# Short-circuit evaluation

(Redirected from Short circuit evaluation)
Short-circuit evaluation
You are encouraged to solve this task according to the task description, using any language you may know.
Control Structures

These are examples of control structures. You may also be interested in:

Assume functions   `a`   and   `b`   return boolean values,   and further, the execution of function   `b`   takes considerable resources without side effects, and is to be minimized.

If we needed to compute the conjunction   (`and`):

` x = a() and b() `

Then it would be best to not compute the value of   `b()`   if the value of   `a()`   is computed as   `false`,   as the value of   `x`   can then only ever be   ` false`.

Similarly, if we needed to compute the disjunction (`or`):

` y = a() or b() `

Then it would be best to not compute the value of   `b()`   if the value of   `a()`   is computed as   `true`,   as the value of   `y`   can then only ever be   `true`.

Some languages will stop further computation of boolean equations as soon as the result is known, so-called   short-circuit evaluation   of boolean expressions

Create two functions named   `a`   and   `b`,   that take and return the same boolean value.

The functions should also print their name whenever they are called.

Calculate and assign the values of the following equations to a variable in such a way that function   `b`   is only called when necessary:

` x = a(i) and b(j) `
` y = a(i) or b(j) `

If the language does not have short-circuit evaluation, this might be achieved with nested     if     statements.

## 11l

Translation of: Python
```F a(v)
print(‘  ## Called function a(#.)’.format(v))
R v

F b(v)
print(‘  ## Called function b(#.)’.format(v))
R v

L(i) (0B, 1B)
L(j) (0B, 1B)
print("\nCalculating: x = a(i) and b(j)")
V x = a(i) & b(j)
print(‘Calculating: y = a(i) or  b(j)’)
V y = a(i) | b(j)```
Output:
```
Calculating: x = a(i) and b(j)
# Called function a(0B)
Calculating: y = a(i) or  b(j)
# Called function a(0B)
# Called function b(0B)

Calculating: x = a(i) and b(j)
# Called function a(0B)
Calculating: y = a(i) or  b(j)
# Called function a(0B)
# Called function b(1B)

Calculating: x = a(i) and b(j)
# Called function a(1B)
# Called function b(0B)
Calculating: y = a(i) or  b(j)
# Called function a(1B)

Calculating: x = a(i) and b(j)
# Called function a(1B)
# Called function b(1B)
Calculating: y = a(i) or  b(j)
# Called function a(1B)
```

## 6502 Assembly

There are no built-in booleans but the functionality can be easily implemented with 0 = False and 255 = True.

Source Code for the module:

```;DEFINE 0 AS FALSE, \$FF as true.
False equ 0
True equ 255
Func_A:
;input: accumulator = value to check. 0 = false, nonzero = true.
;output: 0 if false, 255 if true. Also prints the truth value to the screen.
;USAGE: LDA val JSR Func_A
BEQ .falsehood
load16 z_HL,BoolText_A_True ;lda #<BoolText_A_True sta z_L lda #>BoolText_A_True sta z_H
jsr PrintString
jsr NewLine
LDA #True
rts
.falsehood:
jsr PrintString
jsr NewLine
LDA #False
rts

Func_B:
;input: Y = value to check. 0 = false, nonzero = true.
;output: 0 if false, 255 if true. Also prints the truth value to the screen.
;USAGE: LDY val JSR Func_B
TYA
BEQ .falsehood	;return false
jsr PrintString
jsr NewLine
LDA #True
rts
.falsehood:
jsr PrintString
jsr NewLine
LDA #False
rts

Func_A_and_B:
;input:
;	z_B = input for Func_A
;	z_C = input for Func_B
;output:
;0 if false, 255 if true
LDA z_B
jsr Func_A
BEQ .falsehood
LDY z_C
jsr Func_B
BEQ .falsehood
;true
jsr PrintString
jsr NewLine
LDA #True
rts
.falsehood:
jsr PrintString
jsr NewLine
LDA #False
rts

Func_A_or_B:
;input:
;	z_B = input for Func_A
;	z_C = input for Func_B
;output:
;0 if false, 255 if true
LDA z_B
jsr Func_A
BNE .truth
LDY z_C
jsr Func_B
BNE .truth
;false
jsr PrintString
LDA #False
rts
.truth:
jsr PrintString
LDA #True
rts

BoolText_A_True:
db "A IS TRUE",0
BoolText_A_False:
db "A IS FALSE",0
BoolText_B_True:
db "B IS TRUE",0
BoolText_B_False:
db "B IS FALSE",0

BoolText_A_and_B_True:
db "A AND B IS TRUE",0
BoolText_A_and_B_False:
db "A AND B IS FALSE",0
BoolText_A_or_B_True:
db "A OR B IS TRUE",0
BoolText_A_or_B_False:
db "A OR B IS FALSE",0```

The relevant code for the actual invoking of the functions:

```lda #True
sta z_B
lda #True
sta z_C

jsr Func_A_and_B

jsr NewLine

jsr Func_A_or_B

jmp *```

And finally the output: [Output image]

## Action!

```BYTE FUNC a(BYTE x)
PrintF(" a(%B)",x)
RETURN (x)

BYTE FUNC b(BYTE x)
PrintF(" b(%B)",x)
RETURN (x)

PROC Main()
BYTE i,j

FOR i=0 TO 1
DO
FOR j=0 TO 1
DO
PrintF("Calculating %B AND %B: call",i,j)
IF a(i)=1 AND b(j)=1 THEN
FI
PutE()
OD
OD
PutE()

FOR i=0 TO 1
DO
FOR j=0 TO 1
DO
PrintF("Calculating %B OR %B: call",i,j)
IF a(i)=1 OR b(j)=1 THEN
FI
PutE()
OD
OD
RETURN```
Output:
```Calculating 0 AND 0: call a(0)
Calculating 0 AND 1: call a(0)
Calculating 1 AND 0: call a(1) b(0)
Calculating 1 AND 1: call a(1) b(1)

Calculating 0 OR 0: call a(0) b(0)
Calculating 0 OR 1: call a(0) b(1)
Calculating 1 OR 0: call a(1)
Calculating 1 OR 1: call a(1)
```

Ada has built-in short-circuit operations and then and or else:

```with Ada.Text_IO;  use Ada.Text_IO;

procedure Test_Short_Circuit is
function A (Value : Boolean) return Boolean is
begin
Put (" A=" & Boolean'Image (Value));
return Value;
end A;
function B (Value : Boolean) return Boolean is
begin
Put (" B=" & Boolean'Image (Value));
return Value;
end B;
begin
for I in Boolean'Range loop
for J in Boolean'Range loop
Put (" (A and then B)=" & Boolean'Image (A (I) and then B (J)));
New_Line;
end loop;
end loop;
for I in Boolean'Range loop
for J in Boolean'Range loop
Put (" (A or else B)=" & Boolean'Image (A (I) or else B (J)));
New_Line;
end loop;
end loop;
end Test_Short_Circuit;
```
Sample output:
``` A=FALSE (A and then B)=FALSE
A=FALSE (A and then B)=FALSE
A=TRUE B=FALSE (A and then B)=FALSE
A=TRUE B=TRUE (A and then B)=TRUE
A=FALSE B=FALSE (A or else B)=FALSE
A=FALSE B=TRUE (A or else B)=TRUE
A=TRUE (A or else B)=TRUE
A=TRUE (A or else B)=TRUE
```

## ALGOL 68

### With Standard

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8-8d

Note: The "brief" conditional clause ( ~ | ~ | ~ ) is a the standard's shorthand for enforcing short-circuit evaluation. Moreover, the coder is able to define their own proc[edures] and op[erators] that implement short-circuit evaluation by using Algol68's proceduring.

```PRIO ORELSE = 2, ANDTHEN = 3; # user defined operators #
OP ORELSE =  (BOOL a, PROC BOOL b)BOOL: ( a | a | b ),
ANDTHEN = (BOOL a, PROC BOOL b)BOOL: ( a | b | a );

# user defined Short-circuit_evaluation procedures #
PROC or else =  (BOOL a, PROC BOOL b)BOOL: ( a | a | b ),
and then = (BOOL a, PROC BOOL b)BOOL: ( a | b | a );

test:(

PROC a = (BOOL a)BOOL: ( print(("a=",a,", ")); a),
b = (BOOL b)BOOL: ( print(("b=",b,", ")); b);

CO
# Valid for Algol 68 Rev0: using "user defined" operators #
# Note: here BOOL is being automatically "procedured" to PROC BOOL #
print(("T ORELSE F = ", a(TRUE) ORELSE b(FALSE), new line));
print(("F ANDTHEN T = ", a(FALSE) ANDTHEN b(TRUE), new line));

print(("or else(T, F) = ", or else(a(TRUE), b(FALSE)), new line));
print(("and then(F, T) = ", and then(a(FALSE), b(TRUE)), new line));
END CO

# Valid for Algol68 Rev1: using "user defined" operators #
# Note: BOOL must be manually "procedured" to PROC BOOL #
print(("T ORELSE F = ",  a(TRUE) ORELSE  (BOOL:b(FALSE)), new line));
print(("T ORELSE T = ",  a(TRUE) ORELSE  (BOOL:b(TRUE)), new line));

print(("F ANDTHEN F = ", a(FALSE) ANDTHEN (BOOL:b(FALSE)), new line));
print(("F ANDTHEN T = ", a(FALSE) ANDTHEN (BOOL:b(TRUE)), new line));

print(("F ORELSE F = ",  a(FALSE) ORELSE  (BOOL:b(FALSE)), new line));
print(("F ORELSE T = ",  a(FALSE) ORELSE  (BOOL:b(TRUE)), new line));

print(("T ANDTHEN F = ", a(TRUE) ANDTHEN (BOOL:b(FALSE)), new line));
print(("T ANDTHEN T = ", a(TRUE) ANDTHEN (BOOL:b(TRUE)), new line))

)```
Output:
```a=T, T ORELSE F = T
a=T, T ORELSE T = T
a=F, F ANDTHEN F = F
a=F, F ANDTHEN T = F
a=F, b=F, F ORELSE F = F
a=F, b=T, F ORELSE T = T
a=T, b=F, T ANDTHEN F = F
a=T, b=T, T ANDTHEN T = T
```

### With Extensions

Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8-8d
```test:(

PROC a = (BOOL a)BOOL: ( print(("a=",a,", ")); a),
b = (BOOL b)BOOL: ( print(("b=",b,", ")); b);

# Valid for Algol 68G and 68RS using non standard operators #
print(("T OREL F = ",  a(TRUE) OREL  b(FALSE), new line));
print(("T OREL T = ",  a(TRUE) OREL  b(TRUE), new line));

print(("F ANDTH F = ", a(FALSE) ANDTH b(FALSE), new line));
print(("F ANDTH T = ", a(FALSE) ANDTH b(TRUE), new line));

print(("F OREL F = ",  a(FALSE) OREL  b(FALSE), new line));
print(("F OREL T = ",  a(FALSE) OREL  b(TRUE), new line));

print(("T ANDTH F = ", a(TRUE) ANDTH b(FALSE), new line));
print(("T ANDTH T = ", a(TRUE) ANDTH b(TRUE), new line))

CO;
# Valid for Algol 68G and 68C using non standard operators #
print(("T ORF F = ", a(TRUE) ORF b(FALSE), new line));
print(("F ANDF T = ", a(FALSE) ANDF b(TRUE), new line))
END CO

)```
Output:
```a=T, T OREL F = T
a=T, T OREL T = T
a=F, F ANDTH F = F
a=F, F ANDTH T = F
a=F, b=F, F OREL F = F
a=F, b=T, F OREL T = T
a=T, b=F, T ANDTH F = F
a=T, b=T, T ANDTH T = T
```

## ALGOL W

In Algol W the boolean "and" and "or" operators are short circuit operators.

```begin

logical procedure a( logical value v ) ; begin write( "a: ", v ); v end ;
logical procedure b( logical value v ) ; begin write( "b: ", v ); v end ;

write( "and: ", a( true  ) and b( true ) );
write( "---" );
write( "or:  ", a( true  ) or  b( true ) );
write( "---" );
write( "and: ", a( false ) and b( true ) );
write( "---" );
write( "or:  ", a( false ) or  b( true ) );
write( "---" );

end.```
Output:
```and:
a:   true
b:   true    true
---
or:
a:   true    true
---
and:
a:  false   false
---
or:
a:  false
b:   true    true
---
```

## AppleScript

AppleScript's boolean operators are short-circuiting (as can be seen from the log below).

What AppleScript lacks, however, is a short-circuiting ternary operator like the e ? e2 : e3 of C, or a short-circuiting three-argument function like cond in Lisp. To get a similar effect in AppleScript, we have to delay evaluation on both sides, using a cond which returns a reference to one of two unapplied handlers, and composing the result with a separate apply function, to apply the selected handler function to its argument.

(As a statement, rather than an expression, the if ... then ... else structure does not compose – unlike cond or ? :, it can not be nested inside expressions)

```on run

map(test, {|and|, |or|})

end run

-- test :: ((Bool, Bool) -> Bool) -> (Bool, Bool, Bool, Bool)
on test(f)
map(f, {{true, true}, {true, false}, {false, true}, {false, false}})
end test

-- |and| :: (Bool, Bool) -> Bool
on |and|(tuple)
set {x, y} to tuple

a(x) and b(y)
end |and|

-- |or| :: (Bool, Bool) -> Bool
on |or|(tuple)
set {x, y} to tuple

a(x) or b(y)
end |or|

-- a :: Bool -> Bool
on a(bool)
log "a"
return bool
end a

-- b :: Bool -> Bool
on b(bool)
log "b"
return bool
end b

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
script mf
property lambda : f
end script
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to mf's lambda(item i of xs, i, xs)
end repeat
return lst
end map
```

Output:
```Messages:
(*a*)
(*b*)
(*a*)
(*b*)
(*a*)
(*a*)
(*a*)
(*a*)
(*a*)
(*b*)
(*a*)
(*b*)
Result:
{{true, false, false, false}, {true, true, true, false}}
```

## AutoHotkey

In AutoHotkey, the boolean operators, and, or, and ternaries, short-circuit:

```i = 1
j = 1
x := a(i) and b(j)
y := a(i) or b(j)

a(p)
{
MsgBox, a() was called with the parameter "%p%".
Return, p
}

b(p)
{
MsgBox, b() was called with the parameter "%p%".
Return, p
}
```

## AWK

Short-circuit evalation is done in logical AND (&&) and logical OR (||) operators:

```#!/usr/bin/awk -f
BEGIN {
print (a(1) && b(1))
print (a(1) || b(1))
print (a(0) && b(1))
print (a(0) || b(1))
}

function a(x) {
print "  x:"x
return x
}
function b(y) {
print "  y:"y
return y
}
```
Output:
```  x:1
y:1
1
x:1
1
x:0
0
x:0
y:1
1
```

## Axe

