Short-circuit evaluation
Assume functions a
and b
return boolean values, and further, the execution of function b
takes considerable resources without side effects, and is to be minimized.
You are encouraged to solve this task according to the task description, using any language you may know.
These are examples of control structures. You may also be interested in:
If we needed to compute the conjunction (and
):
x = a() and b()
Then it would be best to not compute the value of b()
if the value of a()
is computed as false
, as the value of x
can then only ever be false
.
Similarly, if we needed to compute the disjunction (or
):
y = a() or b()
Then it would be best to not compute the value of b()
if the value of a()
is computed as true
, as the value of y
can then only ever be true
.
Some languages will stop further computation of boolean equations as soon as the result is known, so-called short-circuit evaluation of boolean expressions
- Task
Create two functions named a
and b
, that take and return the same boolean value.
The functions should also print their name whenever they are called.
Calculate and assign the values of the following equations to a variable in such a way that function b
is only called when necessary:
x = a(i) and b(j)
y = a(i) or b(j)
If the language does not have short-circuit evaluation, this might be achieved with nested if statements.
11l
F a(v)
print(‘ ## Called function a(#.)’.format(v))
R v
F b(v)
print(‘ ## Called function b(#.)’.format(v))
R v
L(i) (0B, 1B)
L(j) (0B, 1B)
print("\nCalculating: x = a(i) and b(j)")
V x = a(i) & b(j)
print(‘Calculating: y = a(i) or b(j)’)
V y = a(i) | b(j)
- Output:
Calculating: x = a(i) and b(j) # Called function a(0B) Calculating: y = a(i) or b(j) # Called function a(0B) # Called function b(0B) Calculating: x = a(i) and b(j) # Called function a(0B) Calculating: y = a(i) or b(j) # Called function a(0B) # Called function b(1B) Calculating: x = a(i) and b(j) # Called function a(1B) # Called function b(0B) Calculating: y = a(i) or b(j) # Called function a(1B) Calculating: x = a(i) and b(j) # Called function a(1B) # Called function b(1B) Calculating: y = a(i) or b(j) # Called function a(1B)
6502 Assembly
There are no built-in booleans but the functionality can be easily implemented with 0 = False and 255 = True.
Source Code for the module:
;DEFINE 0 AS FALSE, $FF as true.
False equ 0
True equ 255
Func_A:
;input: accumulator = value to check. 0 = false, nonzero = true.
;output: 0 if false, 255 if true. Also prints the truth value to the screen.
;USAGE: LDA val JSR Func_A
BEQ .falsehood
load16 z_HL,BoolText_A_True ;lda #<BoolText_A_True sta z_L lda #>BoolText_A_True sta z_H
jsr PrintString
jsr NewLine
LDA #True
rts
.falsehood:
load16 z_HL,BoolText_A_False
jsr PrintString
jsr NewLine
LDA #False
rts
Func_B:
;input: Y = value to check. 0 = false, nonzero = true.
;output: 0 if false, 255 if true. Also prints the truth value to the screen.
;USAGE: LDY val JSR Func_B
TYA
BEQ .falsehood ;return false
load16 z_HL,BoolText_B_True
jsr PrintString
jsr NewLine
LDA #True
rts
.falsehood:
load16 z_HL,BoolText_B_False
jsr PrintString
jsr NewLine
LDA #False
rts
Func_A_and_B:
;input:
; z_B = input for Func_A
; z_C = input for Func_B
;output:
;0 if false, 255 if true
LDA z_B
jsr Func_A
BEQ .falsehood
LDY z_C
jsr Func_B
BEQ .falsehood
;true
load16 z_HL,BoolText_A_and_B_True
jsr PrintString
jsr NewLine
LDA #True
rts
.falsehood:
load16 z_HL,BoolText_A_and_B_False
jsr PrintString
jsr NewLine
LDA #False
rts
Func_A_or_B:
;input:
; z_B = input for Func_A
; z_C = input for Func_B
;output:
;0 if false, 255 if true
LDA z_B
jsr Func_A
BNE .truth
LDY z_C
jsr Func_B
BNE .truth
;false
load16 z_HL,BoolText_A_or_B_False
jsr PrintString
LDA #False
rts
.truth:
load16 z_HL,BoolText_A_or_B_True
jsr PrintString
LDA #True
rts
BoolText_A_True:
db "A IS TRUE",0
BoolText_A_False:
db "A IS FALSE",0
BoolText_B_True:
db "B IS TRUE",0
BoolText_B_False:
db "B IS FALSE",0
BoolText_A_and_B_True:
db "A AND B IS TRUE",0
BoolText_A_and_B_False:
db "A AND B IS FALSE",0
BoolText_A_or_B_True:
db "A OR B IS TRUE",0
BoolText_A_or_B_False:
db "A OR B IS FALSE",0
The relevant code for the actual invoking of the functions:
lda #True
sta z_B
lda #True
sta z_C
jsr Func_A_and_B
jsr NewLine
jsr Func_A_or_B
jmp *
And finally the output: [Output image]
Action!
BYTE FUNC a(BYTE x)
PrintF(" a(%B)",x)
RETURN (x)
BYTE FUNC b(BYTE x)
PrintF(" b(%B)",x)
RETURN (x)
PROC Main()
BYTE i,j
FOR i=0 TO 1
DO
FOR j=0 TO 1
DO
PrintF("Calculating %B AND %B: call",i,j)
IF a(i)=1 AND b(j)=1 THEN
FI
PutE()
OD
OD
PutE()
FOR i=0 TO 1
DO
FOR j=0 TO 1
DO
PrintF("Calculating %B OR %B: call",i,j)
IF a(i)=1 OR b(j)=1 THEN
FI
PutE()
OD
OD
RETURN
- Output:
Screenshot from Atari 8-bit computer
Calculating 0 AND 0: call a(0) Calculating 0 AND 1: call a(0) Calculating 1 AND 0: call a(1) b(0) Calculating 1 AND 1: call a(1) b(1) Calculating 0 OR 0: call a(0) b(0) Calculating 0 OR 1: call a(0) b(1) Calculating 1 OR 0: call a(1) Calculating 1 OR 1: call a(1)
Ada
Ada has built-in short-circuit operations and then and or else:
with Ada.Text_IO; use Ada.Text_IO;
procedure Test_Short_Circuit is
function A (Value : Boolean) return Boolean is
begin
Put (" A=" & Boolean'Image (Value));
return Value;
end A;
function B (Value : Boolean) return Boolean is
begin
Put (" B=" & Boolean'Image (Value));
return Value;
end B;
begin
for I in Boolean'Range loop
for J in Boolean'Range loop
Put (" (A and then B)=" & Boolean'Image (A (I) and then B (J)));
New_Line;
end loop;
end loop;
for I in Boolean'Range loop
for J in Boolean'Range loop
Put (" (A or else B)=" & Boolean'Image (A (I) or else B (J)));
New_Line;
end loop;
end loop;
end Test_Short_Circuit;
- Sample output:
A=FALSE (A and then B)=FALSE A=FALSE (A and then B)=FALSE A=TRUE B=FALSE (A and then B)=FALSE A=TRUE B=TRUE (A and then B)=TRUE A=FALSE B=FALSE (A or else B)=FALSE A=FALSE B=TRUE (A or else B)=TRUE A=TRUE (A or else B)=TRUE A=TRUE (A or else B)=TRUE
ALGOL 68
With Standard
Note: The "brief" conditional clause ( ~ | ~ | ~ ) is a the standard's shorthand for enforcing short-circuit evaluation. Moreover, the coder is able to define their own proc[edures] and op[erators] that implement short-circuit evaluation by using Algol68's proceduring.
PRIO ORELSE = 2, ANDTHEN = 3; # user defined operators #
OP ORELSE = (BOOL a, PROC BOOL b)BOOL: ( a | a | b ),
ANDTHEN = (BOOL a, PROC BOOL b)BOOL: ( a | b | a );
# user defined Short-circuit_evaluation procedures #
PROC or else = (BOOL a, PROC BOOL b)BOOL: ( a | a | b ),
and then = (BOOL a, PROC BOOL b)BOOL: ( a | b | a );
test:(
PROC a = (BOOL a)BOOL: ( print(("a=",a,", ")); a),
b = (BOOL b)BOOL: ( print(("b=",b,", ")); b);
CO
# Valid for Algol 68 Rev0: using "user defined" operators #
# Note: here BOOL is being automatically "procedured" to PROC BOOL #
print(("T ORELSE F = ", a(TRUE) ORELSE b(FALSE), new line));
print(("F ANDTHEN T = ", a(FALSE) ANDTHEN b(TRUE), new line));
print(("or else(T, F) = ", or else(a(TRUE), b(FALSE)), new line));
print(("and then(F, T) = ", and then(a(FALSE), b(TRUE)), new line));
END CO
# Valid for Algol68 Rev1: using "user defined" operators #
# Note: BOOL must be manually "procedured" to PROC BOOL #
print(("T ORELSE F = ", a(TRUE) ORELSE (BOOL:b(FALSE)), new line));
print(("T ORELSE T = ", a(TRUE) ORELSE (BOOL:b(TRUE)), new line));
print(("F ANDTHEN F = ", a(FALSE) ANDTHEN (BOOL:b(FALSE)), new line));
print(("F ANDTHEN T = ", a(FALSE) ANDTHEN (BOOL:b(TRUE)), new line));
print(("F ORELSE F = ", a(FALSE) ORELSE (BOOL:b(FALSE)), new line));
print(("F ORELSE T = ", a(FALSE) ORELSE (BOOL:b(TRUE)), new line));
print(("T ANDTHEN F = ", a(TRUE) ANDTHEN (BOOL:b(FALSE)), new line));
print(("T ANDTHEN T = ", a(TRUE) ANDTHEN (BOOL:b(TRUE)), new line))
)
- Output:
a=T, T ORELSE F = T a=T, T ORELSE T = T a=F, F ANDTHEN F = F a=F, F ANDTHEN T = F a=F, b=F, F ORELSE F = F a=F, b=T, F ORELSE T = T a=T, b=F, T ANDTHEN F = F a=T, b=T, T ANDTHEN T = T
With Extensions
test:(
PROC a = (BOOL a)BOOL: ( print(("a=",a,", ")); a),
b = (BOOL b)BOOL: ( print(("b=",b,", ")); b);
# Valid for Algol 68G and 68RS using non standard operators #
print(("T OREL F = ", a(TRUE) OREL b(FALSE), new line));
print(("T OREL T = ", a(TRUE) OREL b(TRUE), new line));
print(("F ANDTH F = ", a(FALSE) ANDTH b(FALSE), new line));
print(("F ANDTH T = ", a(FALSE) ANDTH b(TRUE), new line));
print(("F OREL F = ", a(FALSE) OREL b(FALSE), new line));
print(("F OREL T = ", a(FALSE) OREL b(TRUE), new line));
print(("T ANDTH F = ", a(TRUE) ANDTH b(FALSE), new line));
print(("T ANDTH T = ", a(TRUE) ANDTH b(TRUE), new line))
CO;
# Valid for Algol 68G and 68C using non standard operators #
print(("T ORF F = ", a(TRUE) ORF b(FALSE), new line));
print(("F ANDF T = ", a(FALSE) ANDF b(TRUE), new line))
END CO
)
- Output:
a=T, T OREL F = T a=T, T OREL T = T a=F, F ANDTH F = F a=F, F ANDTH T = F a=F, b=F, F OREL F = F a=F, b=T, F OREL T = T a=T, b=F, T ANDTH F = F a=T, b=T, T ANDTH T = T
ALGOL W
In Algol W the boolean "and" and "or" operators are short circuit operators.
begin
logical procedure a( logical value v ) ; begin write( "a: ", v ); v end ;
logical procedure b( logical value v ) ; begin write( "b: ", v ); v end ;
write( "and: ", a( true ) and b( true ) );
write( "---" );
write( "or: ", a( true ) or b( true ) );
write( "---" );
write( "and: ", a( false ) and b( true ) );
write( "---" );
write( "or: ", a( false ) or b( true ) );
write( "---" );
end.
- Output:
and: a: true b: true true --- or: a: true true --- and: a: false false --- or: a: false b: true true ---
AppleScript
AppleScript's boolean operators are short-circuiting (as can be seen from the log below).
What AppleScript lacks, however, is a short-circuiting ternary operator like the e ? e2 : e3 of C, or a short-circuiting three-argument function like cond in Lisp. To get a similar effect in AppleScript, we have to delay evaluation on both sides, using a cond which returns a reference to one of two unapplied handlers, and composing the result with a separate apply function, to apply the selected handler function to its argument.
(As a statement, rather than an expression, the if ... then ... else structure does not compose – unlike cond or ? :, it can not be nested inside expressions)
on run
map(test, {|and|, |or|})
end run
-- test :: ((Bool, Bool) -> Bool) -> (Bool, Bool, Bool, Bool)
on test(f)
map(f, {{true, true}, {true, false}, {false, true}, {false, false}})
end test
-- |and| :: (Bool, Bool) -> Bool
on |and|(tuple)
set {x, y} to tuple
a(x) and b(y)
end |and|
-- |or| :: (Bool, Bool) -> Bool
on |or|(tuple)
set {x, y} to tuple
a(x) or b(y)
end |or|
-- a :: Bool -> Bool
on a(bool)
log "a"
return bool
end a
-- b :: Bool -> Bool
on b(bool)
log "b"
return bool
end b
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
script mf
property lambda : f
end script
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to mf's lambda(item i of xs, i, xs)
end repeat
return lst
end map
- Output:
Messages: (*a*) (*b*) (*a*) (*b*) (*a*) (*a*) (*a*) (*a*) (*a*) (*b*) (*a*) (*b*) Result: {{true, false, false, false}, {true, true, true, false}}
Arturo
a: function [v][
print ["called function A with:" v]
v
]
b: function [v][
print ["called function B with:" v]
v
]
loop @[true false] 'i ->
loop @[true false] 'j ->
print ["\tThe result of A(i) AND B(j) is:" and? -> a i -> b j]
print ""
loop @[true false] 'i ->
loop @[true false] 'j ->
print ["\tThe result of A(i) OR B(j) is:" or? -> a i -> b j]
- Output:
called function A with: true called function B with: true The result of A(i) AND B(j) is: true called function A with: true called function B with: false The result of A(i) AND B(j) is: false called function A with: false The result of A(i) AND B(j) is: false called function A with: false The result of A(i) AND B(j) is: false called function A with: true The result of A(i) OR B(j) is: true called function A with: true The result of A(i) OR B(j) is: true called function A with: false called function B with: true The result of A(i) OR B(j) is: true called function A with: false called function B with: false The result of A(i) OR B(j) is: false
AutoHotkey
In AutoHotkey, the boolean operators, and, or, and ternaries, short-circuit:
i = 1
j = 1
x := a(i) and b(j)
y := a(i) or b(j)
a(p)
{
MsgBox, a() was called with the parameter "%p%".
