Jump to content

Sum to 100

From Rosetta Code
Revision as of 19:44, 19 April 2021 by rosettacode>Lscrd (Added a recursive solution. Corrected a bug in previous version. Had not the courage to translate it into English and to improve it.)
Task
Sum to 100
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Find solutions to the   sum to one hundred   puzzle.


Add (insert) the mathematical operators     +   or   -     (plus or minus)   before any of the digits in the
decimal numeric string   123456789   such that the resulting mathematical expression adds up to a
particular sum   (in this iconic case,   100).


Example:

             123 + 4 - 5 + 67 - 89   =   100     

Show all output here.


  •   Show all solutions that sum to   100
  •   Show the sum that has the maximum   number   of solutions   (from zero to infinity)
  •   Show the lowest positive sum that   can't   be expressed   (has no solutions),   using the rules for this task
  •   Show the ten highest numbers that can be expressed using the rules for this task   (extra credit)


  (where   infinity   would be a relatively small   123,456,789)


An example of a sum that can't be expressed   (within the rules of this task)   is:   5074
(which,   of course,   isn't the lowest positive sum that can't be expressed).

Ada

The Package Sum_To

Between any two consecutive digits, there can be a "+", a "-", or no operator. E.g., the digits "4" and "5" occur in the string as either of the following three substrings: "4+5", "4-5", or "45". For the first digit, we only have two choices: "+1" (written as "1"), and "-1". This makes 2*3^8 (two times (three to the power of eight)) different strings. Essential is the generic function Eval in the package Sum_To calls the procedure Callback for each such string Str, with the number Int holding the sum corresponding to the evaluation of Str. The second generic procedure Print is for convenience. If the Sum fits the condition, i.e., if Print_If(Sum, Number), then Print writes Sum = Str to the output.

<lang Ada>package Sum_To is

  generic
     with procedure Callback(Str: String; Int: Integer);
  procedure Eval;
  
  generic
     Number: Integer;
     with function Print_If(Sum, Number: Integer) return Boolean; 
  procedure Print(S: String; Sum: Integer);

end Sum_To;</lang>

The implementation of Eval follows the observation above: Eval calls Rec_Eval with the initial string "1" and "-1". For each call, Rec_Eval recursively evaluates a ternary tree with 3^8 leafs. At each leaf, Rec_Eval calls Callback. The implementation of Print is straightforward.

<lang Ada>with Ada.Text_IO, Ada.Containers.Ordered_Maps;

package body Sum_To is

  procedure Eval is
  
     procedure Rec_Eval(Str: String; Previous, Current, Next: Integer) is

Next_Image: String := Integer'Image(Next); -- Next_Image(1) holds a blank, Next_Image(2) a digit

function Sign(N: Integer) return Integer is (if N<0 then -1 elsif N>0 then 1 else 0);

     begin

if Next = 10 then -- end of recursion Callback(Str, Previous+Current); else -- Next < 10 Rec_Eval(Str & Next_Image(2), -- concatenate current and Next Previous, Sign(Current)*(10*abs(Current)+Next), Next+1); Rec_Eval(Str & "+" & Next_Image(2), -- add Next Previous+Current, Next, Next+1); Rec_Eval(Str & "-" & Next_Image(2), -- subtract Next Previous+Current, -Next, Next+1); end if;

     end Rec_Eval;
     
  begin -- Eval
     Rec_Eval("1", 0, 1, 2);  -- unary "+", followed by "1"
     Rec_Eval("-1", 0, -1, 2); -- unary "-", followed by "1"
  end Eval;
  
  procedure Print(S: String; Sum: Integer) is
     -- print solution (S,N), if N=Number
  begin
     if Print_If(Sum, Number) then 

Ada.Text_IO.Put_Line(Integer'Image(Sum) & " = " & S & ";");

     end if;
  end Print;
  

end Sum_To;</lang>

The First Subtask

Given the package Sum_To, the solution to the first subtask (print all solution for the sum 100) is trivial: Eval_100 calls Print_100 for all 2*3^8 strings, and Print_100 writes the output if the sum is equal to 100.

<lang Ada>with Sum_To;

procedure Sum_To_100 is

  procedure Print_100 is new Sum_To.Print(100, "=");
  procedure Eval_100 is new Sum_To.Eval(Print_100);
  

begin

  Eval_100;

end Sum_To_100;</lang>

Output:
 100 = 123+45-67+8-9;
 100 = 123+4-5+67-89;
 100 = 123-45-67+89;
 100 = 123-4-5-6-7+8-9;
 100 = 12+3+4+5-6-7+89;
 100 = 12+3-4+5+67+8+9;
 100 = 12-3-4+5-6+7+89;
 100 = 1+23-4+56+7+8+9;
 100 = 1+23-4+5+6+78-9;
 100 = 1+2+34-5+67-8+9;
 100 = 1+2+3-4+5+6+78+9;
 100 = -1+2-3+4+5+6+78+9;

The other subtasks (including the extra credit)

For the three other subtasks, we maintain an ordered map of sums (as the keys) and counters for the number of solutions (as the elements). The procedure Generate_Map generates the Map by calling the procedure Insert_Solution for all 2*3^8 solutions. Finding (1) the sum with the maximal number of solutions, (2) the first sum>=0 without a solution and (3) the ten largest sums with a solution (extra credit) are done by iterating this map.

<lang Ada>with Sum_To, Ada.Containers.Ordered_Maps, Ada.Text_IO; use Ada.Text_IO;

procedure Three_Others is

  package Num_Maps is new Ada.Containers.Ordered_Maps
    (Key_Type => Integer, Element_Type => Positive);
  use Num_Maps;
  
  Map: Num_Maps.Map;
  -- global Map stores how often a sum did occur
  
  procedure Insert_Solution(S: String; Sum: Integer) is
     -- inserts a solution into global Map
     use Num_Maps;
     -- use type Num_Maps.Cursor;
     Position: Cursor := Map.Find(Sum);
  begin
     if Position = No_Element then -- first solutions for Sum

Map.Insert(Key => Sum, New_Item => 1); -- counter is 1

     else -- increase counter for Sum

Map.Replace_Element(Position => Position, New_Item => (Element(Position))+1);

     end if;
  end Insert_Solution;
  
  procedure Generate_Map is new Sum_To.Eval(Insert_Solution); 
  
  Current: Cursor; -- Points into Map
  Sum: Integer;    -- current Sum of interest
  Max: Natural; 

begin

  Generate_Map;
  
  -- find Sum >= 0  with maximum number of solutions
  Max := 0; -- number of solutions for Sum (so far, none)
  Current := Map.Ceiling(0); -- first element in Map with Sum >= 0
  while Has_Element(Current) loop
     if Element(Current) > Max then

Max := Element(Current); -- the maximum of solutions, so far Sum := Key(Current); -- the Sum with Max solutions

     end if;
     Next(Current);
  end loop;
  Put_Line("Most frequent result:" & Integer'Image(Sum));
  Put_Line("Frequency of" & Integer'Image(Sum) & ":" & 

Integer'Image(Max));

  New_Line;
  
  -- find smallest Sum >= 0 with no solution
  Sum := 0;
  while Map.Find(Sum) /= No_Element loop
     Sum := Sum + 1;
  end loop;
  Put_Line("Smallest nonnegative impossible sum:" & Integer'Image(Sum));
  New_Line;
  
  -- find ten highest numbers with a solution 
  Current := Map.Last; -- highest element in Map with a solution
  Put_Line("Highest sum:" & Integer'Image(Key(Current)));
  Put("Next nine:");
  for I in 1 .. 9 loop -- 9 steps backward
     Previous(Current);
     Put(Integer'Image(Key(Current)));
  end loop; 
  New_Line;

end Three_others;</lang>

Output:
Most frequent result: 9
Frequency of 9: 46

Smallest nonnegative impossible sum: 211

Highest sum: 123456789
Next nine: 23456790 23456788 12345687 12345669 3456801 3456792 3456790 3456788 3456786

Aime

<lang aime>integer b, i, j, k, l, p, s, z; index r, w;

i = 0; while (i < 512) {

   b = i.bcount;
   j = 0;
   while (j < 1 << b) {
       data e;
       j += 1;
       k = s = p = 0;
       l = j;
       z = 1;
       while (k < 9) {
           if (i & 1 << k) {
               e.append("-+"[l & 1]);
               s += p * z;
               z = (l & 1) * 2 - 1;
               l >>= 1;
               p = 0;
           }
           e.append('1' + k);
           p = p * 10 + 1 + k;
           k += 1;
       }
       s += p * z;
       if (e[0] != '+') {
           if (s == 100) {
               o_(e, "\n");
           }
           w[s] += 1;
       }
   }
   i += 1;

}

w.wcall(i_fix, 1, 1, r);

o_(r.back, "\n");

k = 0; for (+k in w) {

   if (!w.key(k + 1)) {
       o_(k + 1, "\n");
       break;
   }

}

i = 10; for (k of w) {

   o_(k, "\n");
   if (!(i -= 1)) {
       break;
   }

}</lang>

Output:
123-45-67+89
123+4-5+67-89
12+3+4+5-6-7+89
12-3-4+5-6+7+89
1+23-4+5+6+78-9
1+2+3-4+5+6+78+9
-1+2-3+4+5+6+78+9
123+45-67+8-9
1+2+34-5+67-8+9
12+3-4+5+67+8+9
1+23-4+56+7+8+9
123-4-5-6-7+8-9
9
211
123456789
23456790
23456788
12345687
12345669
3456801
3456792
3456790
3456788
3456786

ALGOL 68

<lang algol68>BEGIN

   # find the numbers the string 123456789 ( with "+/-" optionally inserted  #
   # before each digit ) can generate                                        #
   # experimentation shows that the largest hundred numbers that can be      #
   # generated are are greater than or equal to 56795                        #
   # as we can't declare an array with bounds -123456789 : 123456789 in      #
   # Algol 68G, we use -60000 : 60000 and keep counts for the top hundred    #
   INT max number = 60 000;
   [ - max number : max number ]STRING solutions;
   [ - max number : max number ]INT    count;
   FOR i FROM LWB solutions TO UPB solutions DO solutions[ i ] := ""; count[ i ] := 0 OD;
   # calculate the numbers ( up to max number ) we can generate and the strings leading to them  #
   # also determine the largest numbers we can generate #
   [ 100 ]INT largest;
   [ 100 ]INT largest count;
   INT impossible number = - 999 999 999;
   FOR i FROM LWB largest TO UPB largest DO
       largest      [ i ] := impossible number;
       largest count[ i ] := 0
   OD;
   [ 1 : 18 ]CHAR sum string := ".1.2.3.4.5.6.7.8.9";
   []CHAR sign char = []CHAR( "-", " ", "+" )[ AT -1 ];
   # we don't distinguish between strings starting "+1" and starting " 1" #
   FOR s1 FROM -1 TO 0 DO
       sum string[  1 ] := sign char[ s1 ];
       FOR s2 FROM -1 TO 1 DO
           sum string[  3 ] := sign char[ s2 ];
           FOR s3 FROM -1 TO 1 DO
               sum string[  5 ] := sign char[ s3 ];
               FOR s4 FROM -1 TO 1 DO
                   sum string[  7 ] := sign char[ s4 ];
                   FOR s5 FROM -1 TO 1 DO
                       sum string[  9 ] := sign char[ s5 ];
                       FOR s6 FROM -1 TO 1 DO
                           sum string[ 11 ] := sign char[ s6 ];
                           FOR s7 FROM -1 TO 1 DO
                               sum string[ 13 ] := sign char[ s7 ];
                               FOR s8 FROM -1 TO 1 DO
                                   sum string[ 15 ] := sign char[ s8 ];
                                   FOR s9 FROM -1 TO 1 DO
                                       sum string[ 17 ] := sign char[ s9 ];
                                       INT number := 0;
                                       INT part   := IF s1 < 0 THEN -1 ELSE 1 FI;
                                       IF s2 = 0 THEN part *:= 10 +:= 2 * SIGN part ELSE number +:= part; part := 2 * s2 FI;
                                       IF s3 = 0 THEN part *:= 10 +:= 3 * SIGN part ELSE number +:= part; part := 3 * s3 FI;
                                       IF s4 = 0 THEN part *:= 10 +:= 4 * SIGN part ELSE number +:= part; part := 4 * s4 FI;
                                       IF s5 = 0 THEN part *:= 10 +:= 5 * SIGN part ELSE number +:= part; part := 5 * s5 FI;
                                       IF s6 = 0 THEN part *:= 10 +:= 6 * SIGN part ELSE number +:= part; part := 6 * s6 FI;
                                       IF s7 = 0 THEN part *:= 10 +:= 7 * SIGN part ELSE number +:= part; part := 7 * s7 FI;
                                       IF s8 = 0 THEN part *:= 10 +:= 8 * SIGN part ELSE number +:= part; part := 8 * s8 FI;
                                       IF s9 = 0 THEN part *:= 10 +:= 9 * SIGN part ELSE number +:= part; part := 9 * s9 FI;
                                       number +:= part;
                                       IF  number >= LWB solutions
                                       AND number <= UPB solutions
                                       THEN
                                           solutions[ number ] +:= ";" + sum string;
                                           count    [ number ] +:= 1
                                       FI;
                                       BOOL inserted := FALSE;
                                       FOR l pos FROM LWB largest TO UPB largest WHILE NOT inserted DO
                                           IF number > largest[ l pos ] THEN
                                               # found a new larger number #
                                               FOR m pos FROM UPB largest BY -1 TO l pos + 1 DO
                                                   largest      [ m pos ] := largest      [ m pos - 1 ];
                                                   largest count[ m pos ] := largest count[ m pos - 1 ]
                                               OD;
                                               largest      [ l pos ] := number;
                                               largest count[ l pos ] := 1;
                                               inserted := TRUE
                                           ELIF number = largest[ l pos ] THEN
                                               # have another way of generating this number #
                                               largest count[ l pos ] +:= 1;
                                               inserted := TRUE
                                           FI
                                       OD
                                   OD
                               OD
                           OD
                       OD
                   OD
               OD
           OD
       OD
   OD;
   # show the solutions for 100 #
   print( ( "100 has ", whole( count[ 100 ], 0 ), " solutions:" ) );
   STRING s := solutions[ 100 ];
   FOR s pos FROM LWB s TO UPB s DO
       IF   s[ s pos ] = ";" THEN print( ( newline, "        " ) )
       ELIF s[ s pos ] /= " " THEN print( ( s[ s pos ] ) )
       FI
   OD;
   print( ( newline ) );
   # find the number with the most solutions #
   INT max solutions := 0;
   INT number with max := LWB count - 1;
   FOR n FROM 0 TO max number DO
       IF count[ n ] > max solutions THEN
           max solutions := count[ n ];
           number with max := n
       FI
   OD;
   FOR n FROM LWB largest count TO UPB largest count DO
       IF largest count[ n ] > max solutions THEN
           max solutions := largest count[ n ];
           number with max := largest[ n ]
       FI
   OD;
   print( ( whole( number with max, 0 ), " has the maximum number of solutions: ", whole( max solutions, 0 ), newline ) );
   # find the smallest positive number that has no solutions #
   BOOL have solutions := TRUE;
   FOR n FROM 0 TO max number
   WHILE IF NOT ( have solutions := count[ n ] > 0 )
         THEN print( ( whole( n, 0 ), " is the lowest positive number with no solutions", newline ) )
         FI;
         have solutions
   DO SKIP OD;
   IF have solutions
   THEN print( ( "All positive numbers up to ", whole( max number, 0 ), " have solutions", newline ) )
   FI;
   print( ( "The 10 largest numbers that can be generated are:", newline ) );
   FOR t pos FROM 1 TO 10 DO
       print( ( " ", whole( largest[ t pos ], 0 ) ) )
   OD;
   print( ( newline ) )

END</lang>

Output:
100 has 12 solutions:
        -1+2-3+4+5+6+78+9
        12-3-4+5-6+7+89
        123-4-5-6-7+8-9
        123-45-67+89
        123+4-5+67-89
        123+45-67+8-9
        12+3-4+5+67+8+9
        12+3+4+5-6-7+89
        1+23-4+56+7+8+9
        1+23-4+5+6+78-9
        1+2+3-4+5+6+78+9
        1+2+34-5+67-8+9
9 has the maximum number of solutions: 46
211 is the lowest positive number with no solutions
The 10 largest numbers that can be generated are:
 123456789 23456790 23456788 12345687 12345669 3456801 3456792 3456790 3456788 3456786

AppleScript

Translation of: JavaScript

AppleScript is essentially out of its depth at this scale. The first task (number of distinct paths to 100) is accessible within a few seconds. Subsequent tasks, however, terminate only (if at all) after impractical amounts of time. Note the contrast with the lighter and more optimised JavaScript interpreter, which takes less than half a second to return full results for all the listed tasks. <lang AppleScript>use framework "Foundation" -- for basic NSArray sort

property pSigns : {1, 0, -1} --> ( + | unsigned | - ) property plst100 : {"Sums to 100:", ""} property plstSums : {} property plstSumsSorted : missing value property plstSumGroups : missing value

-- data Sign :: [ 1 | 0 | -1 ] = ( Plus | Unsigned | Minus ) -- asSum :: [Sign] -> Int on asSum(xs)

   script
       on |λ|(a, sign, i)
           if sign ≠ 0 then
               {digits:{}, n:(n of a) + (sign * ((i & digits of a) as string as integer))}
           else
               {digits:{i} & (digits of a), n:n of a}
           end if
       end |λ|
   end script
   
   set rec to foldr(result, {digits:{}, n:0}, xs)
   set ds to digits of rec
   if length of ds > 0 then
       (n of rec) + (ds as string as integer)
   else
       n of rec
   end if

end asSum

-- data Sign :: [ 1 | 0 | -1 ] = ( Plus | Unisigned | Minus ) -- asString :: [Sign] -> String on asString(xs)

   script
       on |λ|(a, sign, i)
           set d to i as string
           if sign ≠ 0 then
               if sign > 0 then
                   a & " +" & d
               else
                   a & " -" & d
               end if
           else
               a & d
           end if
       end |λ|
   end script
   
   foldl(result, "", xs)

end asString

-- sumsTo100 :: () -> String on sumsTo100()

   -- From first permutation without leading '+' (3 ^ 8) to end of universe (3 ^ 9)
   repeat with i from 6561 to 19683
       set xs to nthPermutationWithRepn(pSigns, 9, i)
       if asSum(xs) = 100 then set end of plst100 to asString(xs)
   end repeat
   intercalate(linefeed, plst100)

end sumsTo100


-- mostCommonSum :: () -> String on mostCommonSum()

   -- From first permutation without leading '+' (3 ^ 8) to end of universe (3 ^ 9)
   repeat with i from 6561 to 19683
       set intSum to asSum(nthPermutationWithRepn(pSigns, 9, i))
       if intSum ≥ 0 then set end of plstSums to intSum
   end repeat
   
   set plstSumsSorted to sort(plstSums)
   set plstSumGroups to group(plstSumsSorted)
   
   script groupLength
       on |λ|(a, b)
           set intA to length of a
           set intB to length of b
           if intA < intB then
               -1
           else if intA > intB then
               1
           else
               0
           end if
       end |λ|
   end script
   
   set lstMaxSum to maximumBy(groupLength, plstSumGroups)
   intercalate(linefeed, ¬
       {"Most common sum: " & item 1 of lstMaxSum, ¬
           "Number of instances: " & length of lstMaxSum})

end mostCommonSum


-- TEST ---------------------------------------------------------------------- on run

   return sumsTo100()
   
   -- Also returns a value, but slow:
   -- mostCommonSum()

end run


-- GENERIC FUNCTIONS ---------------------------------------------------------

-- nthPermutationWithRepn :: [a] -> Int -> Int -> [a] on nthPermutationWithRepn(xs, groupSize, iIndex)

   set intBase to length of xs
   set intSetSize to intBase ^ groupSize
   
   if intBase < 1 or iIndex > intSetSize then
       {}
   else
       set baseElems to inBaseElements(xs, iIndex)
       set intZeros to groupSize - (length of baseElems)
       
       if intZeros > 0 then
           replicate(intZeros, item 1 of xs) & baseElems
       else
           baseElems
       end if
   end if

end nthPermutationWithRepn

-- inBaseElements :: [a] -> Int -> [String] on inBaseElements(xs, n)

   set intBase to length of xs
   
   script nextDigit
       on |λ|(residue)
           set {divided, remainder} to quotRem(residue, intBase)
           
           {valid:divided > 0, value:(item (remainder + 1) of xs), new:divided}
       end |λ|
   end script
   
   reverse of unfoldr(nextDigit, n)

end inBaseElements

-- sort :: [a] -> [a] on sort(lst)

   ((current application's NSArray's arrayWithArray:lst)'s ¬
       sortedArrayUsingSelector:"compare:") as list

end sort

-- maximumBy :: (a -> a -> Ordering) -> [a] -> a on maximumBy(f, xs)

   set cmp to mReturn(f)
   script max
       on |λ|(a, b)
           if a is missing value or cmp's |λ|(a, b) < 0 then
               b
           else
               a
           end if
       end |λ|
   end script
   
   foldl(max, missing value, xs)

end maximumBy

-- group :: Eq a => [a] -> a on group(xs)

   script eq
       on |λ|(a, b)
           a = b
       end |λ|
   end script
   
   groupBy(eq, xs)

end group

-- groupBy :: (a -> a -> Bool) -> [a] -> a on groupBy(f, xs)

   set mf to mReturn(f)
   
   script enGroup
       on |λ|(a, x)
           if length of (active of a) > 0 then
               set h to item 1 of active of a
           else
               set h to missing value
           end if
           
           if h is not missing value and mf's |λ|(h, x) then
               {active:(active of a) & x, sofar:sofar of a}
           else
               {active:{x}, sofar:(sofar of a) & {active of a}}
           end if
       end |λ|
   end script
   
   if length of xs > 0 then
       set dct to foldl(enGroup, {active:{item 1 of xs}, sofar:{}}, tail(xs))
       if length of (active of dct) > 0 then
           sofar of dct & {active of dct}
       else
           sofar of dct
       end if
   else
       {}
   end if

end groupBy

-- tail :: [a] -> [a] on tail(xs)

   if length of xs > 1 then
       items 2 thru -1 of xs
   else
       {}
   end if

end tail


-- intercalate :: Text -> [Text] -> Text on intercalate(strText, lstText)

   set {dlm, my text item delimiters} to {my text item delimiters, strText}
   set strJoined to lstText as text
   set my text item delimiters to dlm
   return strJoined

end intercalate

-- quotRem :: Integral a => a -> a -> (a, a) on quotRem(m, n)

   {m div n, m mod n}

end quotRem

-- replicate :: Int -> a -> [a] on replicate(n, a)

   set out to {}
   if n < 1 then return out
   set dbl to {a}
   
   repeat while (n > 1)
       if (n mod 2) > 0 then set out to out & dbl
       set n to (n div 2)
       set dbl to (dbl & dbl)
   end repeat
   return out & dbl

end replicate

-- foldr :: (a -> b -> a) -> a -> [b] -> a on foldr(f, startValue, xs)

   tell mReturn(f)
       set v to startValue
       set lng to length of xs
       repeat with i from lng to 1 by -1
           set v to |λ|(v, item i of xs, i, xs)
       end repeat
       return v
   end tell

end foldr

-- foldl :: (a -> b -> a) -> a -> [b] -> a on foldl(f, startValue, xs)

   tell mReturn(f)
       set v to startValue
       set lng to length of xs
       repeat with i from 1 to lng
           set v to |λ|(v, item i of xs, i, xs)
       end repeat
       return v
   end tell

end foldl

-- unfoldr :: (b -> Maybe (a, b)) -> b -> [a] on unfoldr(f, v)

   set mf to mReturn(f)
   set lst to {}
   set recM to mf's |λ|(v)
   repeat while (valid of recM) is true
       set end of lst to value of recM
       set recM to mf's |λ|(new of recM)
   end repeat
   lst & value of recM

end unfoldr

-- until :: (a -> Bool) -> (a -> a) -> a -> a on |until|(p, f, x)

   set mp to mReturn(p)
   set v to x
   
   tell mReturn(f)
       repeat until mp's |λ|(v)
           set v to |λ|(v)
       end repeat
   end tell
   return v

end |until|

-- map :: (a -> b) -> [a] -> [b] on map(f, xs)

   tell mReturn(f)
       set lng to length of xs
       set lst to {}
       repeat with i from 1 to lng
           set end of lst to |λ|(item i of xs, i, xs)
       end repeat
       return lst
   end tell

end map


-- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Script on mReturn(f)

   if class of f is script then
       f
   else
       script
           property |λ| : f
       end script
   end if

end mReturn</lang>

Output:
Sums to 100:

1 +2 +34 -5 +67 -8 +9
1 +2 +3 -4 +5 +6 +78 +9
1 +23 -4 +5 +6 +78 -9
1 +23 -4 +56 +7 +8 +9
12 +3 +4 +5 -6 -7 +89
12 +3 -4 +5 +67 +8 +9
123 +45 -67 +8 -9
123 +4 -5 +67 -89
123 -45 -67 +89
123 -4 -5 -6 -7 +8 -9
12 -3 -4 +5 -6 +7 +89
 -1 +2 -3 +4 +5 +6 +78 +9

AutoHotkey

<lang AutoHotkey>output:="" for k, v in (sum2num(100))

   output .= k "`n"

MsgBox, 262144, , % output

mx := [] loop 123456789{

   x := sum2num(A_Index)
   mx[x.Count()] := mx[x.Count()] ? mx[x.Count()] ", " A_Index : A_Index

} MsgBox, 262144, , % mx[mx.MaxIndex()] " has " mx.MaxIndex() " solutions"

loop {

   if !sum2num(A_Index).Count(){
       MsgBox, 262144, , % "Lowest positive sum that can't be expressed is " A_Index
       break
   }

} return

sum2num(num){

   output := []
   loop % 6561
   {
       oper := SubStr("00000000" ConvertBase(10, 3, A_Index-1), -7)
       oper := StrReplace(oper, 0, "+")
       oper := StrReplace(oper, 1, "-")
       oper := StrReplace(oper, 2, ".")
       str := ""
       loop 9
           str .= A_Index . SubStr(oper, A_Index, 1)
       str := StrReplace(str, ".")
       loop 2
       {
           val := 0
           for i, v in StrSplit(str, "+")
               for j, m in StrSplit(v, "-")
                   val += A_Index=1 ? m : 0-m
           if (val = num)
               output[str] := true
           str := "-" str
       }
   }
   Sort, output
   return output

}

https://www.autohotkey.com/boards/viewtopic.php?p=21143&sid=02b9c92ea98737f1db6067b80a2a59cd#p21143

ConvertBase(InputBase, OutputBase, nptr){

   static u := A_IsUnicode ? "_wcstoui64" : "_strtoui64"
   static v := A_IsUnicode ? "_i64tow"    : "_i64toa"
   VarSetCapacity(s, 66, 0)
   value := DllCall("msvcrt.dll\" u, "Str", nptr, "UInt", 0, "UInt", InputBase, "CDECL Int64")
   DllCall("msvcrt.dll\" v, "Int64", value, "Str", s, "UInt", OutputBase, "CDECL")
   return s

}</lang>

Output:
---------------------------
-1+2-3+4+5+6+78+9
1+2+3-4+5+6+78+9
1+2+34-5+67-8+9
1+23-4+5+6+78-9
1+23-4+56+7+8+9
12+3+4+5-6-7+89
12+3-4+5+67+8+9
12-3-4+5-6+7+89
123+4-5+67-89
123+45-67+8-9
123-4-5-6-7+8-9
123-45-67+89
---------------------------
9 has 46 solutions
---------------------------
Lowest positive sum that can't be expressed is 211
---------------------------

AWK

Translation of: Fortran IV

Awk is a weird language: there are no integers, no switch-case (in the standard language version), programs are controlled by data flow, the interpreter speed is moderate. The advantage of Awk are associative arrays, used here for counting how many times we get the same sum as the result of calculations. <lang AWK>#

  1. RossetaCode: Sum to 100, AWK.
  2. Find solutions to the "sum to one hundred" puzzle.

function evaluate(code) {

   value  = 0
   number = 0
   power  = 1
   for ( k = 9; k >= 1; k-- )
   {
       number = power*k + number
       op = code % 3
       if ( op == 0 ) {
           value = value + number
           number = 0
           power = 1
       } else if (op == 1 ) {
           value = value - number
           number = 0
           power = 1 
       } else if ( op == 2) {
           power = power * 10
       } else {
       }
       code = int(code / 3);
   }
   return value;    

}

function show(code) {

   s = ""
   a = 19683
   b = 6561
   
   for ( k = 1; k <= 9; k++ )
   {   
       op = int( (code % a) / b )
       if ( op == 0 && k > 1 ) 
           s = s "+"
       else if ( op == 1 )
           s = s "-"
       else {
       }      
       a = b
       b = int(b / 3)
       s = s  k
   }
   printf "%9d = %s\n", evaluate(code), s;

}


BEGIN {

   nexpr = 13122
   print
   print "Show all solutions that sum to 100"
   print
   for ( i = 0; i < nexpr; i++ ) if ( evaluate(i) == 100 ) show(i);   
   print
   print "Show the sum that has the maximum number of solutions"
   print
   for ( i = 0; i < nexpr; i++ ) {
       sum = evaluate(i);
       if ( sum >= 0 )
           stat[sum]++;
   }
   best = (-1);  
   for ( sum in stat ) 
       if ( best < stat[sum] ) { 
           best = stat[sum] 
           bestSum = sum 
       }
   delete stat
   printf "%d has %d solutions\n", bestSum, best
   
   print
   print "Show the lowest positive number that can't be expressed"
   print    
   for ( i = 0; i <= 123456789; i++ ){
       for ( j = 0; j < nexpr; j++ ) 
           if ( i == evaluate(j) ) 
               break; 
       if ( i != evaluate(j) ) 
           break;
   }
   printf "%d\n",i
   
   print
   print "Show the ten highest numbers that can be expressed"
   print
   limit = 123456789 + 1;
   for ( i = 1; i <= 10; i++ ) 
   {
       best = 0;
       for ( j = 0; j < nexpr; j++ )
       {
           test = evaluate(j);
           if ( test < limit && test > best ) best = test;
       }
       for ( j = 0; j < nexpr; j++ ) if ( evaluate(j) == best ) show(j)
       limit = best
   }

}</lang>

Output:
Show all solutions that sum to 100

      100 = 1+2+3-4+5+6+78+9
      100 = 1+2+34-5+67-8+9
      100 = 1+23-4+5+6+78-9
      100 = 1+23-4+56+7+8+9
      100 = 12+3+4+5-6-7+89
      100 = 12+3-4+5+67+8+9
      100 = 12-3-4+5-6+7+89
      100 = 123+4-5+67-89
      100 = 123+45-67+8-9
      100 = 123-4-5-6-7+8-9
      100 = 123-45-67+89
      100 = -1+2-3+4+5+6+78+9

Show the sum that has the maximum number of solutions

9 has 46 solutions

Show the lowest positive number that can't be expressed

211

Show the ten highest numbers that can be expressed

123456789 = 123456789
 23456790 = 1+23456789
 23456788 = -1+23456789
 12345687 = 12345678+9
 12345669 = 12345678-9
  3456801 = 12+3456789
  3456792 = 1+2+3456789
  3456790 = -1+2+3456789
  3456788 = 1-2+3456789
  3456786 = -1-2+3456789

C

Optimized for speed

Works with: GCC version 5.1
Works with: Microsoft Visual Studio version 2015

Warning: this version requires at least four byte integers. <lang C>/*

* RossetaCode: Sum to 100, C99, an algorithm using ternary numbers.
*
* Find solutions to the "sum to one hundred" puzzle.
*/
  1. include <stdio.h>
  2. include <stdlib.h>

/*

* There are only 13122 (i.e. 2*3**8) different possible expressions,
* thus we can encode them as positive integer numbers from 0 to 13121.
*/
  1. define NUMBER_OF_EXPRESSIONS (2 * 3*3*3*3 * 3*3*3*3 )

enum OP { ADD, SUB, JOIN }; typedef int (*cmp)(const void*, const void*);

// Replacing struct Expression and struct CountSum by a tuple like // struct Pair { int first; int last; } is possible but would make the source // code less readable.

struct Expression{

   int sum;
   int code;

}expressions[NUMBER_OF_EXPRESSIONS]; int expressionsLength = 0; int compareExpressionBySum(const struct Expression* a, const struct Expression* b){

   return a->sum - b->sum;

}

struct CountSum{

   int counts; 
   int sum; 

}countSums[NUMBER_OF_EXPRESSIONS]; int countSumsLength = 0; int compareCountSumsByCount(const struct CountSum* a, const struct CountSum* b){

   return a->counts - b->counts;

}

int evaluate(int code){

   int value  = 0, number = 0, power  = 1;
   for ( int k = 9; k >= 1; k-- ){
       number = power*k + number;
       switch( code % 3 ){
           case ADD:  value = value + number; number = 0; power = 1; break;
           case SUB:  value = value - number; number = 0; power = 1; break;
           case JOIN: power = power * 10                ; break;
       }
       code /= 3;
   }
   return value;    

}

void print(int code){

   static char s[19]; char* p = s;
   int a = 19683, b = 6561;        
   for ( int k = 1; k <= 9; k++ ){
       switch((code % a) / b){
           case ADD: if ( k > 1 ) *p++ = '+'; break;
           case SUB:              *p++ = '-'; break;
       }
       a = b;
       b = b / 3;
       *p++ = '0' + k;
   }
   *p = 0;
   printf("%9d = %s\n", evaluate(code), s);

}

void comment(char* string){

   printf("\n\n%s\n\n", string);

}

void init(void){

   for ( int i = 0; i < NUMBER_OF_EXPRESSIONS; i++ ){
       expressions[i].sum = evaluate(i);
       expressions[i].code = i;
   }
   expressionsLength = NUMBER_OF_EXPRESSIONS;
   qsort(expressions,expressionsLength,sizeof(struct Expression),(cmp)compareExpressionBySum);
   int j = 0;
   countSums[0].counts = 1;
   countSums[0].sum = expressions[0].sum;
   for ( int i = 0; i < expressionsLength; i++ ){
       if ( countSums[j].sum != expressions[i].sum ){
           j++;
           countSums[j].counts = 1;
           countSums[j].sum = expressions[i].sum;
       }       
       else
           countSums[j].counts++;
   }
   countSumsLength = j + 1;
   qsort(countSums,countSumsLength,sizeof(struct CountSum),(cmp)compareCountSumsByCount);

}

int main(void){

   init();
   comment("Show all solutions that sum to 100");            
   const int givenSum = 100;
   struct Expression ex = { givenSum, 0 };
   struct Expression* found;
   if ( found = bsearch(&ex,expressions,expressionsLength,
       sizeof(struct Expression),(cmp)compareExpressionBySum) ){
       while ( found != expressions && (found-1)->sum == givenSum )
           found--;
       while ( found != &expressions[expressionsLength] && found->sum == givenSum )
           print(found++->code);
   }
   comment("Show the positve sum that has the maximum number of solutions");
   int maxSumIndex = countSumsLength - 1;
   while( countSums[maxSumIndex].sum < 0 )
       maxSumIndex--;
   printf("%d has %d solutions\n", 
       countSums[maxSumIndex].sum, countSums[maxSumIndex].counts);
   comment("Show the lowest positive number that can't be expressed");
   for ( int value = 0; ; value++ ){
       struct Expression ex = { value, 0 };
       if (!bsearch(&ex,expressions,expressionsLength,
               sizeof(struct Expression),(cmp)compareExpressionBySum)){
           printf("%d\n", value);
           break;
       }
   }
   comment("Show the ten highest numbers that can be expressed");
   for ( int i = expressionsLength-1; i >= expressionsLength-10; i-- )
       print(expressions[i].code);
   
   return 0;

}</lang>

Output:
Show all solutions that sum to 100

      100 = 123+4-5+67-89
      100 = 123-4-5-6-7+8-9
      100 = 123-45-67+89
      100 = 1+2+34-5+67-8+9
      100 = 123+45-67+8-9
      100 = 1+2+3-4+5+6+78+9
      100 = 1+23-4+5+6+78-9
      100 = 12-3-4+5-6+7+89
      100 = 12+3+4+5-6-7+89
      100 = -1+2-3+4+5+6+78+9
      100 = 12+3-4+5+67+8+9
      100 = 1+23-4+56+7+8+9


Show the positve sum that has the maximum number of solutions

9 has 46 solutions


Show the lowest positive number that can't be expressed

211


Show the ten highest numbers that can be expressed

123456789 = 123456789
 23456790 = 1+23456789
 23456788 = -1+23456789
 12345687 = 12345678+9
 12345669 = 12345678-9
  3456801 = 12+3456789
  3456792 = 1+2+3456789
  3456790 = -1+2+3456789
  3456788 = 1-2+3456789
  3456786 = -1-2+3456789

Optimized for memory consumption

Translation of: Fortran 95
Works with: GCC version 5.1

Warning: this program needs at least four byte integers. <lang C>/*

* RossetaCode: Sum to 100, C11, MCU friendly.
*
* Find solutions to the "sum to one hundred" puzzle.
*
* We optimize algorithms for size. Therefore we don't use arrays, but recompute
* all values again and again. It is a little surprise that the time efficiency 
* is quite acceptable.
*/
  1. include <stdio.h>

enum OP { ADD, SUB, JOIN };

int evaluate(int code){

   int value  = 0, number = 0, power  = 1;
   for ( int k = 9; k >= 1; k-- ){
       number = power*k + number;
       switch( code % 3 ){
           case ADD:  value = value + number; number = 0; power = 1; break;
           case SUB:  value = value - number; number = 0; power = 1; break;
           case JOIN: power = power * 10                           ; break;
       }
       code /= 3;
   }
   return value;    

}

void print(int code){

   static char s[19]; char* p = s;
   int a = 19683, b = 6561;        
   for ( int k = 1; k <= 9; k++ ){
       switch((code % a) / b){
           case ADD: if ( k > 1 ) *p++ = '+'; break;
           case SUB:              *p++ = '-'; break;
       }
       a = b;
       b = b / 3;
       *p++ = '0' + k;
   }
   *p = 0;
   printf("%9d = %s\n", evaluate(code), s);

}

int main(void){

   int i,j;
   const int nexpr = 13122;
  1. define LOOP(K) for (K = 0; K < nexpr; K++)
   puts("\nShow all solutions that sum to 100\n");
   LOOP(i) if ( evaluate(i) == 100 ) print(i);
   
   puts("\nShow the sum that has the maximum number of solutions\n");
   int best, nbest = (-1);
   LOOP(i){
       int test = evaluate(i);
       if ( test > 0 ){
           int ntest = 0;
           LOOP(j) if ( evaluate(j) == test ) ntest++;
           if ( ntest > nbest ){ best = test; nbest = ntest; }
       }
   }
   printf("%d has %d solutions\n", best,nbest);
   puts("\nShow the lowest positive number that can't be expressed\n");
   for ( i = 0; i <= 123456789; i++ ){
       LOOP(j) if ( i == evaluate(j) ) break; 
       if ( i != evaluate(j) ) break;
   }
   printf("%d\n",i);

   puts("\nShow the ten highest numbers that can be expressed\n");
   int limit = 123456789 + 1;
   for ( i = 1; i <= 10; i++ ) {
       int best = 0;
       LOOP(j){
           int test = evaluate(j);
           if ( test < limit && test > best ) best = test;
       }
       LOOP(j) if ( evaluate(j) == best ) print(j);
       limit = best;
   }
   
   return 0;

}</lang>

Output:
Show all solutions that sum to 100

      100 = 1+2+3-4+5+6+78+9
      100 = 1+2+34-5+67-8+9
      100 = 1+23-4+5+6+78-9
      100 = 1+23-4+56+7+8+9
      100 = 12+3+4+5-6-7+89
      100 = 12+3-4+5+67+8+9
      100 = 12-3-4+5-6+7+89
      100 = 123+4-5+67-89
      100 = 123+45-67+8-9
      100 = 123-4-5-6-7+8-9
      100 = 123-45-67+89
      100 = -1+2-3+4+5+6+78+9

Show the sum that has the maximum number of solutions

9 has 46 solutions

Show the lowest positive number that can't be expressed

211

Show the ten highest numbers that can be expressed

123456789 = 123456789
 23456790 = 1+23456789
 23456788 = -1+23456789
 12345687 = 12345678+9
 12345669 = 12345678-9
  3456801 = 12+3456789
  3456792 = 1+2+3456789
  3456790 = -1+2+3456789
  3456788 = 1-2+3456789
  3456786 = -1-2+3456789

C#

<lang csharp>using System; using System.Collections.Generic; using System.Linq;

class Program {

   static void Main(string[] args)
   {
       // All unique expressions that have a plus sign in front of the 1; calculated in parallel
       var expressionsPlus = Enumerable.Range(0, (int)Math.Pow(3, 8)).AsParallel().Select(i => new Expression(i, 1));
       // All unique expressions that have a minus sign in front of the 1; calculated in parallel
       var expressionsMinus = Enumerable.Range(0, (int)Math.Pow(3, 8)).AsParallel().Select(i => new Expression(i, -1));
       var expressions = expressionsPlus.Concat(expressionsMinus);
       var results = new Dictionary<int, List<Expression>>();
       foreach (var e in expressions)
       {
           if (results.Keys.Contains(e.Value))
               results[e.Value].Add(e);
           else
               results[e.Value] = new List<Expression>() { e };
       }
       Console.WriteLine("Show all solutions that sum to 100");
       foreach (Expression e in results[100])
           Console.WriteLine("  " + e);
       Console.WriteLine("Show the sum that has the maximum number of solutions (from zero to infinity)");
       var summary = results.Keys.Select(k => new Tuple<int, int>(k, results[k].Count));
       var maxSols = summary.Aggregate((a, b) => a.Item2 > b.Item2 ? a : b);
       Console.WriteLine("  The sum " + maxSols.Item1 + " has " + maxSols.Item2 + " solutions.");
       Console.WriteLine("Show the lowest positive sum that can't be expressed (has no solutions), using the rules for this task");
       var lowestPositive = Enumerable.Range(1, int.MaxValue).First(x => !results.Keys.Contains(x));
       Console.WriteLine("  " + lowestPositive);
       Console.WriteLine("Show the ten highest numbers that can be expressed using the rules for this task (extra credit)");
       var highest = from k in results.Keys
                     orderby k descending
                     select k;
       foreach (var x in highest.Take(10))
           Console.WriteLine("  " + x);
   }

} public enum Operations { Plus, Minus, Join }; public class Expression {

   protected Operations[] Gaps;
   // 123456789 => there are 8 "gaps" between each number
   ///             with 3 possibilities for each gap: plus, minus, or join
   public int Value; // What this expression sums up to
   protected int _one;
   
   public Expression(int serial, int one)
   {
       _one = one;
       Gaps = new Operations[8];
       // This represents "serial" as a base 3 number, each Gap expression being a base-three digit
       int divisor = 2187; // == Math.Pow(3,7)
       int times;
       for (int i = 0; i < 8; i++)
       {
           times = Math.DivRem(serial, divisor, out serial);
           divisor /= 3;
           if (times == 0)
               Gaps[i] = Operations.Join;
           else if (times == 1)
               Gaps[i] = Operations.Minus;
           else
               Gaps[i] = Operations.Plus;
       }
       // go ahead and calculate the value of this expression
       // because this is going to be done in a parallel thread (save time)
       Value = Evaluate();
   }
   public override string ToString()
   {
       string ret = _one.ToString();
       for (int i = 0; i < 8; i++)
       {
           switch (Gaps[i])
           {
               case Operations.Plus:
                   ret += "+";
                   break;
               case Operations.Minus:
                   ret += "-";
                   break;
           }
           ret += (i + 2);
       }
       return ret;
   }
   private int Evaluate()
       /* Calculate what this expression equals */
   {
       var numbers = new int[9];
       int nc = 0;
       var operations = new List<Operations>();
       int a = 1;
       for (int i = 0; i < 8; i++)
       {
           if (Gaps[i] == Operations.Join)
               a = a * 10 + (i + 2);
           else
           {
               if (a > 0)
               {
                   if (nc == 0)
                       a *= _one;
                   numbers[nc++] = a;
                   a = i + 2;
               }
               operations.Add(Gaps[i]);
           }
       }
       if (nc == 0)
           a *= _one;
       numbers[nc++] = a;
       int ni = 0;
       int left = numbers[ni++];
       foreach (var operation in operations)
       {
           int right = numbers[ni++];
           if (operation == Operations.Plus)
               left = left + right;
           else
               left = left - right;
       }
       return left;
   }

}</lang>

Output:
Show all solutions that sum to 100
  123-45-67+89
  123-4-5-6-7+8-9
  123+45-67+8-9
  123+4-5+67-89
  12-3-4+5-6+7+89
  12+3-4+5+67+8+9
  12+3+4+5-6-7+89
  1+23-4+5+6+78-9
  1+23-4+56+7+8+9
  1+2+34-5+67-8+9
  1+2+3-4+5+6+78+9
  -1+2-3+4+5+6+78+9
Show the sum that has the maximum number of solutions (from zero to infinity)
  The sum 9 has 46 solutions.
Show the lowest positive sum that can't be expressed (has no solutions), using the rules for this task
  211
Show the ten highest numbers that can be expressed using the rules for this task (extra credit)
  123456789
  23456790
  23456788
  12345687
  12345669
  3456801
  3456792
  3456790
  3456788
  3456786

C++

Works with: GCC version 5.1
Works with: Microsoft Visual Studio version 2010

For each expression of sum s, there is at least one expression whose sum is -s. If the sum s can be represented by n expressions, the sum -s can also be represented by n expressions. The change of all signs in an expression change the sign of the sum of this expression. For example, -1+23-456+789 has the opposite sign than +1-23+456-789. Therefore only the positive sum with the maximum number of solutions is shown. The program does not check uniqueness of this sum. We can easily check (modifying the program) that: sum 9 has 46 solutions; sum -9 has 46 solutions; any other sum has less than 46 solutions. <lang Cpp>/*

* RossetaCode: Sum to 100, C++, STL, OOP. 
* Works with: MSC 16.0 (MSVS2010); GCC 5.1 (use -std=c++11 or -std=c++14 etc.).
*
* Find solutions to the "sum to one hundred" puzzle.
*/
  1. include <iostream>
  2. include <iomanip>
  3. include <algorithm>
  4. include <string>
  5. include <set>
  6. include <map>

using namespace std;

class Expression{

   private:
       enum { NUMBER_OF_DIGITS = 9 }; // hack for C++98, use const int in C++11
       enum Op { ADD, SUB, JOIN };
       int code[NUMBER_OF_DIGITS];
   public:
       static const int NUMBER_OF_EXPRESSIONS;
       Expression(){
           for ( int i = 0; i < NUMBER_OF_DIGITS; i++ )
               code[i] = ADD;
       }
       Expression& operator++(int){ // post incrementation
           for ( int i = 0; i < NUMBER_OF_DIGITS; i++ )
               if ( ++code[i] > JOIN ) code[i] = ADD; 
               else break;
           return *this;        
       }
       operator int() const{
           int value = 0, number = 0, sign = (+1);
           for ( int digit = 1; digit <= 9; digit++ )
               switch ( code[NUMBER_OF_DIGITS - digit] ){
               case ADD: value += sign*number; number = digit; sign = (+1); break;
               case SUB: value += sign*number; number = digit; sign = (-1); break;
               case JOIN:                      number = 10*number + digit;  break;
           }
           return value + sign*number;
       }
       operator string() const{
           string s;
           for ( int digit = 1; digit <= NUMBER_OF_DIGITS; digit++ ){
               switch( code[NUMBER_OF_DIGITS - digit] ){
                   case ADD: if ( digit > 1 ) s.push_back('+'); break;
                   case SUB:                  s.push_back('-'); break;
               }
               s.push_back('0' + digit);
           }
           return s;
       }

}; const int Expression::NUMBER_OF_EXPRESSIONS = 2 * 3*3*3*3 * 3*3*3*3;

ostream& operator<< (ostream& os, Expression& ex){

   ios::fmtflags oldFlags(os.flags());
   os << setw(9) << right << static_cast<int>(ex)    << " = " 
      << setw(0) << left  << static_cast<string>(ex) << endl;
   os.flags(oldFlags);
   return os;

}

struct Stat{

   map<int,int> countSum;
   map<int, set<int> > sumCount;
   Stat(){
       Expression expression;
       for ( int i = 0; i < Expression::NUMBER_OF_EXPRESSIONS; i++, expression++ )
           countSum[expression]++;
       for ( auto it = countSum.begin(); it != countSum.end(); it++ )
           sumCount[it->second].insert(it->first);
   }

};

void print(int givenSum){

   Expression expression;
   for ( int i = 0; i < Expression::NUMBER_OF_EXPRESSIONS; i++, expression++ )
       if ( expression == givenSum ) 
           cout << expression;

}

void comment(string commentString){

   cout << endl << commentString << endl << endl;

}

int main(){

   Stat stat;
   comment( "Show all solutions that sum to 100" );
   const int givenSum = 100;
   print(givenSum);
   comment( "Show the sum that has the maximum number of solutions" );
   auto maxi = max_element(stat.sumCount.begin(),stat.sumCount.end());
   auto it = maxi->second.begin(); 
   while ( *it < 0 ) it++;
   cout << static_cast<int>(*it) << " has " << maxi->first << " solutions" << endl;
   comment( "Show the lowest positive number that can't be expressed" );
   int value = 0; 
   while(stat.countSum.count(value) != 0) value++;
   cout << value << endl;
   comment( "Show the ten highest numbers that can be expressed" );
   auto rit = stat.countSum.rbegin();
   for ( int i = 0; i < 10; i++, rit++ ) print(rit->first);
   return 0;

}</lang>

Output:
Show all solutions that sum to 100

      100 = 1+2+3-4+5+6+78+9
      100 = 1+2+34-5+67-8+9
      100 = 1+23-4+5+6+78-9
      100 = 1+23-4+56+7+8+9
      100 = 12+3+4+5-6-7+89
      100 = 12+3-4+5+67+8+9
      100 = 12-3-4+5-6+7+89
      100 = 123+4-5+67-89
      100 = 123+45-67+8-9
      100 = 123-4-5-6-7+8-9
      100 = 123-45-67+89
      100 = -1+2-3+4+5+6+78+9

Show the sum that has the maximum number of solutions

9 has 46 solutions

Show the lowest positive number that can't be expressed

211

Show the ten highest numbers that can be expressed

123456789 = 123456789
 23456790 = 1+23456789
 23456788 = -1+23456789
 12345687 = 12345678+9
 12345669 = 12345678-9
  3456801 = 12+3456789
  3456792 = 1+2+3456789
  3456790 = -1+2+3456789
  3456788 = 1-2+3456789
  3456786 = -1-2+3456789

Common Lisp

<lang lisp>(defun f (lst &optional (sum 100) (so-far nil))

"Takes a list of digits as argument"
 (if (null lst)
   (cond ((= sum 0) (format t "~d = ~{~@d~}~%" (apply #'+ so-far) (reverse so-far)) 1)
         (t 0) )
   (let ((total 0)
         (len (length lst)) )
     (dotimes (i len total)
       (let* ((str1 (butlast lst i))
              (num1 (or (numlist-to-string str1) 0))
              (rem (nthcdr (- len i) lst)) )
         (incf total
           (+ (f rem (- sum num1) (cons num1 so-far))
              (f rem (+ sum num1) (cons (- num1) so-far)) )))))))


(defun numlist-to-string (lst)

"Convert a list of digits into an integer"
 (when lst
   (parse-integer (format nil "~{~d~}" lst)) ))

</lang>

Output:
>(f '(1 2 3 4 5 6 7 8 9))
100 = +123+45-67+8-9
100 = +123-45-67+89
100 = +123+4-5+67-89
100 = +123-4-5-6-7+8-9
100 = +12+3+4+5-6-7+89
100 = +12+3-4+5+67+8+9
100 = +12-3-4+5-6+7+89
100 = +1+23-4+56+7+8+9
100 = +1+23-4+5+6+78-9
100 = +1+2+34-5+67-8+9
100 = +1+2+3-4+5+6+78+9
100 = -1+2-3+4+5+6+78+9
12

The other subtasks are not yet implemented.