```TEST(0,0)
TEST(0,1)
TEST(1,0)
TEST(1,1)
Return

Lbl TEST
r₁→X
r₂→Y
Disp X▶Hex+3," and ",Y▶Hex+3," = ",(A(X)?B(Y))▶Hex+3,i
Disp X▶Hex+3," or  ",Y▶Hex+3," = ",(A(X)??B(Y))▶Hex+3,i
.Wait for keypress
getKeyʳ
Return

Lbl A
r₁
Return

Lbl B
r₁
Return```

## BaCon

BaCon supports short-circuit evaluation.

```' Short-circuit evaluation
FUNCTION a(f)
PRINT "FUNCTION a"
RETURN f
END FUNCTION

FUNCTION b(f)
PRINT "FUNCTION b"
RETURN f
END FUNCTION

PRINT "FALSE and TRUE"
x = a(FALSE) AND b(TRUE)
PRINT x

PRINT "TRUE and TRUE"
x = a(TRUE) AND b(TRUE)
PRINT x

PRINT "FALSE or FALSE"
y = a(FALSE) OR b(FALSE)
PRINT y

PRINT "TRUE or FALSE"
y = a(TRUE) OR b(FALSE)
PRINT y
```
Output:
```prompt\$ ./short-circuit
FALSE and TRUE
FUNCTION a
0
TRUE and TRUE
FUNCTION a
FUNCTION b
1
FALSE or FALSE
FUNCTION a
FUNCTION b
0
TRUE or FALSE
FUNCTION a
1```

## Batch File

Translation of: Liberty BASIC
```%=== Batch Files have no booleans on if command, let alone short-circuit evaluation ===%
%=== I will instead use 1 as true and 0 as false. ===%

@echo off
setlocal enabledelayedexpansion
echo AND
for /l %%i in (0,1,1) do (
for /l %%j in (0,1,1) do (
echo.a^(%%i^) AND b^(%%j^)
call :a %%i
set res=!bool_a!
if not !res!==0 (
call :b %%j
set res=!bool_b!
)
echo.=^>	!res!
)
)

echo ---------------------------------
echo OR
for /l %%i in (0,1,1) do (
for /l %%j in (0,1,1) do (
echo a^(%%i^) OR b^(%%j^)
call :a %%i
set res=!bool_a!
if !res!==0 (
call :b %%j
set res=!bool_b!
)
echo.=^>	!res!
)
)
pause>nul
exit /b 0

::----------------------------------------
:a
echo.	calls func a
set bool_a=%1
goto :EOF

:b
echo.	calls func b
set bool_b=%1
goto :EOF
```
Output:
```AND
a(0) AND b(0)
calls func a
=>      0
a(0) AND b(1)
calls func a
=>      0
a(1) AND b(0)
calls func a
calls func b
=>      0
a(1) AND b(1)
calls func a
calls func b
=>      1
---------------------------------
OR
a(0) OR b(0)
calls func a
calls func b
=>      0
a(0) OR b(1)
calls func a
calls func b
=>      1
a(1) OR b(0)
calls func a
=>      1
a(1) OR b(1)
calls func a
=>      1
```

## BBC BASIC

Short-circuit operators aren't implemented directly, but short-circuit AND can be simulated using cascaded IFs. Short-circuit OR can be converted into a short-circuit AND using De Morgan's laws.

```      REM TRUE is represented as -1, FALSE as 0
FOR i% = TRUE TO FALSE
FOR j% = TRUE TO FALSE
PRINT "For x=a(";FNboolstring(i%);") AND b(";FNboolstring(j%);")"
x% = FALSE
REM Short-circuit AND can be simulated by cascaded IFs:
IF FNa(i%) IF FNb(j%) THEN x%=TRUE
PRINT "x is ";FNboolstring(x%)
PRINT
PRINT "For y=a(";FNboolstring(i%);") OR b(";FNboolstring(j%);")"
y% = FALSE
REM Short-circuit OR can be simulated by De Morgan's laws:
IF NOTFNa(i%) IF NOTFNb(j%) ELSE y%=TRUE : REM Note ELSE without THEN
PRINT "y is ";FNboolstring(y%)
PRINT
NEXT:NEXT
END

DEFFNa(bool%)
PRINT "Function A used; ";
=bool%

DEFFNb(bool%)
PRINT "Function B used; ";
=bool%

DEFFNboolstring(bool%)
IF bool%=0 THEN ="FALSE" ELSE="TRUE"
```

This gives the results shown below:

```For x=a(TRUE) AND b(TRUE)
Function A used; Function B used; x is TRUE

For y=a(TRUE) OR b(TRUE)
Function A used; y is TRUE

For x=a(TRUE) AND b(FALSE)
Function A used; Function B used; x is FALSE

For y=a(TRUE) OR b(FALSE)
Function A used; y is TRUE

For x=a(FALSE) AND b(TRUE)
Function A used; x is FALSE

For y=a(FALSE) OR b(TRUE)
Function A used; Function B used; y is TRUE

For x=a(FALSE) AND b(FALSE)
Function A used; x is FALSE

For y=a(FALSE) OR b(FALSE)
Function A used; Function B used; y is FALSE
```

## Bracmat

Bracmat has no booleans. The closest thing is the success or failure of an expression. A function is not called if the argument fails, so we have to use a trick to pass 'failure' to a function. Here it is accomplished by an extra level of indirection: two == in the definition of 'false' (and 'true', for symmetry) and two !! when evaluating the argument in the functions a and b. The backtick is another hack. This prefix tells Bracmat to look the other way if the backticked expression fails and to continue as if the expression succeeded. A neater way is to introduce an extra OR operator. That solution would have obscured the core of the current task. Short-circuit evaluation is heavily used in Bracmat code. Although not required, it is a good habit to exclusively use AND (&) and OR (|) operators to separate expressions, as the code below exemplifies.

```( (a=.out\$"I'm a"&!!arg)
& (b=.out\$"I'm b"&!!arg)
& (false==~)
& (true==)
& !false !true:?outer
&   whl
' ( !outer:%?x ?outer
& !false !true:?inner
&   whl
' ( !inner:%?y ?inner
&   out
\$ ( Testing
(!!x&true|false)
AND
(!!y&true|false)
)
& `(a\$!x&b\$!y)
&   out
\$ ( Testing
(!!x&true|false)
OR
(!!y&true|false)
)
& `(a\$!x|b\$!y)
)
)
& done
);```

Output:

```Testing false AND false
I'm a
Testing false OR false
I'm a
I'm b
Testing false AND true
I'm a
Testing false OR true
I'm a
I'm b
Testing true AND false
I'm a
I'm b
Testing true OR false
I'm a
Testing true AND true
I'm a
I'm b
Testing true OR true
I'm a```

## C

Boolean operators && and || are shortcircuit operators.

```#include <stdio.h>
#include <stdbool.h>

bool a(bool in)
{
printf("I am a\n");
return in;
}

bool b(bool in)
{
printf("I am b\n");
return in;
}

#define TEST(X,Y,O)						\
do {								\
x = a(X) O b(Y);						\
printf(#X " " #O " " #Y " = %s\n\n", x ? "true" : "false");	\
} while(false);

int main()
{
bool x;

TEST(false, true, &&); // b is not evaluated
TEST(true, false, ||); // b is not evaluated
TEST(true, false, &&); // b is evaluated
TEST(false, false, ||); // b is evaluated

return 0;
}
```

## C#

```using System;

class Program
{
static bool a(bool value)
{
Console.WriteLine("a");
return value;
}

static bool b(bool value)
{
Console.WriteLine("b");
return value;
}

static void Main()
{
foreach (var i in new[] { false, true })
{
foreach (var j in new[] { false, true })
{
Console.WriteLine("{0} and {1} = {2}", i, j, a(i) && b(j));
Console.WriteLine();
Console.WriteLine("{0} or {1} = {2}", i, j, a(i) || b(j));
Console.WriteLine();
}
}
}
}
```
Output:
```a
False and False = False

a
b
False or False = False

a
False and True = False

a
b
False or True = True

a
b
True and False = False

a
True or False = True

a
b
True and True = True

a
True or True = True
```

## C++

Just like C, boolean operators && and || are shortcircuit operators.

```#include <iostream>

bool a(bool in)
{
std::cout << "a" << std::endl;
return in;
}

bool b(bool in)
{
std::cout << "b" << std::endl;
return in;
}

void test(bool i, bool j) {
std::cout << std::boolalpha << i << " and " << j << " = " << (a(i) && b(j)) << std::endl;
std::cout << std::boolalpha << i << " or " << j << " = " << (a(i) || b(j)) << std::endl;
}

int main()
{
test(false, false);
test(false, true);
test(true, false);
test(true, true);
return 0;
}
```
Output:
```a
false and false = false
a
b
false or false = false
a
false and true = false
a
b
false or true = true
a
b
true and false = false
a
true or false = true
a
b
true and true = true
a
true or true = true```

## Clojure

The print/println stuff in the doseq is kinda gross, but if you include them all in a single print, then the function traces are printed before the rest (since it has to evaluate them before calling print).

```(letfn [(a [bool] (print "(a)") bool)
(b [bool] (print "(b)") bool)]
(doseq [i [true false] j [true false]]
(print i "OR" j "= ")
(println (or (a i) (b j)))
(print i "AND" j " = ")
(println (and (a i) (b j)))))
```
Output:
```true OR true = (a)true
true AND true  = (a)(b)true
true OR false = (a)true
true AND false  = (a)(b)false
false OR true = (a)(b)true
false AND true  = (a)false
false OR false = (a)(b)false
false AND false  = (a)false```

## Common Lisp

```(defun a (F)
(print 'a)
F )

(defun b (F)
(print 'b)
F )

(dolist (x '((nil nil) (nil T) (T T) (T nil)))
(format t "~%(and ~S)" x)
(and (a (car x)) (b (car(cdr x))))
(format t "~%(or ~S)" x)
(or (a (car x)) (b (car(cdr x)))))
```
Output:
```(and (NIL NIL))
A
(or (NIL NIL))
A
B
(and (NIL T))
A
(or (NIL T))
A
B
(and (T T))
A
B
(or (T T))
A
(and (T NIL))
A
B
(or (T NIL))
A
```

## D

Translation of: Python
```import std.stdio, std.algorithm;

}

}

void main() {
foreach (immutable x, immutable y;
[false, true].cartesianProduct([false, true])) {
writeln("\nCalculating: r1 = a(x) && b(y)");
immutable r1 = a(x) && b(y);
writeln("Calculating: r2 = a(x) || b(y)");
immutable r2 = a(x) || b(y);
}
}
```
Output:
```Calculating: r1 = a(x) && b(y)
# Called function a(false) -> false
Calculating: r2 = a(x) || b(y)
# Called function a(false) -> false
# Called function b(false) -> false

Calculating: r1 = a(x) && b(y)
# Called function a(true) -> true
# Called function b(false) -> false
Calculating: r2 = a(x) || b(y)
# Called function a(true) -> true

Calculating: r1 = a(x) && b(y)
# Called function a(false) -> false
Calculating: r2 = a(x) || b(y)
# Called function a(false) -> false
# Called function b(true) -> true

Calculating: r1 = a(x) && b(y)
# Called function a(true) -> true
# Called function b(true) -> true
Calculating: r2 = a(x) || b(y)
# Called function a(true) -> true```

## Delphi

Delphi supports short circuit evaluation by default. It can be turned off using the {\$BOOLEVAL OFF} compiler directive.

```program ShortCircuitEvaluation;

{\$APPTYPE CONSOLE}

uses SysUtils;

function A(aValue: Boolean): Boolean;
begin
Writeln('a');
Result := aValue;
end;

function B(aValue: Boolean): Boolean;
begin
Writeln('b');
Result := aValue;
end;

var
i, j: Boolean;
begin
for i in [False, True] do
begin
for j in [False, True] do
begin
Writeln(Format('%s and %s = %s', [BoolToStr(i, True), BoolToStr(j, True), BoolToStr(A(i) and B(j), True)]));
Writeln;
Writeln(Format('%s or %s = %s', [BoolToStr(i, True), BoolToStr(j, True), BoolToStr(A(i) or B(j), True)]));
Writeln;
end;
end;
end.
```

## Dyalect

Translation of: Swift
```func a(v) {
print(nameof(a), terminator: "")
return v
}

func b(v) {
print(nameof(b), terminator: "")
return v
}

func testMe(i, j) {
print("Testing a(\(i)) && b(\(j))")
print("Trace: ", terminator: "")
print("\nResult: \(a(i) && b(j))")

print("Testing a(\(i)) || b(\(j))")
print("Trace: ", terminator: "")
print("\nResult: \(a(i) || b(j))")

print()
}

testMe(false, false)
testMe(false, true)
testMe(true, false)
testMe(true, true)```
Output:
```Testing a(false) && b(false)
Trace: a
Result: false
Testing a(false) || b(false)
Trace: ab
Result: false

Testing a(false) && b(true)
Trace: a
Result: false
Testing a(false) || b(true)
Trace: ab
Result: true

Testing a(true) && b(false)
Trace: ab
Result: false
Testing a(true) || b(false)
Trace: a
Result: true

Testing a(true) && b(true)
Trace: ab
Result: true
Testing a(true) || b(true)
Trace: a
Result: true```

## E

E defines `&&` and `||` in the usual short-circuiting fashion.

```def a(v) { println("a"); return v }
def b(v) { println("b"); return v }

def x := a(i) && b(j)
def y := b(i) || b(j)```

Unusually, E is an expression-oriented language, and variable bindings (which are expressions) are in scope until the end of the nearest enclosing `{ ... }` block. The combination of these features means that some semantics must be given to a binding occurring inside of a short-circuited alternative.

`def x := a(i) && (def funky := b(j))`

The choice we make is that `funky` is ordinary if the right-side expression was evaluated, and otherwise is ruined; attempts to access the variable give an error.

## Ecstasy

Similar to Java, Ecstasy uses the  &&  and  ||  operators for short-circuiting logic, and  &  and  |  are the normal (non-short-circuiting) forms.

