Find and show on this page the 10001st prime number.

10001th prime is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

11l

V k = 10001
V n = k * 17
V primes = [1B] * n
primes[0] = primes[1] = 0B

L(i) 2 .. Int(sqrt(n))
   I !primes[i]
      L.continue
   L(j) (i * i .< n).step(i)
      primes[j] = 0B

L(i) 0 .< n
   I primes[i]
      I k == 1
         print(i)
         L.break
      k--
Output:
104743

ALGOL 68

Chebyshev showed that the limit of pi( n ) / ( n / ln(n) ) as n approaches infinity is 1 ( pi( n ) is the number of primes up to n ).
The APPROXIMATESIEVESIZEFOR operator uses this to find a rough value for size of sieve needed to contain the required number of primes.

BEGIN # find the 10001st prime #
    PR read "primes.incl.a68" PR
    # construct a sieve of primes that should be large enough to contain 10001 primes #
    INT required prime = 10 001;
    []BOOL prime = PRIMESIEVE APPROXIMATESIEVESIZEFOR required prime;
    INT p count := 1;
    FOR n FROM 3 BY 2 WHILE p count < required prime DO
        IF prime[ n ] THEN
            p count +:= 1;
            IF p count = required prime THEN
                print( ( "Prime ", whole( required prime, 0 ), " is ", whole( n, 0 ) ) )
            FI
        FI
    OD
END
Output:
Prime 10001 is 104743

Arturo

primes: select 2..110000 => prime?
print primes\[10000]
Output:
104743

AWK

Converted from FreeBASIC

# syntax: GAWK -f 10001TH_PRIME.AWK

BEGIN {
    printf("%s\n",main(10001))
    exit(0)
}
function main(n,  p,pn) {
    if (n == 1) { return(2) }
    p = 3
    pn = 1
    while (pn < n) {
      if (is_prime(p)) {
        pn++
      }
      p += 2
    }
    return(p-2)
}
function is_prime(n,  d) {
    d = 5
    if (n < 2) { return(0) }
    if (n % 2 == 0) { return(n == 2) }
    if (n % 3 == 0) { return(n == 3) }
    while (d*d <= n) {
      if (n % d == 0) { return(0) }
      d += 2
      if (n % d == 0) { return(0) }
      d += 4
    }
    return(1)
}

Idiomatic

# awk -f 10001prime.awk

# n: odd number and n>8
function IsOddPrime(n,	i,limit) {
 limit = int(sqrt(n))
 for (i=3;i <= limit;i+=2)
  if (n%i==0) return 0
 return 1
}

# pos: positive
function PrimePosition(pos,	prime){
 pos -= ( (pos==1) ? prime=2 : prime=3 ) - 1
 while (pos)
  if (IsOddPrime(prime+=2)) pos--
 return prime
}

BEGIN { print PrimePosition(10001) }
Output:
104743

BASIC

BASIC256

function isPrime(v)
	if v < 2 then return False
	if v mod 2 = 0 then return v = 2
	if v mod 3 = 0 then return v = 3
	d = 5
	while d * d <= v
		if v mod d = 0 then return False else d += 2
	end while
	return True
end function

function prime(n)
	if n=1 then return 2
	p = 3
	pn = 1
	while pn < n
		if isPrime(p) then pn += 1
		p += 2
	end while
	return p-2
end function

print prime(10001)
end

Chipmunk Basic

Works with: Chipmunk Basic version 3.6.4

The GW-BASIC solution works without any changes.

FreeBASIC

#include "isprime.bas"
function prime( n as uinteger ) as ulongint
    if n=1 then return 2
    dim as integer p=3, pn=1
    while pn<n
        if isprime(p) then pn + = 1
        p += 2
    wend
    return p-2
end function

print prime(10001)
Output:
104743

Gambas

'Use "isprime.bas"

Public Sub Main()

  Print prime(10001)
  
End

Function prime(n As Integer) As Long 

  If n = 1 Then Return 2 
  Dim p As Integer = 3, pn As Integer = 1 
  While pn < n 
    If isPrime(p) Then pn += 1 
    p += 2 
  Wend 
  Return p - 2 
  
