Stable marriage problem
You are encouraged to solve this task according to the task description, using any language you may know.
Solve the Stable marriage problem using the Gale/Shapley algorithm.
Problem description
Given an equal number of men and women to be paired for marriage, each man ranks all the women in order of his preference and each woman ranks all the men in order of her preference.
A stable set of engagements for marriage is one where no man prefers a woman over the one he is engaged to, where that other woman also prefers that man over the one she is engaged to. I.e. with consulting marriages, there would be no reason for the engagements between the people to change.
Gale and Shapley proved that there is a stable set of engagements for any set of preferences and the first link above gives their algorithm for finding a set of stable engagements.
Task Specifics
Given ten males:
abe, bob, col, dan, ed, fred, gav, hal, ian, jon
And ten females:
abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan
And a complete list of ranked preferences, where the most liked is to the left:
abe: abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay bob: cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay col: hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan dan: ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi ed: jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay fred: bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay gav: gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay hal: abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee ian: hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve jon: abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope abi: bob, fred, jon, gav, ian, abe, dan, ed, col, hal bea: bob, abe, col, fred, gav, dan, ian, ed, jon, hal cath: fred, bob, ed, gav, hal, col, ian, abe, dan, jon dee: fred, jon, col, abe, ian, hal, gav, dan, bob, ed eve: jon, hal, fred, dan, abe, gav, col, ed, ian, bob fay: bob, abe, ed, ian, jon, dan, fred, gav, col, hal gay: jon, gav, hal, fred, bob, abe, col, ed, dan, ian hope: gav, jon, bob, abe, ian, dan, hal, ed, col, fred ivy: ian, col, hal, gav, fred, bob, abe, ed, jon, dan jan: ed, hal, gav, abe, bob, jon, col, ian, fred, dan
- Use the Gale Shapley algorithm to find a stable set of engagements
- Perturb this set of engagements to form an unstable set of engagements then check this new set for stability.
References
- The Stable Marriage Problem. (Eloquent description and background information).
- Gale-Shapley Algorithm Demonstration.
- Another Gale-Shapley Algorithm Demonstration.
- Stable Marriage Problem - Numberphile (Video).
- Stable Marriage Problem (the math bit) (Video).
- The Stable Marriage Problem and School Choice. (Excellent exposition)
11l
V guyprefers = [‘abe’ = [‘abi’, ‘eve’, ‘cath’, ‘ivy’, ‘jan’, ‘dee’, ‘fay’, ‘bea’, ‘hope’, ‘gay’],
‘bob’ = [‘cath’, ‘hope’, ‘abi’, ‘dee’, ‘eve’, ‘fay’, ‘bea’, ‘jan’, ‘ivy’, ‘gay’],
‘col’ = [‘hope’, ‘eve’, ‘abi’, ‘dee’, ‘bea’, ‘fay’, ‘ivy’, ‘gay’, ‘cath’, ‘jan’],
‘dan’ = [‘ivy’, ‘fay’, ‘dee’, ‘gay’, ‘hope’, ‘eve’, ‘jan’, ‘bea’, ‘cath’, ‘abi’],
‘ed’ = [‘jan’, ‘dee’, ‘bea’, ‘cath’, ‘fay’, ‘eve’, ‘abi’, ‘ivy’, ‘hope’, ‘gay’],
‘fred’= [‘bea’, ‘abi’, ‘dee’, ‘gay’, ‘eve’, ‘ivy’, ‘cath’, ‘jan’, ‘hope’, ‘fay’],
‘gav’ = [‘gay’, ‘eve’, ‘ivy’, ‘bea’, ‘cath’, ‘abi’, ‘dee’, ‘hope’, ‘jan’, ‘fay’],
‘hal’ = [‘abi’, ‘eve’, ‘hope’, ‘fay’, ‘ivy’, ‘cath’, ‘jan’, ‘bea’, ‘gay’, ‘dee’],
‘ian’ = [‘hope’, ‘cath’, ‘dee’, ‘gay’, ‘bea’, ‘abi’, ‘fay’, ‘ivy’, ‘jan’, ‘eve’],
‘jon’ = [‘abi’, ‘fay’, ‘jan’, ‘gay’, ‘eve’, ‘bea’, ‘dee’, ‘cath’, ‘ivy’, ‘hope’]]
V galprefers = [‘abi’ = [‘bob’, ‘fred’, ‘jon’, ‘gav’, ‘ian’, ‘abe’, ‘dan’, ‘ed’, ‘col’, ‘hal’],
‘bea’ = [‘bob’, ‘abe’, ‘col’, ‘fred’, ‘gav’, ‘dan’, ‘ian’, ‘ed’, ‘jon’, ‘hal’],
‘cath’= [‘fred’, ‘bob’, ‘ed’, ‘gav’, ‘hal’, ‘col’, ‘ian’, ‘abe’, ‘dan’, ‘jon’],
‘dee’ = [‘fred’, ‘jon’, ‘col’, ‘abe’, ‘ian’, ‘hal’, ‘gav’, ‘dan’, ‘bob’, ‘ed’],
‘eve’ = [‘jon’, ‘hal’, ‘fred’, ‘dan’, ‘abe’, ‘gav’, ‘col’, ‘ed’, ‘ian’, ‘bob’],
‘fay’ = [‘bob’, ‘abe’, ‘ed’, ‘ian’, ‘jon’, ‘dan’, ‘fred’, ‘gav’, ‘col’, ‘hal’],
‘gay’ = [‘jon’, ‘gav’, ‘hal’, ‘fred’, ‘bob’, ‘abe’, ‘col’, ‘ed’, ‘dan’, ‘ian’],
‘hope’= [‘gav’, ‘jon’, ‘bob’, ‘abe’, ‘ian’, ‘dan’, ‘hal’, ‘ed’, ‘col’, ‘fred’],
‘ivy’ = [‘ian’, ‘col’, ‘hal’, ‘gav’, ‘fred’, ‘bob’, ‘abe’, ‘ed’, ‘jon’, ‘dan’],
‘jan’ = [‘ed’, ‘hal’, ‘gav’, ‘abe’, ‘bob’, ‘jon’, ‘col’, ‘ian’, ‘fred’, ‘dan’]]
V guys = sorted(guyprefers.keys())
V gals = sorted(galprefers.keys())
F check(engaged)
V inverseengaged = Dict(engaged.map((k, v) -> (v, k)))
L(she, he) engaged
V shelikes = :galprefers[she]
V shelikesbetter = shelikes[0 .< shelikes.index(he)]
V helikes = :guyprefers[he]
V helikesbetter = helikes[0 .< helikes.index(she)]
L(guy) shelikesbetter
V guysgirl = inverseengaged[guy]
V guylikes = :guyprefers[guy]
I guylikes.index(guysgirl) > guylikes.index(she)
print(‘#. and #. like each other better than their present partners: #. and #., respectively’.format(she, guy, he, guysgirl))
R 0B
L(gal) helikesbetter
V girlsguy = engaged[gal]
V gallikes = :galprefers[gal]
I gallikes.index(girlsguy) > gallikes.index(he)
print(‘#. and #. like each other better than their present partners: #. and #., respectively’.format(he, gal, she, girlsguy))
R 0B
R 1B
F matchmaker()
V guysfree = copy(:guys)
[String = String] engaged
V guyprefers2 = copy(:guyprefers)
V galprefers2 = copy(:galprefers)
L !guysfree.empty
V guy = guysfree.pop(0)
V& guyslist = guyprefers2[guy]
V gal = guyslist.pop(0)
V fiance = engaged.get(gal, ‘’)
I fiance == ‘’
engaged[gal] = guy
print(‘ #. and #.’.format(guy, gal))
E
V galslist = galprefers2[gal]
I galslist.index(fiance) > galslist.index(guy)
engaged[gal] = guy
print(‘ #. dumped #. for #.’.format(gal, fiance, guy))
I !guyprefers2[fiance].empty
guysfree.append(fiance)
E
I !guyslist.empty
guysfree.append(guy)
R engaged
print("\nEngagements:")
V engaged = matchmaker()
print("\nCouples:")
print(‘ ’sorted(engaged.items()).map((couple_key, couple_val) -> ‘#. is engaged to #.’.format(couple_key, couple_val)).join(",\n "))
print()
print(I check(engaged) {‘Engagement stability check PASSED’} E ‘Engagement stability check FAILED’)
print("\n\nSwapping two fiances to introduce an error")
swap(&engaged[gals[0]], &engaged[gals[1]])
L(gal) gals[0.<2]
print(‘ #. is now engaged to #.’.format(gal, engaged[gal]))
print()
print(I check(engaged) {‘Engagement stability check PASSED’} E ‘Engagement stability check FAILED’)
- Output:
Engagements: abe and abi bob and cath col and hope dan and ivy ed and jan fred and bea gav and gay hope dumped col for ian abi dumped abe for jon hal and eve col and dee ivy dumped dan for abe dan and fay Couples: abi is engaged to jon, bea is engaged to fred, cath is engaged to bob, dee is engaged to col, eve is engaged to hal, fay is engaged to dan, gay is engaged to gav, hope is engaged to ian, ivy is engaged to abe, jan is engaged to ed Engagement stability check PASSED Swapping two fiances to introduce an error abi is now engaged to fred bea is now engaged to jon fred and bea like each other better than their present partners: abi and jon, respectively Engagement stability check FAILED
AutoHotkey
; Given a complete list of ranked preferences, where the most liked is to the left:
abe := ["abi", "eve", "cath", "ivy", "jan", "dee", "fay", "bea", "hope", "gay"]
bob := ["cath", "hope", "abi", "dee", "eve", "fay", "bea", "jan", "ivy", "gay"]
col := ["hope", "eve", "abi", "dee", "bea", "fay", "ivy", "gay", "cath", "jan"]
dan := ["ivy", "fay", "dee", "gay", "hope", "eve", "jan", "bea", "cath", "abi"]
ed := ["jan", "dee", "bea", "cath", "fay", "eve", "abi", "ivy", "hope", "gay"]
fred := ["bea", "abi", "dee", "gay", "eve", "ivy", "cath", "jan", "hope", "fay"]
gav := ["gay", "eve", "ivy", "bea", "cath", "abi", "dee", "hope", "jan", "fay"]
hal := ["abi", "eve", "hope", "fay", "ivy", "cath", "jan", "bea", "gay", "dee"]
ian := ["hope", "cath", "dee", "gay", "bea", "abi", "fay", "ivy", "jan", "eve"]
jon := ["abi", "fay", "jan", "gay", "eve", "bea", "dee", "cath", "ivy", "hope"]
abi := ["bob", "fred", "jon", "gav", "ian", "abe", "dan", "ed", "col", "hal"]
bea := ["bob", "abe", "col", "fred", "gav", "dan", "ian", "ed", "jon", "hal"]
cath := ["fred", "bob", "ed", "gav", "hal", "col", "ian", "abe", "dan", "jon"]
dee := ["fred", "jon", "col", "abe", "ian", "hal", "gav", "dan", "bob", "ed"]
eve := ["jon", "hal", "fred", "dan", "abe", "gav", "col", "ed", "ian", "bob"]
fay := ["bob", "abe", "ed", "ian", "jon", "dan", "fred", "gav", "col", "hal"]
gay := ["jon", "gav", "hal", "fred", "bob", "abe", "col", "ed", "dan", "ian"]
hope := ["gav", "jon", "bob", "abe", "ian", "dan", "hal", "ed", "col", "fred"]
ivy := ["ian", "col", "hal", "gav", "fred", "bob", "abe", "ed", "jon", "dan"]
jan := ["ed", "hal", "gav", "abe", "bob", "jon", "col", "ian", "fred", "dan"]
; of ten males:
males := ["abe", "bob", "col", "dan", "ed", "fred", "gav", "hal", "ian", "jon"]
; and ten females:
females := ["abi", "bea", "cath", "dee", "eve", "fay", "gay", "hope", "ivy", "jan"]
; and an empty set of engagements:
engagements := Object()
freemales := males.Clone()
,s := "Engagements:`n"
; use the Gale Shapley algorithm to find a stable set of engagements:
For i, male in freemales ; i=index of male (not needed)
{
j:=1 ; index of female
While (engagements[female:=%male%[j]] != "" and index(%female%, male) > index(%female%, engagements[female]))
j++ ; each male loops through all females in order of his preference until one accepts him
If (engagements[female] != "") ; if she was previously engaged
freemales.insert(engagements[female]) ; her old male goes to the bottom of the list
,s .= female . " dumped " . engagements[female] . "`n"
engagements[female] := male ; the new engagement is registered
,s .= female . " accepted " . male . "`n"
}
; summarize results:
s .= "`nCouples:`n"
For female, male in engagements
s .= female . " is engaged to " . male . "`n"
s .= Stable(engagements, females)
; then perturb this set of engagements to form an unstable set of engagements then check this new set for stability:
s .= "`nWhat if cath and ivy swap?`n"
engagements["cath"]:="abe", engagements["ivy"]:="bob"
; summarize results:
s .= "`nCouples:`n"
For female, male in engagements
s .= female . " is engaged to " . male . "`n"
s .= Stable(engagements, females)
Msgbox % clipboard := s
Return
; Functions:
Index(obj, value) {
For key, val in obj
If (val = value)
Return, key, ErrorLevel := 0
Return, False, Errorlevel := 1
}
Stable(engagements, females) {
For female, male in engagements
{
For j, female2 in females ; j=index of female (not needed)
{
If (index(%male%, female) > index(%male%, female2)
and index(%female2%, male2:=engagements[female2]) > index(%female2%, male))
s .= male . " is engaged to " . female . " but would prefer " . female2
. " and " . female2 . " is engaged to " . male2 . " but would prefer " . male . "`n"
}
}
If s
Return "`nThese couples are not stable.`n" . s
Else
Return "`nThese couples are stable.`n"
}
- Output:
Engagements: abi accepted abe cath accepted bob hope accepted col ivy accepted dan jan accepted ed bea accepted fred gay accepted gav eve accepted hal hope dumped col hope accepted ian abi dumped abe abi accepted jon dee accepted col ivy dumped dan ivy accepted abe fay accepted dan Couples: abi is engaged to jon bea is engaged to fred cath is engaged to bob dee is engaged to col eve is engaged to hal fay is engaged to dan gay is engaged to gav hope is engaged to ian ivy is engaged to abe jan is engaged to ed These couples are stable. What if cath and ivy swap? Couples: abi is engaged to jon bea is engaged to fred cath is engaged to abe dee is engaged to col eve is engaged to hal fay is engaged to dan gay is engaged to gav hope is engaged to ian ivy is engaged to bob jan is engaged to ed These couples are not stable. bob is engaged to ivy but would prefer abi and abi is engaged to jon but would prefer bob bob is engaged to ivy but would prefer bea and bea is engaged to fred but would prefer bob bob is engaged to ivy but would prefer cath and cath is engaged to abe but would prefer bob bob is engaged to ivy but would prefer fay and fay is engaged to dan but would prefer bob bob is engaged to ivy but would prefer hope and hope is engaged to ian but would prefer bob
Batch File
:: Stable Marriage Problem in Rosetta Code
:: Batch File Implementation
@echo off
setlocal enabledelayedexpansion
:: Initialization (Index Starts in 0)
set "male=abe bob col dan ed fred gav hal ian jon"
set "femm=abi bea cath dee eve fay gay hope ivy jan"
set "abe[]=abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay"
set "bob[]=cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay"
set "col[]=hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan"
set "dan[]=ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi"
set "ed[]=jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay"
set "fred[]=bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay"
set "gav[]=gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay"
set "hal[]=abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee"
set "ian[]=hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve"
set "jon[]=abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope"
set "abi[]=bob, fred, jon, gav, ian, abe, dan, ed, col, hal"
set "bea[]=bob, abe, col, fred, gav, dan, ian, ed, jon, hal"
set "cath[]=fred, bob, ed, gav, hal, col, ian, abe, dan, jon"
set "dee[]=fred, jon, col, abe, ian, hal, gav, dan, bob, ed"
set "eve[]=jon, hal, fred, dan, abe, gav, col, ed, ian, bob"
set "fay[]=bob, abe, ed, ian, jon, dan, fred, gav, col, hal"
set "gay[]=jon, gav, hal, fred, bob, abe, col, ed, dan, ian"
set "hope[]=gav, jon, bob, abe, ian, dan, hal, ed, col, fred"
set "ivy[]=ian, col, hal, gav, fred, bob, abe, ed, jon, dan"
set "jan[]=ed, hal, gav, abe, bob, jon, col, ian, fred, dan"
rem variable notation:
rem <boy>{<index>} = <girl>
rem <boy>[<girl>] = <index>
for %%M in (%male%) do (
set cnt=0
for %%. in (!%%M[]!) do (
set "%%M{!cnt!}=%%."
set "%%M[%%.]=!cnt!"
set /a cnt+=1
)
)
for %%F in (%femm%) do (
set cnt=0
for %%. in (!%%F[]!) do (
set "%%F[%%.]=!cnt!"
set /a cnt+=1
)
)
:: The Main Thing
echo(HISTORY:
call :stableMatching
echo(
echo(NEWLYWEDS:
call :display
echo(
call :isStable
echo(
echo(What if ed and hal swapped?
call :swapper ed hal
echo(
echo(NEW-NEWLYWEDS:
call :display
echo(
call :isStable
pause>nul
exit /b 0
:: The Algorithm
:stableMatching
set "free_men=%male%"
set "free_fem=%femm%"
for %%M in (%male%) do set "%%M_tried=0"
:match_loop
if "%free_men%"=="" goto :EOF
for /f "tokens=1* delims= " %%m in ("%free_men%") do (
rem get woman not yet proposed to, but if man's tries exceeds the number
rem of women (poor guy), he starts again to his most preferred woman (#0).
for /f %%x in ("!%%m_tried!") do if not defined %%m{%%x} (
set "%%m_tried=0" & set "w=!%%m{0}!"
) else set "w=!%%m{%%x}!"
set "m=%%m"
for /f %%x in ("free_fem:!w!=") do (
if not "!free_fem!"=="!%%x!" (
rem accept because !w! (the woman) is free
set "!m!_=!w!" & set "!w!_=!m!"
set "free_men=%%n" & set "free_fem=!%%x!"
echo( !w! ACCEPTED !m!.
) else (
rem here, !w! already has a pair; get his name and rank.
for /f %%. in ("!w!") do set "cur_man=!%%._!"
for /f %%. in ("!w![!cur_man!]") do set "rank_cur=!%%.!"
rem also, get the rank of current proposing man.
for /f %%. in ("!w![!m!]") do set "rank_new=!%%.!"
if !rank_new! lss !rank_cur! (
rem here, !w! will leave her pair, and choose !m!.
set "free_men=%%n !cur_man!"
echo( !w! LEFT !cur_man!.
rem pair them up now!
set "!m!_=!w!" & set "!w!_=!m!"
echo( !w! ACCEPTED !m!.
)
)
)
set /a "!m!_tried+=1"
)
goto :match_loop
:: Output the Couples
:display
for %%S in (%femm%) do echo. %%S and !%%S_!.
goto :EOF
:: Stability Checking
:isStable
for %%f in (%femm%) do (
for %%g in (%male%) do (
for /f %%. in ("%%f[!%%f_!]") do set "girl_cur=!%%.!"
set "girl_aboy=!%%f[%%g]!"
for /f %%. in ("%%g[!%%g_!]") do set "boy_cur=!%%.!"
set "boy_agirl=!%%g[%%f]!"
if !boy_cur! gtr !boy_agirl! (
if !girl_cur! gtr !girl_aboy! (
echo(STABILITY = FALSE.
echo(%%f and %%g would rather be together than their current partners.
goto :EOF
)
)
)
)
echo(STABILITY = TRUE.
goto :EOF
:: Swapper
:swapper
set %~1.tmp=!%~1_!
set %~2.tmp=!%~2_!
set "%~1_=!%~2.tmp!"
set "%~2_=!%~1.tmp!"
set "!%~1.tmp!_=%~2"
set "!%~2.tmp!_=%~1"
goto :EOF
- Output:
HISTORY: abi ACCEPTED abe. cath ACCEPTED bob. hope ACCEPTED col. ivy ACCEPTED dan. jan ACCEPTED ed. bea ACCEPTED fred. gay ACCEPTED gav. eve ACCEPTED hal. hope LEFT col. hope ACCEPTED ian. abi LEFT abe. abi ACCEPTED jon. dee ACCEPTED col. ivy LEFT dan. ivy ACCEPTED abe. fay ACCEPTED dan. NEWLYWEDS: abi and jon. bea and fred. cath and bob. dee and col. eve and hal. fay and dan. gay and gav. hope and ian. ivy and abe. jan and ed. STABILITY = TRUE. What if ed and hal swapped? NEW-NEWLYWEDS: abi and jon. bea and fred. cath and bob. dee and col. eve and ed. fay and dan. gay and gav. hope and ian. ivy and abe. jan and hal. STABILITY = FALSE. eve and abe would rather be together than their current partners.