```module test
{
@Inject Console console;

static Boolean show(String name, Boolean value)
{
console.print(\$"{name}()={value}");
return value;
}

void run()
{
val a = show("a", _);
val b = show("b", _);

for (Boolean v1 : False..True)
{
for (Boolean v2 : False..True)
{
console.print(\$"a({v1}) && b({v2}) == {a(v1) && b(v2)}");
console.print();
console.print(\$"a({v1}) || b({v2}) == {a(v1) || b(v2)}");
console.print();
}
}
}
}
```
Output:
```a()=False
a(False) && b(False) == False

a()=False
b()=False
a(False) || b(False) == False

a()=False
a(False) && b(True) == False

a()=False
b()=True
a(False) || b(True) == True

a()=True
b()=False
a(True) && b(False) == False

a()=True
a(True) || b(False) == True

a()=True
b()=True
a(True) && b(True) == True

a()=True
a(True) || b(True) == True
```

## Elena

ELENA 5.0 :

```import system'routines;
import extensions;

Func<bool, bool> a = (bool x){ console.writeLine:"a"; ^ x };

Func<bool, bool> b = (bool x){ console.writeLine:"b"; ^ x };

const bool[] boolValues = new bool[]{ false, true };

public program()
{
boolValues.forEach:(bool i)
{
boolValues.forEach:(bool j)
{
console.printLine(i," and ",j," = ",a(i) && b(j));

console.writeLine();
console.printLine(i," or ",j," = ",a(i) || b(j));
console.writeLine()
}
}
}```
Output:
```a
false and false = false

a
b
false or false = false

a
false and true = false

a
b
false or true = true

a
b
true and false = false

a
true or false = true

a
b
true and true = true

a
true or true = true
```

## Elixir

```defmodule Short_circuit do
defp a(bool) do
IO.puts "a( #{bool} ) called"
bool
end

defp b(bool) do
IO.puts "b( #{bool} ) called"
bool
end

Enum.each([true, false], fn i ->
Enum.each([true, false], fn j ->
IO.puts "a( #{i} ) and b( #{j} ) is #{a(i) and b(j)}.\n"
IO.puts "a( #{i} ) or b( #{j} ) is #{a(i)  or b(j)}.\n"
end)
end)
end
end

```
Output:
```a( true ) called
b( true ) called
a( true ) and b( true ) is true.

a( true ) called
a( true ) or b( true ) is true.

a( true ) called
b( false ) called
a( true ) and b( false ) is false.

a( true ) called
a( true ) or b( false ) is true.

a( false ) called
a( false ) and b( true ) is false.

a( false ) called
b( true ) called
a( false ) or b( true ) is true.

a( false ) called
a( false ) and b( false ) is false.

a( false ) called
b( false ) called
a( false ) or b( false ) is false.
```

## Erlang

```-module( short_circuit_evaluation ).

[task_helper(X, Y) || X <- [true, false], Y <- [true, false]].

a( Boolean ) ->
io:fwrite( " a ~p~n", [Boolean] ),
Boolean.

b( Boolean ) ->
io:fwrite( " b ~p~n", [Boolean] ),
Boolean.

io:fwrite( "~p andalso ~p~n", [Boolean1, Boolean2] ),
io:fwrite( "=> ~p~n", [a(Boolean1) andalso b(Boolean2)] ),
io:fwrite( "~p orelse ~p~n", [Boolean1, Boolean2] ),
io:fwrite( "=> ~p~n", [a(Boolean1) orelse b(Boolean2)] ).
```
Output:
```15> short_circuit_evaluation:task().
true andalso true
a true
b true
=> true
true orelse true
a true
=> true
true andalso false
a true
b false
=> false
true orelse false
a true
=> true
false andalso true
a false
=> false
false orelse true
a false
b true
=> true
false andalso false
a false
=> false
false orelse false
a false
b false
=> false
```

## F#

```let a (x : bool) = printf "(a)"; x
let b (x : bool) = printf "(b)"; x

[for x in [true; false] do for y in [true; false] do yield (x, y)]
|> List.iter (fun (x, y) ->
printfn "%b AND %b = %b" x y ((a x) && (b y))
printfn "%b OR %b = %b" x y ((a x) || (b y)))
```

Output

```(a)(b)true AND true = true
(a)true OR true = true
(a)(b)true AND false = false
(a)true OR false = true
(a)false AND true = false
(a)(b)false OR true = true
(a)false AND false = false
(a)(b)false OR false = false```

## Factor

`&&` and `||` perform short-circuit evaluation, while `and` and `or` do not. `&&` and `||` both expect a sequence of quotations to evaluate in a short-circuit manner. They are smart combinators; that is, they infer the number of arguments taken by the quotations. If you opt not to use the smart combinators, you can also use words like `0&&` and `2||` where the arity of the quotations is dictated.

```USING: combinators.short-circuit.smart io prettyprint ;
IN: rosetta-code.short-circuit

: a ( ? -- ? ) "(a)" write ;
: b ( ? -- ? ) "(b)" write ;

"f && f = " write { [ f a ] [ f b ] } && .
"f || f = " write { [ f a ] [ f b ] } || .
"f && t = " write { [ f a ] [ t b ] } && .
"f || t = " write { [ f a ] [ t b ] } || .
"t && f = " write { [ t a ] [ f b ] } && .
"t || f = " write { [ t a ] [ f b ] } || .
"t && t = " write { [ t a ] [ t b ] } && .
"t || t = " write { [ t a ] [ t b ] } || .
```
Output:
```f && f = (a)f
f || f = (a)(b)f
f && t = (a)f
f || t = (a)(b)t
t && f = (a)(b)f
t || f = (a)t
t && t = (a)(b)t
t || t = (a)t
```

## Fantom

```class Main
{
static Bool a (Bool value)
{
echo ("in a")
return value
}

static Bool b (Bool value)
{
echo ("in b")
return value
}

public static Void main ()
{
[false,true].each |i|
{
[false,true].each |j|
{
Bool result := a(i) && b(j)
echo ("a(\$i) && b(\$j): " + result)
result = a(i) || b(j)
echo ("a(\$i) || b(\$j): " + result)
}
}
}
}```
Output:
```in a
a(false) && b(false): false
in a
in b
a(false) || b(false): false
in a
a(false) && b(true): false
in a
in b
a(false) || b(true): true
in a
in b
a(true) && b(false): false
in a
a(true) || b(false): true
in a
in b
a(true) && b(true): true
in a
a(true) || b(true): true
```

## Forth

```\ Short-circuit evaluation definitions from Wil Baden, with minor name changes
:  ENDIF  postpone THEN ; immediate

:   COND  0 ; immediate
: ENDIFS  BEGIN DUP WHILE postpone ENDIF REPEAT DROP ; immediate
: ORELSE  s" ?DUP 0= IF"  evaluate ; immediate
:  ANDIF  s" DUP IF DROP" evaluate ; immediate

: .bool IF ." true  " ELSE ." false " THEN ;
: A  ." A=" DUP .bool ;
: B  ." B=" DUP .bool ;

: test
CR
1 -1 DO 1 -1 DO
COND I A ANDIF  J B ENDIFS ." ANDIF="  .bool CR
COND I A ORELSE J B ENDIFS ." ORELSE=" .bool CR
LOOP LOOP ;

\ An alternative based on explicitly short-circuiting conditionals, Dave Keenan
: END-PRIOR-IF  1 CS-ROLL postpone ENDIF ; immediate

: test
CR
1 -1 DO 1 -1 DO
I A    IF J B IF 1 ELSE END-PRIOR-IF 0 ENDIF ." ANDIF="  .bool CR
I A 0= IF J B IF END-PRIOR-IF 1 ELSE 0 ENDIF ." ORELSE=" .bool CR
LOOP LOOP ;
```
Output:
```A=true  B=true  ANDIF=true
A=true  ORELSE=true
A=false ANDIF=false
A=false B=true  ORELSE=true
A=true  B=false ANDIF=false
A=true  ORELSE=true
A=false ANDIF=false
A=false B=false ORELSE=false```

## Fortran

Works with: Fortran version 90 and later

Using an `IF .. THEN .. ELSE` construct

```program Short_Circuit_Eval
implicit none

logical :: x, y
logical, dimension(2) :: l = (/ .false., .true. /)
integer :: i, j

do i = 1, 2
do j = 1, 2
write(*, "(a,l1,a,l1,a)") "Calculating x = a(", l(i), ") and b(", l(j), ")"
! a AND b
x = a(l(i))
if(x) then
x = b(l(j))
write(*, "(a,l1)") "x = ", x
else
write(*, "(a,l1)") "x = ", x
end if

write(*,*)
write(*, "(a,l1,a,l1,a)") "Calculating y = a(", l(i), ") or b(", l(j), ")"
! a OR b
y = a(l(i))
if(y) then
write(*, "(a,l1)") "y = ", y
else
y = b(l(j))
write(*, "(a,l1)") "y = ", y
end if
write(*,*)
end do
end do

contains

function a(value)
logical :: a
logical, intent(in) :: value

a = value
write(*, "(a,l1,a)") "Called function a(", value, ")"
end function

function b(value)
logical :: b
logical, intent(in) :: value

b = value
write(*, "(a,l1,a)") "Called function b(", value, ")"
end function
end program
```
Output:
```Calculating x = a(F) and b(F)
Called function a(F)
x = F

Calculating y = a(F) or b(F)
Called function a(F)
Called function b(F)
y = F

Calculating x = a(F) and b(T)
Called function a(F)
x = F

Calculating y = a(F) or b(T)
Called function a(F)
Called function b(T)
y = T

Calculating x = a(T) and b(F)
Called function a(T)
Called function b(F)
x = F

Calculating y = a(T) or b(F)
Called function a(T)
y = T

Calculating x = a(T) and b(T)
Called function a(T)
Called function b(T)
x = T

Calculating y = a(T) or b(T)
Called function a(T)
y = T```

## FreeBASIC

```' FB 1.05.0 Win64

Function a(p As Boolean) As Boolean
Print "a() called"
Return p
End Function

Function b(p As Boolean) As Boolean
Print "b() called"
Return p
End Function

Dim As Boolean i, j, x, y
i = False
j = True
Print "Without short-circuit evaluation :"
Print
x = a(i) And b(j)
y = a(i) Or b(j)
Print "x = "; x; " y = "; y
Print
Print "With short-circuit evaluation :"
Print
x = a(i) AndAlso b(j) '' b(j) not called as a(i) = false and so x must be false
y = a(i) OrElse b(j)  '' b(j) still called as can't determine y unless it is
Print "x = "; x; " y = "; y
Print
Print "Press any key to quit"
Sleep
```
Output:
```Without short-circuit evaluation :

a() called
b() called
a() called
b() called
x = false y = true

With short-circuit evaluation :

a() called
a() called
b() called
x = false y = true
```

## Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website, However they run on execution servers. By default remote servers are used, but they are limited in memory and processing power, since they are intended for demonstration and casual use. A local server can be downloaded and installed, it has no limitations (it runs in your own computer). Because of that, example programs can be fully visualized and edited, but some of them will not run if they require a moderate or heavy computation/memory resources, and no local server is being used.

## Go

Short circuit operators are && and ||.

```package main

import "fmt"

func a(v bool) bool {
fmt.Print("a")
return v
}

func b(v bool) bool {
fmt.Print("b")
return v
}

func test(i, j bool) {
fmt.Printf("Testing a(%t) && b(%t)\n", i, j)
fmt.Print("Trace:  ")
fmt.Println("\nResult:", a(i) && b(j))

fmt.Printf("Testing a(%t) || b(%t)\n", i, j)
fmt.Print("Trace:  ")
fmt.Println("\nResult:", a(i) || b(j))

fmt.Println("")
}

func main() {
test(false, false)
test(false, true)
test(true, false)
test(true, true)
}
```
Output:
```Testing a(false) && b(false)
Trace:  a
Result: false
Testing a(false) || b(false)
Trace:  ab
Result: false

Testing a(false) && b(true)
Trace:  a
Result: false
Testing a(false) || b(true)
Trace:  ab
Result: true

Testing a(true) && b(false)
Trace:  ab
Result: false
Testing a(true) || b(false)
Trace:  a
Result: true

Testing a(true) && b(true)
Trace:  ab
Result: true
Testing a(true) || b(true)
Trace:  a
Result: true```

## Groovy

Like all C-based languages (of which I am aware), Groovy short-circuits the logical and (&&) and logical or (||) operations, but not the bitwise and (&) and bitwise or (|) operations.

```def f = { println '  AHA!'; it instanceof String }
def g = { printf ('%5d ', it); it > 50 }

println 'bitwise'
assert g(100) & f('sss')
assert g(2) | f('sss')
assert ! (g(1) & f('sss'))
assert g(200) | f('sss')

println '''
logical'''
assert g(100) && f('sss')
assert g(2) || f('sss')
assert ! (g(1) && f('sss'))
assert g(200) || f('sss')
```
Output:
```bitwise
100   AHA!
2   AHA!
1   AHA!
200   AHA!

logical
100   AHA!
2   AHA!
1   200```

Lazy evaluation makes it possible for user-defined functions to be short-circuited. An expression will not be evaluated as long as it is not pattern matched:

```module ShortCircuit where

import Prelude hiding ((&&), (||))
import Debug.Trace

False && _     = False
True  && False = False
_     && _     = True

True  || _     = True
False || True  = True
_     || _     = False

a p = trace ("<a " ++ show p ++ ">") p
b p = trace ("<b " ++ show p ++ ">") p

main = mapM_ print (    [ a p || b q | p <- [False, True], q <- [False, True] ]
++ [ a p && b q | p <- [False, True], q <- [False, True] ])
```
Output:
```<a False>
<b False>
False
<a False>
<b True>
True
<a True>
True
<a True>
True
<a False>
False
<a False>
False
<a True>
<b False>
False
<a True>
<b True>
True
```

One can force the right-hand arguemnt to be evaluated first be using the alternate definitions:

```_     && False = False
False && True  = False
_     && _     = True

_     || True  = True
True  || False = True
_     || _     = False
```
Output:
```<b False>
<a False>
False
<b True>
True
<b False>
<a True>
True
<b True>
True
<b False>
False
<b True>
<a False>
False
<b False>
False
<b True>
<a True>
True
```

The order of evaluation (in this case the original order again) can be seen in a more explicit form by desugaring the pattern matching:

```p && q = case p of
False -> False
_     -> case q of
False -> False
_     -> True

p || q = case p of
True -> True
_    -> case q of
True -> True
_    -> False
```

## Icon and Unicon

The entire concept of using 'boolean' values for logic control runs counter to the philosophy of Icon. Instead Icon has success (something that returns a result) and failure which is really a signal. The concept is similar to that used in SNOBOL4 and Lisp and far more potent than passing around and testing booleans. There is no way to pass around a 'false' value in that sense. Icon does have facilities for dealing with bits inside integers but these would not normally be used for control purposes. Because failure is a signal control is always evaluated in a short-circuit manner. One consequence of this is that an expression "i < j" doesn't return a boolean value, instead it returns the value of j. While this may seem odd at first it allows for elegant expressions like "i < j < k". Another benefit is that there is no need for programmers to devote effort to staying inside the bounds of any data type. For instance, if you loop and iterate beyond bounds the expression simply fails and the loop ends.

While this task could be written literally, it would be more beneficial to show how an Icon programmer would approach the same problem. Icon extends the idea short circuit evaluation with the ability for expressions to generate alternate results only if needed. For more information see Failure is an option, Everything Returns a Value Except when it Doesn't, and Goal-Directed Evaluation and Generators. Consequently some small liberties will be taken with this task:

• Since any result means an expression succeeded and is hence true, we can use any value. In this example our choice will be determined by how we deal with 'false'.
• The inability to pass a 'false' value is a challenge. At first glance we might try &null, similar to Lisp, but there is no canonical true. Also &null produces a result, so strictly speaking it could be 'true' as well. A good example of this is that an expression like " not expr " returns null if 'expr' fails.
• For this example we will define two procedures 'true' and 'false'. Because Icon treats procedures as a data type we can assign them and invoke them indirectly via the variable name they are assigned to. We can write " i := true " and later invoke 'true' via " i() ".
• Rather than have the tasks print their own name, we will just utilize built-in tracing which will be more informative.