End Function
Output:
104743

GW-BASIC

Works with: BASICA
10 PN = 1
20 P = 3
30 WHILE PN < 10001
40 GOSUB 100
50 IF Q = 1 THEN PN = PN + 1
60 P = P + 2
70 WEND
80 PRINT P - 2
90 END
100 REM Tests if a number is prime
110 Q = 0
120 IF P = 2 THEN Q = 1: RETURN
130 IF P = 3 THEN Q = 1: RETURN
140 I = 1
150 I = I + 2
160 IF INT(P / I) * I = P THEN RETURN
170 IF I * I <= P THEN GOTO 150
180 Q = 1
190 RETURN
Output:
104743

PureBasic

Procedure isPrime(v.i)
  If     v <= 1    : ProcedureReturn #False
  ElseIf v < 4     : ProcedureReturn #True
  ElseIf v % 2 = 0 : ProcedureReturn #False
  ElseIf v < 9     : ProcedureReturn #True
  ElseIf v % 3 = 0 : ProcedureReturn #False
  Else
    Protected r = Round(Sqr(v), #PB_Round_Down)
    Protected f = 5
    While f <= r
      If v % f = 0 Or v % (f + 2) = 0
        ProcedureReturn #False
      EndIf
      f + 6
    Wend
  EndIf
  ProcedureReturn #True
EndProcedure

Procedure prime(n.i)
  If n = 1 
    ProcedureReturn 2
  EndIf
  p.i = 3
  pn.i = 1
  While pn < n
    If isprime(p)
      pn + 1
    EndIf
    p + 2
  Wend
  ProcedureReturn p-2
EndProcedure

OpenConsole()
n = prime(10001)
PrintN(Str(n))
CloseConsole()

QB64

Trial Division Method

max=10001: n=1: p=0: t=Timer ' PRIMES.bas russian DANILIN
While n <= max ' 10001 104743 0.35 seconds
    f=0: j=2
    While f < 1
        If j >= p ^ 0.5 Then f=2
        If p Mod j = 0 Then f=1
        j=j+1
    Wend
    If f <> 1 Then n=n+1: ' Print n, p
    p=p+1
Wend
Print n-1, p-1, Timer-t
Output:
10001 104743 0.35 seconds

More Efficient TD Method

'JRace's results:
'Original version: 10001   104743  .21875
'This version:     10001   104743  .109375
max = 10001: n=1: p=0: t = Timer ' PRIMES.bas
While n <= max ' 10001 104743 0.35 seconds
    f = 0: j = 2
    pp = p^0.5 'NEW VAR: move exponentiation here, to outer loop
    While f < 1
        ' If j >= p ^ 0.5 Then f=2 'original line
        ' NOTE: p does not change in this loop,
        '      therefore p^0.5 doesn't change;
        '      moving p^0.5 to the outer loop will eliminate a lot of FP math)
        If j >= pp Then f=2 'new version with exponentiation relocated
        If p Mod j = 0 Then f=1
        j=j+1
    Wend
    If f <> 1 Then n=n+1: ' Print n, p
    p=p+1
Wend
Print n-1, p-1, Timer - t
Output:
10001 104743 0.11 seconds

True BASIC

Trial Division Method

Translation of: QB64
LET max = 10001
LET n = 1
LET p = 0
DO WHILE n <= max
   LET f = 0
   LET j = 2
   DO WHILE f < 1
      IF j >= p^0.5 THEN LET f = 2
      IF REMAINDER(p, j) = 0 THEN LET f = 1
      LET j = j+1
   LOOP
   IF f <> 1 THEN LET n = n+1
   LET p = p+1
LOOP
PRINT p-1
END
Output:
104743

Yabasic

sub isPrime(v)
    if v < 2 then return False : fi
    if mod(v, 2) = 0 then return v = 2 : fi
    if mod(v, 3) = 0 then return v = 3 : fi
    d = 5
    while d * d <= v
        if mod(v, d) = 0 then return False else d = d + 2 : fi
    wend
    return True
end sub

sub prime(n)
    if n = 1 then return 2 : fi
    p = 3 
	pn = 1
    while pn<n
        if isPrime(p) then pn = pn + 1 : fi
        p = p + 2
    wend
    return p-2
end sub

print prime(10001)
end

bc

a[0] = 2
a[o = 1] = 3
for (n = 5; o < 10000; n += 2) {
    for (i = 1; n % (p = a[i]) != 0; ++i) {
        if (p * p > n) {
            a[++o] = n
            break
        }
    }
}
a[o]
Output:
104743