BBC BASIC
N = 10
DIM mname$(N), wname$(N), mpref$(N), wpref$(N), mpartner%(N), wpartner%(N)
DIM proposed&(N,N)
mname$() = "", "Abe","Bob","Col","Dan","Ed","Fred","Gav","Hal","Ian","Jon"
wname$() = "", "Abi","Bea","Cath","Dee","Eve","Fay","Gay","Hope","Ivy","Jan"
mpref$() = "", "AECIJDFBHG","CHADEFBJIG","HEADBFIGCJ","IFDGHEJBCA","JDBCFEAIHG",\
\ "BADGEICJHF","GEIBCADHJF","AEHFICJBGD","HCDGBAFIJE","AFJGEBDCIH"
wpref$() = "", "BFJGIADECH","BACFGDIEJH","FBEGHCIADJ","FJCAIHGDBE","JHFDAGCEIB",\
\ "BAEIJDFGCH","JGHFBACEDI","GJBAIDHECF","ICHGFBAEJD","EHGABJCIFD"
REM The Gale-Shapley algorithm:
REPEAT
FOR m% = 1 TO N
REPEAT
IF mpartner%(m%) EXIT REPEAT
FOR i% = 1 TO N
w% = ASCMID$(mpref$(m%),i%) - 64
IF proposed&(m%,w%) = 0 EXIT FOR
NEXT i%
IF i% > N EXIT REPEAT
proposed&(m%,w%) = 1
IF wpartner%(w%) = 0 THEN
mpartner%(m%) = w% : REM Get engaged
wpartner%(w%) = m%
ELSE
o% = wpartner%(w%)
IF INSTR(wpref$(w%), LEFT$(mname$(m%),1)) < \
\ INSTR(wpref$(w%), LEFT$(mname$(o%),1)) THEN
mpartner%(o%) = 0 : REM Split up
mpartner%(m%) = w% : REM Get engaged
wpartner%(w%) = m%
ENDIF
ENDIF
UNTIL TRUE
NEXT m%
UNTIL SUM(mpartner%()) = (N*(N+1))/2
FOR m% = 1 TO N
PRINT mname$(m%) " is engaged to " wname$(mpartner%(m%))
NEXT
PRINT "Relationships are ";
IF FNstable PRINT "stable." ELSE PRINT "unstable."
a% = RND(N)
REPEAT b% = RND(N) : UNTIL b%<>a%
PRINT '"Now swapping " mname$(a%) "'s and " mname$(b%) "'s partners:"
SWAP mpartner%(a%), mpartner%(b%)
PRINT mname$(a%) " is engaged to " wname$(mpartner%(a%))
PRINT mname$(b%) " is engaged to " wname$(mpartner%(b%))
PRINT "Relationships are ";
IF FNstable PRINT "stable." ELSE PRINT "unstable."
END
DEF FNstable
LOCAL m%, w%, o%, p%
FOR m% = 1 TO N
w% = mpartner%(m%)
FOR o% = 1 TO N
p% = wpartner%(o%)
IF INSTR(mpref$(m%), LEFT$(wname$(o%),1)) < \
\ INSTR(mpref$(m%), LEFT$(wname$(w%),1)) AND \
\ INSTR(wpref$(o%), LEFT$(mname$(m%),1)) < \
\ INSTR(wpref$(o%), LEFT$(mname$(p%),1)) THEN
= FALSE
ENDIF
NEXT o%
NEXT m%
= TRUE
Output:
Abe is engaged to Ivy Bob is engaged to Cath Col is engaged to Dee Dan is engaged to Fay Ed is engaged to Jan Fred is engaged to Bea Gav is engaged to Gay Hal is engaged to Eve Ian is engaged to Hope Jon is engaged to Abi Relationships are stable. Now swapping Hal's and Ian's partners: Hal is engaged to Hope Ian is engaged to Eve Relationships are unstable.
Bracmat
( (abe.abi eve cath ivy jan dee fay bea hope gay)
(bob.cath hope abi dee eve fay bea jan ivy gay)
(col.hope eve abi dee bea fay ivy gay cath jan)
(dan.ivy fay dee gay hope eve jan bea cath abi)
(ed.jan dee bea cath fay eve abi ivy hope gay)
(fred.bea abi dee gay eve ivy cath jan hope fay)
(gav.gay eve ivy bea cath abi dee hope jan fay)
(hal.abi eve hope fay ivy cath jan bea gay dee)
(ian.hope cath dee gay bea abi fay ivy jan eve)
(jon.abi fay jan gay eve bea dee cath ivy hope)
: ?Mplan
: ?M
& (abi.bob fred jon gav ian abe dan ed col hal)
(bea.bob abe col fred gav dan ian ed jon hal)
(cath.fred bob ed gav hal col ian abe dan jon)
(dee.fred jon col abe ian hal gav dan bob ed)
(eve.jon hal fred dan abe gav col ed ian bob)
(fay.bob abe ed ian jon dan fred gav col hal)
(gay.jon gav hal fred bob abe col ed dan ian)
(hope.gav jon bob abe ian dan hal ed col fred)
(ivy.ian col hal gav fred bob abe ed jon dan)
(jan.ed hal gav abe bob jon col ian fred dan)
: ?W
& :?engaged
& whl
' ( !Mplan
: ?A
(?m&~(!engaged:? (!m.?) ?).%?w ?ws)
( ?Z
& ( ( ~(!engaged:?a (?m`.!w) ?z)
& (!m.!w) !engaged
| !W:? (!w.? !m ? !m` ?) ?
& !a (!m.!w) !z
)
: ?engaged
|
)
& !Z !A (!m.!ws):?Mplan
)
)
& ( unstable
= m1 m2 w1 w2
. !arg
: ?
(?m1.?w1)
?
(?m2.?w2)
( ?
& ( !M:? (!m1.? !w2 ? !w1 ?) ?
& !W:? (!w2.? !m1 ? !m2 ?) ?
| !M:? (!m2.? !w1 ? !w2 ?) ?
& !W:? (!w1.? !m2 ? !m1 ?) ?
)
)
)
& ( unstable$!engaged&out$unstable
| out$stable
)
& out$!engaged
& !engaged:(?m1.?w1) (?m2.?w2) ?others
& out$(swap !w1 for !w2)
& ( unstable$((!m1.!w2) (!m2.!w1) !others)
& out$unstable
| out$stable
)
);
- Output:
stable (dan.fay) (col.dee) (hal.eve) (gav.gay) (fred.bea) (ed.jan) (abe.ivy) (ian.hope) (bob.cath) (jon.abi) swap fay for dee unstable
C
Oddly enough (or maybe it should be that way, only that I don't know): if the women were proposing instead of the men, the resulting pairs are exactly the same.
#include <stdio.h>
int verbose = 0;
enum {
clown = -1,
abe, bob, col, dan, ed, fred, gav, hal, ian, jon,
abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan,
};
const char *name[] = {
"Abe", "Bob", "Col", "Dan", "Ed", "Fred", "Gav", "Hal", "Ian", "Jon",
"Abi", "Bea", "Cath", "Dee", "Eve", "Fay", "Gay", "Hope", "Ivy", "Jan"
};
int pref[jan + 1][jon + 1] = {
{ abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay },
{ cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay },
{ hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan },
{ ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi },
{ jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay },
{ bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay },
{ gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay },
{ abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee },
{ hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve },
{ abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope },
{ bob, fred, jon, gav, ian, abe, dan, ed, col, hal },
{ bob, abe, col, fred, gav, dan, ian, ed, jon, hal },
{ fred, bob, ed, gav, hal, col, ian, abe, dan, jon },
{ fred, jon, col, abe, ian, hal, gav, dan, bob, ed },
{ jon, hal, fred, dan, abe, gav, col, ed, ian, bob },
{ bob, abe, ed, ian, jon, dan, fred, gav, col, hal },
{ jon, gav, hal, fred, bob, abe, col, ed, dan, ian },
{ gav, jon, bob, abe, ian, dan, hal, ed, col, fred },
{ ian, col, hal, gav, fred, bob, abe, ed, jon, dan },
{ ed, hal, gav, abe, bob, jon, col, ian, fred, dan },
};
int pairs[jan + 1], proposed[jan + 1];
void engage(int man, int woman)
{
pairs[man] = woman;
pairs[woman] = man;
if (verbose) printf("%4s is engaged to %4s\n", name[man], name[woman]);
}
void dump(int woman, int man)
{
pairs[man] = pairs[woman] = clown;
if (verbose) printf("%4s dumps %4s\n", name[woman], name[man]);
}
/* how high this person ranks that: lower is more preferred */
int rank(int this, int that)
{
int i;
for (i = abe; i <= jon && pref[this][i] != that; i++);
return i;
}
void propose(int man, int woman)
{
int fiance = pairs[woman];
if (verbose) printf("%4s proposes to %4s\n", name[man], name[woman]);
if (fiance == clown) {
engage(man, woman);
} else if (rank(woman, man) < rank(woman, fiance)) {
dump(woman, fiance);
engage(man, woman);
}
}
int covet(int man1, int wife2)
{
if (rank(man1, wife2) < rank(man1, pairs[man1]) &&
rank(wife2, man1) < rank(wife2, pairs[wife2])) {
printf( " %4s (w/ %4s) and %4s (w/ %4s) prefer each other"
" over current pairing.\n",
name[man1], name[pairs[man1]], name[wife2], name[pairs[wife2]]
);
return 1;
}
return 0;
}
int thy_neighbors_wife(int man1, int man2)
{ /* +: force checking all pairs; "||" would shortcircuit */
return covet(man1, pairs[man2]) + covet(man2, pairs[man1]);
}
int unstable()
{
int i, j, bad = 0;
for (i = abe; i < jon; i++) {
for (j = i + 1; j <= jon; j++)
if (thy_neighbors_wife(i, j)) bad = 1;
}
return bad;
}
int main()
{
int i, unengaged;
/* init: everyone marries the clown */
for (i = abe; i <= jan; i++)
pairs[i] = proposed[i] = clown;
/* rounds */
do {
unengaged = 0;
for (i = abe; i <= jon; i++) {
//for (i = abi; i <= jan; i++) { /* could let women propose */
if (pairs[i] != clown) continue;
unengaged = 1;
propose(i, pref[i][++proposed[i]]);
}
} while (unengaged);
printf("Pairing:\n");
for (i = abe; i <= jon; i++)
printf(" %4s - %s\n", name[i],
pairs[i] == clown ? "clown" : name[pairs[i]]);
printf(unstable()
? "Marriages not stable\n" /* draw sad face here */
: "Stable matchup\n");
printf("\nBut if Bob and Fred were to swap:\n");
i = pairs[bob];
engage(bob, pairs[fred]);
engage(fred, i);
printf(unstable() ? "Marriages not stable\n" : "Stable matchup\n");
return 0;
}
- Output:
Pairing: Abe - Ivy Bob - Cath Col - Dee Dan - Fay Ed - Jan Fred - Bea Gav - Gay Hal - Eve Ian - Hope Jon - Abi Stable matchup But if Bob and Fred were to swap: Fred (w/ Cath) and Ivy (w/ Abe) prefer each other over current pairing. Bob (w/ Bea) and Fay (w/ Dan) prefer each other over current pairing. Bob (w/ Bea) and Hope (w/ Ian) prefer each other over current pairing. Bob (w/ Bea) and Abi (w/ Jon) prefer each other over current pairing. Fred (w/ Cath) and Dee (w/ Col) prefer each other over current pairing. Fred (w/ Cath) and Abi (w/ Jon) prefer each other over current pairing. Marriages not stable
C#
(This is a straight-up translation of the Objective-C version.)
using System;
using System.Collections.Generic;
namespace StableMarriage
{
class Person
{
private int _candidateIndex;
public string Name { get; set; }
public List<Person> Prefs { get; set; }
public Person Fiance { get; set; }
public Person(string name) {
Name = name;
Prefs = null;
Fiance = null;
_candidateIndex = 0;
}
public bool Prefers(Person p) {
return Prefs.FindIndex(o => o == p) < Prefs.FindIndex(o => o == Fiance);
}
public Person NextCandidateNotYetProposedTo() {
if (_candidateIndex >= Prefs.Count) return null;
return Prefs[_candidateIndex++];
}
public void EngageTo(Person p) {
if (p.Fiance != null) p.Fiance.Fiance = null;
p.Fiance = this;
if (Fiance != null) Fiance.Fiance = null;
Fiance = p;
}
}
static class MainClass
{
static public bool IsStable(List<Person> men) {
List<Person> women = men[0].Prefs;
foreach (Person guy in men) {
foreach (Person gal in women) {
if (guy.Prefers(gal) && gal.Prefers(guy))
return false;
}
}
return true;
}
static void DoMarriage() {
Person abe = new Person("abe");
Person bob = new Person("bob");
Person col = new Person("col");
Person dan = new Person("dan");
Person ed = new Person("ed");
Person fred = new Person("fred");
Person gav = new Person("gav");
Person hal = new Person("hal");
Person ian = new Person("ian");
Person jon = new Person("jon");
Person abi = new Person("abi");
Person bea = new Person("bea");
Person cath = new Person("cath");
Person dee = new Person("dee");
Person eve = new Person("eve");
Person fay = new Person("fay");
Person gay = new Person("gay");
Person hope = new Person("hope");
Person ivy = new Person("ivy");
Person jan = new Person("jan");
abe.Prefs = new List<Person>() {abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay};
bob.Prefs = new List<Person>() {cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay};
col.Prefs = new List<Person>() {hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan};
dan.Prefs = new List<Person>() {ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi};
ed.Prefs = new List<Person>() {jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay};
fred.Prefs = new List<Person>() {bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay};
gav.Prefs = new List<Person>() {gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay};
hal.Prefs = new List<Person>() {abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee};
ian.Prefs = new List<Person>() {hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve};
jon.Prefs = new List<Person>() {abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope};
abi.Prefs = new List<Person>() {bob, fred, jon, gav, ian, abe, dan, ed, col, hal};
bea.Prefs = new List<Person>() {bob, abe, col, fred, gav, dan, ian, ed, jon, hal};
cath.Prefs = new List<Person>() {fred, bob, ed, gav, hal, col, ian, abe, dan, jon};
dee.Prefs = new List<Person>() {fred, jon, col, abe, ian, hal, gav, dan, bob, ed};
eve.Prefs = new List<Person>() {jon, hal, fred, dan, abe, gav, col, ed, ian, bob};
fay.Prefs = new List<Person>() {bob, abe, ed, ian, jon, dan, fred, gav, col, hal};
gay.Prefs = new List<Person>() {jon, gav, hal, fred, bob, abe, col, ed, dan, ian};
hope.Prefs = new List<Person>() {gav, jon, bob, abe, ian, dan, hal, ed, col, fred};
ivy.Prefs = new List<Person>() {ian, col, hal, gav, fred, bob, abe, ed, jon, dan};
jan.Prefs = new List<Person>() {ed, hal, gav, abe, bob, jon, col, ian, fred, dan};
List<Person> men = new List<Person>(abi.Prefs);
int freeMenCount = men.Count;
while (freeMenCount > 0) {
foreach (Person guy in men) {
if (guy.Fiance == null) {
Person gal = guy.NextCandidateNotYetProposedTo();
if (gal.Fiance == null) {
guy.EngageTo(gal);
freeMenCount--;
} else if (gal.Prefers(guy)) {
guy.EngageTo(gal);
}
}
}
}
foreach (Person guy in men) {
Console.WriteLine("{0} is engaged to {1}", guy.Name, guy.Fiance.Name);
}
Console.WriteLine("Stable = {0}", IsStable(men));
Console.WriteLine("\nSwitching fred & jon's partners");
Person jonsFiance = jon.Fiance;
Person fredsFiance = fred.Fiance;
fred.EngageTo(jonsFiance);
jon.EngageTo(fredsFiance);
Console.WriteLine("Stable = {0}", IsStable(men));
}
public static void Main(string[] args)
{
DoMarriage();
}
}
}
- Output:
bob is engaged to cath fred is engaged to bea jon is engaged to abi gav is engaged to gay ian is engaged to hope abe is engaged to ivy dan is engaged to fay ed is engaged to jan col is engaged to dee hal is engaged to eve Stable = True Switching fred & jon's partners Stable = False
C++
#include <algorithm>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <vector>
using namespace std;
const char *men_data[][11] = {
{ "abe", "abi","eve","cath","ivy","jan","dee","fay","bea","hope","gay" },
{ "bob", "cath","hope","abi","dee","eve","fay","bea","jan","ivy","gay" },
{ "col", "hope","eve","abi","dee","bea","fay","ivy","gay","cath","jan" },
{ "dan", "ivy","fay","dee","gay","hope","eve","jan","bea","cath","abi" },
{ "ed", "jan","dee","bea","cath","fay","eve","abi","ivy","hope","gay" },
{ "fred", "bea","abi","dee","gay","eve","ivy","cath","jan","hope","fay" },
{ "gav", "gay","eve","ivy","bea","cath","abi","dee","hope","jan","fay" },
{ "hal", "abi","eve","hope","fay","ivy","cath","jan","bea","gay","dee" },
{ "ian", "hope","cath","dee","gay","bea","abi","fay","ivy","jan","eve" },
{ "jon", "abi","fay","jan","gay","eve","bea","dee","cath","ivy","hope" }
};
const char *women_data[][11] = {
{ "abi", "bob","fred","jon","gav","ian","abe","dan","ed","col","hal" },
{ "bea", "bob","abe","col","fred","gav","dan","ian","ed","jon","hal" },
{ "cath", "fred","bob","ed","gav","hal","col","ian","abe","dan","jon" },
{ "dee", "fred","jon","col","abe","ian","hal","gav","dan","bob","ed" },
{ "eve", "jon","hal","fred","dan","abe","gav","col","ed","ian","bob" },
{ "fay", "bob","abe","ed","ian","jon","dan","fred","gav","col","hal" },
{ "gay", "jon","gav","hal","fred","bob","abe","col","ed","dan","ian" },
{ "hope", "gav","jon","bob","abe","ian","dan","hal","ed","col","fred" },
{ "ivy", "ian","col","hal","gav","fred","bob","abe","ed","jon","dan" },
{ "jan", "ed","hal","gav","abe","bob","jon","col","ian","fred","dan" }
};
typedef vector<string> PrefList;
typedef map<string, PrefList> PrefMap;
typedef map<string, string> Couples;
// Does 'first' appear before 'second' in preference list?
