Set consolidation: Difference between revisions

Add Draco
m (→‎{{header|Common Lisp}}: "trans" template used)
(Add Draco)
 
(86 intermediate revisions by 40 users not shown)
Line 4:
* The single set that is the union of the two input sets if they share a common item.
 
<br>Given N sets of items where N>2 then the result is the same as repeatedly replacing all combinations of two sets by their consolidation until no further consolidation between set pairs is possible.
If N<2 then consolidation has no strict meaning and the input can be returned.
 
Line 18:
:Is the two sets:
::<tt>{A, C, B, D}</tt>, and <tt>{G, F, I, H, K}</tt>
<br>
 
'''See also:'''
* [[wp:Connected component (graph theory)|Connected component (graph theory)]]
* [[Range consolidation]]
<br><br>
 
=={{header|Ada}}==
 
We start with specifying a generic package Set_Cons that provides the neccessary tools, such as contructing and manipulating sets, truning them, ectetc.:
 
<langsyntaxhighlight Adalang="ada">generic
type Element is (<>);
with function Image(E: Element) return String;
Line 52 ⟶ 54:
type Set is array(Element) of Boolean;
 
end Set_Cons;</langsyntaxhighlight>
 
Here is the implementation of Set_Cons:
 
<langsyntaxhighlight Adalang="ada">package body Set_Cons is
 
function "+"(E: Element) return Set is
Line 132 ⟶ 134:
end Image;
 
end Set_Cons;</langsyntaxhighlight>
 
Given that package, the task is easy:
 
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO, Set_Cons;
 
procedure Set_Consolidation is
Line 175 ⟶ 177:
Ada.Text_IO.Put_Line
(Image(Consolidate((H+I+K) & (A+B) & (C+D) & (D+B) & (F+G+H))));
end Set_Consolidation;</langsyntaxhighlight>
 
This generates the following output:
 
{{out}}
<pre>{A,B}{C,D}
{A,B,D}
Line 185 ⟶ 186:
 
=={{header|Aime}}==
<syntaxhighlight lang="aime">display(list l)
<lang aime>void
display(list l)
{
for (integer i;, record r in l) {
text s;
 
i = -l_length(l);
while (i) {
record r;
text u, v;
 
o_text(si ? ", {" : "{");
sfor =(u ",in ";r) {
o_text o_("{"v, u);
r v = l_q_record(l", i)";
if (r_first(r, u)) {
do {
o_text(v);
v = ", ";
o_text(u);
} while (r_greater(r, u, u));
}
o_text("}");
i += 1;
}
 
Line 214 ⟶ 202:
}
 
integer
intersect(record r, record u)
{
trap_q(r_vcall, r, r_put, 1, record().copy(u), 0);
integer a;
text s;
 
a = 0;
if (r_first(r, s)) {
do {
if (r_key(u, s)) {
a = 1;
break;
}
} while (r_greater(r, s, s));
}
 
return a;
}
 
void
merge(record u, record r)
{
text s;
 
if (r_first(r, s)) {
do {
r_add(u, s, r_query(r, s));
} while (r_greater(r, s, s));
}
}
 
list
consolidate(list l)
{
for (integer i;, record r in l) {
 
i = -l_length(l);
while (i) {
integer j;
record r;
 
rj = l_q_record(l, i) - ~l;
iwhile (j += 1;) {
j = i; if (intersect(r, l[j])) {
while r.wcall(r_add, 1, 2, l[j]) {;
record u l.delete(i);
i -= 1;
 
u = l_q_record(l, j);
j += 1;
if (intersect(r, u)) {
merge(u, r);
l_delete(l, i - 1);
break;
}
Line 271 ⟶ 223:
}
 
return l;
}
 
list
L(...)
{
integer i;
list l;
 
i = -count();
while (i) {
l_link(l, -1, $i);
i += 1;
}
 
return l;
}
 
record
R(...)
{
ucall.2(r_put, 1, record(), 0);
integer i;
record r;
 
i = -count();
while (i) {
r_p_integer(r, $i, 0);
i += 1;
}
 
return r;
}
 
integer
main(void)
{
display(consolidate(Llist(R("A", "B"), R("C", "D"))));
display(consolidate(Llist(R("A", "B"), R("B", "D"))));
display(consolidate(Llist(R("A", "B"), R("C", "D"), R("D", "B"))));
display(consolidate(Llist(R("H", "I", "K"), R("A", "B"), R("C", "D"),
R("D", "B"), R("F", "G", "K"))));
 
return 0;
}</langsyntaxhighlight>
{{out}}
<pre>{A, B}, {C, D}
Line 320 ⟶ 246:
{A, B, C, D}
{A, B, C, D}, {F, G, H, I, K}</pre>
 
=={{header|APL}}==
<syntaxhighlight lang="apl">consolidate ← (⊢((⊂∘∪∘∊(/⍨)),(/⍨)∘~)(((⊃∘⍒+/)⊃↓)∘.(∨/∊)⍨))⍣≡</syntaxhighlight>
{{out}}
<syntaxhighlight lang="apl"> consolidate 'AB' 'CD'
AB CD
consolidate 'AB' 'BD'
ABD
consolidate 'AB' 'CD' 'DB'
ABCD
consolidate 'HIK' 'AB' 'CD' 'DB' 'FGH'
HIKFG ABCD </syntaxhighlight>
 
=={{header|AutoHotkey}}==
<syntaxhighlight lang="autohotkey">SetConsolidation(sets){
arr2 := [] , arr3 := [] , arr4 := [] , arr5 := [], result:=[]
; sort each set individually
for i, obj in sets
{
arr1 := []
for j, v in obj
arr1[v] := true
arr2.push(arr1)
}
; sort by set's first item
for i, obj in arr2
for k, v in obj
{
arr3[k . i] := obj
break
}
; use numerical index
for k, obj in arr3
arr4[A_Index] := obj
j := 1
for i, obj in arr4
{
common := false
for k, v in obj
if arr5[j-1].HasKey(k)
{
common := true
break
}
if common
for k, v in obj
arr5[j-1, k] := true
else
arr5[j] := obj, j++
}
; clean up
for i, obj in arr5
for k , v in obj
result[i, A_Index] := k
return result
}</syntaxhighlight>
Examples:<syntaxhighlight lang="autohotkey">test1 := [["A","B"], ["C","D"]]
test2 := [["A","B"], ["B","D"]]
test3 := [["A","B"], ["C","D"], ["D","B"]]
test4 := [["H","I","K"], ["A","B"], ["C","D"], ["D","B"], ["F","G","H"]]
 
result := "["
loop, 4
{
for i, obj in SetConsolidation(test%A_Index%)
{
output := "["
for j, v in obj
output .= """" v ""","
result .= RTrim(output, ", ") . "] , "
}
result := RTrim(result, ", ") "]`n["
}
MsgBox % RTrim(result, "`n[")
return</syntaxhighlight>
{{out}}
<pre>[["A","B"] , ["C","D"]]
[["A","B","D"]]
[["A","B","C","D"]]
[["A","B","C","D"] , ["F","G","H","I","K"]]</pre>
 
=={{header|BASIC}}==
==={{header|BASIC256}}===
{{trans|FreeBASIC}}
<syntaxhighlight lang="vbnet">dim test$(4)
test$[0] = "AB"
test$[1] = "AB,CD"
test$[2] = "AB,CD,DB"
test$[3] = "HIK,AB,CD,DB,FGH"
for t = 0 to 3 #test$[?]
print Consolidate(test$[t])
next t
end
 
function Consolidate(s$)
dim sets$(100)
 
# Split the string into substrings
pio = 1
n = 0
for i = 1 to length(s$)
if mid(s$, i, 1) = "," then
fin = i - 1
sets$[n] = mid(s$, pio, fin - pio + 1)
pio = i + 1
n += 1
end if
next i
sets$[n] = mid(s$, pio, length(s$) - pio + 1)
 
# Main logic
for i = 0 to n
p = i
ts$ = ""
for j = i to 0 step -1
if ts$ = "" then p = j
ts$ = ""
for k = 1 to length(sets$[p])
if j > 0 then
if instr(sets$[j-1], mid(sets$[p], k, 1)) = 0 then
ts$ += mid(sets$[p], k, 1)
end if
end if
next k
if length(ts$) < length(sets$[p]) then
if j > 0 then
sets$[j-1] = sets$[j-1] + ts$
sets$[p] = "-"
ts$ = ""
end if
else
p = i
end if
next j
next i
 
# Join the substrings into a string
temp$ = sets$[0]
for i = 1 to n
temp$ += "," + sets$[i]
next i
 
return s$ + " = " + temp$
end function</syntaxhighlight>
{{out}}
<pre>Same as FreeBASIC entry.</pre>
 
==={{header|Chipmunk Basic}}===
{{works with|Chipmunk Basic|3.6.4}}
Same code as [[#GW-BASIC|GW-BASIC]]
 
==={{header|FreeBASIC}}===
{{trans|Ring}}
<syntaxhighlight lang="vbnet">Function Consolidate(s As String) As String
Dim As Integer i, j, k, p, n, pio, fin
Dim As String ts, sets(0 To 100), temp
' Split the string into substrings
pio = 1
n = 0
For i = 1 To Len(s)
If Mid(s, i, 1) = "," Then
fin = i - 1
sets(n) = Mid(s, pio, fin - pio + 1)
pio = i + 1
n += 1
End If
Next i
sets(n) = Mid(s, pio, Len(s) - pio + 1)
' Main logic
For i = 0 To n
p = i
ts = ""
For j = i To 0 Step -1
If ts = "" Then p = j
ts = ""
For k = 1 To Len(sets(p))
If j > 0 Then
If Instr(sets(j-1), Mid(sets(p), k, 1)) = 0 Then ts += Mid(sets(p), k, 1)
End If
Next k
If Len(ts) < Len(sets(p)) Then
If j > 0 Then
sets(j-1) += ts
sets(p) = "-"
ts = ""
End If
Else
p = i
End If
Next j
Next i
' Join the substrings into a string
temp = sets(0)
For i = 1 To n
temp += "," + sets(i)
Next i
Return s + " = " + temp
End Function
 
Dim As String test(3) = {"AB", "AB,CD", "AB,CD,DB", "HIK,AB,CD,DB,FGH"}
For t As Integer = Lbound(test) To Ubound(test)
Print Consolidate(test(t))
Next t
 