C

#include<stdio.h>
#include<stdlib.h>

int isprime( int p ) {
    int i;
    if(p==2) return 1;
    if(!(p%2)) return 0;
    for(i=3; i*i<=p; i+=2) {
       if(!(p%i)) return 0;
    }
    return 1;
}

int prime( int n ) {
    int p, pn=1;
    if(n==1) return 2;
    for(p=3;pn<n;p+=2) {
        if(isprime(p)) pn++;
    }
    return p-2;
}

int main(void) {
    printf( "%d\n", prime(10001) );
    return 0;
}
Output:
104743

C#

Sieve vs Trial Division

Comparing performance of the one-at-a-time trial division method vs the sieve of Eratosthenes method. About ten times faster for the sieve. It may appear that the sieve may be off by one, pr[10000] but since the array is zero based, it's the 10001st value.

using System; class Program {

  static bool isprime(uint p ) { if ((p & 1) == 0) return p == 2;
    if ((p % 3) == 0) return p == 3;
    for (uint i = 5, d = 4; i * i <= p; i += (d = 6 - d))
      if (p % i == 0) return false; return true; }
 
  static uint prime(uint n) { uint p, d, pn;
    for (p = 5, d = 4, pn = 2; pn < n; p += (d = 6 - d))
      if (isprime(p)) pn++; return p - d; }

  static void Main(string[] args) {
    Console.WriteLine("One-at-a-time trial division vs sieve of Eratosthenes");
    var sw = System.Diagnostics.Stopwatch.StartNew();
    var t = prime(10001); sw.Stop(); double e1, e2;
    Console.Write("{0:n0} {1} ms", prime(10001),
      e1 = sw.Elapsed.TotalMilliseconds);
    sw.Restart(); uint n = 105000, i, j; var pr = new uint[10100];
    pr[0] = 2; pr[1] = 3; uint pc = 2, r, d, ii;
    var pl = new bool[n + 1]; r = (uint)Math.Sqrt(n);
    for (i = 9; i < n; i += 6) pl[i] = true;
    for (i = 5, d = 4; i <= r; i += (d = 6 - d)) if (!pl[i]) {
      pr[pc++] = i; for (j = i * i, ii = i << 1; j <= n; j += ii)
        pl[j] = true; }
    for ( ;i <= n; i += (d = 6 - d)) if (!pl[i]) pr[pc++] = i;
    t = pr[10000]; sw.Stop();
    Console.Write("  {0:n0} {1} μs  {2:0.000} times faster", t,
      (e2 = sw.Elapsed.TotalMilliseconds) * 1000.0, e1 / e2); } }
Output @ Tio.run:
One-at-a-time trial division vs sieve of Eratosthenes
104,743 3.8943 ms  104,743 357.9 μs  10.881 times faster

Alternative Trial Division Method

using System; using System.Text; // PRIME_numb.cs russian DANILIN
namespace p10001 // 1 second  10001  104743 
{ class Program // rextester.com/ZBEPGE34760
    { static void Main(string[] args)
        { int max=10001; int n=1; int p=1; int f; int j; long s;
            while (n <= max) 
            { f=0; j=2; s=Convert.ToInt32(Math.Pow(p,0.5));
                while (f < 1) 
                { if (j >= s) 
                    { f=2; } 
                  if (p % j == 0) { f=1; }
                  j++;
                }
                if (f != 1) { n++; } // Console.WriteLine("{0} {1}", n, p);
                p++;
            }
Console.Write("{0} {1}", n-1, p-1);
Console.ReadKey(); 
}}}
Output:
104743

C++

Library: Primesieve
#include <iostream>
#include <locale>

#include <primesieve.hpp>

int main() {
    std::cout.imbue(std::locale(""));
    std::cout << "The 10,001st prime is " << primesieve::nth_prime(10001) << ".\n";
}
Output:
The 10,001st prime is 104,743.