bool prefers(const PrefList &prefer, const string &first, const string &second)
{
for (PrefList::const_iterator it = prefer.begin(); it != prefer.end(); ++it)
{
if (*it == first) return true;
if (*it == second) return false;
}
return false; // no preference
}
void check_stability(const Couples &engaged, const PrefMap &men_pref, const PrefMap &women_pref)
{
cout << "Stablility:\n";
bool stable = true;
for (Couples::const_iterator it = engaged.begin(); it != engaged.end(); ++it)
{
const string &bride = it->first;
const string &groom = it->second;
const PrefList &preflist = men_pref.at(groom);
for (PrefList::const_iterator it = preflist.begin(); it != preflist.end(); ++it)
{
if (*it == bride) // he prefers his bride
break;
if (prefers(preflist, *it, bride) && // he prefers another woman
prefers(women_pref.at(*it), groom, engaged.at(*it))) // other woman prefers him
{
cout << "\t" << *it <<
" prefers " << groom <<
" over " << engaged.at(*it) <<
" and " << groom <<
" prefers " << *it <<
" over " << bride << "\n";
stable = false;
}
}
}
if (stable) cout << "\t(all marriages stable)\n";
}
int main()
{
PrefMap men_pref, women_pref;
queue<string> bachelors;
// init data structures
for (int i = 0; i < 10; ++i) // person
{
for (int j = 1; j < 11; ++j) // preference
{
men_pref[ men_data[i][0]].push_back( men_data[i][j]);
women_pref[women_data[i][0]].push_back(women_data[i][j]);
}
bachelors.push(men_data[i][0]);
}
Couples engaged; // <woman,man>
cout << "Matchmaking:\n";
while (!bachelors.empty())
{
const string &suitor = bachelors.front();
const PrefList &preflist = men_pref[suitor];
for (PrefList::const_iterator it = preflist.begin(); it != preflist.end(); ++it)
{
const string &bride = *it;
if (engaged.find(bride) == engaged.end()) // she's available
{
cout << "\t" << bride << " and " << suitor << "\n";
engaged[bride] = suitor; // hook up
break;
}
const string &groom = engaged[bride];
if (prefers(women_pref[bride], suitor, groom))
{
cout << "\t" << bride << " dumped " << groom << " for " << suitor << "\n";
bachelors.push(groom); // dump that zero
engaged[bride] = suitor; // get a hero
break;
}
}
bachelors.pop(); // pop at the end to not invalidate suitor reference
}
cout << "Engagements:\n";
for (Couples::const_iterator it = engaged.begin(); it != engaged.end(); ++it)
{
cout << "\t" << it->first << " and " << it->second << "\n";
}
check_stability(engaged, men_pref, women_pref);
cout << "Perturb:\n";
std::swap(engaged["abi"], engaged["bea"]);
cout << "\tengage abi with " << engaged["abi"] << " and bea with " << engaged["bea"] << "\n";
check_stability(engaged, men_pref, women_pref);
}
- Output:
Matchmaking: abi and abe cath and bob hope and col ivy and dan jan and ed bea and fred gay and gav eve and hal hope dumped col for ian abi dumped abe for jon dee and col ivy dumped dan for abe fay and dan Engagements: abi and jon bea and fred cath and bob dee and col eve and hal fay and dan gay and gav hope and ian ivy and abe jan and ed Stablility: (all marriages stable) Perturb: engage abi with fred and bea with jon Stablility: bea prefers fred over jon and fred prefers bea over abi fay prefers jon over dan and jon prefers fay over bea gay prefers jon over gav and jon prefers gay over bea eve prefers jon over hal and jon prefers eve over bea
Ceylon
abstract class Single(name) of Gal | Guy {
shared String name;
shared late Single[] preferences;
shared variable Single? fiance = null;
shared Boolean free => fiance is Null;
shared variable Integer currentProposalIndex = 0;
"Does this single prefer this other single over their fiance?"
shared Boolean prefers(Single otherSingle) =>
let (p1 = preferences.firstIndexWhere(otherSingle.equals), f = fiance)
if (!exists p1)
then false
else if (!exists f)
then true
else if (exists p2 = preferences.firstIndexWhere(f.equals))
then p1 < p2
else false;
string => name;
}
abstract class Guy(String name) of abe | bob | col | dan | ed | fred | gav | hal | ian | jon extends Single(name) {}
object abe extends Guy("Abe") {}
object bob extends Guy("Bob") {}
object col extends Guy("Col") {}
object dan extends Guy("Dan") {}
object ed extends Guy("Ed") {}
object fred extends Guy("Fred") {}
object gav extends Guy("Gav") {}
object hal extends Guy("Hal") {}
object ian extends Guy("Ian") {}
object jon extends Guy("Jon") {}
abstract class Gal(String name) of abi | bea | cath | dee | eve | fay | gay | hope | ivy | jan extends Single(name) {}
object abi extends Gal("Abi") {}
object bea extends Gal("Bea") {}
object cath extends Gal("Cath") {}
object dee extends Gal("Dee") {}
object eve extends Gal("Eve") {}
object fay extends Gal("Fay") {}
object gay extends Gal("Gay") {}
object hope extends Gal("Hope") {}
object ivy extends Gal("Ivy") {}
object jan extends Gal("Jan") {}
Guy[] guys = `Guy`.caseValues;
Gal[] gals = `Gal`.caseValues;
"The main function. Run this one."
shared void run() {
abe.preferences = [ abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay ];
bob.preferences = [ cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay ];
col.preferences = [ hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan ];
dan.preferences = [ ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi ];
ed.preferences = [ jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay ];
fred.preferences = [ bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay ];
gav.preferences = [ gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay ];
hal.preferences = [ abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee ];
ian.preferences = [ hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve ];
jon.preferences = [ abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope ];
abi.preferences = [ bob, fred, jon, gav, ian, abe, dan, ed, col, hal ];
bea.preferences = [ bob, abe, col, fred, gav, dan, ian, ed, jon, hal ];
cath.preferences = [ fred, bob, ed, gav, hal, col, ian, abe, dan, jon ];
dee.preferences = [ fred, jon, col, abe, ian, hal, gav, dan, bob, ed ];
eve.preferences = [ jon, hal, fred, dan, abe, gav, col, ed, ian, bob ];
fay.preferences = [ bob, abe, ed, ian, jon, dan, fred, gav, col, hal ];
gay.preferences = [ jon, gav, hal, fred, bob, abe, col, ed, dan, ian ];
hope.preferences = [ gav, jon, bob, abe, ian, dan, hal, ed, col, fred ];
ivy.preferences = [ ian, col, hal, gav, fred, bob, abe, ed, jon, dan ];
jan.preferences = [ ed, hal, gav, abe, bob, jon, col, ian, fred, dan ];
print("------ the matchmaking process ------");
matchmake();
print("------ the final engagements ------");
for (guy in guys) {
print("``guy`` is engaged to ``guy.fiance else "no one"``");
}
print("------ is it stable? ------");
checkStability();
value temp = jon.fiance;
jon.fiance = fred.fiance;
fred.fiance = temp;
print("------ is it stable after switching jon and fred's partners? ------");
checkStability();
}
"Match up all the singles with the Gale/Shapley algorithm."
void matchmake() {
while (true) {
value singleGuys = guys.filter(Guy.free);
if (singleGuys.empty) {
return;
}
for (guy in singleGuys) {
if (exists gal = guy.preferences[guy.currentProposalIndex]) {
guy.currentProposalIndex++;
value fiance = gal.fiance;
if (!exists fiance) {
print("``guy`` and ``gal`` just got engaged!");
guy.fiance = gal;
gal.fiance = guy;
}
else {
if (gal.prefers(guy)) {
print("``gal`` dumped ``fiance`` for ``guy``!");
fiance.fiance = null;
gal.fiance = guy;
guy.fiance = gal;
}
else {
print("``gal`` turned down ``guy`` and stayed with ``fiance``!");
}
}
}
}
}
}
void checkStability() {
variable value stabilityFlag = true;
for (gal in gals) {
for (guy in guys) {
if (guy.prefers(gal) && gal.prefers(guy)) {
stabilityFlag = false;
print("``guy`` prefers ``gal`` over ``guy.fiance else "nobody"``
and ``gal`` prefers ``guy`` over ``gal.fiance else "nobody"``!".normalized);
}
}
}
print("``if(!stabilityFlag) then "Not " else ""``Stable!");
}
- Output:
------ the matchmaking process ------ Abe and Abi just got engaged! Bob and Cath just got engaged! Col and Hope just got engaged! Dan and Ivy just got engaged! Ed and Jan just got engaged! Fred and Bea just got engaged! Gav and Gay just got engaged! Abi turned down Hal and stayed with Abe! Hope dumped Col for Ian! Abi dumped Abe for Jon! Abe and Eve just got engaged! Eve turned down Col and stayed with Abe! Eve dumped Abe for Hal! Cath turned down Abe and stayed with Bob! Abi turned down Col and stayed with Jon! Ivy dumped Dan for Abe! Col and Dee just got engaged! Dan and Fay just got engaged! ------ the final engagements ------ Abe is engaged to Ivy Bob is engaged to Cath Col is engaged to Dee Dan is engaged to Fay Ed is engaged to Jan Fred is engaged to Bea Gav is engaged to Gay Hal is engaged to Eve Ian is engaged to Hope Jon is engaged to Abi ------ is it stable? ------ Stable! ------ is it stable after switching jon and fred's partners? ------ Jon prefers Eve over Bea and Eve prefers Jon over Hal! Jon prefers Fay over Bea and Fay prefers Jon over Dan! Jon prefers Gay over Bea and Gay prefers Jon over Gav! Not Stable!
CoffeeScript
class Person
constructor: (@name, @preferences) ->
@mate = null
@best_mate_rank = 0
@rank = {}
for preference, i in @preferences
@rank[preference] = i
preferred_mate_name: =>
@preferences[@best_mate_rank]
reject: =>
@best_mate_rank += 1
set_mate: (mate) =>
@mate = mate
offer_mate: (free_mate, reject_mate_cb) =>
if @mate
if @covets(free_mate)
console.log "#{free_mate.name} steals #{@name} from #{@mate.name}"
reject_mate_cb @mate
free_mate.set_mate @
@set_mate free_mate
else
console.log "#{free_mate.name} cannot steal #{@name} from #{@mate.name}"
reject_mate_cb free_mate
else
console.log "#{free_mate.name} gets #{@name} first"
free_mate.set_mate @
@set_mate free_mate
happiness: =>
@rank[@mate.name]
covets: (other_mate) =>
@rank[other_mate.name] <= @rank[@mate.name]
persons_by_name = (persons) ->
hsh = {}
for person in persons
hsh[person.name] = person
hsh
mate_off = (guys, gals) ->
free_pursuers = (guy for guy in guys)
guys_by_name = persons_by_name guys
gals_by_name = persons_by_name gals
while free_pursuers.length > 0
free_pursuer = free_pursuers.shift()
gal_name = free_pursuer.preferred_mate_name()
gal = gals_by_name[gal_name]
reject_mate_cb = (guy) ->
guy.reject()
free_pursuers.push guy
gal.offer_mate free_pursuer, reject_mate_cb
report_on_mates = (guys) ->
console.log "\n----Marriage Report"
for guy, i in guys
throw Error("illegal marriage") if guy.mate.mate isnt guy
console.log guy.name, guy.mate.name, \
"(his choice #{guy.happiness()}, her choice #{guy.mate.happiness()} )"
report_potential_adulteries = (guys) ->
for guy1, i in guys
gal1 = guy1.mate
for j in [0...i]
guy2 = guys[j]
gal2 = guy2.mate
if guy1.covets(gal2) and gal2.covets(guy1)
console.log "#{guy1.name} and #{gal2.name} would stray"
if guy2.covets(gal1) and gal1.covets(guy2)
console.log "#{guy2.name} and #{gal1.name} would stray"
perturb = (guys) ->
# mess up marriages by swapping two couples...this is mainly to drive
# out that report_potential_adulteries will actually work
guy0 = guys[0]
guy1 = guys[1]
gal0 = guy0.mate
gal1 = guy1.mate
console.log "\nPerturbing with #{guy0.name}, #{gal0.name}, #{guy1.name}, #{gal1.name}"
guy0.set_mate gal1
guy1.set_mate gal0
gal1.set_mate guy0
gal0.set_mate guy1
Population = ->
guy_preferences =
abe: ['abi', 'eve', 'cath', 'ivy', 'jan', 'dee', 'fay', 'bea', 'hope', 'gay']
bob: ['cath', 'hope', 'abi', 'dee', 'eve', 'fay', 'bea', 'jan', 'ivy', 'gay']
col: ['hope', 'eve', 'abi', 'dee', 'bea', 'fay', 'ivy', 'gay', 'cath', 'jan']
dan: ['ivy', 'fay', 'dee', 'gay', 'hope', 'eve', 'jan', 'bea', 'cath', 'abi']
ed: ['jan', 'dee', 'bea', 'cath', 'fay', 'eve', 'abi', 'ivy', 'hope', 'gay']
fred: ['bea', 'abi', 'dee', 'gay', 'eve', 'ivy', 'cath', 'jan', 'hope', 'fay']
gav: ['gay', 'eve', 'ivy', 'bea', 'cath', 'abi', 'dee', 'hope', 'jan', 'fay']
hal: ['abi', 'eve', 'hope', 'fay', 'ivy', 'cath', 'jan', 'bea', 'gay', 'dee']
ian: ['hope', 'cath', 'dee', 'gay', 'bea', 'abi', 'fay', 'ivy', 'jan', 'eve']
jon: ['abi', 'fay', 'jan', 'gay', 'eve', 'bea', 'dee', 'cath', 'ivy', 'hope']
gal_preferences =
abi: ['bob', 'fred', 'jon', 'gav', 'ian', 'abe', 'dan', 'ed', 'col', 'hal']
bea: ['bob', 'abe', 'col', 'fred', 'gav', 'dan', 'ian', 'ed', 'jon', 'hal']
cath: ['fred', 'bob', 'ed', 'gav', 'hal', 'col', 'ian', 'abe', 'dan', 'jon']
dee: ['fred', 'jon', 'col', 'abe', 'ian', 'hal', 'gav', 'dan', 'bob', 'ed']
eve: ['jon', 'hal', 'fred', 'dan', 'abe', 'gav', 'col', 'ed', 'ian', 'bob']
fay: ['bob', 'abe', 'ed', 'ian', 'jon', 'dan', 'fred', 'gav', 'col', 'hal']
gay: ['jon', 'gav', 'hal', 'fred', 'bob', 'abe', 'col', 'ed', 'dan', 'ian']
hope: ['gav', 'jon', 'bob', 'abe', 'ian', 'dan', 'hal', 'ed', 'col', 'fred']
ivy: ['ian', 'col', 'hal', 'gav', 'fred', 'bob', 'abe', 'ed', 'jon', 'dan']
jan: ['ed', 'hal', 'gav', 'abe', 'bob', 'jon', 'col', 'ian', 'fred', 'dan']
guys = (new Person(name, preferences) for name, preferences of guy_preferences)
gals = (new Person(name, preferences) for name, preferences of gal_preferences)
[guys, gals]
do ->
[guys, gals] = Population()
mate_off guys, gals
report_on_mates guys
report_potential_adulteries guys
perturb guys
report_on_mates guys
report_potential_adulteries guys
- Output:
> coffee stable_marriage.coffee abe gets abi first bob gets cath first col gets hope first dan gets ivy first ed gets jan first fred gets bea first gav gets gay first hal cannot steal abi from abe ian steals hope from col jon steals abi from abe hal gets eve first col cannot steal eve from hal abe cannot steal eve from hal col cannot steal abi from jon abe cannot steal cath from bob col gets dee first abe steals ivy from dan dan gets fay first ----Marriage Report abe ivy (his choice 3, her choice 6 ) bob cath (his choice 0, her choice 1 ) col dee (his choice 3, her choice 2 ) dan fay (his choice 1, her choice 5 ) ed jan (his choice 0, her choice 0 ) fred bea (his choice 0, her choice 3 ) gav gay (his choice 0, her choice 1 ) hal eve (his choice 1, her choice 1 ) ian hope (his choice 0, her choice 4 ) jon abi (his choice 0, her choice 2 ) Perturbing with abe, ivy, bob, cath ----Marriage Report abe cath (his choice 2, her choice 7 ) bob ivy (his choice 8, her choice 5 ) col dee (his choice 3, her choice 2 ) dan fay (his choice 1, her choice 5 ) ed jan (his choice 0, her choice 0 ) fred bea (his choice 0, her choice 3 ) gav gay (his choice 0, her choice 1 ) hal eve (his choice 1, her choice 1 ) ian hope (his choice 0, her choice 4 ) jon abi (his choice 0, her choice 2 ) bob and cath would stray bob and fay would stray bob and bea would stray bob and hope would stray bob and abi would stray
ColdFusion
PERSON.CFC
component displayName="Person" accessors="true" {
property name="Name" type="string";
property name="MrOrMrsGoodEnough" type="Person";
property name="UnrealisticExpectations" type="array";
property name="PersonalHistory" type="array";
public Person function init( required String name ) {
setName( arguments.name );
setPersonalHistory([ getName() & " is on the market." ]);
this.HotnessScale = 0;
return this;
}
public Boolean function hasSettled() {
// if we have settled, return true;
return isInstanceOf( getMrOrMrsGoodEnough(), "Person" );
}
public Person function getBestOfWhatIsLeft() {
// increment the hotness scale...1 is best, 10 is...well...VERY settling.
this.HotnessScale++;
// get the match from the current rung in the barrel
var bestChoice = getUnrealisticExpectations()[ this.HotnessScale ];
return bestChoice;
}
public Boolean function wouldRatherBeWith( required Person person ) {
// only compare if we've already settled on a potential mate
if( isInstanceOf( this.getMrOrMrsGoodEnough(), "Person" ) ) {
// if the new person's hotness is greater (numerically smaller) than our current beau...
return getHotness( this, arguments.person ) < getHotness( this, this.getMrOrMrsGoodEnough() );
}
return false;
}
public Void function settle( required Person person ) {
if( person.hasSettled() ) {
// this is the match we want. Force a break up of a previous relationship (sorry!)
dumpLikeATonOfBricks( person );
}
person.setMrOrMrsGoodEnough( this );
if( hasSettled() ) {
// this is the match we want, so write a dear john to our current match
dumpLikeATonOfBricks( this );
}
logHookup( arguments.person );
// we've found the mate of our dreams!
setMrOrMrsGoodEnough( arguments.person );
}
public Void function swing( required Person person ) {
// get our spouses
var mySpouse = getMrOrMrsGoodEnough();
var notMySpouse = arguments.person.getMrOrMrsGoodEnough();
// swap em'
setMrOrMrsGoodEnough( notMySpouse );
person.setMrOrMrsGoodEnough( mySpouse );
}
public Void function dumpLikeATonOfBricks( required Person person ) {
logBreakup( arguments.person );
person.getMrOrMrsGoodEnough().setMrOrMrsGoodEnough( JavaCast( "null", "" ) );
}
public String function psychoAnalyze() {
logNuptuals();
logRegrets();
var personalJourney = "";
for( var entry in getPersonalHistory() ) {
personalJourney = personalJourney & entry & "<br />";
}
return personalJourney;
}
private Numeric function getHotness( required Person pursuer, required Person pursued ) {
var pursuersExpectations = pursuer.getUnrealisticExpectations();
var hotnessFactor = 1;
for( var hotnessFactor=1; hotnessFactor<=arrayLen( pursuersExpectations ); hotnessFactor++ ) {
if( pursuersExpectations[ hotnessFactor ].getName()==arguments.pursued.getName() ) {
return hotnessFactor;
}
}
}
private Void function logRegrets() {
var spouse = getMrOrMrsGoodEnough();
var spouseHotness = getHotness( this, spouse );
var myHotness = getHotness( spouse, this );
if( spouseHotness == 1 && myHotness == 1 ) {
arrayAppend( getPersonalHistory(), "Yes, yes, the beautiful people always find happy endings: #getName()# (her ###myHotness#), #spouse.getName()# (his ###spouseHotness#)");
}
else if( spouseHotness == myHotness ) {
arrayAppend( getPersonalHistory(), "#getName()# (her ###myHotness#) was made for #spouse.getName()# (his ###spouseHotness#). How precious.");
}
else if( spouseHotness > myHotness ) {
arrayAppend( getPersonalHistory(), "#getName()# (her ###myHotness#) could have done better than #spouse.getName()# (his ###spouseHotness#). Poor slob.");
}
else {
arrayAppend( getPersonalHistory(), "#getName()# (her ###myHotness#) is a lucky bastard to have landed #spouse.getName()# (his ###spouseHotness#).");
}
}
private Void function logNuptuals() {
arrayAppend( getPersonalHistory(), "#getName()# has settled for #getMrOrMrsGoodEnough().getName()#." );
}
private Void function logHookup( required Person person ) {
var winnerHotness = getHotness( this, arguments.person );
var myHotness = getHotness( arguments.person, this );
arrayAppend( getPersonalHistory(), "#getName()# (her ###myHotness#) is checking out #arguments.person.getName()# (his ###winnerHotness#), but wants to keep his options open.");
}
private Void function logBreakup( required Person person ) {
var scrub = person.getMrOrMrsGoodEnough();
var scrubHotness = getHotness( person, scrub );
var myHotness = getHotness( person, this );
arrayAppend( getPersonalHistory(), "#getName()# is so hot (her ###myHotness#) that #person.getName()# is dumping #scrub.getName()# (her ###scrubHotness#)");
}
}
INDEX.CFM
<cfscript>
/**
* Let's get these crazy kids married!