Sleep</syntaxhighlight>
{{out}}
<pre>Same as Ring entry.</pre>
 
==={{header|Gambas}}===
{{trans|Ring}}
<syntaxhighlight lang="vbnet">Public test As String[] = ["AB", "AB,CD", "AB,CD,DB", "HIK,AB,CD,DB,FGH"]
 
Public Sub Main()
For t As Integer = 0 To test.Max
Print Consolidate(test[t])
Next
 
End
 
Public Function Consolidate(s As String) As String
 
Dim sets As New String[100]
Dim n As Integer, i As Integer, j As Integer, k As Integer, p As Integer
Dim ts As String, tmp As String
n = 0
For i = 1 To Len(s)
If Mid(s, i, 1) = "," Then
n += 1
Else
sets[n] = sets[n] & Mid(s, i, 1)
Endif
Next
For i = 0 To n
p = i
ts = ""
For j = i To 0 Step -1
If ts = "" Then p = j
ts = ""
For k = 1 To Len(sets[p])
If j > 0 Then
If InStr(sets[j - 1], Mid(sets[p], k, 1)) = 0 Then
ts &= Mid(sets[p], k, 1)
Endif
Endif
Next
If Len(ts) < Len(sets[p]) Then
If j > 0 Then
sets[j - 1] &= ts
sets[p] = "-"
ts = ""
Endif
Else
p = i
Endif
Next
Next
tmp = sets[0]
For i = 1 To n
tmp &= "," & sets[i]
Next
Return s & " = " & tmp
 
End</syntaxhighlight>
{{out}}
<pre>Same as Ring entry.</pre>
 
==={{header|GW-BASIC}}===
{{works with|PC-BASIC|any}}
{{works with|BASICA}}
{{works with|Chipmunk Basic}}
{{works with|QBasic}}
{{works with|MSX BASIC}}
<syntaxhighlight lang="qbasic">100 CLS
110 S$ = "AB" : GOSUB 160
120 S$ = "AB,CD" : GOSUB 160
130 S$ = "AB,CD,DB" : GOSUB 160
140 S$ = "HIK,AB,CD,DB,FGH" : GOSUB 160
150 END
160 DIM R$(20)
170 N = 0
180 FOR I = 1 TO LEN(S$)
190 IF MID$(S$,I,1) = "," THEN N = N+1 : GOTO 210
200 R$(N) = R$(N)+MID$(S$,I,1)
210 NEXT I
220 FOR I = 0 TO N
230 P = I
240 TS$ = ""
250 FOR J = I TO 0 STEP -1
260 IF TS$ = "" THEN P = J
270 TS$ = ""
280 FOR K = 1 TO LEN(R$(P))
290 IF J > 0 THEN IF INSTR(R$(J-1),MID$(R$(P),K,1)) = 0 THEN TS$ = TS$+MID$(R$(P),K,1)
300 NEXT K
310 IF LEN(TS$) < LEN(R$(P)) THEN IF J > 0 THEN R$(J-1) = R$(J-1)+TS$ : R$(P) = "-" : TS$ = ""
320 NEXT J
330 NEXT I
340 T$ = R$(0)
350 FOR I = 1 TO N
360 T$ = T$+","+R$(I)
370 NEXT I
380 PRINT S$;" = ";T$
390 ERASE R$
400 RETURN</syntaxhighlight>
{{out}}
<pre>AB = AB
AB,CD = AB,CD
AB,CD,DB = ABCD,-,-
HIK,AB,CD,DB,FGH = HIKFG,ABCD,-,-,-</pre>
 
==={{header|MSX Basic}}===
{{works with|MSX BASIC|any}}
Same code as [[#GW-BASIC|GW-BASIC]]
 
==={{header|PureBasic}}===
<syntaxhighlight lang="purebasic">Procedure.s Consolidate(s.s)
Dim sets.s(100)
Define.i n, i, j, k, p
Define.s ts.s, temp.s
n = 0
For i = 1 To Len(s)
If Mid(s, i, 1) = ",":
n + 1
Else
sets(n) = sets(n) + Mid(s, i, 1)
EndIf
Next i
For i = 0 To n
p = i
ts = ""
For j = i To 0 Step -1
If ts = "":
p = j
EndIf
ts = ""
For k = 1 To Len(sets(p))
If j > 0:
If FindString(sets(j-1), Mid(sets(p), k, 1)) = 0:
ts = ts + Mid(sets(p), k, 1)
EndIf
EndIf
Next k
If Len(ts) < Len(sets(p)):
If j > 0:
sets(j-1) = sets(j-1) + ts
sets(p) = "-"
ts = ""
EndIf
Else
p = i
EndIf
Next j
Next i
temp = sets(0)
For i = 1 To n
temp = temp + "," + sets(i)
Next i
ProcedureReturn s + " = " + temp
EndProcedure
 
OpenConsole()
Dim test.s(3) ;= {"AB","AB,CD","AB,CD,DB","HIK,AB,CD,DB,FGH"}
test(0) = "AB"
test(1) = "AB,CD"
test(2) = "AB,CD,DB"
test(3) = "HIK,AB,CD,DB,FGH"
For t.i = 0 To 3
PrintN(Consolidate(test(t)))
Next t
PrintN(#CRLF$ + "Press ENTER to exit"): Input()
CloseConsole()</syntaxhighlight>
{{out}}
<pre>Same as Ring entry.</pre>
 
==={{header|QBasic}}===
{{trans|Ring}}
{{works with|QBasic|1.1}}
{{works with|QuickBasic|4.5}}
<syntaxhighlight lang="qbasic">SUB consolidate (s$)
DIM sets$(100)
n = 0
FOR i = 1 TO LEN(s$)
IF MID$(s$, i, 1) = "," THEN
n = n + 1
ELSE
sets$(n) = sets$(n) + MID$(s$, i, 1)
END IF
NEXT i
 
FOR i = 0 TO n
p = i
ts$ = ""
FOR j = i TO 0 STEP -1
IF ts$ = "" THEN
p = j
END IF
ts$ = ""
FOR k = 1 TO LEN(sets$(p))
IF j > 0 THEN
IF INSTR(sets$(j - 1), MID$(sets$(p), k, 1)) = 0 THEN
ts$ = ts$ + MID$(sets$(p), k, 1)
END IF
END IF
NEXT k
IF LEN(ts$) < LEN(sets$(p)) THEN
IF j > 0 THEN
sets$(j - 1) = sets$(j - 1) + ts$
sets$(p) = "-"
ts$ = ""
END IF
ELSE
p = i
END IF
NEXT j
NEXT i
 
temp$ = sets$(0)
FOR i = 1 TO n
temp$ = temp$ + "," + sets$(i)
NEXT i
 
PRINT s$; " = "; temp$
END SUB
 
DIM test$(3)
test$(0) = "AB"
test$(1) = "AB,CD"
test$(2) = "AB,CD,DB"
test$(3) = "HIK,AB,CD,DB,FGH"
FOR t = 0 TO 3
CALL consolidate(test$(t))
NEXT t</syntaxhighlight>
{{out}}
<pre>Same as Ring entry.</pre>
 
==={{header|Run BASIC}}===
{{trans|QBasic}}
<syntaxhighlight lang="vbnet">function consolidate$(s$)
dim sets$(100)
n = 0
for i = 1 to len(s$)
if mid$(s$, i, 1) = "," then
n = n + 1
else
sets$(n) = sets$(n) + mid$(s$, i, 1)
end if
next i
 
for i = 0 to n
p = i
ts$ = ""
for j = i to 0 step -1
if ts$ = "" then p = j
ts$ = ""
for k = 1 to len(sets$(p))
if j > 0 then
if instr(sets$(j-1), mid$(sets$(p), k, 1)) = 0 then
ts$ = ts$ + mid$(sets$(p), k, 1)
end if
end if
next k
if len(ts$) < len(sets$(p)) then
if j > 0 then
sets$(j-1) = sets$(j-1) + ts$
sets$(p) = "-"
ts$ = ""
end if
else
p = i
end if
next j
next i
 
temp$ = sets$(0)
for i = 1 to n
temp$ = temp$ + "," + sets$(i)
next i
 
consolidate$ = s$ + " = " + temp$
end function
 
dim test$(3)
test$(0) = "AB"
test$(1) = "AB,CD"
test$(2) = "AB,CD,DB"
test$(3) = "HIK,AB,CD,DB,FGH"
for t = 0 to 3
print consolidate$(test$(t))
next t</syntaxhighlight>
 
==={{header|XBasic}}===
{{trans|BASIC256}}
{{works with|Windows XBasic}}
<syntaxhighlight lang="qbasic">PROGRAM "Set consolidation"
VERSION "0.0001"
 
DECLARE FUNCTION Entry ()
DECLARE FUNCTION Consolidate$ (s$)
 
FUNCTION Entry ()
DIM test$[4]
test$[0] = "AB"
test$[1] = "AB,CD"
test$[2] = "AB,CD,DB"
test$[3] = "HIK,AB,CD,DB,FGH"
FOR t = 0 TO 3
PRINT Consolidate$(test$[t])
NEXT t
END FUNCTION
 
FUNCTION Consolidate$ (s$)
DIM sets$[100]
 
' Split the STRING into substrings
pio = 1
n = 0
FOR i = 1 TO LEN(s$)
IF MID$(s$, i, 1) = "," THEN
fin = i - 1
sets$[n] = MID$(s$, pio, fin - pio + 1)
pio = i + 1
INC n
END IF
NEXT i
sets$[n] = MID$(s$, pio, LEN(s$) - pio + 1)
 
' Main logic
FOR i = 0 TO n
p = i
ts$ = ""
FOR j = i TO 0 STEP -1
IF ts$ = "" THEN p = j
ts$ = ""
FOR k = 1 TO LEN(sets$[p])
IF j > 0 THEN
IF INSTR(sets$[j-1], MID$(sets$[p], k, 1)) = 0 THEN
ts$ = ts$ + MID$(sets$[p], k, 1)
END IF
END IF
NEXT k
IF LEN(ts$) < LEN(sets$[p]) THEN
IF j > 0 THEN
sets$[j-1] = sets$[j-1] + ts$
sets$[p] = "-"
ts$ = ""
END IF
ELSE
p = i
END IF
NEXT j
NEXT i
 
' Join the substrings into a STRING
temp$ = sets$[0]
FOR i = 1 TO n
temp$ = temp$ + "," + sets$[i]
NEXT i
 