D

Translation of: Java

<lang D>import std.stdio;

void main() {

   import std.algorithm : each, max, reduce, sort;
   import std.range : take;
   Stat stat = new Stat();
   comment("Show all solutions that sum to 100");
   immutable givenSum = 100;
   print(givenSum);
   comment("Show the sum that has the maximum number of solutions");
   const int maxCount = reduce!max(stat.sumCount.keys);
   int maxSum;
   foreach(key, entry; stat.sumCount[maxCount]) {
       if (key >= 0) {
           maxSum = key;
           break;
       }
   }
   writeln(maxSum, " has ", maxCount, " solutions");
   comment("Show the lowest positive number that can't be expressed");
   int value = 0;
   while (value in stat.countSum) {
       value++;
   }
   writeln(value);
   comment("Show the ten highest numbers that can be expressed");
   const int n = stat.countSum.keys.length;
   auto sums = stat.countSum.keys;
   sums.sort!"a>b"
       .take(10)
       .each!print;

}

void comment(string commentString) {

   writeln();
   writeln(commentString);
   writeln();

}

void print(int givenSum) {

   Expression expression = new Expression();
   for (int i=0; i<Expression.NUMBER_OF_EXPRESSIONS; i++, expression.next()) {
       if (expression.toInt() == givenSum) {
           expression.print();
       }
   }

}

class Expression {

   private enum NUMBER_OF_DIGITS = 9;
   private enum ADD = 0;
   private enum SUB = 1;
   private enum JOIN = 2;
   enum NUMBER_OF_EXPRESSIONS = 2 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3;
   byte[NUMBER_OF_DIGITS] code;
   Expression next() {
       for (int i=0; i<NUMBER_OF_DIGITS; i++) {
           if (++code[i] > JOIN) {
               code[i] = ADD;
           } else {
               break;
           }
       }
       return this;
   }
   int toInt() {
       int value = 0;
       int number = 0;
       int sign = (+1);
       for (int digit=1; digit<=9; digit++) {
           switch (code[NUMBER_OF_DIGITS - digit]) {
               case ADD:
                   value += sign * number;
                   number = digit;
                   sign = (+1);
                   break;
               case SUB:
                   value += sign * number;
                   number = digit;
                   sign = (-1);
                   break;
               case JOIN:
                   number = 10 * number + digit;
                   break;
               default:
                   assert(false);
           }
       }
       return value + sign * number;
   }
   void toString(scope void delegate(const(char)[]) sink) const {
       import std.conv : to;
       import std.format : FormatSpec, formatValue;
       import std.range : put;
       auto fmt = FormatSpec!char("s");
       for (int digit=1; digit<=NUMBER_OF_DIGITS; digit++) {
           switch (code[NUMBER_OF_DIGITS - digit]) {
               case ADD:
                   if (digit > 1) {
                       put(sink, '+');
                   }
                   break;
               case SUB:
                   put(sink, '-');
                   break;
               default:
                   break;
           }
           formatValue(sink, digit, fmt);
       }
   }
   void print() {
       print(stdout);
   }
   void print(File printStream) {
       printStream.writefln("%9d = %s", toInt(), this);
   }

}

class Stat {

   int[int] countSum;
   bool[int][int] sumCount;
   this() {
       Expression expression = new Expression();
       for (int i=0; i<Expression.NUMBER_OF_EXPRESSIONS; i++, expression.next()) {
           int sum = expression.toInt();
           countSum[sum]++;
       }
       foreach (key, entry; countSum) {
           bool[int] set;
           if (entry in sumCount) {
               set = sumCount[entry];
           } else {
               set.clear();
           }
           set[key] = true;
           sumCount[entry] = set;
       }
   }

}</lang>

Output:
Show all solutions that sum to 100

      100 = 1+2+3-4+5+6+78+9
      100 = 1+2+34-5+67-8+9
      100 = 1+23-4+5+6+78-9
      100 = 1+23-4+56+7+8+9
      100 = 12+3+4+5-6-7+89
      100 = 12+3-4+5+67+8+9
      100 = 12-3-4+5-6+7+89
      100 = 123+4-5+67-89
      100 = 123+45-67+8-9
      100 = 123-4-5-6-7+8-9
      100 = 123-45-67+89
      100 = -1+2-3+4+5+6+78+9

Show the sum that has the maximum number of solutions

9 has 46 solutions

Show the lowest positive number that can't be expressed

211

Show the ten highest numbers that can be expressed

123456789 = 123456789
 23456790 = 1+23456789
 23456788 = -1+23456789
 12345687 = 12345678+9
 12345669 = 12345678-9
  3456801 = 12+3456789
  3456792 = 1+2+3456789
  3456790 = -1+2+3456789
  3456788 = 1-2+3456789
  3456786 = -1-2+3456789

Delphi

See Pascal.

Elixir

<lang elixir>defmodule Sum do

 def to(val) do
   generate
   |> Enum.map(&{eval(&1), &1})
   |> Enum.filter(fn {v, _s} -> v==val end)
   |> Enum.each(&IO.inspect &1)
 end
 
 def max_solve do
   generate
   |> Enum.group_by(&eval &1)
   |> Enum.filter_map(fn {k,_} -> k>=0 end, fn {k,v} -> {length(v),k} end)
   |> Enum.max
   |> fn {len,sum} -> IO.puts "sum of #{sum} has the maximum number of solutions : #{len}" end.()
 end
 
 def min_solve do
   solve = generate |> Enum.group_by(&eval &1)
   Stream.iterate(1, &(&1+1))
   |> Enum.find(fn n -> solve[n]==nil end)
   |> fn sum -> IO.puts "lowest positive sum that can't be expressed : #{sum}" end.()
 end
 
 def  highest_sums(n\\10) do
   IO.puts "highest sums :"
   generate
   |> Enum.map(&eval &1)
   |> Enum.uniq
   |> Enum.sort_by(fn sum -> -sum end)
   |> Enum.take(n)
   |> IO.inspect
 end
 
 defp generate do
   x = ["+", "-", ""]
   for a <- ["-", ""], b <- x, c <- x, d <- x, e <- x, f <- x, g <- x, h <- x, i <- x,
       do: "#{a}1#{b}2#{c}3#{d}4#{e}5#{f}6#{g}7#{h}8#{i}9"
 end
 
 defp eval(str), do: Code.eval_string(str) |> elem(0)

end

Sum.to(100) Sum.max_solve Sum.min_solve Sum.highest_sums</lang>

Output:
{100, "-1+2-3+4+5+6+78+9"}
{100, "1+2+3-4+5+6+78+9"}
{100, "1+2+34-5+67-8+9"}
{100, "1+23-4+5+6+78-9"}
{100, "1+23-4+56+7+8+9"}
{100, "12+3+4+5-6-7+89"}
{100, "12+3-4+5+67+8+9"}
{100, "12-3-4+5-6+7+89"}
{100, "123+4-5+67-89"}
{100, "123+45-67+8-9"}
{100, "123-4-5-6-7+8-9"}
{100, "123-45-67+89"}
sum of 9 has the maximum number of solutions : 46
lowest positive sum that can't be expressed : 211
highest sums :
[123456789, 23456790, 23456788, 12345687, 12345669, 3456801, 3456792, 3456790,
 3456788, 3456786]


F#

<lang fsharp> (* Generate the data set Nigel Galloway February 22nd., 2017

  • )

type N = {n:string; g:int} let N = seq {

 let rec fn n i g e l = seq {
   match i with
   |9 -> yield {n=l + "-9"; g=g+e-9}
         yield {n=l + "+9"; g=g+e+9}
         yield {n=l +  "9"; g=g+e*10+9*n}
   |_ -> yield! fn -1 (i+1) (g+e) -i (l + string -i)
         yield! fn  1 (i+1) (g+e)  i (l + "+" + string i)
         yield! fn  n (i+1) g (e*10+i*n) (l + string i)
 }
 yield! fn  1 2 0  1  "1"
 yield! fn -1 2 0 -1 "-1"

} </lang>

Output:

<lang fsharp> N |> Seq.filter(fun n->n.g=100) |> Seq.iter(fun n->printfn "%s" n.n) </lang>

1+2+3-4+5+6+78+9
1+2+34-5+67-8+9
1+23-4+5+6+78-9
1+23-4+56+7+8+9
12-3-4+5-6+7+89
12+3-4+5+67+8+9
12+3+4+5-6-7+89
123-4-5-6-7+8-9
123-45-67+89
123+4-5+67-89
123+45-67+8-9
-1+2-3+4+5+6+78+9

<lang fsharp> let n,g = N |> Seq.filter(fun n->n.g>=0) |> Seq.countBy(fun n->n.g) |> Seq.maxBy(snd) printfn "%d has %d solutions" n g </lang>

9 has 46 solutions

<lang fsharp> match N |> Seq.filter(fun n->n.g>=0) |> Seq.distinctBy(fun n->n.g) |> Seq.sortBy(fun n->n.g) |> Seq.pairwise |> Seq.tryFind(fun n->(snd n).g-(fst n).g > 1) with

 |Some(n) -> printfn "least non-value is %d" ((fst n).g+1)
 |None    -> printfn "No non-values found"

</lang>

least non-value is 211

<lang fsharp> N |> Seq.filter(fun n->n.g>=0) |> Seq.distinctBy(fun n->n.g) |> Seq.sortBy(fun n->(-n.g)) |> Seq.take 10 |> Seq.iter(fun n->printfn "%d" n.g ) </lang>

123456789
23456790
23456788
12345687
12345669
3456801
3456792
3456790
3456788
3456786

Forth

Works with: Gforth version 0.7.3

This solution uses EVALUATE on a string buffer to compute the sum. Given the copious string manipulations, EVALUATE, and the large byte-array used to keep sum counts, this implementation is optimized neither for speed nor for memory. On my machine it runs in about 3.8 seconds, compared to the speed-optimized C solution which runs in about 0.005 seconds. <lang Forth>CREATE *OPS CHAR + C, CHAR - C, CHAR # C, CREATE 0OPS CHAR - C, CHAR # C, CREATE BUFF 43 C, 43 CHARS ALLOT CREATE PTR CELL ALLOT CREATE LIMITS 2 C, 3 C, 3 C, 3 C, 3 C, 3 C, 3 C, 3 C, 3 C, CREATE INDX 0 C, 0 C, 0 C, 0 C, 0 C, 0 C, 0 C, 0 C, 0 C, CREATE OPS 0OPS , *OPS , *OPS , *OPS , *OPS , *OPS , *OPS , *OPS , *OPS ,

B0 BUFF 1+ dup PTR ! 43 blank ;
B, ( c --) PTR @ C! 1 PTR +! ;

CREATE STATS 123456790 ALLOT STATS 123456790 ERASE

inc ( c-addr c-lim u -- t|f)
  1- tuck + >r swap dup rot + ( addr a-addr) ( R: l-addr)
  BEGIN dup C@ 1+ dup r@ C@ = 
    IF drop 2dup = 
      IF 2drop FALSE rdrop EXIT   \ no inc, contents invalid
      ELSE 0 over C! 1-  r> 1- >r  \ reset and carry
      THEN
    ELSE swap C! drop TRUE rdrop EXIT 
    THEN 
  AGAIN ;
INDX+ INDX LIMITS 9 inc 0= ;
SYNTH B0 [CHAR] 0 B, 9 0 DO
    INDX I + C@  OPS I CELLS + @ + C@
    dup  [CHAR] # <> IF BL B, B, BL B, ELSE drop THEN
    I [CHAR] 1 + B,
  LOOP  BUFF COUNT ;
.MOST cr ." Sum that has the maximum number of solutions" cr 4 spaces
  STATS 0  STATS 1+ 123456789 bounds DO
    dup I c@ <  IF drop drop I I c@ THEN
  LOOP  swap STATS - . ." has " . ." solutions" ;
.CANT cr ." Lowest positive sum that can't be expressed" cr 4 spaces
  STATS 1+ ( 0 not positive)  BEGIN dup c@ WHILE 1+ REPEAT  STATS - . ;
.BEST cr ." Ten highest numbers that can be expressed" cr 4 spaces
  0 >r  [ STATS 123456789 + ]L
  BEGIN  r@ 10 <  over STATS >= and
  WHILE  dup c@ IF dup STATS - .  r> 1+ >r THEN  1-
  REPEAT  r> drop ;
. 0 <# #S #> TYPE ;
.INFX cr 4 spaces 9 0 DO
    INDX I + C@  OPS I cells + @ + C@
    dup  [char] # <> IF emit ELSE drop THEN  I 1+ .
  LOOP ;
REPORT ( n) dup 100 = IF .INFX THEN
  dup 0> IF STATS + dup  c@ 1+  swap c! ELSE drop THEN ;
>NUM 0. bl word count >number 2drop d>s ;
# 10 * + ; \ numeric concatenation
+ >NUM + ; \ infix +
- >NUM - ; \ infix -
.SOLUTIONS cr ." Solutions that sum to 100:"
  BEGIN SYNTH EVALUATE REPORT INDX+ UNTIL ;
SUM100 .SOLUTIONS .MOST .CANT .BEST cr ;</lang>
Output:

Note: must start Gforth with a larger-than-default dictionary size:

gforth -m 124M sum100.fs -e SUM100
Solutions that sum to 100:
    -1+2-3+4+5+6+78+9
    1+2+3-4+5+6+78+9
    1+2+34-5+67-8+9
    1+23-4+5+6+78-9
    1+23-4+56+7+8+9
    12+3+4+5-6-7+89
    12+3-4+5+67+8+9
    12-3-4+5-6+7+89
    123+4-5+67-89
    123+45-67+8-9
    123-4-5-6-7+8-9
    123-45-67+89
Sum that has the maximum number of solutions
    9 has 46 solutions
Lowest positive sum that can't be expressed
    211 
Ten highest numbers that can be expressed
    123456789 23456790 23456788 12345687 12345669 3456801 3456792 3456790 3456788 3456786

Fortran

Fortran IV

Translation of: Fortran 95
Works with: gfortran version 5.1

The program below is written in Fortran IV. Nevertheless, Fortran IV had a variety of dialects. It did not work the same on every type of computer. The source code below is compiled without problems using today's compilers. It have not been checked on any old mainframe. Sorry, I have no access to CDC6000. The algorithm used is not very fast, but uses little memory. In practice, this program took about 15 seconds to complete the task on PC (in 2017). For comparison: the program written in C ++ (using maps and STL collections) took about 1 second on the same machine.

C ROSSETACODE: SUM TO 100, FORTRAN IV
C FIND SOLUTIONS TO THE "SUM TO ONE HUNDRED" PUZZLE
C =================================================

      PROGRAM SUMTO100
      DATA NEXPRM1/13121/
      WRITE(6,110)
 110  FORMAT(1X/1X,34HSHOW ALL SOLUTIONS THAT SUM TO 100/)
      DO 10 I = 0,NEXPRM1
  10  IF ( IEVAL(I) .EQ. 100 ) CALL PREXPR(I)

      WRITE(6,120)
 120  FORMAT(1X/1X,
     153HSHOW THE SUM THAT HAS THE MAXIMUM NUMBER OF SOLUTIONS/)
      NBEST = -1
      DO 30 I = 0, NEXPRM1
      ITEST = IEVAL(I)
      IF ( ITEST .LT. 0 ) GOTO 30
      NTEST = 0
      DO 20 J = 0, NEXPRM1
  20  IF ( IEVAL(J) .EQ. ITEST ) NTEST = NTEST + 1
      IF ( NTEST .LE. NBEST ) GOTO 30
      IBEST = ITEST
      NBEST = NTEST
  30  CONTINUE
      WRITE(6,121) IBEST, NBEST
 121  FORMAT(1X,I8,5H HAS ,I8,10H SOLUTIONS/)

      WRITE(6,130)
 130  FORMAT(1X/1X,
     155HSHOW THE LOWEST POSITIVE NUMBER THAT CAN'T BE EXPRESSED/)     
      DO 50 I = 0,123456789
      DO 40 J = 0,NEXPRM1
  40  IF ( I .EQ. IEVAL(J) ) GOTO 50
      GOTO 60
  50  CONTINUE
  60  WRITE(6,131) I
 131  FORMAT(1X,I8)

      WRITE(6,140)
 140  FORMAT(1X/1X,
     150HSHOW THE TEN HIGHEST NUMBERS THAT CAN BE EXPRESSED/)
      ILIMIT = 123456789
      DO 90 I = 1,10
      IBEST = 0
      DO 70 J = 0, NEXPRM1
      ITEST = IEVAL(J)
  70  IF( (ITEST .LE. ILIMIT) .AND. (ITEST .GT. IBEST)) IBEST = ITEST
      DO 80 J = 0, NEXPRM1
  80  IF ( IEVAL(J) .EQ. IBEST ) CALL PREXPR(J)
  90  ILIMIT = IBEST - 1
      END

C     EVALUATE THE VALUE OF THE GIVEN ENCODED EXPRESSION
C     --------------------------------------------------
      FUNCTION IEVAL(ICODE)
      IC = ICODE
      IEVAL = 0
      N = 0
      IP = 1
      DO 50 K = 9,1,-1
      N = IP*K + N
      GOTO (10,20,40,30) MOD(IC,3)+1
  10  IEVAL = IEVAL + N
      GOTO 30
  20  IEVAL = IEVAL - N
  30  N = 0
      IP = 1
      GOTO 50
  40  IP = IP * 10
  50  IC = IC / 3
      END

C     PRINT THE ENCODED EXPRESSION IN THE READABLE FORMAT
C     ---------------------------------------------------
      SUBROUTINE PREXPR(ICODE)
      DIMENSION IH(9),IHPMJ(4)
      DATA IHPMJ/1H+,1H-,1H ,1H?/
      IA = 19683
      IB =  6561
      DO 10 K = 1,9
      IH(K) = IHPMJ(MOD(ICODE,IA) / IB+1)
      IA = IB
  10  IB = IB / 3
      IVALUE = IEVAL(ICODE)
      WRITE(6,110) IVALUE, IH
 110  FORMAT(I9,3H = 1A1,1H1,1A1,1H2,1A1,1H3,1A1,1H4,1A1,1H5,1A1,1H6,1A1
     1,1H7,1A1,1H8,1A1,1H9)
      END
Output:
SHOW ALL SOLUTIONS THAT SUM TO 100

      100 = +1+2+3-4+5+6+7 8+9
      100 = +1+2+3 4-5+6 7-8+9
      100 = +1+2 3-4+5+6+7 8-9
      100 = +1+2 3-4+5 6+7+8+9
      100 = +1 2+3+4+5-6-7+8 9
      100 = +1 2+3-4+5+6 7+8+9
      100 = +1 2-3-4+5-6+7+8 9
      100 = +1 2 3+4-5+6 7-8 9
      100 = +1 2 3+4 5-6 7+8-9
      100 = +1 2 3-4-5-6-7+8-9
      100 = +1 2 3-4 5-6 7+8 9
      100 = -1+2-3+4+5+6+7 8+9

 SHOW THE SUM THAT HAS THE MAXIMUM NUMBER OF SOLUTIONS

        9 HAS       46 SOLUTIONS


 SHOW THE LOWEST POSITIVE NUMBER THAT CAN'T BE EXPRESSED

      211

 SHOW THE TEN HIGHEST NUMBERS THAT CAN BE EXPRESSED

123456789 = +1 2 3 4 5 6 7 8 9
 23456790 = +1+2 3 4 5 6 7 8 9
 23456788 = -1+2 3 4 5 6 7 8 9
 12345687 = +1 2 3 4 5 6 7 8+9
 12345669 = +1 2 3 4 5 6 7 8-9
  3456801 = +1 2+3 4 5 6 7 8 9
  3456792 = +1+2+3 4 5 6 7 8 9
  3456790 = -1+2+3 4 5 6 7 8 9
  3456788 = +1-2+3 4 5 6 7 8 9
  3456786 = -1-2+3 4 5 6 7 8 9

Fortran 95

Works with: gfortran version 5.1

<lang Fortran>! RossetaCode: Sum to 100, Fortran 95, an algorithm using ternary numbers. ! ! Find solutions to the 'sum to one hundred' puzzle. ! ! We optimize algorithms for size. Therefore we don't use arrays, but recompute ! all values again and again. It is a little surprise that the time efficiency ! is quite acceptable. Actually the code is more compact than the implementation ! in C++ (STL maps and sets). We purposely break DRY and use magic values. ! Nevertheless, it is Fortran 95, free form lines, do-endo etc.

program sumto100

   parameter (nexpr = 13122)
   print *
   print *, 'Show all solutions that sum to 100'
   print *
   do i = 0, nexpr-1
       if ( ievaluate(i) .eq. 100 ) then
           call printexpr(i)
       endif    
   enddo
   
   print *
   print *, 'Show the sum that has the maximum number of solutions'
   print *    
   ibest = -1
   nbest = -1
   do i = 0, nexpr-1
       itest = ievaluate(i)
       if ( itest .ge. 0 ) then
           ntest = 0
           do j = 0, nexpr-1
               if ( ievaluate(j) .eq. itest ) then
                   ntest = ntest + 1
               endif
           enddo
           if ( (ntest .gt. nbest) ) then
               ibest = itest
               nbest = ntest
           endif
       endif
   enddo
   print *, ibest, ' has ', nbest, ' solutions'
   print *