* @men.hint The men who want to get married
*/
function doCreepyMassMarriages( required Array men ) {
marriagesAreStable = false;
while( !marriagesAreStable ) {
marriagesAreStable = true;
for( man in men ) {
if( !man.hasSettled() ) {
marriagesAreStable = false;
sexyLady = man.getBestOfWhatIsLeft();
if( !sexyLady.hasSettled() || sexyLady.wouldRatherBeWith( man ) ) {
man.settle( sexyLady );
}
}
}
}
return men;
}
/**
* We played God...now let's see if society is going to survive
* @men.hint The married men
* @women.hint The married women
*/
function isSocietyStable( required Array men, required Array women ) {
// loop over married men
for( var man in arguments.men ) {
// loop over married women
for( var woman in arguments.women ) {
// if the man does not prefer this woman to his current spouse, and the women
// doesn't prefer the man to her current spouse, this is the best possible match
if( man.wouldRatherBeWith( woman ) && woman.wouldRatherBeWith( man ) ) {
return false;
}
}
}
return true;
}
// the men
abe = new Person( "Abe" );
bob = new Person( "Bob" );
col = new Person( "Col" );
dan = new Person( "Dan" );
ed = new Person( "Ed" );
fred = new Person( "Fred" );
gav = new Person( "Gav" );
hal = new Person( "Hal" );
ian = new Person( "Ian" );
jon = new Person( "Jon" );
men = [ abe, bob, col, dan, ed, fred, gav, hal, ian, jon ];
// the women
abi = new Person( "Abi" );
bea = new Person( "Bea" );
cath = new Person( "Cath" );
dee = new Person( "Dee" );
eve = new Person( "Eve" );
fay = new Person( "Fay" );
gay = new Person( "Gay" );
hope = new Person( "Hope" );
ivy = new Person( "Ivy" );
jan = new Person( "Jan" );
women = [ abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan ];
// set unrealistic expectations for the men
abe.setUnrealisticExpectations([ abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay ]);
bob.setUnrealisticExpectations([ cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay ]);
col.setUnrealisticExpectations([ hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan ]);
dan.setUnrealisticExpectations([ ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi ]);
ed.setUnrealisticExpectations([ jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay ]);
fred.setUnrealisticExpectations([ bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay ]);
gav.setUnrealisticExpectations([ gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay ]);
hal.setUnrealisticExpectations([ abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee ]);
ian.setUnrealisticExpectations([ hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve ]);
jon.setUnrealisticExpectations([ abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope ]);
// set unrealistic expectations for the women
abi.setUnrealisticExpectations([ bob, fred, jon, gav, ian, abe, dan, ed, col, hal ]);
bea.setUnrealisticExpectations([ bob, abe, col, fred, gav, dan, ian, ed, jon, hal ]);
cath.setUnrealisticExpectations([ fred, bob, ed, gav, hal, col, ian, abe, dan, jon ]);
dee.setUnrealisticExpectations([ fred, jon, col, abe, ian, hal, gav, dan, bob, ed ]);
eve.setUnrealisticExpectations([ jon, hal, fred, dan, abe, gav, col, ed, ian, bob ]);
fay.setUnrealisticExpectations([ bob, abe, ed, ian, jon, dan, fred, gav, col, hal ]);
gay.setUnrealisticExpectations([ jon, gav, hal, fred, bob, abe, col, ed, dan, ian ]);
hope.setUnrealisticExpectations([ gav, jon, bob, abe, ian, dan, hal, ed, col, fred ]);
ivy.setUnrealisticExpectations([ ian, col, hal, gav, fred, bob, abe, ed, jon, dan ]);
jan.setUnrealisticExpectations([ ed, hal, gav, abe, bob, jon, col, ian, fred, dan ]);
// here comes the bride, duhn, duhn, duh-duhn
possiblyHappilyMarriedMen = doCreepyMassMarriages( men );
// let's see who shacked up!
for( man in possiblyHappilyMarriedMen ) {
writeoutput( man.psychoAnalyze() & "<br />" );
}
// check if society is stable
if( isSocietyStable( men, women ) ) {
writeoutput( "Hey, look at that. Creepy social engineering works. Sort of...<br /><br />" );
}
// what happens if couples start swingin'?
jon.swing( fred );
writeoutput( "Swapping Jon and Fred's wives...will society survive?<br /><br />" );
// check if society is still stable after the swingers
if( !isSocietyStable( men, women ) ) {
writeoutput( "Nope, now everything is broken. Sharing spouses doesn't work, kids.<br />" );
}
</cfscript>
- Output:
Abe is on the market. Abe (her #6) is checking out Abi (his #1), but wants to keep his options open. Abe (her #5) is checking out Eve (his #2), but wants to keep his options open. Abe is so hot (her #7) that Ivy is dumping Dan (her #10) Abe (her #7) is checking out Ivy (his #4), but wants to keep his options open. Abe has settled for Ivy. Abe (her #7) is lucky to have landed Ivy (his #4). Bob is on the market. Bob (her #2) is checking out Cath (his #1), but wants to keep his options open. Bob has settled for Cath. Bob (her #2) is lucky to have landed Cath (his #1). Col is on the market. Col (her #9) is checking out Hope (his #1), but wants to keep his options open. Col (her #3) is checking out Dee (his #4), but wants to keep his options open. Col has settled for Dee. Col (her #3) could have done better than Dee (his #4). Dan is on the market. Dan (her #10) is checking out Ivy (his #1), but wants to keep his options open. Dan (her #6) is checking out Fay (his #2), but wants to keep his options open. Dan has settled for Fay. Dan (her #6) is lucky to have landed Fay (his #2). Ed is on the market. Ed (her #1) is checking out Jan (his #1), but wants to keep his options open. Ed has settled for Jan. Yes, yes, the beautiful people always find happy endings: Ed (her #1), Jan (his #1) Fred is on the market. Fred (her #4) is checking out Bea (his #1), but wants to keep his options open. Fred has settled for Bea. Fred (her #4) is lucky to have landed Bea (his #1). Gav is on the market. Gav (her #2) is checking out Gay (his #1), but wants to keep his options open. Gav has settled for Gay. Gav (her #2) is lucky to have landed Gay (his #1). Hal is on the market. Hal is so hot (her #2) that Eve is dumping Abe (her #5) Hal (her #2) is checking out Eve (his #2), but wants to keep his options open. Hal has settled for Eve. Hal (her #2) was made for Eve (his #2). How precious. Ian is on the market. Ian is so hot (her #5) that Hope is dumping Col (her #9) Ian (her #5) is checking out Hope (his #1), but wants to keep his options open. Ian has settled for Hope. Ian (her #5) is lucky to have landed Hope (his #1). Jon is on the market. Jon is so hot (her #3) that Abi is dumping Abe (her #6) Jon (her #3) is checking out Abi (his #1), but wants to keep his options open. Jon has settled for Abi. Jon (her #3) is lucky to have landed Abi (his #1). // Is society stable? Hey, look at that. Creepy social engineering works. Sort of... Swapping Jon and Fred's wives...will society survive? // How about now? Still stable? Nope, now everything is broken. Sharing spouses doesn't work, kids.
D
From the Python and Java versions:
import std.stdio, std.array, std.algorithm, std.string;
string[string] matchmaker(string[][string] guyPrefers,
string[][string] girlPrefers) /*@safe*/ {
string[string] engagedTo;
string[] freeGuys = guyPrefers.keys;
while (freeGuys.length) {
const string thisGuy = freeGuys[0];
freeGuys.popFront();
const auto thisGuyPrefers = guyPrefers[thisGuy];
foreach (girl; thisGuyPrefers) {
if (girl !in engagedTo) { // girl is free
engagedTo[girl] = thisGuy;
break;
} else {
string otherGuy = engagedTo[girl];
string[] thisGirlPrefers = girlPrefers[girl];
if (thisGirlPrefers.countUntil(thisGuy) <
thisGirlPrefers.countUntil(otherGuy)) {
// this girl prefers this guy to
// the guy she's engagedTo to.
engagedTo[girl] = thisGuy;
freeGuys ~= otherGuy;
break;
}
// else no change, keep looking for this guy
}
}
}
return engagedTo;
}
bool check(bool doPrint=false)(string[string] engagedTo,
string[][string] guyPrefers,
string[][string] galPrefers) @safe {
enum MSG = "%s likes %s better than %s and %s " ~
"likes %s better than their current partner";
string[string] inverseEngaged;
foreach (k, v; engagedTo)
inverseEngaged[v] = k;
foreach (she, he; engagedTo) {
auto sheLikes = galPrefers[she];
auto sheLikesBetter = sheLikes[0 .. sheLikes.countUntil(he)];
auto heLikes = guyPrefers[he];
auto heLikesBetter = heLikes[0 .. heLikes.countUntil(she)];
foreach (guy; sheLikesBetter) {
auto guysGirl = inverseEngaged[guy];
auto guyLikes = guyPrefers[guy];
if (guyLikes.countUntil(guysGirl) >
guyLikes.countUntil(she)) {
static if (doPrint)
writefln(MSG, she, guy, he, guy, she);
return false;
}
}
foreach (gal; heLikesBetter) {
auto girlsGuy = engagedTo[gal];
auto galLikes = galPrefers[gal];
if (galLikes.countUntil(girlsGuy) >
galLikes.countUntil(he)) {
static if (doPrint)
writefln(MSG, he, gal, she, gal, he);
return false;
}
}
}
return true;
}
void main() /*@safe*/ {
auto guyData = "abe abi eve cath ivy jan dee fay bea hope gay
bob cath hope abi dee eve fay bea jan ivy gay
col hope eve abi dee bea fay ivy gay cath jan
dan ivy fay dee gay hope eve jan bea cath abi
ed jan dee bea cath fay eve abi ivy hope gay
fred bea abi dee gay eve ivy cath jan hope fay
gav gay eve ivy bea cath abi dee hope jan fay
hal abi eve hope fay ivy cath jan bea gay dee
ian hope cath dee gay bea abi fay ivy jan eve
jon abi fay jan gay eve bea dee cath ivy hope";
auto galData = "abi bob fred jon gav ian abe dan ed col hal
bea bob abe col fred gav dan ian ed jon hal
cath fred bob ed gav hal col ian abe dan jon
dee fred jon col abe ian hal gav dan bob ed
eve jon hal fred dan abe gav col ed ian bob
fay bob abe ed ian jon dan fred gav col hal
gay jon gav hal fred bob abe col ed dan ian
hope gav jon bob abe ian dan hal ed col fred
ivy ian col hal gav fred bob abe ed jon dan
jan ed hal gav abe bob jon col ian fred dan";
string[][string] guyPrefers, galPrefers;
foreach (line; guyData.splitLines())
guyPrefers[split(line)[0]] = split(line)[1..$];
foreach (line; galData.splitLines())
galPrefers[split(line)[0]] = split(line)[1..$];
writeln("Engagements:");
auto engagedTo = matchmaker(guyPrefers, galPrefers);
writeln("\nCouples:");
string[] parts;
foreach (k; engagedTo.keys.sort())
writefln("%s is engagedTo to %s", k, engagedTo[k]);
writeln();
bool c = check!(true)(engagedTo, guyPrefers, galPrefers);
writeln("Marriages are ", c ? "stable" : "unstable");
writeln("\n\nSwapping two fiances to introduce an error");
auto gals = galPrefers.keys.sort();
swap(engagedTo[gals[0]], engagedTo[gals[1]]);
foreach (gal; gals[0 .. 2])
writefln(" %s is now engagedTo to %s", gal, engagedTo[gal]);
writeln();
c = check!(true)(engagedTo, guyPrefers, galPrefers);
writeln("Marriages are ", c ? "stable" : "unstable");
}
- Output:
Engagements: Couples: abi is engagedTo to jon bea is engagedTo to fred cath is engagedTo to bob dee is engagedTo to col eve is engagedTo to hal fay is engagedTo to dan gay is engagedTo to gav hope is engagedTo to ian ivy is engagedTo to abe jan is engagedTo to ed Marriages are stable Swapping two fiances to introduce an error abi is now engagedTo to fred bea is now engagedTo to jon fred likes bea better than abi and bea likes fred better than their current partner Marriages are unstable
Stronger Version
import std.stdio, std.algorithm, std.array;
enum F { abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan }
enum M { abe, bob, col, dan, ed, fred, gav, hal, ian, jon }
alias PrefMapF = M[][F];
alias PrefMapM = F[][M];
alias Couples = M[F];
immutable PrefMapF womenPref;
immutable PrefMapM menPref;
static this() pure nothrow @safe {
with (F) with (M) {
womenPref = [
abi: [bob, fred, jon, gav, ian, abe, dan, ed, col, hal],
bea: [bob, abe, col, fred, gav, dan, ian, ed, jon, hal],
cath: [fred, bob, ed, gav, hal, col, ian, abe, dan, jon],
dee: [fred, jon, col, abe, ian, hal, gav, dan, bob, ed],
eve: [jon, hal, fred, dan, abe, gav, col, ed, ian, bob],
fay: [bob, abe, ed, ian, jon, dan, fred, gav, col, hal],
gay: [jon, gav, hal, fred, bob, abe, col, ed, dan, ian],
hope: [gav, jon, bob, abe, ian, dan, hal, ed, col, fred],
ivy: [ian, col, hal, gav, fred, bob, abe, ed, jon, dan],
jan: [ed, hal, gav, abe, bob, jon, col, ian, fred, dan]
];
menPref = [
abe: [abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay],
bob: [cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay],
col: [hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan],
dan: [ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi],
ed: [jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay],
fred: [bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay],
gav: [gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay],
hal: [abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee],
ian: [hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve],
jon: [abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope]
];
}
}
/// Does 'first' appear before 'second' in preference list?
bool prefers(T)(in T[] preference, in T first, in T second)
pure nothrow @safe @nogc if (is(T == F) || is(T == M)) {
//const found = preference.findAmong([first, second]);
immutable T[2] two = [first, second];
const found = preference.findAmong(two[]);
return !(found.empty || found.front == second);
}
void checkStability(in Couples engaged, in PrefMapM menPref,
in PrefMapF womenPref) @safe {
"Stablility:".writeln;
bool stable = true;
foreach (immutable bride, immutable groom; engaged) {
const prefList = menPref[groom];
foreach (immutable pr; prefList) {
if (pr == bride) // He prefers his bride.
break;
if (prefers(prefList, pr, bride) &&
// He prefers another woman.
prefers(womenPref[pr], groom, engaged[pr])) {
// Other woman prefers him.
writeln("\t", pr, " prefers ", groom, " over ",
engaged[pr], " and ", groom, " prefers ",
pr, " over ", bride);
stable = false;
}
}
}
if (stable)
"\t(all marriages stable)".writeln;
}
void main() /*@safe*/ {
auto bachelors = menPref.keys.sort().release;// No queue in Phobos.
Couples engaged;
"Matchmaking:".writeln;
while (!bachelors.empty) {
immutable suitor = bachelors[0];
bachelors.popFront;
immutable prefList = menPref[suitor];
foreach (immutable bride; prefList) {
if (bride !in engaged) { // She's available.
writeln("\t", bride, " and ", suitor);
engaged[bride] = suitor; // Hook up.
break;
}
immutable groom = engaged[bride];
if (prefers(womenPref[bride], suitor, groom)) {
writeln("\t", bride, " dumped ", groom,
" for ", suitor);
bachelors ~= groom; // Dump that zero.
engaged[bride] = suitor; // Get a hero.