RETURN s$ + " = " + temp$
END FUNCTION
END PROGRAM</syntaxhighlight>
{{out}}
<pre>Same as BASIC256 entry.</pre>
 
==={{header|Yabasic}}===
{{trans|FreeBASIC}}
<syntaxhighlight lang="vbnet">dim test$(3)
test$(0) = "AB"
test$(1) = "AB,CD"
test$(2) = "AB,CD,DB"
test$(3) = "HIK,AB,CD,DB,FGH"
for t = 0 to arraysize(test$(), 1)
print Consolidate$(test$(t))
next t
end
 
sub Consolidate$(s$)
dim sets$(100)
 
// Split the string into substrings
pio = 1
n = 0
for i = 1 to len(s$)
if mid$(s$, i, 1) = "," then
fin = i - 1
sets$(n) = mid$(s$, pio, fin - pio + 1)
pio = i + 1
n = n + 1
fi
next i
sets$(n) = mid$(s$, pio, len(s$) - pio + 1)
 
// Main logic
for i = 0 to n
p = i
ts$ = ""
for j = i to 0 step -1
if ts$ = "" p = j
ts$ = ""
for k = 1 to len(sets$(p))
if j > 0 then
if instr(sets$(j-1), mid$(sets$(p), k, 1)) = 0 then
ts$ = ts$ + mid$(sets$(p), k, 1)
fi
fi
next k
if len(ts$) < len(sets$(p)) then
if j > 0 then
sets$(j-1) = sets$(j-1) + ts$
sets$(p) = "-"
ts$ = ""
fi
else
p = i
fi
next j
next i
 
// Join the substrings into a string
temp$ = sets$(0)
for i = 1 to n
temp$ = temp$ + "," + sets$(i)
next i
 
return s$ + " = " + temp$
end sub</syntaxhighlight>
{{out}}
<pre>Same as FreeBASIC entry.</pre>
 
=={{header|Bracmat}}==
<langsyntaxhighlight lang="bracmat">( ( consolidate
= a m z mm za zm zz
. ( removeNumFactors
Line 349 ⟶ 919:
& test$(A+B C+D D+B)
& test$(H+I+K A+B C+D D+B F+G+H)
);</langsyntaxhighlight>
{{out}}
Output:
<pre>A+B C+D ==> A+B C+D
A+B B+D ==> A+B+D
Line 364 ⟶ 934:
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdio.h>
 
#define s(x) (1U << ((x) - 'A'))
Line 400 ⟶ 970:
puts("\nAfter:"); show_sets(x, consolidate(x, len));
return 0;
}</langsyntaxhighlight>
 
The above is O(N<sup>2</sup>) in terms of number of input sets. If input is large (many sets or huge number of elements), here's an O(N) method, where N is the sum of the sizes of all input sets:
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
#include <string.h>
Line 504 ⟶ 1,074:
 
return 0;
}</langsyntaxhighlight>
 
=={{header|C sharp}}==
<syntaxhighlight lang="csharp">using System;
using System.Linq;
using System.Collections.Generic;
 
public class SetConsolidation
{
public static void Main()
{
var setCollection1 = new[] {new[] {"A", "B"}, new[] {"C", "D"}};
var setCollection2 = new[] {new[] {"A", "B"}, new[] {"B", "D"}};
var setCollection3 = new[] {new[] {"A", "B"}, new[] {"C", "D"}, new[] {"B", "D"}};
var setCollection4 = new[] {new[] {"H", "I", "K"}, new[] {"A", "B"}, new[] {"C", "D"},
new[] {"D", "B"}, new[] {"F", "G", "H"}};
var input = new[] {setCollection1, setCollection2, setCollection3, setCollection4};
foreach (var sets in input) {
Console.WriteLine("Start sets:");
Console.WriteLine(string.Join(", ", sets.Select(s => "{" + string.Join(", ", s) + "}")));
Console.WriteLine("Sets consolidated using Nodes:");
Console.WriteLine(string.Join(", ", ConsolidateSets1(sets).Select(s => "{" + string.Join(", ", s) + "}")));
Console.WriteLine("Sets consolidated using Set operations:");
Console.WriteLine(string.Join(", ", ConsolidateSets2(sets).Select(s => "{" + string.Join(", ", s) + "}")));
Console.WriteLine();
}
}
/// <summary>
/// Consolidates sets using a connected-component-finding-algorithm involving Nodes with parent pointers.
/// The more efficient solution, but more elaborate code.
/// </summary>
private static IEnumerable<IEnumerable<T>> ConsolidateSets1<T>(IEnumerable<IEnumerable<T>> sets,
IEqualityComparer<T> comparer = null)
{
var elements = new Dictionary<T, Node<T>>(comparer );
foreach (var set in sets) {
Node<T> top = null;
foreach (T value in set) {
Node<T> element;
if (elements.TryGetValue(value, out element)) {
if (top != null) {
var newTop = element.FindTop();
top.Parent = newTop;
element.Parent = newTop;
top = newTop;
} else {
top = element.FindTop();
}
} else {
elements.Add(value, element = new Node<T>(value));
if (top == null) top = element;
else element.Parent = top;
}
}
}
foreach (var g in elements.Values.GroupBy(element => element.FindTop().Value))
yield return g.Select(e => e.Value);
}
private class Node<T>
{
public Node(T value, Node<T> parent = null) {
Value = value;
Parent = parent ?? this;
}
public T Value { get; }
public Node<T> Parent { get; set; }
public Node<T> FindTop() {
var top = this;
while (top != top.Parent) top = top.Parent;
//Set all parents to the top element to prevent repeated iteration in the future
var element = this;
while (element.Parent != top) {
var parent = element.Parent;
element.Parent = top;
element = parent;
}
return top;
}
}
/// <summary>
/// Consolidates sets using operations on the HashSet&lt;T&gt; class.
/// Less efficient than the other method, but easier to write.
/// </summary>
private static IEnumerable<IEnumerable<T>> ConsolidateSets2<T>(IEnumerable<IEnumerable<T>> sets,
IEqualityComparer<T> comparer = null)
{
if (comparer == null) comparer = EqualityComparer<T>.Default;
var currentSets = sets.Select(s => new HashSet<T>(s)).ToList();
int previousSize;
do {
previousSize = currentSets.Count;
for (int i = 0; i < currentSets.Count - 1; i++) {
for (int j = currentSets.Count - 1; j > i; j--) {
if (currentSets[i].Overlaps(currentSets[j])) {
currentSets[i].UnionWith(currentSets[j]);
currentSets.RemoveAt(j);
}
}
}
} while (previousSize > currentSets.Count);
foreach (var set in currentSets) yield return set.Select(value => value);
}
}</syntaxhighlight>
{{out}}
<pre>
Start sets:
{A, B}, {C, D}
Sets consolidated using nodes:
{A, B}, {C, D}
Sets consolidated using Set operations:
{A, B}, {C, D}
 
Start sets:
{A, B}, {B, D}
Sets consolidated using nodes:
{A, B, D}
Sets consolidated using Set operations:
{A, B, D}
 
Start sets:
{A, B}, {C, D}, {B, D}
Sets consolidated using nodes:
{A, B, C, D}
Sets consolidated using Set operations:
{A, B, D, C}
 
Start sets:
{H, I, K}, {A, B}, {C, D}, {D, B}, {F, G, H}
Sets consolidated using nodes:
{H, I, K, F, G}, {A, B, C, D}
Sets consolidated using Set operations:
{H, I, K, F, G}, {A, B, D, C}</pre>
 
=={{header|C++}}==
<syntaxhighlight lang="cpp">#include <algorithm>
#include <iostream>
#include <unordered_map>
#include <unordered_set>
#include <vector>
 
using namespace std;
 
// Consolidation using a brute force approach
void SimpleConsolidate(vector<unordered_set<char>>& sets)
{
// Loop through the sets in reverse and consolidate them
for(auto last = sets.rbegin(); last != sets.rend(); ++last)
for(auto other = last + 1; other != sets.rend(); ++other)
{
bool hasIntersection = any_of(last->begin(), last->end(),
[&](auto val)
{ return other->contains(val); });
if(hasIntersection)
{
other->merge(*last);
sets.pop_back();
break;
}
}
}
 
// As a second approach, use the connected-component-finding-algorithm
// from the C# entry to consolidate
struct Node
{
char Value;
Node* Parent = nullptr;
};
 
Node* FindTop(Node& node)
{
auto top = &node;
while (top != top->Parent) top = top->Parent;
for(auto element = &node; element->Parent != top; )
{
// Point the elements to top to make it faster for the next time
auto parent = element->Parent;
element->Parent = top;
element = parent;
}
return top;
}
 
vector<unordered_set<char>> FastConsolidate(const vector<unordered_set<char>>& sets)
{
unordered_map<char, Node> elements;
for(auto& set : sets)
{
Node* top = nullptr;
for(auto val : set)
{
auto itr = elements.find(val);
if(itr == elements.end())
{
// A new value has been found
auto& ref = elements[val] = Node{val, nullptr};
if(!top) top = &ref;
ref.Parent = top;
}
else
{
auto newTop = FindTop(itr->second);
if(top)
{
top->Parent = newTop;
itr->second.Parent = newTop;
}
else
{
top = newTop;
}
}
}
}
 
unordered_map<char, unordered_set<char>> groupedByTop;
for(auto& e : elements)
{
auto& element = e.second;
groupedByTop[FindTop(element)->Value].insert(element.Value);
}
 
vector<unordered_set<char>> ret;
for(auto& itr : groupedByTop)
{
ret.push_back(move(itr.second));
}
 
return ret;
}
 
void PrintSets(const vector<unordered_set<char>>& sets)
{
for(const auto& set : sets)
{
cout << "{ ";
for(auto value : set){cout << value << " ";}
cout << "} ";
}
cout << "\n";
}
 
int main()
{
const unordered_set<char> AB{'A', 'B'}, CD{'C', 'D'}, DB{'D', 'B'},
HIJ{'H', 'I', 'K'}, FGH{'F', 'G', 'H'};
vector <unordered_set<char>> AB_CD {AB, CD};
vector <unordered_set<char>> AB_DB {AB, DB};
vector <unordered_set<char>> AB_CD_DB {AB, CD, DB};
vector <unordered_set<char>> HIJ_AB_CD_DB_FGH {HIJ, AB, CD, DB, FGH};
 