! do i = 0, nexpr-1 ! if ( ievaluate(i) .eq. ibest ) then ! call printexpr(i) ! endif ! enddo

   print *
   print *, 'Show the lowest positive number that cant be expressed'
   print *
   loop: do i = 0,123456789
       do j = 0,nexpr-1
           if ( i .eq. ievaluate(j) ) then
               cycle loop
           endif
       enddo
       exit
   enddo loop
   print *, i

   print *
   print *, 'Show the ten highest numbers that can be expressed'
   print *
   ilimit = 123456789
   do i = 1,10
       ibest = 0
       do j = 0, nexpr-1
           itest = ievaluate(j)
           if ( (itest .le. ilimit) .and. (itest .gt. ibest ) ) then
               ibest = itest
           endif
       enddo
       do j = 0, nexpr-1    
           if ( ievaluate(j) .eq. ibest ) then
               call printexpr(j)
           endif    
       enddo
       ilimit = ibest - 1;
   enddo
      

end

function ievaluate(icode)

   ic = icode
   ievaluate = 0
   n = 0
   ip = 1
   do k = 9,1,-1
       n = ip*k + n
       select case(mod(ic,3))
           case ( 0 )
               ievaluate = ievaluate + n
               n = 0
               ip = 1
           case ( 1 )
               ievaluate = ievaluate - n
               n = 0
               ip = 1
           case ( 2 )
               ip = ip * 10
       end select
       ic = ic / 3                
   enddo

end

subroutine printexpr(icode)

   character(len=32) s
   ia = 19683
   ib =  6561
   s = ""
   do k = 1,9
       ic = mod(icode,ia) / ib
       ia = ib
       ib = ib / 3
       select case(mod(ic,3))
           case ( 0 )
               if ( k .gt. 1 ) then
                   s = trim(s) // '+'
               endif
           case ( 1 )
               s = trim(s) // '-'
       end select
       s = trim(s) // char(ichar('0')+k)
   end do
   ivalue = ievaluate(icode)
   print *, ivalue, ' = ', s

end</lang>

Output:
 Show all solutions that sum to 100

         100  = 1+2+3-4+5+6+78+9
         100  = 1+2+34-5+67-8+9
         100  = 1+23-4+5+6+78-9
         100  = 1+23-4+56+7+8+9
         100  = 12+3+4+5-6-7+89
         100  = 12+3-4+5+67+8+9
         100  = 12-3-4+5-6+7+89
         100  = 123+4-5+67-89
         100  = 123+45-67+8-9
         100  = 123-4-5-6-7+8-9
         100  = 123-45-67+89
         100  = -1+2-3+4+5+6+78+9

 Show the sum that has the maximum number of solutions

           9  has           46  solutions

 Show the lowest positive number that can't be expressed

         211

 Show the ten highest numbers that can be expressed

   123456789  = 123456789
    23456790  = 1+23456789
    23456788  = -1+23456789
    12345687  = 12345678+9
    12345669  = 12345678-9
     3456801  = 12+3456789
     3456792  = 1+2+3456789
     3456790  = -1+2+3456789
     3456788  = 1-2+3456789
     3456786  = -1-2+3456789

Batch processing

By the simple expedient of storing all evaluations in an array (which is not so large) and then sorting the array, the required results appear in a blink. The source is essentially F77 except for the usage of an array assignment of OP = -1, writing out the highest ten results via an array expression instead of a DO-loop, array OPNAME extending from -1 to +1, a CYCLE statement rather than a GO TO, and the use of the I0 format code. Subroutine DEBLANK is straightforward, and omitted. It was only to remove spaces from the text of the expression. Reading the expression from right to left is about as picky as left-to-right. <lang Fortran> INTEGER NDIGITS,TARGET !Document the shape.

     PARAMETER (NDIGITS = 9, TARGET = 100)
     INTEGER*1 OP(NDIGITS)	!A set of operation codes, associated with each digit.
     INTEGER N,D,P		!Number, digit, power.
     CHARACTER*1 OPNAME(-1:+1)	!Encodement of the operations.
     PARAMETER (OPNAME = (/"-"," ","+"/))	!These will look nice.
     CHARACTER*20 TEXT		!A scratchpad for the expression. Single digits only.
     INTEGER I,L,H,ME		!Assistants.
     LOGICAL CURSE		!Needed for a Comb Sort.
     INTEGER LOOP,NHIT		!Some counters.
     INTEGER ENUFF		!Collect the results.
     PARAMETER (ENUFF = 20000)	!Surely big enough...
     INTEGER VALUE(ENUFF)	!A table.
     INTEGER V,VV,PV,VE	!For scanning the table.
     INTEGER MSG		!I/O unit number.
     MSG = 6		!Standard output.
     WRITE(MSG,1) NDIGITS,TARGET	!Announce.
   1 FORMAT ("To find expressions of ",I0," digits in order, "
    1 "interspersed with + or -, adding to ",I0,/)
     NHIT = 0		!No matches to TARGET.
     LOOP = 0		!Because none have been made.
     OP = -1		!Start the expression sequence.

Calculate the value of the expression given by OP(i) i pairs.

 100 LOOP = LOOP + 1		!Here we go again.
     N = 0			!Clear the number.
     D = 0			!No previous digits have been seen.
     P = 1			!The power for the first digit.
     DO I = NDIGITS,1,-1	!Going backwards sees the digits before the sign.
       D = D + I*P			!Assimilate the digit string backwards.
       IF (OP(I).EQ.0) THEN		!A no-operation?
         P = P*10				!Yes. Prepare the power for the next digit leftwards.
        ELSE     			!Otherwise, add or subtract the digit string's value.
         N = N + SIGN(D,OP(I))			!By transferring the sign to D..
         D = 0					!Clear, ready for the next digit string.
         P = 1					!The starting power, again.
       END IF				!So much for that step.
     END DO			!On to the next.
     IF (OP(1).EQ.0) N = N + D	!Provide an implicit add for an unsigned start.
     VALUE(LOOP) = N		!Save the value for later...
     IF (N.EQ.TARGET) THEN	!Well then?
       NHIT = NHIT + 1			!Yay!
       WRITE (TEXT,101) (OPNAME(OP(I)),I, I = 1,NDIGITS)	!Translate the expression.
 101   FORMAT (10(A1,I1))		!Single-character operation codes, single-digit number parts.
       CALL DEBLANK(TEXT,L)		!Squeeze out the no-operations, so numbers are together.
       WRITE (MSG,102) N,TEXT(1:L)	!Result!
 102   FORMAT (I5,": ",A)		!This should do.
     END IF			!So much for that.

Concoct the next expression, working as if with a bignumber in base three, though offset.

 200 P = NDIGITS		!Start with the low-order digit.
 201 OP(P) = OP(P) + 1		!Add one to it.
     IF (OP(P).GT.1) THEN	!Is a carry needed?
       OP(P) = -1			!Yes. Set the digit back to the start.
       P = P - 1			!Go up a power.
       IF (P.GT.0) GO TO 201		!And augment the next digit up.
     END IF			!Once the carry fizzles, the increment is complete.
     IF (OP(1).LE.0) GO TO 100	!A leading + is equivalent to a leading no-op.

Contemplate the collection.

 300 WRITE (6,301) LOOP,NHIT
 301 FORMAT (/,I0," evaluations, ",I0," hit the target.")

Crank up a comb sort.

     H = LOOP - 1		!Last - First, and not +1.
     IF (H.LE.0) STOP "Huh?"	!Ha ha.
 310 H = MAX(1,H*10/13)	!The special feature.
     IF (H.EQ.9 .OR. H.EQ.10) H = 11	!A twiddle.
     CURSE = .FALSE.		!So far, so good.
     DO I = LOOP - H,1,-1	!If H = 1, this is a BubbleSort.
       IF (VALUE(I) .GT. VALUE(I + H)) THEN	!One compare.
         N = VALUE(I);VALUE(I)=VALUE(I+H);VALUE(I+H)=N	!One swap.
         CURSE = .TRUE.			!One curse.
       END IF				!One test.
     END DO			!One loop.
     IF (CURSE .OR. H.GT.1) GO TO 310	!Work remains?

Chase after some results.

     H = 0		!Hunt the first omitted positive number.
     VE = 0		!No equal values have been seen.
     ME = 0		!So, their maximum run length is short.
     PV = VALUE(1)	!Grab the first value,
     DO I = 2,LOOP	!And scan the successors.
       V = VALUE(I)		!The value of the moment.
       IF (V.LE.0) CYCLE	!Only positive numbers are of interest.
       IF (V.GT.PV + 1) THEN	!Is there a gap?
         IF (H.LE.0) H = PV + 1	!Recall the first such.
       END IF			!Perhaps a list of the first dew?
       IF (V.EQ.PV) THEN	!Is it the same as the one before?
         VE = VE + 1			!Yes. Count up the length of the run.
         IF (VE.GT.ME) THEN		!Is this a longer run?
           ME = VE				!Yes. Remember its length.
           VV = V 				!And its value.
         END IF			!So much for runs of equal values.
        ELSE			!But if it is not the same,
         VE = 0			!A fresh count awaits.
       END IF			!So much for comparing one value to its predecessor.
       PV = V			!Be ready for the next time around.
     END DO		!On to the next.

Cast forth the results.

     IF (ME.GT.1) WRITE (MSG,320) VV,ME + 1	!Counting started with the second occurrence.
 320 FORMAT (I0," has the maximum number of attainments:",I0)
     IF (H.GT.0) WRITE (MSG,321) H		!Surely there will be one.
 321 FORMAT ("The lowest positive sum that can't be expressed is ",I0)
     WRITE (MSG,322) VALUE(LOOP - 9:LOOP)	!Surely LOOP > 9.
 322 FORMAT ("The ten highest sums: ",10(I0:","))
     END	!That was fun!</lang>

Results:

To find expressions of 9 digits in order, interspersed with + or -, adding to 100

    1: -1+2-3+4+5+6+78+9
    2: 12-3-4+5-6+7+89
    3: 123-4-5-6-7+8-9
    4: 123-45-67+89
    5: 123+4-5+67-89
    6: 123+45-67+8-9
    7: 12+3-4+5+67+8+9
    8: 12+3+4+5-6-7+89
    9: 1+23-4+56+7+8+9
   10: 1+23-4+5+6+78-9
   11: 1+2+3-4+5+6+78+9
   12: 1+2+34-5+67-8+9

13122 evaluations, 12 hit the target.
9 has the maximum number of attainments:46
The lowest positive sum that can't be expressed is 211
The ten highest sums: 3456786,3456788,3456790,3456792,3456801,12345669,12345687,23456788,23456790,123456789

Frink

<lang frink> digits = array[1 to 9] opList = makeArray[[8], ["", " + ", " - "]] opList.pushFirst"", "-" countDict = new dict

multifor ops = opList {

  str = ""
  for d = rangeOf[digits]
     str = str + ops@d + digits@d
  e = eval[str]
  countDict.increment[e, 1]
  if e == 100
     println[str]

} println[]

// Find the sum that has the maximum number of solutions freq = toArray[countDict] sort[freq, {|a,b| -(a@1 <=> b@1)}] max = freq@0@1 print["Maximum count is $max at: "] n = 0 while freq@n@1 == max {

  print[freq@n@0 + " "]
  n = n + 1

} println[]

// Find the smallest non-representable positive sum sort[freq, {|a,b| a@0 <=> b@0}] last = 0 for [num, count] = freq {

  if num > 0 and last+1 != num
  {
     println["Lowest non-representable positive sum is " + (last+1)]
     break
  }
  last = num

}

// Find highest 10 representable numbers println["\nHighest representable numbers:"] size = length[freq] for i = size-10 to size-1

  println[freq@i@0]

</lang>

Output:
123 + 45 - 67 + 8 - 9
123 + 4 - 5 + 67 - 89
123 - 45 - 67 + 89
123 - 4 - 5 - 6 - 7 + 8 - 9
12 + 3 + 4 + 5 - 6 - 7 + 89
12 + 3 - 4 + 5 + 67 + 8 + 9
12 - 3 - 4 + 5 - 6 + 7 + 89
1 + 23 - 4 + 56 + 7 + 8 + 9
1 + 23 - 4 + 5 + 6 + 78 - 9
1 + 2 + 34 - 5 + 67 - 8 + 9
1 + 2 + 3 - 4 + 5 + 6 + 78 + 9
-1 + 2 - 3 + 4 + 5 + 6 + 78 + 9

Maximum count is 46 at: 9 -9 
Lowest non-representable positive sum is 211

Highest representable numbers:
3456786
3456788
3456790
3456792
3456801
12345669
12345687
23456788
23456790
123456789

Go

Translation of: C

<lang Go>package main

import ( "fmt" "sort" )

const pow3_8 = 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 // 3^8 const pow3_9 = 3 * pow3_8 // 3^9 const maxExprs = 2 * pow3_8 // not 3^9 since first op can't be Join

type op uint8

const ( Add op = iota // insert a "+" Sub // or a "-" Join // or just join together )

// code is an encoding of [9]op, the nine "operations" // we do on each each digit. The op for 1 is in // the highest bits, the op for 9 in the lowest. type code uint16

// evaluate 123456789 with + - or "" prepended to each as indicated by `c`. func (c code) evaluate() (sum int) { num, pow := 0, 1 for k := 9; k >= 1; k-- { num += pow * k switch op(c % 3) { case Add: sum += num num, pow = 0, 1 case Sub: sum -= num num, pow = 0, 1 case Join: pow *= 10 } c /= 3 } return sum }

func (c code) String() string { buf := make([]byte, 0, 18) a, b := code(pow3_9), code(pow3_8) for k := 1; k <= 9; k++ { switch op((c % a) / b) { case Add: if k > 1 { buf = append(buf, '+') } case Sub: buf = append(buf, '-') } buf = append(buf, '0'+byte(k)) a, b = b, b/3 } return string(buf) }

type sumCode struct { sum int code code } type sumCodes []sumCode

type sumCount struct { sum int count int } type sumCounts []sumCount

// For sorting (could also use sort.Slice with just Less). func (p sumCodes) Len() int { return len(p) } func (p sumCodes) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p sumCodes) Less(i, j int) bool { return p[i].sum < p[j].sum } func (p sumCounts) Len() int { return len(p) } func (p sumCounts) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p sumCounts) Less(i, j int) bool { return p[i].count > p[j].count }

// For printing. func (sc sumCode) String() string { return fmt.Sprintf("% 10d = %v", sc.sum, sc.code) } func (sc sumCount) String() string { return fmt.Sprintf("% 10d has %d solutions", sc.sum, sc.count) }

func main() { // Evaluate all expressions. expressions := make(sumCodes, 0, maxExprs/2) counts := make(sumCounts, 0, 1715) for c := code(0); c < maxExprs; c++ { // All negative sums are exactly like their positive // counterpart with all +/- switched, we don't need to // keep track of them. sum := c.evaluate() if sum >= 0 { expressions = append(expressions, sumCode{sum, c}) } } sort.Sort(expressions)

// Count all unique sums sc := sumCount{expressions[0].sum, 1} for _, e := range expressions[1:] { if e.sum == sc.sum { sc.count++ } else { counts = append(counts, sc) sc = sumCount{e.sum, 1} } } counts = append(counts, sc) sort.Sort(counts)

// Extract required results

fmt.Println("All solutions that sum to 100:") i := sort.Search(len(expressions), func(i int) bool { return expressions[i].sum >= 100 }) for _, e := range expressions[i:] { if e.sum != 100 { break } fmt.Println(e) }

fmt.Println("\nThe positive sum with maximum number of solutions:") fmt.Println(counts[0])

fmt.Println("\nThe lowest positive number that can't be expressed:") s := 1 for _, e := range expressions { if e.sum == s { s++ } else if e.sum > s { fmt.Printf("% 10d\n", s) break } }

fmt.Println("\nThe ten highest numbers that can be expressed:") for _, e := range expressions[len(expressions)-10:] { fmt.Println(e) } }</lang>

Output:
All solutions that sum to 100:
       100 = -1+2-3+4+5+6+78+9
       100 = 1+23-4+5+6+78-9
       100 = 123+45-67+8-9
       100 = 123+4-5+67-89
       100 = 1+2+3-4+5+6+78+9
       100 = 1+2+34-5+67-8+9
       100 = 12+3-4+5+67+8+9
       100 = 1+23-4+56+7+8+9
       100 = 123-45-67+89
       100 = 12-3-4+5-6+7+89
       100 = 12+3+4+5-6-7+89
       100 = 123-4-5-6-7+8-9

The positive sum with maximum number of solutions:
         9 has 46 solutions

The lowest positive number that can't be expressed:
       211

The ten highest numbers that can be expressed:
   3456786 = -1-2+3456789
   3456788 = 1-2+3456789
   3456790 = -1+2+3456789
   3456792 = 1+2+3456789
   3456801 = 12+3456789
  12345669 = 12345678-9
  12345687 = 12345678+9
  23456788 = -1+23456789
  23456790 = 1+23456789
 123456789 = 123456789

Haskell

<lang Haskell>import Control.Monad (replicateM) import Data.Char (intToDigit) import Data.List

 ( find,
   group,
   intercalate,
   nub,
   sort,
   sortBy,
 )

import Data.Monoid ((<>)) import Data.Ord (comparing)

data Sign

 = Unsigned
 | Plus
 | Minus
 deriving (Eq, Show)

SUM TO 100 ----------------------

universe :: (Int, Sign) universe =

 zip [1 .. 9]
   <$> filter
     ((/= Plus) . head)
     (replicateM 9 [Unsigned, Plus, Minus])

allNonNegativeSums :: [Int] allNonNegativeSums =

 sort $
   filter
     (>= 0)
     (asSum <$> universe)

uniqueNonNegativeSums :: [Int] uniqueNonNegativeSums = nub allNonNegativeSums

asSum :: [(Int, Sign)] -> Int asSum xs =

 n
   + ( case s of
         [] -> 0
         _ -> read s :: Int
     )
 where
   (n, s) = foldr readSign (0, []) xs
   readSign ::
     (Int, Sign) ->
     (Int, String) ->
     (Int, String)
   readSign (i, x) (n, s)
     | x == Unsigned = (n, intToDigit i : s)
     | otherwise =
       ( ( case x of
             Plus -> (+)
             _ -> (-)
         )
           n
           (read (show i <> s) :: Int),
         []
       )

asString :: [(Int, Sign)] -> String asString = foldr signedDigit []

 where
   signedDigit (i, x) s
     | x == Unsigned = intToDigit i : s
     | otherwise =
       ( case x of
           Plus -> " +"
           _ -> " -"
       )
         <> [intToDigit i]
         <> s

TEST -------------------------

main :: IO () main =

 putStrLn $
   unlines
     [ "Sums to 100:",
       unlines
         (asString <$> filter ((100 ==) . asSum) universe),
       "\n10 commonest sums (sum, number of routes to it):",
       show
         ( ((,) <$> head <*> length)
             <$> take
               10
               ( sortBy
                   (flip (comparing length))
                   (group allNonNegativeSums)
               )
         ),
       "\nFirst positive integer not expressible "
         <> "as a sum of this kind:",
       maybeReport
         ( find
             (uncurry (/=))
             (zip [0 ..] uniqueNonNegativeSums)
         ),
       "\n10 largest sums:",
       show
         ( take
             10
             ( sortBy
                 (flip compare)
                 uniqueNonNegativeSums
             )
         )
     ]
 where
   maybeReport ::
     Show a =>
     Maybe (a, b) ->
     String
   maybeReport (Just (x, _)) = show x
   maybeReport _ = "No gaps found"</lang>
Output:

(Run in Atom editor, through Script package)

Sums to 100:
123 +45 -67 +8 -9
123 +4 -5 +67 -89
123 -45 -67 +89
123 -4 -5 -6 -7 +8 -9
12 +3 +4 +5 -6 -7 +89
12 +3 -4 +5 +67 +8 +9
12 -3 -4 +5 -6 +7 +89
1 +23 -4 +56 +7 +8 +9
1 +23 -4 +5 +6 +78 -9
1 +2 +34 -5 +67 -8 +9
1 +2 +3 -4 +5 +6 +78 +9
 -1 +2 -3 +4 +5 +6 +78 +9

10 commonest sums [sum, number of routes to it]:
[(9,46),(27,44),(1,43),(15,43),(21,43),(45,42),(3,41),(5,40),(7,39),(17,39)]

First positive integer not expressible as a sum of this kind:
211

10 largest sums:
[123456789,23456790,23456788,12345687,12345669,3456801,3456792,3456790,3456788,3456786]

[Finished in 1.204s]

J

Since J has no verb precedence, -1-2 would evaluate to 1 and not to -3. That's why I decided to multiply each of the partitions of '123456789' (like '123','45', '6', '78', '9') with each possible +1/-1 vectors of length 9 (like 1 1 -1 1 -1 -1 1 1 -1) and to add up the results. This leads to 512*256 results, that of course include a lot of duplicates. To use directly ~. (nub) on the 512x256x9 vector is very slow and that's why I computed a sort of a hash to use it to get only the unique expressions. The rest is trivial - I check which expressions add up to 100; sort the sum vector and find the longest sequence ot repeating sums; get the 10 largest sums and finnaly check which sum differs with more then 1 from the previous one.