COBOL

Limit based on the fact that the nth prime is guaranteed to be less than n * (ln n + ln(ln n)).

IDENTIFICATION DIVISION.
       PROGRAM-ID. 10001th_prime.
       
       DATA DIVISION.
       WORKING-STORAGE SECTION.
       01 n        PIC 9(3)    COMP.
       01 cnt      PIC 9(5)    COMP    VALUE 1.
       01 sieve.
           05 isp  PIC 9               VALUE 1 OCCURS 115000 TIMES 
                                       INDEXED BY i.
       01 out      PIC Z(10).

       PROCEDURE DIVISION.
           PERFORM VARYING n FROM 2 BY 1 UNTIL n * n > 115000
               SET i TO n

               IF isp(i) = 1
                   MULTIPLY n BY n GIVING i
                   PERFORM VARYING i FROM i BY n UNTIL i > 115000
                       SET isp(i) TO 0
                   END-PERFORM
           
           END-PERFORM

           SET i to 1
           
           PERFORM UNTIL cnt = 10001
               SET i UP BY 2
               ADD isp(i) TO cnt
           END-PERFORM

           MOVE i TO out
           DISPLAY FUNCTION TRIM (out)
           STOP RUN.
Output:
104743

Dart

import 'dart:math';

bool isPrime(int n) {
  if (n <= 1) return false;
  if (n == 2) return true;
  for (int i = 2; i <= sqrt(n); ++i) {
    if (n % i == 0) return false;
  }
  return true;
}

int prime(int n) {
  int p, pn = 1;
  if (n == 1) return 2;
  for (p = 3; pn < n; p += 2) {
    if (isPrime(p)) pn++;
  }
  return p - 2;
}

void main() {
  print(prime(10001));
}
Output:
104743

Delphi

Works with: Delphi version 6.0
Library: none
function IsPrime(N: integer): boolean;
{Fast, optimised prime test}
var I,Stop: integer;
begin
if (N = 2) or (N=3) then Result:=true
else if (n <= 1) or ((n mod 2) = 0) or ((n mod 3) = 0) then Result:= false
else
     begin
     I:=5;
     Stop:=Trunc(sqrt(N));
     Result:=False;
     while I<=Stop do
           begin
           if ((N mod I) = 0) or ((N mod (I + 2)) = 0) then exit;
           Inc(I,6);
           end;
     Result:=True;
     end;
end;


function Find10001thPrime: integer;
{Return the 10,001th prime number}
var Count: integer;
begin
Count:=1;
Result:= 3;
while true do
	begin
	if IsPrime(Result) then Count:= Count+1;
	if Count=10001 then exit;
	Inc(Result,2);
	end;
end;
Output:
10,001th Prime= 104,743

D

Translation of: C
import std.stdio;

int isprime( int p ) {
    int i;
	
    if(p==2) return 1;

    if(!(p%2)) return 0;
	
    for(i=3; i*i<=p; i+=2) {
       if(!(p%i)) return 0;
    }
	
    return 1;
}

int prime( int n ) {
	
    if(n==1) return 2;
	
    int p, pn=1;
	
    for(p=3;pn<n;p+=2) {
        if(isprime(p)) pn++;
    }
	
    return p-2;
}

void main()
{
	writeln(prime(10_001));
}
Output:
104743

Erlang

-module(task_10001th_prime).

-export([main/0]).

% 2 and 3 are both primes, so we start searching at 5
main() -> search(5, 2, 2).

search(N, Inc, Count) when Count < 10_001 ->
    case is_prime(N) of
        true -> search(N + Inc, 6 - Inc, Count + 1);
        false -> search(N + Inc, 6 - Inc, Count)
    end;
search(N, Inc, _) -> N - 6 + Inc.

is_prime(P) -> is_prime(P, 5, 2).

is_prime(N, P, _) when P * P > N -> true;
is_prime(N, P, _) when N rem P =:= 0 -> false;
is_prime(N, P, Inc) -> is_prime(N, P + Inc, 6 - Inc).
Output:
 timer:tc(task_10001th_prime, main, []).
{68615,104743}