PrintSets(FastConsolidate(AB_CD));
PrintSets(FastConsolidate(AB_DB));
PrintSets(FastConsolidate(AB_CD_DB));
PrintSets(FastConsolidate(HIJ_AB_CD_DB_FGH));
 
SimpleConsolidate(AB_CD);
SimpleConsolidate(AB_DB);
SimpleConsolidate(AB_CD_DB);
SimpleConsolidate(HIJ_AB_CD_DB_FGH);
 
PrintSets(AB_CD);
PrintSets(AB_DB);
PrintSets(AB_CD_DB);
PrintSets(HIJ_AB_CD_DB_FGH);
}
</syntaxhighlight>
{{out}}
<pre>
{ B A } { D C }
{ B A D }
{ B A D C }
{ B A D C } { I K H G F }
{ B A } { D C }
{ D A B }
{ D C A B }
{ F G H K I } { D C A B }
</pre>
 
=={{header|Clojure}}==
<syntaxhighlight lang="clojure">(defn consolidate-linked-sets [sets]
(apply clojure.set/union sets))
 
(defn linked? [s1 s2]
(not (empty? (clojure.set/intersection s1 s2))))
 
(defn consolidate [& sets]
(loop [seeds sets
sets sets]
(if (empty? seeds)
sets
(let [s0 (first seeds)
linked (filter #(linked? s0 %) sets)
remove-used (fn [sets used]
(remove #(contains? (set used) %) sets))]
(recur (remove-used (rest seeds) linked)
(conj (remove-used sets linked)
(consolidate-linked-sets linked)))))))</syntaxhighlight>
 
{{out}}
<pre>
(consolidate #{:a :b} #{:c :d}) ; ==> (#{:c :d} #{:b :a})
(consolidate #{:a :b} #{:c :b}) ; ==> (#{:c :b :a})
(consolidate #{:a :b} #{:c :d} #{:d :b}) ; ==> (#{:c :b :d :a})
 
(consolidate #{:h :i :k} #{:a :b} #{:c :d} #{:d :b} #{:f :g :h})
; ==> (#{:c :b :d :a} #{:k :g :h :f :i})
</pre>
 
=={{header|Common Lisp}}==
{{trans|Racket}}
<langsyntaxhighlight lang="lisp">(defun consolidate (ss)
(labels ((comb (cs s)
(cond ((null s) cs)
Line 515 ⟶ 1,399:
(cons (first cs) (comb (rest cs) s)))
((consolidate (cons (union s (first cs)) (rest cs)))))))
(reduce #'comb ss :initial-value nil)))</langsyntaxhighlight>
 
{{Out}}
Line 529 ⟶ 1,413:
=={{header|D}}==
{{trans|Go}}
<langsyntaxhighlight lang="d">import std.stdio, std.algorithm, std.array;
 
dchar[][] consolidate(dchar[][] sets) @safe {
foreach (set; sets)
set.sort();
 
foreach (i, ref si; sets[0 .. $ - 1]) {
Line 548 ⟶ 1,432:
}
 
void main() @safe {
[['A', 'B'], ['C','D']].consolidate.writeln;
 
Line 557 ⟶ 1,441:
[['H','I','K'], ['A','B'], ['C','D'],
['D','B'], ['F','G','H']].consolidate.writeln;
}</langsyntaxhighlight>
{{out}}
<pre>["AB", "CD"]
Line 565 ⟶ 1,449:
 
'''Recursive version''', as described on talk page.
<langsyntaxhighlight lang="d">import std.stdio, std.algorithm, std.array;
 
dchar[][] consolidate(dchar[][] sets) @safe {
foreach (set; sets)
set.sort();
 
dchar[][] consolidateR(dchar[][] s) {
Line 587 ⟶ 1,471:
}
 
void main() @safe {
[['A', 'B'], ['C','D']].consolidate.writeln;
 
Line 596 ⟶ 1,480:
[['H','I','K'], ['A','B'], ['C','D'],
['D','B'], ['F','G','H']].consolidate.writeln;
}</langsyntaxhighlight>
<pre>["AB", "CD"]
["ABD"]
["ABCD"]
["FGHIK", "ABCD"]</pre>
 
=={{header|Draco}}==
<syntaxhighlight lang="draco">type Set = word;
 
proc make_set(*char setdsc) Set:
Set set;
byte pos;
set := 0;
while setdsc* /= '\e' do
pos := setdsc* - 'A';
if pos < 16 then set := set | (1 << pos) fi;
setdsc := setdsc + 1
od;
set
corp
 
proc write_set(Set set) void:
char item;
write('(');
for item from 'A' upto ('A'+15) do
if set & 1 /= 0 then write(item) fi;
set := set >> 1
od;
write(')')
corp
 
proc consolidate([*]Set sets) word:
word i, j, n;
bool change;
n := dim(sets, 1);
 
change := true;
while change do
change := false;
for i from 0 upto n-1 do
for j from i+1 upto n-1 do
if sets[i] & sets[j] /= 0 then
sets[i] := sets[i] | sets[j];
sets[j] := 0;
change := true
fi
od
od
od;
 
for i from 1 upto n-1 do
if sets[i] = 0 then
for j from i+1 upto n-1 do
sets[j-1] := sets[j]
od
fi
od;
 
i := 0;
while i<n and sets[i] /= 0 do i := i+1 od;
i
corp
 
proc test([*]Set sets) void:
word i, n;
n := dim(sets, 1);
for i from 0 upto n-1 do write_set(sets[i]) od;
write(" -> ");
n := consolidate(sets);
for i from 0 upto n-1 do write_set(sets[i]) od;
writeln()
corp
 
proc main() void:
[2]Set ex1;
[2]Set ex2;
[3]Set ex3;
[5]Set ex4;
 
ex1[0]:=make_set("AB"); ex1[1]:=make_set("CD");
ex2[0]:=make_set("AB"); ex2[1]:=make_set("BC");
ex3[0]:=make_set("AB"); ex3[1]:=make_set("CD"); ex3[2]:=make_set("DB");
ex4[0]:=make_set("HIK"); ex4[1]:=make_set("AB"); ex4[2]:=make_set("CD");
ex4[3]:=make_set("DB"); ex4[4]:=make_set("FGH");
 
test(ex1);
test(ex2);
test(ex3);
test(ex4);
corp</syntaxhighlight>
{{out}}
<pre>(AB)(CD) -> (AB)(CD)
(AB)(BC) -> (ABC)
(AB)(CD)(BD) -> (ABCD)
(HIK)(AB)(CD)(BD)(FGH) -> (FGHIK)(ABCD)</pre>
 
=={{header|EchoLisp}}==
<syntaxhighlight lang="scheme">
;; utility : make a set of sets from a list
(define (make-set* s)
(or (when (list? s) (make-set (map make-set* s))) s))
;; union of all sets which intersect - O(n^2)
(define (make-big ss)
(make-set
(for/list ((u ss))
(for/fold (big u) ((v ss)) #:when (set-intersect? big v) (set-union big v)))))
;; remove sets which are subset of another one - O(n^2)
(define (remove-small ss)
(for/list ((keep ss))
#:when (for/and ((v ss)) #:continue (set-equal? keep v) (not (set-subset? v keep)))
keep))
(define (consolidate ss) (make-set (remove-small (make-big ss))))
 
(define S (make-set* ' ((h i k) ( a b) ( b c) (c d) ( f g h))))
→ { { a b } { b c } { c d } { f g h } { h i k } }
 
(consolidate S)
→ { { a b c d } { f g h i k } }
</syntaxhighlight>
 
=={{header|Egison}}==
 
<langsyntaxhighlight lang="egison">
(define $consolidate
(lambda [$xss]
Line 615 ⟶ 1,617:
 
(test (consolidate {{'H' 'I' 'K'} {'A' 'B'} {'C' 'D'} {'D' 'B'} {'F' 'G' 'H'}}))
</syntaxhighlight>
</lang>
{{out}}
'''Output:'''
<langsyntaxhighlight lang="egison">
{"DBAC" "HIKFG"}
</syntaxhighlight>
</lang>
 
=={{header|Ela}}==
This solution emulate sets using linked lists:
<langsyntaxhighlight lang="ela">open list
 
merge [] ys = ys
Line 633 ⟶ 1,635:
where conso xs [] = xs
conso (x::xs)@r (y::ys) | intersect x y <> [] = conso ((merge x y)::xs) ys
| else = conso (r ++ [y]) ys</langsyntaxhighlight>
Usage:
<langsyntaxhighlight lang="ela">open consolemonad io
 
:::IO
consolidate [['H','I','K'], ['A','B'], ['C','D'], ['D','B'], ['F','G','H']] |> writen $
 
consolidate [['A','B'], ['B','D']] |> writen</lang>
do
x <- return $ consolidate [['H','I','K'], ['A','B'], ['C','D'], ['D','B'], ['F','G','H']]
putLn x
y <- return $ consolidate [['A','B'], ['B','D']]
putLn y</syntaxhighlight>
 
Output:<pre>[['K','I','F','G','H'],['A','C','D','B']]
[['A','B','D']]</pre>
 
=={{header|Elixir}}==
<syntaxhighlight lang="elixir">defmodule RC do
def set_consolidate(sets, result\\[])
def set_consolidate([], result), do: result
def set_consolidate([h|t], result) do
case Enum.find(t, fn set -> not MapSet.disjoint?(h, set) end) do
nil -> set_consolidate(t, [h | result])
set -> set_consolidate([MapSet.union(h, set) | t -- [set]], result)
end
end
end
 
examples = [[[:A,:B], [:C,:D]],
[[:A,:B], [:B,:D]],
[[:A,:B], [:C,:D], [:D,:B]],
[[:H,:I,:K], [:A,:B], [:C,:D], [:D,:B], [:F,:G,:H]]]
|> Enum.map(fn sets ->
Enum.map(sets, fn set -> MapSet.new(set) end)
end)
 
Enum.each(examples, fn sets ->
IO.write "#{inspect sets} =>\n\t"
IO.inspect RC.set_consolidate(sets)
end)</syntaxhighlight>
 