<lang J> p =: ,"2".>(#: (+ i.)2^8) <;.1 '123456789' m =. (9$_1x)^"1#:i.2^9 s =. 131072 9 $ ,m *"1/ p s2 =: (~: (10x^i._9)#.s)#s ss =: +/"1 s2 '100=';<'bp<+>' 8!:2 (I.100=ss){s2 pos =: (0<ss)#ss =: /:~ss ({.;'times';{:)>{.\:~(#,{.) each </.~ ss 'Ten largest:';,.(->:i.10){ss 'First not expressible:';>:pos{~ 1 i.~ 1<|2-/\pos </lang>

Output:
┌───┬────────────────────────┐
│100│+12 +3 +4 +5 -6 -7 +89  │
│   │+1  +2 +3 -4 +5 +6 +78+9│
│   │+1  +2 +34-5 +67-8 +9   │
│   │+12 +3 -4 +5 +67+8 +9   │
│   │+1  +23-4 +56+7 +8 +9   │
│   │+1  +23-4 +5 +6 +78-9   │
│   │+123+45-67+8 -9         │
│   │+123+4 -5 +67-89        │
│   │+123-45-67+89           │
│   │+12 -3 -4 +5 -6 +7 +89  │
│   │+123-4 -5 -6 -7 +8 -9   │
│   │-1  +2 -3 +4 +5 +6 +78+9│
└───┴────────────────────────┘
┌──┬─────┬─┐
│46│times│9│
└──┴─────┴─┘
┌────────────┬─────────┐
│Ten largest:│123456789│
│            │ 23456790│
│            │ 23456788│
│            │ 12345687│
│            │ 12345669│
│            │  3456801│
│            │  3456792│
│            │  3456790│
│            │  3456788│
│            │  3456786│
└────────────┴─────────┘
┌───────────────────────┬───┐
│First not expressible :│211│
└───────────────────────┴───┘

Java

Works with: Java version 8
Translation of: C++

For each expression of sum s, there is at least one expression whose sum is -s. If the sum s can be represented by n expressions, the sum -s can also be represented by n expressions. The change of all signs in an expression change the sign of the sum of this expression. For example, -1+23-456+789 has the opposite sign than +1-23+456-789. Therefore only the positive sum with the maximum number of solutions is shown. The program does not check uniqueness of this sum. We can easily check (modifying the program) that: sum 9 has 46 solutions; sum -9 has 46 solutions; any other sum has less than 46 solutions. <lang Java>/*

* RossetaCode: Sum to 100, Java 8. 
*
* Find solutions to the "sum to one hundred" puzzle.
*/

package rosettacode;

import java.io.PrintStream; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.Map; import java.util.Set;

public class SumTo100 implements Runnable {

   public static void main(String[] args) {
       new SumTo100().run();
   }
   void print(int givenSum) {
       Expression expression = new Expression();
       for (int i = 0; i < Expression.NUMBER_OF_EXPRESSIONS; i++, expression.next()) {
           if (expression.toInt() == givenSum) {
               expression.print();
           }
       }
   }
   void comment(String commentString) {
       System.out.println();
       System.out.println(commentString);
       System.out.println();
   }
   @Override
   public void run() {
       final Stat stat = new Stat();
       comment("Show all solutions that sum to 100");
       final int givenSum = 100;
       print(givenSum);
       comment("Show the sum that has the maximum number of solutions");
       final int maxCount = Collections.max(stat.sumCount.keySet());
       int maxSum;
       Iterator<Integer> it = stat.sumCount.get(maxCount).iterator();
       do {
           maxSum = it.next();
       } while (maxSum < 0);
       System.out.println(maxSum + " has " + maxCount + " solutions");
       comment("Show the lowest positive number that can't be expressed");
       int value = 0;
       while (stat.countSum.containsKey(value)) {
           value++;
       }
       System.out.println(value);
       comment("Show the ten highest numbers that can be expressed");
       final int n = stat.countSum.keySet().size();
       final Integer[] sums = stat.countSum.keySet().toArray(new Integer[n]);
       Arrays.sort(sums);
       for (int i = n - 1; i >= n - 10; i--) {
           print(sums[i]);
       }
   }
   private static class Expression {
       private final static int NUMBER_OF_DIGITS = 9;
       private final static byte ADD = 0;
       private final static byte SUB = 1;
       private final static byte JOIN = 2;
       final byte[] code = new byte[NUMBER_OF_DIGITS];
       final static int NUMBER_OF_EXPRESSIONS = 2 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3;
       Expression next() {
           for (int i = 0; i < NUMBER_OF_DIGITS; i++) {
               if (++code[i] > JOIN) {
                   code[i] = ADD;
               } else {
                   break;
               }
           }
           return this;
       }
       int toInt() {
           int value = 0;
           int number = 0;
           int sign = (+1);
           for (int digit = 1; digit <= 9; digit++) {
               switch (code[NUMBER_OF_DIGITS - digit]) {
                   case ADD:
                       value += sign * number;
                       number = digit;
                       sign = (+1);
                       break;
                   case SUB:
                       value += sign * number;
                       number = digit;
                       sign = (-1);
                       break;
                   case JOIN:
                       number = 10 * number + digit;
                       break;
               }
           }
           return value + sign * number;
       }
       @Override
       public String toString() {
           StringBuilder s = new StringBuilder(2 * NUMBER_OF_DIGITS + 1);
           for (int digit = 1; digit <= NUMBER_OF_DIGITS; digit++) {
               switch (code[NUMBER_OF_DIGITS - digit]) {
                   case ADD:
                       if (digit > 1) {
                           s.append('+');
                       }
                       break;
                   case SUB:
                       s.append('-');
                       break;
               }
               s.append(digit);
           }
           return s.toString();
       }
       void print() {
           print(System.out);
       }
       void print(PrintStream printStream) {
           printStream.format("%9d", this.toInt());
           printStream.println(" = " + this);
       }
   }
   private static class Stat {
       final Map<Integer, Integer> countSum = new HashMap<>();
       final Map<Integer, Set<Integer>> sumCount = new HashMap<>();
       Stat() {
           Expression expression = new Expression();
           for (int i = 0; i < Expression.NUMBER_OF_EXPRESSIONS; i++, expression.next()) {
               int sum = expression.toInt();
               countSum.put(sum, countSum.getOrDefault(sum, 0) + 1);
           }
           for (Map.Entry<Integer, Integer> entry : countSum.entrySet()) {
               Set<Integer> set;
               if (sumCount.containsKey(entry.getValue())) {
                   set = sumCount.get(entry.getValue());
               } else {
                   set = new HashSet<>();
               }
               set.add(entry.getKey());
               sumCount.put(entry.getValue(), set);
           }
       }
   }

}</lang>

Output:
Show all solutions that sum to 100

      100 = 1+2+3-4+5+6+78+9
      100 = 1+2+34-5+67-8+9
      100 = 1+23-4+5+6+78-9
      100 = 1+23-4+56+7+8+9
      100 = 12+3+4+5-6-7+89
      100 = 12+3-4+5+67+8+9
      100 = 12-3-4+5-6+7+89
      100 = 123+4-5+67-89
      100 = 123+45-67+8-9
      100 = 123-4-5-6-7+8-9
      100 = 123-45-67+89
      100 = -1+2-3+4+5+6+78+9

Show the sum that has the maximum number of solutions

9 has 46 solutions

Show the lowest positive number that can't be expressed

211

Show the ten highest numbers that can be expressed

123456789 = 123456789
 23456790 = 1+23456789
 23456788 = -1+23456789
 12345687 = 12345678+9
 12345669 = 12345678-9
  3456801 = 12+3456789
  3456792 = 1+2+3456789
  3456790 = -1+2+3456789
  3456788 = 1-2+3456789
  3456786 = -1-2+3456789

JavaScript

ES5

Translation of: Haskell

<lang JavaScript>(function () {

   'use strict';
   // GENERIC FUNCTIONS ----------------------------------------------------
   // permutationsWithRepetition :: Int -> [a] -> a
   var permutationsWithRepetition = function (n, as) {
       return as.length > 0 ?
           foldl1(curry(cartesianProduct)(as), replicate(n, as)) : [];
   };
   // cartesianProduct :: [a] -> [b] -> a, b
   var cartesianProduct = function (xs, ys) {
       return [].concat.apply([], xs.map(function (x) {
           return [].concat.apply([], ys.map(function (y) {
               return [
                   [x].concat(y)
               ];
           }));
       }));
   };
   // curry :: ((a, b) -> c) -> a -> b -> c
   var curry = function (f) {
       return function (a) {
           return function (b) {
               return f(a, b);
           };
       };
   };
   // flip :: (a -> b -> c) -> b -> a -> c
   var flip = function (f) {
       return function (a, b) {
           return f.apply(null, [b, a]);
       };
   };
   // foldl1 :: (a -> a -> a) -> [a] -> a
   var foldl1 = function (f, xs) {
       return xs.length > 0 ? xs.slice(1)
           .reduce(f, xs[0]) : [];
   };
   // replicate :: Int -> a -> [a]
   var replicate = function (n, a) {
       var v = [a],
           o = [];
       if (n < 1) return o;
       while (n > 1) {
           if (n & 1) o = o.concat(v);
           n >>= 1;
           v = v.concat(v);
       }
       return o.concat(v);
   };
   // group :: Eq a => [a] -> a
   var group = function (xs) {
       return groupBy(function (a, b) {
           return a === b;
       }, xs);
   };
   // groupBy :: (a -> a -> Bool) -> [a] -> a
   var groupBy = function (f, xs) {
       var dct = xs.slice(1)
           .reduce(function (a, x) {
               var h = a.active.length > 0 ? a.active[0] : undefined,
                   blnGroup = h !== undefined && f(h, x);
               return {
                   active: blnGroup ? a.active.concat(x) : [x],
                   sofar: blnGroup ? a.sofar : a.sofar.concat([a.active])
               };
           }, {
               active: xs.length > 0 ? [xs[0]] : [],
               sofar: []
           });
       return dct.sofar.concat(dct.active.length > 0 ? [dct.active] : []);
   };
   // compare :: a -> a -> Ordering
   var compare = function (a, b) {
       return a < b ? -1 : a > b ? 1 : 0;
   };
   // on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
   var on = function (f, g) {
       return function (a, b) {
           return f(g(a), g(b));
       };
   };
   // nub :: [a] -> [a]
   var nub = function (xs) {
       return nubBy(function (a, b) {
           return a === b;
       }, xs);
   };
   // nubBy :: (a -> a -> Bool) -> [a] -> [a]
   var nubBy = function (p, xs) {
       var x = xs.length ? xs[0] : undefined;
       return x !== undefined ? [x].concat(nubBy(p, xs.slice(1)
           .filter(function (y) {
               return !p(x, y);
           }))) : [];
   };
   // find :: (a -> Bool) -> [a] -> Maybe a
   var find = function (f, xs) {
       for (var i = 0, lng = xs.length; i < lng; i++) {
           if (f(xs[i], i)) return xs[i];
       }
       return undefined;
   };
   // Int -> [a] -> [a]
   var take = function (n, xs) {
       return xs.slice(0, n);
   };
   // unlines :: [String] -> String
   var unlines = function (xs) {
       return xs.join('\n');
   };
   // show :: a -> String
   var show = function (x) {
       return JSON.stringify(x);
   }; //, null, 2);
   // head :: [a] -> a
   var head = function (xs) {
       return xs.length ? xs[0] : undefined;
   };
   // tail :: [a] -> [a]
   var tail = function (xs) {
       return xs.length ? xs.slice(1) : undefined;
   };
   // length :: [a] -> Int
   var length = function (xs) {
       return xs.length;
   };
   // SIGNED DIGIT SEQUENCES  (mapped to sums and to strings)
   // data Sign :: [ 0 | 1 | -1 ] = ( Unsigned | Plus | Minus )
   // asSum :: [Sign] -> Int
   var asSum = function (xs) {
       var dct = xs.reduceRight(function (a, sign, i) {
           var d = i + 1; //  zero-based index to [1-9] positions
           if (sign !== 0) {
               // Sum increased, digits cleared
               return {
                   digits: [],
                   n: a.n + sign * parseInt([d].concat(a.digits)
                       .join(), 10)
               };
           } else return { // Digits extended, sum unchanged
               digits: [d].concat(a.digits),
               n: a.n
           };
       }, {
           digits: [],
           n: 0
       });
       return dct.n + (
           dct.digits.length > 0 ? parseInt(dct.digits.join(), 10) : 0
       );
   };
   // data Sign :: [ 0 | 1 | -1 ] = ( Unsigned | Plus | Minus )
   // asString :: [Sign] -> String
   var asString = function (xs) {
       var ns = xs.reduce(function (a, sign, i) {
           var d = (i + 1)
               .toString();
           return sign === 0 ? a + d : a + (sign > 0 ? ' +' : ' -') + d;
       }, );
       return ns[0] === '+' ? tail(ns) : ns;
   };
   // SUM T0 100 ------------------------------------------------------------
   // universe :: Sign
   var universe = permutationsWithRepetition(9, [0, 1, -1])
       .filter(function (x) {
           return x[0] !== 1;
       });
   // allNonNegativeSums :: [Int]
   var allNonNegativeSums = universe.map(asSum)
       .filter(function (x) {
           return x >= 0;
       })
       .sort();
   // uniqueNonNegativeSums :: [Int]
   var uniqueNonNegativeSums = nub(allNonNegativeSums);
   return ["Sums to 100:\n", unlines(universe.filter(function (x) {
               return asSum(x) === 100;
           })
           .map(asString)),
       "\n\n10 commonest sums (sum, followed by number of routes to it):\n",
       show(take(10, group(allNonNegativeSums)
           .sort(on(flip(compare), length))
           .map(function (xs) {
               return [xs[0], xs.length];
           }))),
       "\n\nFirst positive integer not expressible as a sum of this kind:\n",
       show(find(function (x, i) {
           return x !== i;
       }, uniqueNonNegativeSums.sort(compare)) - 1), // zero-based index
       "\n10 largest sums:\n",
       show(take(10, uniqueNonNegativeSums.sort(flip(compare))))
   ].join('\n') + '\n';

})();</lang>

Output:

(Run in Atom editor, through Script package)

Sums to 100:

123 +45 -67 +8 -9
123 +4 -5 +67 -89
123 -45 -67 +89
123 -4 -5 -6 -7 +8 -9
12 +3 +4 +5 -6 -7 +89
12 +3 -4 +5 +67 +8 +9
12 -3 -4 +5 -6 +7 +89
1 +23 -4 +56 +7 +8 +9
1 +23 -4 +5 +6 +78 -9
1 +2 +34 -5 +67 -8 +9
1 +2 +3 -4 +5 +6 +78 +9
 -1 +2 -3 +4 +5 +6 +78 +9


10 commonest sums (sum, followed by number of routes to it):

[[9,46],[27,44],[1,43],[15,43],[21,43],[45,42],[3,41],[5,40],[17,39],[7,39]]


First positive integer not expressible as a sum of this kind:

211

10 largest sums:

[123456789,23456790,23456788,12345687,12345669,3456801,3456792,3456790,3456788,3456786]

[Finished in 0.381s]

ES6

Translation of: Haskell

<lang JavaScript>(() => {

   'use strict';
   // GENERIC FUNCTIONS ----------------------------------------------------
   // permutationsWithRepetition :: Int -> [a] -> a
   const permutationsWithRepetition = (n, as) =>
       as.length > 0 ? (
           foldl1(curry(cartesianProduct)(as), replicate(n, as))
       ) : [];
   // cartesianProduct :: [a] -> [b] -> a, b
   const cartesianProduct = (xs, ys) =>
       [].concat.apply([], xs.map(x =>
       [].concat.apply([], ys.map(y => [[x].concat(y)]))));
   // curry :: ((a, b) -> c) -> a -> b -> c
   const curry = f => a => b => f(a, b);
   // flip :: (a -> b -> c) -> b -> a -> c
   const flip = f => (a, b) => f.apply(null, [b, a]);
   // foldl1 :: (a -> a -> a) -> [a] -> a
   const foldl1 = (f, xs) =>
       xs.length > 0 ? xs.slice(1)
       .reduce(f, xs[0]) : [];
   // replicate :: Int -> a -> [a]
   const replicate = (n, a) => {
       let v = [a],
           o = [];
       if (n < 1) return o;
       while (n > 1) {
           if (n & 1) o = o.concat(v);
           n >>= 1;
           v = v.concat(v);
       }
       return o.concat(v);
   };
   // group :: Eq a => [a] -> a
   const group = xs => groupBy((a, b) => a === b, xs);
   // groupBy :: (a -> a -> Bool) -> [a] -> a
   const groupBy = (f, xs) => {
       const dct = xs.slice(1)
           .reduce((a, x) => {
               const
                   h = a.active.length > 0 ? a.active[0] : undefined,
                   blnGroup = h !== undefined && f(h, x);
               return {
                   active: blnGroup ? a.active.concat(x) : [x],
                   sofar: blnGroup ? a.sofar : a.sofar.concat([a.active])
               };
           }, {
               active: xs.length > 0 ? [xs[0]] : [],
               sofar: []
           });
       return dct.sofar.concat(dct.active.length > 0 ? [dct.active] : []);
   };
   // compare :: a -> a -> Ordering
   const compare = (a, b) => a < b ? -1 : (a > b ? 1 : 0);
   // on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
   const on = (f, g) => (a, b) => f(g(a), g(b));
   // nub :: [a] -> [a]
   const nub = xs => nubBy((a, b) => a === b, xs);
   // nubBy :: (a -> a -> Bool) -> [a] -> [a]
   const nubBy = (p, xs) => {
       const x = xs.length ? xs[0] : undefined;
       return x !== undefined ? [x].concat(
           nubBy(p, xs.slice(1)
               .filter(y => !p(x, y)))
       ) : [];
   };
   // find :: (a -> Bool) -> [a] -> Maybe a
   const find = (f, xs) => {
       for (var i = 0, lng = xs.length; i < lng; i++) {
           if (f(xs[i], i)) return xs[i];
       }
       return undefined;
   }
   // Int -> [a] -> [a]
   const take = (n, xs) => xs.slice(0, n);
   // unlines :: [String] -> String
   const unlines = xs => xs.join('\n');
   // show :: a -> String
   const show = x => JSON.stringify(x); //, null, 2);
   // head :: [a] -> a
   const head = xs => xs.length ? xs[0] : undefined;
   // tail :: [a] -> [a]
   const tail = xs => xs.length ? xs.slice(1) : undefined;
   // length :: [a] -> Int
   const length = xs => xs.length;


   // SIGNED DIGIT SEQUENCES  (mapped to sums and to strings)
   // data Sign :: [ 0 | 1 | -1 ] = ( Unsigned | Plus | Minus )
   // asSum :: [Sign] -> Int
   const asSum = xs => {
       const dct = xs.reduceRight((a, sign, i) => {
           const d = i + 1; //  zero-based index to [1-9] positions
           if (sign !== 0) { // Sum increased, digits cleared
               return {
                   digits: [],
                   n: a.n + (sign * parseInt([d].concat(a.digits)
                       .join(), 10))
               };
           } else return { // Digits extended, sum unchanged
               digits: [d].concat(a.digits),
               n: a.n
           };
       }, {
           digits: [],
           n: 0
       });
       return dct.n + (dct.digits.length > 0 ? (
           parseInt(dct.digits.join(), 10)
       ) : 0);
   };
   // data Sign :: [ 0 | 1 | -1 ] = ( Unsigned | Plus | Minus )
   // asString :: [Sign] -> String
   const asString = xs => {
       const ns = xs.reduce((a, sign, i) => {
           const d = (i + 1)
               .toString();
           return (sign === 0 ? (
               a + d
           ) : (a + (sign > 0 ? ' +' : ' -') + d));
       }, );
       return ns[0] === '+' ? tail(ns) : ns;
   };


   // SUM T0 100 ------------------------------------------------------------
   // universe :: Sign
   const universe = permutationsWithRepetition(9, [0, 1, -1])
       .filter(x => x[0] !== 1);
   // allNonNegativeSums :: [Int]
   const allNonNegativeSums = universe.map(asSum)
       .filter(x => x >= 0)
       .sort();
   // uniqueNonNegativeSums :: [Int]
   const uniqueNonNegativeSums = nub(allNonNegativeSums);


   return [
       "Sums to 100:\n",
       unlines(universe.filter(x => asSum(x) === 100)
           .map(asString)),
       "\n\n10 commonest sums (sum, followed by number of routes to it):\n",
       show(take(10, group(allNonNegativeSums)
           .sort(on(flip(compare), length))
           .map(xs => [xs[0], xs.length]))),
       "\n\nFirst positive integer not expressible as a sum of this kind:\n",
       show(find(
           (x, i) => x !== i,
           uniqueNonNegativeSums.sort(compare)
       ) - 1), // i is the the zero-based Array index.
       "\n10 largest sums:\n",
       show(take(10, uniqueNonNegativeSums.sort(flip(compare))))
   ].join('\n') + '\n';

})();</lang>

Output:

(Run in Atom editor, through Script package)

Sums to 100:

123 +45 -67 +8 -9
123 +4 -5 +67 -89
123 -45 -67 +89
123 -4 -5 -6 -7 +8 -9
12 +3 +4 +5 -6 -7 +89
12 +3 -4 +5 +67 +8 +9
12 -3 -4 +5 -6 +7 +89
1 +23 -4 +56 +7 +8 +9
1 +23 -4 +5 +6 +78 -9
1 +2 +34 -5 +67 -8 +9
1 +2 +3 -4 +5 +6 +78 +9
 -1 +2 -3 +4 +5 +6 +78 +9


10 commonest sums (sum, followed by number of routes to it):

[[9,46],[27,44],[1,43],[15,43],[21,43],[45,42],[3,41],[5,40],[17,39],[7,39]]


First positive integer not expressible as a sum of this kind:

211

10 largest sums:

[123456789,23456790,23456788,12345687,12345669,3456801,3456792,3456790,3456788,3456786]

[Finished in 0.382s]

ES3 (JScript)

Translation of: AWK

<lang javascript>SumTo100();

function SumTo100() {

   var 
       ADD  = 0, 
       SUB  = 1, 
       JOIN = 2;
       
   var 
       nexpr = 13122; 
   function out(something)  
   { 
       WScript.Echo(something); 
   }
   function evaluate(code)
   {
       var 
           value  = 0, 
           number = 0, 
           power  = 1;
       for ( var k = 9; k >= 1; k-- )
       {
           number = power*k + number;
           switch( code % 3 )
           {
               case ADD:  value = value + number; number = 0; power = 1; break;
               case SUB:  value = value - number; number = 0; power = 1; break;
               case JOIN: power = power * 10                           ; break;
           }
           code = Math.floor(code/3);
       }
       return value;    
   }
   function print(code)
   {
       var 
           s = "";
       var 
           a = 19683,
           b = 6561;        
           
       for ( var k = 1; k <= 9; k++ )
       {
           switch( Math.floor(  (code % a) / b  ) ){
               case ADD: if ( k > 1 ) s = s + '+'; break;
               case SUB:              s = s + '-'; break;
           }
           a = b;
           b = Math.floor(b/3);
           s = s + String.fromCharCode(0x30+k);
       }  
       out(evaluate(code) + " = " + s);
   }
   
   function comment(commentString)
   {
       out("");
       out(commentString);
       out("");        
   }
   
   comment("Show all solutions that sum to 100");
   for ( var i = 0; i < nexpr; i++)     
       if ( evaluate(i) == 100 ) 
           print(i);        
       
   comment("Show the sum that has the maximum number of solutions"); 
   var stat = {};
   for ( var i = 0; i < nexpr; i++ )
   {
       var sum = evaluate(i);
       if (stat[sum])
           stat[sum]++;
       else
           stat[sum] = 1;
   }
   
   var best = 0;
   var nbest = -1;
   for ( var i = 0; i < nexpr; i++ )
   {
       var sum = evaluate(i);
       if ( sum > 0 )
           if ( stat[sum] > nbest )
           {
               best = i;            
               nbest = stat[sum];
           }
   }
   out("" + evaluate(best) + " has " + nbest + " solutions");
   
   comment("Show the lowest positive number that can't be expressed");
   for ( var i = 0; i <= 123456789; i++ )
   {
       for ( var j = 0; j < nexpr; j++) 
           if ( i == evaluate(j) ) break; 
       if ( i != evaluate(j) ) break;
   }
   out(i);
   
   comment("Show the ten highest numbers that can be expressed");
   var limit = 123456789 + 1;
   for ( i = 1; i <= 10; i++ ) 
   {
       var best = 0;
       for ( var j = 0; j < nexpr; j++)
       {
           var test = evaluate(j);
           if ( test < limit && test > best ) 
               best = test;
       }
       for ( var j = 0; j < nexpr; j++)
           if ( evaluate(j) == best ) print(j);
       limit = best;
   }
   

} </lang>

Output:
Show all solutions that sum to 100

100 = 1+2+3-4+5+6+78+9
100 = 1+2+34-5+67-8+9
100 = 1+23-4+5+6+78-9
100 = 1+23-4+56+7+8+9
100 = 12+3+4+5-6-7+89
100 = 12+3-4+5+67+8+9
100 = 12-3-4+5-6+7+89
100 = 123+4-5+67-89
100 = 123+45-67+8-9
100 = 123-4-5-6-7+8-9
100 = 123-45-67+89
100 = -1+2-3+4+5+6+78+9

Show the sum that has the maximum number of solutions

9 has 46 solutions

Show the lowest positive number that can't be expressed

211

Show the ten highest numbers that can be expressed

123456789 = 123456789
23456790 = 1+23456789
23456788 = -1+23456789
12345687 = 12345678+9
12345669 = 12345678-9
3456801 = 12+3456789
3456792 = 1+2+3456789
3456790 = -1+2+3456789
3456788 = 1-2+3456789
3456786 = -1-2+3456789

jq

For ease of understanding, the problems will be solved separately, using the machinery defined in the following section.