Return, p
}
b(p)
{
MsgBox, b() was called with the parameter "%p%".
Return, p
}
AWK
Short-circuit evalation is done in logical AND (&&) and logical OR (||) operators:
#!/usr/bin/awk -f
BEGIN {
print (a(1) && b(1))
print (a(1) || b(1))
print (a(0) && b(1))
print (a(0) || b(1))
}
function a(x) {
print " x:"x
return x
}
function b(y) {
print " y:"y
return y
}
- Output:
x:1 y:1 1 x:1 1 x:0 0 x:0 y:1 1
Axe
TEST(0,0)
TEST(0,1)
TEST(1,0)
TEST(1,1)
Return
Lbl TEST
r₁→X
r₂→Y
Disp X▶Hex+3," and ",Y▶Hex+3," = ",(A(X)?B(Y))▶Hex+3,i
Disp X▶Hex+3," or ",Y▶Hex+3," = ",(A(X)??B(Y))▶Hex+3,i
.Wait for keypress
getKeyʳ
Return
Lbl A
r₁
Return
Lbl B
r₁
Return
BASIC
BaCon
BaCon supports short-circuit evaluation.
' Short-circuit evaluation
FUNCTION a(f)
PRINT "FUNCTION a"
RETURN f
END FUNCTION
FUNCTION b(f)
PRINT "FUNCTION b"
RETURN f
END FUNCTION
PRINT "FALSE and TRUE"
x = a(FALSE) AND b(TRUE)
PRINT x
PRINT "TRUE and TRUE"
x = a(TRUE) AND b(TRUE)
PRINT x
PRINT "FALSE or FALSE"
y = a(FALSE) OR b(FALSE)
PRINT y
PRINT "TRUE or FALSE"
y = a(TRUE) OR b(FALSE)
PRINT y
- Output:
prompt$ ./short-circuit FALSE and TRUE FUNCTION a 0 TRUE and TRUE FUNCTION a FUNCTION b 1 FALSE or FALSE FUNCTION a FUNCTION b 0 TRUE or FALSE FUNCTION a 1
Batch File
%=== Batch Files have no booleans on if command, let alone short-circuit evaluation ===%
%=== I will instead use 1 as true and 0 as false. ===%
@echo off
setlocal enabledelayedexpansion
echo AND
for /l %%i in (0,1,1) do (
for /l %%j in (0,1,1) do (
echo.a^(%%i^) AND b^(%%j^)
call :a %%i
set res=!bool_a!
if not !res!==0 (
call :b %%j
set res=!bool_b!
)
echo.=^> !res!
)
)
echo ---------------------------------
echo OR
for /l %%i in (0,1,1) do (
for /l %%j in (0,1,1) do (
echo a^(%%i^) OR b^(%%j^)
call :a %%i
set res=!bool_a!
if !res!==0 (
call :b %%j
set res=!bool_b!
)
echo.=^> !res!
)
)
pause>nul
exit /b 0
::----------------------------------------
:a
echo. calls func a
set bool_a=%1
goto :EOF
:b
echo. calls func b
set bool_b=%1
goto :EOF
- Output:
AND a(0) AND b(0) calls func a => 0 a(0) AND b(1) calls func a => 0 a(1) AND b(0) calls func a calls func b => 0 a(1) AND b(1) calls func a calls func b => 1 --------------------------------- OR a(0) OR b(0) calls func a calls func b => 0 a(0) OR b(1) calls func a calls func b => 1 a(1) OR b(0) calls func a => 1 a(1) OR b(1) calls func a => 1
BBC BASIC
Short-circuit operators aren't implemented directly, but short-circuit AND can be simulated using cascaded IFs. Short-circuit OR can be converted into a short-circuit AND using De Morgan's laws.
REM TRUE is represented as -1, FALSE as 0
FOR i% = TRUE TO FALSE
FOR j% = TRUE TO FALSE
PRINT "For x=a(";FNboolstring(i%);") AND b(";FNboolstring(j%);")"
x% = FALSE
REM Short-circuit AND can be simulated by cascaded IFs:
IF FNa(i%) IF FNb(j%) THEN x%=TRUE
PRINT "x is ";FNboolstring(x%)
PRINT
PRINT "For y=a(";FNboolstring(i%);") OR b(";FNboolstring(j%);")"
y% = FALSE
REM Short-circuit OR can be simulated by De Morgan's laws:
IF NOTFNa(i%) IF NOTFNb(j%) ELSE y%=TRUE : REM Note ELSE without THEN
PRINT "y is ";FNboolstring(y%)
PRINT
NEXT:NEXT
END
DEFFNa(bool%)
PRINT "Function A used; ";
=bool%
DEFFNb(bool%)
PRINT "Function B used; ";
=bool%
DEFFNboolstring(bool%)
IF bool%=0 THEN ="FALSE" ELSE="TRUE"
This gives the results shown below:
For x=a(TRUE) AND b(TRUE) Function A used; Function B used; x is TRUE For y=a(TRUE) OR b(TRUE) Function A used; y is TRUE For x=a(TRUE) AND b(FALSE) Function A used; Function B used; x is FALSE For y=a(TRUE) OR b(FALSE) Function A used; y is TRUE For x=a(FALSE) AND b(TRUE) Function A used; x is FALSE For y=a(FALSE) OR b(TRUE) Function A used; Function B used; y is TRUE For x=a(FALSE) AND b(FALSE) Function A used; x is FALSE For y=a(FALSE) OR b(FALSE) Function A used; Function B used; y is FALSE
Bracmat
Bracmat has no booleans. The closest thing is the success or failure of an expression. A function is not called if the argument fails, so we have to use a trick to pass 'failure' to a function. Here it is accomplished by an extra level of indirection: two == in the definition of 'false' (and 'true', for symmetry) and two !! when evaluating the argument in the functions a and b. The backtick is another hack. This prefix tells Bracmat to look the other way if the backticked expression fails and to continue as if the expression succeeded. A neater way is to introduce an extra OR operator. That solution would have obscured the core of the current task. Short-circuit evaluation is heavily used in Bracmat code. Although not required, it is a good habit to exclusively use AND (&) and OR (|) operators to separate expressions, as the code below exemplifies.
( (a=.out$"I'm a"&!!arg)
& (b=.out$"I'm b"&!!arg)
& (false==~)
& (true==)
& !false !true:?outer
& whl
' ( !outer:%?x ?outer
& !false !true:?inner
& whl
' ( !inner:%?y ?inner
& out
$ ( Testing
(!!x&true|false)
AND
(!!y&true|false)
)
& `(a$!x&b$!y)
& out
$ ( Testing
(!!x&true|false)
OR
(!!y&true|false)
)
& `(a$!x|b$!y)
)
)
& done
);
Output:
Testing false AND false I'm a Testing false OR false I'm a I'm b Testing false AND true I'm a Testing false OR true I'm a I'm b Testing true AND false I'm a I'm b Testing true OR false I'm a Testing true AND true I'm a I'm b Testing true OR true I'm a
C
Boolean operators && and || are shortcircuit operators.
#include <stdio.h>
#include <stdbool.h>
bool a(bool in)
{
printf("I am a\n");
return in;
}
bool b(bool in)
{
printf("I am b\n");
return in;
}
#define TEST(X,Y,O) \
do { \
x = a(X) O b(Y); \
printf(#X " " #O " " #Y " = %s\n\n", x ? "true" : "false"); \
} while(false);
int main()
{
bool x;
TEST(false, true, &&); // b is not evaluated
TEST(true, false, ||); // b is not evaluated
TEST(true, false, &&); // b is evaluated
TEST(false, false, ||); // b is evaluated
return 0;
}
C#
using System;
class Program
{
static bool a(bool value)
{
Console.WriteLine("a");
return value;
}
static bool b(bool value)
{
Console.WriteLine("b");
return value;
}
static void Main()
{
foreach (var i in new[] { false, true })
{
foreach (var j in new[] { false, true })
{
Console.WriteLine("{0} and {1} = {2}", i, j, a(i) && b(j));
Console.WriteLine();
Console.WriteLine("{0} or {1} = {2}", i, j, a(i) || b(j));
Console.WriteLine();
}
}
}
}
- Output:
a
False and False = False
a
b
False or False = False
a
False and True = False
a
b
False or True = True
a
b
True and False = False
a
True or False = True
a
b
True and True = True
a
True or True = True
C++
Just like C, boolean operators && and || are shortcircuit operators.
#include <iostream>
bool a(bool in)
{
std::cout << "a" << std::endl;
return in;
}
bool b(bool in)
{
std::cout << "b" << std::endl;
return in;
}
void test(bool i, bool j) {
std::cout << std::boolalpha << i << " and " << j << " = " << (a(i) && b(j)) << std::endl;
std::cout << std::boolalpha << i << " or " << j << " = " << (a(i) || b(j)) << std::endl;
}
int main()
{
test(false, false);
test(false, true);
test(true, false);
test(true, true);
return 0;
}
- Output:
a false and false = false a b false or false = false a false and true = false a b false or true = true a b true and false = false a true or false = true a b true and true = true a true or true = true
Clojure
The print/println stuff in the doseq is kinda gross, but if you include them all in a single print, then the function traces are printed before the rest (since it has to evaluate them before calling print).
(letfn [(a [bool] (print "(a)") bool)
(b [bool] (print "(b)") bool)]
(doseq [i [true false] j [true false]]
(print i "OR" j "= ")
(println (or (a i) (b j)))
(print i "AND" j " = ")
(println (and (a i) (b j)))))
- Output:
true OR true = (a)true true AND true = (a)(b)true true OR false = (a)true true AND false = (a)(b)false false OR true = (a)(b)true false AND true = (a)false false OR false = (a)(b)false false AND false = (a)false
Common Lisp
(defun a (F)
(print 'a)
F )
(defun b (F)
(print 'b)
F )
(dolist (x '((nil nil) (nil T) (T T) (T nil)))
(format t "~%(and ~S)" x)
(and (a (car x)) (b (car(cdr x))))
(format t "~%(or ~S)" x)
(or (a (car x)) (b (car(cdr x)))))
- Output:
(and (NIL NIL)) A (or (NIL NIL)) A B (and (NIL T)) A (or (NIL T)) A B (and (T T)) A B (or (T T)) A (and (T NIL)) A B (or (T NIL)) A
D
import std.stdio, std.algorithm;
T a(T)(T answer) {
writefln(" # Called function a(%s) -> %s", answer, answer);
return answer;
}
T b(T)(T answer) {
writefln(" # Called function b(%s) -> %s", answer, answer);
return answer;
}
void main() {
foreach (immutable x, immutable y;
[false, true].cartesianProduct([false, true])) {
writeln("\nCalculating: r1 = a(x) && b(y)");
immutable r1 = a(x) && b(y);
writeln("Calculating: r2 = a(x) || b(y)");
immutable r2 = a(x) || b(y);
}
}
- Output:
Calculating: r1 = a(x) && b(y) # Called function a(false) -> false Calculating: r2 = a(x) || b(y) # Called function a(false) -> false # Called function b(false) -> false Calculating: r1 = a(x) && b(y) # Called function a(true) -> true # Called function b(false) -> false Calculating: r2 = a(x) || b(y) # Called function a(true) -> true Calculating: r1 = a(x) && b(y) # Called function a(false) -> false Calculating: r2 = a(x) || b(y) # Called function a(false) -> false # Called function b(true) -> true Calculating: r1 = a(x) && b(y) # Called function a(true) -> true # Called function b(true) -> true Calculating: r2 = a(x) || b(y) # Called function a(true) -> true
Delphi
Delphi supports short circuit evaluation by default. It can be turned off using the {$BOOLEVAL OFF} compiler directive.
program ShortCircuitEvaluation;
{$APPTYPE CONSOLE}
uses SysUtils;
function A(aValue: Boolean): Boolean;
begin
Writeln('a');
Result := aValue;
end;
function B(aValue: Boolean): Boolean;
begin
Writeln('b');
Result := aValue;
end;
var
i, j: Boolean;
begin
for i in [False, True] do
begin
for j in [False, True] do
begin
Writeln(Format('%s and %s = %s', [BoolToStr(i, True), BoolToStr(j, True), BoolToStr(A(i) and B(j), True)]));
Writeln;
Writeln(Format('%s or %s = %s', [BoolToStr(i, True), BoolToStr(j, True), BoolToStr(A(i) or B(j), True)]));
Writeln;
end;
end;
end.
Dyalect
func a(v) {
print(nameof(a), terminator: "")
return v
}
func b(v) {
print(nameof(b), terminator: "")
return v
}
func testMe(i, j) {
print("Testing a(\(i)) && b(\(j))")
print("Trace: ", terminator: "")
print("\nResult: \(a(i) && b(j))")
print("Testing a(\(i)) || b(\(j))")
print("Trace: ", terminator: "")
print("\nResult: \(a(i) || b(j))")
print()
}
testMe(false, false)
testMe(false, true)
testMe(true, false)
testMe(true, true)
- Output:
Testing a(false) && b(false) Trace: a Result: false Testing a(false) || b(false) Trace: ab Result: false Testing a(false) && b(true) Trace: a Result: false Testing a(false) || b(true) Trace: ab Result: true Testing a(true) && b(false) Trace: ab Result: false Testing a(true) || b(false) Trace: a Result: true Testing a(true) && b(true) Trace: ab Result: true Testing a(true) || b(true) Trace: a Result: true
E
E defines &&
and ||
in the usual short-circuiting fashion.
def a(v) { println("a"); return v }
def b(v) { println("b"); return v }
def x := a(i) && b(j)
def y := b(i) || b(j)
Unusually, E is an expression-oriented language, and variable bindings (which are expressions) are in scope until the end of the nearest enclosing { ... }
block. The combination of these features means that some semantics must be given to a binding occurring inside of a short-circuited alternative.
def x := a(i) && (def funky := b(j))
The choice we make is that funky
is ordinary if the right-side expression was evaluated, and otherwise is ruined; attempts to access the variable give an error.
EasyLang
func a x .
print "->a: " & x
return x
.
func b x .
print "->b: " & x
return x
.
print "1 and 1"
if a 1 = 1 and b 1 = 1
print "-> true"
.
print ""
print "1 or 1"
if a 1 = 1 or b 1 = 1
print "-> true"
.
print ""
print "0 and 1"
if a 0 = 1 and b 1 = 1
print "-> true"
.
print ""
print "0 or 1"
if a 0 = 1 or b 1 = 1
print "-> true"
.