This use of procedures as values is somewhat contrived but serves us well for demonstration purposes. In practice this approach would be strained since failure results aren't re-captured as values (and can't easily be).

```procedure main()
&trace := -1 # ensures functions print their names

every (i := false | true ) & ( j := false | true) do {
write("i,j := ",image(i),", ",image(j))
write("i & j:")
x := i() & j()   # invoke true/false
write("i | j:")
y := i() | j()   # invoke true/false
}
end

procedure true()   #: succeeds always (returning null)
return
end

procedure false()  #: fails always
fail    # for clarity but not needed as running into end has the same effect
end
```
Sample output for a single case:
```i,j := procedure true, procedure false
i & j:
Shortcircuit.icn:    8  | true()
Shortcircuit.icn:   16  | true returned &null
Shortcircuit.icn:    8  | false()
Shortcircuit.icn:   20  | false failed
i | j:
Shortcircuit.icn:   10  | true()
Shortcircuit.icn:   16  | true returned &null
i,j := procedure true, procedure true```

## Io

Translation of: Ruby
```a := method(bool,
writeln("a(#{bool}) called." interpolate)
bool
)
b := method(bool,
writeln("b(#{bool}) called." interpolate)
bool
)

list(true,false) foreach(avalue,
list(true,false) foreach(bvalue,
x := a(avalue) and b(bvalue)
writeln("x = a(#{avalue}) and b(#{bvalue}) is #{x}" interpolate)
writeln
y := a(avalue) or b(bvalue)
writeln("y = a(#{avalue}) or b(#{bvalue}) is #{y}" interpolate)
writeln
)
)
```
Output:
```a(true) called.
b(true) called.
x = a(true) and b(true) is true

a(true) called.
y = a(true) or b(true) is true

a(true) called.
b(false) called.
x = a(true) and b(false) is false

a(true) called.
y = a(true) or b(false) is true

a(false) called.
x = a(false) and b(true) is false

a(false) called.
b(true) called.
y = a(false) or b(true) is true

a(false) called.
x = a(false) and b(false) is false

a(false) called.
b(false) called.
y = a(false) or b(false) is false```

## J

See the J wiki entry on short circuit booleans.

```labeled=:1 :'[ smoutput@,&":~&m'
A=: 'A ' labeled
B=: 'B ' labeled
and=: ^:
or=: 2 :'u^:(-.@v)'
```
Example:
```   (A and B) 1
B 1
A 1
1
(A and B) 0
B 0
0
(A or B) 1
B 1
1
(A or B) 0
B 0
A 0
0
```

Note that J evaluates right-to-left.

Note also that both functions take the same argument (which might make this less than ideal for some purposes, but trying micromanage flow of control is usually counter-productive in J in much the way that global values can be counter-productive in an object oriented environment. When you are processing a large set of array data, flow of control can only make sense when it is relevant to all of the data being processed -- if you want to manage flow of control which is not relevant to the entire set of data being processed you might artificially reduce the amount of data being processed, along the lines of an SQL cursor).

## Java

In Java the boolean operators `&&` and `||` are short circuit operators. The eager operator counterparts are `&` and `|`.

```public class ShortCirc {
public static void main(String[] args){
System.out.println("F and F = " + (a(false) && b(false)) + "\n");
System.out.println("F or F = " + (a(false) || b(false)) + "\n");

System.out.println("F and T = " + (a(false) && b(true)) + "\n");
System.out.println("F or T = " + (a(false) || b(true)) + "\n");

System.out.println("T and F = " + (a(true) && b(false)) + "\n");
System.out.println("T or F = " + (a(true) || b(false)) + "\n");

System.out.println("T and T = " + (a(true) && b(true)) + "\n");
System.out.println("T or T = " + (a(true) || b(true)) + "\n");
}

public static boolean a(boolean a){
System.out.println("a");
return a;
}

public static boolean b(boolean b){
System.out.println("b");
return b;
}
}
```
Output:
```a
F and F = false

a
b
F or F = false

a
F and T = false

a
b
F or T = true

a
b
T and F = false

a
T or F = true

a
b
T and T = true

a
T or T = true```

## JavaScript

Short-circuiting evaluation of boolean expressions has been the default since the first versions of JavaScript.

```(function () {
'use strict';

function a(bool) {
console.log('a -->', bool);

return bool;
}

function b(bool) {
console.log('b -->', bool);

return bool;
}

var x = a(false) && b(true),
y = a(true) || b(false),
z = true ? a(true) : b(false);

return [x, y, z];
})();
```

The console log shows that in each case (the binding of all three values), only the left-hand part of the expression (the application of a(expr)) was evaluated – b(expr) was skipped by logical short-circuiting.

Output:

Console:

```/* a --> false */
/* a --> true */
/* a --> true */```

Return value:

`[false, true, true]`

## jq

jq's 'and' and 'or' are short-circuit operators. The following demonstration, which follows the "awk" example above, requires a version of jq with the built-in filter 'stderr'.

```def a(x): "  a(\(x))" | stderr | x;

def b(y): "  b(\(y))" | stderr | y;

"and:", (a(true) and b(true)),
"or:",  (a(true) or b(true)),
"and:", (a(false) and b(true)),
"or:",  (a(false) or b(true))```
Output:
```\$ jq -r -n -f Short-circuit-evaluation.jq
and:
"  a(true)"
"  b(true)"
true
or:
"  a(true)"
true
and:
"  a(false)"
false
or:
"  a(false)"
"  b(true)"
true
```

## Julia

Julia does have short-circuit evaluation, which works just as you expect it to:

```a(x) = (println("\t# Called a(\$x)"); return x)
b(x) = (println("\t# Called b(\$x)"); return x)

for i in [true,false], j in [true, false]
println("\nCalculating: x = a(\$i) && b(\$j)"); x = a(i) && b(j)
println("\tResult: x = \$x")
println("\nCalculating: y = a(\$i) || b(\$j)"); y = a(i) || b(j)
println("\tResult: y = \$y")
end
```
Output:
```Calculating: x = a(true) && b(true)
# Called a(true)
# Called b(true)
Result: x = true

Calculating: y = a(true) || b(true)
# Called a(true)
Result: y = true

Calculating: x = a(true) && b(false)
# Called a(true)
# Called b(false)
Result: x = false

Calculating: y = a(true) || b(false)
# Called a(true)
Result: y = true

Calculating: x = a(false) && b(true)
# Called a(false)
Result: x = false

Calculating: y = a(false) || b(true)
# Called a(false)
# Called b(true)
Result: y = true

Calculating: x = a(false) && b(false)
# Called a(false)
Result: x = false

Calculating: y = a(false) || b(false)
# Called a(false)
# Called b(false)
Result: y = false```

## Kotlin

```// version 1.1.2

fun a(v: Boolean): Boolean {
println("'a' called")
return v
}

fun b(v: Boolean): Boolean {
println("'b' called")
return v
}

fun main(args: Array<String>){
val pairs = arrayOf(Pair(true, true), Pair(true, false), Pair(false, true), Pair(false, false))
for (pair in pairs) {
val x = a(pair.first) && b(pair.second)
println("\${pair.first} && \${pair.second} = \$x")
val y = a(pair.first) || b(pair.second)
println("\${pair.first} || \${pair.second} = \$y")
println()
}
}
```
Output:
```'a' called
'b' called
true && true = true
'a' called
true || true = true

'a' called
'b' called
true && false = false
'a' called
true || false = true

'a' called
false && true = false
'a' called
'b' called
false || true = true

'a' called
false && false = false
'a' called
'b' called
false || false = false
```

## Lambdatalk

Short-circuiting evaluation of boolean expressions has been the default since the first versions of lambdatalk.

```{def A {lambda {:bool} :bool}}  -> A
{def B {lambda {:bool} :bool}}  -> B

{and {A true} {B true}}   -> true
{and {A true} {B false}}  -> false
{and {A false} {B true}}  -> false
{and {A false} {B false}} -> false

{or {A true} {B true}}    -> true
{or {A true} {B false}}   -> true
{or {A false} {B true}}   -> true
{or {A false} {B false}}  -> false
```

Some more words about short-circuit evaluation. Lambdatalk comes with the {if "bool" then "one" else "two"} special form where "one" or "two" are not evaluated until "bool" is. This behaviour prevents useless computing and allows recursive processes. For instance, the naïve fibonacci function quickly leads to extensive computings.

```{def fib
{lambda {:n}
{if {< :n 2}
then 1
else {+ {fib {- :n 1}} {fib {- :n 2}}}}}}
-> fib

1) Using the if special form:

{if true then {+ 1 2} else {fib 29}}
-> 3              // {fib 29} is not evaluated

{if false then {+ 1 2} else {fib 29}}
-> 832040         // {fib 29} is evaluated in 5847ms

2) The if special form can't be simply replaced by a pair:

{def when {P.new {+ 1 2} {fib 29}}}  // inner expressions are
{P.left {when}}  -> 3                // both evaluated before
{P.right {when}} -> 832040           // and we don't want that

3) We can delay evaluation using lambdas:

{def when
{P.new {lambda {} {+ 1 2}}          // will return a lambda
{lambda {} {fib 22}} }}      // to be evaluated later
-> when
{{P.left {when}}}  -> 3              // lambdas are evaluated
{{P.right {when}}} -> 832040         // after choice using {}
```

## Liberty BASIC

LB does not have short-circuit evaluation. Implemented with IFs.

```print "AND"
for i = 0 to 1
for j = 0 to 1
print "a("; i; ") AND b( "; j; ")"
res =a( i)    'call always
if res <>0 then  'short circuit if 0
res = b( j)
end if
print "=>",res
next
next

print "---------------------------------"
print "OR"
for i = 0 to 1
for j = 0 to 1
print "a("; i; ") OR b("; j; ")"
res =a( i)    'call always
if res = 0 then  'short circuit if <>0
res = b( j)
end if
print "=>", res
next
next

'----------------------------------------
function a( t)
print ,"calls func a"
a = t
end function

function b( t)
print ,"calls func b"
b = t
end function```
Output:
```AND
a(0) AND b( 0)
calls func a
=>            0
a(0) AND b( 1)
calls func a
=>            0
a(1) AND b( 0)
calls func a
calls func b
=>            0
a(1) AND b( 1)
calls func a
calls func b
=>            1
---------------------------------
OR
a(0) OR b(0)
calls func a
calls func b
=>            0
a(0) OR b(1)
calls func a
calls func b
=>            1
a(1) OR b(0)
calls func a
=>            1
a(1) OR b(1)
calls func a
=>            1```

## LiveCode

Livecode uses short-circuit evaluation.

```global outcome
function a bool
put "a called with" && bool & cr after outcome
return bool
end a
function b bool
put "b called with" && bool & cr after outcome
return bool
end b

on mouseUp
local tExp
put empty into outcome
repeat for each item op in "and,or"
repeat for each item x in "true,false"
put merge("a([[x]]) [[op]] b([[x]])") into tExp
put merge(tExp && "is [[" & tExp & "]]") & cr after outcome
put merge("a([[x]]) [[op]] b([[not x]])") into tExp
put merge(tExp && "is [[" & tExp & "]]") & cr after outcome
end repeat
put cr after outcome
end repeat
put outcome
end mouseUp```

## Logo

The `AND` and `OR` predicates may take either expressions which are all evaluated beforehand, or lists which are short-circuit evaluated from left to right only until the overall value of the expression can be determined.

```and [notequal? :x 0] [1/:x > 3]
(or [:x < 0] [:y < 0] [sqrt :x + sqrt :y <  3])```

## Lua

```function a(i)
print "Function a(i) called."
return i
end

function b(i)
print "Function b(i) called."
return i
end

i = true
x = a(i) and b(i);  print ""
y = a(i) or  b(i);  print ""

i = false
x = a(i) and b(i);  print ""
y = a(i) or  b(i)
```

## M2000 Interpreter

```Module Short_circuit_evaluation {
function a(a as boolean) {
=a
doc\$<=format\$("   Called function a({0}) -> {0}", a)+{
}
}
function b(b as boolean) {
=b
doc\$<=format\$("   Called function b({0}) -> {0}", b)+{
}
}
boolean T=true, F, iv, jv
variant L=(F, T), i, j
i=each(L)
global doc\$ : document doc\$
while i
j=each(L)
while j
(iv, jv)=(array(i), array(j))
doc\$<=format\$("Calculating x = a({0}) and b({1}) -> {2}", iv, jv, iv and jv)+{
}
x=if(a(iv)->b(jv), F)
doc\$<=format\$("x={0}", x)+{
}+ format\$("Calculating y = a({0}) or b({1}) -> {2}", iv, jv, iv or jv)+{
}
y=if(a(iv)->T, b(jv))
doc\$<=format\$("y={0}", y)+{

}
end while
end while
clipboard doc\$
report doc\$
}
Short_circuit_evaluation```
Output:
```Calculating x = a(False) and b(False) -> False
Called function a(False) -> False
x=False
Calculating y = a(False) or b(False) -> False
Called function a(False) -> False
Called function b(False) -> False
y=False

Calculating x = a(False) and b(True) -> False
Called function a(False) -> False
x=False
Calculating y = a(False) or b(True) -> True
Called function a(False) -> False
Called function b(True) -> True
y=True

Calculating x = a(True) and b(False) -> False
Called function a(True) -> True
Called function b(False) -> False
x=False
Calculating y = a(True) or b(False) -> True
Called function a(True) -> True
y=True

Calculating x = a(True) and b(True) -> True
Called function a(True) -> True
Called function b(True) -> True
x=True
Calculating y = a(True) or b(True) -> True
Called function a(True) -> True
y=True

```

## Maple

Built-in short circuit evaluation

```a := proc(bool)
printf("a is called->%s\n", bool):
return bool:
end proc:
b := proc(bool)
printf("b is called->%s\n", bool):
return bool:
end proc:
for i in [true, false] do
for j in [true, false] do
printf("calculating	x := a(i) and b(j)\n"):
x := a(i) and b(j):
printf("calculating	x := a(i) or b(j)\n"):
y := a(i) or  b(j):
od:
od:```
Output:
```calculating	x := a(i) and b(j)
a is called->true
b is called->true
calculating	x := a(i) or b(j)
a is called->true
calculating	x := a(i) and b(j)
a is called->true
b is called->false
calculating	x := a(i) or b(j)
a is called->true
calculating	x := a(i) and b(j)
a is called->false
calculating	x := a(i) or b(j)
a is called->false
b is called->true
calculating	x := a(i) and b(j)
a is called->false
calculating	x := a(i) or b(j)
a is called->false
b is called->false```

## Mathematica/Wolfram Language

Mathematica has built-in short-circuit evaluation of logical expressions.