All possible sums <lang jq># Generate a "sum" in the form: [I, 1, X, 2, X, 3, ..., X, n] where I is "-" or "", and X is "+", "-", or "" def generate(n):

 def pm: ["+"], ["-"], [""];

 if n == 1 then (["-"], [""]) + [1]
 else generate(n-1) + pm +  [n]
 end;
  1. The numerical value of a "sum"

def addup:

 reduce .[] as $x ({sum:0, previous: "0"};
    if   $x == "+" then .sum += (.previous|tonumber) | .previous = ""
    elif $x == "-" then .sum += (.previous|tonumber) | .previous = "-"
    elif $x == "" then .
    else .previous += ($x|tostring)
    end)
    | .sum + (.previous | tonumber) ;
  1. Pretty-print a "sum", e.g. ["",1,"+", 2] => 1 + 2

def pp: map(if . == "+" or . == "-" then " " + . else tostring end) | join(""); </lang> Solutions to "Sum to 100" problem <lang jq>generate(9) | select(addup == 100) | pp</lang>

Output:
1 +23 -4 +56 +7 +8 +9
12 +3 -4 +5 +67 +8 +9
1 +2 +34 -5 +67 -8 +9
 -1 +2 -3 +4 +5 +6 +78 +9
1 +2 +3 -4 +5 +6 +78 +9
123 -4 -5 -6 -7 +8 -9
123 +45 -67 +8 -9
1 +23 -4 +5 +6 +78 -9
12 -3 -4 +5 -6 +7 +89
12 +3 +4 +5 -6 -7 +89
123 -45 -67 +89
123 +4 -5 +67 -89

Helper Functions

For brevity, we define an efficient function for computing a histogram in the form of a JSON object, and a helper function for identifying the values with the n highest frequencies. <lang jq>def histogram(s): reduce s as $x ({}; ($x|tostring) as $k | .[$k] += 1);

  1. Emit an array of [ value, frequency ] pairs

def greatest(n):

 to_entries
 | map( [.key, .value] )
 | sort_by(.[1])
 | .[(length-n):]
 | reverse ; </lang>

Maximum number of solutions <lang jq>histogram(generate(9) | addup | select(.>0)) | greatest(1)</lang>

Output:
[["9",46]]

Ten most frequent sums <lang jq>histogram(generate(9) | addup | select(.>0)) | greatest(1)</lang>

Output:
[["9",46],["27",44],["1",43],["21",43],["15",43],["45",42],["3",41],["5",40],["7",39],["17",39]]

First unsolvable <lang jq>def first_missing(s):

   first( foreach s as $i (null;
          if . == null or $i == . or $i == .+1 then $i else [.+1] end;
          select(type == "array") | .[0]));

first_missing( [generate(9) | addup | select(.>0) ] | unique[])</lang>

Output:
   211

Ten largest sums <lang jq>[generate(9) | addup | select(.>0)] | unique | .[(length-10):]</lang>

Output:
   [3456786,3456788,3456790,3456792,3456801,12345669,12345687,23456788,23456790,123456789]

Julia

<lang julia>using Printf, IterTools, DataStructures

expr(p::String...)::String = @sprintf("%s1%s2%s3%s4%s5%s6%s7%s8%s9", p...) function genexpr()::Vector{String}

   op = ["+", "-", ""]
   return collect(expr(p...) for (p) in Iterators.product(op, op, op, op, op, op, op, op, op) if p[1] != "+")

end

using DataStructures

function allexpr()::Dict{Int,Int}

   rst = DefaultDict{Int,Int}(0)
   for e in genexpr()
       val = eval(Meta.parse(e))
       rst[val] += 1
   end
   return rst

end

sumto(val::Int)::Vector{String} = filter(e -> eval(Meta.parse(e)) == val, genexpr()) function maxsolve()::Dict{Int,Int}

   ae = allexpr()
   vmax = maximum(values(ae))
   smax = filter(ae) do (v, f)
       f == vmax
   end
   return smax

end function minsolve()::Int

   ae = keys(allexpr())
   for i in 1:typemax(Int)
       if i ∉ ae
           return i
       end
   end

end function highestsums(n::Int)::Vector{Int}

   sums = collect(keys(allexpr()))
   return sort!(sums; rev=true)[1:n]

end

const solutions = sumto(100) const smax = maxsolve() const smin = minsolve() const hsums = highestsums(10)

println("100 =") foreach(println, solutions)

println("\nMax number of solutions:") for (v, f) in smax

   @printf("%3i -> %2i\n", v, f)

end

println("\nMin number with no solutions: $smin")

println("\nHighest sums representable:") foreach(println, hsums)

</lang>

Output:
100 =
1+23-4+56+7+8+9
12+3-4+5+67+8+9
1+2+34-5+67-8+9
-1+2-3+4+5+6+78+9
1+2+3-4+5+6+78+9
123-4-5-6-7+8-9
123+45-67+8-9
1+23-4+5+6+78-9
12-3-4+5-6+7+89
12+3+4+5-6-7+89
123-45-67+89
123+4-5+67-89

Max number of solutions:
  9 -> 46
 -9 -> 46

Min number with no solutions: 211

Highest sums representable:
123456789
23456790
23456788
12345687
12345669
3456801
3456792
3456790
3456788
3456786

Kotlin

Translation of: C++

<lang scala>// version 1.1.51

class Expression {

   private enum class Op { ADD, SUB, JOIN }
   private val code = Array<Op>(NUMBER_OF_DIGITS) { Op.ADD }
   companion object {
       private const val NUMBER_OF_DIGITS = 9
       private const val THREE_POW_4 = 3 * 3 * 3 * 3
       private const val FMT = "%9d"
       const val NUMBER_OF_EXPRESSIONS = 2 * THREE_POW_4 * THREE_POW_4
       fun print(givenSum: Int) {
           var expression = Expression()
           repeat(Expression.NUMBER_OF_EXPRESSIONS) {
               if (expression.toInt() == givenSum) println("${FMT.format(givenSum)} = $expression")
               expression++
           }
       }
   }
   operator fun inc(): Expression {
       for (i in 0 until code.size) {
           code[i] = when (code[i]) {
               Op.ADD  -> Op.SUB
               Op.SUB  -> Op.JOIN
               Op.JOIN -> Op.ADD
           }
           if (code[i] != Op.ADD) break
       }
       return this
   }
   fun toInt(): Int {
       var value = 0
       var number = 0
       var sign = +1
       for (digit in 1..9) {
           when (code[NUMBER_OF_DIGITS - digit]) {
               Op.ADD  -> { value += sign * number; number = digit; sign = +1 }
               Op.SUB  -> { value += sign * number; number = digit; sign = -1 }
               Op.JOIN -> { number = 10 * number + digit }
           }
       }
       return value + sign * number
   }
   override fun toString(): String {
       val sb = StringBuilder()
       for (digit in 1..NUMBER_OF_DIGITS) {
           when (code[NUMBER_OF_DIGITS - digit]) {
               Op.ADD  -> if (digit > 1) sb.append(" + ")
               Op.SUB  -> sb.append(" - ")
               Op.JOIN -> {}
           }
           sb.append(digit)
       }
       return sb.toString().trimStart()
   }

}

class Stat {

   val countSum = mutableMapOf<Int, Int>()
   val sumCount = mutableMapOf<Int, MutableSet<Int>>()
   init {
       var expression = Expression()
       repeat (Expression.NUMBER_OF_EXPRESSIONS) {
           val sum = expression.toInt()
           countSum.put(sum, 1 + (countSum[sum] ?: 0))
           expression++
       }
       for ((k, v) in countSum) {
           val set = if (sumCount.containsKey(v))
               sumCount[v]!!
           else
               mutableSetOf<Int>()
           set.add(k)
           sumCount.put(v, set)
       }
   }

}

fun main(args: Array<String>) {

   println("100 has the following solutions:\n")
   Expression.print(100)
   val stat = Stat()
   val maxCount = stat.sumCount.keys.max()
   val maxSum = stat.sumCount[maxCount]!!.max()
   println("\n$maxSum has the maximum number of solutions, namely $maxCount")
   var value = 0
   while (stat.countSum.containsKey(value)) value++
   println("\n$value is the lowest positive number with no solutions")
   println("\nThe ten highest numbers that do have solutions are:\n")
   stat.countSum.keys.toIntArray().sorted().reversed().take(10).forEach { Expression.print(it) }

}</lang>

Output:
100 has the following solutions:

      100 = 1 + 2 + 3 - 4 + 5 + 6 + 78 + 9
      100 = 1 + 2 + 34 - 5 + 67 - 8 + 9
      100 = 1 + 23 - 4 + 5 + 6 + 78 - 9
      100 = 1 + 23 - 4 + 56 + 7 + 8 + 9
      100 = 12 + 3 + 4 + 5 - 6 - 7 + 89
      100 = 12 + 3 - 4 + 5 + 67 + 8 + 9
      100 = 12 - 3 - 4 + 5 - 6 + 7 + 89
      100 = 123 + 4 - 5 + 67 - 89
      100 = 123 + 45 - 67 + 8 - 9
      100 = 123 - 4 - 5 - 6 - 7 + 8 - 9
      100 = 123 - 45 - 67 + 89
      100 = - 1 + 2 - 3 + 4 + 5 + 6 + 78 + 9

9 has the maximum number of solutions, namely 46

211 is the lowest positive number with no solutions

The ten highest numbers that do have solutions are:

123456789 = 123456789
 23456790 = 1 + 23456789
 23456788 = - 1 + 23456789
 12345687 = 12345678 + 9
 12345669 = 12345678 - 9
  3456801 = 12 + 3456789
  3456792 = 1 + 2 + 3456789
  3456790 = - 1 + 2 + 3456789
  3456788 = 1 - 2 + 3456789
  3456786 = - 1 - 2 + 3456789

Lua

Translation of: C

<lang lua>local expressionsLength = 0 function compareExpressionBySum(a, b)

   return a.sum - b.sum

end

local countSumsLength = 0 function compareCountSumsByCount(a, b)

   return a.counts - b.counts

end

function evaluate(code)

   local value = 0
   local number = 0
   local power = 1
   for k=9,1,-1 do
       number = power*k + number
       local mod = code % 3
       if mod == 0 then
           -- ADD
           value = value + number
           number = 0
           power = 1
       elseif mod == 1 then
           -- SUB
           value = value - number
           number = 0
           power = 1
       elseif mod == 2 then
           -- JOIN
           power = 10 * power
       else
           print("This should not happen.")
       end
       code = math.floor(code / 3)
   end
   return value

end

function printCode(code)

   local a = 19683
   local b = 6561
   local s = ""
   for k=1,9 do
       local temp = math.floor((code % a) / b)
       if temp == 0 then
           -- ADD
           if k>1 then
               s = s .. '+'
           end
       elseif temp == 1 then
           -- SUB
           s = s .. '-'
       end
       a = b
       b = math.floor(b/3)
       s = s .. tostring(k)
   end
   print("\t"..evaluate(code).." = "..s)

end

-- Main local nexpr = 13122

print("Show all solutions that sum to 100") for i=0,nexpr-1 do

   if evaluate(i) == 100 then
       printCode(i)
   end

end print()

print("Show the sum that has the maximum number of solutions") local nbest = -1 for i=0,nexpr-1 do

   local test = evaluate(i)
   if test>0 then
       local ntest = 0
       for j=0,nexpr-1 do
           if evaluate(j) == test then
               ntest = ntest + 1
           end
           if ntest > nbest then
               best = test
               nbest = ntest
           end
       end
   end

end print(best.." has "..nbest.." solutions\n")

print("Show the lowest positive number that can't be expressed") local code = -1 for i=0,123456789 do

   for j=0,nexpr-1 do
       if evaluate(j) == i then
           code = j
           break
       end
   end
   if evaluate(code) ~= i then
       code = i
       break
   end

end print(code.."\n")

print("Show the ten highest numbers that can be expressed") local limit = 123456789 + 1 for i=1,10 do

   local best=0
   for j=0,nexpr-1 do
       local test = evaluate(j)
       if (test<limit) and (test>best) then
           best = test
       end
   end
   for j=0,nexpr-1 do
       if evaluate(j) == best then
           printCode(j)
       end
   end
   limit = best

end</lang>

Output:
Show all solutions that sum to 100
        100 = 1+2+3-4+5+6+78+9
        100 = 1+2+34-5+67-8+9
        100 = 1+23-4+5+6+78-9
        100 = 1+23-4+56+7+8+9
        100 = 12+3+4+5-6-7+89
        100 = 12+3-4+5+67+8+9
        100 = 12-3-4+5-6+7+89
        100 = 123+4-5+67-89
        100 = 123+45-67+8-9
        100 = 123-4-5-6-7+8-9
        100 = 123-45-67+89
        100 = -1+2-3+4+5+6+78+9

Show the sum that has the maximum number of solutions
9 has 46 solutions

Show the lowest positive number that can't be expressed
211

Show the ten highest numbers that can be expressed
        123456789 = 123456789
        23456790 = 1+23456789
        23456788 = -1+23456789
        12345687 = 12345678+9
        12345669 = 12345678-9
        3456801 = 12+3456789
        3456792 = 1+2+3456789
        3456790 = -1+2+3456789
        3456788 = 1-2+3456789
        3456786 = -1-2+3456789

Mathematica

Defining all possible sums:

<lang Mathematica>operations =

 DeleteCases[Tuples[{"+", "-", ""}, 9], {x_, y__} /; x == "+"];

sums =

 Map[StringJoin[Riffle[#, CharacterRange["1", "9"]]] &, operations];</lang>

Sums to 100:

<lang Mathematica> TableForm@Select[sums, ToExpression@# == 100 &] </lang>

Output:
-1+2-3+4+5+6+78+9
1+2+3-4+5+6+78+9
1+2+34-5+67-8+9
1+23-4+5+6+78-9
1+23-4+56+7+8+9
12+3+4+5-6-7+89
12+3-4+5+67+8+9
12-3-4+5-6+7+89
123+4-5+67-89
123+45-67+8-9
123-4-5-6-7+8-9
123-45-67+89

Maximum number of solutions: <lang Mathematica> MaximalBy[Counts@ToExpression@sums, Identity] </lang>

Output:
 <|9 -> 46, -9 -> 46|> 

First unsolvable: <lang Mathematica> pos = Cases[ToExpression@sums, _?Positive]; n = 1; While[MemberQ[pos, n], ++n]; </lang>

Output:
211

Ten largest sums: <lang Mathematica> {#, ToExpression@#}&/@TakeLargestBy[sums, ToExpression, 10]//TableForm </lang>

Output:
 123456789	123456789
1+23456789	23456790
-1+23456789	23456788
12345678+9	12345687
12345678-9	12345669
12+3456789	3456801
1+2+3456789	3456792
-1+2+3456789	3456790
1-2+3456789	3456788
-1-2+3456789	3456786 

Modula-2

Translation of: C

<lang modula2>MODULE SumTo100; FROM FormatString IMPORT FormatString; FROM Terminal IMPORT WriteString,WriteLn,ReadChar;

PROCEDURE Evaluate(code : INTEGER) : INTEGER; VAR

   value,number,power,k : INTEGER;

BEGIN

   value := 0;
   number := 0;
   power := 1;
   FOR k:=9 TO 1 BY -1 DO
       number := power * k + number;
       IF code MOD 3 = 0 THEN
           (* ADD *)
           value := value + number;
           number := 0;
           power := 1
       ELSIF code MOD 3 = 1 THEN
           (* SUB *)
           value := value - number;
           number := 0;
           power := 1
       ELSE
           (* CAT *)
           power := power * 10
       END;
       code := code / 3
   END;
   RETURN value

END Evaluate;

PROCEDURE Print(code : INTEGER); VAR

   expr,buf : ARRAY[0..63] OF CHAR;
   a,b,k,p : INTEGER;

BEGIN

   a := 19683;
   b := 6561;
   p := 0;
   FOR k:=1 TO 9 DO
       IF (code MOD a) / b = 0 THEN
           IF k > 1 THEN
               expr[p] := '+';
               INC(p)
           END
       ELSIF (code MOD a) / b = 1 THEN
           expr[p] := '-';
           INC(p)
       END;
       a := b;
       b := b / 3;
       expr[p] := CHR(k + 30H);
       INC(p)
   END;
   expr[p] := 0C;
   FormatString("%9i = %s\n", buf, Evaluate(code), expr);
   WriteString(buf)

END Print;

(* Main *) CONST nexpr = 13122; VAR

   i,j : INTEGER;
   best,nbest,test,ntest,limit : INTEGER;
   buf : ARRAY[0..63] OF CHAR;

BEGIN

   WriteString("Show all solution that sum to 100");
   WriteLn;
   FOR i:=0 TO nexpr-1 DO
       IF Evaluate(i) = 100 THEN
           Print(i)
       END
   END;
   WriteLn;
   WriteString("Show the sum that has the maximum number of solutions");
   WriteLn;
   nbest := -1;
   FOR i:=0 TO nexpr-1 DO
       test := Evaluate(i);
       IF test > 0 THEN
           ntest := 0;
           FOR j:=0 TO nexpr-1 DO
               IF Evaluate(j) = test THEN
                   INC(ntest)
               END;
               IF ntest > nbest THEN
                   best := test;
                   nbest := ntest
               END
           END
       END
   END;
   FormatString("%i has %i solutions\n\n", buf, best, nbest);
   WriteString(buf);
   WriteString("Show the lowest positive number that can't be expressed");
   WriteLn;
   FOR i:=0 TO 123456789 DO
       FOR j:=0 TO nexpr-1 DO
           IF i = Evaluate(j) THEN
               BREAK
           END
       END;
       IF i # Evaluate(j) THEN
           BREAK
       END
   END;
   FormatString("%i\n\n", buf, i);
   WriteString(buf);
   WriteString("Show the ten highest numbers that can be expressed");
   WriteLn;
   limit := 123456789 + 1;
   FOR i:=1 TO 10 DO
       best := 0;
       FOR j:=0 TO nexpr-1 DO
           test := Evaluate(j);
           IF (test < limit) AND (test > best) THEN
               best := test
           END
       END;
       FOR j:=0 TO nexpr-1 DO
           IF Evaluate(j) = best THEN
               Print(j)
           END
       END;
       limit := best
   END;
   ReadChar

END SumTo100.</lang>

Output:
Show all solutions that sum to 100
      100 = 1+2+3-4+5+6+78+9
      100 = 1+2+34-5+67-8+9
      100 = 1+23-4+5+6+78-9
      100 = 1+23-4+56+7+8+9
      100 = 12+3+4+5-6-7+89
      100 = 12+3-4+5+67+8+9
      100 = 12-3-4+5-6+7+89
      100 = 123+4-5+67-89
      100 = 123+45-67+8-9
      100 = 123-4-5-6-7+8-9
      100 = 123-45-67+89
      100 = -1+2-3+4+5+6+78+9

Show the sum that has the maximum number of solutions
9 has 46 solutions

Show the lowest positive number that can't be expressed
211

Show the ten highest numbers that can be expressed
123456789 = 123456789
 23456790 = 1+23456789
 23456788 = -1+23456789
 12345687 = 12345678+9
 12345669 = 12345678-9
  3456801 = 12+3456789
  3456792 = 1+2+3456789
  3456790 = -1+2+3456789
  3456788 = 1-2+3456789
  3456786 = -1-2+3456789

Nim

Recursive solution.

<lang Nim>import algorithm, parseutils, sequtils, strutils, tables

type Expression = string

proc buildExprs(start: Natural = 0): seq[Expression] =

 let item = if start == 0: "" else: $start
 if start == 9: return @[item]
 for expr in buildExprs(start + 1):
   result.add item & expr
   result.add item & '-' & expr
   if start != 0: result.add item & '+' & expr

proc evaluate(expr: Expression): int =

 var idx = 0
 var val: int
 while idx < expr.len:
   let n = expr.parseInt(val, idx)
   inc idx, n
   result += val

let exprs = buildExprs() var counts: CountTable[int]

echo "The solutions for 100 are:" for expr in exprs:

 let sum = evaluate(expr)
 if sum == 100: echo expr
 if sum > 0: counts.inc(sum)

let (n, count) = counts.largest() echo "\nThe maximum count of positive solutions is $1 for number $2.".format(count, n)

var s = 1 while true:

 if s notin counts:
   echo "\nThe smallest number than cannot be expressed is: $1.".format(s)
   break
 inc s

echo "\nThe ten highest numbers than can be expressed are:" let numbers = sorted(toSeq(counts.keys), Descending) echo numbers[0..9].join(", ")</lang>

Output:
The solutions for 100 are:
123+4-5+67-89
123-45-67+89
12+3+4+5-6-7+89
12-3-4+5-6+7+89
1+23-4+5+6+78-9
123+45-67+8-9
123-4-5-6-7+8-9
1+2+3-4+5+6+78+9
-1+2-3+4+5+6+78+9
1+2+34-5+67-8+9
12+3-4+5+67+8+9
1+23-4+56+7+8+9

The maximum count of positive solutions is 46 for number 9.

The smallest number than cannot be expressed is: 211.

The ten highest numbers than can be expressed are:
123456789, 23456790, 23456788, 12345687, 12345669, 3456801, 3456792, 3456790, 3456788, 3456786

Iterative previous solution written in French (updated).

<lang Nim>import strutils

var

 ligne: string = ""
 sum: int
 opera: array[0..9, int] = [0,0,1,1,1,1,1,1,1,1]
 curseur: int = 9
 boucle: bool
 tot: array[1..123456789, int]
 pG: int
 plusGrandes: array[1..10, string]
 

let

 ope: array[0..3, string] = ["-",""," +"," -"]
 aAtteindre = 100

proc calcul(li: string): int =

 var liS: seq[string]
 liS = split(li," ")
 for i in liS:
   if i.len > 0: result += parseInt(i)
   

echo "Valeur à atteindre : ",aAtteindre

while opera[1]<2:

 ligne.add(ope[opera[1]])
 ligne.add("1")
 for i in 2..9:
   ligne.add(ope[opera[i]])
   ligne.add($i)
 sum = calcul(ligne)
 if sum == aAtteindre:
   stdout.write(ligne)
   echo " = ",sum
 if sum>0:
   tot[sum] += 1
   pG = 1
   while pG<10:
     if sum>calcul(plusGrandes[pG]):
       for k in countdown(10,pG+1):
         plusGrandes[k]=plusGrandes[k-1]
       plusGrandes[pG]=ligne
       pG = 11
     pG += 1
 ligne = ""
 boucle = true
 while boucle:
   opera[curseur] += 1
   if opera[curseur] == 4:
     opera[curseur]=1
     curseur -= 1
   else:
     curseur = 9
     boucle = false

echo "Valeur atteinte ",tot[aAtteindre]," fois." echo ""

var

 min0: int = 0
 max: int = 0
 valmax: int = 0
 

for i in 1..123456789:

 if tot[i]==0 and min0 == 0:
   min0 = i
 if tot[i]>max:
   max = tot[i]
   valmax = i

echo "Plus petite valeur ne pouvant pas être atteinte : ",min0 echo "Valeur atteinte le plus souvent : ",valmax,", atteinte ",max," fois." echo "" echo "Plus grandes valeurs pouvant être atteintes :" for i in 1..10:

 echo calcul(plusGrandes[i])," = ",plusGrandes[i]</lang>
Output:
Valeur à atteindre : 100
-1 +2 -3 +4 +5 +6 +78 +9 = 100
123 +45 -67 +8 -9 = 100
123 +4 -5 +67 -89 = 100
123 -45 -67 +89 = 100
123 -4 -5 -6 -7 +8 -9 = 100
12 +3 +4 +5 -6 -7 +89 = 100
12 +3 -4 +5 +67 +8 +9 = 100
12 -3 -4 +5 -6 +7 +89 = 100
1 +23 -4 +56 +7 +8 +9 = 100
1 +23 -4 +5 +6 +78 -9 = 100
1 +2 +34 -5 +67 -8 +9 = 100
1 +2 +3 -4 +5 +6 +78 +9 = 100
Valeur atteinte 12 fois.

Plus petite valeur ne pouvant pas être atteinte : 211
Valeur atteinte le plus souvent : 9, atteinte 46 fois.

Plus grandes valeurs pouvant être atteintes :
123456789 = 123456789
23456790 = 1 +23456789
23456788 = -1 +23456789
12345687 = 12345678 +9
12345669 = 12345678 -9
3456801 = 12 +3456789
3456792 = 1 +2 +3456789
3456790 = -1 +2 +3456789
3456788 = 1 -2 +3456789
3456786 = -1 -2 +3456789

Pascal

Works with: Lazarus
Translation of: C

<lang Pascal>{ RossetaCode: Sum to 100, Pascal.