Ecstasy
Similar to Java, Ecstasy uses the && and || operators for short-circuiting logic, and & and | are the normal (non-short-circuiting) forms.
module test {
@Inject Console console;
static Boolean show(String name, Boolean value) {
console.print($"{name}()={value}");
return value;
}
void run() {
val a = show("a", _);
val b = show("b", _);
for (Boolean v1 : False..True) {
for (Boolean v2 : False..True) {
console.print($"a({v1}) && b({v2}) == {a(v1) && b(v2)}");
console.print();
console.print($"a({v1}) || b({v2}) == {a(v1) || b(v2)}");
console.print();
}
}
}
}
- Output:
a()=False a(False) && b(False) == False a()=False b()=False a(False) || b(False) == False a()=False a(False) && b(True) == False a()=False b()=True a(False) || b(True) == True a()=True b()=False a(True) && b(False) == False a()=True a(True) || b(False) == True a()=True b()=True a(True) && b(True) == True a()=True a(True) || b(True) == True
Elena
ELENA 6.x :
import system'routines;
import extensions;
Func<bool, bool> a = (bool x){ console.writeLine("a"); ^ x };
Func<bool, bool> b = (bool x){ console.writeLine("b"); ^ x };
const bool[] boolValues = new bool[]{ false, true };
public program()
{
boolValues.forEach::(bool i)
{
boolValues.forEach::(bool j)
{
console.printLine(i," and ",j," = ",a(i) && b(j));
console.writeLine();
console.printLine(i," or ",j," = ",a(i) || b(j));
console.writeLine()
}
}
}
- Output:
a false and false = false a b false or false = false a false and true = false a b false or true = true a b true and false = false a true or false = true a b true and true = true a true or true = true
Elixir
defmodule Short_circuit do
defp a(bool) do
IO.puts "a( #{bool} ) called"
bool
end
defp b(bool) do
IO.puts "b( #{bool} ) called"
bool
end
def task do
Enum.each([true, false], fn i ->
Enum.each([true, false], fn j ->
IO.puts "a( #{i} ) and b( #{j} ) is #{a(i) and b(j)}.\n"
IO.puts "a( #{i} ) or b( #{j} ) is #{a(i) or b(j)}.\n"
end)
end)
end
end
Short_circuit.task
- Output:
a( true ) called b( true ) called a( true ) and b( true ) is true. a( true ) called a( true ) or b( true ) is true. a( true ) called b( false ) called a( true ) and b( false ) is false. a( true ) called a( true ) or b( false ) is true. a( false ) called a( false ) and b( true ) is false. a( false ) called b( true ) called a( false ) or b( true ) is true. a( false ) called a( false ) and b( false ) is false. a( false ) called b( false ) called a( false ) or b( false ) is false.
Erlang
-module( short_circuit_evaluation ).
-export( [task/0] ).
task() ->
[task_helper(X, Y) || X <- [true, false], Y <- [true, false]].
a( Boolean ) ->
io:fwrite( " a ~p~n", [Boolean] ),
Boolean.
b( Boolean ) ->
io:fwrite( " b ~p~n", [Boolean] ),
Boolean.
task_helper( Boolean1, Boolean2 ) ->
io:fwrite( "~p andalso ~p~n", [Boolean1, Boolean2] ),
io:fwrite( "=> ~p~n", [a(Boolean1) andalso b(Boolean2)] ),
io:fwrite( "~p orelse ~p~n", [Boolean1, Boolean2] ),
io:fwrite( "=> ~p~n", [a(Boolean1) orelse b(Boolean2)] ).
- Output:
15> short_circuit_evaluation:task(). true andalso true a true b true => true true orelse true a true => true true andalso false a true b false => false true orelse false a true => true false andalso true a false => false false orelse true a false b true => true false andalso false a false => false false orelse false a false b false => false
F#
let a (x : bool) = printf "(a)"; x
let b (x : bool) = printf "(b)"; x
[for x in [true; false] do for y in [true; false] do yield (x, y)]
|> List.iter (fun (x, y) ->
printfn "%b AND %b = %b" x y ((a x) && (b y))
printfn "%b OR %b = %b" x y ((a x) || (b y)))
Output
(a)(b)true AND true = true (a)true OR true = true (a)(b)true AND false = false (a)true OR false = true (a)false AND true = false (a)(b)false OR true = true (a)false AND false = false (a)(b)false OR false = false
Factor
&&
and ||
perform short-circuit evaluation, while and
and or
do not. &&
and ||
both expect a sequence of quotations to evaluate in a short-circuit manner. They are smart combinators; that is, they infer the number of arguments taken by the quotations. If you opt not to use the smart combinators, you can also use words like 0&&
and 2||
where the arity of the quotations is dictated.
USING: combinators.short-circuit.smart io prettyprint ;
IN: rosetta-code.short-circuit
: a ( ? -- ? ) "(a)" write ;
: b ( ? -- ? ) "(b)" write ;
"f && f = " write { [ f a ] [ f b ] } && .
"f || f = " write { [ f a ] [ f b ] } || .
"f && t = " write { [ f a ] [ t b ] } && .
"f || t = " write { [ f a ] [ t b ] } || .
"t && f = " write { [ t a ] [ f b ] } && .
"t || f = " write { [ t a ] [ f b ] } || .
"t && t = " write { [ t a ] [ t b ] } && .
"t || t = " write { [ t a ] [ t b ] } || .
- Output:
f && f = (a)f f || f = (a)(b)f f && t = (a)f f || t = (a)(b)t t && f = (a)(b)f t || f = (a)t t && t = (a)(b)t t || t = (a)t
Fantom
class Main
{
static Bool a (Bool value)
{
echo ("in a")
return value
}
static Bool b (Bool value)
{
echo ("in b")
return value
}
public static Void main ()
{
[false,true].each |i|
{
[false,true].each |j|
{
Bool result := a(i) && b(j)
echo ("a($i) && b($j): " + result)
result = a(i) || b(j)
echo ("a($i) || b($j): " + result)
}
}
}
}
- Output:
in a a(false) && b(false): false in a in b a(false) || b(false): false in a a(false) && b(true): false in a in b a(false) || b(true): true in a in b a(true) && b(false): false in a a(true) || b(false): true in a in b a(true) && b(true): true in a a(true) || b(true): true
Forth
\ Short-circuit evaluation definitions from Wil Baden, with minor name changes
: ENDIF postpone THEN ; immediate
: COND 0 ; immediate
: ENDIFS BEGIN DUP WHILE postpone ENDIF REPEAT DROP ; immediate
: ORELSE s" ?DUP 0= IF" evaluate ; immediate
: ANDIF s" DUP IF DROP" evaluate ; immediate
: .bool IF ." true " ELSE ." false " THEN ;
: A ." A=" DUP .bool ;
: B ." B=" DUP .bool ;
: test
CR
1 -1 DO 1 -1 DO
COND I A ANDIF J B ENDIFS ." ANDIF=" .bool CR
COND I A ORELSE J B ENDIFS ." ORELSE=" .bool CR
LOOP LOOP ;
\ An alternative based on explicitly short-circuiting conditionals, Dave Keenan
: END-PRIOR-IF 1 CS-ROLL postpone ENDIF ; immediate
: test
CR
1 -1 DO 1 -1 DO
I A IF J B IF 1 ELSE END-PRIOR-IF 0 ENDIF ." ANDIF=" .bool CR
I A 0= IF J B IF END-PRIOR-IF 1 ELSE 0 ENDIF ." ORELSE=" .bool CR
LOOP LOOP ;
- Output:
A=true B=true ANDIF=true A=true ORELSE=true A=false ANDIF=false A=false B=true ORELSE=true A=true B=false ANDIF=false A=true ORELSE=true A=false ANDIF=false A=false B=false ORELSE=false
Fortran
Using an IF .. THEN .. ELSE
construct
program Short_Circuit_Eval
implicit none
logical :: x, y
logical, dimension(2) :: l = (/ .false., .true. /)
integer :: i, j
do i = 1, 2
do j = 1, 2
write(*, "(a,l1,a,l1,a)") "Calculating x = a(", l(i), ") and b(", l(j), ")"
! a AND b
x = a(l(i))
if(x) then
x = b(l(j))
write(*, "(a,l1)") "x = ", x
else
write(*, "(a,l1)") "x = ", x
end if
write(*,*)
write(*, "(a,l1,a,l1,a)") "Calculating y = a(", l(i), ") or b(", l(j), ")"
! a OR b
y = a(l(i))
if(y) then
write(*, "(a,l1)") "y = ", y
else
y = b(l(j))
write(*, "(a,l1)") "y = ", y
end if
write(*,*)
end do
end do
contains
function a(value)
logical :: a
logical, intent(in) :: value
a = value
write(*, "(a,l1,a)") "Called function a(", value, ")"
end function
function b(value)
logical :: b
logical, intent(in) :: value
b = value
write(*, "(a,l1,a)") "Called function b(", value, ")"
end function
end program
- Output:
Calculating x = a(F) and b(F) Called function a(F) x = F Calculating y = a(F) or b(F) Called function a(F) Called function b(F) y = F Calculating x = a(F) and b(T) Called function a(F) x = F Calculating y = a(F) or b(T) Called function a(F) Called function b(T) y = T Calculating x = a(T) and b(F) Called function a(T) Called function b(F) x = F Calculating y = a(T) or b(F) Called function a(T) y = T Calculating x = a(T) and b(T) Called function a(T) Called function b(T) x = T Calculating y = a(T) or b(T) Called function a(T) y = T
FreeBASIC
' FB 1.05.0 Win64
Function a(p As Boolean) As Boolean
Print "a() called"
Return p
End Function
Function b(p As Boolean) As Boolean
Print "b() called"
Return p
End Function
Dim As Boolean i, j, x, y
i = False
j = True
Print "Without short-circuit evaluation :"
Print
x = a(i) And b(j)
y = a(i) Or b(j)
Print "x = "; x; " y = "; y
Print
Print "With short-circuit evaluation :"
Print
x = a(i) AndAlso b(j) '' b(j) not called as a(i) = false and so x must be false
y = a(i) OrElse b(j) '' b(j) still called as can't determine y unless it is
Print "x = "; x; " y = "; y
Print
Print "Press any key to quit"
Sleep
- Output:
Without short-circuit evaluation : a() called b() called a() called b() called x = false y = true With short-circuit evaluation : a() called a() called b() called x = false y = true
Fōrmulæ
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.
Programs in Fōrmulæ are created/edited online in its website.
In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.
Solution
Go
Short circuit operators are && and ||.
package main
import "fmt"
func a(v bool) bool {
fmt.Print("a")
return v
}
func b(v bool) bool {
fmt.Print("b")
return v
}
func test(i, j bool) {
fmt.Printf("Testing a(%t) && b(%t)\n", i, j)
fmt.Print("Trace: ")
fmt.Println("\nResult:", a(i) && b(j))
fmt.Printf("Testing a(%t) || b(%t)\n", i, j)
fmt.Print("Trace: ")
fmt.Println("\nResult:", a(i) || b(j))
fmt.Println("")
}
func main() {
test(false, false)
test(false, true)
test(true, false)
test(true, true)
}
- Output:
Testing a(false) && b(false) Trace: a Result: false Testing a(false) || b(false) Trace: ab Result: false Testing a(false) && b(true) Trace: a Result: false Testing a(false) || b(true) Trace: ab Result: true Testing a(true) && b(false) Trace: ab Result: false Testing a(true) || b(false) Trace: a Result: true Testing a(true) && b(true) Trace: ab Result: true Testing a(true) || b(true) Trace: a Result: true
Groovy
Like all C-based languages (of which I am aware), Groovy short-circuits the logical and (&&) and logical or (||) operations, but not the bitwise and (&) and bitwise or (|) operations.
def f = { println ' AHA!'; it instanceof String }
def g = { printf ('%5d ', it); it > 50 }
println 'bitwise'
assert g(100) & f('sss')
assert g(2) | f('sss')
assert ! (g(1) & f('sss'))
assert g(200) | f('sss')
println '''
logical'''
assert g(100) && f('sss')
assert g(2) || f('sss')
assert ! (g(1) && f('sss'))
assert g(200) || f('sss')
- Output:
bitwise 100 AHA! 2 AHA! 1 AHA! 200 AHA! logical 100 AHA! 2 AHA! 1 200
Haskell
Lazy evaluation makes it possible for user-defined functions to be short-circuited. An expression will not be evaluated as long as it is not pattern matched:
module ShortCircuit where
import Prelude hiding ((&&), (||))
import Debug.Trace
False && _ = False
True && False = False
_ && _ = True
True || _ = True
False || True = True
_ || _ = False
a p = trace ("<a " ++ show p ++ ">") p
b p = trace ("<b " ++ show p ++ ">") p
main = mapM_ print ( [ a p || b q | p <- [False, True], q <- [False, True] ]
++ [ a p && b q | p <- [False, True], q <- [False, True] ])
- Output:
<a False> <b False> False <a False> <b True> True <a True> True <a True> True <a False> False <a False> False <a True> <b False> False <a True> <b True> True
One can force the right-hand arguemnt to be evaluated first be using the alternate definitions:
_ && False = False
False && True = False
_ && _ = True
_ || True = True
True || False = True
_ || _ = False
- Output:
<b False> <a False> False <b True> True <b False> <a True> True <b True> True <b False> False <b True> <a False> False <b False> False <b True> <a True> True
The order of evaluation (in this case the original order again) can be seen in a more explicit form by desugaring the pattern matching:
p && q = case p of
False -> False
_ -> case q of
False -> False
_ -> True
p || q = case p of
True -> True
_ -> case q of
True -> True
_ -> False
Icon and Unicon
The entire concept of using 'boolean' values for logic control runs counter to the philosophy of Icon. Instead Icon has success (something that returns a result) and failure which is really a signal. The concept is similar to that used in SNOBOL4 and Lisp and far more potent than passing around and testing booleans. There is no way to pass around a 'false' value in that sense. Icon does have facilities for dealing with bits inside integers but these would not normally be used for control purposes. Because failure is a signal control is always evaluated in a short-circuit manner. One consequence of this is that an expression "i < j" doesn't return a boolean value, instead it returns the value of j. While this may seem odd at first it allows for elegant expressions like "i < j < k". Another benefit is that there is no need for programmers to devote effort to staying inside the bounds of any data type. For instance, if you loop and iterate beyond bounds the expression simply fails and the loop ends.
While this task could be written literally, it would be more beneficial to show how an Icon programmer would approach the same problem. Icon extends the idea short circuit evaluation with the ability for expressions to generate alternate results only if needed. For more information see Failure is an option, Everything Returns a Value Except when it Doesn't, and Goal-Directed Evaluation and Generators. Consequently some small liberties will be taken with this task:
- Since any result means an expression succeeded and is hence true, we can use any value. In this example our choice will be determined by how we deal with 'false'.