```a[in_] := (Print["a"]; in)
b[in_] := (Print["b"]; in)
a[False] && b[True]
a[True] || b[False]
```

Evaluation of the preceding code gives:

```a
False
a
True```

Whereas evaluating this:

```a[True] && b[False]
```

Gives:

```a
b
False```

## MATLAB / Octave

Short-circuit evalation is done in logical AND (&&) and logical OR (||) operators:

```  function x=a(x)
printf('a: %i\n',x);
end;
function x=b(x)
printf('b: %i\n',x);
end;

a(1) && b(1)
a(0) && b(1)
a(1) || b(1)
a(0) || b(1)
```
Output:
```  > a(1) && b(1);
a: 1
b: 1
> a(0) && b(1);
a: 0
> a(1) || b(1);
a: 1
> a(0) || b(1);
a: 0
b: 1
```

## Modula-2

```MODULE ShortCircuit;
FROM FormatString IMPORT FormatString;

PROCEDURE a(v : BOOLEAN) : BOOLEAN;
VAR buf : ARRAY[0..63] OF CHAR;
BEGIN
FormatString("    # Called function a(%b)\n", buf, v);
WriteString(buf);
RETURN v
END a;

PROCEDURE b(v : BOOLEAN) : BOOLEAN;
VAR buf : ARRAY[0..63] OF CHAR;
BEGIN
FormatString("    # Called function b(%b)\n", buf, v);
WriteString(buf);
RETURN v
END b;

PROCEDURE Print(x,y : BOOLEAN);
VAR buf : ARRAY[0..63] OF CHAR;
VAR temp : BOOLEAN;
BEGIN
FormatString("a(%b) AND b(%b)\n", buf, x, y);
WriteString(buf);
temp := a(x) AND b(y);

FormatString("a(%b) OR b(%b)\n", buf, x, y);
WriteString(buf);
temp := a(x) OR b(y);

WriteLn;
END Print;

BEGIN
Print(FALSE,FALSE);
Print(FALSE,TRUE);
Print(TRUE,TRUE);
Print(TRUE,FALSE);
END ShortCircuit.
```

## MUMPS

MUMPS evaluates every expression it encounters, so we have to use conditional statements to do a short circuiting of the expensive second task.

```SSEVAL1(IN)
WRITE !,?10,\$STACK(\$STACK,"PLACE")
QUIT IN
SSEVAL2(IN)
WRITE !,?10,\$STACK(\$STACK,"PLACE")
QUIT IN
SSEVAL3
NEW Z
WRITE "1 AND 1"
SET Z=\$\$SSEVAL1(1) SET:Z Z=Z&\$\$SSEVAL2(1)
WRITE !,\$SELECT(Z:"TRUE",1:"FALSE")
WRITE !!,"0 AND 1"
SET Z=\$\$SSEVAL1(0) SET:Z Z=Z&\$\$SSEVAL2(1)
WRITE !,\$SELECT(Z:"TRUE",1:"FALSE")
WRITE !!,"1 OR 1"
SET Z=\$\$SSEVAL1(1) SET:'Z Z=Z!\$\$SSEVAL2(1)
WRITE !,\$SELECT(Z:"TRUE",1:"FALSE")
WRITE !!,"0 OR 1"
SET Z=\$\$SSEVAL1(0) SET:'Z Z=Z!\$\$SSEVAL2(1)
WRITE !,\$SELECT(Z:"TRUE",1:"FALSE")
KILL Z
QUIT```
Output:
```USER>D SSEVAL3^ROSETTA
1 AND 1
SSEVAL1+1^ROSETTA +3
SSEVAL2+1^ROSETTA +3
TRUE

0 AND 1
SSEVAL1+1^ROSETTA +3
FALSE

1 OR 1
SSEVAL1+1^ROSETTA +3
TRUE

0 OR 1
SSEVAL1+1^ROSETTA +3
SSEVAL2+1^ROSETTA +3
TRUE```

## Nanoquery

Nanoquery does not short-circuit by default, so short-circuit logic functions have been implemented by nested ifs.

```def short_and(bool1, bool2)
global a
global b
if a(bool1)
if b(bool2)
return true
else
return false
end
else
return false
end
end

def short_or(bool1, bool2)
if a(bool1)
return true
else
if b(bool2)
return true
else
return false
end
end
end

def a(bool)
println "a called."
return bool
end

def b(bool)
println "b called."
return bool
end

println "F and F = " + short_and(false, false) + "\n"
println "F or F  = " + short_or(false, false)  + "\n"

println "F and T = " + short_and(false, true)  + "\n"
println "F or T  = " + short_or(false, true)   + "\n"

println "T and F = " + short_and(true, false)  + "\n"
println "T or F  = " + short_or(true, false)   + "\n"

println "T and T = " + short_and(true, true)   + "\n"
println "T or T  = " + short_or(true, true)    + "\n"```
Output:
```a called.
F and F = false

a called.
b called.
F or F  = false

a called.
F and T = false

a called.
b called.
F or T  = true

a called.
b called.
T and F = false

a called.
T or F  = true

a called.
b called.
T and T = true

a called.
T or T  = true
```

## Nemerle

```using System.Console;

class ShortCircuit
{
public static a(x : bool) : bool
{
WriteLine("a");
x
}

public static b(x : bool) : bool
{
WriteLine("b");
x
}

public static Main() : void
{
def t = true;
def f = false;

WriteLine("True  && True : {0}", a(t) && b(t));
WriteLine("True  && False: {0}", a(t) && b(f));
WriteLine("False && True : {0}", a(f) && b(t));
WriteLine("False && False: {0}", a(f) && b(f));
WriteLine("True  || True : {0}", a(t) || b(t));
WriteLine("True  || False: {0}", a(t) || b(f));
WriteLine("False || True : {0}", a(f) || b(t));
WriteLine("False || False: {0}", a(f) || b(f));
}
}
```
Output:
```a
b
True  && True : True
a
b
True  && False: False
a
False && True : False
a
False && False: False
a
True  || True : True
a
True  || False: True
a
b
False || True : True
a
b
False || False: False
```

## NetRexx

Translation of: ooRexx

Like OoRexx, NetRexx allows a list of expressions in the condition part of If and When. Evaluation ends with the first of these expressions resulting in boolean true.

```/* NetRexx */
options replace format comments java crossref symbols nobinary

Parse Version v
Say 'Version='v

If a()  | b() Then Say 'a and b are true'
If \a() | b() Then Say 'Surprise'
Else               Say 'ok'

If a(),  b() Then Say 'a is true'
If \a(), b() Then Say 'Surprise'
Else              Say 'ok: \\a() is false'

Select
When \a(), b() Then Say 'Surprise'
Otherwise           Say 'ok: \\a() is false (Select)'
End
Return

method a private static binary returns boolean
state = Boolean.TRUE.booleanValue()
Say '--a returns' state
Return state

method b private static binary returns boolean
state = Boolean.TRUE.booleanValue()
Say '--b returns' state
Return state
```
Output:
```Version=NetRexx 3.03 11 Jun 2014
--a returns 1
--b returns 1
a and b are true
--a returns 1
--b returns 1
Surprise
--a returns 1
a is true
--a returns 1
--b returns 1
Surprise
--a returns 1
--b returns 1
Surprise

```

## Nim

Nim produces code which uses short-circuit evaluation.

```proc a(x): bool =
echo "a called"
result = x

proc b(x): bool =
echo "b called"
result = x

let x = a(false) and b(true) # echoes "a called"
let y = a(true) or b(true)   # echoes "a called"
```

## Objeck

In Objeck the Boolean operators `&` and `|` short circuit.

```class ShortCircuit {
function : a(a : Bool) ~ Bool {
"a"->PrintLine();
return a;
}

function : b(b : Bool) ~ Bool {
"b"->PrintLine();
return b;
}

function : Main(args : String[]) ~ Nil {
result := a(false) & b(false);
"F and F = {\$result}"->PrintLine();
result := a(false) | b(false);
"F or F = {\$result}"->PrintLine();

result := a(false) & b(true);
"F and T = {\$result}"->PrintLine();
result := a(false) | b(true);
"F or T = {\$result}"->PrintLine();

result := a(true) & b(false);
"T and F = {\$result}"->PrintLine();
result := a(true) | b(false);
"T or F = {\$result}"->PrintLine();

result := a(true) & b(true);
"T and T = {\$result}"->PrintLine();
result := a(true) | b(true);
"T or T = {\$result}"->PrintLine();
}
}```

## OCaml

```let a r = print_endline " > function a called"; r
let b r = print_endline " > function b called"; r

let test_and b1 b2 =
Printf.printf "# testing (%b && %b)\n" b1 b2;
ignore (a b1 && b b2)

let test_or b1 b2 =
Printf.printf "# testing (%b || %b)\n" b1 b2;
ignore (a b1 || b b2)

let test_this test =
test true true;
test true false;
test false true;
test false false;
;;

let () =
print_endline "==== Testing and ====";
test_this test_and;
print_endline "==== Testing or ====";
test_this test_or;
;;
```
Output:
```==== Testing and ====
# testing (true && true)
> function a called
> function b called
# testing (true && false)
> function a called
> function b called
# testing (false && true)
> function a called
# testing (false && false)
> function a called
==== Testing or ====
# testing (true || true)
> function a called
# testing (true || false)
> function a called
# testing (false || true)
> function a called
> function b called
# testing (false || false)
> function a called
> function b called
```

## Ol

```(define (a x)
(print "   (a) => " x)
x)

(define (b x)
(print "   (b) => " x)
x)

; and
(print " -- and -- ")
(for-each (lambda (x y)
(print "let's evaluate '(a as " x ") and (b as " y ")':")
(let ((out (and (a x) (b y))))
(print "   result is " out)))
'(#t #t #f #f)
'(#t #f #t #f))

; or
(print " -- or -- ")
(for-each (lambda (x y)
(print "let's evaluate '(a as " x ") or (b as " y ")':")
(let ((out (or (a x) (b y))))
(print "   result is " out)))
'(#t #t #f #f)
'(#t #f #t #f))
```
Output:
``` -- and --
let's evaluate '(a as #true) and (b as #true)':
(a) => #true
(b) => #true
result is #true
let's evaluate '(a as #true) and (b as #false)':
(a) => #true
(b) => #false
result is #false
let's evaluate '(a as #false) and (b as #true)':
(a) => #false
result is #false
let's evaluate '(a as #false) and (b as #false)':
(a) => #false
result is #false
-- or --
let's evaluate '(a as #true) or (b as #true)':
(a) => #true
result is #true
let's evaluate '(a as #true) or (b as #false)':
(a) => #true
result is #true
let's evaluate '(a as #false) or (b as #true)':
(a) => #false
(b) => #true
result is #true
let's evaluate '(a as #false) or (b as #false)':
(a) => #false
(b) => #false
result is #false
```

## ooRexx

ooRexx allows a list of expressions in the condition part of If and When. Evaluation ends with the first of these expressions resulting in .false (or 0).

```Parse Version v
Say 'Version='v
If a() | b() Then Say 'a and b are true'
If \a() | b() Then Say  'Surprise'
Else Say 'ok'
If a(), b() Then Say 'a is true'
If \a(), b() Then Say  'Surprise'
Else Say 'ok: \a() is false'
Select
When \a(), b() Then Say 'Surprise'
Otherwise           Say 'ok: \a() is false (Select)'
End
Exit
a: Say 'a returns .true'; Return .true
b: Say 'b returns 1'; Return 1
```
Output:
```Version=REXX-ooRexx_4.2.0(MT)_32-bit 6.04 22 Feb 2014
a returns .true
b returns 1
a and b are true
a returns .true
b returns 1
Surprise
a returns .true
b returns 1
a is true
a returns .true
ok: \a() is false
a returns .true
ok: \a() is false (Select)
```

## Oz

Oz' `andthen` and `orelse` operators are short-circuiting, as indicated by their name. The library functions `Bool.and` and `Bool.or` are not short-circuiting, on the other hand.

```declare
in
end

in
end
in
for I in [false true] do
for J in [false true] do
X Y
in
{System.showInfo "\nCalculating: X = {A I} andthen {B J}"}
X = {A I} andthen {B J}
{System.showInfo "Calculating: Y = {A I} orelse {B J}"}
Y = {A I} orelse {B J}
end
end```
Output:
```Calculating: X = {A I} andthen {B J}
% Called function {A false} -> false
Calculating: Y = {A I} orelse {B J}
% Called function {A false} -> false
% Called function {B false} -> false

Calculating: X = {A I} andthen {B J}
% Called function {A false} -> false
Calculating: Y = {A I} orelse {B J}
% Called function {A false} -> false
% Called function {B true} -> true

Calculating: X = {A I} andthen {B J}
% Called function {A true} -> true
% Called function {B false} -> false
Calculating: Y = {A I} orelse {B J}
% Called function {A true} -> true

Calculating: X = {A I} andthen {B J}
% Called function {A true} -> true
% Called function {B true} -> true
Calculating: Y = {A I} orelse {B J}
% Called function {A true} -> true```

## PARI/GP

Note that `|` and `&` are deprecated versions of the GP short-circuit operators.

```a(n)={
print(a"("n")");
a
};
b(n)={
print("b("n")");
n
};
or(A,B)={
a(A) || b(B)
};
and(A,B)={
a(A) && b(B)
};```

## Pascal

### Standard Pascal

Standard Pascal doesn't have native short-circuit evaluation.

```program shortcircuit(output);

function a(value: boolean): boolean;
begin
writeln('a(', value, ')');
a := value
end;

function b(value:boolean): boolean;
begin
writeln('b(', value, ')');
b := value
end;

procedure scandor(value1, value2: boolean);
var
result: boolean;
begin
{and}
if a(value1)
then
result := b(value2)
else
result := false;
writeln(value1, ' and ', value2, ' = ', result);

{or}
if a(value1)
then
result := true
else
result := b(value2)
writeln(value1, ' or ', value2, ' = ', result);
end;

begin
scandor(false, false);
scandor(false, true);
scandor(true, false);
scandor(true, true);
end.
```

### Turbo Pascal

Turbo Pascal allows short circuit evaluation with a compiler switch:

```program shortcircuit;

function a(value: boolean): boolean;
begin
writeln('a(', value, ')');
a := value;
end;

function b(value:boolean): boolean;
begin
writeln('b(', value, ')');
b := value;
end;

{\$B-} {enable short circuit evaluation}
procedure scandor(value1, value2: boolean);
var
result: boolean;
begin
result :=  a(value1) and b(value);
writeln(value1, ' and ', value2, ' = ', result);

result := a(value1) or b(value2);
writeln(value1, ' or ', value2, ' = ', result);
end;

begin
scandor(false, false);
scandor(false, true);
scandor(true, false);
scandor(true, true);
end.
```

### Extended Pascal

The extended Pascal standard introduces the operators `and_then` and `or_else` for short-circuit evaluation.

```program shortcircuit(output);

function a(value: boolean): boolean;
begin
writeln('a(', value, ')');
a := value
end;

function b(value:boolean): boolean;
begin
writeln('b(', value, ')');
b := value
end;

procedure scandor(value1, value2: boolean);
var
result: integer;
begin
result :=  a(value1) and_then b(value)
writeln(value1, ' and ', value2, ' = ', result);

result := a(value1) or_else b(value2);
writeln(value1, ' or ', value2, ' = ', result)
end;

begin
scandor(false, false);
scandor(false, true);
scandor(true, false);
scandor(true, true);
end.
```

Note: GNU Pascal allows `and then` and `or else` as alternatives to `and_then` and `or_else`.