EasyLang

fastfunc isprim num .
   if num mod 2 = 0 and num > 2
      return 0
   .
   i = 3
   while i <= sqrt num
      if num mod i = 0
         return 0
      .
      i += 2
   .
   return 1
.
i = 2
repeat
   if isprim i = 1
      nprim += 1
   .
   until nprim = 10001
   i += 1
.
print i
Output:
104743

F#

This task uses Extensible Prime Generator (F#)

// 10001st prime. Nigel Galloway: November 22nd., 2021
printfn $"%d{Seq.item 10000 (primes32())}"
Output:
104743

Factor

USING: math math.primes prettyprint ;

2 10,000 [ next-prime ] times .
Output:
104743

Fermat

Prime(10001);
Output:
104743

Frink

nth1[primes[], 10001]
Output:
104743

FutureBasic

local fn IsPrime( n as NSUInteger ) as BOOL
  BOOL       isPrime = YES
  NSUInteger i
  
  if n < 2        then exit fn = NO
  if n = 2        then exit fn = YES
  if n mod 2 == 0 then exit fn = NO
  for i = 3 to int(n^.5) step 2
    if n mod i == 0 then exit fn = NO
  next
end fn = isPrime


local fn Prime( n as NSUInteger ) as long
  long p = 3, pn = 1
  
  if n = 1 then exit fn = 2
  while ( pn < n )
    if fn IsPrime( p ) then pn++
    p += 2
  wend
  p -= 2
end fn = p

print fn Prime(10001)

HandleEvents
Output:
104743

Go

package main

import "fmt"

func isPrime(n int) bool {
    if n == 1 {
        return false
    }
    i := 2
    for i*i <= n {
        if n%i == 0 {
            return false
        }
        i++
    }
    return true
}

func main() {
    var final, pNum int

    for i := 1; pNum < 10001; i++ {
        if isPrime(i) {
            pNum++
        }
        final = i
    }
    fmt.Println(final)
}
Output:
104743

J

p:10000      NB. the index starts at 0; p:0 = 2
Output:
104743

Java

Uses the PrimeGenerator class from Extensible prime generator#Java.

public class NthPrime {
    public static void main(String[] args) {
        System.out.printf("The 10,001st prime is %,d.\n", nthPrime(10001));
    }

    private static int nthPrime(int n) {
        assert n > 0;
        PrimeGenerator primeGen = new PrimeGenerator(10000, 100000);
        int prime = primeGen.nextPrime();
        while (--n > 0)
            prime = primeGen.nextPrime();
        return prime;
    }
}
Output:
The 10,001st prime is 104,743.


JavaScript

Prime 10001 from Russia jdoodle.com/h/2V1

var max = 10001, n=1, p=1; var f,j,s  
while (n <= max) 
{ f=0; j=2; s = parseInt(Math.pow(p, 0.5))
   while (f < 1)
      { if (j >= s) f=2  
        if ( p % j == 0 ) f=1  
        j++
      }
   if (f != 1) n++ // { document.write(n +" "+ p +"<br>") }
   p++
}
document.write("<br>"+ (n-1) +" "+ (p-1) +"<br>" )
Output:
10001 104743

jq

Works with: jq

Works with gojq, the Go implementation of jq

A solution without any pre-determined numbers or guesses.

See Erdős-primes#jq for a suitable definition of `is_prime` as used here.

# Output: a stream of the primes
def primes: 2, (range(3; infinite; 2) | select(is_prime));

# The task
# jq uses an index-origin of 1 and so:
nth(10000; primes)
Output:
104743

Julia

julia> using Primes

julia> prime(10001)
104743

Mathematica / Wolfram Language

Prime[10001]
Output:

104743


Maxima

primes_first_n(n) := (
           if n<=1 then
               []
           else (
               L : [2],
               for i:2 thru n do (
                   L : append(L, [next_prime(last(L))])
               ),
               L
           )
       )$
last(primes_first_n(10001));
Output:

104743

MiniScript

isPrime = function(n)
	s = floor(n ^ 0.5)
	for i in range(2, s)
		if n % i == 0 then return false
	end for
	return true
end function

tt = time
c = 2
p = 2
lastPrime = 2
while c < 10001
	p += 1
	if isPrime(p) then 
		c += 1
	end if
end while
print p
Output:
104743