- The inability to pass a 'false' value is a challenge. At first glance we might try &null, similar to Lisp, but there is no canonical true. Also &null produces a result, so strictly speaking it could be 'true' as well. A good example of this is that an expression like " not expr " returns null if 'expr' fails.
- For this example we will define two procedures 'true' and 'false'. Because Icon treats procedures as a data type we can assign them and invoke them indirectly via the variable name they are assigned to. We can write " i := true " and later invoke 'true' via " i() ".
- Rather than have the tasks print their own name, we will just utilize built-in tracing which will be more informative.
This use of procedures as values is somewhat contrived but serves us well for demonstration purposes. In practice this approach would be strained since failure results aren't re-captured as values (and can't easily be).
Sample output for a single case:
i,j := procedure true, procedure false i & j: Shortcircuit.icn: 8 | true() Shortcircuit.icn: 16 | true returned &null Shortcircuit.icn: 8 | false() Shortcircuit.icn: 20 | false failed i | j: Shortcircuit.icn: 10 | true() Shortcircuit.icn: 16 | true returned &null i,j := procedure true, procedure true
Insitux
(let a (fn (print-str "a ") %)
b (fn (print-str "b ") %)
f (pad-right " " 6))
(for i [true false] j [true false]
(print-str (f i) "OR " (f j) " = ")
(print (or (a i) (b j)))
(print-str (f i) "AND " (f j) " = ")
(print (and (a i) (b j))))
- Output:
true OR true = a true true AND true = a b true true OR false = a true true AND false = a b false false OR true = a b true false AND true = a false false OR false = a b false false AND false = a false
Io
a := method(bool,
writeln("a(#{bool}) called." interpolate)
bool
)
b := method(bool,
writeln("b(#{bool}) called." interpolate)
bool
)
list(true,false) foreach(avalue,
list(true,false) foreach(bvalue,
x := a(avalue) and b(bvalue)
writeln("x = a(#{avalue}) and b(#{bvalue}) is #{x}" interpolate)
writeln
y := a(avalue) or b(bvalue)
writeln("y = a(#{avalue}) or b(#{bvalue}) is #{y}" interpolate)
writeln
)
)
- Output:
a(true) called. b(true) called. x = a(true) and b(true) is true a(true) called. y = a(true) or b(true) is true a(true) called. b(false) called. x = a(true) and b(false) is false a(true) called. y = a(true) or b(false) is true a(false) called. x = a(false) and b(true) is false a(false) called. b(true) called. y = a(false) or b(true) is true a(false) called. x = a(false) and b(false) is false a(false) called. b(false) called. y = a(false) or b(false) is false
J
See the J wiki entry on short circuit booleans.
labeled=:1 :'[ smoutput@,&":~&m'
A=: 'A ' labeled
B=: 'B ' labeled
and=: ^:
or=: 2 :'u^:(-.@v)'
- Example:
(A and B) 1
B 1
A 1
1
(A and B) 0
B 0
0
(A or B) 1
B 1
1
(A or B) 0
B 0
A 0
0
Note that J evaluates right-to-left.
Note also that both functions take the same argument (which might make this less than ideal for some purposes, but trying micromanage flow of control is usually counter-productive in J in much the way that global values can be counter-productive in an object oriented environment. When you are processing a large set of array data, flow of control can only make sense when it is relevant to all of the data being processed -- if you want to manage flow of control which is not relevant to the entire set of data being processed you might artificially reduce the amount of data being processed, along the lines of an SQL cursor).
Java
In Java the boolean operators &&
and ||
are short circuit operators. The eager operator counterparts are &
and |
.
public class ShortCirc {
public static void main(String[] args){
System.out.println("F and F = " + (a(false) && b(false)) + "\n");
System.out.println("F or F = " + (a(false) || b(false)) + "\n");
System.out.println("F and T = " + (a(false) && b(true)) + "\n");
System.out.println("F or T = " + (a(false) || b(true)) + "\n");
System.out.println("T and F = " + (a(true) && b(false)) + "\n");
System.out.println("T or F = " + (a(true) || b(false)) + "\n");
System.out.println("T and T = " + (a(true) && b(true)) + "\n");
System.out.println("T or T = " + (a(true) || b(true)) + "\n");
}
public static boolean a(boolean a){
System.out.println("a");
return a;
}
public static boolean b(boolean b){
System.out.println("b");
return b;
}
}
- Output:
a F and F = false a b F or F = false a F and T = false a b F or T = true a b T and F = false a T or F = true a b T and T = true a T or T = true
JavaScript
Short-circuiting evaluation of boolean expressions has been the default since the first versions of JavaScript.
(function () {
'use strict';
function a(bool) {
console.log('a -->', bool);
return bool;
}
function b(bool) {
console.log('b -->', bool);
return bool;
}
var x = a(false) && b(true),
y = a(true) || b(false),
z = true ? a(true) : b(false);
return [x, y, z];
})();
The console log shows that in each case (the binding of all three values), only the left-hand part of the expression (the application of a(expr)) was evaluated – b(expr) was skipped by logical short-circuiting.
- Output:
Console:
/* a --> false */ /* a --> true */ /* a --> true */
Return value:
[false, true, true]
jq
jq's 'and' and 'or' are short-circuit operators. The following demonstration, which follows the "awk" example above, requires a version of jq with the built-in filter 'stderr'.
def a(x): " a(\(x))" | stderr | x;
def b(y): " b(\(y))" | stderr | y;
"and:", (a(true) and b(true)),
"or:", (a(true) or b(true)),
"and:", (a(false) and b(true)),
"or:", (a(false) or b(true))
- Output:
$ jq -r -n -f Short-circuit-evaluation.jq
and:
" a(true)"
" b(true)"
true
or:
" a(true)"
true
and:
" a(false)"
false
or:
" a(false)"
" b(true)"
true
Julia
Julia does have short-circuit evaluation, which works just as you expect it to:
a(x) = (println("\t# Called a($x)"); return x)
b(x) = (println("\t# Called b($x)"); return x)
for i in [true,false], j in [true, false]
println("\nCalculating: x = a($i) && b($j)"); x = a(i) && b(j)
println("\tResult: x = $x")
println("\nCalculating: y = a($i) || b($j)"); y = a(i) || b(j)
println("\tResult: y = $y")
end
- Output:
Calculating: x = a(true) && b(true) # Called a(true) # Called b(true) Result: x = true Calculating: y = a(true) || b(true) # Called a(true) Result: y = true Calculating: x = a(true) && b(false) # Called a(true) # Called b(false) Result: x = false Calculating: y = a(true) || b(false) # Called a(true) Result: y = true Calculating: x = a(false) && b(true) # Called a(false) Result: x = false Calculating: y = a(false) || b(true) # Called a(false) # Called b(true) Result: y = true Calculating: x = a(false) && b(false) # Called a(false) Result: x = false Calculating: y = a(false) || b(false) # Called a(false) # Called b(false) Result: y = false
Kotlin
// version 1.1.2
fun a(v: Boolean): Boolean {
println("'a' called")
return v
}
fun b(v: Boolean): Boolean {
println("'b' called")
return v
}
fun main(args: Array<String>){
val pairs = arrayOf(Pair(true, true), Pair(true, false), Pair(false, true), Pair(false, false))
for (pair in pairs) {
val x = a(pair.first) && b(pair.second)
println("${pair.first} && ${pair.second} = $x")
val y = a(pair.first) || b(pair.second)
println("${pair.first} || ${pair.second} = $y")
println()
}
}
- Output:
'a' called 'b' called true && true = true 'a' called true || true = true 'a' called 'b' called true && false = false 'a' called true || false = true 'a' called false && true = false 'a' called 'b' called false || true = true 'a' called false && false = false 'a' called 'b' called false || false = false
Lambdatalk
Short-circuiting evaluation of boolean expressions has been the default since the first versions of lambdatalk.
{def A {lambda {:bool} :bool}} -> A
{def B {lambda {:bool} :bool}} -> B
{and {A true} {B true}} -> true
{and {A true} {B false}} -> false
{and {A false} {B true}} -> false
{and {A false} {B false}} -> false
{or {A true} {B true}} -> true
{or {A true} {B false}} -> true
{or {A false} {B true}} -> true
{or {A false} {B false}} -> false
Some more words about short-circuit evaluation. Lambdatalk comes with the {if "bool" then "one" else "two"} special form where "one" or "two" are not evaluated until "bool" is. This behaviour prevents useless computing and allows recursive processes. For instance, the naïve fibonacci function quickly leads to extensive computings.
{def fib
{lambda {:n}
{if {< :n 2}
then 1
else {+ {fib {- :n 1}} {fib {- :n 2}}}}}}
-> fib
1) Using the if special form:
{if true then {+ 1 2} else {fib 29}}
-> 3 // {fib 29} is not evaluated
{if false then {+ 1 2} else {fib 29}}
-> 832040 // {fib 29} is evaluated in 5847ms
2) The if special form can't be simply replaced by a pair:
{def when {P.new {+ 1 2} {fib 29}}} // inner expressions are
{P.left {when}} -> 3 // both evaluated before
{P.right {when}} -> 832040 // and we don't want that
3) We can delay evaluation using lambdas:
{def when
{P.new {lambda {} {+ 1 2}} // will return a lambda
{lambda {} {fib 22}} }} // to be evaluated later
-> when
{{P.left {when}}} -> 3 // lambdas are evaluated
{{P.right {when}}} -> 832040 // after choice using {}
Liberty BASIC
LB does not have short-circuit evaluation. Implemented with IFs.
print "AND"
for i = 0 to 1
for j = 0 to 1
print "a("; i; ") AND b( "; j; ")"
res =a( i) 'call always
if res <>0 then 'short circuit if 0
res = b( j)
end if
print "=>",res
next
next
print "---------------------------------"
print "OR"
for i = 0 to 1
for j = 0 to 1
print "a("; i; ") OR b("; j; ")"
res =a( i) 'call always
if res = 0 then 'short circuit if <>0
res = b( j)
end if
print "=>", res
next
next
'----------------------------------------
function a( t)
print ,"calls func a"
a = t
end function
function b( t)
print ,"calls func b"
b = t
end function
- Output:
AND a(0) AND b( 0) calls func a => 0 a(0) AND b( 1) calls func a => 0 a(1) AND b( 0) calls func a calls func b => 0 a(1) AND b( 1) calls func a calls func b => 1 --------------------------------- OR a(0) OR b(0) calls func a calls func b => 0 a(0) OR b(1) calls func a calls func b => 1 a(1) OR b(0) calls func a => 1 a(1) OR b(1) calls func a => 1
LiveCode
Livecode uses short-circuit evaluation.
global outcome
function a bool
put "a called with" && bool & cr after outcome
return bool
end a
function b bool
put "b called with" && bool & cr after outcome
return bool
end b
on mouseUp
local tExp
put empty into outcome
repeat for each item op in "and,or"
repeat for each item x in "true,false"
put merge("a([[x]]) [[op]] b([[x]])") into tExp
put merge(tExp && "is [[" & tExp & "]]") & cr after outcome
put merge("a([[x]]) [[op]] b([[not x]])") into tExp
put merge(tExp && "is [[" & tExp & "]]") & cr after outcome
end repeat
put cr after outcome
end repeat
put outcome
end mouseUp
Logo
The AND
and OR
predicates may take either expressions which are all evaluated beforehand, or lists which are short-circuit evaluated from left to right only until the overall value of the expression can be determined.
and [notequal? :x 0] [1/:x > 3]
(or [:x < 0] [:y < 0] [sqrt :x + sqrt :y < 3])
Lua
function a(i)
print "Function a(i) called."
return i
end
function b(i)
print "Function b(i) called."
return i
end
i = true
x = a(i) and b(i); print ""
y = a(i) or b(i); print ""
i = false
x = a(i) and b(i); print ""
y = a(i) or b(i)
M2000 Interpreter
Module Short_circuit_evaluation {
function a(a as boolean) {
=a
doc$<=format$(" Called function a({0}) -> {0}", a)+{
}
}
function b(b as boolean) {
=b
doc$<=format$(" Called function b({0}) -> {0}", b)+{
}
}
boolean T=true, F, iv, jv
variant L=(F, T), i, j
i=each(L)
global doc$ : document doc$
while i
j=each(L)
while j
(iv, jv)=(array(i), array(j))
doc$<=format$("Calculating x = a({0}) and b({1}) -> {2}", iv, jv, iv and jv)+{
}
x=if(a(iv)->b(jv), F)
doc$<=format$("x={0}", x)+{
}+ format$("Calculating y = a({0}) or b({1}) -> {2}", iv, jv, iv or jv)+{
}
y=if(a(iv)->T, b(jv))
doc$<=format$("y={0}", y)+{
}
end while
end while
clipboard doc$
report doc$
}
Short_circuit_evaluation
- Output:
Calculating x = a(False) and b(False) -> False Called function a(False) -> False x=False Calculating y = a(False) or b(False) -> False Called function a(False) -> False Called function b(False) -> False y=False Calculating x = a(False) and b(True) -> False Called function a(False) -> False x=False Calculating y = a(False) or b(True) -> True Called function a(False) -> False Called function b(True) -> True y=True Calculating x = a(True) and b(False) -> False Called function a(True) -> True Called function b(False) -> False x=False Calculating y = a(True) or b(False) -> True Called function a(True) -> True y=True Calculating x = a(True) and b(True) -> True Called function a(True) -> True Called function b(True) -> True x=True Calculating y = a(True) or b(True) -> True Called function a(True) -> True y=True
Maple
Built-in short circuit evaluation
a := proc(bool)
printf("a is called->%s\n", bool):
return bool:
end proc:
b := proc(bool)
printf("b is called->%s\n", bool):
return bool:
end proc:
for i in [true, false] do
for j in [true, false] do
printf("calculating x := a(i) and b(j)\n"):
x := a(i) and b(j):
printf("calculating x := a(i) or b(j)\n"):
y := a(i) or b(j):
od:
od:
- Output:
calculating x := a(i) and b(j) a is called->true b is called->true calculating x := a(i) or b(j) a is called->true calculating x := a(i) and b(j) a is called->true b is called->false calculating x := a(i) or b(j) a is called->true calculating x := a(i) and b(j) a is called->false calculating x := a(i) or b(j) a is called->false b is called->true calculating x := a(i) and b(j) a is called->false calculating x := a(i) or b(j) a is called->false b is called->false
Mathematica /Wolfram Language
Mathematica has built-in short-circuit evaluation of logical expressions.
a[in_] := (Print["a"]; in)
b[in_] := (Print["b"]; in)
a[False] && b[True]
a[True] || b[False]
Evaluation of the preceding code gives:
a False a True
Whereas evaluating this:
a[True] && b[False]
Gives:
a b False
MATLAB / Octave
Short-circuit evalation is done in logical AND (&&) and logical OR (||) operators:
function x=a(x)
printf('a: %i\n',x);
end;
function x=b(x)
printf('b: %i\n',x);
end;
a(1) && b(1)
a(0) && b(1)
a(1) || b(1)
a(0) || b(1)
- Output:
> a(1) && b(1);
a: 1
b: 1
> a(0) && b(1);
a: 0
> a(1) || b(1);
a: 1
> a(0) || b(1);
a: 0
b: 1
Modula-2
MODULE ShortCircuit;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
PROCEDURE a(v : BOOLEAN) : BOOLEAN;
VAR buf : ARRAY[0..63] OF CHAR;
BEGIN
FormatString(" # Called function a(%b)\n", buf, v);
WriteString(buf);
RETURN v
END a;
PROCEDURE b(v : BOOLEAN) : BOOLEAN;
VAR buf : ARRAY[0..63] OF CHAR;
BEGIN
FormatString(" # Called function b(%b)\n", buf, v);
WriteString(buf);
RETURN v
END b;
PROCEDURE Print(x,y : BOOLEAN);
VAR buf : ARRAY[0..63] OF CHAR;
VAR temp : BOOLEAN;
BEGIN
FormatString("a(%b) AND b(%b)\n", buf, x, y);
WriteString(buf);
temp := a(x) AND b(y);
FormatString("a(%b) OR b(%b)\n", buf, x, y);
WriteString(buf);
temp := a(x) OR b(y);
WriteLn;
END Print;
BEGIN
Print(FALSE,FALSE);
Print(FALSE,TRUE);
Print(TRUE,TRUE);
Print(TRUE,FALSE);
ReadChar
END ShortCircuit.