break;
}
}
}
"Engagements:".writeln;
foreach (immutable first, immutable second; engaged)
writeln("\t", first, " and ", second);
checkStability(engaged, menPref, womenPref);
"Perturb:".writeln;
engaged[F.abi].swap(engaged[F.bea]);
writeln("\tengage abi with ", engaged[F.abi],
" and bea with ", engaged[F.bea]);
checkStability(engaged, menPref, womenPref);
}
- Output:
Matchmaking: abi and abe cath and bob hope and col ivy and dan jan and ed bea and fred gay and gav eve and hal hope dumped col for ian abi dumped abe for jon dee and col ivy dumped dan for abe fay and dan Engagements: abi and jon ivy and abe eve and hal jan and ed bea and fred fay and dan cath and bob gay and gav hope and ian dee and col Stablility: (all marriages stable) Perturb: engage abi with fred and bea with jon Stablility: bea prefers fred over jon and fred prefers bea over abi fay prefers jon over dan and jon prefers fay over bea gay prefers jon over gav and jon prefers gay over bea eve prefers jon over hal and jon prefers eve over bea
EchoLisp
(lib 'hash)
;; input data
(define M-RANKS
'(( abe abi eve cath ivy jan dee fay bea hope gay)
( bob cath hope abi dee eve fay bea jan ivy gay)
( col hope eve abi dee bea fay ivy gay cath jan)
( dan ivy fay dee gay hope eve jan bea cath abi)
( ed jan dee bea cath fay eve abi ivy hope gay)
( fred bea abi dee gay eve ivy cath jan hope fay)
( gav gay eve ivy bea cath abi dee hope jan fay)
( hal abi eve hope fay ivy cath jan bea gay dee)
( ian hope cath dee gay bea abi fay ivy jan eve)
( jon abi fay jan gay eve bea dee cath ivy hope)))
(define W-RANKS
'(( abi bob fred jon gav ian abe dan ed col hal)
( bea bob abe col fred gav dan ian ed jon hal)
( cath fred bob ed gav hal col ian abe dan jon)
( dee fred jon col abe ian hal gav dan bob ed)
( eve jon hal fred dan abe gav col ed ian bob)
( fay bob abe ed ian jon dan fred gav col hal)
( gay jon gav hal fred bob abe col ed dan ian)
( hope gav jon bob abe ian dan hal ed col fred)
( ivy ian col hal gav fred bob abe ed jon dan)
( jan ed hal gav abe bob jon col ian fred dan)))
;; build preferences hash
(define (set-prefs ranks prefs)
(for/list ((r ranks))
(hash-set prefs (first r) (rest r))
(first r)))
(define (engage m w) (hash-set ENGAGED m w) (hash-set ENGAGED w m) (writeln m w '👫 ))
(define (disengage m w) (hash-remove! ENGAGED m ) (hash-remove! ENGAGED w) (writeln '💔 m w))
(define (engaged x) (hash-ref ENGAGED x))
(define (free? x) (not (engaged x)))
(define (free-man men) (for ((man men)) #:break (free? man) => man #f))
(define (prefers? prefs x a b) (member b (member a (hash-ref prefs x))))
;; get first choice and remove it from prefs list
(define (first-choice prefs m)
(define w (first (hash-ref prefs m)))
(hash-set prefs m (rest (hash-ref prefs m)))
w)
;; sets ENGAGED couples
;; https//en.wikipedia.org/wiki/Stable_marriage_problem
(define (stableMatching (prefs (make-hash)) (m) (w))
(define-global 'ENGAGED (make-hash))
(define men (set-prefs M-RANKS prefs))
(define women (set-prefs W-RANKS prefs))
(while (setv! m (free-man men))
(set! w (first-choice prefs m))
(if (free? w)
(engage m w)
(let [(dumped (engaged w))]
(when (prefers? prefs w m dumped)
(disengage w dumped)
(engage w m)))))
(hash->list ENGAGED))
;; input : ENGAGED couples
(define (checkStable (prefs (make-hash)))
(define men (set-prefs M-RANKS prefs))
(define women (set-prefs W-RANKS prefs))
(for* [(man men) (woman women)]
#:continue (equal? woman (engaged man))
(when (and
(prefers? prefs man woman (engaged man))
(prefers? prefs woman man (engaged woman)))
(error 'not-stable (list man woman)))))
- Output:
(stableMatching) 👫 abe abi 👫 bob cath 👫 col hope 👫 dan ivy 👫 ed jan 👫 fred bea 👫 gav gay 👫 hal eve 💔 hope col 👫 hope ian 👫 col dee 💔 abi abe 👫 abi jon 💔 ivy dan 👫 ivy abe 👫 dan fay ((abe . ivy) (abi . jon) (bob . cath) (cath . bob) (col . dee) (hope . ian) (dan . fay) (ivy . abe) (ed . jan) (jan . ed) (fred . bea) (bea . fred) (gav . gay) (gay . gav) (hal . eve) (eve . hal) (ian . hope) (dee . col) (jon . abi) (fay . dan)) (disengage 'abe 'ivy) (disengage 'hope 'ian) (engage 'abe 'hope) (engage 'ivy 'ian) (checkStable) 💔 abe ivy 💔 hope ian abe hope 👫 ivy ian 👫 😡 error: not-stable (abe bea)
F#
let menPrefs =
Map.ofList
["abe", ["abi";"eve";"cath";"ivy";"jan";"dee";"fay";"bea";"hope";"gay"];
"bob", ["cath";"hope";"abi";"dee";"eve";"fay";"bea";"jan";"ivy";"gay"];
"col", ["hope";"eve";"abi";"dee";"bea";"fay";"ivy";"gay";"cath";"jan"];
"dan", ["ivy";"fay";"dee";"gay";"hope";"eve";"jan";"bea";"cath";"abi"];
"ed", ["jan";"dee";"bea";"cath";"fay";"eve";"abi";"ivy";"hope";"gay"];
"fred", ["bea";"abi";"dee";"gay";"eve";"ivy";"cath";"jan";"hope";"fay"];
"gav", ["gay";"eve";"ivy";"bea";"cath";"abi";"dee";"hope";"jan";"fay"];
"hal", ["abi";"eve";"hope";"fay";"ivy";"cath";"jan";"bea";"gay";"dee"];
"ian", ["hope";"cath";"dee";"gay";"bea";"abi";"fay";"ivy";"jan";"eve"];
"jon", ["abi";"fay";"jan";"gay";"eve";"bea";"dee";"cath";"ivy";"hope"];
]
let womenPrefs =
Map.ofList
["abi", ["bob";"fred";"jon";"gav";"ian";"abe";"dan";"ed";"col";"hal"];
"bea", ["bob";"abe";"col";"fred";"gav";"dan";"ian";"ed";"jon";"hal"];
"cath", ["fred";"bob";"ed";"gav";"hal";"col";"ian";"abe";"dan";"jon"];
"dee", ["fred";"jon";"col";"abe";"ian";"hal";"gav";"dan";"bob";"ed"];
"eve", ["jon";"hal";"fred";"dan";"abe";"gav";"col";"ed";"ian";"bob"];
"fay", ["bob";"abe";"ed";"ian";"jon";"dan";"fred";"gav";"col";"hal"];
"gay", ["jon";"gav";"hal";"fred";"bob";"abe";"col";"ed";"dan";"ian"];
"hope", ["gav";"jon";"bob";"abe";"ian";"dan";"hal";"ed";"col";"fred"];
"ivy", ["ian";"col";"hal";"gav";"fred";"bob";"abe";"ed";"jon";"dan"];
"jan", ["ed";"hal";"gav";"abe";"bob";"jon";"col";"ian";"fred";"dan"];
]
let men = menPrefs |> Map.toList |> List.map fst |> List.sort
let women = womenPrefs |> Map.toList |> List.map fst |> List.sort
type Configuration =
{
proposed: Map<string,string list>; // man -> list of women
wifeOf: Map<string, string>; // man -> woman
husbandOf: Map<string, string>; // woman -> man
}
// query functions
let isFreeMan config man = config.wifeOf.TryFind man = None
let isFreeWoman config woman = config.husbandOf.TryFind woman = None
let hasProposedTo config man woman =
defaultArg (config.proposed.TryFind(man)) []
|> List.exists ((=) woman)
// helper
let negate f = fun x -> not (f x)
// returns those 'women' who 'man' has not proposed to before
let notProposedBy config man women = List.filter (negate (hasProposedTo config man)) women
let prefers (prefs:Map<string,string list>) w m1 m2 =
let order = prefs.[w]
let m1i = List.findIndex ((=) m1) order
let m2i = List.findIndex ((=) m2) order
m1i < m2i
let womanPrefers = prefers womenPrefs
let manPrefers = prefers menPrefs
// returns the women that m likes better than his current fiancée
let preferredWomen config m =
let w = config.wifeOf.[m]
women
|> List.filter (fun w' -> manPrefers m w' w) // '
// whether there is a woman who m likes better than his current fiancée
// and who also likes him better than her current fiancé
let prefersAWomanWhoAlsoPrefersHim config m =
preferredWomen config m
|> List.exists (fun w -> womanPrefers w m config.husbandOf.[w])
let isStable config =
not (List.exists (prefersAWomanWhoAlsoPrefersHim config) men)
// modifiers (return new configurations)
let engage config man woman =
{ config with wifeOf = config.wifeOf.Add(man, woman);
husbandOf = config.husbandOf.Add(woman, man) }
let breakOff config man =
let woman = config.wifeOf.[man]
{ config with wifeOf = config.wifeOf.Remove(man);
husbandOf = config.husbandOf.Remove(woman) }
let propose config m w =
// remember the proposition
let proposedByM = defaultArg (config.proposed.TryFind m) []
let proposed' = config.proposed.Add(m, w::proposedByM) // '
let config = { config with proposed = proposed'} // '
// actually try to engage
if isFreeWoman config w then engage config m w
else
let m' = config.husbandOf.[w] // '
if womanPrefers w m m' then // '
let config = breakOff config m' // '
engage config m w
else
config
// do one step of the algorithm; returns None if no more steps are possible
let step config : Configuration option =
let freeMen = men |> List.filter (isFreeMan config)
let menWhoCanPropose =
freeMen |>
List.filter (fun man -> (notProposedBy config man women) <> [] )
match menWhoCanPropose with
| [] -> None
| m::_ -> let unproposedByM = menPrefs.[m] |> notProposedBy config m
// w is automatically the highest ranked because menPrefs.[m] is the source
let w = List.head unproposedByM
Some( propose config m w )
let rec loop config =
match step config with
| None -> config
| Some config' -> loop config' // '
// find solution and print it
let solution = loop { proposed = Map.empty<string, string list>;
wifeOf = Map.empty<string, string>;
husbandOf = Map.empty<string, string> }
for woman, man in Map.toList solution.husbandOf do
printfn "%s is engaged to %s" woman man
printfn "Solution is stable: %A" (isStable solution)
// create unstable configuration by perturbing the solution
let perturbed =
let gal0 = women.[0]
let gal1 = women.[1]
let guy0 = solution.husbandOf.[gal0]
let guy1 = solution.husbandOf.[gal1]
{ solution with wifeOf = solution.wifeOf.Add( guy0, gal1 ).Add( guy1, gal0 );
husbandOf = solution.husbandOf.Add( gal0, guy1 ).Add( gal1, guy0 ) }
printfn "Perturbed is stable: %A" (isStable perturbed)
- Output:
abi is engaged to jon bea is engaged to fred cath is engaged to bob dee is engaged to col eve is engaged to hal fay is engaged to dan gay is engaged to gav hope is engaged to ian ivy is engaged to abe jan is engaged to ed Solution is stable: true Perturbed is stable: false
Go
package main
import "fmt"
// Asymetry in the algorithm suggests different data structures for the
// map value types of the proposers and the recipients. Proposers go down
// their list of preferences in order, and do not need random access.
// Recipients on the other hand must compare their preferences to arbitrary
// proposers. A slice is adequate for proposers, but a map allows direct
// lookups for recipients and avoids looping code.
type proposers map[string][]string
var mPref = proposers{
"abe": []string{
"abi", "eve", "cath", "ivy", "jan",
"dee", "fay", "bea", "hope", "gay"},
"bob": []string{
"cath", "hope", "abi", "dee", "eve",
"fay", "bea", "jan", "ivy", "gay"},
"col": []string{
"hope", "eve", "abi", "dee", "bea",
"fay", "ivy", "gay", "cath", "jan"},
"dan": []string{
"ivy", "fay", "dee", "gay", "hope",
"eve", "jan", "bea", "cath", "abi"},
"ed": []string{
"jan", "dee", "bea", "cath", "fay",
"eve", "abi", "ivy", "hope", "gay"},
"fred": []string{
"bea", "abi", "dee", "gay", "eve",
"ivy", "cath", "jan", "hope", "fay"},
"gav": []string{
"gay", "eve", "ivy", "bea", "cath",
"abi", "dee", "hope", "jan", "fay"},
"hal": []string{
"abi", "eve", "hope", "fay", "ivy",
"cath", "jan", "bea", "gay", "dee"},
"ian": []string{
"hope", "cath", "dee", "gay", "bea",
"abi", "fay", "ivy", "jan", "eve"},
"jon": []string{
"abi", "fay", "jan", "gay", "eve",
"bea", "dee", "cath", "ivy", "hope"},
}
type recipients map[string]map[string]int
var wPref = recipients{
"abi": map[string]int{
"bob": 1, "fred": 2, "jon": 3, "gav": 4, "ian": 5,
"abe": 6, "dan": 7, "ed": 8, "col": 9, "hal": 10},
"bea": map[string]int{
"bob": 1, "abe": 2, "col": 3, "fred": 4, "gav": 5,
"dan": 6, "ian": 7, "ed": 8, "jon": 9, "hal": 10},
"cath": map[string]int{
"fred": 1, "bob": 2, "ed": 3, "gav": 4, "hal": 5,
"col": 6, "ian": 7, "abe": 8, "dan": 9, "jon": 10},
"dee": map[string]int{
"fred": 1, "jon": 2, "col": 3, "abe": 4, "ian": 5,
"hal": 6, "gav": 7, "dan": 8, "bob": 9, "ed": 10},
"eve": map[string]int{
"jon": 1, "hal": 2, "fred": 3, "dan": 4, "abe": 5,
"gav": 6, "col": 7, "ed": 8, "ian": 9, "bob": 10},
"fay": map[string]int{
"bob": 1, "abe": 2, "ed": 3, "ian": 4, "jon": 5,
"dan": 6, "fred": 7, "gav": 8, "col": 9, "hal": 10},
"gay": map[string]int{
"jon": 1, "gav": 2, "hal": 3, "fred": 4, "bob": 5,
"abe": 6, "col": 7, "ed": 8, "dan": 9, "ian": 10},
"hope": map[string]int{
"gav": 1, "jon": 2, "bob": 3, "abe": 4, "ian": 5,
"dan": 6, "hal": 7, "ed": 8, "col": 9, "fred": 10},
"ivy": map[string]int{
"ian": 1, "col": 2, "hal": 3, "gav": 4, "fred": 5,
"bob": 6, "abe": 7, "ed": 8, "jon": 9, "dan": 10},
"jan": map[string]int{
"ed": 1, "hal": 2, "gav": 3, "abe": 4, "bob": 5,
"jon": 6, "col": 7, "ian": 8, "fred": 9, "dan": 10},
}
func main() {
// get parings by Gale/Shapley algorithm
ps := pair(mPref, wPref)
// show results
fmt.Println("\nresult:")
if !validateStable(ps, mPref, wPref) {
return
}
// perturb
for {
i := 0
var w2, m2 [2]string
for w, m := range ps {
w2[i] = w
m2[i] = m
if i == 1 {
break
}
i++
}
fmt.Println("\nexchanging partners of", m2[0], "and", m2[1])
ps[w2[0]] = m2[1]
ps[w2[1]] = m2[0]
// validate perturbed parings
if !validateStable(ps, mPref, wPref) {
return
}
// if those happened to be stable as well, perturb more
}
}
type parings map[string]string // map[recipient]proposer (or map[w]m)
// Pair implements the Gale/Shapley algorithm.
func pair(pPref proposers, rPref recipients) parings {
// code is destructive on the maps, so work with copies
pFree := proposers{}
for k, v := range pPref {
pFree[k] = append([]string{}, v...)
}
rFree := recipients{}
for k, v := range rPref {
rFree[k] = v
}
// struct only used in this function.
// preferences must be saved in case engagement is broken.
type save struct {
proposer string
pPref []string
rPref map[string]int
}
proposals := map[string]save{} // key is recipient (w)
// WP pseudocode comments prefaced with WP: m is proposer, w is recipient.
// WP: while ∃ free man m who still has a woman w to propose to
for len(pFree) > 0 { // while there is a free proposer,
var proposer string
var ppref []string
for proposer, ppref = range pFree {
break // pick a proposer at random, whatever range delivers first.
}
if len(ppref) == 0 {
continue // if proposer has no possible recipients, skip
}
// WP: w = m's highest ranked such woman to whom he has not yet proposed
recipient := ppref[0] // highest ranged is first in list.
ppref = ppref[1:] // pop from list
var rpref map[string]int
var ok bool
// WP: if w is free
if rpref, ok = rFree[recipient]; ok {
// WP: (m, w) become engaged
// (common code follows if statement)
} else {
// WP: else some pair (m', w) already exists
s := proposals[recipient] // get proposal saved preferences
// WP: if w prefers m to m'
if s.rPref[proposer] < s.rPref[s.proposer] {
fmt.Println("engagement broken:", recipient, s.proposer)
// WP: m' becomes free
pFree[s.proposer] = s.pPref // return proposer to the map
// WP: (m, w) become engaged
rpref = s.rPref
// (common code follows if statement)
} else {
// WP: else (m', w) remain engaged
pFree[proposer] = ppref // update preferences in map
continue
}
}
fmt.Println("engagement:", recipient, proposer)
proposals[recipient] = save{proposer, ppref, rpref}
delete(pFree, proposer)
delete(rFree, recipient)
}
// construct return value
ps := parings{}
for recipient, s := range proposals {
ps[recipient] = s.proposer
}
return ps
}
func validateStable(ps parings, pPref proposers, rPref recipients) bool {
for r, p := range ps {
fmt.Println(r, p)
}
for r, p := range ps {
for _, rp := range pPref[p] {
if rp == r {
break
}
rprefs := rPref[rp]
if rprefs[p] < rprefs[ps[rp]] {
fmt.Println("unstable.")
fmt.Printf("%s and %s would prefer each other over"+
" their current pairings.\n", p, rp)
return false
}
}
}
fmt.Println("stable.")
return true
}
- Output:
engagement: hope col engagement: bea fred engagement: ivy dan engagement: cath bob engagement: abi abe engagement broken: abi abe engagement: abi jon engagement: gay gav engagement: eve abe engagement: jan ed engagement broken: hope col engagement: hope ian engagement: dee col engagement broken: eve abe engagement: eve hal engagement broken: ivy dan engagement: ivy abe engagement: fay dan result: fay dan dee col cath bob hope ian eve hal jan ed abi jon gay gav ivy abe bea fred stable. exchanging partners of fred and dan ivy abe bea dan fay fred dee col cath bob hope ian eve hal jan ed abi jon gay gav unstable. dan and fay would prefer each other over their current pairings.
Groovy
(more or less) Uses explicit maps for preference ranking rather than list position. Uses Man and Woman enumerated types instead of string names, in order to take advantage of compile time type and constant checking to help keep the playas straight without a scorecard.
"Stable Matching" Solution:
import static Man.*
import static Woman.*
Map<Woman,Man> match(Map<Man,Map<Woman,Integer>> guysGalRanking, Map<Woman,Map<Man,Integer>> galsGuyRanking) {
Map<Woman,Man> engagedTo = new TreeMap()
List<Man> freeGuys = (Man.values()).clone()
while(freeGuys) {
Man thisGuy = freeGuys[0]
freeGuys -= thisGuy
List<Woman> guyChoices = Woman.values().sort{ she -> - guysGalRanking[thisGuy][she] }
for(Woman girl in guyChoices) {
if(! engagedTo[girl]) {
engagedTo[girl] = thisGuy
break
} else {
Man thatGuy = engagedTo[girl]
if (galsGuyRanking[girl][thisGuy] > galsGuyRanking[girl][thatGuy]) {
engagedTo[girl] = thisGuy
freeGuys << thatGuy
break
}
}
}
}
engagedTo
}
"Stability Checking" Solution: (Could do more to eliminate common code. Maybe later.)
boolean isStable(Map<Woman,Man> matches, Map<Man,Map<Woman,Integer>> guysGalRanking, Map<Woman,Map<Man,Integer>> galsGuyRanking) {
matches.collect{ girl, guy ->
int guysRank = galsGuyRanking[girl][guy]
List<Man> sheLikesBetter = Man.values().findAll{ he -> galsGuyRanking[girl][he] > guysRank }
for(Man otherGuy : sheLikesBetter) {
Woman otherGuyFiancee = matches.find{ pair -> pair.value == otherGuy }.key
if(guysGalRanking[otherGuy][girl] > guysGalRanking[otherGuy][otherGuyFiancee]) {
println """O. M. G. ... ${otherGuy} likes ${girl} better than ${otherGuyFiancee}, and ${girl} likes ${otherGuy} better than ${guy}!
I am TOTALLY 'shipping ${girl} and ${otherGuy} now!"""
return false
}
}
int galsRank = guysGalRanking[guy][girl]
List<Woman> heLikesBetter = Woman.values().findAll{ she -> guysGalRanking[guy][she] > galsRank }
for(Woman otherGal : heLikesBetter) {
Man otherGalFiance = matches[otherGal]
if(galsGuyRanking[otherGal][guy] > galsGuyRanking[otherGal][otherGalFiance]) {
println """O. M. G. ... ${otherGal} likes ${guy} better than ${otherGalFiance}, and ${guy} likes ${otherGal} better than ${girl}!