{{out}}
<pre>
<pre>[[K,I,F,G,H],[A,C,D,B]]
[#MapSet<[:A, :B]>, #MapSet<[:C, :D]>]</pre =>
[#MapSet<[:C, :D]>, #MapSet<[:A, :B]>]
[#MapSet<[:A, :B]>, #MapSet<[:B, :D]>] =>
[#MapSet<[:A, :B, :D]>]
[#MapSet<[:A, :B]>, #MapSet<[:C, :D]>, #MapSet<[:B, :D]>] =>
[#MapSet<[:A, :B, :C, :D]>]
[#MapSet<[:H, :I, :K]>, #MapSet<[:A, :B]>, #MapSet<[:C, :D]>, #MapSet<[:B, :D]>, #MapSet<[:F, :G, :H]>] =>
[#MapSet<[:A, :B, :C, :D]>, #MapSet<[:F, :G, :H, :I, :K]>]
</pre>
 
=={{header|F_Sharp|F#}}==
<langsyntaxhighlight lang="fsharp">let (|SeqNode|SeqEmpty|) s =
if Seq.isEmpty s then SeqEmpty
else SeqNode ((Seq.head s), Seq.skip 1 s)
Line 669 ⟶ 1,713:
[["H";"I";"K"]; ["A";"B"]; ["C";"D"]; ["D";"B"]; ["F";"G";"H"]]
]
0</langsyntaxhighlight>
{{out}}
Output
<pre>seq [set ["C"; "D"]; set ["A"; "B"]]
seq [set ["A"; "B"; "C"]]
seq [set ["A"; "B"; "C"; "D"]]
seq [set ["A"; "B"; "C"; "D"]; set ["F"; "G"; "H"; "I"; "K"]]</pre>
 
=={{header|Factor}}==
<syntaxhighlight lang="factor">USING: arrays kernel sequences sets ;
 
: comb ( x x -- x )
over empty? [ nip 1array ] [
dup pick first intersects?
[ [ unclip ] dip union comb ]
[ [ 1 cut ] dip comb append ] if
] if ;
 
: consolidate ( x -- x ) { } [ comb ] reduce ;</syntaxhighlight>
{{out}}
<pre>
IN: scratchpad USE: qw
IN: scratchpad qw{ AB CD } consolidate .
{ "AB" "CD" }
IN: scratchpad qw{ AB BC } consolidate .
{ "ABC" }
IN: scratchpad qw{ AB CD DB } consolidate .
{ "CDAB" }
IN: scratchpad qw{ HIK AB CD DB FGH } consolidate .
{ "CDAB" "HIKFG" }
</pre>
 
=={{header|Go}}==
{{trans|Python}}
<langsyntaxhighlight lang="go">package main
 
import "fmt"
Line 733 ⟶ 1,801:
}
return true
}</langsyntaxhighlight>
{{out}}
<pre>
Line 741 ⟶ 1,809:
=={{header|Haskell}}==
 
<syntaxhighlight lang Haskell="haskell">import qualified Data.SetList as(intersperse, Sintercalate)
import qualified Data.Set as S
 
consolidate :: Ord a => [S.Set a] -> [S.Set a]
:: Ord a
consolidate = foldl comb []
where comb=> [S.Set a] s' =-> [s'S.Set a]
consolidate = foldr comb (s:ss) s'[]
where
| S.null (s `S.intersection` s') = s : comb ss s'
comb s_ [] = [s_]
| otherwise = comb ss (s `S.union` s')
comb s_ (s:ss)
</lang>
| S.null (s `S.intersection` s_) = s : comb s_ ss
| otherwise = comb (s `S.union` s_) ss
 
-- TESTS -------------------------------------------------
main :: IO ()
main =
(putStrLn . unlines)
((intercalate ", and " . fmap showSet . consolidate) . fmap S.fromList <$>
[ ["ab", "cd"]
, ["ab", "bd"]
, ["ab", "cd", "db"]
, ["hik", "ab", "cd", "db", "fgh"]
])
 
showSet :: S.Set Char -> String
showSet = flip intercalate ["{", "}"] . intersperse ',' . S.elems</syntaxhighlight>
 
{{Out}}
<pre>{c,d}, and {a,b}
{a,b,d}
{a,b,c,d}
{a,b,c,d}, and {f,g,h,i,k}</pre>
 
=={{header|J}}==
 
<langsyntaxhighlight Jlang="j">consolidate=:4 :0/
b=. y 1&e.@e.&> x
(1,-.b)#(~.;x,b#y);y
)</langsyntaxhighlight>
 
In other words, fold each set into a growing list of consolidated sets. When there's any overlap between the newly considered set (<code>x</code>) and any of the list of previously considered sets (<code>y</code>), merge the unique values from all of those into a single set (any remaining sets remain as-is). Here, <code>b</code> selects the overlapping sets from y (and <code>-.b</code> selects the rest of those sets).
 
Examples:
 
<langsyntaxhighlight Jlang="j"> consolidate 'ab';'cd'
┌──┬──┐
│ab│cd│
Line 775 ⟶ 1,868:
┌─────┬────┐
│hijfg│abcd│
└─────┴────┘</langsyntaxhighlight>
 
=={{header|Java}}==
{{trans|D}}
{{works with|Java|7}}
<langsyntaxhighlight lang="java">import java.util.*;
 
public class SetConsolidation {
Line 842 ⟶ 1,935:
return r;
}
}</langsyntaxhighlight>
<pre>[A, B] [D, C]
[D, A, B]
Line 848 ⟶ 1,941:
[F, G, H, I, K] [D, A, B, C]</pre>
 
=={{header|MathematicaJavaScript}}==
<syntaxhighlight lang="javascript">(() => {
<lang Mathematica>reduce[x_] :=
'use strict';
 
// consolidated :: Ord a => [Set a] -> [Set a]
const consolidated = xs => {
const go = (s, xs) =>
0 !== xs.length ? (() => {
const h = xs[0];
return 0 === intersection(h, s).size ? (
[h].concat(go(s, tail(xs)))
) : go(union(h, s), tail(xs));
})() : [s];
return foldr(go, [], xs);
};
 
 
// TESTS ----------------------------------------------
const main = () =>
map(xs => intercalate(
', and ',
map(showSet, consolidated(xs))
),
map(x => map(
s => new Set(chars(s)),
x
),
[
['ab', 'cd'],
['ab', 'bd'],
['ab', 'cd', 'db'],
['hik', 'ab', 'cd', 'db', 'fgh']
]
)
).join('\n');
 
 
// GENERIC FUNCTIONS ----------------------------------
 
// chars :: String -> [Char]
const chars = s => s.split('');
 
// concat :: [[a]] -> [a]
// concat :: [String] -> String
const concat = xs =>
0 < xs.length ? (() => {
const unit = 'string' !== typeof xs[0] ? (
[]
) : '';
return unit.concat.apply(unit, xs);
})() : [];
 
// elems :: Dict -> [a]
// elems :: Set -> [a]
const elems = x =>
'Set' !== x.constructor.name ? (
Object.values(x)
) : Array.from(x.values());
 
// flip :: (a -> b -> c) -> b -> a -> c
const flip = f =>
1 < f.length ? (
(a, b) => f(b, a)
) : (x => y => f(y)(x));
 
// Note that that the Haskell signature of foldr differs from that of
// foldl - the positions of accumulator and current value are reversed
 
// foldr :: (a -> b -> b) -> b -> [a] -> b
const foldr = (f, a, xs) => xs.reduceRight(flip(f), a);
 
// intercalate :: [a] -> [[a]] -> [a]
// intercalate :: String -> [String] -> String
const intercalate = (sep, xs) =>
0 < xs.length && 'string' === typeof sep &&
'string' === typeof xs[0] ? (
xs.join(sep)
) : concat(intersperse(sep, xs));
 
// intersection :: Ord a => Set a -> Set a -> Set a
const intersection = (s, s1) =>
new Set([...s].filter(x => s1.has(x)));
 
// intersperse :: a -> [a] -> [a]
// intersperse :: Char -> String -> String
const intersperse = (sep, xs) => {
const bln = 'string' === typeof xs;
return xs.length > 1 ? (
(bln ? concat : x => x)(
(bln ? (
xs.split('')
) : xs)
.slice(1)
.reduce((a, x) => a.concat([sep, x]), [xs[0]])
)) : xs;
};
 
// map :: (a -> b) -> [a] -> [b]
const map = (f, xs) => xs.map(f);
 
// showSet :: Set -> String
const showSet = s =>
intercalate(elems(s), ['{', '}']);
 
// sort :: Ord a => [a] -> [a]
const sort = xs => xs.slice()
.sort((a, b) => a < b ? -1 : (a > b ? 1 : 0));
 
// tail :: [a] -> [a]
const tail = xs => 0 < xs.length ? xs.slice(1) : [];
 
// union :: Ord a => Set a -> Set a -> Set a
const union = (s, s1) =>
Array.from(s1.values())
.reduce(
(a, x) => (a.add(x), a),
new Set(s)
);
 
// MAIN ---
return main();
})();</syntaxhighlight>
{{Out}}
<pre>{c,d}, and {a,b}
{b,d,a}
{d,b,c,a}
{d,b,c,a}, and {f,g,h,i,k}</pre>
 
=={{header|jq}}==
'''Infrastructure''':
 
Currently, jq does not have a "Set" library, so to save space here, we will use simple but inefficient implementations of set-oriented functions as they are fast for sets of moderate size. Nevertheless, we will represent sets as sorted arrays.
<syntaxhighlight lang="jq">def to_set: unique;
 
def union(A; B): (A + B) | unique;
 
# boolean
def intersect(A;B):
reduce A[] as $x (false; if . then . else (B|index($x)) end) | not | not;</syntaxhighlight>
'''Consolidation''':
 
For clarity, the helper functions are presented as top-level functions, but they could be defined as inner functions of the main function, consolidate/0.
 