MUMPS
MUMPS evaluates every expression it encounters, so we have to use conditional statements to do a short circuiting of the expensive second task.
SSEVAL1(IN)
WRITE !,?10,$STACK($STACK,"PLACE")
QUIT IN
SSEVAL2(IN)
WRITE !,?10,$STACK($STACK,"PLACE")
QUIT IN
SSEVAL3
NEW Z
WRITE "1 AND 1"
SET Z=$$SSEVAL1(1) SET:Z Z=Z&$$SSEVAL2(1)
WRITE !,$SELECT(Z:"TRUE",1:"FALSE")
WRITE !!,"0 AND 1"
SET Z=$$SSEVAL1(0) SET:Z Z=Z&$$SSEVAL2(1)
WRITE !,$SELECT(Z:"TRUE",1:"FALSE")
WRITE !!,"1 OR 1"
SET Z=$$SSEVAL1(1) SET:'Z Z=Z!$$SSEVAL2(1)
WRITE !,$SELECT(Z:"TRUE",1:"FALSE")
WRITE !!,"0 OR 1"
SET Z=$$SSEVAL1(0) SET:'Z Z=Z!$$SSEVAL2(1)
WRITE !,$SELECT(Z:"TRUE",1:"FALSE")
KILL Z
QUIT
- Output:
USER>D SSEVAL3^ROSETTA 1 AND 1 SSEVAL1+1^ROSETTA +3 SSEVAL2+1^ROSETTA +3 TRUE 0 AND 1 SSEVAL1+1^ROSETTA +3 FALSE 1 OR 1 SSEVAL1+1^ROSETTA +3 TRUE 0 OR 1 SSEVAL1+1^ROSETTA +3 SSEVAL2+1^ROSETTA +3 TRUE
Nanoquery
Nanoquery does not short-circuit by default, so short-circuit logic functions have been implemented by nested ifs.
def short_and(bool1, bool2)
global a
global b
if a(bool1)
if b(bool2)
return true
else
return false
end
else
return false
end
end
def short_or(bool1, bool2)
if a(bool1)
return true
else
if b(bool2)
return true
else
return false
end
end
end
def a(bool)
println "a called."
return bool
end
def b(bool)
println "b called."
return bool
end
println "F and F = " + short_and(false, false) + "\n"
println "F or F = " + short_or(false, false) + "\n"
println "F and T = " + short_and(false, true) + "\n"
println "F or T = " + short_or(false, true) + "\n"
println "T and F = " + short_and(true, false) + "\n"
println "T or F = " + short_or(true, false) + "\n"
println "T and T = " + short_and(true, true) + "\n"
println "T or T = " + short_or(true, true) + "\n"
- Output:
a called. F and F = false a called. b called. F or F = false a called. F and T = false a called. b called. F or T = true a called. b called. T and F = false a called. T or F = true a called. b called. T and T = true a called. T or T = true
Nemerle
using System.Console;
class ShortCircuit
{
public static a(x : bool) : bool
{
WriteLine("a");
x
}
public static b(x : bool) : bool
{
WriteLine("b");
x
}
public static Main() : void
{
def t = true;
def f = false;
WriteLine("True && True : {0}", a(t) && b(t));
WriteLine("True && False: {0}", a(t) && b(f));
WriteLine("False && True : {0}", a(f) && b(t));
WriteLine("False && False: {0}", a(f) && b(f));
WriteLine("True || True : {0}", a(t) || b(t));
WriteLine("True || False: {0}", a(t) || b(f));
WriteLine("False || True : {0}", a(f) || b(t));
WriteLine("False || False: {0}", a(f) || b(f));
}
}
- Output:
a
b
True && True : True
a
b
True && False: False
a
False && True : False
a
False && False: False
a
True || True : True
a
True || False: True
a
b
False || True : True
a
b
False || False: False
NetRexx
Like OoRexx, NetRexx allows a list of expressions in the condition part of If and When. Evaluation ends with the first of these expressions resulting in boolean true.
/* NetRexx */
options replace format comments java crossref symbols nobinary
Parse Version v
Say 'Version='v
If a() | b() Then Say 'a and b are true'
If \a() | b() Then Say 'Surprise'
Else Say 'ok'
If a(), b() Then Say 'a is true'
If \a(), b() Then Say 'Surprise'
Else Say 'ok: \\a() is false'
Select
When \a(), b() Then Say 'Surprise'
Otherwise Say 'ok: \\a() is false (Select)'
End
Return
method a private static binary returns boolean
state = Boolean.TRUE.booleanValue()
Say '--a returns' state
Return state
method b private static binary returns boolean
state = Boolean.TRUE.booleanValue()
Say '--b returns' state
Return state
- Output:
Version=NetRexx 3.03 11 Jun 2014 --a returns 1 --b returns 1 a and b are true --a returns 1 --b returns 1 Surprise --a returns 1 a is true --a returns 1 --b returns 1 Surprise --a returns 1 --b returns 1 Surprise
Nim
Nim produces code which uses short-circuit evaluation.
proc a(x): bool =
echo "a called"
result = x
proc b(x): bool =
echo "b called"
result = x
let x = a(false) and b(true) # echoes "a called"
let y = a(true) or b(true) # echoes "a called"
Objeck
In Objeck the Boolean operators &
and |
short circuit.
class ShortCircuit {
function : a(a : Bool) ~ Bool {
"a"->PrintLine();
return a;
}
function : b(b : Bool) ~ Bool {
"b"->PrintLine();
return b;
}
function : Main(args : String[]) ~ Nil {
result := a(false) & b(false);
"F and F = {$result}"->PrintLine();
result := a(false) | b(false);
"F or F = {$result}"->PrintLine();
result := a(false) & b(true);
"F and T = {$result}"->PrintLine();
result := a(false) | b(true);
"F or T = {$result}"->PrintLine();
result := a(true) & b(false);
"T and F = {$result}"->PrintLine();
result := a(true) | b(false);
"T or F = {$result}"->PrintLine();
result := a(true) & b(true);
"T and T = {$result}"->PrintLine();
result := a(true) | b(true);
"T or T = {$result}"->PrintLine();
}
}
OCaml
let a r = print_endline " > function a called"; r
let b r = print_endline " > function b called"; r
let test_and b1 b2 =
Printf.printf "# testing (%b && %b)\n" b1 b2;
ignore (a b1 && b b2)
let test_or b1 b2 =
Printf.printf "# testing (%b || %b)\n" b1 b2;
ignore (a b1 || b b2)
let test_this test =
test true true;
test true false;
test false true;
test false false;
;;
let () =
print_endline "==== Testing and ====";
test_this test_and;
print_endline "==== Testing or ====";
test_this test_or;
;;
- Output:
==== Testing and ==== # testing (true && true) > function a called > function b called # testing (true && false) > function a called > function b called # testing (false && true) > function a called # testing (false && false) > function a called ==== Testing or ==== # testing (true || true) > function a called # testing (true || false) > function a called # testing (false || true) > function a called > function b called # testing (false || false) > function a called > function b called
Ol
(define (a x)
(print " (a) => " x)
x)
(define (b x)
(print " (b) => " x)
x)
; and
(print " -- and -- ")
(for-each (lambda (x y)
(print "let's evaluate '(a as " x ") and (b as " y ")':")
(let ((out (and (a x) (b y))))
(print " result is " out)))
'(#t #t #f #f)
'(#t #f #t #f))
; or
(print " -- or -- ")
(for-each (lambda (x y)
(print "let's evaluate '(a as " x ") or (b as " y ")':")
(let ((out (or (a x) (b y))))
(print " result is " out)))
'(#t #t #f #f)
'(#t #f #t #f))
- Output:
-- and -- let's evaluate '(a as #true) and (b as #true)': (a) => #true (b) => #true result is #true let's evaluate '(a as #true) and (b as #false)': (a) => #true (b) => #false result is #false let's evaluate '(a as #false) and (b as #true)': (a) => #false result is #false let's evaluate '(a as #false) and (b as #false)': (a) => #false result is #false -- or -- let's evaluate '(a as #true) or (b as #true)': (a) => #true result is #true let's evaluate '(a as #true) or (b as #false)': (a) => #true result is #true let's evaluate '(a as #false) or (b as #true)': (a) => #false (b) => #true result is #true let's evaluate '(a as #false) or (b as #false)': (a) => #false (b) => #false result is #false
ooRexx
ooRexx allows a list of expressions in the condition part of If and When. Evaluation ends with the first of these expressions resulting in .false (or 0).
Parse Version v
Say 'Version='v
If a() | b() Then Say 'a and b are true'
If \a() | b() Then Say 'Surprise'
Else Say 'ok'
If a(), b() Then Say 'a is true'
If \a(), b() Then Say 'Surprise'
Else Say 'ok: \a() is false'
Select
When \a(), b() Then Say 'Surprise'
Otherwise Say 'ok: \a() is false (Select)'
End
Exit
a: Say 'a returns .true'; Return .true
b: Say 'b returns 1'; Return 1
- Output:
Version=REXX-ooRexx_4.2.0(MT)_32-bit 6.04 22 Feb 2014 a returns .true b returns 1 a and b are true a returns .true b returns 1 Surprise a returns .true b returns 1 a is true a returns .true ok: \a() is false a returns .true ok: \a() is false (Select)
Oz
Oz' andthen
and orelse
operators are short-circuiting, as indicated by their name. The library functions Bool.and
and Bool.or
are not short-circuiting, on the other hand.
declare
fun {A Answer}
AnswerS = {Value.toVirtualString Answer 1 1}
in
{System.showInfo " % Called function {A "#AnswerS#"} -> "#AnswerS}
Answer
end
fun {B Answer}
AnswerS = {Value.toVirtualString Answer 1 1}
in
{System.showInfo " % Called function {B "#AnswerS#"} -> "#AnswerS}
Answer
end
in
for I in [false true] do
for J in [false true] do
X Y
in
{System.showInfo "\nCalculating: X = {A I} andthen {B J}"}
X = {A I} andthen {B J}
{System.showInfo "Calculating: Y = {A I} orelse {B J}"}
Y = {A I} orelse {B J}
end
end
- Output:
Calculating: X = {A I} andthen {B J}
% Called function {A false} -> false
Calculating: Y = {A I} orelse {B J}
% Called function {A false} -> false
% Called function {B false} -> false
Calculating: X = {A I} andthen {B J}
% Called function {A false} -> false
Calculating: Y = {A I} orelse {B J}
% Called function {A false} -> false
% Called function {B true} -> true
Calculating: X = {A I} andthen {B J}
% Called function {A true} -> true
% Called function {B false} -> false
Calculating: Y = {A I} orelse {B J}
% Called function {A true} -> true
Calculating: X = {A I} andthen {B J}
% Called function {A true} -> true
% Called function {B true} -> true
Calculating: Y = {A I} orelse {B J}
% Called function {A true} -> true
PARI/GP
Note that |
and &
are deprecated versions of the GP short-circuit operators.
a(n)={
print(a"("n")");
a
};
b(n)={
print("b("n")");
n
};
or(A,B)={
a(A) || b(B)
};
and(A,B)={
a(A) && b(B)
};
Pascal
Standard Pascal
Standard Pascal doesn't have native short-circuit evaluation.
program shortcircuit(output);
function a(value: boolean): boolean;
begin
writeln('a(', value, ')');
a := value
end;
function b(value:boolean): boolean;
begin
writeln('b(', value, ')');
b := value
end;
procedure scandor(value1, value2: boolean);
var
result: boolean;
begin
{and}
if a(value1)
then
result := b(value2)
else
result := false;
writeln(value1, ' and ', value2, ' = ', result);
{or}
if a(value1)
then
result := true
else
result := b(value2)
writeln(value1, ' or ', value2, ' = ', result);
end;
begin
scandor(false, false);
scandor(false, true);
scandor(true, false);
scandor(true, true);
end.
Turbo Pascal
Turbo Pascal allows short circuit evaluation with a compiler switch:
program shortcircuit;
function a(value: boolean): boolean;
begin
writeln('a(', value, ')');
a := value;
end;
function b(value:boolean): boolean;
begin
writeln('b(', value, ')');
b := value;
end;
{$B-} {enable short circuit evaluation}
procedure scandor(value1, value2: boolean);
var
result: boolean;
begin
result := a(value1) and b(value);
writeln(value1, ' and ', value2, ' = ', result);
result := a(value1) or b(value2);
writeln(value1, ' or ', value2, ' = ', result);
end;
begin
scandor(false, false);
scandor(false, true);
scandor(true, false);
scandor(true, true);
end.