## Perl

Perl uses short-circuit boolean evaluation.

```sub a { print 'A'; return \$_ }
sub b { print 'B'; return \$_ }

# Test-driver
sub test {
for my \$op ('&&','||') {
for (qw(1,1 1,0 0,1 0,0)) {
my (\$x,\$y) = /(.),(.)/;
print my \$str = "a(\$x) \$op b(\$y)", ': ';
eval \$str; print "\n"; } }
}

# Test and display
test();
```
Output:
```a(1) && b(1): AB
a(1) && b(0): AB
a(0) && b(1): A
a(0) && b(0): A
a(1) || b(1): A
a(1) || b(0): A
a(0) || b(1): AB
a(0) || b(0): AB```

## Phix

In Phix all expressions are short circuited

```with javascript_semantics
function a(integer i)
printf(1,"a ")
return i
end function

function b(integer i)
printf(1,"b ")
return i
end function

for z=0 to 1 do
for i=0 to 1 do
for j=0 to 1 do
if z then
printf(1,"a(%d) and b(%d) ",{i,j})
printf(1," => %d\n",a(i) and b(j))
else
printf(1,"a(%d) or b(%d) ",{i,j})
printf(1," => %d\n",a(i) or b(j))
end if
end for
end for
end for
```
Output:
```a(0) or b(0) a b  => 0
a(0) or b(1) a b  => 1
a(1) or b(0) a  => 1
a(1) or b(1) a  => 1
a(0) and b(0) a  => 0
a(0) and b(1) a  => 0
a(1) and b(0) a b  => 0
a(1) and b(1) a b  => 1
```

## PicoLisp

```(de a (F)
(msg 'a)
F )

(de b (F)
(msg 'b)
F )

(mapc
'((I J)
(for Op '(and or)
(println I Op J '-> (Op (a I) (b J))) ) )
'(NIL NIL T T)
'(NIL T NIL T) )```
Output:
```a
NIL and NIL -> NIL
a
b
NIL or NIL -> NIL
a
NIL and T -> NIL
a
b
NIL or T -> T
a
b
T and NIL -> NIL
a
T or NIL -> T
a
b
T and T -> T
a
T or T -> T```

## Pike

```int(0..1) a(int(0..1) i)
{
write(" a\n");
return i;
}

int(0..1) b(int(0..1) i)
{
write(" b\n");
return i;
}

foreach(({ ({ false, false }),  ({ false, true }), ({ true, true }), ({ true, false }) });; array(int) args)
{
write(" %d && %d\n", @args);
a(args) && b(args);

write(" %d || %d\n", @args);
a(args) || b(args);
}
```
Output:
``` 0 && 0
a
0 || 0
a
b
0 && 1
a
0 || 1
a
b
1 && 1
a
b
1 || 1
a
1 && 0
a
b
1 || 0
a
```

## PL/I

```short_circuit_evaluation:
procedure options (main);
declare (true initial ('1'b), false initial ('0'b) ) bit (1);
declare (i, j, x, y) bit (1);

a: procedure (bv) returns (bit(1));
declare bv bit(1);
put ('Procedure ' || procedurename() || ' called.');
return (bv);
end a;
b: procedure (bv) returns (bit(1));
declare bv bit(1);
put ('Procedure ' || procedurename() || ' called.');
return (bv);
end b;

do i = true, false;
do j = true, false;
put skip(2) list ('Evaluating x with <a> with ' || i || ' and <b> with ' || j);
put skip;
if a(i) then
x = b(j);
else
x = false;
put skip data (x);
put skip(2) list ('Evaluating y with <a> with ' || i || ' and <b> with ' || j);
put skip;
if a(i) then
y = true;
else
y = b(j);
put skip data (y);
end;
end;
end short_circuit_evaluation;```
Results:
```Evaluating x with <a> with 1 and <b> with 1
Procedure A called.     Procedure B called.
X='1'B;

Evaluating y with <a> with 1 and <b> with 1
Procedure A called.
Y='1'B;

Evaluating x with <a> with 1 and <b> with 0
Procedure A called.     Procedure B called.
X='0'B;

Evaluating y with <a> with 1 and <b> with 0
Procedure A called.
Y='1'B;

Evaluating x with <a> with 0 and <b> with 1
Procedure A called.
X='0'B;

Evaluating y with <a> with 0 and <b> with 1
Procedure A called.     Procedure B called.
Y='1'B;

Evaluating x with <a> with 0 and <b> with 0
Procedure A called.
X='0'B;

Evaluating y with <a> with 0 and <b> with 0
Procedure A called.     Procedure B called.
Y='0'B;
```

## PowerShell

PowerShell handles this natively.

```#  Simulated fast function
function a ( [boolean]\$J ) { return \$J }

#  Simulated slow function
function b ( [boolean]\$J ) { Sleep -Seconds 2; return \$J }

#  These all short-circuit and do not evaluate the right hand function
( a \$True  ) -or  ( b \$False )
( a \$True  ) -or  ( b \$True  )
( a \$False ) -and ( b \$False )
( a \$False ) -and ( b \$True  )

#  Measure of execution time
Measure-Command {
( a \$True  ) -or  ( b \$False )
( a \$True  ) -or  ( b \$True  )
( a \$False ) -and ( b \$False )
( a \$False ) -and ( b \$True  )
} | Select TotalMilliseconds

#  These all appropriately do evaluate the right hand function
( a \$False ) -or  ( b \$False )
( a \$False ) -or  ( b \$True  )
( a \$True  ) -and ( b \$False )
( a \$True  ) -and ( b \$True  )

#  Measure of execution time
Measure-Command {
( a \$False ) -or  ( b \$False )
( a \$False ) -or  ( b \$True  )
( a \$True  ) -and ( b \$False )
( a \$True  ) -and ( b \$True  )
} | Select TotalMilliseconds
```
Output:
```True
True
False
False

TotalMilliseconds
-----------------
15.653
False
True
False
True
8012.9405```

## Prolog

Prolog has not functions but predicats succeed of fail. Tested with SWI-Prolog. Should work with other dialects.

```short_circuit :-
(   a_or_b(true, true) -> writeln('==> true'); writeln('==> false')) , nl,
(   a_or_b(true, false)-> writeln('==>  true'); writeln('==> false')) , nl,
(   a_or_b(false, true)-> writeln('==> true'); writeln('==> false')) , nl,
(   a_or_b(false, false)-> writeln('==> true'); writeln('==> false')) , nl,
(   a_and_b(true, true)-> writeln('==> true'); writeln('==> false')) , nl,
(   a_and_b(true, false)-> writeln('==>  true'); writeln('==> false')) , nl,
(   a_and_b(false, true)-> writeln('==>  true'); writeln('==> false')) , nl,
(   a_and_b(false, false)-> writeln('==>  true'); writeln('==> false')) .

a_and_b(X, Y) :-
format('a(~w) and b(~w)~n', [X, Y]),
(   a(X), b(Y)).

a_or_b(X, Y) :-
format('a(~w) or b(~w)~n', [X, Y]),
(   a(X); b(Y)).

a(X) :-
format('a(~w)~n', [X]),
X.

b(X) :-
format('b(~w)~n', [X]),
X.
```
Output:
```?- short_circuit.
a(true) or b(true)
a(true)
==> true

a(true) or b(false)
a(true)
==> true

a(false) or b(true)
a(false)
b(true)
==> true

a(false) or b(false)
a(false)
b(false)
==> false

a(true) and b(true)
a(true)
b(true)
==> true

a(true) and b(false)
a(true)
b(false)
==> false

a(false) and b(true)
a(false)
==> false

a(false) and b(false)
a(false)
==> false

true.
```

## PureBasic

Logical And & Or operators will not evaluate their right-hand expression if the outcome can be determined from the value of the left-hand expression.

```Procedure a(arg)
PrintN("  # Called function a("+Str(arg)+")")
ProcedureReturn arg
EndProcedure

Procedure b(arg)
PrintN("  # Called function b("+Str(arg)+")")
ProcedureReturn arg
EndProcedure

OpenConsole()
For a=#False To #True
For b=#False To #True
PrintN(#CRLF\$+"Calculating: x = a("+Str(a)+") And b("+Str(b)+")")
x= a(a) And b(b)
PrintN("Calculating: x = a("+Str(a)+") Or b("+Str(b)+")")
y= a(a) Or b(b)
Next
Next
Input()
```
Output:
```Calculating: x = a(0) And b(0)
# Called function a(0)
Calculating: x = a(0) Or b(0)
# Called function a(0)
# Called function b(0)

Calculating: x = a(0) And b(1)
# Called function a(0)
Calculating: x = a(0) Or b(1)
# Called function a(0)
# Called function b(1)

Calculating: x = a(1) And b(0)
# Called function a(1)
# Called function b(0)
Calculating: x = a(1) Or b(0)
# Called function a(1)

Calculating: x = a(1) And b(1)
# Called function a(1)
# Called function b(1)
Calculating: x = a(1) Or b(1)
# Called function a(1)```

## Python

Pythons and and or binary, infix, boolean operators will not evaluate their right-hand expression if the outcome can be determined from the value of the left-hand expression.

```>>> def a(answer):

>>> for i in (False, True):
for j in (False, True):
print ("\nCalculating: x = a(i) and b(j)")
x = a(i) and b(j)
print ("Calculating: y = a(i) or  b(j)")
y = a(i) or  b(j)

Calculating: x = a(i) and b(j)
# Called function a(False) -> False
Calculating: y = a(i) or  b(j)
# Called function a(False) -> False
# Called function b(False) -> False

Calculating: x = a(i) and b(j)
# Called function a(False) -> False
Calculating: y = a(i) or  b(j)
# Called function a(False) -> False
# Called function b(True) -> True

Calculating: x = a(i) and b(j)
# Called function a(True) -> True
# Called function b(False) -> False
Calculating: y = a(i) or  b(j)
# Called function a(True) -> True

Calculating: x = a(i) and b(j)
# Called function a(True) -> True
# Called function b(True) -> True
Calculating: y = a(i) or  b(j)
# Called function a(True) -> True
```

Pythons if expression can also be used to the same ends (but probably should not):

```>>> for i in (False, True):
for j in (False, True):
print ("\nCalculating: x = a(i) and b(j) using x = b(j) if a(i) else False")
x = b(j) if a(i) else False
print ("Calculating: y = a(i) or  b(j) using y = b(j) if not a(i) else True")
y = b(j) if not a(i) else True

Calculating: x = a(i) and b(j) using x = b(j) if a(i) else False
# Called function a(False) -> False
Calculating: y = a(i) or  b(j) using y = b(j) if not a(i) else True
# Called function a(False) -> False
# Called function b(False) -> False

Calculating: x = a(i) and b(j) using x = b(j) if a(i) else False
# Called function a(False) -> False
Calculating: y = a(i) or  b(j) using y = b(j) if not a(i) else True
# Called function a(False) -> False
# Called function b(True) -> True

Calculating: x = a(i) and b(j) using x = b(j) if a(i) else False
# Called function a(True) -> True
# Called function b(False) -> False
Calculating: y = a(i) or  b(j) using y = b(j) if not a(i) else True
# Called function a(True) -> True

Calculating: x = a(i) and b(j) using x = b(j) if a(i) else False
# Called function a(True) -> True
# Called function b(True) -> True
Calculating: y = a(i) or  b(j) using y = b(j) if not a(i) else True
# Called function a(True) -> True
```

## Quackery

Quackery does not include short-circuit evaluation, but it can be added by use of meta-control flow words (words wrapped in reverse brackets such as `]done[`.) For details see: The Book of Quackery

The short-circuit evaluation words `SC-and` and `SC-or` defined here are used thus: `[ a 1 SC-and b ]` and `[ a 1 SC-or b ]`. These presumes that the arguments to `a` and `b` are on the stack in the order `j i`.

The `1` preceding the word is required to indicate the number of arguments that `b` would consume from the stack if it were evaluated.

Extending the task to three functions, the third, `c` also consuming one argument `k` and returning a boolean, present on the stack underneath `j` and `i` would lead to the code `[ a 2 SC-and b 1 SC-and c ]` and `[ a 2 SC-or b 1 SC-or c ]`, where the `2` is the sum of the number of arguments consumed by `b` and `c`, and the `1` is the number of arguments consumed by `c`.

`SC-and` and `SC-or` can both be used in a single short-circuit evaluation nest with three or more functions. Evaluation is strictly left to right.

Quackery does not have variables, so no assignment is shown here. Words (functions) leave their results on the stack. If desired results can be moved to ancillary stacks, which include standing-in for variables amongst their functionality.

```  [ say "evaluating "
]this[ echo cr ]       is ident    (     -->   )

[ iff say "true"
else say "false" ]     is echobool (   b -->   )

[ swap iff drop done
times drop
false ]done[ ]         is SC-and   ( b n -->   )

[ swap not iff drop done
times drop
true ]done[ ]          is SC-or    ( b n -->   )

[ ident
2 times not ]          is a        (   b --> b )

[ ident
4 times not ]          is b        (   b --> b )

[ say "i = "
dup echobool
say " AND j = "
dup echobool
cr
[ a 1 SC-and b ]
say "result is "
echobool cr cr ]       is AND-demo (     -->   )

[ say "i = "
dup echobool
say " OR j = "
dup echobool
cr
[ a 1 SC-or b ]
say "result is "
echobool
cr cr ]                is OR-demo  (     -->   )

true  true  AND-demo
true  false AND-demo
false true  AND-demo
false false AND-demo
cr
true  true  OR-demo
true  false OR-demo
false true  OR-demo
false false OR-demo```
Output:
```i = true AND j = true
evaluating a
evaluating b
result is true

i = false AND j = false
evaluating a
result is false

i = true AND j = true
evaluating a
evaluating b
result is false

i = false AND j = false
evaluating a
result is false

i = true OR j = true
evaluating a
result is true

i = false OR j = false
evaluating a
evaluating b
result is true

i = true OR j = true
evaluating a
result is true

i = false OR j = false
evaluating a
evaluating b
result is false```

## R

The builtins && and || will short circuit:

Translation of: Perl
```a <- function(x) {cat("a called\n"); x}
b <- function(x) {cat("b called\n"); x}

tests <- expand.grid(op=list(quote(`||`), quote(`&&`)), x=c(1,0), y=c(1,0))

invisible(apply(tests, 1, function(row) {
call <- substitute(op(a(x),b(y)), row)
cat(deparse(call), "->", eval(call), "\n\n")
}))
```
Output:
```a called
a(1) || b(1) -> TRUE

a called
b called
a(1) && b(1) -> TRUE

a called
b called
a(0) || b(1) -> TRUE

a called
a(0) && b(1) -> FALSE

a called
a(1) || b(0) -> TRUE

a called
b called
a(1) && b(0) -> FALSE

a called
b called
a(0) || b(0) -> FALSE

a called
a(0) && b(0) -> FALSE
```

Because R waits until function arguments are needed before evaluating them, user-defined functions can also short circuit.

```switchop <- function(s, x, y) {
if(s < 0) x || y
else if (s > 0) x && y
else xor(x, y)
}
```
Output:
```> switchop(-1, a(1), b(1))
a called
 TRUE
> switchop(1, a(1), b(1))
a called
b called
 TRUE
> switchop(1, a(0), b(1))
a called
 FALSE
> switchop(0, a(0), b(1))
a called
b called
 TRUE
```

## Racket

```#lang racket
(define (a x)
(display (~a "a:" x " "))
x)

(define (b x)
(display (~a "b:" x " "))
x)

(for* ([x '(#t #f)]
[y '(#t #f)])
(displayln `(and (a ,x) (b ,y)))
(and (a x) (b y))
(newline)

(displayln `(or (a ,x) (b ,y)))
(or (a x) (b y))
(newline))
```
Output:
```(and (a #t) (b #t))
a:#t b:#t
(or (a #t) (b #t))
a:#t
(and (a #t) (b #f))
a:#t b:#f
(or (a #t) (b #f))
a:#t
(and (a #f) (b #t))
a:#f
(or (a #f) (b #t))
a:#f b:#t
(and (a #f) (b #f))
a:#f
(or (a #f) (b #f))
a:#f b:#f
```

## Raku

(formerly Perl 6)

Works with: rakudo version 2018.03
```use MONKEY-SEE-NO-EVAL;

sub a (\$p) { print 'a'; \$p }
sub b (\$p) { print 'b'; \$p }

for 1, 0 X 1, 0 -> (\$p, \$q) {
for '&&', '||' -> \$op {
my \$s = "a(\$p) \$op b(\$q)";
print "\$s: ";
EVAL \$s;
print "\n";
}
}
```
Output:
```a(1) && b(1): ab
a(1) || b(1): a
a(1) && b(0): ab
a(1) || b(0): a
a(0) && b(1): a
a(0) || b(1): ab
a(0) && b(0): a
a(0) || b(0): ab```

## REXX

The REXX language doesn't have native short circuits   (it's specifically mentioned in the language specifications that
short-circuiting is not supported).