Nim

func isPrime(n: Positive): bool =
  ## Return true if "n" is prime.
  ## Assume n >= 5 and n not multiple of 2 and 3.
  var d = 5
  var step = 2
  while d * d <= n:
    if n mod d == 0:
      return false
    inc d, step
    step = 6 - step
  result = true

iterator primes(): tuple[rank, value: int] =
  ## Yield the primes preceded by their rank in the sequence.
  yield (1, 2)
  yield (2, 3)
  var idx = 2
  var n = 5
  var step = 2
  while true:
    if n.isPrime:
      inc idx
      yield (idx, n)
    inc n, step
    step = 6 - step

for (i, n) in primes():
  if i == 10001:
    echo "10001st prime: ", n
    break
Output:
10001st prime: 104743

OCaml

Using the function seq_primes from Extensible prime generator#OCaml:

let () =
  seq_primes |> Seq.drop 10000 |> Seq.take 1 |> Seq.iter (Printf.printf "%u\n")
Output:
104743

PARI/GP

prime(10001)
Output:
%1 = 104743

Pascal

Free Pascal

Program nth_prime;

Function nthprime(x : uint32): uint32;
Var primes : array Of uint32;
  i,pr,count : uint32;
  found : boolean;
Begin
  setlength(primes, x);
  primes[1] := 2;
  count := 1;
  i := 3;
  Repeat
    found := FALSE;
    pr := 0;
    Repeat
      inc(pr);
      found := i Mod primes[pr] = 0;
    Until (primes[pr]*primes[pr] > i) Or found;
    If Not found Then
      Begin
        inc(count);
        primes[count] := i;
      End;
    inc(i,2);
  Until count = x;
  nthprime := primes[x];
End;

Begin
  writeln(nthprime(10001));
End.
Output:
104743

Perl

Library: ntheory
use strict;
use warnings;
use feature 'say';

# the lengthy wait increases the delight in finally seeing the answer
my($n,$c) = (1,0);
while () {
    $c++ if (1 x ++$n) !~ /^(11+)\1+$/;
    $c == 10_001 and say $n and last;
}

# or if for some reason you want the answer quickly
use ntheory 'nth_prime';
say nth_prime(10_001);
Output:
104743
104743

Phix

with js ?get_prime(10001)
Output:
104743

Picat

go ?=>
  println(nth_prime(10001)),

  % faster but probably considered cheating
  nth(10001,primes(200000),P),
  println(P).

nth_prime(Choosen) = P =>
   nth_prime(1,0,Choosen, P).

nth_prime(Num, Choosen, Choosen, Num) :-
  prime(Num).
nth_prime(Num, Ix, Choosen, P) :-
   Ix < Choosen,
   next_prime(Num, P2),
   nth_prime(P2, Ix+1, Choosen, P).

next_prime(Num, P) :-
  next_prime2(Num+1, P).
next_prime2(Num, Num) :-
  prime(Num).
next_prime2(Num, P) :-
   next_prime2(Num+1,P).
Output:
104743
104743

Prolog

for swi-prolog

isPrime(2).                 % prime generator
isPrime(N):-
	between(3, inf, N),
	N /\ 1 > 0,             % odd
	M is floor(sqrt(N)) - 1, % reverse 2*I+1
	Max is M div 2,
	forall(between(1, Max, I), N mod (2*I+1) > 0).

do:- Index is 10001,
	findnsols(Index, N, isPrime(N), PrimeList),!,
	last(PrimeList, PrimeAtIndex),
	format('prime(~d) is ~d', [Index, PrimeAtIndex]), nl.
Output:
?- do.
prime(10001) is 104743
true.