<syntaxhighlight lang="jq"># Input: [i, j, sets] with i < j
# Return [i,j] for a pair that can be combined, else null
def combinable:
.[0] as $i | .[1] as $j | .[2] as $sets
| ($sets|length) as $length
| if intersect($sets[$i]; $sets[$j]) then [$i, $j]
elif $i < $j - 1 then (.[0] += 1 | combinable)
elif $j < $length - 1 then [0, $j+1, $sets] | combinable
else null
end;
 
# Given an array of arrays, remove the i-th and j-th elements,
# and add their union:
def update(i;j):
if i > j then update(j;i)
elif i == j then del(.[i])
else
union(.[i]; .[j]) as $c
| union(del(.[j]) | del(.[i]); [$c])
end;
 
# Input: a set of sets
def consolidate:
if length <= 1 then .
else
([0, 1, .] | combinable) as $c
| if $c then update($c[0]; $c[1]) | consolidate
else .
end
end;
</syntaxhighlight>
'''Examples''':
<syntaxhighlight lang="jq">def tests:
[["A", "B"], ["C","D"]],
[["A","B"], ["B","D"]],
[["A","B"], ["C","D"], ["D","B"]],
[["H","I","K"], ["A","B"], ["C","D"], ["D","B"], ["F","G","H"]]
;
 
def test:
tests | to_set | consolidate;
 
test</syntaxhighlight>
{{Out}}
<syntaxhighlight lang="sh">$ jq -c -n -f Set_consolidation.rc
[["A","B"],["C","D"]]
[["A","B","D"]]
[["A","B","C","D"]]
[["A","B","C","D"],["F","G","H","I","K"]]</syntaxhighlight>
 
=={{header|Julia}}==
'''The consolidate Function'''
 
Here I assume that the data are contained in a list of sets. Perhaps a recursive solution would be more elegant, but in this case playing games with a stack works well enough.
<syntaxhighlight lang="julia">
function consolidate{T}(a::Array{Set{T},1})
1 < length(a) || return a
b = copy(a)
c = Set{T}[]
while 1 < length(b)
x = shift!(b)
cme = true
for (i, y) in enumerate(b)
!isempty(intersect(x, y)) || continue
cme = false
b[i] = union(x, y)
break
end
!cme || push!(c, x)
end
push!(c, b[1])
return c
end
</syntaxhighlight>
 
'''Main'''
<syntaxhighlight lang="julia">
p = Set(["A", "B"])
q = Set(["C", "D"])
r = Set(["B", "D"])
s = Set(["H", "I", "K"])
t = Set(["F", "G", "H"])
 
println("p = ", p)
println("q = ", q)
println("r = ", r)
println("s = ", s)
println("t = ", t)
 
println("consolidate([p, q]) =\n ", consolidate([p, q]))
println("consolidate([p, r]) =\n ", consolidate([p, r]))
println("consolidate([p, q, r]) =\n ", consolidate([p, q, r]))
println("consolidate([p, q, r, s, t]) =\n ",
consolidate([p, q, r, s, t]))
</syntaxhighlight>
 
{{out}}
<pre>
p = Set{ASCIIString}({"B","A"})
q = Set{ASCIIString}({"C","D"})
r = Set{ASCIIString}({"B","D"})
s = Set{ASCIIString}({"I","K","H"})
t = Set{ASCIIString}({"G","F","H"})
consolidate([p, q]) =
[Set{ASCIIString}({"B","A"}),Set{ASCIIString}({"C","D"})]
consolidate([p, r]) =
[Set{ASCIIString}({"B","A","D"})]
consolidate([p, q, r]) =
[Set{ASCIIString}({"B","A","C","D"})]
consolidate([p, q, r, s, t]) =
[Set{ASCIIString}({"B","A","C","D"}),Set{ASCIIString}({"I","G","K","H","F"})]
</pre>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="scala">// version 1.0.6
 
fun<T : Comparable<T>> consolidateSets(sets: Array<Set<T>>): Set<Set<T>> {
val size = sets.size
val consolidated = BooleanArray(size) // all false by default
var i = 0
while (i < size - 1) {
if (!consolidated[i]) {
while (true) {
var intersects = 0
for (j in (i + 1) until size) {
if (consolidated[j]) continue
if (sets[i].intersect(sets[j]).isNotEmpty()) {
sets[i] = sets[i].union(sets[j])
consolidated[j] = true
intersects++
}
}
if (intersects == 0) break
}
}
i++
}
return (0 until size).filter { !consolidated[it] }.map { sets[it].toSortedSet() }.toSet()
}
fun main(args: Array<String>) {
val unconsolidatedSets = arrayOf(
arrayOf(setOf('A', 'B'), setOf('C', 'D')),
arrayOf(setOf('A', 'B'), setOf('B', 'D')),
arrayOf(setOf('A', 'B'), setOf('C', 'D'), setOf('D', 'B')),
arrayOf(setOf('H', 'I', 'K'), setOf('A', 'B'), setOf('C', 'D'), setOf('D', 'B'), setOf('F', 'G', 'H'))
)
for (sets in unconsolidatedSets) println(consolidateSets(sets))
}</syntaxhighlight>
 
{{out}}
<pre>
[[A, B], [C, D]]
[[A, B, D]]
[[A, B, C, D]]
[[F, G, H, I, K], [A, B, C, D]]
</pre>
 
=={{header|Lua}}==
<syntaxhighlight lang="lua">-- SUPPORT:
function T(t) return setmetatable(t, {__index=table}) end
function S(t) local s=T{} for k,v in ipairs(t) do s[v]=v end return s end
table.each = function(t,f,...) for _,v in pairs(t) do f(v,...) end end
table.copy = function(t) local s=T{} for k,v in pairs(t) do s[k]=v end return s end
table.keys = function(t) local s=T{} for k,_ in pairs(t) do s[#s+1]=k end return s end
table.intersects = function(t1,t2) for k,_ in pairs(t1) do if t2[k] then return true end end return false end
table.union = function(t1,t2) local s=t1:copy() for k,_ in pairs(t2) do s[k]=k end return s end
table.dump = function(t) print('{ '..table.concat(t, ', ')..' }') end
 
-- TASK:
table.consolidate = function(t)
for a = #t, 1, -1 do
local seta = t[a]
for b = #t, a+1, -1 do
local setb = t[b]
if setb and seta:intersects(setb) then
t[a], t[b] = seta:union(setb), nil
end
end
end
return t
end
 
-- TESTING:
examples = {
T{ S{"A","B"}, S{"C","D"} },
T{ S{"A","B"}, S{"B","D"} },
T{ S{"A","B"}, S{"C","D"}, S{"D","B"} },
T{ S{"H","I","K"}, S{"A","B"}, S{"C","D"}, S{"D","B"}, S{"F","G","H"} },
}
for i,example in ipairs(examples) do
print("Given input sets:")
example:each(function(set) set:keys():dump() end)
print("Consolidated output sets:")
example:consolidate():each(function(set) set:keys():dump() end)
print("")
end</syntaxhighlight>
{{out}}
<pre>Given input sets:
{ A, B }
{ C, D }
Consolidated output sets:
{ A, B }
{ C, D }
 
Given input sets:
{ A, B }
{ D, B }
Consolidated output sets:
{ A, D, B }
 
Given input sets:
{ A, B }
{ C, D }
{ B, D }
Consolidated output sets:
{ A, D, C, B }
 
Given input sets:
{ I, H, K }
{ A, B }
{ C, D }
{ B, D }
{ H, G, F }
Consolidated output sets:
{ I, H, K, G, F }
{ A, D, C, B }</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">reduce[x_] :=
Block[{pairs, unique},
pairs =
Line 857 ⟶ 2,321:
unique = Complement[Range@Length@x, Flatten@pairs];
Join[Union[Flatten[x[[#]]]] & /@ pairs, x[[unique]]]]
consolidate[x__] := FixedPoint[reduce, {x}]</syntaxhighlight>
 
consolidate[x__] := FixedPoint[reduce, {x}]</lang>
<pre>consolidate[{a, b}, {c, d}]
-> {{a, b}, {c, d}}
 
consolidate[{a, b}, {b, d}]
-> {{a, b, d}}
 
consolidate[{a, b}, {c, d}, {d, b}]
-> {{a, b, c, d}}
 
consolidate[{h, i, k}, {a, b}, {c, d}, {d, b}, {f, g, h}]
-> {{a,b,c,d},{f,g,h,i,k}}</pre>
 
=={{header|Nim}}==
{{trans|Python}}
<syntaxhighlight lang="nim">proc consolidate(sets: varargs[set[char]]): seq[set[char]] =
if len(sets) < 2:
return @sets
var (r, b) = (@[sets[0]], consolidate(sets[1..^1]))
for x in b:
if len(r[0] * x) != 0:
r[0] = r[0] + x
else:
r.add(x)
r
 
echo consolidate({'A', 'B'}, {'C', 'D'})
echo consolidate({'A', 'B'}, {'B', 'D'})
echo consolidate({'A', 'B'}, {'C', 'D'}, {'D', 'B'})
echo consolidate({'H', 'I', 'K'}, {'A', 'B'}, {'C', 'D'}, {'D', 'B'}, {'F', 'G', 'H'})</syntaxhighlight>
 
{{out}}
<pre>
@[{'A', 'B'}, {'C', 'D'}]
@[{'A', 'B', 'D'}]
@[{'A', 'B', 'C', 'D'}]
@[{'F', 'G', 'H', 'I', 'K'}, {'A', 'B', 'C', 'D'}]
</pre>
 
=={{header|OCaml}}==
 
<langsyntaxhighlight lang="ocaml">let join a b =
List.fold_left (fun acc v ->
if List.mem v acc then acc else v::acc
Line 912 ⟶ 2,398:
print_sets (consolidate [["H";"I";"K"]; ["A";"B"]; ["C";"D"]; ["D";"B"];
["F";"G";"H"]]);
;;</langsyntaxhighlight>
 
Output:
 
{{out}}
<pre>{ {A B} {C D} }
{ {A B C} }
Line 922 ⟶ 2,407:
 
=={{header|ooRexx}}==
<langsyntaxhighlight lang="oorexx">/* REXX ***************************************************************
* 04.08.2013 Walter Pachl using ooRexx features
* (maybe not in the best way -improvements welcome!)
Line 1,037 ⟶ 2,522:
End
End
Return strip(ol)</langsyntaxhighlight>
{{out}}
Output:
<pre>
Input 1 (B,A) (C,D)
Line 1,069 ⟶ 2,554:
 
=={{header|PARI/GP}}==
<langsyntaxhighlight lang="parigp">cons(V)={
my(v,u,s);
for(i=1,#V,
Line 1,080 ⟶ 2,565:
V=select(v->#v,V);
if(s,cons(V),V)
};</langsyntaxhighlight>
 
