso x <> 0 Then
         n = (XY.Y + y) * iCanvasWidth + (XY.X + x)
         If iPixels(n) = iSeedColor Then Return True
       End If
     Next
   Next
   Return False
 End Function
 Private Function GetData(ByVal Map As Bitmap) As Integer()
   Dim oBMPData As BitmapData = Nothing
   Dim oData() As Integer = Nothing
   oBMPData = Map.LockBits(New Rectangle(0, 0, Map.Width, Map.Height), ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb)
   Array.Resize(oData, Map.Width * Map.Height)
   Runtime.InteropServices.Marshal.Copy(oBMPData.Scan0, oData, 0, oData.Length)
   Map.UnlockBits(oBMPData)
   Return oData
 End Function
 Private Sub SetData(ByVal Map As Bitmap, ByVal Data As Integer())
   Dim oBMPData As BitmapData = Nothing
   oBMPData = Map.LockBits(New Rectangle(0, 0, Map.Width, Map.Height), ImageLockMode.WriteOnly, PixelFormat.Format32bppArgb)
   Runtime.InteropServices.Marshal.Copy(Data, 0, oBMPData.Scan0, Data.Length)
   Map.UnlockBits(oBMPData)
 End Sub
 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load
   DoubleBuffered = True
   BackgroundImageLayout = ImageLayout.Center
   Show()
   Activate()
   Application.DoEvents()
   BrownianTree()
 End Sub

End Class </lang>

Final output:

 

XPL0

 

<lang XPL0>include c:\cxpl\codes; \intrinsic 'code' declarations def W=128, H=W; \width and height of field int X, Y; [SetVid($13); \set 320x200 graphic video mode Point(W/2, H/2, 6\brown\); \place seed in center of field loop [repeat X:= Ran(W); Y:= Ran(H); \inject particle

       until   ReadPix(X,Y) = 0;        \ in an empty location
       loop    [Point(X, Y, 6\brown\);  \show particle
               if ReadPix(X-1,Y) or ReadPix(X+1,Y) or \particle collided
                  ReadPix(X,Y-1) or ReadPix(X,Y+1) then quit;
               Point(X, Y, 0\black\);   \erase particle
               X:= X + Ran(3)-1;        \(Brownian) move particle
               Y:= Y + Ran(3)-1;
               if X<0 or X>=W or Y<0 or Y>=H then quit; \out of bounds
               ];
       if KeyHit then [SetVid(3);  quit]; \restore text mode
       ];

]</lang>

zkl

This grows rather slowly, so I've added a circle for barnacles to attach to. It looks like tendrils growing from the center to the circle and vice versa. The tree type is similar to that shown in the XPLO and Visual Basic .NET solutions. Also, the image is written to disk as each particle attaches so EventViewer will auto update to show the progression.

Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl

 

<lang zkl>w:=h:=400; numParticles:=20_000; bitmap:=PPM(w+2,h+2,0); // add borders as clip regions

bitmap[w/2,h/2]=0xff|ff|ff; // plant seed bitmap.circle(w/2,h/2,h/2,0x0f|0f|0f); // plant seeds

fcn touching(x,y,bitmap){ // is (x,y) touching another pixel?

  // (x,y) isn't on the border/edge of bitmap so no edge conditions
  var [const] box=T(T(-1,-1),T(0,-1),T(1,-1),

T(-1, 0), T(1, 0), T(-1, 1),T(0, 1),T(1, 1));

  box.filter1('wrap([(a,b)]){ bitmap[a+x,b+y] }); //-->False: not touching, (a,b) if is

}

while(numParticles){

  c:=(0x1|00|00).random(0x1|00|00|00) + (0x1|00).random(0x1|00|00) + (0x1).random(0x1|00);
  reg x,y;
  do{ x=(1).random(w); y=(1).random(h); }while(bitmap[x,y]); // find empty spot
  while(1){  // stagger around until bump into a particle, then attach barnicle
     if(touching(x,y,bitmap)){ 
        bitmap[x,y]=c; 

bitmap.write(f:=File("brownianTree.zkl.ppm","wb")); // tell ImageViewer to update image numParticles-=1; break;

     }
     x+=(-1).random(2); y+=(-1).random(2); // [-1,0,1]
     if( not ((0<x<w) and (0<y<h)) ){ // next to border --> color border
        bitmap[x,y]=c;

break;

     }
  }

} bitmap.writeJPGFile("brownianTree.zkl.jpg"); // the final image</lang>

ZX Spectrum Basic

Translation of: Run BASIC

Very, very slow on a ZX Spectrum (even emulate and at maximum speed). Best use SpecBAS, changing the value of the variable np to 6000. <lang zxbasic>10 LET np=1000 20 PAPER 0: INK 4: CLS 30 PLOT 128,88 40 FOR i=1 TO np 50 GO SUB 1000 60 IF NOT ((POINT (x+1,y+1)+POINT (x,y+1)+POINT (x+1,y)+POINT (x-1,y-1)+POINT (x-1,y)+POINT (x,y-1))=0) THEN GO TO 100 70 LET x=x+RND*2-1: LET y=y+RND*2-1 80 IF x<1 OR x>254 OR y<1 OR y>174 THEN GO SUB 1000 90 GO TO 60 100 PLOT x,y 110 NEXT i 120 STOP 1000 REM Calculate new pos 1010 LET x=RND*254 1020 LET y=RND*174 1030 RETURN </lang>