I am TOTALLY 'shipping ${guy} and ${otherGal} now!"""
return false
}
}
true
}.every()
}
Test (Stable and Perturbed):
enum Man {
abe, bob, col, dan, ed, fred, gav, hal, ian, jon
}
enum Woman {
abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan
}
Map<Man,Map<Woman,Integer>> mansWomanRanking = [
(abe): [(abi):10, (eve):9, (cath):8, (ivy):7, (jan):6, (dee):5, (fay):4, (bea):3, (hope):2, (gay):1],
(bob): [(cath):10, (hope):9, (abi):8, (dee):7, (eve):6, (fay):5, (bea):4, (jan):3, (ivy):2, (gay):1],
(col): [(hope):10, (eve):9, (abi):8, (dee):7, (bea):6, (fay):5, (ivy):4, (gay):3, (cath):2, (jan):1],
(dan): [(ivy):10, (fay):9, (dee):8, (gay):7, (hope):6, (eve):5, (jan):4, (bea):3, (cath):2, (abi):1],
(ed): [(jan):10, (dee):9, (bea):8, (cath):7, (fay):6, (eve):5, (abi):4, (ivy):3, (hope):2, (gay):1],
(fred):[(bea):10, (abi):9, (dee):8, (gay):7, (eve):6, (ivy):5, (cath):4, (jan):3, (hope):2, (fay):1],
(gav): [(gay):10, (eve):9, (ivy):8, (bea):7, (cath):6, (abi):5, (dee):4, (hope):3, (jan):2, (fay):1],
(hal): [(abi):10, (eve):9, (hope):8, (fay):7, (ivy):6, (cath):5, (jan):4, (bea):3, (gay):2, (dee):1],
(ian): [(hope):10, (cath):9, (dee):8, (gay):7, (bea):6, (abi):5, (fay):4, (ivy):3, (jan):2, (eve):1],
(jon): [(abi):10, (fay):9, (jan):8, (gay):7, (eve):6, (bea):5, (dee):4, (cath):3, (ivy):2, (hope):1],
]
Map<Woman,List<Man>> womansManRanking = [
(abi): [(bob):10, (fred):9, (jon):8, (gav):7, (ian):6, (abe):5, (dan):4, (ed):3, (col):2, (hal):1],
(bea): [(bob):10, (abe):9, (col):8, (fred):7, (gav):6, (dan):5, (ian):4, (ed):3, (jon):2, (hal):1],
(cath):[(fred):10, (bob):9, (ed):8, (gav):7, (hal):6, (col):5, (ian):4, (abe):3, (dan):2, (jon):1],
(dee): [(fred):10, (jon):9, (col):8, (abe):7, (ian):6, (hal):5, (gav):4, (dan):3, (bob):2, (ed):1],
(eve): [(jon):10, (hal):9, (fred):8, (dan):7, (abe):6, (gav):5, (col):4, (ed):3, (ian):2, (bob):1],
(fay): [(bob):10, (abe):9, (ed):8, (ian):7, (jon):6, (dan):5, (fred):4, (gav):3, (col):2, (hal):1],
(gay): [(jon):10, (gav):9, (hal):8, (fred):7, (bob):6, (abe):5, (col):4, (ed):3, (dan):2, (ian):1],
(hope):[(gav):10, (jon):9, (bob):8, (abe):7, (ian):6, (dan):5, (hal):4, (ed):3, (col):2, (fred):1],
(ivy): [(ian):10, (col):9, (hal):8, (gav):7, (fred):6, (bob):5, (abe):4, (ed):3, (jon):2, (dan):1],
(jan): [(ed):10, (hal):9, (gav):8, (abe):7, (bob):6, (jon):5, (col):4, (ian):3, (fred):2, (dan):1],
]
// STABLE test
Map<Woman,Man> matches = match(mansWomanRanking, womansManRanking)
matches.each { w, m ->
println "${w} (his '${mansWomanRanking[m][w]}' girl) is engaged to ${m} (her '${womansManRanking[w][m]}' guy)"
}
assert matches.keySet() == Woman.values() as Set
assert matches.values() as Set == Man.values() as Set
println ''
assert isStable(matches, mansWomanRanking, womansManRanking)
// PERTURBED test
println 'Swapping partners now ...'
def temp = matches[abi]
matches[abi] = matches[bea]
matches[bea] = temp
matches.each { w, m ->
println "${w} (his '${mansWomanRanking[m][w]}' girl) is engaged to ${m} (her '${womansManRanking[w][m]}' guy)"
}
println ''
assert ! isStable(matches, mansWomanRanking, womansManRanking)
- Output:
abi (his '10' girl) is engaged to jon (her '8' guy) bea (his '10' girl) is engaged to fred (her '7' guy) cath (his '10' girl) is engaged to bob (her '9' guy) dee (his '7' girl) is engaged to col (her '8' guy) eve (his '9' girl) is engaged to hal (her '9' guy) fay (his '9' girl) is engaged to dan (her '5' guy) gay (his '10' girl) is engaged to gav (her '9' guy) hope (his '10' girl) is engaged to ian (her '6' guy) ivy (his '7' girl) is engaged to abe (her '4' guy) jan (his '10' girl) is engaged to ed (her '10' guy) Swapping partners now ... abi (his '9' girl) is engaged to fred (her '9' guy) bea (his '5' girl) is engaged to jon (her '2' guy) cath (his '10' girl) is engaged to bob (her '9' guy) dee (his '7' girl) is engaged to col (her '8' guy) eve (his '9' girl) is engaged to hal (her '9' guy) fay (his '9' girl) is engaged to dan (her '5' guy) gay (his '10' girl) is engaged to gav (her '9' guy) hope (his '10' girl) is engaged to ian (her '6' guy) ivy (his '7' girl) is engaged to abe (her '4' guy) jan (his '10' girl) is engaged to ed (her '10' guy) O. M. G. ... bea likes fred better than jon, and fred likes bea better than abi! I am TOTALLY 'shipping fred and bea now! O. M. G. ... fred likes bea better than abi, and bea likes fred better than jon! I am TOTALLY 'shipping bea and fred now! O. M. G. ... jon likes eve better than bea, and eve likes jon better than hal! I am TOTALLY 'shipping eve and jon now! O. M. G. ... jon likes fay better than bea, and fay likes jon better than dan! I am TOTALLY 'shipping fay and jon now! O. M. G. ... jon likes gay better than bea, and gay likes jon better than gav! I am TOTALLY 'shipping gay and jon now!
Haskell
The solution
The Gale/Shapley algorithm is formulated via iterative changing of the state. In Haskell it is possible to implement this approach by pure function iterations.
The state here consists of the list of free guys and associative preferences lists for guys and girls correspondingly. In order to simplify the access to elements of the state we use lenses.
{-# LANGUAGE TemplateHaskell #-}
import Lens.Micro
import Lens.Micro.TH
import Data.List (union, delete)
type Preferences a = (a, [a])
type Couple a = (a,a)
data State a = State { _freeGuys :: [a]
, _guys :: [Preferences a]
, _girls :: [Preferences a]}
makeLenses ''State
Lenses allow us to get access to each person in the state, and even to the associated preference list:
name n = lens get set
where get = head . dropWhile ((/= n).fst)
set assoc (_,v) = let (prev, _:post) = break ((== n).fst) assoc
in prev ++ (n, v):post
fianceesOf n = guys.name n._2
fiancesOf n = girls.name n._2
Note that in following we use lens operators:
^. -- access to a field %~ -- modification of a field .~ -- setting a field the value
Further we use a trick: guys list girls in a descending order of preference (the most liked is the first), while girls expect guys in opposite order -- the most liked is the last. In any case, we assume that the current best choice for guys and for girls is expected to appear on the top of their preference lists.
With these tools and notes we are ready to implement the Gale/Shapley algorithm and the stability test as they are given in a textbook:
stableMatching :: Eq a => State a -> [Couple a]
stableMatching = getPairs . until (null._freeGuys) step
where
getPairs s = map (_2 %~ head) $ s^.guys
step :: Eq a => State a -> State a
step s = foldl propose s (s^.freeGuys)
where
propose s guy =
let girl = s^.fianceesOf guy & head
bestGuy : otherGuys = s^.fiancesOf girl
modify
| guy == bestGuy = freeGuys %~ delete guy
| guy `elem` otherGuys = (fiancesOf girl %~ dropWhile (/= guy)) .
(freeGuys %~ guy `replaceBy` bestGuy)
| otherwise = fianceesOf guy %~ tail
in modify s
replaceBy x y [] = []
replaceBy x y (h:t) | h == x = y:t
| otherwise = h:replaceBy x y t
unstablePairs :: Eq a => State a -> [Couple a] -> [(Couple a, Couple a)]
unstablePairs s pairs =
[ ((m1, w1), (m2,w2)) | (m1, w1) <- pairs
, (m2,w2) <- pairs
, m1 /= m2
, let fm = s^.fianceesOf m1
, elemIndex w2 fm < elemIndex w1 fm
, let fw = s^.fiancesOf w2
, elemIndex m2 fw < elemIndex m1 fw ]
This solution works not only for strings, but for any equable data.
The task
Here are the given preferences:
guys0 =
[("abe", ["abi", "eve", "cath", "ivy", "jan", "dee", "fay", "bea", "hope", "gay"]),
("bob", ["cath", "hope", "abi", "dee", "eve", "fay", "bea", "jan", "ivy", "gay"]),
("col", ["hope", "eve", "abi", "dee", "bea", "fay", "ivy", "gay", "cath", "jan"]),
("dan", ["ivy", "fay", "dee", "gay", "hope", "eve", "jan", "bea", "cath", "abi"]),
("ed", ["jan", "dee", "bea", "cath", "fay", "eve", "abi", "ivy", "hope", "gay"]),
("fred",["bea", "abi", "dee", "gay", "eve", "ivy", "cath", "jan", "hope", "fay"]),
("gav", ["gay", "eve", "ivy", "bea", "cath", "abi", "dee", "hope", "jan", "fay"]),
("hal", ["abi", "eve", "hope", "fay", "ivy", "cath", "jan", "bea", "gay", "dee"]),
("ian", ["hope", "cath", "dee", "gay", "bea", "abi", "fay", "ivy", "jan", "eve"]),
("jon", ["abi", "fay", "jan", "gay", "eve", "bea", "dee", "cath", "ivy", "hope"])]
girls0 =
[("abi", ["bob", "fred", "jon", "gav", "ian", "abe", "dan", "ed", "col", "hal"]),
("bea", ["bob", "abe", "col", "fred", "gav", "dan", "ian", "ed", "jon", "hal"]),
("cath", ["fred", "bob", "ed", "gav", "hal", "col", "ian", "abe", "dan", "jon"]),
("dee", ["fred", "jon", "col", "abe", "ian", "hal", "gav", "dan", "bob", "ed"]),
("eve", ["jon", "hal", "fred", "dan", "abe", "gav", "col", "ed", "ian", "bob"]),
("fay", ["bob", "abe", "ed", "ian", "jon", "dan", "fred", "gav", "col", "hal"]),
("gay", ["jon", "gav", "hal", "fred", "bob", "abe", "col", "ed", "dan", "ian"]),
("hope", ["gav", "jon", "bob", "abe", "ian", "dan", "hal", "ed", "col", "fred"]),
("ivy", ["ian", "col", "hal", "gav", "fred", "bob", "abe", "ed", "jon", "dan"]),
("jan", ["ed", "hal", "gav", "abe", "bob", "jon", "col", "ian", "fred", "dan"])]
The initial state:
s0 = State (fst <$> guys0) guys0 ((_2 %~ reverse) <$> girls0)
And the solution:
λ> let pairs = stableMatching s0 λ> mapM_ print pairs ("abe","ivy") ("bob","cath") ("col","dee") ("dan","fay") ("ed","jan") ("fred","bea") ("gav","gay") ("hal","eve") ("ian","hope") ("jon","abi") λ> unstablePairs s0 pairs []
Lets' make some perturbations: swap fiancees of abe and bob:
λ> let fiance n = name n._2 λ> let pairs' = pairs & (fiance "abe" .~ "cath") & (fiance "bob" .~ "ivy") λ> mapM_ print $ unstablePairs s0 pairs' (("bob","ivy"),("abe","cath")) (("bob","ivy"),("dan","fay")) (("bob","ivy"),("fred","bea")) (("bob","ivy"),("ian","hope")) (("bob","ivy"),("jon","abi"))
Icon and Unicon
printf.icn provides formatting
- Output:
Matching: abi accepted abe's proposal cath accepted bob's proposal hope accepted col's proposal ivy accepted dan's proposal jan accepted ed's proposal bea accepted fred's proposal gay accepted gav's proposal eve accepted hal's proposal hope chose ian over col abi chose jon over abe dee accepted col's proposal ivy chose abe over dan fay accepted dan's proposal Engagements: abi is engaged to jon bea is engaged to fred cath is engaged to bob dee is engaged to col eve is engaged to hal fay is engaged to dan gay is engaged to gav hope is engaged to ian ivy is engaged to abe jan is engaged to ed Engagments are all stable. Swapping abi and bea Engagements: abi is engaged to fred bea is engaged to jon cath is engaged to bob dee is engaged to col eve is engaged to hal fay is engaged to dan gay is engaged to gav hope is engaged to ian ivy is engaged to abe jan is engaged to ed Engagement of bea to fred is unstable.
J
Mraw=: ;: ;._2 noun define -. ':,'
abe: abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay
bob: cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay
col: hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan
dan: ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi
ed: jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay
fred: bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay
gav: gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay
hal: abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee
ian: hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve
jon: abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope
)
Fraw=: ;: ;._2 noun define -. ':,'
abi: bob, fred, jon, gav, ian, abe, dan, ed, col, hal
bea: bob, abe, col, fred, gav, dan, ian, ed, jon, hal
cath: fred, bob, ed, gav, hal, col, ian, abe, dan, jon
dee: fred, jon, col, abe, ian, hal, gav, dan, bob, ed
eve: jon, hal, fred, dan, abe, gav, col, ed, ian, bob
fay: bob, abe, ed, ian, jon, dan, fred, gav, col, hal
gay: jon, gav, hal, fred, bob, abe, col, ed, dan, ian
hope: gav, jon, bob, abe, ian, dan, hal, ed, col, fred
ivy: ian, col, hal, gav, fred, bob, abe, ed, jon, dan
jan: ed, hal, gav, abe, bob, jon, col, ian, fred, dan
)
GuyNames=: {."1 Mraw
GalNames=: {."1 Fraw
Mprefs=: GalNames i. }."1 Mraw
Fprefs=: GuyNames i. }."1 Fraw
propose=: dyad define
engaged=. x
'guy gal'=. y
if. gal e. engaged do.
fiance=. engaged i. gal
if. guy <&((gal{Fprefs)&i.) fiance do.
engaged=. gal guy} _ fiance} engaged
end.
else.
engaged=. gal guy} engaged
end.
engaged
)
matchMake=: monad define
engaged=. _"0 GuyNames NB. initially no one is engaged
fallback=. 0"0 engaged NB. and each guy will first propose to his favorite
whilst. _ e. engaged do.
for_guy. I. _ = engaged do.
next=. guy{fallback
gal=. (<guy,next){Mprefs
engaged=. engaged propose guy,gal
fallback=. (next+1) guy} fallback
end.
end.
GuyNames,:engaged{GalNames
)
checkStable=: monad define
'guys gals'=. (GuyNames,:GalNames) i."1 y
satisfied=. ] >: (<0 1) |: ]
guyshappy=. satisfied (guys{Mprefs) i."1 0/ gals
galshappy=. satisfied (gals{Fprefs) i."1 0/ guys
unstable=. 4$.$.-. guyshappy +. |:galshappy
if. bad=. 0 < #unstable do.
smoutput 'Engagements preferred by both members to their current ones:'
smoutput y {~"1 0"2 1 unstable
end.
assert-.bad
)
For most of this, males and females are both represented by indices. Rows of Mprefs
are indexed by a male index and each contains a list female indices, in priority order. Rows of Fprefs
are indexed by a female index and each contains a list male indices in priority order. These indices select the corresponding names from GuyNames
and GalNames
.
In matchMake
(and propose
), engaged
identifies the gal each guy is engaged to (or _
if that guy is not engaged). And, fallback
identifies the column which has the next gal, in Mprefs
, for that guy to propose to.
Example use:
matchMake ''
┌───┬────┬───┬───┬───┬────┬───┬───┬────┬───┐
│abe│bob │col│dan│ed │fred│gav│hal│ian │jon│
├───┼────┼───┼───┼───┼────┼───┼───┼────┼───┤
│ivy│cath│dee│fay│jan│bea │gay│eve│hope│abi│
└───┴────┴───┴───┴───┴────┴───┴───┴────┴───┘
Stability check:
checkStable matchMake''
(no news is good news)
An altered result, and a stability check on it (showing what would happen for a bogus result):
0 105 A."_1 matchMake '' NB. swap abi and bea
┌───┬────┬───┬───┬───┬────┬───┬───┬────┬───┐
│abe│bob │col│dan│ed │fred│gav│hal│ian │jon│
├───┼────┼───┼───┼───┼────┼───┼───┼────┼───┤
│ivy│cath│dee│fay│jan│abi │gay│eve│hope│bea│
└───┴────┴───┴───┴───┴────┴───┴───┴────┴───┘
checkStable 0 105 A."_1 matchMake ''
Engagements preferred by both members to their current ones:
┌────┬───┐
│fred│bea│
├────┼───┤
│jon │fay│
├────┼───┤
│jon │gay│
├────┼───┤
│jon │eve│
└────┴───┘
|assertion failure: assert
| assert-.bad
As an aside, note that the guys fared much better than the gals here, with over half of the guys getting their first preference and only one gal getting her first preference. The worst match for any guy was fourth preference where the worst for any gal was seventh preference.
Java
This is not a direct translation of Python, but it's fairly close (especially the stability check).