Extended Pascal
The extended Pascal standard introduces the operators and_then
and or_else
for short-circuit evaluation.
program shortcircuit(output);
function a(value: boolean): boolean;
begin
writeln('a(', value, ')');
a := value
end;
function b(value:boolean): boolean;
begin
writeln('b(', value, ')');
b := value
end;
procedure scandor(value1, value2: boolean);
var
result: integer;
begin
result := a(value1) and_then b(value)
writeln(value1, ' and ', value2, ' = ', result);
result := a(value1) or_else b(value2);
writeln(value1, ' or ', value2, ' = ', result)
end;
begin
scandor(false, false);
scandor(false, true);
scandor(true, false);
scandor(true, true);
end.
Note: GNU Pascal allows and then
and or else
as alternatives to and_then
and or_else
.
PascalABC.NET
function a(x:boolean): boolean;
begin
'a called'.Println;
result := x
end;
function b(x:boolean): boolean;
begin
'b called'.Println;
result := x
end;
begin
var x := a(false) and b(true); // a called
var y := a(true) or b(true) // a called
end.
Perl
Perl uses short-circuit boolean evaluation.
sub a { print 'A'; return $_[0] }
sub b { print 'B'; return $_[0] }
# Test-driver
sub test {
for my $op ('&&','||') {
for (qw(1,1 1,0 0,1 0,0)) {
my ($x,$y) = /(.),(.)/;
print my $str = "a($x) $op b($y)", ': ';
eval $str; print "\n"; } }
}
# Test and display
test();
- Output:
a(1) && b(1): AB a(1) && b(0): AB a(0) && b(1): A a(0) && b(0): A a(1) || b(1): A a(1) || b(0): A a(0) || b(1): AB a(0) || b(0): AB
Phix
In Phix all expressions are short circuited
with javascript_semantics function a(integer i) printf(1,"a ") return i end function function b(integer i) printf(1,"b ") return i end function for z=0 to 1 do for i=0 to 1 do for j=0 to 1 do if z then printf(1,"a(%d) and b(%d) ",{i,j}) printf(1," => %d\n",a(i) and b(j)) else printf(1,"a(%d) or b(%d) ",{i,j}) printf(1," => %d\n",a(i) or b(j)) end if end for end for end for
- Output:
a(0) or b(0) a b => 0 a(0) or b(1) a b => 1 a(1) or b(0) a => 1 a(1) or b(1) a => 1 a(0) and b(0) a => 0 a(0) and b(1) a => 0 a(1) and b(0) a b => 0 a(1) and b(1) a b => 1
PicoLisp
(de a (F)
(msg 'a)
F )
(de b (F)
(msg 'b)
F )
(mapc
'((I J)
(for Op '(and or)
(println I Op J '-> (Op (a I) (b J))) ) )
'(NIL NIL T T)
'(NIL T NIL T) )
- Output:
a NIL and NIL -> NIL a b NIL or NIL -> NIL a NIL and T -> NIL a b NIL or T -> T a b T and NIL -> NIL a T or NIL -> T a b T and T -> T a T or T -> T
Pike
int(0..1) a(int(0..1) i)
{
write(" a\n");
return i;
}
int(0..1) b(int(0..1) i)
{
write(" b\n");
return i;
}
foreach(({ ({ false, false }), ({ false, true }), ({ true, true }), ({ true, false }) });; array(int) args)
{
write(" %d && %d\n", @args);
a(args[0]) && b(args[1]);
write(" %d || %d\n", @args);
a(args[0]) || b(args[1]);
}
- Output:
0 && 0 a 0 || 0 a b 0 && 1 a 0 || 1 a b 1 && 1 a b 1 || 1 a 1 && 0 a b 1 || 0 a
PL/I
short_circuit_evaluation:
procedure options (main);
declare (true initial ('1'b), false initial ('0'b) ) bit (1);
declare (i, j, x, y) bit (1);
a: procedure (bv) returns (bit(1));
declare bv bit(1);
put ('Procedure ' || procedurename() || ' called.');
return (bv);
end a;
b: procedure (bv) returns (bit(1));
declare bv bit(1);
put ('Procedure ' || procedurename() || ' called.');
return (bv);
end b;
do i = true, false;
do j = true, false;
put skip(2) list ('Evaluating x with <a> with ' || i || ' and <b> with ' || j);
put skip;
if a(i) then
x = b(j);
else
x = false;
put skip data (x);
put skip(2) list ('Evaluating y with <a> with ' || i || ' and <b> with ' || j);
put skip;
if a(i) then
y = true;
else
y = b(j);
put skip data (y);
end;
end;
end short_circuit_evaluation;
- Results:
Evaluating x with <a> with 1 and <b> with 1 Procedure A called. Procedure B called. X='1'B; Evaluating y with <a> with 1 and <b> with 1 Procedure A called. Y='1'B; Evaluating x with <a> with 1 and <b> with 0 Procedure A called. Procedure B called. X='0'B; Evaluating y with <a> with 1 and <b> with 0 Procedure A called. Y='1'B; Evaluating x with <a> with 0 and <b> with 1 Procedure A called. X='0'B; Evaluating y with <a> with 0 and <b> with 1 Procedure A called. Procedure B called. Y='1'B; Evaluating x with <a> with 0 and <b> with 0 Procedure A called. X='0'B; Evaluating y with <a> with 0 and <b> with 0 Procedure A called. Procedure B called. Y='0'B;
PowerShell
PowerShell handles this natively.
# Simulated fast function
function a ( [boolean]$J ) { return $J }
# Simulated slow function
function b ( [boolean]$J ) { Sleep -Seconds 2; return $J }
# These all short-circuit and do not evaluate the right hand function
( a $True ) -or ( b $False )
( a $True ) -or ( b $True )
( a $False ) -and ( b $False )
( a $False ) -and ( b $True )
# Measure of execution time
Measure-Command {
( a $True ) -or ( b $False )
( a $True ) -or ( b $True )
( a $False ) -and ( b $False )
( a $False ) -and ( b $True )
} | Select TotalMilliseconds
# These all appropriately do evaluate the right hand function
( a $False ) -or ( b $False )
( a $False ) -or ( b $True )
( a $True ) -and ( b $False )
( a $True ) -and ( b $True )
# Measure of execution time
Measure-Command {
( a $False ) -or ( b $False )
( a $False ) -or ( b $True )
( a $True ) -and ( b $False )
( a $True ) -and ( b $True )
} | Select TotalMilliseconds
- Output:
True True False False TotalMilliseconds ----------------- 15.653 False True False True 8012.9405
Prolog
Prolog has not functions but predicats succeed of fail. Tested with SWI-Prolog. Should work with other dialects.
short_circuit :-
( a_or_b(true, true) -> writeln('==> true'); writeln('==> false')) , nl,
( a_or_b(true, false)-> writeln('==> true'); writeln('==> false')) , nl,
( a_or_b(false, true)-> writeln('==> true'); writeln('==> false')) , nl,
( a_or_b(false, false)-> writeln('==> true'); writeln('==> false')) , nl,
( a_and_b(true, true)-> writeln('==> true'); writeln('==> false')) , nl,
( a_and_b(true, false)-> writeln('==> true'); writeln('==> false')) , nl,
( a_and_b(false, true)-> writeln('==> true'); writeln('==> false')) , nl,
( a_and_b(false, false)-> writeln('==> true'); writeln('==> false')) .
a_and_b(X, Y) :-
format('a(~w) and b(~w)~n', [X, Y]),
( a(X), b(Y)).
a_or_b(X, Y) :-
format('a(~w) or b(~w)~n', [X, Y]),
( a(X); b(Y)).
a(X) :-
format('a(~w)~n', [X]),
X.
b(X) :-
format('b(~w)~n', [X]),
X.
- Output:
?- short_circuit.
a(true) or b(true)
a(true)
==> true
a(true) or b(false)
a(true)
==> true
a(false) or b(true)
a(false)
b(true)
==> true
a(false) or b(false)
a(false)
b(false)
==> false
a(true) and b(true)
a(true)
b(true)
==> true
a(true) and b(false)
a(true)
b(false)
==> false
a(false) and b(true)
a(false)
==> false
a(false) and b(false)
a(false)
==> false
true.
PureBasic
Logical And & Or operators will not evaluate their right-hand expression if the outcome can be determined from the value of the left-hand expression.
Procedure a(arg)
PrintN(" # Called function a("+Str(arg)+")")
ProcedureReturn arg
EndProcedure
Procedure b(arg)
PrintN(" # Called function b("+Str(arg)+")")
ProcedureReturn arg
EndProcedure
OpenConsole()
For a=#False To #True
For b=#False To #True
PrintN(#CRLF$+"Calculating: x = a("+Str(a)+") And b("+Str(b)+")")
x= a(a) And b(b)
PrintN("Calculating: x = a("+Str(a)+") Or b("+Str(b)+")")
y= a(a) Or b(b)
Next
Next
Input()
- Output:
Calculating: x = a(0) And b(0) # Called function a(0) Calculating: x = a(0) Or b(0) # Called function a(0) # Called function b(0) Calculating: x = a(0) And b(1) # Called function a(0) Calculating: x = a(0) Or b(1) # Called function a(0) # Called function b(1) Calculating: x = a(1) And b(0) # Called function a(1) # Called function b(0) Calculating: x = a(1) Or b(0) # Called function a(1) Calculating: x = a(1) And b(1) # Called function a(1) # Called function b(1) Calculating: x = a(1) Or b(1) # Called function a(1)
Python
Pythons and and or binary, infix, boolean operators will not evaluate their right-hand expression if the outcome can be determined from the value of the left-hand expression.
>>> def a(answer):
print(" # Called function a(%r) -> %r" % (answer, answer))
return answer
>>> def b(answer):
print(" # Called function b(%r) -> %r" % (answer, answer))
return answer
>>> for i in (False, True):
for j in (False, True):
print ("\nCalculating: x = a(i) and b(j)")
x = a(i) and b(j)
print ("Calculating: y = a(i) or b(j)")
y = a(i) or b(j)
Calculating: x = a(i) and b(j)
# Called function a(False) -> False
Calculating: y = a(i) or b(j)
# Called function a(False) -> False
# Called function b(False) -> False
Calculating: x = a(i) and b(j)
# Called function a(False) -> False
Calculating: y = a(i) or b(j)
# Called function a(False) -> False
# Called function b(True) -> True
Calculating: x = a(i) and b(j)
# Called function a(True) -> True
# Called function b(False) -> False
Calculating: y = a(i) or b(j)
# Called function a(True) -> True
Calculating: x = a(i) and b(j)
# Called function a(True) -> True
# Called function b(True) -> True
Calculating: y = a(i) or b(j)
# Called function a(True) -> True
Pythons if expression can also be used to the same ends (but probably should not):
>>> for i in (False, True):
for j in (False, True):
print ("\nCalculating: x = a(i) and b(j) using x = b(j) if a(i) else False")
x = b(j) if a(i) else False
print ("Calculating: y = a(i) or b(j) using y = b(j) if not a(i) else True")
y = b(j) if not a(i) else True
Calculating: x = a(i) and b(j) using x = b(j) if a(i) else False
# Called function a(False) -> False
Calculating: y = a(i) or b(j) using y = b(j) if not a(i) else True
# Called function a(False) -> False
# Called function b(False) -> False
Calculating: x = a(i) and b(j) using x = b(j) if a(i) else False
# Called function a(False) -> False
Calculating: y = a(i) or b(j) using y = b(j) if not a(i) else True
# Called function a(False) -> False
# Called function b(True) -> True
Calculating: x = a(i) and b(j) using x = b(j) if a(i) else False
# Called function a(True) -> True
# Called function b(False) -> False
Calculating: y = a(i) or b(j) using y = b(j) if not a(i) else True
# Called function a(True) -> True
Calculating: x = a(i) and b(j) using x = b(j) if a(i) else False
# Called function a(True) -> True
# Called function b(True) -> True
Calculating: y = a(i) or b(j) using y = b(j) if not a(i) else True
# Called function a(True) -> True
Quackery
Quackery does not include short-circuit evaluation, but it can be added by use of meta-control flow words (words wrapped in reverse brackets such as ]done[
.) For details see: The Book of Quackery
The short-circuit evaluation words SC-and
and SC-or
defined here are used thus: [ a 1 SC-and b ]
and [ a 1 SC-or b ]
. These presumes that the arguments to a
and b
are on the stack in the order j i
.
The 1
preceding the word is required to indicate the number of arguments that b
would consume from the stack if it were evaluated.
Extending the task to three functions, the third, c
also consuming one argument k
and returning a boolean, present on the stack underneath j
and i
would lead to the code [ a 2 SC-and b 1 SC-and c ]
and [ a 2 SC-or b 1 SC-or c ]
, where the 2
is the sum of the number of arguments consumed by b
and c
, and the 1
is the number of arguments consumed by c
.
SC-and
and SC-or
can both be used in a single short-circuit evaluation nest with three or more functions. Evaluation is strictly left to right.
Quackery does not have variables, so no assignment is shown here. Words (functions) leave their results on the stack. If desired results can be moved to ancillary stacks, which include standing-in for variables amongst their functionality.