 Find solutions to the "sum to one hundred" puzzle.
 We don't use arrays, but recompute all values again and again. 
 It is a little surprise that the time efficiency is quite acceptable. }

program sumto100;

const

 ADD = 0; SUB = 1; JOIN = 2; { opcodes inserted between digits }
 NEXPR = 13122;              { the total number of expressions }

var

 i, j: integer;
 loop: boolean;
 test, ntest, best, nbest, limit: integer;
 function evaluate(code: integer): integer;
 var
   k: integer;
   value, number, power: integer;
 begin
   value  := 0;
   number := 0;
   power  := 1;
   for  k := 9 downto 1 do
   begin
     number := power * k + number;
     case code mod 3 of
       ADD: begin value := value + number; number := 0; power := 1; end;
       SUB: begin value := value - number; number := 0; power := 1; end;
       JOIN:                                            power := power * 10
     end;
     code := code div 3
   end;
   evaluate := value
 end;
 procedure print(code: integer);
 var
   k: integer;
   a, b: integer;
 begin
   a := 19683;
   b := 6561;
   write( evaluate(code):9 );
   write(' = ');
   for  k := 1 to 9 do
   begin
     case ((code mod a) div b) of
       ADD: if k > 1 then write('+');
       SUB: { always }    write('-');
     end;
     a := b;
     b := b div 3;
     write( k:1 )
   end;
   writeln
 end;

begin

 writeln;
 writeln('Show all solutions that sum to 100');
 writeln;
 for i := 0 to NEXPR - 1 do
   if evaluate(i) = 100 then
     print(i);
 writeln;
 writeln('Show the sum that has the maximum number of solutions');
 writeln;
 nbest := (-1);
 for i := 0 to NEXPR - 1 do
 begin
   test := evaluate(i);
   if test > 0 then
   begin
     ntest := 0;
     for j := 0 to NEXPR - 1 do
       if evaluate(j) = test then
         ntest := ntest + 1;
     if ntest > nbest then
     begin
       best := test;
       nbest := ntest;
     end
   end
 end;
 writeln(best, ' has ', nbest, ' solutions');
 writeln;
 writeln('Show the lowest positive number that cant be expressed');
 writeln;
 i := 0;
 loop := TRUE;
 while (i <= 123456789) and loop do
 begin
   j := 0;
   while (j < NEXPR - 1) and (i <> evaluate(j)) do
     j := j + 1;
   if i <> evaluate(j) then
     loop := FALSE
   else
     i := i + 1;
 end;
 writeln(i);
 writeln;
 writeln('Show the ten highest numbers that can be expressed');
 writeln;
 limit := 123456789 + 1;
 for i := 1 to 10 do
 begin
   best := 0;
   for j := 0 to NEXPR - 1 do
   begin
     test := evaluate(j);
     if (test < limit) and (test > best) then
       best := test;
   end;
   for j := 0 to NEXPR - 1 do
     if evaluate(j) = best then
       print(j);
   limit := best;
 end

end.</lang>

Output:
Show all solutions that sum to 100

      100 = 1+2+3-4+5+6+78+9
      100 = 1+2+34-5+67-8+9
      100 = 1+23-4+5+6+78-9
      100 = 1+23-4+56+7+8+9
      100 = 12+3+4+5-6-7+89
      100 = 12+3-4+5+67+8+9
      100 = 12-3-4+5-6+7+89
      100 = 123+4-5+67-89
      100 = 123+45-67+8-9
      100 = 123-4-5-6-7+8-9
      100 = 123-45-67+89
      100 = -1+2-3+4+5+6+78+9

Show the sum that has the maximum number of solutions

9 has 46 solutions

Show the lowest positive number that can't be expressed

211

Show the ten highest numbers that can be expressed

123456789 = 123456789
 23456790 = 1+23456789
 23456788 = -1+23456789
 12345687 = 12345678+9
 12345669 = 12345678-9
  3456801 = 12+3456789
  3456792 = 1+2+3456789
  3456790 = -1+2+3456789
  3456788 = 1-2+3456789
  3456786 = -1-2+3456789

Perl

Works with: Perl version 5.10

<lang perl>#!/usr/bin/perl use warnings; use strict; use feature qw{ say };

my $string = '123456789'; my $length = length $string; my @possible_ops = ("" , '+', '-');

{

   my @ops;
   sub Next {
       return @ops = (0) x ($length) unless @ops;
       my $i = 0;
       while ($i < $length) {
           if ($ops[$i]++ > $#possible_ops - 1) {
               $ops[$i++] = 0;
               next
           }
           # + before the first number
           next if 0 == $i && '+' eq $possible_ops[ $ops[0] ];
           return @ops
       }
       return
   }

}

sub evaluate {

   my ($expression) = @_;
   my $sum;
   $sum += $_ for $expression =~ /([-+]?[0-9]+)/g;
   return $sum

}

my %count = ( my $max_count = 0 => 0 );

say 'Show all solutions that sum to 100';

while (my @ops = Next()) {

   my $expression = "";
   for my $i (0 .. $length - 1) {
       $expression .= $possible_ops[ $ops[$i] ];
       $expression .= substr $string, $i, 1;
   }
   my $sum = evaluate($expression);
   ++$count{$sum};
   $max_count = $sum if $count{$sum} > $count{$max_count};
   say $expression if 100 == $sum;

}

say 'Show the sum that has the maximum number of solutions'; say "sum: $max_count; solutions: $count{$max_count}";

my $n = 1; ++$n until ! exists $count{$n}; say "Show the lowest positive sum that can't be expressed"; say $n;

say 'Show the ten highest numbers that can be expressed'; say for (sort { $b <=> $a } keys %count)[0 .. 9];</lang>

Output:
Show all solutions that sum to 100
123-45-67+89
12-3-4+5-6+7+89
12+3+4+5-6-7+89
123+4-5+67-89
-1+2-3+4+5+6+78+9
1+2+3-4+5+6+78+9
12+3-4+5+67+8+9
1+23-4+56+7+8+9
1+2+34-5+67-8+9
1+23-4+5+6+78-9
123+45-67+8-9
123-4-5-6-7+8-9
Show the sum that has the maximum number of solutions
sum: 9; solutions: 46
Show the lowest positive sum that can't be expressed
211
Show the ten highest numbers that can be expressed
123456789
23456790
23456788
12345687
12345669
3456801
3456792
3456790
3456788
3456786


oneliner version

The first task posed can be solved simply with (pay attention to doublequotes around the program: adjust for you OS): <lang perl> perl -E "say for grep{eval $_ == 100} glob '{-,}'.join '{+,-,}',1..9" </lang>

While the whole task can be solved by: <lang perl> perl -MList::Util="first" -E "@c[0..10**6]=(0..10**6);say for grep{$e=eval;$c[$e]=undef if $e>=0;$h{$e}++;eval $_==100}glob'{-,}'.join'{+,-,}',1..9;END{say for(sort{$h{$b}<=>$h{$a}}grep{$_>=0}keys %h)[0],first{defined $_}@c;say for(sort{$b<=>$a}grep{$_>0}keys %h)[0..9]}" </lang> which outputs

-1+2-3+4+5+6+78+9
1+2+3-4+5+6+78+9
1+2+34-5+67-8+9
1+23-4+5+6+78-9
1+23-4+56+7+8+9
12+3+4+5-6-7+89
12+3-4+5+67+8+9
12-3-4+5-6+7+89
123+4-5+67-89
123+45-67+8-9
123-4-5-6-7+8-9
123-45-67+89
9
211
123456789
23456790
23456788
12345687
12345669
3456801
3456792
3456790
3456788
3456786

Phix

Library: Phix/basics

This is just a trivial count in base 3, with a leading '+' being irrelevant, so from 0(3)000_000_000 to 0(3)122_222_222 which is only (in decimal) 13,122 ...
Admittedly, categorising them into 3429 bins is slightly more effort, but otherwise I am somewhat bemused by all the applescript/javascript/Haskell shenanegins.

enum SUB=-1, NOP=0, ADD=1
 
function eval(sequence s)
integer res = 0, tmp = 0, op = ADD
    for i=1 to length(s) do
        if s[i]=NOP then
            tmp = tmp*10+i
        else
            res += op*tmp
            tmp = i
            op = s[i]
        end if
    end for
    return res + op*tmp
end function
 
procedure show(sequence s)
string res = ""
    for i=1 to length(s) do
        if s[i]!=NOP then
            res &= ','-s[i]
        end if          
        res &= '0'+i
    end for
    printf(1,"%s = %d\n",{res,eval(s)})
end procedure
 
-- Logically this intersperses -/nop/+ between each digit, but you do not actually need the digit.
sequence s = repeat(SUB,9)  -- (==> ..nop+add*8)
 
bool done = false
integer maxl = 0, maxr
integer count = 0
while not done do
    count += 1
    integer r = eval(s), k = getd_index(r)
    sequence solns = iff(k=0?{s}:append(getd_by_index(k),s))
    setd(r,solns)
    if r>0 and maxl<length(solns) then
        maxl = length(solns)
        maxr = r
    end if
    for i=length(s) to 1 by -1 do
        if i=1 and s[i]=NOP then
            done = true
            exit
        elsif s[i]!=ADD then
            s[i] += 1
            exit
        end if
        s[i] = SUB
    end for
end while
 
printf(1,"%d solutions considered (dictionary size: %d)\n",{count,dict_size()})
 
sequence s100 = getd(100)
printf(1,"There are %d sums to 100:\n",{length(s100)})
papply(s100,show)
 
printf(1,"The positive sum of %d has the maximum number of solutions: %d\n",{maxr,maxl})
 
integer prev = 0
function missing(integer key, sequence /*data*/, integer /*pkey*/, object /*user_data=-2*/)
    if key!=prev+1 then
        return 0
    end if
    prev = key
    return 1
end function
traverse_dict_partial_key(missing,1)
printf(1,"The lowest positive sum that cannot be expressed: %d\n",{prev+1})
 
sequence highest = {}
function top10(integer key, sequence /*data*/, object /*user_data*/)
    highest &= key
    return length(highest)<10
end function
traverse_dict(top10,rev:=1)
printf(1,"The 10 highest sums: %v\n",{highest})
Output:
13122 solutions considered (dictionary size: 3429)
There are 12 sums to 100:
-1+2-3+4+5+6+78+9 = 100
12-3-4+5-6+7+89 = 100
123-4-5-6-7+8-9 = 100
123-45-67+89 = 100
123+4-5+67-89 = 100
123+45-67+8-9 = 100
12+3-4+5+67+8+9 = 100
12+3+4+5-6-7+89 = 100
1+23-4+56+7+8+9 = 100
1+23-4+5+6+78-9 = 100
1+2+3-4+5+6+78+9 = 100
1+2+34-5+67-8+9 = 100
The positive sum of 9 has the maximum number of solutions: 46
The lowest positive sum that cannot be expressed: 211
The 10 highest sums: {123456789,23456790,23456788,12345687,12345669,3456801,3456792,3456790,3456788,3456786}

PureBasic

<lang PureBasic>#START=6561

  1. STOPP=19682
  2. SUMME=100
  3. BASIS="123456789"

Structure TSumTerm

 sum.i
 ter.s

EndStructure

NewList Solutions.TSumTerm() NewMap SolCount.i() Dim op.s{1}(8) Dim b.s{1}(8) PokeS(@b(),#BASIS)

Procedure StripTerm(*p_Term)

 If PeekS(*p_Term,1)="+" : PokeC(*p_Term,' ') : EndIf

EndProcedure

Procedure.s Triadisch(v)

 While v : r$=Str(v%3)+r$ : v/3 : Wend
 ProcedureReturn r$

EndProcedure

Procedure.i Calc(t$)

 While Len(t$)
   x=Val(t$) : r+x
   If x<0 : s$=Str(x) : Else : s$="+"+Str(x) : EndIf
   t$=RemoveString(t$,s$,#PB_String_NoCase,1,1)
 Wend
 ProcedureReturn r

EndProcedure

For n=#START To #STOPP

 PokeS(@op(),Triadisch(n))  
 Term$=""
 For i=0 To 8
   Select op(i)
     Case "0" : Term$+    b(i)
     Case "1" : Term$+"+"+b(i)
     Case "2" : Term$+"-"+b(i)
   EndSelect
 Next  
 AddElement(Solutions()) : Solutions()\sum=Calc(Term$) : StripTerm(@Term$) : Solutions()\ter=Term$

Next SortStructuredList(Solutions(),#PB_Sort_Ascending,OffsetOf(TSumTerm\sum),TypeOf(TSumTerm\sum))

If OpenConsole()

 PrintN("Show all solutions that sum to 100:")
 ForEach Solutions()
   If Solutions()\sum=#SUMME : PrintN(#TAB$+Solutions()\ter) : EndIf    
   SolCount(Str(Solutions()\sum))+1
 Next  
 ForEach SolCount()
   If SolCount()>MaxCount : MaxCount=SolCount() : MaxVal$=MapKey(SolCount()) : EndIf
 Next  
 PrintN("Show the positve sum that has the maximum number of solutions:")
 PrintN(#TAB$+MaxVal$+" has "+Str(MaxCount)+" solutions")
 If LastElement(Solutions())
   MaxVal=Solutions()\sum
   PrintN("Show the lowest positive number that can't be expressed:")
   For i=1 To MaxVal
     If SolCount(Str(i))=0 : PrintN(#TAB$+Str(i)) : Break : EndIf
   Next    
   PrintN("Show the 10 highest numbers that can be expressed:")    
   For i=1 To 10
     PrintN(#TAB$+LSet(Str(Solutions()\sum),9)+" = "+Solutions()\ter)
     If Not PreviousElement(Solutions()) : Break : EndIf
   Next
 EndIf  
 Input()

EndIf</lang>

Output:
Show all solutions that sum to 100:
	 123+45-67+8-9
	 123+4-5+67-89
	 123-45-67+89
	 123-4-5-6-7+8-9
	 12+3+4+5-6-7+89
	 12+3-4+5+67+8+9
	 12-3-4+5-6+7+89
	 1+23-4+56+7+8+9
	 1+23-4+5+6+78-9
	 1+2+34-5+67-8+9
	 1+2+3-4+5+6+78+9
	-1+2-3+4+5+6+78+9
Show the positve sum that has the maximum number of solutions:
	9 has 46 solutions
Show the lowest positive number that can't be expressed:
	211
Show the 10 highest numbers that can be expressed:
	123456789 =  123456789
	23456790  =  1+23456789
	23456788  = -1+23456789
	12345687  =  12345678+9
	12345669  =  12345678-9
	3456801   =  12+3456789
	3456792   =  1+2+3456789
	3456790   = -1+2+3456789
	3456788   =  1-2+3456789
	3456786   = -1-2+3456789

Python

<lang python>from itertools import product, islice


def expr(p):

   return "{}1{}2{}3{}4{}5{}6{}7{}8{}9".format(*p)


def gen_expr():

   op = ['+', '-', ]
   return [expr(p) for p in product(op, repeat=9) if p[0] != '+']


def all_exprs():

   values = {}
   for expr in gen_expr():
       val = eval(expr)
       if val not in values:
           values[val] = 1
       else:
           values[val] += 1
   return values


def sum_to(val):

   for s in filter(lambda x: x[0] == val, map(lambda x: (eval(x), x), gen_expr())):
       print(s)


def max_solve():

   print("Sum {} has the maximum number of solutions: {}".
         format(*max(all_exprs().items(), key=lambda x: x[1])))


def min_solve():

   values = all_exprs()
   for i in range(123456789):
       if i not in values:
           print("Lowest positive sum that can't be expressed: {}".format(i))
           return


def highest_sums(n=10):

   sums = map(lambda x: x[0],
              islice(sorted(all_exprs().items(), key=lambda x: x[0], reverse=True), n))
   print("Highest Sums: {}".format(list(sums)))


sum_to(100) max_solve() min_solve() highest_sums()</lang>

Output:
(100, '-1+2-3+4+5+6+78+9')
(100, '1+2+3-4+5+6+78+9')
(100, '1+2+34-5+67-8+9')
(100, '1+23-4+5+6+78-9')
(100, '1+23-4+56+7+8+9')
(100, '12+3+4+5-6-7+89')
(100, '12+3-4+5+67+8+9')
(100, '12-3-4+5-6+7+89')
(100, '123+4-5+67-89')
(100, '123+45-67+8-9')
(100, '123-4-5-6-7+8-9')
(100, '123-45-67+89')
Sum 9 has the maximum number of solutions: 46
Lowest positive sum that can't be expressed: 211
Highest Sums: [123456789, 23456790, 23456788, 12345687, 12345669, 3456801, 3456792, 3456790, 3456788, 3456786]

Alternate solution

Mostly the same algorithm, but both shorter and faster.

<lang python>import itertools from collections import defaultdict, Counter

s = "123456789" h = defaultdict(list) for v in itertools.product(["+", "-", ""], repeat=9):

   if v[0] != "+":
       e = "".join("".join(u) for u in zip(v, s))
       h[eval(e)].append(e)

print("Solutions for 100") for e in h[100]:

   print(e)

c = Counter({k: len(v) for k, v in h.items() if k >= 0})

k, m = c.most_common(1)[0] print("Maximum number of solutions for %d (%d solutions)" % (k, m))

v = sorted(c.keys())

for i in range(v[-1]):

   if i not in c:
       print("Lowest impossible sum: %d" % i)
       break

print("Ten highest sums") for k in reversed(v[-10:]):

   print(k)</lang>
Output:
Solutions for 100
-1+2-3+4+5+6+78+9
1+2+3-4+5+6+78+9
1+2+34-5+67-8+9
1+23-4+5+6+78-9
1+23-4+56+7+8+9
12+3+4+5-6-7+89
12+3-4+5+67+8+9
12-3-4+5-6+7+89
123+4-5+67-89
123+45-67+8-9
123-4-5-6-7+8-9
123-45-67+89
Maximum number of solutions for 9 (46 solutions)
Lowest impossible sum: 211
Ten highest sums
123456789
23456790
23456788
12345687
12345669
3456801
3456792
3456790
3456788
3456786

Racket

<lang racket>#lang racket

(define list-partitions

 (match-lambda
   [(list) (list null)]
   [(and L (list _)) (list (list L))]
   [(list L ...)
    (for*/list
         ((i (in-range 1 (add1 (length L))))
          (r (in-list (list-partitions (drop L i)))))
       (cons (take L i) r))]))

(define digits->number (curry foldl (λ (dgt acc) (+ (* 10 acc) dgt)) 0))

(define partition-digits-to-numbers

 (let ((memo (make-hash)))
   (λ (dgts)
     (hash-ref! memo dgts
                (λ ()
                  (map (λ (p) (map digits->number p))
                       (list-partitions dgts)))))))

(define (fold-sum-to-ns digits kons k0)

 (define (get-solutions nmbrs acc chain k)
   (match nmbrs
     [(list)
      (kons (cons acc (let ((niahc (reverse chain)))             
                        (if (eq? '+ (car niahc)) (cdr niahc) niahc)))
            k)]
     [(cons a d)
      (get-solutions d (- acc a) (list* a '- chain)
                     (get-solutions d (+ acc a) (list* a '+ chain) k))]))
 (foldl (λ (nmbrs k) (get-solutions nmbrs 0 null k)) k0 (partition-digits-to-numbers digits)))

(define sum-to-ns/hash-promise

 (delay (fold-sum-to-ns
         '(1 2 3 4 5 6 7 8 9)
         (λ (a.s d) (hash-update d (car a.s) (λ (x) (cons (cdr a.s) x)) list))
         (hash))))

(module+ main

 (define S (force sum-to-ns/hash-promise))
 (displayln "Show all solutions that sum to 100")
 (pretty-print (hash-ref S 100))
 
 (displayln "Show the sum that has the maximum number of solutions (from zero to infinity*)")
 (let-values (([k-max v-max]
               (for/fold ((k-max #f) (v-max 0))
                         (([k v] (in-hash S)) #:when (> (length v) v-max))
                 (values k (length v)))))
   (printf "~a has ~a solutions~%" k-max v-max))
 
 (displayln "Show the lowest positive sum that can't be expressed (has no solutions),
using the rules for this task")
 (for/first ((n (in-range 1 (add1 123456789))) #:unless (hash-has-key? S n)) n)
 
 (displayln "Show the ten highest numbers that can be expressed using the rules for this task")
 (take (sort (hash-keys S) >) 10))

(module+ test

 (require rackunit)
 (check-equal? (list-partitions null) '(()))
 (check-equal? (list-partitions '(1)) '(((1))))
 (check-equal? (list-partitions '(1 2)) '(((1) (2)) ((1 2))))
 (check-equal? (partition-digits-to-numbers '()) '(()))
 (check-equal? (partition-digits-to-numbers '(1)) '((1)))
 (check-equal? (partition-digits-to-numbers '(1 2)) '((1 2) (12))))</lang>
Output:
Show all solutions that sum to 100
'((123 - 45 - 67 + 89)
  (123 + 45 - 67 + 8 - 9)
  (123 + 4 - 5 + 67 - 89)
  (123 - 4 - 5 - 6 - 7 + 8 - 9)
  (12 + 3 - 4 + 5 + 67 + 8 + 9)
  (12 - 3 - 4 + 5 - 6 + 7 + 89)
  (12 + 3 + 4 + 5 - 6 - 7 + 89)
  (1 + 23 - 4 + 56 + 7 + 8 + 9)
  (1 + 23 - 4 + 5 + 6 + 78 - 9)
  (1 + 2 + 34 - 5 + 67 - 8 + 9)
  (- 1 + 2 - 3 + 4 + 5 + 6 + 78 + 9)
  (1 + 2 + 3 - 4 + 5 + 6 + 78 + 9))
Show the sum that has the maximum number of solutions (from zero to infinity*)
9 has 46 solutions
Show the lowest positive sum that can't be expressed (has no solutions),
 using the rules for this task
211
Show the ten highest numbers that can be expressed using the rules for this task
'(123456789 23456790 23456788 12345687 12345669 3456801 3456792 3456790 3456788 3456786)

Raku

(formerly Perl 6)

Works with: Rakudo version 2017.03

<lang perl6>my $sum = 100; my $N = 10; my @ops = ['-', ], |( [' + ', ' - ', ] xx 8 ); my @str = [X~] map { .Slip }, ( @ops Z 1..9 ); my %sol = @str.classify: *.subst( ' - ', ' -', :g )\

                         .subst( ' + ',  ' ', :g ).words.sum;

my %count.push: %sol.map({ .value.elems => .key });

my $max-solutions = %count.max( + *.key ); my $first-unsolvable = first { %sol{$_} :!exists }, 1..*; sub n-largest-sums (Int $n) { %sol.sort(-*.key)[^$n].fmt: "%8s => %s\n" }

given %sol{$sum}:p {

   say "{.value.elems} solutions for sum {.key}:";
   say "    $_" for .value.list;

}

.say for :$max-solutions, :$first-unsolvable, "$N largest sums:", n-largest-sums($N);</lang>

Output:
12 solutions for sum 100:
    -1 + 2 - 3 + 4 + 5 + 6 + 78 + 9
    1 + 2 + 3 - 4 + 5 + 6 + 78 + 9
    1 + 2 + 34 - 5 + 67 - 8 + 9
    1 + 23 - 4 + 5 + 6 + 78 - 9
    1 + 23 - 4 + 56 + 7 + 8 + 9
    12 + 3 + 4 + 5 - 6 - 7 + 89
    12 + 3 - 4 + 5 + 67 + 8 + 9
    12 - 3 - 4 + 5 - 6 + 7 + 89
    123 + 4 - 5 + 67 - 89
    123 + 45 - 67 + 8 - 9
    123 - 4 - 5 - 6 - 7 + 8 - 9
    123 - 45 - 67 + 89
max-solutions => 46 => [-9 9]
first-unsolvable => 211
10 largest sums:
123456789 => 123456789
 23456790 => 1 + 23456789
 23456788 => -1 + 23456789
 12345687 => 12345678 + 9
 12345669 => 12345678 - 9
  3456801 => 12 + 3456789
  3456792 => 1 + 2 + 3456789
  3456790 => -1 + 2 + 3456789
  3456788 => 1 - 2 + 3456789
  3456786 => -1 - 2 + 3456789