import java.util.*;
public class Stable {
static List<String> guys = Arrays.asList(
new String[]{
"abe", "bob", "col", "dan", "ed", "fred", "gav", "hal", "ian", "jon"});
static List<String> girls = Arrays.asList(
new String[]{
"abi", "bea", "cath", "dee", "eve", "fay", "gay", "hope", "ivy", "jan"});
static Map<String, List<String>> guyPrefers =
new HashMap<String, List<String>>(){{
put("abe",
Arrays.asList("abi", "eve", "cath", "ivy", "jan", "dee", "fay",
"bea", "hope", "gay"));
put("bob",
Arrays.asList("cath", "hope", "abi", "dee", "eve", "fay", "bea",
"jan", "ivy", "gay"));
put("col",
Arrays.asList("hope", "eve", "abi", "dee", "bea", "fay", "ivy",
"gay", "cath", "jan"));
put("dan",
Arrays.asList("ivy", "fay", "dee", "gay", "hope", "eve", "jan",
"bea", "cath", "abi"));
put("ed",
Arrays.asList("jan", "dee", "bea", "cath", "fay", "eve", "abi",
"ivy", "hope", "gay"));
put("fred",
Arrays.asList("bea", "abi", "dee", "gay", "eve", "ivy", "cath",
"jan", "hope", "fay"));
put("gav",
Arrays.asList("gay", "eve", "ivy", "bea", "cath", "abi", "dee",
"hope", "jan", "fay"));
put("hal",
Arrays.asList("abi", "eve", "hope", "fay", "ivy", "cath", "jan",
"bea", "gay", "dee"));
put("ian",
Arrays.asList("hope", "cath", "dee", "gay", "bea", "abi", "fay",
"ivy", "jan", "eve"));
put("jon",
Arrays.asList("abi", "fay", "jan", "gay", "eve", "bea", "dee",
"cath", "ivy", "hope"));
}};
static Map<String, List<String>> girlPrefers =
new HashMap<String, List<String>>(){{
put("abi",
Arrays.asList("bob", "fred", "jon", "gav", "ian", "abe", "dan",
"ed", "col", "hal"));
put("bea",
Arrays.asList("bob", "abe", "col", "fred", "gav", "dan", "ian",
"ed", "jon", "hal"));
put("cath",
Arrays.asList("fred", "bob", "ed", "gav", "hal", "col", "ian",
"abe", "dan", "jon"));
put("dee",
Arrays.asList("fred", "jon", "col", "abe", "ian", "hal", "gav",
"dan", "bob", "ed"));
put("eve",
Arrays.asList("jon", "hal", "fred", "dan", "abe", "gav", "col",
"ed", "ian", "bob"));
put("fay",
Arrays.asList("bob", "abe", "ed", "ian", "jon", "dan", "fred",
"gav", "col", "hal"));
put("gay",
Arrays.asList("jon", "gav", "hal", "fred", "bob", "abe", "col",
"ed", "dan", "ian"));
put("hope",
Arrays.asList("gav", "jon", "bob", "abe", "ian", "dan", "hal",
"ed", "col", "fred"));
put("ivy",
Arrays.asList("ian", "col", "hal", "gav", "fred", "bob", "abe",
"ed", "jon", "dan"));
put("jan",
Arrays.asList("ed", "hal", "gav", "abe", "bob", "jon", "col",
"ian", "fred", "dan"));
}};
public static void main(String[] args){
Map<String, String> matches = match(guys, guyPrefers, girlPrefers);
for(Map.Entry<String, String> couple:matches.entrySet()){
System.out.println(
couple.getKey() + " is engaged to " + couple.getValue());
}
if(checkMatches(guys, girls, matches, guyPrefers, girlPrefers)){
System.out.println("Marriages are stable");
}else{
System.out.println("Marriages are unstable");
}
String tmp = matches.get(girls.get(0));
matches.put(girls.get(0), matches.get(girls.get(1)));
matches.put(girls.get(1), tmp);
System.out.println(
girls.get(0) +" and " + girls.get(1) + " have switched partners");
if(checkMatches(guys, girls, matches, guyPrefers, girlPrefers)){
System.out.println("Marriages are stable");
}else{
System.out.println("Marriages are unstable");
}
}
private static Map<String, String> match(List<String> guys,
Map<String, List<String>> guyPrefers,
Map<String, List<String>> girlPrefers){
Map<String, String> engagedTo = new TreeMap<String, String>();
List<String> freeGuys = new LinkedList<String>();
freeGuys.addAll(guys);
while(!freeGuys.isEmpty()){
String thisGuy = freeGuys.remove(0); //get a load of THIS guy
List<String> thisGuyPrefers = guyPrefers.get(thisGuy);
for(String girl:thisGuyPrefers){
if(engagedTo.get(girl) == null){//girl is free
engagedTo.put(girl, thisGuy); //awww
break;
}else{
String otherGuy = engagedTo.get(girl);
List<String> thisGirlPrefers = girlPrefers.get(girl);
if(thisGirlPrefers.indexOf(thisGuy) <
thisGirlPrefers.indexOf(otherGuy)){
//this girl prefers this guy to the guy she's engaged to
engagedTo.put(girl, thisGuy);
freeGuys.add(otherGuy);
break;
}//else no change...keep looking for this guy
}
}
}
return engagedTo;
}
private static boolean checkMatches(List<String> guys, List<String> girls,
Map<String, String> matches, Map<String, List<String>> guyPrefers,
Map<String, List<String>> girlPrefers) {
if(!matches.keySet().containsAll(girls)){
return false;
}
if(!matches.values().containsAll(guys)){
return false;
}
Map<String, String> invertedMatches = new TreeMap<String, String>();
for(Map.Entry<String, String> couple:matches.entrySet()){
invertedMatches.put(couple.getValue(), couple.getKey());
}
for(Map.Entry<String, String> couple:matches.entrySet()){
List<String> shePrefers = girlPrefers.get(couple.getKey());
List<String> sheLikesBetter = new LinkedList<String>();
sheLikesBetter.addAll(shePrefers.subList(0, shePrefers.indexOf(couple.getValue())));
List<String> hePrefers = guyPrefers.get(couple.getValue());
List<String> heLikesBetter = new LinkedList<String>();
heLikesBetter.addAll(hePrefers.subList(0, hePrefers.indexOf(couple.getKey())));
for(String guy : sheLikesBetter){
String guysFinace = invertedMatches.get(guy);
List<String> thisGuyPrefers = guyPrefers.get(guy);
if(thisGuyPrefers.indexOf(guysFinace) >
thisGuyPrefers.indexOf(couple.getKey())){
System.out.printf("%s likes %s better than %s and %s"
+ " likes %s better than their current partner\n",
couple.getKey(), guy, couple.getValue(),
guy, couple.getKey());
return false;
}
}
for(String girl : heLikesBetter){
String girlsFinace = matches.get(girl);
List<String> thisGirlPrefers = girlPrefers.get(girl);
if(thisGirlPrefers.indexOf(girlsFinace) >
thisGirlPrefers.indexOf(couple.getValue())){
System.out.printf("%s likes %s better than %s and %s"
+ " likes %s better than their current partner\n",
couple.getValue(), girl, couple.getKey(),
girl, couple.getValue());
return false;
}
}
}
return true;
}
}
- Output:
abi is engaged to jon bea is engaged to fred cath is engaged to bob dee is engaged to col eve is engaged to hal fay is engaged to dan gay is engaged to gav hope is engaged to ian ivy is engaged to abe jan is engaged to ed Marriages are stable abi and bea have switched partners fred likes bea better than abi and bea likes fred better than their current partner Marriages are unstable
JavaScript
function Person(name) {
var candidateIndex = 0;
this.name = name;
this.fiance = null;
this.candidates = [];
this.rank = function(p) {
for (i = 0; i < this.candidates.length; i++)
if (this.candidates[i] === p) return i;
return this.candidates.length + 1;
}
this.prefers = function(p) {
return this.rank(p) < this.rank(this.fiance);
}
this.nextCandidate = function() {
if (candidateIndex >= this.candidates.length) return null;
return this.candidates[candidateIndex++];
}
this.engageTo = function(p) {
if (p.fiance) p.fiance.fiance = null;
p.fiance = this;
if (this.fiance) this.fiance.fiance = null;
this.fiance = p;
}
this.swapWith = function(p) {
console.log("%s & %s swap partners", this.name, p.name);
var thisFiance = this.fiance;
var pFiance = p.fiance;
this.engageTo(pFiance);
p.engageTo(thisFiance);
}
}
function isStable(guys, gals) {
for (var i = 0; i < guys.length; i++)
for (var j = 0; j < gals.length; j++)
if (guys[i].prefers(gals[j]) && gals[j].prefers(guys[i]))
return false;
return true;
}
function engageEveryone(guys) {
var done;
do {
done = true;
for (var i = 0; i < guys.length; i++) {
var guy = guys[i];
if (!guy.fiance) {
done = false;
var gal = guy.nextCandidate();
if (!gal.fiance || gal.prefers(guy))
guy.engageTo(gal);
}
}
} while (!done);
}
function doMarriage() {
var abe = new Person("Abe");
var bob = new Person("Bob");
var col = new Person("Col");
var dan = new Person("Dan");
var ed = new Person("Ed");
var fred = new Person("Fred");
var gav = new Person("Gav");
var hal = new Person("Hal");
var ian = new Person("Ian");
var jon = new Person("Jon");
var abi = new Person("Abi");
var bea = new Person("Bea");
var cath = new Person("Cath");
var dee = new Person("Dee");
var eve = new Person("Eve");
var fay = new Person("Fay");
var gay = new Person("Gay");
var hope = new Person("Hope");
var ivy = new Person("Ivy");
var jan = new Person("Jan");
abe.candidates = [abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay];
bob.candidates = [cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay];
col.candidates = [hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan];
dan.candidates = [ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi];
ed.candidates = [jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay];
fred.candidates = [bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay];
gav.candidates = [gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay];
hal.candidates = [abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee];
ian.candidates = [hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve];
jon.candidates = [abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope];
abi.candidates = [bob, fred, jon, gav, ian, abe, dan, ed, col, hal];
bea.candidates = [bob, abe, col, fred, gav, dan, ian, ed, jon, hal];
cath.candidates = [fred, bob, ed, gav, hal, col, ian, abe, dan, jon];
dee.candidates = [fred, jon, col, abe, ian, hal, gav, dan, bob, ed];
eve.candidates = [jon, hal, fred, dan, abe, gav, col, ed, ian, bob];
fay.candidates = [bob, abe, ed, ian, jon, dan, fred, gav, col, hal];
gay.candidates = [jon, gav, hal, fred, bob, abe, col, ed, dan, ian];
hope.candidates = [gav, jon, bob, abe, ian, dan, hal, ed, col, fred];
ivy.candidates = [ian, col, hal, gav, fred, bob, abe, ed, jon, dan];
jan.candidates = [ed, hal, gav, abe, bob, jon, col, ian, fred, dan];
var guys = [abe, bob, col, dan, ed, fred, gav, hal, ian, jon];
var gals = [abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan];
engageEveryone(guys);
for (var i = 0; i < guys.length; i++) {
console.log("%s is engaged to %s", guys[i].name, guys[i].fiance.name);
}
console.log("Stable = %s", isStable(guys, gals) ? "Yes" : "No");
jon.swapWith(fred);
console.log("Stable = %s", isStable(guys, gals) ? "Yes" : "No");
}
doMarriage();
- Output:
Abe is engaged to Ivy Bob is engaged to Cath Col is engaged to Dee Dan is engaged to Fay Ed is engaged to Jan Fred is engaged to Bea Gav is engaged to Gay Hal is engaged to Eve Ian is engaged to Hope Jon is engaged to Abi Stable = Yes Jon & Fred swap partners Stable = No
jq
Adapted from Wren
Also works with gojq, the Go implementation of jq
Also works with fq, a Go implementation of a large subset of jq
This adaptation from #Wren illustrates how jq's `debug` facility can be used to show details about the progress of a computation. These progress messages could be suppressed, for example, by redefining debug/1 as: `def debug(msg): .;`
# Generic utilities:
def debug(msg): (msg|debug) as $_ | .;
# Remove the key named $key from an object specified by the given path
def rmkey($key; path):
path |= with_entries(select(.key != $key));
def printPairs:
to_entries[]
| "\(.key) \(.value)";
def debugPairs:
. as $in
| reduce to_entries[] as $x (null;
$x | debug("\(.key) \(.value)") )
| $in;
# The individual preferences
def mPref : {
"abe": [
"abi", "eve", "cath", "ivy", "jan",
"dee", "fay", "bea", "hope", "gay"],
"bob": [
"cath", "hope", "abi", "dee", "eve",
"fay", "bea", "jan", "ivy", "gay"],
"col": [
"hope", "eve", "abi", "dee", "bea",
"fay", "ivy", "gay", "cath", "jan"],
"dan": [
"ivy", "fay", "dee", "gay", "hope",
"eve", "jan", "bea", "cath", "abi"],
"ed": [
"jan", "dee", "bea", "cath", "fay",
"eve", "abi", "ivy", "hope", "gay"],
"fred": [
"bea", "abi", "dee", "gay", "eve",
"ivy", "cath", "jan", "hope", "fay"],
"gav": [
"gay", "eve", "ivy", "bea", "cath",
"abi", "dee", "hope", "jan", "fay"],
"hal": [
"abi", "eve", "hope", "fay", "ivy",
"cath", "jan", "bea", "gay", "dee"],
"ian": [
"hope", "cath", "dee", "gay", "bea",
"abi", "fay", "ivy", "jan", "eve"],
"jon": [
"abi", "fay", "jan", "gay", "eve",
"bea", "dee", "cath", "ivy", "hope"]
};
def wPref : {
"abi": {
"bob": 1, "fred": 2, "jon": 3, "gav": 4, "ian": 5,
"abe": 6, "dan": 7, "ed": 8, "col": 9, "hal": 10},
"bea": {
"bob": 1, "abe": 2, "col": 3, "fred": 4, "gav": 5,
"dan": 6, "ian": 7, "ed": 8, "jon": 9, "hal": 10},
"cath": {
"fred": 1, "bob": 2, "ed": 3, "gav": 4, "hal": 5,
"col": 6, "ian": 7, "abe": 8, "dan": 9, "jon": 10},
"dee": {
"fred": 1, "jon": 2, "col": 3, "abe": 4, "ian": 5,
"hal": 6, "gav": 7, "dan": 8, "bob": 9, "ed": 10},
"eve": {
"jon": 1, "hal": 2, "fred": 3, "dan": 4, "abe": 5,
"gav": 6, "col": 7, "ed": 8, "ian": 9, "bob": 10},
"fay": {
"bob": 1, "abe": 2, "ed": 3, "ian": 4, "jon": 5,
"dan": 6, "fred": 7, "gav": 8, "col": 9, "hal": 10},
"gay": {
"jon": 1, "gav": 2, "hal": 3, "fred": 4, "bob": 5,
"abe": 6, "col": 7, "ed": 8, "dan": 9, "ian": 10},
"hope": {
"gav": 1, "jon": 2, "bob": 3, "abe": 4, "ian": 5,
"dan": 6, "hal": 7, "ed": 8, "col": 9, "fred": 10},
"ivy": {
"ian": 1, "col": 2, "hal": 3, "gav": 4, "fred": 5,
"bob": 6, "abe": 7, "ed": 8, "jon": 9, "dan": 10},
"jan": {
"ed": 1, "hal": 2, "gav": 3, "abe": 4, "bob": 5,
"jon": 6, "col": 7, "ian": 8, "fred": 9, "dan": 10}
};
# pair/2 implements the Gale/Shapley algorithm.
# $pPref gives the proposer preferences (like mPref above)
# $rPref gives the recipient preferences (like wPref above)
# Output: a JSON object giving the matching as w:m pairs
def pair($pPref; $rPref):
def undo:
debug("engagement: \(.recipient) \(.proposer)")
| .proposals[.recipient] = {proposer, pPref: .ppref, rPref: .rpref}
| rmkey(.proposer; .pFree)
| rmkey(.recipient; .rFree);
# preferences must be saved in case engagement is broken;
# they will be saved as: {proposer, pPref, rPref}
{ pFree: $pPref,
rFree: $rPref,
proposals: {} # key is recipient (w)
}
# WP pseudocode comments prefaced with WP: m is proposer, w is recipient.
# WP: while ∃ free man m who still has a woman w to propose to
| until (.pFree|length == 0; # while there is a free proposer ...
# pick a proposer
(.pFree|to_entries[0]) as $me
| .proposer = $me.key
| .ppref = $me.value
| if .ppref|length == 0
then . # if proposer has no possible recipients, skip
# WP: w = m's highest ranked woman to whom he has not yet proposed
else
.recipient = .ppref[0] # highest ranked is first in list
| .ppref = .ppref[1:] # pop from list
# WP: if w is free
| .rpref = .rFree[.recipient]
| if .rpref
then # WP: (m, w) become engaged
undo
else
# WP: else some pair (m', w) already exists
.s = .proposals[.recipient] # get proposal saved preferences
# WP: if w prefers m to m'
| if .s.rPref[.proposer] < .s.rPref[.s.proposer]
then debug("engagement broken: \(.recipient) \(.s.proposer)")
# WP: m' becomes free
| .pFree[.s.proposer] = .s.pPref # return proposer to the map
# WP: (m, w) become engaged
| .rpref = .s.rPref
| undo
else
# WP: else (m', w) remain engaged
.pFree[.proposer] = .ppref # update preferences in map
end
end
end
) # end until
# construct return value
| reduce (.proposals|to_entries)[] as $me ({};
.[$me.key] = $me.value.proposer ) ;
# return {result, emit} where .emit is an explanation
def determineStability($ps; $pPref; $rPref):
$ps
| debug("Determining the stability of the following pairings:")
| debugPairs
| to_entries as $pse
| {i:0}
| until(.emit or .i == ($ps|length); # stop after detecting an instability
$pse[.i].key as $r
| $pse[.i].value as $p
| (first($pPref[$p][] as $rp
| if ($r == $rp) then false
else $rPref[$rp] as $rprefs
| if ($rprefs[$p] < $rprefs[$ps[$rp]])
then "\ncauses instability because " +
"\($p) and \($rp) would prefer each other over their current pairings."
else empty
end
end ) // false) as $counterexample
| if $counterexample == false then . else .emit = $counterexample end
| .i += 1 )
| if .emit then {result: false, emit} else {result: true} end ;
# Determine pairings using the Gale/Shapley algorithm and then perturb until instability arises.
def task:
pair(mPref; wPref)
| . as $ps
| "Solution:", printPairs,
# verify
((determineStability($ps; mPref; wPref)) as $return
| ($return.emit // empty ),
if $return.result == false
then debug("invalid input")
else
"The result has been validated.",
"Now perturb the result until validation fails.",
(label $done
| foreach range(0; $ps|length -1 ) as $start (.;
.ps = $ps
| (.ps|to_entries) as $kv
| .w2[0] = $kv[$start].key
| .m2[0] = $kv[$start].value
| .w2[1] = $kv[$start+1].key
| .m2[1] = $kv[$start+1].value
| .emit = "\nExchanging partners of \(.m2[0]) and \(.m2[1])"
| .ps[.w2[0]] = .m2[1]
| .ps[.w2[1]] = .m2[0]
# validate perturbed pairings
| determineStability(.ps; mPref; wPref) as $result
| .emit += $result.emit
| .result = $result.result
;
.emit,
if .result == false then break $done else empty end
))
end );
task
- Output:
Invocation: jq -nr -f stable-marriage-problem.jq
["DEBUG:","engagement: abi abe"] ["DEBUG:","engagement: cath bob"] ["DEBUG:","engagement: hope col"] ["DEBUG:","engagement: ivy dan"] ["DEBUG:","engagement: jan ed"] ["DEBUG:","engagement: bea fred"] ["DEBUG:","engagement: gay gav"] ["DEBUG:","engagement: eve hal"] ["DEBUG:","engagement broken: hope col"] ["DEBUG:","engagement: hope ian"] ["DEBUG:","engagement broken: abi abe"] ["DEBUG:","engagement: abi jon"] ["DEBUG:","engagement: dee col"] ["DEBUG:","engagement broken: ivy dan"] ["DEBUG:","engagement: ivy abe"] ["DEBUG:","engagement: fay dan"] Solution: abi jon cath bob hope ian ivy abe jan ed bea fred gay gav eve hal dee col fay dan ["DEBUG:","Determining the stability of the following pairings:"] ["DEBUG:","abi jon"] ["DEBUG:","cath bob"] ["DEBUG:","hope ian"] ["DEBUG:","ivy abe"] ["DEBUG:","jan ed"] ["DEBUG:","bea fred"] ["DEBUG:","gay gav"] ["DEBUG:","eve hal"] ["DEBUG:","dee col"] ["DEBUG:","fay dan"] The result has been validated. Now perturb the result until validation fails. ["DEBUG:","Determining the stability of the following pairings:"] ["DEBUG:","abi bob"] ["DEBUG:","cath jon"] ["DEBUG:","hope ian"] ["DEBUG:","ivy abe"] ["DEBUG:","jan ed"] ["DEBUG:","bea fred"] ["DEBUG:","gay gav"] ["DEBUG:","eve hal"] ["DEBUG:","dee col"] ["DEBUG:","fay dan"] Exchanging partners of jon and bob causes instability because bob and cath would prefer each other over their current pairings.
Julia
# This is not optimized, but tries to follow the pseudocode given the Wikipedia entry below.
# Reference: https://en.wikipedia.org/wiki/Stable_marriage_problem#Algorithm
const males = ["abe", "bob", "col", "dan", "ed", "fred", "gav", "hal", "ian", "jon"]
const females = ["abi", "bea", "cath", "dee", "eve", "fay", "gay", "hope", "ivy", "jan"]
const malepreferences = Dict(
"abe" => ["abi", "eve", "cath", "ivy", "jan", "dee", "fay", "bea", "hope", "gay"],
"bob" => ["cath", "hope", "abi", "dee", "eve", "fay", "bea", "jan", "ivy", "gay"],
"col" => ["hope", "eve", "abi", "dee", "bea", "fay", "ivy", "gay", "cath", "jan"],
"dan" => ["ivy", "fay", "dee", "gay", "hope", "eve", "jan", "bea", "cath", "abi"],
"ed" => ["jan", "dee", "bea", "cath", "fay", "eve", "abi", "ivy", "hope", "gay"],
"fred" => ["bea", "abi", "dee", "gay", "eve", "ivy", "cath", "jan", "hope", "fay"],
"gav" => ["gay", "eve", "ivy", "bea", "cath", "abi", "dee", "hope", "jan", "fay"],
"hal" => ["abi", "eve", "hope", "fay", "ivy", "cath", "jan", "bea", "gay", "dee"],
"ian" => ["hope", "cath", "dee", "gay", "bea", "abi", "fay", "ivy", "jan", "eve"],
"jon" => ["abi", "fay", "jan", "gay", "eve", "bea", "dee", "cath", "ivy", "hope"]
)
const femalepreferences = Dict(
"abi"=> ["bob", "fred", "jon", "gav", "ian", "abe", "dan", "ed", "col", "hal"],
"bea"=> ["bob", "abe", "col", "fred", "gav", "dan", "ian", "ed", "jon", "hal"],
"cath"=> ["fred", "bob", "ed", "gav", "hal", "col", "ian", "abe", "dan", "jon"],
"dee"=> ["fred", "jon", "col", "abe", "ian", "hal", "gav", "dan", "bob", "ed"],
"eve"=> ["jon", "hal", "fred", "dan", "abe", "gav", "col", "ed", "ian", "bob"],
"fay"=> ["bob", "abe", "ed", "ian", "jon", "dan", "fred", "gav", "col", "hal"],
"gay"=> ["jon", "gav", "hal", "fred", "bob", "abe", "col", "ed", "dan", "ian"],
"hope"=> ["gav", "jon", "bob", "abe", "ian", "dan", "hal", "ed", "col", "fred"],
"ivy"=> ["ian", "col", "hal", "gav", "fred", "bob", "abe", "ed", "jon", "dan"],
"jan"=> ["ed", "hal", "gav", "abe", "bob", "jon", "col", "ian", "fred", "dan"]
)
function pshuf(d)
ret = Dict()
for (k,v) in d
ret[k] = shuffle(v)
end
ret
end
# helper functions for the verb: p1 "prefers" p2 over p3
pindexin(a, p) = ([i for i in 1:length(a) if a[i] == p])[1]
prefers(d, p1, p2, p3) = (pindexin(d[p1], p2) < pindexin(d[p1], p3))
function isstable(mmatchup, fmatchup, mpref, fpref)
for (mmatch, fmatch) in mmatchup
for f in mpref[mmatch]
if(f != fmatch && prefers(mpref, mmatch, f, fmatch)
&& prefers(fpref, f, mmatch, fmatchup[f]))
println("$mmatch prefers $f and $f prefers $mmatch over their current partners.")