```/*REXX programs demonstrates short─circuit evaluation testing  (in an   IF   statement).*/
parse arg LO HI .                                /*obtain optional arguments from the CL*/
if LO=='' | LO==","  then LO= -2                 /*Not specified?  Then use the default.*/
if HI=='' | HI==","  then HI=  2                 /* "      "         "   "   "     "    */

do j=LO  to HI                          /*process from the  low  to  the  high.*/
x=a(j)  &  b(j)                         /*compute  function A  and  function B */
y=a(j)  |  b(j)                         /*   "         "    "   or      "    " */
if \y  then y=b(j)                      /*   "         "    B   (for negation).*/
say  copies('═', 30)        '  x=' || x            '  y='y                '  j='j
say
end   /*j*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
a: say '      A  entered with:'  arg(1);    return abs( arg(1) // 2)   /*1=odd, 0=even  */
b: say '      B  entered with:'  arg(1);    return arg(1) < 0          /*1=neg, 0=if not*/
```
output   when using the default inputs:
```      B  entered with: -2
A  entered with: -2
B  entered with: -2
A  entered with: -2
══════════════════════════════   x=0   y=1   j=-2

B  entered with: -1
A  entered with: -1
B  entered with: -1
A  entered with: -1
══════════════════════════════   x=1   y=1   j=-1

B  entered with: 0
A  entered with: 0
B  entered with: 0
A  entered with: 0
B  entered with: 0
══════════════════════════════   x=0   y=0   j=0

B  entered with: 1
A  entered with: 1
B  entered with: 1
A  entered with: 1
══════════════════════════════   x=0   y=1   j=1

B  entered with: 2
A  entered with: 2
B  entered with: 2
A  entered with: 2
B  entered with: 2
══════════════════════════════   x=0   y=0   j=2
```

## Ring

```# Project : Short-circuit evaluation

for k = 1 to 2
word = ["AND","OR"]
see "========= " + word[k] + " ==============" + nl
for i = 0 to 1
for j = 0 to 1
see "a(" + i + ") " + word[k] +" b(" + j + ")" + nl
res =a(i)
if word[k] = "AND" and res != 0
res = b(j)
ok
if word[k] = "OR"  and res = 0
res = b(j)
ok
next
next
next

func a(t)
see char(9) + "calls func a" + nl
a = t
return a

func b(t)
see char(9) + "calls func b" + nl
b = t
return b```

Output:

```========= AND ==============
a(0) AND b(0)
calls func a
a(0) AND b(1)
calls func a
a(1) AND b(0)
calls func a
calls func b
a(1) AND b(1)
calls func a
calls func b
========= OR ==============
a(0) OR b(0)
calls func a
calls func b
a(0) OR b(1)
calls func a
calls func b
a(1) OR b(0)
calls func a
a(1) OR b(1)
calls func a
```

## Ruby

Binary operators are short-circuiting. Demonstration code:

```def a( bool )
puts "a( #{bool} ) called"
bool
end

def b( bool )
puts "b( #{bool} ) called"
bool
end

[true, false].each do |a_val|
[true, false].each do |b_val|
puts "a( #{a_val} ) and b( #{b_val} ) is #{a( a_val ) and b( b_val )}."
puts
puts "a( #{a_val} ) or b( #{b_val} ) is #{a( a_val)  or b( b_val )}."
puts
end
end
```
Output:
```a( true ) called
b( true ) called
a( true ) and b( true ) is true.

a( true ) called
a( true ) or b( true ) is true.

a( true ) called
b( false ) called
a( true ) and b( false ) is false.

a( true ) called
a( true ) or b( false ) is true.

a( false ) called
a( false ) and b( true ) is false.

a( false ) called
b( true ) called
a( false ) or b( true ) is true.

a( false ) called
a( false ) and b( false ) is false.

a( false ) called
b( false ) called
a( false ) or b( false ) is false.
```

## Run BASIC

```for k = 1 to 2
ao\$ = word\$("AND,OR",k,",")
print "========= ";ao\$;" =============="
for i = 0 to 1
for j = 0 to 1
print "a("; i; ") ";ao\$;" b("; j; ")"
res =a(i)    'call always
'print res;"<===="
if ao\$ = "AND" and res <> 0 then res = b(j)
if ao\$ = "OR"  and res =  0 then res = b(j)
next
next
next k
end

function a( t)
print chr\$(9);"calls func a"
a = t
end function

function b( t)
print chr\$(9);"calls func b"
b = t
end function```
```========= AND ==============
a(0) AND b(0)
calls func a
a(0) AND b(1)
calls func a
a(1) AND b(0)
calls func a
calls func b
a(1) AND b(1)
calls func a
calls func b
========= OR ==============
a(0) OR b(0)
calls func a
calls func b
a(0) OR b(1)
calls func a
calls func b
a(1) OR b(0)
calls func a
a(1) OR b(1)
calls func a```

## Rust

```fn a(foo: bool) -> bool {
println!("a");
foo
}

fn b(foo: bool) -> bool {
println!("b");
foo
}

fn main() {
for i in vec![true, false] {
for j in vec![true, false] {
println!("{} and {} == {}", i, j, a(i) && b(j));
println!("{} or {} == {}", i, j, a(i) || b(j));
println!();
}
}
}
```
Output:
```a
b
true and true == true
a
true or true == true

a
b
true and false == false
a
true or false == true

a
false and true == false
a
b
false or true == true

a
false and false == false
a
b
false or false == false
```

## Sather

```class MAIN is
a(v:BOOL):BOOL is
#OUT + "executing a\n";
return v;
end;
b(v:BOOL):BOOL is
#OUT + "executing b\n";
return v;
end;

main is
x:BOOL;

x := a(false) and b(true);
#OUT + "F and T = " + x + "\n\n";

x := a(true) or b(true);
#OUT + "T or T = " + x + "\n\n";

x := a(true) and b(false);
#OUT + "T and T = " + x + "\n\n";

x := a(false) or b(true);
#OUT + "F or T = " + x + "\n\n";
end;
end;```

## Scala

```object ShortCircuit {
def a(b:Boolean)={print("Called A=%5b".format(b));b}
def b(b:Boolean)={print(" -> B=%5b".format(b));b}

def main(args: Array[String]): Unit = {
val boolVals=List(false,true)
for(aa<-boolVals; bb<-boolVals){
print("\nTesting A=%5b AND B=%5b   -> ".format(aa, bb))
a(aa) && b(bb)
}
for(aa<-boolVals; bb<-boolVals){
print("\nTesting A=%5b  OR B=%5b   -> ".format(aa, bb))
a(aa) || b(bb)
}
println
}
}
```
Output:
```Testing A=false AND B=false   -> Called A=false
Testing A=false AND B= true   -> Called A=false
Testing A= true AND B=false   -> Called A= true -> B=false
Testing A= true AND B= true   -> Called A= true -> B= true
Testing A=false  OR B=false   -> Called A=false -> B=false
Testing A=false  OR B= true   -> Called A=false -> B= true
Testing A= true  OR B=false   -> Called A= true
Testing A= true  OR B= true   -> Called A= true```

## Scheme

```>(define (a x)
(display "a\n")
x)
>(define (b x)
(display "b\n")
x)
>(for-each (lambda (i)
(for-each (lambda (j)
(display i) (display " and ") (display j) (newline)
(and (a i) (b j))
(display i) (display " or ") (display j) (newline)
(or (a i) (b j))
) '(#t #f))
) '(#t #f))
#t and #t
a
b
#t or #t
a
#t and #f
a
b
#t or #f
a
#f and #t
a
#f or #t
a
b
#f and #f
a
#f or #f
a
b
```

## Seed7

```\$ include "seed7_05.s7i";

const func boolean: a (in boolean: aBool) is func
result
var boolean: result is FALSE;
begin
writeln("a");
result := aBool;
end func;

const func boolean: b (in boolean: aBool) is func
result
var boolean: result is FALSE;
begin
writeln("b");
result := aBool;
end func;

const proc: test (in boolean: param1, in boolean: param2) is func
begin
writeln(param1 <& " and " <& param2 <& " = " <& a(param1) and b(param2));
writeln(param1 <& " or " <& param2 <& " = " <& a(param1) or b(param2));
end func;

const proc: main is func
begin
test(FALSE, FALSE);
test(FALSE, TRUE);
test(TRUE, FALSE);
test(TRUE, TRUE);
end func;```
Output:
```a
FALSE and FALSE = FALSE
a
b
FALSE or FALSE = FALSE
a
FALSE and TRUE = FALSE
a
b
FALSE or TRUE = TRUE
a
b
TRUE and FALSE = FALSE
a
TRUE or FALSE = TRUE
a
b
TRUE and TRUE = TRUE
a
TRUE or TRUE = TRUE
```

## Sidef

```func a(bool) { print 'A'; return bool }
func b(bool) { print 'B'; return bool }

# Test-driver
func test() {
for op in ['&&', '||'] {
for x,y in [[1,1],[1,0],[0,1],[0,0]] {
"a(%s) %s b(%s): ".printf(x, op, y)
eval "a(Bool(x)) #{op} b(Bool(y))"
print "\n"
}
}
}

# Test and display
test()
```
Output:
```a(1) && b(1): AB
a(1) && b(0): AB
a(0) && b(1): A
a(0) && b(0): A
a(1) || b(1): A
a(1) || b(0): A
a(0) || b(1): AB
a(0) || b(0): AB```

## Simula

```BEGIN

BOOLEAN PROCEDURE A(BOOL); BOOLEAN BOOL;
BEGIN OUTCHAR('A'); A := BOOL;
END A;

BOOLEAN PROCEDURE B(BOOL); BOOLEAN BOOL;
BEGIN OUTCHAR('B'); B := BOOL;
END B;

PROCEDURE OUTBOOL(BOOL); BOOLEAN BOOL;
OUTCHAR(IF BOOL THEN 'T' ELSE 'F');

PROCEDURE TEST;
BEGIN
PROCEDURE ANDTEST;
BEGIN
BOOLEAN X, Y, Z;
FOR X := TRUE, FALSE DO
FOR Y := TRUE, FALSE DO
BEGIN
OUTTEXT("A("); OUTBOOL(X);
OUTTEXT(") AND ");
OUTTEXT("B("); OUTBOOL(Y);
OUTTEXT("): ");
Z := A(X) AND THEN B(Y);
OUTIMAGE;
END;
END ANDTEST;

PROCEDURE ORTEST;
BEGIN
BOOLEAN X, Y, Z;
FOR X := TRUE, FALSE DO
FOR Y := TRUE, FALSE DO
BEGIN
OUTTEXT("A("); OUTBOOL(X);
OUTTEXT(") OR ");
OUTTEXT("B("); OUTBOOL(Y);
OUTTEXT("): ");
Z := A(X) OR ELSE B(Y);
OUTIMAGE;
END;
END ORTEST;

ANDTEST;
ORTEST;

END TEST;

TEST;
END.```
Output:
```A(T) AND B(T): AB
A(T) AND B(F): AB
A(F) AND B(T): A
A(F) AND B(F): A
A(T) OR B(T): A
A(T) OR B(F): A
A(F) OR B(T): AB
A(F) OR B(F): AB
```

## Smalltalk

Works with: GNU Smalltalk

The `and:` `or:` selectors are shortcircuit selectors but in order to avoid evaluation of the second operand, it must be a block: `a and: [ code ]` will evaluate the code only if a is true. On the other hand, `a and: b`, where b is an expression (not a block), behaves like the non-shortcircuit and (&). (Same speech for or |)

```Smalltalk at: #a put: nil.
Smalltalk at: #b put: nil.

a := [:x| 'executing a' displayNl. x].
b := [:x| 'executing b' displayNl. x].

('false and false = %1' %
{ (a value: false) and: [ b value: false ] })
displayNl.

('true or false = %1' %
{ (a value: true) or: [ b value: false ] })
displayNl.

('false or true = %1' %
{ (a value: false) or: [ b value: true ] })
displayNl.

('true and false = %1' %
{ (a value: true) and: [ b value: false ] })
displayNl.
```

## SNOBOL4

Because of its unique success/failure model of flow control, Snobol does not use standard boolean operators or assignment. However, in &fullscan mode Snobol exhibits short-circuit boolean behavior in pattern matches, with concatenation " " functioning as logical AND, and alternation " | " as logical OR.

The test statements below use a pattern constructed from the functions a( ) and b( ) and match it to the null string with deferred evaluation. This idiom allows the functions to self-report the expected short-circuit patterns.