REXX

<lang rexx>/*REXX pgm solves a puzzle: using the string 123456789, insert - or + to sum to 100*/ parse arg LO HI . /*obtain optional arguments from the CL*/ if LO== | LO=="," then LO= 100 /*Not specified? Then use the default.*/ if HI== | HI=="," then HI= LO /* " " " " " " */ if LO==00 then HI= 123456789 /*LOW specified as zero with leading 0.*/ ops= '+-'; L= length(ops) + 1 /*define operators (and their length). */ @.=; do i=1 for L-1; @.i= substr(ops,i,1) /* " some handy-dandy REXX literals*/

         end   /*i*/                            /*   "   individual operators for speed*/

mx= 0; mn= 999999 /*initialize the minimums and maximums.*/ mxL=; mnL=; do j=LO to HI until LO==00 & mn==0 /*solve with range of sums*/

                     z= ???(j)                               /*find # solutions for J. */
                     if z> mx  then     mxL=                 /*is this a new maximum ? */
                     if z>=mx  then do; mxL=mxL j; mx=z; end /*remember this new max.  */
                     if z< mn  then     mnL=                 /*is this a new minimum ? */
                     if z<=mn  then do; mnL=mnL j; mn=z; end /*remember this new min.  */
                     end   /*j*/

if LO==HI then exit 0 /*don't display max&min ? */ @@= 'number of solutions: '; say _= words(mxL); say 'sum's(_) "of" mxL ' 's(_,"have",'has') 'the maximum' @@ mx _= words(mnL); say 'sum's(_) "of" mnL ' 's(_,"have",'has') 'the minimum' @@ mn exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ s: if arg(1)==1 then return arg(3); return word( arg(2) "s",1) /*simple pluralizer*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ ???: parse arg answer; #= 0 /*obtain the answer (sum) to the puzzle*/

      do         a=L-1  for 2; aa=       @.a'1' /*choose one  of  -       or  nothing. */
       do        b=1  for L;   bb= aa || @.b'2' /*   "    "    "  -   +,  or  abutment.*/
        do       c=1  for L;   cc= bb || @.c'3' /*   "    "    "  "   "    "      "    */
         do      d=1  for L;   dd= cc || @.d'4' /*   "    "    "  "   "    "      "    */
          do     e=1  for L;   ee= dd || @.e'5' /*   "    "    "  "   "    "      "    */
           do    f=1  for L;   ff= ee || @.f'6' /*   "    "    "  "   "    "      "    */
            do   g=1  for L;   gg= ff || @.g'7' /*   "    "    "  "   "    "      "    */
             do  h=1  for L;   hh= gg || @.h'8' /*   "    "    "  "   "    "      "    */
              do i=1  for L;   ii= hh || @.i'9' /*   "    "    "  "   "    "      "    */
              interpret '$='   ii               /*calculate the sum of modified string.*/
              if $\==answer  then iterate       /*Is sum not equal to answer? Then skip*/
              #= # + 1;        if LO==HI  then say 'solution: '    $    " ◄───► "    ii
              end   /*i*/                       /*                                     */
             end    /*h*/                       /*                          d          */
            end     /*g*/                       /*                          d          */
           end      /*f*/                       /*   eeeee   n nnnn    dddddd   sssss  */
          end       /*e*/                       /*  e     e  nn    n  d     d  s       */
         end        /*d*/                       /*  eeeeeee  n     n  d     d   sssss  */
        end         /*c*/                       /*  e        n     n  d     d        s */
       end          /*b*/                       /*   eeeee   n     n   ddddd    sssss  */
      end           /*a*/                       /*                                     */
    y= #                                        /* [↓]  adjust the number of solutions?*/
    if y==0  then y= 'no'                       /* [↓]  left justify plural of solution*/
    if LO\==00  then say right(y, 9)          'solution's(#, , " ")     'found for'  ,
                         right(j, length(HI) )                           left(, #, "─")
    return #                                    /*return the number of solutions found.*/</lang>
output   when using the default input:
solution:  100  ◄───►  -1+2-3+4+5+6+78+9
solution:  100  ◄───►  1+2+3-4+5+6+78+9
solution:  100  ◄───►  1+2+34-5+67-8+9
solution:  100  ◄───►  1+23-4+5+6+78-9
solution:  100  ◄───►  1+23-4+56+7+8+9
solution:  100  ◄───►  12+3+4+5-6-7+89
solution:  100  ◄───►  12+3-4+5+67+8+9
solution:  100  ◄───►  12-3-4+5-6+7+89
solution:  100  ◄───►  123+4-5+67-89
solution:  100  ◄───►  123+45-67+8-9
solution:  100  ◄───►  123-4-5-6-7+8-9
solution:  100  ◄───►  123-45-67+89
       12 solutions found for 100
output   when the following input is used:   00
sum of  9  has the maximum number of solutions:  46
sum of  211  has the minimum number of solutions:  0

Ruby

Translation of: Elixir

<lang ruby>def gen_expr

 x = ['-', ]
 y = ['+', '-', ]
 x.product(y,y,y,y,y,y,y,y)
  .map do |a,b,c,d,e,f,g,h,i|
     "#{a}1#{b}2#{c}3#{d}4#{e}5#{f}6#{g}7#{h}8#{i}9"
   end

end

def sum_to(val)

 gen_expr.map{|expr| [eval(expr), expr]}.select{|v,expr| v==val}.each{|x| p x}

end

def max_solve

 n,size = gen_expr.group_by{|expr| eval(expr)}
                  .select{|val,_| val>=0}
                  .map{|val,exprs| [val, exprs.size]}
                  .max_by{|_,size| size}
 puts "sum of #{n} has the maximum number of solutions : #{size}"

end

def min_solve

 solves = gen_expr.group_by{|expr| eval(expr)}
 n = 0.step{|i| break i unless solves[i]}
 puts "lowest positive sum that can't be expressed : #{n}"

end

def highest_sums(n=10)

 n = gen_expr.map{|expr| eval(expr)}.uniq.sort.reverse.take(n)
 puts "highest sums : #{n}"

end

sum_to(100) max_solve min_solve highest_sums</lang>

Output:
[100, "-1+2-3+4+5+6+78+9"]
[100, "1+2+3-4+5+6+78+9"]
[100, "1+2+34-5+67-8+9"]
[100, "1+23-4+5+6+78-9"]
[100, "1+23-4+56+7+8+9"]
[100, "12+3+4+5-6-7+89"]
[100, "12+3-4+5+67+8+9"]
[100, "12-3-4+5-6+7+89"]
[100, "123+4-5+67-89"]
[100, "123+45-67+8-9"]
[100, "123-4-5-6-7+8-9"]
[100, "123-45-67+89"]
sum of 9 has the maximum number of solutions : 46
lowest positive sum that can't be expressed : 211
highest sums : [123456789, 23456790, 23456788, 12345687, 12345669, 3456801, 3456792, 3456790, 3456788, 3456786]

Scala

<lang scala>object SumTo100 {

 def main(args: Array[String]): Unit = {
   val exps = expressions(9).map(str => (str, eval(str)))
   val sums = exps.map(_._2).sortWith(_>_)
 
   val s1 = exps.filter(_._2 == 100)
   val s2 = sums.distinct.map(s => (s, sums.count(_ == s))).maxBy(_._2)
   val s3 = sums.distinct.reverse.filter(_>0).zipWithIndex.dropWhile{case (n, i) => n == i + 1}.head._2 + 1
   val s4 = sums.distinct.take(10)
 
   println(s"""All ${s1.size} solutions that sum to 100:
              |${s1.sortBy(_._1.length).map(p => s"${p._2} = ${p._1.tail}").mkString("\n")}
              |
              |Most common sum: ${s2._1} (${s2._2})
              |Lowest unreachable sum: $s3
              |Highest 10 sums: ${s4.mkString(", ")}""".stripMargin)
 }
 
 def expressions(l: Int): LazyList[String] = configurations(l).map(p => p.zipWithIndex.map{case (op, n) => s"${opChar(op)}${n + 1}"}.mkString)
 def configurations(l: Int): LazyList[Vector[Int]] = LazyList.range(0, math.pow(3, l).toInt).map(config(l)).filter(_.head != 0)
 def config(l: Int)(num: Int): Vector[Int] = Iterator.iterate((num%3, num/3)){case (_, n) => (n%3, n/3)}.map(_._1 - 1).take(l).toVector
 
 def eval(exp: String): Int = (exp.headOption, exp.tail.takeWhile(_.isDigit), exp.tail.dropWhile(_.isDigit)) match{
   case (Some(op), n, str) => doOp(op, n.toInt) + eval(str)
   case _ => 0
 }
 
 def doOp(sel: Char, n: Int): Int = if(sel == '-') -n else n
 def opChar(sel: Int): String = sel match{
   case -1 => "-"
   case 1 => "+"
   case _ => ""
 }

}</lang>

Output:
All 12 solutions that sum to 100:
100 = 123-45-67+89
100 = 123+45-67+8-9
100 = 123+4-5+67-89
100 = 1+23-4+5+6+78-9
100 = 123-4-5-6-7+8-9
100 = 12+3+4+5-6-7+89
100 = 12-3-4+5-6+7+89
100 = 1+2+34-5+67-8+9
100 = 12+3-4+5+67+8+9
100 = 1+23-4+56+7+8+9
100 = 1+2+3-4+5+6+78+9
100 = 1+2-3+4+5+6+78+9

Most common sum: 9 (46)
Lowest unreachable sum: 211
Highest 10 sums: 123456789, 23456790, 23456788, 12345687, 12345669, 3456801, 3456792, 3456790, 3456788, 3456786

Sidef

Translation of: Ruby

<lang ruby>func gen_expr() is cached {

   var x = ['-', ]
   var y = ['+', '-', ]
   gather {
       cartesian([x,y,y,y,y,y,y,y,y], {|a,b,c,d,e,f,g,h,i|
           take("#{a}1#{b}2#{c}3#{d}4#{e}5#{f}6#{g}7#{h}8#{i}9")
       })
   }

}

func eval_expr(expr) is cached {

   expr.scan(/([-+]?\d+)/).sum_by { Num(_) }

}

func sum_to(val) {

   gen_expr().grep { eval_expr(_) == val }

}

func max_solve() {

   gen_expr().grep     { eval_expr(_) >= 0 } \
             .group_by { eval_expr(_)      } \
             .max_by   {|_,v| v.len        }

}

func min_solve() {

   var h = gen_expr().group_by { eval_expr(_) }
   for i in (0..Inf) { h.exists(i) || return i }

}

func highest_sums(n=10) {

   gen_expr().map { eval_expr(_) }.uniq.sort.reverse.first(n)

}

sum_to(100).each { say "100 = #{_}" }

var (n, solutions) = max_solve()... say "Sum of #{n} has the maximum number of solutions: #{solutions.len}" say "Lowest positive sum that can't be expressed : #{min_solve()}" say "Highest sums: #{highest_sums()}"</lang>

Output:
100 = -1+2-3+4+5+6+78+9
100 = 1+2+3-4+5+6+78+9
100 = 1+2+34-5+67-8+9
100 = 1+23-4+5+6+78-9
100 = 1+23-4+56+7+8+9
100 = 12+3+4+5-6-7+89
100 = 12+3-4+5+67+8+9
100 = 12-3-4+5-6+7+89
100 = 123+4-5+67-89
100 = 123+45-67+8-9
100 = 123-4-5-6-7+8-9
100 = 123-45-67+89
Sum of 9 has the maximum number of solutions: 46
Lowest positive sum that can't be expressed : 211
Highest sums: [123456789, 23456790, 23456788, 12345687, 12345669, 3456801, 3456792, 3456790, 3456788, 3456786]

Tcl

<lang Tcl>proc sum_to_100 {} {

   for {set i 0} {$i <= 13121} {incr i} {

set i3 [format %09d [dec2base 3 $i]] set form "" set subs {"" - +} foreach a [split $i3 ""] b [split 123456789 ""] { append form [lindex $subs $a] $b } lappend R([expr $form]) $form

   }
   puts "solutions for sum=100:\n[join [lsort $R(100)] \n]"
   set max -1
   foreach key [array names R] {

if {[llength $R($key)] > $max} { set max [llength $R($key)] set maxkey $key }

   }
   puts "max solutions: $max for $maxkey"
   for {set i 0} {$i <= 123456789} {incr i} {

if ![info exists R($i)] { puts "first unsolvable: $i" break }

   }
   puts "highest 10:\n[lrange [lsort -integer -decr [array names R]] 0 9]"

} proc dec2base {base dec} {

   set res ""
   while {$dec > 0} {

set res [expr $dec%$base]$res set dec [expr $dec/$base]

   }
   if {$res eq ""} {set res 0}
   return $res

} sum_to_100</lang>

~ $ ./sum_to_100.tcl
solutions for sum=100:
-1+2-3+4+5+6+78+9
1+2+3-4+5+6+78+9
1+2+34-5+67-8+9
1+23-4+5+6+78-9
1+23-4+56+7+8+9
12+3+4+5-6-7+89
12+3-4+5+67+8+9
12-3-4+5-6+7+89
123+4-5+67-89
123+45-67+8-9
123-4-5-6-7+8-9
123-45-67+89
max solutions: 46 for 9
first unsolvable: 211
highest 10:
123456789 23456790 23456788 12345687 12345669 3456801 3456792 3456790 3456788 3456786

Visual Basic .NET

Of course, one could just code-convert the existing C# example, but I thought this could be written with some simpler constructs. The point of doing this is to make the code more compatible with other BASIC languages. Not every language has something similar to the Enumerable Range construct. I also found the Dictionary construct could be implemented with something more primitive.

Another interesting thing this program can do is solve for other sets of numbers easily, as neither the number of digits, nor the digit sequence itself, is hard-coded. You could solve for the digits 1 through 8, for example, or the digits starting at 9 and going down to 1. One can even override the target sum (of 100) parameter, if you happen to be interested in another number. <lang vbnet>' Recursively iterates (increments) iteration array, returns -1 when out of "digits". Function plusOne(iAry() As Integer, spot As Integer) As Integer

   Dim spotLim As Integer = If(spot = 0, 1, 2) ' The first "digit" has a lower limit.
   If iAry(spot) = spotLim Then ' Check if spot has reached limit
       If spot = 0 Then Return -1 ' No previous spot to increment, so indicate completed.
       iAry(spot) = 0 ' Reset current spot, and
       Return plusOne(iAry, spot - 1) ' Increment previous spot.
   Else
       iAry(spot) += 1 ' Increment current spot.
   End If
   Return spot

End Function

' Returns string sequence of operations from iAry and terms string Function generate(iAry() As Integer, terms As String) As String

   Dim operations As String() = {"", "-", "+"} ' Possible operations.
   generate = ""
   For i As Integer = 0 To iAry.Count - 1
       generate &= operations(iAry(i)) & Mid(terms, i + 1, 1).ToString()
   Next

End Function

' Returns evaluation of string sequence Function eval(sequence As String) As Integer

   eval = 0
   Dim term As Integer = 0, operation As Integer = 1
   For Each ch As Char In sequence
       Select Case ch
           Case "-", "+" ' New operation detected, apply previous operation to term,
               eval += If(operation = 0, -term, term) : term = 0 ' and reset term.
               operation = If(ch = "-", 0, 1) ' Note next operation.
           Case Else ' Digit detected, increase term.
               term = term * 10 + Val(ch)
       End Select
   Next
   eval += If(operation = 0, -term, term) ' Apply final term.

End Function

' Sorts a pair of List(Of Integer) by the first Sub reSort(ByRef first As List(Of Integer), ByRef second As List(Of Integer))

   Dim lou As New List(Of ULong) ' Temporary list of ULong for sorting.
   For i As Integer = 0 To first.Count - 1
       lou.Add((CULng(first(i)) << 32) + second(i)) ' "Pack" list items.
   Next
   lou.Sort()
   For k As Integer = 0 To first.Count - 1
       first(k) = lou(k) >> 32 ' "Unpack" first list item.
       second(k) = lou(k) And &H7FFFFFFF ' "Unpack" second list item.
   Next

End Sub

' Returns first result not in sequence, assumes passed list is sorted before call, ' uses binary search algo. Function firstMiss(loi As List(Of Integer))

   Dim low As Integer = 0, high As Integer = loi.Count - 1, middle = (low + high) \ 2
   Do
       If loi(middle) = middle Then low = middle + 1 Else high = middle - 1
       middle = (low + high) \ 2
   Loop Until high <= low
   Return middle + If(loi(middle) = middle, 1, 0)

End Function

' Iterates through all possible operations, ' uses a pair of List (of Integer) to tabulate solutions. Sub Solve100(Optional terms As String = "123456789",

            Optional targSum As Integer = 100,
            Optional highNums As Integer = 10)
   Dim lastDig As Integer = Len(terms) - 1 ' The final "digit".
   Dim iAry() As Integer = New Integer(lastDig) {} ' Iterations array.
   Dim seq As String ' Sequence of numbers and operations.
   Dim sVal As Integer ' Sequence value.
   Dim sCnt As Integer = 1 ' Solution count (targSum).
   Dim res As New List(Of Integer) ' List of results.
   Dim tally As New List(Of Integer) ' Tally of results.
   Console.WriteLine("List of solutions that evaluate to 100:")
   Do ' Tabulate results until digits are exhausted.
       seq = generate(iAry, terms) ' Obtain next expression.
       sVal = eval(seq) ' Obtain next evaluation.
       If sVal >= 0 Then ' Don't bother saving the negative results.
           If res.Contains(sVal) Then tally(res.IndexOf(sVal)) += 1 _
                                 Else res.Add(sVal) : tally.Add(1)
           If sVal = targSum Then _
               Console.WriteLine(" {0,2} {1}", sCnt, seq) : sCnt += 1
       End If
   Loop Until plusOne(iAry, lastDig) < 0
   reSort(tally, res) ' Sort by tally to find result with the most solutions.
   Console.WriteLine("The sum that has the the most solutions is {0}, (at {1}).",
                     res.Last, tally.Last)
   reSort(res, tally) ' Sort by result to find first missing result and top results.
   Console.WriteLine("The lowest positive sum that can't be expressed is {0}.",
                     firstMiss(res))
   Console.WriteLine("The ten highest numbers that can be expressed are:")
   res.Reverse() ' To let us take the last items for output.
   sCnt = 0 ' Keep track of items displayed (for formatting).
   For Each item As Integer In res.Take(highNums)
       Console.Write("{0, -11}", item)
       sCnt = (sCnt + 1) Mod 5 : If sCnt = 0 Then Console.WriteLine()
   Next

End Sub

Sub Main()

   Solve100() ' if interested, try this: Solve100("987654321")

End Sub</lang>

Output:
List of solutions that evaluate to 100:
  1 123-45-67+89
  2 123-4-5-6-7+8-9
  3 123+45-67+8-9
  4 123+4-5+67-89
  5 12-3-4+5-6+7+89
  6 12+3-4+5+67+8+9
  7 12+3+4+5-6-7+89
  8 1+23-4+56+7+8+9
  9 1+23-4+5+6+78-9
 10 1+2+34-5+67-8+9
 11 1+2+3-4+5+6+78+9
 12 -1+2-3+4+5+6+78+9
The sum that has the the most solutions is 9, (at 46).
The lowest positive sum that can't be expressed is 211.
The ten highest numbers that can be expressed are:
123456789  23456790   23456788   12345687   12345669
3456801    3456792    3456790    3456788    3456786

Wren

Translation of: Kotlin
Library: Wren-dynamic
Library: Wren-fmt
Library: Wren-set
Library: Wren-math
Library: Wren-sort

<lang ecmascript>import "/dynamic" for Enum import "/fmt" for Fmt import "/set" for Set import "/math" for Nums import "/sort" for Sort

var Op = Enum.create("Op", ["ADD", "SUB", "JOIN"])

var NUMBER_OF_DIGITS = 9 var THREE_POW_4 = 3 * 3 * 3 * 3 var NUMBER_OF_EXPRESSIONS = 2 * THREE_POW_4 * THREE_POW_4

class Expression {

   static print(givenSum) {
       var expr = Expression.new()
       for (i in 0...NUMBER_OF_EXPRESSIONS) {
           if (expr.toInt == givenSum) Fmt.print("$9d = $s", givenSum, expr)
           expr.inc
       }
   }
   construct new() {
       _code = List.filled(NUMBER_OF_DIGITS, Op.ADD)
   }
   inc {
       for (i in 0..._code.count) {
           _code[i] = (_code[i] == Op.ADD) ? Op.SUB : (_code[i] == Op.SUB) ? Op.JOIN : Op.ADD
           if (_code[i] != Op.ADD) break
       }
       return this
   }
   toInt { 
       var value = 0
       var number = 0
       var sign = 1
       for (digit in 1..9) {
           var c = _code[NUMBER_OF_DIGITS - digit]
           if (c == Op.ADD) {
               value = value + sign * number
               number = digit
               sign = 1
           } else if (c == Op.SUB) {
               value = value + sign * number
               number = digit
               sign = -1
           } else {
               number = 10 * number + digit
           }
       }
       return value + sign * number
   }
   toString {
       var sb = ""
       for (digit in 1..NUMBER_OF_DIGITS) {
           var c = _code[NUMBER_OF_DIGITS - digit]
           if (c == Op.ADD) {
               if (digit > 1) sb = sb + " + "
           } else if (c == Op.SUB) {
               sb = sb + " - "
           }
           sb = sb + digit.toString
       }
       return sb.trimStart()
   }

}

class Stat {

   construct new() {
       _countSum = {}
       _sumCount = {}
       var expr = Expression.new()
       for (i in 0...NUMBER_OF_EXPRESSIONS) {
           var sum = expr.toInt
           _countSum[sum] = _countSum[sum] ? 1 + _countSum[sum] : 1
           expr.inc
       }
       for (me in _countSum) {
           var set = _sumCount.containsKey(me.value) ? _sumCount[me.value] : Set.new()
           set.add(me.key)
           _sumCount[me.value] = set
       }
   }
   countSum { _countSum }
   sumCount { _sumCount }

}

System.print("100 has the following solutions:\n") Expression.print(100)

var stat = Stat.new() var maxCount = Nums.max(stat.sumCount.keys) var maxSum = Nums.max(stat.sumCount[maxCount]) System.print("\n%(maxSum) has the maximum number of solutions, namely %(maxCount)")

var value = 0 while (stat.countSum.containsKey(value)) value = value + 1 System.print("\n%(value) is the lowest positive number with no solutions")

System.print("\nThe ten highest numbers that do have solutions are:\n") var res = stat.countSum.keys.toList Sort.quick(res) res[-1..0].take(10).each { |e| Expression.print(e) }</lang>

Output:
100 has the following solutions:

      100 = 1 + 2 + 3 - 4 + 5 + 6 + 78 + 9
      100 = 1 + 2 + 34 - 5 + 67 - 8 + 9
      100 = 1 + 23 - 4 + 5 + 6 + 78 - 9
      100 = 1 + 23 - 4 + 56 + 7 + 8 + 9
      100 = 12 + 3 + 4 + 5 - 6 - 7 + 89
      100 = 12 + 3 - 4 + 5 + 67 + 8 + 9
      100 = 12 - 3 - 4 + 5 - 6 + 7 + 89
      100 = 123 + 4 - 5 + 67 - 89
      100 = 123 + 45 - 67 + 8 - 9
      100 = 123 - 4 - 5 - 6 - 7 + 8 - 9
      100 = 123 - 45 - 67 + 89
      100 = - 1 + 2 - 3 + 4 + 5 + 6 + 78 + 9

9 has the maximum number of solutions, namely 46

211 is the lowest positive number with no solutions

The ten highest numbers that do have solutions are:

123456789 = 123456789
 23456790 = 1 + 23456789
 23456788 = - 1 + 23456789
 12345687 = 12345678 + 9
 12345669 = 12345678 - 9
  3456801 = 12 + 3456789
  3456792 = 1 + 2 + 3456789
  3456790 = - 1 + 2 + 3456789
  3456788 = 1 - 2 + 3456789
  3456786 = - 1 - 2 + 3456789

zkl

Taking a big clue from Haskell and just calculate the world. <lang zkl>var all = // ( (1,12,123...-1,-12,...), (2,23,...) ...)

  (9).pump(List,fcn(n){ split("123456789"[n,*]) })       // 45
  .apply(fcn(ns){ ns.extend(ns.copy().apply('*(-1))) }); // 90

fcn calcAllSums{ // calculate all 6572 sums (1715 unique)

  fcn(n,sum,soFar,r){
     if(n==9) return();
     foreach b in (all[n]){

if(sum+b>=0 and b.abs()%10==9) r.appendV(sum+b,"%s%+d".fmt(soFar,b)); self.fcn(b.abs()%10,sum + b,"%s%+d".fmt(soFar,b),r);

     }
  }(0,0,"",r:=Dictionary());
  r

}

   // "123" --> (1,12,123)

fcn split(nstr){ (1).pump(nstr.len(),List,nstr.get.fp(0),"toInt") }</lang> <lang zkl>fcn showSums(allSums,N=100,printSolutions=2){

  slns:=allSums.find(N,T);
  if(printSolutions)    println("%d solutions for N=%d".fmt(slns.len(),N));
  if(printSolutions==2) println(slns.concat("\n"));
  println();

}

allSums:=calcAllSums(); showSums(allSums); showSums(allSums,0,1);

println("Smallest postive integer with no solution: ",

  [1..].filter1('wrap(n){ Void==allSums.find(n) }));

println("5 commonest sums (sum, number of ways to calculate to it):"); ms:=allSums.values.apply("len").sort()[-5,*]; // 5 mostest sums allSums.pump(List, // get those pairs

  'wrap([(k,v)]){ v=v.len(); ms.holds(v) and T(k.toInt(),v) or Void.Skip })

.sort(fcn(kv1,kv2){ kv1[1]>kv2[1] }) // and sort .println();</lang>

Output:
12 solutions for N=100
+1+2+3-4+5+6+78+9
+1+2+34-5+67-8+9
+1+23-4+5+6+78-9
+1+23-4+56+7+8+9
+12+3+4+5-6-7+89
+12+3-4+5+67+8+9
+12-3-4+5-6+7+89
+123+4-5+67-89
+123+45-67+8-9
+123-4-5-6-7+8-9
+123-45-67+89
-1+2-3+4+5+6+78+9

22 solutions for N=0

Smallest postive integer with no solution: 211

5 commonest sums (sum, number of ways to calculate to it):
L(L(9,46),L(27,44),L(15,43),L(1,43),L(21,43))
Cookies help us deliver our services. By using our services, you agree to our use of cookies.