=={{header|Perl 6}}==
We implement the key data structure, a set of sets, as an array containing references to arrays of scalars.
<lang perl6>multi consolidate() { () }
<syntaxhighlight lang="perl">use strict;
multi consolidate(Set \this is copy, *@those) {
use English;
gather {
use Smart::Comments;
for consolidate |@those -> \that {
 
if this ∩ that { this = this ∪ that }
my @ex1 = consolidate( (['A', 'B'], ['C', 'D']) );
else { take that }
### Example 1: @ex1
my @ex2 = consolidate( (['A', 'B'], ['B', 'D']) );
### Example 2: @ex2
my @ex3 = consolidate( (['A', 'B'], ['C', 'D'], ['D', 'B']) );
### Example 3: @ex3
my @ex4 = consolidate( (['H', 'I', 'K'], ['A', 'B'], ['C', 'D'], ['D', 'B'], ['F', 'G', 'H']) );
### Example 4: @ex4
exit 0;
 
sub consolidate {
scalar(@ARG) >= 2 or return @ARG;
my @result = ( shift(@ARG) );
my @recursion = consolidate(@ARG);
foreach my $r (@recursion) {
if (set_intersection($result[0], $r)) {
$result[0] = [ set_union($result[0], $r) ];
}
else {
push @result, $r;
}
take this;
}
return @result;
}
 
sub set_union {
enum Elems <A B C D E F G H I J K>;
my ($a, $b) = @ARG;
say $_, "\n ==> ", consolidate |$_
my %union;
for [set(A,B), set(C,D)],
foreach my $a_elt (@{$a}) { $union{$a_elt}++; }
[set(A,B), set(B,D)],
foreach my $b_elt (@{$b}) { $union{$b_elt}++; }
[set(A,B), set(C,D), set(D,B)],
return keys(%union);
[set(H,I,K), set(A,B), set(C,D), set(D,B), set(F,G,H)];</lang>
}
 
sub set_intersection {
my ($a, $b) = @ARG;
my %a_hash;
foreach my $a_elt (@{$a}) { $a_hash{$a_elt}++; }
my @result;
foreach my $b_elt (@{$b}) {
push(@result, $b_elt) if exists($a_hash{$b_elt});
}
return @result;
}</syntaxhighlight>
{{out}}
<pre>set(A,### B)Example set(C,1: D)[
### ==> set(C, D) set(A, B) [
### 'A',
set(A, B) set(B, D)
### ==> set(A, B, D) 'B'
### ],
set(A, B) set(C, D) set(D, B)
### ==> set(A, B, C, D) [
### 'C',
set(H, I, K) set(A, B) set(C, D) set(D, B) set(F, G, H)
### ==> set(A, B, C, D) set(H, I, K, F, G)</pre> 'D'
### ]
### ]
 
### Example 2: [
### [
### 'D',
### 'B',
### 'A'
### ]
### ]
 
### Example 3: [
### [
### 'A',
### 'C',
### 'D',
### 'B'
### ]
### ]
 
### Example 4: [
### [
### 'H',
### 'F',
### 'K',
### 'G',
### 'I'
### ],
### [
### 'D',
### 'B',
### 'A',
### 'C'
### ]
### ]</pre>
 
=={{header|Phix}}==
Using strings to represent sets of characters
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">has_intersection</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">set1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">set2</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">set1</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #000000;">set1</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span><span style="color: #000000;">set2</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span>
<span style="color: #008080;">return</span> <span style="color: #004600;">true</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #004600;">false</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">get_union</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">set1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">set2</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">set2</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">if</span> <span style="color: #008080;">not</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #000000;">set2</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span><span style="color: #000000;">set1</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">set1</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">append</span><span style="color: #0000FF;">(</span><span style="color: #000000;">set1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">set2</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">])</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">set1</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">consolidate</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">sets</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sets</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">to</span> <span style="color: #000000;">1</span> <span style="color: #008080;">by</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sets</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">to</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span> <span style="color: #008080;">by</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">has_intersection</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sets</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span><span style="color: #000000;">sets</span><span style="color: #0000FF;">[</span><span style="color: #000000;">j</span><span style="color: #0000FF;">])</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">sets</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">get_union</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sets</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span><span style="color: #000000;">sets</span><span style="color: #0000FF;">[</span><span style="color: #000000;">j</span><span style="color: #0000FF;">])</span>
<span style="color: #000000;">sets</span><span style="color: #0000FF;">[</span><span style="color: #000000;">j</span><span style="color: #0000FF;">..</span><span style="color: #000000;">j</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{}</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">sets</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #0000FF;">?</span><span style="color: #000000;">consolidate</span><span style="color: #0000FF;">({</span><span style="color: #008000;">"AB"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"CD"</span><span style="color: #0000FF;">})</span>
<span style="color: #0000FF;">?</span><span style="color: #000000;">consolidate</span><span style="color: #0000FF;">({</span><span style="color: #008000;">"AB"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"BD"</span><span style="color: #0000FF;">})</span>
<span style="color: #0000FF;">?</span><span style="color: #000000;">consolidate</span><span style="color: #0000FF;">({</span><span style="color: #008000;">"AB"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"CD"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"DB"</span><span style="color: #0000FF;">})</span>
<span style="color: #0000FF;">?</span><span style="color: #000000;">consolidate</span><span style="color: #0000FF;">({</span><span style="color: #008000;">"HIK"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"AB"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"CD"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"DB"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"FGH"</span><span style="color: #0000FF;">})</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
{"AB","CD"}
{"ABD"}
{"ABCD"}
{"HIKFG","ABCD"}
</pre>
 
=={{header|PicoLisp}}==
{{trans|Python}}
<langsyntaxhighlight PicoLisplang="picolisp">(de consolidate (S)
(when S
(let R (cons (car S))
Line 1,119 ⟶ 2,717:
(set R (uniq (conc X (car R))))
(conc R (cons X)) ) )
R ) ) )</langsyntaxhighlight>
Test:
<langsyntaxhighlight PicoLisplang="picolisp">: (consolidate '((A B) (C D)))
-> ((A B) (C D))
: (consolidate '((A B) (B D)))
Line 1,128 ⟶ 2,726:
-> ((D B C A))
: (consolidate '((H I K) (A B) (C D) (D B) (F G H)))
-> ((F G H I K) (D B C A))</langsyntaxhighlight>
 
=={{header|PL/I}}==
<langsyntaxhighlight PLlang="pl/Ii">Set: procedure options (main); /* 13 November 2013 */
declare set(20) character (200) varying;
declare e character (1);
Line 1,188 ⟶ 2,786:
end print;
 
end Set;</langsyntaxhighlight>
<pre>
The original sets: {A,B}
Line 1,206 ⟶ 2,804:
Results: {A,B,E,F,G,H} {C,D}
</pre>
 
=={{header|PL/M}}==
<syntaxhighlight lang="plm">100H:
BDOS: PROCEDURE (F,A); DECLARE F BYTE, A ADDRESS; GO TO 5; END BDOS;
EXIT: PROCEDURE; GO TO 0; END EXIT;
PUTC: PROCEDURE (C); DECLARE C BYTE; CALL BDOS(2, C); END PUTC;
PUTS: PROCEDURE (S); DECLARE S ADDRESS; CALL BDOS(9, S); END PUTS;
 
BIT: PROCEDURE (I) ADDRESS;
DECLARE I BYTE;
IF I=0 THEN RETURN 1;
RETURN SHL(DOUBLE(1), I);
END BIT;
 
PRINT$SET: PROCEDURE (SET);
DECLARE SET ADDRESS, I BYTE;
CALL PUTC('(');
DO I=0 TO 15;
IF (BIT(I) AND SET) <> 0 THEN CALL PUTC('A' + I);
END;
CALL PUTC(')');
END PRINT$SET;
 
MAKE$SET: PROCEDURE (SETSTR) ADDRESS;
DECLARE SETSTR ADDRESS, ITEM BASED SETSTR BYTE;
DECLARE SET ADDRESS, POS ADDRESS;
SET = 0;
DO WHILE ITEM <> '$';
POS = ITEM - 'A';
IF POS < 16 THEN SET = SET OR BIT(POS);
SETSTR = SETSTR + 1;
END;
RETURN SET;
END MAKE$SET;
 
CONSOLIDATE: PROCEDURE (SETS, N) BYTE;
DECLARE (SETS, S BASED SETS) ADDRESS;
DECLARE (N, I, J, CHANGE) BYTE;
 
STEP:
CHANGE = 0;
DO I=0 TO N-1;
DO J=I+1 TO N-1;
IF (S(I) AND S(J)) <> 0 THEN DO;
S(I) = S(I) OR S(J);
S(J) = 0;
CHANGE = 1;
END;
END;
END;
IF CHANGE THEN GO TO STEP;
 
DO I=0 TO N-1;
IF S(I)=0 THEN
DO J=I+1 TO N-1;
S(J-1) = S(J);
END;
END;
 
DO I=0 TO N-1;
IF S(I)=0 THEN RETURN I;
END;
RETURN N;
END CONSOLIDATE;
 
TEST: PROCEDURE (SETS, N);
DECLARE (SETS, S BASED SETS) ADDRESS;
DECLARE (N, I) BYTE;
DO I=0 TO N-1;
CALL PRINT$SET(S(I));
END;
CALL PUTS(.' -> $');
N = CONSOLIDATE(SETS, N);
DO I=0 TO N-1;
CALL PRINT$SET(S(I));
END;
CALL PUTS(.(13,10,'$'));
END TEST;
 
DECLARE S (5) ADDRESS;
 
S(0) = MAKE$SET(.'AB$'); S(1) = MAKE$SET(.'CD$');
CALL TEST(.S, 2);
S(0) = MAKE$SET(.'AB$'); S(1) = MAKE$SET(.'BD$');
CALL TEST(.S, 2);
S(0) = MAKE$SET(.'AB$'); S(1) = MAKE$SET(.'CD$');
S(2) = MAKE$SET(.'DB$');
CALL TEST(.S, 3);
S(0) = MAKE$SET(.'HIK$'); S(1) = MAKE$SET(.'AB$');
S(2) = MAKE$SET(.'CD$'); S(3) = MAKE$SET(.'DB$');
S(4) = MAKE$SET(.'FGH$');
CALL TEST(.S, 5);
CALL EXIT;
EOF</syntaxhighlight>
{{out}}
<pre>(AB)(CD) -> (AB)(CD)
(AB)(BD) -> (ABD)
(AB)(CD)(BD) -> (ABCD)
(HIK)(AB)(CD)(BD)(FGH) -> (FGHIK)(ABCD)</pre>
 