Python

Trial Division Method

#!/usr/bin/python

def isPrime(n):
    for i in range(2, int(n**0.5) + 1):
        if n % i == 0:
            return False        
    return True

def prime(n: int) -> int:
    if n == 1:
        return 2
    p = 3
    pn = 1
    while pn < n:
        if isPrime(p):
            pn += 1
        p += 2
    return p-2

if __name__ == '__main__':
    print(prime(10001))
Output:
104743

Alternative Trial Division Method

import time; max=10001; n=1; p=1; # PRIME_numb.py russian DANILIN 
while n<=max: # 78081 994271 45 seconds
    f=0; j=2; s = int(p**0.5) # rextester.com/AAOHQ6342
    while f < 1:
        if j >= s:
            f=2
        if p % j == 0:
            f=1
        j+=1
    if f != 1:
        n+=1;
        #print(n,p);
    p+=1
print(n-1,p-1)
print(time.perf_counter())
Output:
10001 104743 7 seconds

Quackery

The 10001st prime number is the 10000th odd prime number.

prime is defined at Miller–Rabin primality test#Quackery.

  1 10000 times [ 2 + dup prime until ] echo
Output:
104743

R

library(primes)
nth_prime(10001)
Output:
104743

Racket

#lang racket
(require math/number-theory)
; Index starts at 0, (nth-prime 0) is 2
(nth-prime 10000)
Output:
104743

Raku

say (^∞).grep( &is-prime )[10000]
Output:
104743

REXX

The task has no stretch goal, nevertheless I will try one: showing primes higher in de sequence.

Trial division

/* REXX */
Parse Version v
Say v
Call Time 'R'
z=1
p.0=3
p.1=2
p.2=3
p.3=5
Do n=5 By 2 Until z=10001
  If right(n,1)=5 Then Iterate
  Do i=2 To p.0 Until b**2>n
    b=p.i
    If n//b=0 Then Leave
    End
  If b**2>n Then Do
    z=p.0+1
    p.z=n
    p.0=z
    End
  End
Say z n time('E')
Output:
H:\>rexx prime10001
REXX-ooRexx_5.0.0(MT)_64-bit 6.05 8 Sep 2020
10001 104743 0.219000

H:\>regina prime10001
REXX-Regina_3.9.4(MT) 5.00 25 Oct 2021
10001 104743 .615000

Finding the 100001th prime number:

REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
100001 1299721 11.989000

REXX-Regina_3.9.6(MT) 5.00 29 Apr 2024
100001 1299721 19.117000

Sieve

Libraries: How to use
Library: Numbers
As some other REXX entries suggest, using a sieve is faster, but requires memory to store the primes. Consider following program, based on the property 'nth prime < n*(ln(n)+ln(ln(n)))'.

parse version v
say v
prim. = 0
call Time 'R'
call Primes(105000)
n = 10001
say prim.prime.n n Time('E')
exit

Primes:
/* Prime numbers */
procedure expose prim. flag. work.
arg x
/* Validity */
if \ Whole(x) then
   return 'X'
if x < 1 then
   return 'X'
/* Fast values */
if x = 1 then do
   prim.0 = 0
   return 0
end
/* Sieve of Eratosthenes */
work. = 1
do i = 3 by 2 to x while i*i <= x
   if work.prime.i then do
      do j = i*i by i+i to x
         work.prime.j = 0
      end
   end
end
/* Save results */
flag. = 0
n = 1; prim.prime.1 = 2
do i = 3 by 2 to x
   if work.prime.i then do
      n = n+1; prim.prime.n = i; flag.prime.i = 1
   end
end
prim.0 = n
return n

include Functions
include Numbers
Output:
As required by the task:
REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
104743 10001 0.047000
REXX-Regina_3.9.6(MT) 5.00 29 Apr 2024
104743 10001 0.027000

And for some higher entries in the sequence:
REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
1299721 100001 0.829000
REXX-Regina_3.9.6(MT) 5.00 29 Apr 2024
1299721 100001 0.469000

REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
15485867 1000001 13.938000
REXX-Regina_3.9.6(MT) 5.00 29 Apr 2024
15485867 1000001 7.726000

REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
86028157 5000001 89.021000
REXX-Regina_3.9.6(MT) 5.00 29 Apr 2024
86028157 5000001 81.339000

The last example, finding all primes in the range 2-87M (more than 5M primes!), took > 10GB memory on my 16GB machine, pushing it to the max. But without using the sieve solution, the last two examples would have taken hours.