[ say "evaluating "
]this[ echo cr ] is ident ( --> )
[ iff say "true"
else say "false" ] is echobool ( b --> )
[ swap iff drop done
times drop
false ]done[ ] is SC-and ( b n --> )
[ swap not iff drop done
times drop
true ]done[ ] is SC-or ( b n --> )
[ ident
2 times not ] is a ( b --> b )
[ ident
4 times not ] is b ( b --> b )
[ say "i = "
dup echobool
say " AND j = "
dup echobool
cr
[ a 1 SC-and b ]
say "result is "
echobool cr cr ] is AND-demo ( --> )
[ say "i = "
dup echobool
say " OR j = "
dup echobool
cr
[ a 1 SC-or b ]
say "result is "
echobool
cr cr ] is OR-demo ( --> )
true true AND-demo
true false AND-demo
false true AND-demo
false false AND-demo
cr
true true OR-demo
true false OR-demo
false true OR-demo
false false OR-demo
- Output:
i = true AND j = true evaluating a evaluating b result is true i = false AND j = false evaluating a result is false i = true AND j = true evaluating a evaluating b result is false i = false AND j = false evaluating a result is false i = true OR j = true evaluating a result is true i = false OR j = false evaluating a evaluating b result is true i = true OR j = true evaluating a result is true i = false OR j = false evaluating a evaluating b result is false
R
The builtins && and || will short circuit:
a <- function(x) {cat("a called\n"); x}
b <- function(x) {cat("b called\n"); x}
tests <- expand.grid(op=list(quote(`||`), quote(`&&`)), x=c(1,0), y=c(1,0))
invisible(apply(tests, 1, function(row) {
call <- substitute(op(a(x),b(y)), row)
cat(deparse(call), "->", eval(call), "\n\n")
}))
- Output:
a called
a(1) || b(1) -> TRUE
a called
b called
a(1) && b(1) -> TRUE
a called
b called
a(0) || b(1) -> TRUE
a called
a(0) && b(1) -> FALSE
a called
a(1) || b(0) -> TRUE
a called
b called
a(1) && b(0) -> FALSE
a called
b called
a(0) || b(0) -> FALSE
a called
a(0) && b(0) -> FALSE
Because R waits until function arguments are needed before evaluating them, user-defined functions can also short circuit.
switchop <- function(s, x, y) {
if(s < 0) x || y
else if (s > 0) x && y
else xor(x, y)
}
- Output:
> switchop(-1, a(1), b(1))
a called
[1] TRUE
> switchop(1, a(1), b(1))
a called
b called
[1] TRUE
> switchop(1, a(0), b(1))
a called
[1] FALSE
> switchop(0, a(0), b(1))
a called
b called
[1] TRUE
Racket
#lang racket
(define (a x)
(display (~a "a:" x " "))
x)
(define (b x)
(display (~a "b:" x " "))
x)
(for* ([x '(#t #f)]
[y '(#t #f)])
(displayln `(and (a ,x) (b ,y)))
(and (a x) (b y))
(newline)
(displayln `(or (a ,x) (b ,y)))
(or (a x) (b y))
(newline))
- Output:
(and (a #t) (b #t)) a:#t b:#t (or (a #t) (b #t)) a:#t (and (a #t) (b #f)) a:#t b:#f (or (a #t) (b #f)) a:#t (and (a #f) (b #t)) a:#f (or (a #f) (b #t)) a:#f b:#t (and (a #f) (b #f)) a:#f (or (a #f) (b #f)) a:#f b:#f
Raku
(formerly Perl 6)
use MONKEY-SEE-NO-EVAL;
sub a ($p) { print 'a'; $p }
sub b ($p) { print 'b'; $p }
for 1, 0 X 1, 0 -> ($p, $q) {
for '&&', '||' -> $op {
my $s = "a($p) $op b($q)";
print "$s: ";
EVAL $s;
print "\n";
}
}
- Output:
a(1) && b(1): ab a(1) || b(1): a a(1) && b(0): ab a(1) || b(0): a a(0) && b(1): a a(0) || b(1): ab a(0) && b(0): a a(0) || b(0): ab
REXX
The REXX language doesn't have native short circuits (it's specifically mentioned in the
language specifications that
short-circuiting is not supported).
/*REXX programs demonstrates short─circuit evaluation testing (in an IF statement).*/
parse arg LO HI . /*obtain optional arguments from the CL*/
if LO=='' | LO=="," then LO= -2 /*Not specified? Then use the default.*/
if HI=='' | HI=="," then HI= 2 /* " " " " " " */
do j=LO to HI /*process from the low to the high.*/
x=a(j) & b(j) /*compute function A and function B */
y=a(j) | b(j) /* " " " or " " */
if \y then y=b(j) /* " " B (for negation).*/
say copies('═', 30) ' x=' || x ' y='y ' j='j
say
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
a: say ' A entered with:' arg(1); return abs( arg(1) // 2) /*1=odd, 0=even */
b: say ' B entered with:' arg(1); return arg(1) < 0 /*1=neg, 0=if not*/
- output when using the default inputs:
B entered with: -2 A entered with: -2 B entered with: -2 A entered with: -2 ══════════════════════════════ x=0 y=1 j=-2 B entered with: -1 A entered with: -1 B entered with: -1 A entered with: -1 ══════════════════════════════ x=1 y=1 j=-1 B entered with: 0 A entered with: 0 B entered with: 0 A entered with: 0 B entered with: 0 ══════════════════════════════ x=0 y=0 j=0 B entered with: 1 A entered with: 1 B entered with: 1 A entered with: 1 ══════════════════════════════ x=0 y=1 j=1 B entered with: 2 A entered with: 2 B entered with: 2 A entered with: 2 B entered with: 2 ══════════════════════════════ x=0 y=0 j=2
Ring
# Project : Short-circuit evaluation
for k = 1 to 2
word = ["AND","OR"]
see "========= " + word[k] + " ==============" + nl
for i = 0 to 1
for j = 0 to 1
see "a(" + i + ") " + word[k] +" b(" + j + ")" + nl
res =a(i)
if word[k] = "AND" and res != 0
res = b(j)
ok
if word[k] = "OR" and res = 0
res = b(j)
ok
next
next
next
func a(t)
see char(9) + "calls func a" + nl
a = t
return a
func b(t)
see char(9) + "calls func b" + nl
b = t
return b
Output:
========= AND ============== a(0) AND b(0) calls func a a(0) AND b(1) calls func a a(1) AND b(0) calls func a calls func b a(1) AND b(1) calls func a calls func b ========= OR ============== a(0) OR b(0) calls func a calls func b a(0) OR b(1) calls func a calls func b a(1) OR b(0) calls func a a(1) OR b(1) calls func a
Ruby
Binary operators are short-circuiting. Demonstration code:
def a( bool )
puts "a( #{bool} ) called"
bool
end
def b( bool )
puts "b( #{bool} ) called"
bool
end
[true, false].each do |a_val|
[true, false].each do |b_val|
puts "a( #{a_val} ) and b( #{b_val} ) is #{a( a_val ) and b( b_val )}."
puts
puts "a( #{a_val} ) or b( #{b_val} ) is #{a( a_val) or b( b_val )}."
puts
end
end
- Output:
a( true ) called b( true ) called a( true ) and b( true ) is true. a( true ) called a( true ) or b( true ) is true. a( true ) called b( false ) called a( true ) and b( false ) is false. a( true ) called a( true ) or b( false ) is true. a( false ) called a( false ) and b( true ) is false. a( false ) called b( true ) called a( false ) or b( true ) is true. a( false ) called a( false ) and b( false ) is false. a( false ) called b( false ) called a( false ) or b( false ) is false.
Run BASIC
for k = 1 to 2
ao$ = word$("AND,OR",k,",")
print "========= ";ao$;" =============="
for i = 0 to 1
for j = 0 to 1
print "a("; i; ") ";ao$;" b("; j; ")"
res =a(i) 'call always
'print res;"<===="
if ao$ = "AND" and res <> 0 then res = b(j)
if ao$ = "OR" and res = 0 then res = b(j)
next
next
next k
end
function a( t)
print chr$(9);"calls func a"
a = t
end function
function b( t)
print chr$(9);"calls func b"
b = t
end function
========= AND ============== a(0) AND b(0) calls func a a(0) AND b(1) calls func a a(1) AND b(0) calls func a calls func b a(1) AND b(1) calls func a calls func b ========= OR ============== a(0) OR b(0) calls func a calls func b a(0) OR b(1) calls func a calls func b a(1) OR b(0) calls func a a(1) OR b(1) calls func a
Rust
fn a(foo: bool) -> bool {
println!("a");
foo
}
fn b(foo: bool) -> bool {
println!("b");
foo
}
fn main() {
for i in vec![true, false] {
for j in vec![true, false] {
println!("{} and {} == {}", i, j, a(i) && b(j));
println!("{} or {} == {}", i, j, a(i) || b(j));
println!();
}
}
}
- Output:
a b true and true == true a true or true == true a b true and false == false a true or false == true a false and true == false a b false or true == true a false and false == false a b false or false == false
Sather
class MAIN is
a(v:BOOL):BOOL is
#OUT + "executing a\n";
return v;
end;
b(v:BOOL):BOOL is
#OUT + "executing b\n";
return v;
end;
main is
x:BOOL;
x := a(false) and b(true);
#OUT + "F and T = " + x + "\n\n";
x := a(true) or b(true);
#OUT + "T or T = " + x + "\n\n";
x := a(true) and b(false);
#OUT + "T and T = " + x + "\n\n";
x := a(false) or b(true);
#OUT + "F or T = " + x + "\n\n";
end;
end;
Scala
object ShortCircuit {
def a(b:Boolean)={print("Called A=%5b".format(b));b}
def b(b:Boolean)={print(" -> B=%5b".format(b));b}
def main(args: Array[String]): Unit = {
val boolVals=List(false,true)
for(aa<-boolVals; bb<-boolVals){
print("\nTesting A=%5b AND B=%5b -> ".format(aa, bb))
a(aa) && b(bb)
}
for(aa<-boolVals; bb<-boolVals){
print("\nTesting A=%5b OR B=%5b -> ".format(aa, bb))
a(aa) || b(bb)
}
println
}
}
- Output:
Testing A=false AND B=false -> Called A=false Testing A=false AND B= true -> Called A=false Testing A= true AND B=false -> Called A= true -> B=false Testing A= true AND B= true -> Called A= true -> B= true Testing A=false OR B=false -> Called A=false -> B=false Testing A=false OR B= true -> Called A=false -> B= true Testing A= true OR B=false -> Called A= true Testing A= true OR B= true -> Called A= true
Scheme
>(define (a x)
(display "a\n")
x)
>(define (b x)
(display "b\n")
x)
>(for-each (lambda (i)
(for-each (lambda (j)
(display i) (display " and ") (display j) (newline)
(and (a i) (b j))
(display i) (display " or ") (display j) (newline)
(or (a i) (b j))
) '(#t #f))
) '(#t #f))
#t and #t
a
b
#t or #t
a
#t and #f
a
b
#t or #f
a
#f and #t
a
#f or #t
a
b
#f and #f
a
#f or #f
a
b
Seed7
$ include "seed7_05.s7i";
const func boolean: a (in boolean: aBool) is func
result
var boolean: result is FALSE;
begin
writeln("a");
result := aBool;
end func;
const func boolean: b (in boolean: aBool) is func
result
var boolean: result is FALSE;
begin
writeln("b");
result := aBool;
end func;
const proc: test (in boolean: param1, in boolean: param2) is func
begin
writeln(param1 <& " and " <& param2 <& " = " <& a(param1) and b(param2));
writeln(param1 <& " or " <& param2 <& " = " <& a(param1) or b(param2));
end func;
const proc: main is func
begin
test(FALSE, FALSE);
test(FALSE, TRUE);
test(TRUE, FALSE);
test(TRUE, TRUE);
end func;
- Output:
a FALSE and FALSE = FALSE a b FALSE or FALSE = FALSE a FALSE and TRUE = FALSE a b FALSE or TRUE = TRUE a b TRUE and FALSE = FALSE a TRUE or FALSE = TRUE a b TRUE and TRUE = TRUE a TRUE or TRUE = TRUE
Sidef
func a(bool) { print 'A'; return bool }
func b(bool) { print 'B'; return bool }
# Test-driver
func test() {
for op in ['&&', '||'] {
for x,y in [[1,1],[1,0],[0,1],[0,0]] {
"a(%s) %s b(%s): ".printf(x, op, y)
eval "a(Bool(x)) #{op} b(Bool(y))"
print "\n"
}
}
}
# Test and display
test()
- Output:
a(1) && b(1): AB a(1) && b(0): AB a(0) && b(1): A a(0) && b(0): A a(1) || b(1): A a(1) || b(0): A a(0) || b(1): AB a(0) || b(0): AB
Simula
BEGIN
BOOLEAN PROCEDURE A(BOOL); BOOLEAN BOOL;
BEGIN OUTCHAR('A'); A := BOOL;
END A;
BOOLEAN PROCEDURE B(BOOL); BOOLEAN BOOL;
BEGIN OUTCHAR('B'); B := BOOL;
END B;
PROCEDURE OUTBOOL(BOOL); BOOLEAN BOOL;
OUTCHAR(IF BOOL THEN 'T' ELSE 'F');
PROCEDURE TEST;
BEGIN
PROCEDURE ANDTEST;
BEGIN
BOOLEAN X, Y, Z;
FOR X := TRUE, FALSE DO
FOR Y := TRUE, FALSE DO
BEGIN
OUTTEXT("A("); OUTBOOL(X);
OUTTEXT(") AND ");
OUTTEXT("B("); OUTBOOL(Y);
OUTTEXT("): ");
Z := A(X) AND THEN B(Y);
OUTIMAGE;
END;
END ANDTEST;
PROCEDURE ORTEST;
BEGIN
BOOLEAN X, Y, Z;
FOR X := TRUE, FALSE DO
FOR Y := TRUE, FALSE DO
BEGIN
OUTTEXT("A("); OUTBOOL(X);
OUTTEXT(") OR ");
OUTTEXT("B("); OUTBOOL(Y);
OUTTEXT("): ");
Z := A(X) OR ELSE B(Y);
OUTIMAGE;
END;
END ORTEST;
ANDTEST;
ORTEST;
END TEST;
TEST;
END.
- Output:
A(T) AND B(T): AB A(T) AND B(F): AB A(F) AND B(T): A A(F) AND B(F): A A(T) OR B(T): A A(T) OR B(F): A A(F) OR B(T): AB A(F) OR B(F): AB
Smalltalk
The and:
or:
selectors are shortcircuit selectors but in order to avoid evaluation of the second operand, it must be a block: a and: [ code ]
will evaluate the code only if a is true. On the other hand, a and: b
, where b is an expression (not a block), behaves like the non-shortcircuit and (&). (Same speech for or |)
Smalltalk at: #a put: nil.
Smalltalk at: #b put: nil.
a := [:x| 'executing a' displayNl. x].
b := [:x| 'executing b' displayNl. x].
('false and false = %1' %
{ (a value: false) and: [ b value: false ] })
displayNl.
('true or false = %1' %
{ (a value: true) or: [ b value: false ] })
displayNl.
('false or true = %1' %
{ (a value: false) or: [ b value: true ] })
displayNl.
('true and false = %1' %
{ (a value: true) and: [ b value: false ] })
displayNl.
SNOBOL4
Because of its unique success/failure model of flow control, Snobol does not use standard boolean operators or assignment. However, in &fullscan mode Snobol exhibits short-circuit boolean behavior in pattern matches, with concatenation " " functioning as logical AND, and alternation " | " as logical OR.