return false
end
end
end
true
end
function galeshapley(men, women, malepref, femalepref)
# Initialize all m ∈ M and w ∈ W to free
mfree = Dict([(p, true) for p in men])
wfree = Dict([(p, true) for p in women])
mpairs = Dict()
wpairs = Dict()
while true # while ∃ free man m who still has a woman w to propose to
bachelors = [p for p in keys(mfree) if mfree[p]]
if(length(bachelors) == 0)
return mpairs, wpairs
end
for m in bachelors
for w in malepref[m] # w = first woman on m’s list to whom m has not yet proposed
if(wfree[w]) # if w is free (else some pair (m', w) already exists)
#println("Free match: $m, $w")
mpairs[m] = w # (m, w) become engaged
wpairs[w] = m # double entry bookeeping
mfree[m] = false
wfree[w] = false
break
elseif(prefers(femalepref, w, m, wpairs[w])) # if w prefers m to m'
#println("Unmatch $(wpairs[w]), match: $m, $w")
mfree[wpairs[w]] = true # m' becomes free
mpairs[m] = w # (m, w) become engaged
wpairs[w] = m
mfree[m] = false
break
end # else (m', w) remain engaged, so continue
end
end
end
end
function tableprint(txt, ans, stab)
println(txt)
println(" Man Woman")
println(" ----- -----")
show(STDOUT, "text/plain", ans)
if(stab)
println("\n ----STABLE----\n\n")
else
println("\n ---UNSTABLE---\n\n")
end
end
println("Use the Gale Shapley algorithm to find a stable set of engagements.")
answer = galeshapley(males, females, malepreferences, femalepreferences)
stabl = isstable(answer[1], answer[2], malepreferences, femalepreferences)
tableprint("Original Data Table", answer[1], stabl)
println("To check this is not a one-off solution, run the function on a randomized sample.")
newmpref = pshuf(malepreferences)
newfpref = pshuf(femalepreferences)
answer = galeshapley(males, females, newmpref, newfpref)
stabl = isstable(answer[1], answer[2], newmpref, newfpref)
tableprint("Shuffled Preferences", answer[1], stabl)
# trade abe with bob
println("Perturb this set of engagements to form an unstable set of engagements then check this new set for stability.")
answer = galeshapley(males, females, malepreferences, femalepreferences)
fia1 = (answer[1])["abe"]
fia2 = (answer[1])["bob"]
answer[1]["abe"] = fia2
answer[1]["bob"] = fia1
answer[2][fia1] = "bob"
answer[2][fia2] = "abe"
stabl = isstable(answer[1], answer[2], malepreferences, femalepreferences)
tableprint("Original Data With Bob and Abe Switched", answer[1], stabl)
- Output:
Use the Gale Shapley algorithm to find a stable set of engagements. Original Data Table Man Woman ----- ----- Dict{Any,Any} with 10 entries: "bob" => "cath" "dan" => "fay" "fred" => "bea" "jon" => "abi" "ian" => "hope" "gav" => "gay" "ed" => "jan" "col" => "dee" "hal" => "eve" "abe" => "ivy" ----STABLE---- To check this is not a one-off solution, run the function on a randomized sample. Shuffled Preferences Man Woman ----- ----- Dict{Any,Any} with 10 entries: "bob" => "abi" "dan" => "bea" "fred" => "jan" "jon" => "dee" "ian" => "fay" "gav" => "ivy" "ed" => "gay" "col" => "cath" "hal" => "hope" "abe" => "eve" ----STABLE---- Perturb this set of engagements to form an unstable set of engagements then check this new set for stability. bob prefers cath and cath prefers bob over their current partners. Original Data With Bob and Abe Switched Man Woman ----- ----- Dict{Any,Any} with 10 entries: "bob" => "ivy" "dan" => "fay" "fred" => "bea" "jon" => "abi" "ian" => "hope" "gav" => "gay" "ed" => "jan" "col" => "dee" "hal" => "eve" "abe" => "cath" ---UNSTABLE---
Kotlin
data class Person(val name: String) {
val preferences = mutableListOf<Person>()
var matchedTo: Person? = null
fun trySwap(p: Person) {
if (prefers(p)) {
matchedTo?.matchedTo = null
matchedTo = p
p.matchedTo = this
}
}
fun prefers(p: Person) = when (matchedTo) {
null -> true
else -> preferences.indexOf(p) < preferences.indexOf(matchedTo!!)
}
fun showMatch() = "$name <=> ${matchedTo?.name}"
}
fun match(males: Collection<Person>) {
while (males.find { it.matchedTo == null }?.also { match(it) } != null) {
}
}
fun match(male: Person) {
while (male.matchedTo == null) {
male.preferences.removeAt(0).trySwap(male)
}
}
fun isStableMatch(males: Collection<Person>, females: Collection<Person>): Boolean {
return males.all { isStableMatch(it, females) }
}
fun isStableMatch(male: Person, females: Collection<Person>): Boolean {
val likesBetter = females.filter { !male.preferences.contains(it) }
val stable = !likesBetter.any { it.prefers(male) }
if (!stable) {
println("#### Unstable pair: ${male.showMatch()}")
}
return stable
}
fun main(args: Array<String>) {
val inMales = mapOf(
"abe" to mutableListOf("abi", "eve", "cath", "ivy", "jan", "dee", "fay", "bea", "hope", "gay"),
"bob" to mutableListOf("cath", "hope", "abi", "dee", "eve", "fay", "bea", "jan", "ivy", "gay"),
"col" to mutableListOf("hope", "eve", "abi", "dee", "bea", "fay", "ivy", "gay", "cath", "jan"),
"dan" to mutableListOf("ivy", "fay", "dee", "gay", "hope", "eve", "jan", "bea", "cath", "abi"),
"ed" to mutableListOf("jan", "dee", "bea", "cath", "fay", "eve", "abi", "ivy", "hope", "gay"),
"fred" to mutableListOf("bea", "abi", "dee", "gay", "eve", "ivy", "cath", "jan", "hope", "fay"),
"gav" to mutableListOf("gay", "eve", "ivy", "bea", "cath", "abi", "dee", "hope", "jan", "fay"),
"hal" to mutableListOf("abi", "eve", "hope", "fay", "ivy", "cath", "jan", "bea", "gay", "dee"),
"ian" to mutableListOf("hope", "cath", "dee", "gay", "bea", "abi", "fay", "ivy", "jan", "eve"),
"jon" to mutableListOf("abi", "fay", "jan", "gay", "eve", "bea", "dee", "cath", "ivy", "hope"))
val inFemales = mapOf(
"abi" to listOf("bob", "fred", "jon", "gav", "ian", "abe", "dan", "ed", "col", "hal"),
"bea" to listOf("bob", "abe", "col", "fred", "gav", "dan", "ian", "ed", "jon", "hal"),
"cath" to listOf("fred", "bob", "ed", "gav", "hal", "col", "ian", "abe", "dan", "jon"),
"dee" to listOf("fred", "jon", "col", "abe", "ian", "hal", "gav", "dan", "bob", "ed"),
"eve" to listOf("jon", "hal", "fred", "dan", "abe", "gav", "col", "ed", "ian", "bob"),
"fay" to listOf("bob", "abe", "ed", "ian", "jon", "dan", "fred", "gav", "col", "hal"),
"gay" to listOf("jon", "gav", "hal", "fred", "bob", "abe", "col", "ed", "dan", "ian"),
"hope" to listOf("gav", "jon", "bob", "abe", "ian", "dan", "hal", "ed", "col", "fred"),
"ivy" to listOf("ian", "col", "hal", "gav", "fred", "bob", "abe", "ed", "jon", "dan"),
"jan" to listOf("ed", "hal", "gav", "abe", "bob", "jon", "col", "ian", "fred", "dan"))
fun buildPrefs(person: Person, stringPrefs: List<String>, population: List<Person>) {
person.preferences.addAll(
stringPrefs.map { name -> population.single { it.name == name } }
)
}
val males = inMales.keys.map { Person(it) }
val females = inFemales.keys.map { Person(it) }
males.forEach { buildPrefs(it, inMales[it.name]!!, females) }
females.forEach { buildPrefs(it, inFemales[it.name]!!, males) }
match(males)
males.forEach { println(it.showMatch()) }
println("#### match is stable: ${isStableMatch(males, females)}")
fun swapMatch(male1: Person, male2: Person) {
val female1 = male1.matchedTo!!
val female2 = male2.matchedTo!!
male1.matchedTo = female2
male2.matchedTo = female1
female1.matchedTo = male2
female2.matchedTo = male1
}
swapMatch(males.single { it.name == "fred" }, males.single { it.name == "jon" })
males.forEach { println(it.showMatch()) }
println("#### match is stable: ${isStableMatch(males, females)}")
}
- Output:
abe <=> ivy bob <=> cath col <=> dee dan <=> fay ed <=> jan fred <=> bea gav <=> gay hal <=> eve ian <=> hope jon <=> abi ##### match is stable: true abe <=> ivy bob <=> cath col <=> dee dan <=> fay ed <=> jan fred <=> abi gav <=> gay hal <=> eve ian <=> hope jon <=> bea #### Unstable pair: fred <=> abi ##### match is stable: false
Lua
local Person = {}
Person.__index = Person
function Person.new(inName)
local o = {
name = inName,
prefs = nil,
fiance = nil,
_candidateIndex = 1,
}
return setmetatable(o, Person)
end
function Person:indexOf(other)
for i, p in pairs(self.prefs) do
if p == other then return i end
end
return 999
end
function Person:prefers(other)
return self:indexOf(other) < self:indexOf(self.fiance)
end
function Person:nextCandidateNotYetProposedTo()
if self._candidateIndex >= #self.prefs then return nil end
local c = self.prefs[self._candidateIndex];
self._candidateIndex = self._candidateIndex + 1
return c;
end
function Person:engageTo(other)
if other.fiance then
other.fiance.fiance = nil
end
other.fiance = self
if self.fiance then
self.fiance.fiance = nil
end
self.fiance = other;
end
local function isStable(men)
local women = men[1].prefs
local stable = true
for _, guy in pairs(men) do
for _, gal in pairs(women) do
if guy:prefers(gal) and gal:prefers(guy) then
stable = false
print(guy.name .. ' and ' .. gal.name ..
' prefer each other over their partners ' ..
guy.fiance.name .. ' and ' .. gal.fiance.name)
end
end
end
return stable
end
local abe = Person.new("Abe")
local bob = Person.new("Bob")
local col = Person.new("Col")
local dan = Person.new("Dan")
local ed = Person.new("Ed")
local fred = Person.new("Fred")
local gav = Person.new("Gav")
local hal = Person.new("Hal")
local ian = Person.new("Ian")
local jon = Person.new("Jon")
local abi = Person.new("Abi")
local bea = Person.new("Bea")
local cath = Person.new("Cath")
local dee = Person.new("Dee")
local eve = Person.new("Eve")
local fay = Person.new("Fay")
local gay = Person.new("Gay")
local hope = Person.new("Hope")
local ivy = Person.new("Ivy")
local jan = Person.new("Jan")
abe.prefs = { abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay }
bob.prefs = { cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay }
col.prefs = { hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan }
dan.prefs = { ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi }
ed.prefs = { jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay }
fred.prefs = { bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay }
gav.prefs = { gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay }
hal.prefs = { abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee }
ian.prefs = { hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve }
jon.prefs = { abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope }
abi.prefs = { bob, fred, jon, gav, ian, abe, dan, ed, col, hal }
bea.prefs = { bob, abe, col, fred, gav, dan, ian, ed, jon, hal }
cath.prefs = { fred, bob, ed, gav, hal, col, ian, abe, dan, jon }
dee.prefs = { fred, jon, col, abe, ian, hal, gav, dan, bob, ed }
eve.prefs = { jon, hal, fred, dan, abe, gav, col, ed, ian, bob }
fay.prefs = { bob, abe, ed, ian, jon, dan, fred, gav, col, hal }
gay.prefs = { jon, gav, hal, fred, bob, abe, col, ed, dan, ian }
hope.prefs = { gav, jon, bob, abe, ian, dan, hal, ed, col, fred }
ivy.prefs = { ian, col, hal, gav, fred, bob, abe, ed, jon, dan }
jan.prefs = { ed, hal, gav, abe, bob, jon, col, ian, fred, dan }
local men = abi.prefs
local freeMenCount = #men
while freeMenCount > 0 do
for _, guy in pairs(men) do
if not guy.fiance then
local gal = guy:nextCandidateNotYetProposedTo()
if not gal.fiance then
guy:engageTo(gal)
freeMenCount = freeMenCount - 1
elseif gal:prefers(guy) then
guy:engageTo(gal)
end
end
end
end
print(' ')
for _, guy in pairs(men) do
print(guy.name .. ' is engaged to ' .. guy.fiance.name)
end
print('Stable: ', isStable(men))
print(' ')
print('Switching ' .. fred.name .. "'s & " .. jon.name .. "'s partners")
jon.fiance, fred.fiance = fred.fiance, jon.fiance
print('Stable: ', isStable(men))
- Output:
Bob is engaged to Cath Fred is engaged to Bea Jon is engaged to Abi Gav is engaged to Gay Ian is engaged to Hope Abe is engaged to Ivy Dan is engaged to Fay Ed is engaged to Jan Col is engaged to Dee Hal is engaged to Eve Stable: true Switching Fred's & Jon's partners Jon and Eve prefer each other over their partners Bea and Hal Jon and Fay prefer each other over their partners Bea and Dan Jon and Gay prefer each other over their partners Bea and Gav Stable: false
Mathematica / Wolfram Language
<<Combinatorica`;
ClearAll[CheckStability]
CheckStabilityHelp[male_, female_, ml_List, fl_List, pairing_List] := Module[{prefs, currentmale},
prefs = fl[[female]];
currentmale = Sort[Reverse /@ pairing][[female, 2]];
FirstPosition[prefs, currentmale][[1]] < FirstPosition[prefs, male][[1]]
]
CheckStabilityHelp[male_, ml_List, fl_List, pairing_List] := Module[{prefs, m, f, p, otherf, reversepair, pos, othermen},
prefs = ml[[male]];
{m, f} = pairing[[male]];
p = FirstPosition[prefs, f][[1]];
otherf = Take[prefs, p - 1];
AllTrue[otherf, CheckStabilityHelp[male, #, ml, fl, pairing] &]
]
CheckStability[ml_List, fl_List, pairing_List] := AllTrue[pairing[[All, 1]], CheckStabilityHelp[#, ml, fl, pairing] &]
males = {"abe", "bob", "col", "dan", "ed", "fred", "gav", "hal",
"ian", "jon"};
females = {"abi", "bea", "cath", "dee", "eve", "fay", "gay", "hope",
"ivy", "jan"};
ml = {{"abi", "eve", "cath", "ivy", "jan", "dee", "fay", "bea",
"hope", "gay"}, {"cath", "hope", "abi", "dee", "eve", "fay",
"bea", "jan", "ivy", "gay"}, {"hope", "eve", "abi", "dee", "bea",
"fay", "ivy", "gay", "cath", "jan"}, {"ivy", "fay", "dee", "gay",
"hope", "eve", "jan", "bea", "cath", "abi"}, {"jan", "dee", "bea",
"cath", "fay", "eve", "abi", "ivy", "hope", "gay"}, {"bea",
"abi", "dee", "gay", "eve", "ivy", "cath", "jan", "hope",
"fay"}, {"gay", "eve", "ivy", "bea", "cath", "abi", "dee", "hope",
"jan", "fay"}, {"abi", "eve", "hope", "fay", "ivy", "cath",
"jan", "bea", "gay", "dee"}, {"hope", "cath", "dee", "gay", "bea",
"abi", "fay", "ivy", "jan", "eve"}, {"abi", "fay", "jan", "gay",
"eve", "bea", "dee", "cath", "ivy", "hope"}};
fl = {{"bob", "fred", "jon", "gav", "ian", "abe", "dan", "ed", "col",
"hal"}, {"bob", "abe", "col", "fred", "gav", "dan", "ian", "ed",
"jon", "hal"}, {"fred", "bob", "ed", "gav", "hal", "col", "ian",
"abe", "dan", "jon"}, {"fred", "jon", "col", "abe", "ian", "hal",
"gav", "dan", "bob", "ed"}, {"jon", "hal", "fred", "dan", "abe",
"gav", "col", "ed", "ian", "bob"}, {"bob", "abe", "ed", "ian",
"jon", "dan", "fred", "gav", "col", "hal"}, {"jon", "gav", "hal",
"fred", "bob", "abe", "col", "ed", "dan", "ian"}, {"gav", "jon",
"bob", "abe", "ian", "dan", "hal", "ed", "col", "fred"}, {"ian",
"col", "hal", "gav", "fred", "bob", "abe", "ed", "jon",
"dan"}, {"ed", "hal", "gav", "abe", "bob", "jon", "col", "ian",
"fred", "dan"}};
ml = ml /. Thread[females -> Range[Length[males]]];
fl = fl /. Thread[males -> Range[Length[females]]];
pairing = StableMarriage[ml, fl];
pairing = {Range[Length[pairing]], pairing} // Transpose;
pairing
CheckStability[ml, fl, pairing]
pairing[[{2, 7}, 2]] //= Reverse;
pairing
CheckStability[ml, fl, pairing]
- Output:
{{1,9},{2,3},{3,4},{4,6},{5,10},{6,2},{7,7},{8,5},{9,8},{10,1}} True {{1,9},{2,7},{3,4},{4,6},{5,10},{6,2},{7,3},{8,5},{9,8},{10,1}} False
Nim
import sequtils, random, strutils
const
Pairs = 10
MNames = ["abe", "bob", "col", "dan", "ed", "fred", "gav", "hal", "ian", "jon"]
FNames = ["abi", "bea", "cath", "dee", "eve", "fay", "gay", "hope", "ivy", "jan"]
MPreferences = [
["abi", "eve", "cath", "ivy", "jan", "dee", "fay", "bea", "hope", "gay"],
["cath", "hope", "abi", "dee", "eve", "fay", "bea", "jan", "ivy", "gay"],
["hope", "eve", "abi", "dee", "bea", "fay", "ivy", "gay", "cath", "jan"],
["ivy", "fay", "dee", "gay", "hope", "eve", "jan", "bea", "cath", "abi"],
["jan", "dee", "bea", "cath", "fay", "eve", "abi", "ivy", "hope", "gay"],
["bea", "abi", "dee", "gay", "eve", "ivy", "cath", "jan", "hope", "fay"],
["gay", "eve", "ivy", "bea", "cath", "abi", "dee", "hope", "jan", "fay"],
["abi", "eve", "hope", "fay", "ivy", "cath", "jan", "bea", "gay", "dee"],
["hope", "cath", "dee", "gay", "bea", "abi", "fay", "ivy", "jan", "eve"],
["abi", "fay", "jan", "gay", "eve", "bea", "dee", "cath", "ivy", "hope"]
]
FPreferences = [
["bob", "fred", "jon", "gav", "ian", "abe", "dan", "ed", "col", "hal"],
["bob", "abe", "col", "fred", "gav", "dan", "ian", "ed", "jon", "hal"],
["fred", "bob", "ed", "gav", "hal", "col", "ian", "abe", "dan", "jon"],
["fred", "jon", "col", "abe", "ian", "hal", "gav", "dan", "bob", "ed"],
["jon", "hal", "fred", "dan", "abe", "gav", "col", "ed", "ian", "bob"],
["bob", "abe", "ed", "ian", "jon", "dan", "fred", "gav", "col", "hal"],
["jon", "gav", "hal", "fred", "bob", "abe", "col", "ed", "dan", "ian"],
["gav", "jon", "bob", "abe", "ian", "dan", "hal", "ed", "col", "fred"],
["ian", "col", "hal", "gav", "fred", "bob", "abe", "ed", "jon", "dan"],
["ed", "hal", "gav", "abe", "bob", "jon", "col", "ian", "fred", "dan"]
]
# recipient's preferences hold the preference score for each contender's id
func getRecPreferences[N: static int](prefs: array[N, array[N, string]],
names: openArray[string]): array[N, array[N, int]] {.compileTime.} =
for r, prefArray in pairs(prefs):
for c, contender in pairs(prefArray):
result[r][c] = prefArray.find(MNames[c])
# contender's preferences hold the recipient ids in descending order of preference
func getContPreferences[N: static int](prefs: array[N, array[N, string]],
names: openArray[string]): array[N, array[N, int]] {.compileTime.} =
for c, pref_seq in pairs(prefs):
for r, pref in pairs(pref_seq):
result[c][r] = names.find(pref)
const
RecipientPrefs = getRecPreferences(FPreferences, MNames)
ContenderPrefs = getContPreferences(MPreferences, FNames)
proc printCoupleNames(contPairs: seq[int]) =
for c, r in pairs(contPairs):
echo MNames[c] & " 💑 " & FNames[contPairs[c]]
func pair(): (seq[int], seq[int]) =
# double booking to avoid inverse lookup using find
var
recPairs = newSeqWith(10, -1)
contPairs = newSeqWith(10, -1)