Ring

load "stdlib.ring"
see "working..." + nl
num = 0 pr = 0 limit = 10001

while true
      num++
      if isprime(num) pr++ ok
      if pr = limit exit ok
end

see "" + num + nl + "done..." + nl
Output:
working...
The 10001th prime is: 104743
done...

RPL

Works with: HP version 49
« 2
  1 10000 START NEXTPRIME NEXT
» 'TASK' STO
Output:
1: 104743

Ruby

require "prime"
puts  Prime.lazy.drop(10_000).next
Output:
104743

Rust

// [dependencies]
// primal = "0.3"

fn main() {
    let p = primal::StreamingSieve::nth_prime(10001);
    println!("The 10001st prime is {}.", p);
}
Output:
The 10001st prime is 104743.

Scala

Scala3 ready

object Prime10001 extends App {

  val oddPrimes: LazyList[Int] = 3 #:: LazyList.from(5, 2)
        .filter(p => oddPrimes.takeWhile(_ <= math.sqrt(p)).forall(p % _ > 0))
  val primes = 2 #:: oddPrimes
  
  val index = 10_001
  println(s"prime($index): " + primes.drop(index - 1).take(1).head)
}
Output:
prime(10001): 104743

Sidef

say 10001.prime
Output:
104743

Wren

Library: Wren-math
Library: Wren-fmt
import "./math" for Int
import "./fmt" for Fmt

var n = 10001
var limit = (n.log * n * 1.2).floor  // should be enough
var primes = Int.primeSieve(limit)
Fmt.print("The $,r prime is $,d.", n, primes[n-1])
Output:
The 10,001st prime is 104,743.

x86 Assembly

Using the Sieve of Eratosthenes and n * (ln n + ln(ln n)) as the upper limit for finding the nth prime.

section .data
    primes times 14375 db 255   ;N * (ln N + ln(ln N)) bits, rounded up

section .text
    global main

main:
    mov     ebx, 1          ;array index for outer loop
    xor     ecx, ecx        ;counter

sieve_outer:
    inc     ebx             ;increase index
    mov     eax, ebx        ;copy to eax for squaring
    mul     ebx             ;square
    cmp     eax, 115000     ;check if square is > limit    
    jg      find10001st     ;if it is, sieve is done
    bt      [primes], ebx   ;check if ebx is no prime
    jnc     sieve_outer     ;if no prime, try next number
    inc     ecx             ;else increase counter

sieve_inner:
    btr     [primes], eax   ;set multiple to not prime
    add     eax, ebx        ;next multiple
    cmp     eax, 115000     ;check if multiple is < limit
    jl      sieve_inner     ;if it is, continue with inner loop
    jmp     sieve_outer     ;if not, continue with outer loop

find10001st:
    inc     ebx             ;increase array index
    bt      [primes], ebx   ;is it prime?
    adc     ecx, 0          ;if yes, increase ecx
    cmp     ecx, 10001      ;check if counter arrived at 10001
    jl      find10001st     ;if not, continue
                            ;done, result in ebx
Output:
104743

XPL0

func IsPrime(N); \Return 'true' if odd N > 2 is prime
int  N, I;
[for I:= 3 to sqrt(N) do
    [if rem(N/I) = 0 then return false;
    I:= I+1;
    ];
return true;
];

int C, N;
[C:= 1;         \count 2 as first prime
N:= 3;
loop    [if IsPrime(N) then
            [C:= C+1;
            if C = 10001 then quit;
            ];
        N:= N+2;
        ];
IntOut(0, N);
]
Output:
104743


Zig

const std = @import("std");
const stdout = @import("std").io.getStdOut().writer();

const limit = 10001;

fn isPrime(x: usize) bool {
    if (x % 2 == 0) return false;

    var i: usize = 3;
    while (i * i <= x) : (i += 2) {
        if (x % i == 0) return false;
    }
    return true;
}

pub fn main() !void {
    var cnt: usize = 0;
    var last: usize = 0;
    var n: usize = 1;

    while (cnt < limit) : (n += 1) {
        if (isPrime(n)) {
            cnt += 1;
            last = n;
        }
    }
    try stdout.print("{d}st prime number is: {d}\n", .{ limit, last });
}
Output:
10001st prime number is: 104743