The test statements below use a pattern constructed from the functions a( ) and b( ) and match it to the null string with deferred evaluation. This idiom allows the functions to self-report the expected short-circuit patterns.
define('a(val)') :(a_end)
a out = 'A '
eq(val,1) :s(return)f(freturn)
a_end
define('b(val)') :(b_end)
b out = 'B '
eq(val,1) :s(return)f(freturn)
b_end
* # Test and display
&fullscan = 1
output(.out,1,'-[-r1]') ;* Macro Spitbol
* output(.out,1,'B','-') ;* CSnobol
define('nl()'):(nlx);nl output = :(return);nlx
out = 'T and T: '; null ? *a(1) *b(1); nl()
out = 'T and F: '; null ? *a(1) *b(0); nl()
out = 'F and T: '; null ? *a(0) *b(1); nl()
out = 'F and F: '; null ? *a(0) *b(0); nl()
output =
out = 'T or T: '; null ? *a(1) | *b(1); nl()
out = 'T or F: '; null ? *a(1) | *b(0); nl()
out = 'F or T: '; null ? *a(0) | *b(1); nl()
out = 'F or F: '; null ? *a(0) | *b(0); nl()
end
- Output:
T and T: A B T and F: A B F and T: A F and F: A T or T: A T or F: A F or T: A B F or F: A B
Standard ML
fun a r = ( print " > function a called\n"; r )
fun b r = ( print " > function b called\n"; r )
fun test_and b1 b2 = (
print ("# testing (" ^ Bool.toString b1 ^ " andalso " ^ Bool.toString b2 ^ ")\n");
ignore (a b1 andalso b b2) )
fun test_or b1 b2 = (
print ("# testing (" ^ Bool.toString b1 ^ " orelse " ^ Bool.toString b2 ^ ")\n");
ignore (a b1 orelse b b2) )
fun test_this test = (
test true true;
test true false;
test false true;
test false false )
;
print "==== Testing and ====\n";
test_this test_and;
print "==== Testing or ====\n";
test_this test_or;
- Output:
==== Testing and ==== # testing (true andalso true) > function a called > function b called # testing (true andalso false) > function a called > function b called # testing (false andalso true) > function a called # testing (false andalso false) > function a called ==== Testing or ==== # testing (true orelse true) > function a called # testing (true orelse false) > function a called # testing (false orelse true) > function a called > function b called # testing (false orelse false) > function a called > function b called
Stata
Stata always evaluates both arguments of operators & and |. Here is a solution with if statements.
function a(x) {
printf(" a")
return(x)
}
function b(x) {
printf(" b")
return(x)
}
function call(i, j) {
printf("and:")
x = a(i)
if (x) {
x = b(j)
}
printf("\nor:")
y = a(i)
if (!y) {
y = b(j)
}
printf("\n")
return((x,y))
}
Example
: call(0,1)
and: a
or: a b
1 2
+---------+
1 | 0 1 |
+---------+
: call(1,1)
and: a b
or: a
1 2
+---------+
1 | 1 1 |
+---------+
Swift
Short circuit operators are && and ||.
func a(v: Bool) -> Bool {
print("a")
return v
}
func b(v: Bool) -> Bool {
print("b")
return v
}
func test(i: Bool, j: Bool) {
println("Testing a(\(i)) && b(\(j))")
print("Trace: ")
println("\nResult: \(a(i) && b(j))")
println("Testing a(\(i)) || b(\(j))")
print("Trace: ")
println("\nResult: \(a(i) || b(j))")
println()
}
test(false, false)
test(false, true)
test(true, false)
test(true, true)
- Output:
Testing a(false) && b(false) Trace: a Result: false Testing a(false) || b(false) Trace: ab Result: false Testing a(false) && b(true) Trace: a Result: false Testing a(false) || b(true) Trace: ab Result: true Testing a(true) && b(false) Trace: ab Result: false Testing a(true) || b(false) Trace: a Result: true Testing a(true) && b(true) Trace: ab Result: true Testing a(true) || b(true) Trace: a Result: true
Tcl
The &&
and ||
in the expr
command support short-circuit evaluation. It is recommended that you always put expressions in braces so that and command or variable substitutions are applied at the right time rather than before the expression is evaluated at all. (Indeed, it is recommended that you do that anyway as unbraced expressions cannot be efficiently compiled.)
package require Tcl 8.5
proc tcl::mathfunc::a boolean {
puts "a($boolean) called"
return $boolean
}
proc tcl::mathfunc::b boolean {
puts "b($boolean) called"
return $boolean
}
foreach i {false true} {
foreach j {false true} {
set x [expr {a($i) && b($j)}]
puts "x = a($i) && b($j) = $x"
set y [expr {a($i) || b($j)}]
puts "y = a($i) || b($j) = $y"
puts ""; # Blank line for clarity
}
}
- Output:
Note that booleans may be written out words or numeric
a(false) called x = a(false) && b(false) = 0 a(false) called b(false) called y = a(false) || b(false) = 0 a(false) called x = a(false) && b(true) = 0 a(false) called b(true) called y = a(false) || b(true) = 1 a(true) called b(false) called x = a(true) && b(false) = 0 a(true) called y = a(true) || b(false) = 1 a(true) called b(true) called x = a(true) && b(true) = 1 a(true) called y = a(true) || b(true) = 1
TXR
@(define a (x out))
@ (output)
a (@x) called
@ (end)
@ (bind out x)
@(end)
@(define b (x out))
@ (output)
b (@x) called
@ (end)
@ (bind out x)
@(end)
@(define short_circuit_demo (i j))
@ (output)
a(@i) and b(@j):
@ (end)
@ (maybe)
@ (a i "1")
@ (b j "1")
@ (end)
@ (output)
a(@i) or b(@j):
@ (end)
@ (cases)
@ (a i "1")
@ (or)
@ (b j "1")
@ (or)
@ (accept)
@ (end)
@(end)
@(short_circuit_demo "0" "0")
@(short_circuit_demo "0" "1")
@(short_circuit_demo "1" "0")
@(short_circuit_demo "1" "1")
- Run:
$ txr short-circuit-bool.txr a(0) and b(0): a (0) called a(0) or b(0): a (0) called b (0) called a(0) and b(1): a (0) called a(0) or b(1): a (0) called b (1) called a(1) and b(0): a (1) called b (0) called a(1) or b(0): a (1) called a(1) and b(1): a (1) called b (1) called a(1) or b(1): a (1) called
The a
and b
functions are defined such that the second parameter is intended to be an unbound variable. When the function binds out
, that value propagates back to the unbound variable at the call site. But the way calls works in this language allows us to specify a value instead such as "1"
. So now the directive @(bind out x)
performs unification instead: if x
doesn't match "1"
, the function fails, otherwise it succeeds.
So simply by placing two calls consecutively, we get a short circuting conjunction. The second will not execute if the first one fails.
Short-circuiting disjunction is provided by @(cases)
.
The @(maybe)
construct stops failure from propagating from the enclosed subquery. The @(accept)
directive will bail out of the closest enclosing anonymous block (the function body) with a success. It prevents the @(cases)
from failing the function if neither case is successful.
UNIX Shell
The && and || operators use the exit status of each command. The true and false commands convert a string to an exit status; our code && x=true || x=false converts an exit status to a string.
a() {
echo "Called a $1"
"$1"
}
b() {
echo "Called b $1"
"$1"
}
for i in false true; do
for j in false true; do
a $i && b $j && x=true || x=false
echo " $i && $j is $x"
a $i || b $j && y=true || y=false
echo " $i || $j is $y"
done
done
The output reveals that && and || have short-circuit evaluation.
Called a false false && false is false Called a false Called b false false || false is false Called a false false && true is false Called a false Called b true false || true is true Called a true Called b false true && false is false Called a true true || false is true Called a true Called b true true && true is true Called a true true || true is true
C Shell
Between commands, && and || have short-circuit evaluation. (The aliases for a and b must expand to a single command; these aliases expand to an eval command.)
alias a eval \''echo "Called a \!:1"; "\!:1"'\'
alias b eval \''echo "Called b \!:1"; "\!:1"'\'
foreach i (false true)
foreach j (false true)
a $i && b $j && set x=true || set x=false
echo " $i && $j is $x"
a $i || b $j && set x=true || set x=false
echo " $i || $j is $x"
end
end
Inside expressions, && and || can short circuit some commands, but cannot prevent substitutions.
# Succeeds, only prints "ok".
if ( 1 || { echo This command never runs. } ) echo ok
# Fails, aborts shell with "bad: Undefined variable".
if ( 1 || $bad ) echo ok
# Prints "error", then "ok".
if ( 1 || `echo error >/dev/stderr` ) echo ok
VBA
Private Function a(i As Variant) As Boolean
Debug.Print "a: "; i = 1,
a = i
End Function
Private Function b(j As Variant) As Boolean
Debug.Print "b: "; j = 1;
b = j
End Function
Public Sub short_circuit()
Dim x As Boolean, y As Boolean
'Dim p As Boolean, q As Boolean
Debug.Print "=====AND=====" & vbCrLf
For p = 0 To 1
For q = 0 To 1
If a(p) Then
x = b(q)
End If
Debug.Print " = x"
Next q
Debug.Print
Next p
Debug.Print "======OR=====" & vbCrLf
For p = 0 To 1
For q = 0 To 1
If Not a(p) Then
x = b(q)
End If
Debug.Print " = x"
Next q
Debug.Print
Next p
Debug.Print
End Sub
- Output:
=====AND=====a: Onwaar = x a: Onwaar = x
a: Waar b: Onwaar = x a: Waar b: Waar = x
======OR=====
a: Onwaar b: Onwaar = x a: Onwaar b: Waar = x
a: Waar = x
a: Waar = x
Visual Basic .NET
Module Module1
Function A(v As Boolean) As Boolean
Console.WriteLine("a")
Return v
End Function
Function B(v As Boolean) As Boolean
Console.WriteLine("b")
Return v
End Function
Sub Test(i As Boolean, j As Boolean)
Console.WriteLine("{0} and {1} = {2} (eager evaluation)", i, j, A(i) And B(j))
Console.WriteLine("{0} or {1} = {2} (eager evaluation)", i, j, A(i) Or B(j))
Console.WriteLine("{0} and {1} = {2} (lazy evaluation)", i, j, A(i) AndAlso B(j))
Console.WriteLine("{0} or {1} = {2} (lazy evaluation)", i, j, A(i) OrElse B(j))
Console.WriteLine()
End Sub
Sub Main()
Test(False, False)
Test(False, True)
Test(True, False)
Test(True, True)
End Sub
End Module
- Output:
a b False and False = False (eager evaluation) a b False or False = False (eager evaluation) a False and False = False (lazy evaluation) a b False or False = False (lazy evaluation) a b False and True = False (eager evaluation) a b False or True = True (eager evaluation) a False and True = False (lazy evaluation) a b False or True = True (lazy evaluation) a b True and False = False (eager evaluation) a b True or False = True (eager evaluation) a b True and False = False (lazy evaluation) a True or False = True (lazy evaluation) a b True and True = True (eager evaluation) a b True or True = True (eager evaluation) a b True and True = True (lazy evaluation) a True or True = True (lazy evaluation)
Visual FoxPro
*!* Visual FoxPro natively supports short circuit evaluation
CLEAR
CREATE CURSOR funceval(arg1 L, arg2 L, operation V(3), result L, calls V(10))
*!* Conjunction
INSERT INTO funceval (arg1, arg2, operation) VALUES (.F., .F., "AND")
REPLACE result WITH (a(arg1) AND b(arg2))
INSERT INTO funceval (arg1, arg2, operation) VALUES (.F., .T., "AND")
REPLACE result WITH (a(arg1) AND b(arg2))
INSERT INTO funceval (arg1, arg2, operation) VALUES (.T., .F., "AND")
REPLACE result WITH (a(arg1) AND b(arg2))
INSERT INTO funceval (arg1, arg2, operation) VALUES (.T., .T., "AND")
REPLACE result WITH (a(arg1) AND b(arg2))
*!* Disjunction
INSERT INTO funceval (arg1, arg2, operation) VALUES (.F., .F., "OR")
REPLACE result WITH (a(arg1) OR b(arg2))
INSERT INTO funceval (arg1, arg2, operation) VALUES (.F., .T., "OR")
REPLACE result WITH (a(arg1) OR b(arg2))
INSERT INTO funceval (arg1, arg2, operation) VALUES (.T., .F., "OR")
REPLACE result WITH (a(arg1) OR b(arg2))
INSERT INTO funceval (arg1, arg2, operation) VALUES (.T., .T., "OR")
REPLACE result WITH (a(arg1) OR b(arg2))
GO TOP
_VFP.DataToClip("funceval", 8, 3)
FUNCTION a(v As Boolean) As Boolean
REPLACE calls WITH "a()"
RETURN v
ENDFUNC
FUNCTION b(v As Boolean) As Boolean
REPLACE calls WITH calls + ", b()"
RETURN v
ENDFUNC
- Output:
Arg1 Arg2 Operation Result Calls F F AND F a() F T AND F a() T F AND F a(), b() T T AND T a(), b() F F OR F a(), b() F T OR T a(), b() T F OR T a() T T OR T a()
V (Vlang)
fn main() {
test_me(false, false)
test_me(false, true)
test_me(true, false)
test_me(true, true)
}
fn a(v bool) bool {
print("a")
return v
}
fn b(v bool) bool {
print("b")
return v
}
fn test_me(i bool, j bool) {
println("Testing a(${i}) && b(${j})")
print("Trace: ")
println("\nResult: ${a(i) && b(j)}")
println("Testing a(${i})} || b(${j})")
print("Trace: ")
println("\nResult: ${a(i) || b(j)}")
println("")
}
- Output:
Testing a(false) && b(false) Trace: a Result: false Testing a(false)} || b(false) Trace: ab Result: false Testing a(false) && b(true) Trace: a Result: false Testing a(false)} || b(true) Trace: ab Result: true Testing a(true) && b(false) Trace: ab Result: false Testing a(true)} || b(false) Trace: a Result: true Testing a(true) && b(true) Trace: ab Result: true Testing a(true)} || b(true) Trace: a Result: true
Wren
Wren has the && and || short-circuiting operators found in many C family languages.
var a = Fn.new { |bool|
System.print(" a called")
return bool
}
var b = Fn.new { |bool|
System.print(" b called")
return bool
}
var bools = [ [true, true], [true, false], [false, true], [false, false] ]
for (bool in bools) {
System.print("a = %(bool[0]), b = %(bool[1]), op = && :")
a.call(bool[0]) && b.call(bool[1])
System.print()
}
for (bool in bools) {
System.print("a = %(bool[0]), b = %(bool[1]), op = || :")
a.call(bool[0]) || b.call(bool[1])
System.print()
}
- Output:
a = true, b = true, op = && : a called b called a = true, b = false, op = && : a called b called a = false, b = true, op = && : a called a = false, b = false, op = && : a called a = true, b = true, op = || : a called a = true, b = false, op = || : a called a = false, b = true, op = || : a called b called a = false, b = false, op = || : a called b called
zkl
fcn a(b){self.fcn.println(b); b}
fcn b(b){self.fcn.println(b); b}
- Output:
a(True) or b(True) //-->Fcn(a)True, True a(False) or b(True) //-->Fcn(a)False, Fcn(b)True, True a(False) or b(False) //-->Fcn(a)False, Fcn(b)False, False a(True) and b(True) //-->Fcn(a)True, Fcn(b)True, True a(True) and b(False) //-->Fcn(a)True, Fcn(b)False, False a(False) and b(True) //-->Fcn(a)False, False