```        define('a(val)') :(a_end)
a       out = 'A '
eq(val,1) :s(return)f(freturn)
a_end

define('b(val)') :(b_end)
b       out = 'B '
eq(val,1) :s(return)f(freturn)
b_end

*       # Test and display
&fullscan = 1
output(.out,1,'-[-r1]') ;* Macro Spitbol
*       output(.out,1,'B','-')  ;* CSnobol
define('nl()'):(nlx);nl output = :(return);nlx

out = 'T and T: '; null ? *a(1) *b(1); nl()
out = 'T and F: '; null ? *a(1) *b(0); nl()
out = 'F and T: '; null ? *a(0) *b(1); nl()
out = 'F and F: '; null ? *a(0) *b(0); nl()
output =
out = 'T or T: '; null ? *a(1) | *b(1); nl()
out = 'T or F: '; null ? *a(1) | *b(0); nl()
out = 'F or T: '; null ? *a(0) | *b(1); nl()
out = 'F or F: '; null ? *a(0) | *b(0); nl()
end```
Output:
```T and T: A B
T and F: A B
F and T: A
F and F: A

T or T: A
T or F: A
F or T: A B
F or F: A B```

## Standard ML

Translation of: OCaml
```fun a r = ( print " > function a called\n"; r )
fun b r = ( print " > function b called\n"; r )

fun test_and b1 b2 = (
print ("# testing (" ^ Bool.toString b1 ^ " andalso " ^ Bool.toString b2 ^ ")\n");
ignore (a b1 andalso b b2) )

fun test_or b1 b2 = (
print ("# testing (" ^ Bool.toString b1 ^ " orelse " ^ Bool.toString b2 ^ ")\n");
ignore (a b1 orelse b b2) )

fun test_this test = (
test true true;
test true false;
test false true;
test false false )
;

print "==== Testing and ====\n";
test_this test_and;
print "==== Testing or ====\n";
test_this test_or;
```
Output:
```==== Testing and ====
# testing (true andalso true)
> function a called
> function b called
# testing (true andalso false)
> function a called
> function b called
# testing (false andalso true)
> function a called
# testing (false andalso false)
> function a called
==== Testing or ====
# testing (true orelse true)
> function a called
# testing (true orelse false)
> function a called
# testing (false orelse true)
> function a called
> function b called
# testing (false orelse false)
> function a called
> function b called
```

## Stata

Stata always evaluates both arguments of operators & and |. Here is a solution with if statements.

```function a(x) {
printf(" a")
return(x)
}

function b(x) {
printf(" b")
return(x)
}

function call(i, j) {
printf("and:")
x = a(i)
if (x) {
x = b(j)
}
printf("\nor:")
y = a(i)
if (!y) {
y = b(j)
}
printf("\n")
return((x,y))
}
```

Example

```: call(0,1)
and: a
or: a b
1   2
+---------+
1 |  0   1  |
+---------+

: call(1,1)
and: a b
or: a
1   2
+---------+
1 |  1   1  |
+---------+
```

## Swift

Short circuit operators are && and ||.

```func a(v: Bool) -> Bool {
print("a")
return v
}

func b(v: Bool) -> Bool {
print("b")
return v
}

func test(i: Bool, j: Bool) {
println("Testing a(\(i)) && b(\(j))")
print("Trace:  ")
println("\nResult: \(a(i) && b(j))")

println("Testing a(\(i)) || b(\(j))")
print("Trace:  ")
println("\nResult: \(a(i) || b(j))")

println()
}

test(false, false)
test(false, true)
test(true, false)
test(true, true)
```
Output:
```Testing a(false) && b(false)
Trace:  a
Result: false
Testing a(false) || b(false)
Trace:  ab
Result: false

Testing a(false) && b(true)
Trace:  a
Result: false
Testing a(false) || b(true)
Trace:  ab
Result: true

Testing a(true) && b(false)
Trace:  ab
Result: false
Testing a(true) || b(false)
Trace:  a
Result: true

Testing a(true) && b(true)
Trace:  ab
Result: true
Testing a(true) || b(true)
Trace:  a
Result: true
```

## Tcl

The `&&` and `||` in the `expr` command support short-circuit evaluation. It is recommended that you always put expressions in braces so that and command or variable substitutions are applied at the right time rather than before the expression is evaluated at all. (Indeed, it is recommended that you do that anyway as unbraced expressions cannot be efficiently compiled.)

```package require Tcl 8.5
proc tcl::mathfunc::a boolean {
puts "a(\$boolean) called"
return \$boolean
}
proc tcl::mathfunc::b boolean {
puts "b(\$boolean) called"
return \$boolean
}

foreach i {false true} {
foreach j {false true} {
set x [expr {a(\$i) && b(\$j)}]
puts "x = a(\$i) && b(\$j) = \$x"
set y [expr {a(\$i) || b(\$j)}]
puts "y = a(\$i) || b(\$j) = \$y"
puts ""; # Blank line for clarity
}
}
```
Output:
Note that booleans may be written out words or numeric
```a(false) called
x = a(false) && b(false) = 0
a(false) called
b(false) called
y = a(false) || b(false) = 0

a(false) called
x = a(false) && b(true) = 0
a(false) called
b(true) called
y = a(false) || b(true) = 1

a(true) called
b(false) called
x = a(true) && b(false) = 0
a(true) called
y = a(true) || b(false) = 1

a(true) called
b(true) called
x = a(true) && b(true) = 1
a(true) called
y = a(true) || b(true) = 1

```

## TXR

```@(define a (x out))
@  (output)
a (@x) called
@  (end)
@  (bind out x)
@(end)
@(define b (x out))
@  (output)
b (@x) called
@  (end)
@  (bind out x)
@(end)
@(define short_circuit_demo (i j))
@  (output)
a(@i) and b(@j):
@  (end)
@  (maybe)
@    (a i "1")
@    (b j "1")
@  (end)
@  (output)
a(@i) or b(@j):
@  (end)
@  (cases)
@    (a i "1")
@  (or)
@    (b j "1")
@  (or)
@    (accept)
@  (end)
@(end)
@(short_circuit_demo "0" "0")
@(short_circuit_demo "0" "1")
@(short_circuit_demo "1" "0")
@(short_circuit_demo "1" "1")```
Run:
```\$ txr short-circuit-bool.txr
a(0) and b(0):
a (0) called
a(0) or b(0):
a (0) called
b (0) called
a(0) and b(1):
a (0) called
a(0) or b(1):
a (0) called
b (1) called
a(1) and b(0):
a (1) called
b (0) called
a(1) or b(0):
a (1) called
a(1) and b(1):
a (1) called
b (1) called
a(1) or b(1):
a (1) called```

The `a` and `b` functions are defined such that the second parameter is intended to be an unbound variable. When the function binds `out`, that value propagates back to the unbound variable at the call site. But the way calls works in this language allows us to specify a value instead such as `"1"`. So now the directive `@(bind out x)` performs unification instead: if `x` doesn't match `"1"`, the function fails, otherwise it succeeds.

So simply by placing two calls consecutively, we get a short circuting conjunction. The second will not execute if the first one fails.

Short-circuiting disjunction is provided by `@(cases)`.

The `@(maybe)` construct stops failure from propagating from the enclosed subquery. The `@(accept)` directive will bail out of the closest enclosing anonymous block (the function body) with a success. It prevents the `@(cases)` from failing the function if neither case is successful.

## UNIX Shell

The && and || operators use the exit status of each command. The true and false commands convert a string to an exit status; our code && x=true || x=false converts an exit status to a string.

Works with: Bourne Shell
```a() {
echo "Called a \$1"
"\$1"
}

b() {
echo "Called b \$1"
"\$1"
}

for i in false true; do
for j in false true; do
a \$i && b \$j && x=true || x=false
echo "  \$i && \$j is \$x"

a \$i || b \$j && y=true || y=false
echo "  \$i || \$j is \$y"
done
done
```

The output reveals that && and || have short-circuit evaluation.

```Called a false
false && false is false
Called a false
Called b false
false || false is false
Called a false
false && true is false
Called a false
Called b true
false || true is true
Called a true
Called b false
true && false is false
Called a true
true || false is true
Called a true
Called b true
true && true is true
Called a true
true || true is true```

### C Shell

Between commands, && and || have short-circuit evaluation. (The aliases for a and b must expand to a single command; these aliases expand to an eval command.)

```alias a eval \''echo "Called a \!:1"; "\!:1"'\'
alias b eval \''echo "Called b \!:1"; "\!:1"'\'

foreach i (false true)
foreach j (false true)
a \$i && b \$j && set x=true || set x=false
echo "  \$i && \$j is \$x"

a \$i || b \$j && set x=true || set x=false
echo "  \$i || \$j is \$x"
end
end
```

Inside expressions, && and || can short circuit some commands, but cannot prevent substitutions.

```# Succeeds, only prints "ok".
if ( 1 || { echo This command never runs. } ) echo ok

# Fails, aborts shell with "bad: Undefined variable".
if ( 1 || \$bad ) echo ok

# Prints "error", then "ok".
if ( 1 || `echo error >/dev/stderr` ) echo ok
```

## VBA

```Private Function a(i As Variant) As Boolean
Debug.Print "a:  "; i = 1,
a = i
End Function
Private Function b(j As Variant) As Boolean
Debug.Print "b: "; j = 1;
b = j
End Function
Public Sub short_circuit()
Dim x As Boolean, y As Boolean
'Dim p As Boolean, q As Boolean
Debug.Print "=====AND=====" & vbCrLf
For p = 0 To 1
For q = 0 To 1
If a(p) Then
x = b(q)
End If
Debug.Print " = x"
Next q
Debug.Print
Next p
Debug.Print "======OR=====" & vbCrLf
For p = 0 To 1
For q = 0 To 1
If Not a(p) Then
x = b(q)
End If
Debug.Print " = x"
Next q
Debug.Print
Next p
Debug.Print
End Sub
```
Output:
```=====AND=====
a:  Onwaar     = x
a:  Onwaar     = x
a:  Waar      b: Onwaar = x
a:  Waar      b: Waar = x
======OR=====
a:  Onwaar    b: Onwaar = x
a:  Onwaar    b: Waar = x
a:  Waar       = x

a:  Waar       = x```

## Visual Basic .NET

Translation of: c++
```Module Module1

Function A(v As Boolean) As Boolean
Console.WriteLine("a")
Return v
End Function

Function B(v As Boolean) As Boolean
Console.WriteLine("b")
Return v
End Function

Sub Test(i As Boolean, j As Boolean)
Console.WriteLine("{0} and {1} = {2} (eager evaluation)", i, j, A(i) And B(j))
Console.WriteLine("{0} or {1} = {2} (eager evaluation)", i, j, A(i) Or B(j))
Console.WriteLine("{0} and {1} = {2} (lazy evaluation)", i, j, A(i) AndAlso B(j))
Console.WriteLine("{0} or {1} = {2} (lazy evaluation)", i, j, A(i) OrElse B(j))

Console.WriteLine()
End Sub

Sub Main()
Test(False, False)
Test(False, True)
Test(True, False)
Test(True, True)
End Sub

End Module
```
Output:
```a
b
False and False = False (eager evaluation)
a
b
False or False = False (eager evaluation)
a
False and False = False (lazy evaluation)
a
b
False or False = False (lazy evaluation)

a
b
False and True = False (eager evaluation)
a
b
False or True = True (eager evaluation)
a
False and True = False (lazy evaluation)
a
b
False or True = True (lazy evaluation)

a
b
True and False = False (eager evaluation)
a
b
True or False = True (eager evaluation)
a
b
True and False = False (lazy evaluation)
a
True or False = True (lazy evaluation)

a
b
True and True = True (eager evaluation)
a
b
True or True = True (eager evaluation)
a
b
True and True = True (lazy evaluation)
a
True or True = True (lazy evaluation)```

## Visual FoxPro

```*!* Visual FoxPro natively supports short circuit evaluation
CLEAR
CREATE CURSOR funceval(arg1 L, arg2 L, operation V(3), result L, calls V(10))
*!* Conjunction
INSERT INTO funceval (arg1, arg2, operation) VALUES (.F., .F., "AND")
REPLACE result WITH (a(arg1) AND b(arg2))
INSERT INTO funceval (arg1, arg2, operation) VALUES (.F., .T., "AND")
REPLACE result WITH (a(arg1) AND b(arg2))
INSERT INTO funceval (arg1, arg2, operation) VALUES (.T., .F., "AND")
REPLACE result WITH (a(arg1) AND b(arg2))
INSERT INTO funceval (arg1, arg2, operation) VALUES (.T., .T., "AND")
REPLACE result WITH (a(arg1) AND b(arg2))
*!* Disjunction
INSERT INTO funceval (arg1, arg2, operation) VALUES (.F., .F., "OR")
REPLACE result WITH (a(arg1) OR b(arg2))
INSERT INTO funceval (arg1, arg2, operation) VALUES (.F., .T., "OR")
REPLACE result WITH (a(arg1) OR b(arg2))
INSERT INTO funceval (arg1, arg2, operation) VALUES (.T., .F., "OR")
REPLACE result WITH (a(arg1) OR b(arg2))
INSERT INTO funceval (arg1, arg2, operation) VALUES (.T., .T., "OR")
REPLACE result WITH (a(arg1) OR b(arg2))
GO TOP

_VFP.DataToClip("funceval", 8, 3)

FUNCTION a(v As Boolean) As Boolean
REPLACE calls WITH "a()"
RETURN v
ENDFUNC

FUNCTION b(v As Boolean) As Boolean
REPLACE calls WITH calls + ", b()"
RETURN v
ENDFUNC
```
Output:
```Arg1	Arg2	Operation	Result	Calls
F   	F   	AND      	F     	a()
F   	T   	AND      	F     	a()
T   	F   	AND      	F     	a(), b()
T   	T   	AND      	T     	a(), b()
F   	F   	OR       	F     	a(), b()
F   	T   	OR       	T     	a(), b()
T   	F   	OR       	T     	a()
T   	T   	OR       	T     	a()
```

## Wren

Wren has the && and || short-circuiting operators found in many C family languages.

```var a = Fn.new { |bool|
System.print("  a called")
return bool
}

var b = Fn.new { |bool|
System.print("  b called")
return bool
}

var bools = [ [true, true], [true, false], [false, true], [false, false] ]
for (bool in bools) {
System.print("a = %(bool), b = %(bool), op = && :")
a.call(bool) && b.call(bool)
System.print()
}

for (bool in bools) {
System.print("a = %(bool), b = %(bool), op = || :")
a.call(bool) || b.call(bool)
System.print()
}
```
Output:
```a = true, b = true, op = && :
a called
b called

a = true, b = false, op = && :
a called
b called

a = false, b = true, op = && :
a called

a = false, b = false, op = && :
a called

a = true, b = true, op = || :
a called

a = true, b = false, op = || :
a called

a = false, b = true, op = || :
a called
b called

a = false, b = false, op = || :
a called
b called
```

## zkl

```fcn a(b){self.fcn.println(b); b}
fcn b(b){self.fcn.println(b); b}```
Output:
```a(True)  or b(True)  //-->Fcn(a)True, True
a(False) or b(True)  //-->Fcn(a)False, Fcn(b)True, True
a(False) or b(False) //-->Fcn(a)False, Fcn(b)False, False

a(True)  and b(True)  //-->Fcn(a)True, Fcn(b)True, True
a(True)  and b(False) //-->Fcn(a)True, Fcn(b)False, False
a(False) and b(True)  //-->Fcn(a)False, False
```