=={{header|Python}}==
===Python: Iterative===
<langsyntaxhighlight lang="python">def consolidate(sets):
setlist = [s for s in sets if s]
for i, s1 in enumerate(setlist):
Line 1,219 ⟶ 2,916:
s1.clear()
s1 = s2
return [s for s in setlist if s]</langsyntaxhighlight>
 
===Python: Recursive===
<langsyntaxhighlight lang="python">def conso(s):
if len(s) < 2: return s
Line 1,229 ⟶ 2,926:
if r[0].intersection(x): r[0].update(x)
else: r.append(x)
return r</langsyntaxhighlight>
 
===Python: Testing===
The <code>_test</code> function contains solutions to all the examples as well as a check to show the order-independence of the sets given to the consolidate function.
<langsyntaxhighlight lang="python">def _test(consolidate=consolidate):
def freze(list_of_sets):
Line 1,266 ⟶ 2,963:
if __name__ == '__main__':
_test(consolidate)
_test(conso)</langsyntaxhighlight>
 
{{out}}
<pre>_test(consolidate) complete
_test(conso) complete</pre>
 
===Python: Functional===
 
As a fold (catamorphism), using '''union''' in preference to mutation:
 
{{Trans|Haskell}}
{{Trans|JavaScript}}
{{Works with|Python|3.7}}
<syntaxhighlight lang="python">'''Set consolidation'''
 
from functools import (reduce)
 
 
# consolidated :: Ord a => [Set a] -> [Set a]
def consolidated(sets):
'''A consolidated list of sets.'''
def go(xs, s):
if xs:
h = xs[0]
return go(xs[1:], h.union(s)) if (
h.intersection(s)
) else [h] + go(xs[1:], s)
else:
return [s]
return reduce(go, sets, [])
 
 
# TESTS ---------------------------------------------------
# main :: IO ()
def main():
'''Illustrative consolidations.'''
 
print(
tabulated('Consolidation of sets of characters:')(
lambda x: str(list(map(compose(concat)(list), x)))
)(str)(
consolidated
)(list(map(lambda xs: list(map(set, xs)), [
['ab', 'cd'],
['ab', 'bd'],
['ab', 'cd', 'db'],
['hik', 'ab', 'cd', 'db', 'fgh']
])))
)
 
 
# DISPLAY OF RESULTS --------------------------------------
 
# compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
def compose(g):
'''Right to left function composition.'''
return lambda f: lambda x: g(f(x))
 
 
# concat :: [String] -> String
def concat(xs):
'''Concatenation of strings in xs.'''
return ''.join(xs)
 
 
# tabulated :: String -> (a -> String) ->
# (b -> String) ->
# (a -> b) -> [a] -> String
def tabulated(s):
'''Heading -> x display function -> fx display function ->
f -> value list -> tabular string.'''
def go(xShow, fxShow, f, xs):
w = max(map(compose(len)(xShow), xs))
return s + '\n' + '\n'.join([
xShow(x).rjust(w, ' ') + ' -> ' + fxShow(f(x)) for x in xs
])
return lambda xShow: lambda fxShow: (
lambda f: lambda xs: go(
xShow, fxShow, f, xs
)
)
 
 
# MAIN ---
if __name__ == '__main__':
main()</syntaxhighlight>
{{Out}}
<pre>Consolidation of sets of characters:
['ba', 'cd'] -> [{'b', 'a'}, {'c', 'd'}]
['ba', 'bd'] -> [{'b', 'd', 'a'}]
['ba', 'cd', 'db'] -> [{'d', 'a', 'c', 'b'}]
['ikh', 'ba', 'cd', 'db', 'gfh'] -> [{'d', 'a', 'c', 'b'}, {'i', 'k', 'g', 'h', 'f'}]</pre>
 
=={{header|Quackery}}==
 
<syntaxhighlight lang="Quackery"> [ 0 swap witheach [ bit | ] ] is ->set ( $ --> { )
 
[ say "{" 0 swap
[ dup 0 != while
dup 1 & if [ over emit ]
1 >> dip 1+ again ]
2drop say "} " ] is echoset ( { --> )
 
[ [] swap dup size 1 - times
[ behead over witheach
[ 2dup & iff
[ | swap i^ poke
[] conclude ]
else drop ]
swap dip join ]
join ] is consolidate ( [ --> [ )
 
[ dup witheach echoset
say "--> "
consolidate witheach echoset
cr ] is task ( [ --> )
 
$ "AB" ->set
$ "CD" ->set join
task
$ "AB" ->set
$ "BD" ->set join
task
$ "AB" ->set
$ "CD" ->set join
$ "DB" ->set join
task
$ "HIK" ->set
$ "AB" ->set join
$ "CD" ->set join
$ "DB" ->set join
$ "FGH" ->set join
task</syntaxhighlight>
 
{{out}}
 
<pre>{AB} {CD} --> {AB} {CD}
{AB} {BD} --> {ABD}
{AB} {CD} {BD} --> {ABCD}
{HIK} {AB} {CD} {BD} {FGH} --> {ABCD} {FGHIK}
</pre>
 
=={{header|Racket}}==
<langsyntaxhighlight lang="racket">
#lang racket
(define (consolidate ss)
Line 1,288 ⟶ 3,121:
(consolidate (list (set 'a 'b) (set 'c 'd) (set 'd 'b)))
(consolidate (list (set 'h 'i 'k) (set 'a 'b) (set 'c 'd) (set 'd 'b) (set 'f 'g 'h)))
</syntaxhighlight>
</lang>
{{out}}
Output:
<langsyntaxhighlight lang="racket">
(list (set 'b 'a) (set 'd 'c))
(list (set 'a 'b 'c))
(list (set 'a 'b 'd 'c))
(list (set 'g 'h 'k 'i 'f) (set 'a 'b 'd 'c))
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
(formerly Perl 6)
<syntaxhighlight lang="raku" line>multi consolidate() { () }
multi consolidate(Set \this is copy, *@those) {
gather {
for consolidate |@those -> \that {
if this ∩ that { this = this ∪ that }
else { take that }
}
take this;
}
}
 
enum Elems <A B C D E F G H I J K>;
say $_, "\n ==> ", consolidate |$_
for [set(A,B), set(C,D)],
[set(A,B), set(B,D)],
[set(A,B), set(C,D), set(D,B)],
[set(H,I,K), set(A,B), set(C,D), set(D,B), set(F,G,H)];</syntaxhighlight>
{{out}}
<pre>set(A, B) set(C, D)
==> set(C, D) set(A, B)
set(A, B) set(B, D)
==> set(A, B, D)
set(A, B) set(C, D) set(D, B)
==> set(A, B, C, D)
set(H, I, K) set(A, B) set(C, D) set(D, B) set(F, G, H)
==> set(A, B, C, D) set(H, I, K, F, G)</pre>
 
=={{header|Refal}}==
<syntaxhighlight lang="refal">$ENTRY Go {
= <Test (A B) (C D)>
<Test (A B) (B D)>
<Test (A B) (C D) (D B)>
<Test (H I K) (A B) (C D) (D B) (F G H)>;
};
 
Test {
e.S = <Prout e.S ' -> ' <Consolidate e.S>>;
};
 
Consolidate {
e.SS, <Consolidate1 () e.SS>: {
e.SS = e.SS;
e.SS2 = <Consolidate e.SS2>;
};
};
 
Consolidate1 {
(e.CSS) = e.CSS;
(e.CSS) (e.S) e.SS,
<Consolidate2 (e.CSS) (e.S)>: e.CSS2 =
<Consolidate1 (e.CSS2) e.SS>;
};
 
Consolidate2 {
() (e.S) = (e.S);
((e.S1) e.SS) (e.S), <Overlap (e.S1) (e.S)>: {
True = (<Set e.S1 e.S>) e.SS;
False = (e.S1) <Consolidate2 (e.SS) (e.S)>;
};
};
 
Overlap {
(e.S1) () = False;
(e.S1) (s.I e.S2), e.S1: {
e.L s.I e.R = True;
e.S1 = <Overlap (e.S1) (e.S2)>;
};
};
 
Set {
= ;
s.I e.S, e.S: {
e.L s.I e.R = <Set e.S>;
e.S = s.I <Set e.S>;
};
};</syntaxhighlight>
{{out}}
<pre>(A B )(C D ) -> (A B )(C D )
(A B )(B D ) -> (A B D )
(A B )(C D )(D B ) -> (A B C D )
(H I K )(A B )(C D )(D B )(F G H ) -> (I K F G H )(A B C D )</pre>
 
=={{header|REXX}}==
<langsyntaxhighlight lang="rexx">/*REXX program showsdemonstrates howa tomethod consolidateof a sample bunch of sets.set consolidating using some sample sets. */
sets@.=; /*assign all SETS@.1 = '{A,B} to null. */{C,D}'
sets @.12 = '"{A,B} {CB,D}'"
sets @.23 = "'{A,B} {BC,D}" {D,B}'
sets @.34 = '{H,I,K} {A,B} {C,D} {D,B} {F,G,H}'
sets.4 = '{H,I,K} {A,B} {C,D} @.5 = '{Dsnow,Bice,slush,frost,fog} {icebergs,icecubes} {Frain,Gfog,Hsleet}'
sets.5 = '{snow,ice,slush,frost,fog} {iceburgs,icecubes} {rain,fog,sleet}'
 
do j=1 while sets@.j\=='' /*traipse through theeach of sample sets. */
call SETcomboSETconsolidate sets@.j /*have the other guyfunction do the heavy work. */
end /*j*/
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────SETcombo subroutine─────────────────*/
isIn: return wordpos(arg(1), arg(2))\==0 /*is (word) argument 1 in the set arg2?*/
SETcombo: procedure; parse arg bunch; n=words(bunch); newBunch=
/*──────────────────────────────────────────────────────────────────────────────────────*/
say ' the old sets=' space(bunch)
SETconsolidate: procedure; parse arg old; #= words(old); new=
say ' the old set=' space(old)
 
do k=1 for n# /* [↓] change all commas to a blank. */
@ !.k= translate( word(bunchold, k), , '},{') /*create a list of words (=aka, a set).*/
end end /*k*/ /*... [↑] ··· and also remove the braces.*/
 
do until \changed; changed= 0 /*consolidate some sets (well, maybe).*/
do set=1 for n#-1
do item=1 for words(@!.set); x= word(@!.set, item)
do other=set+1 to n#
if isIn(x,@ !.other) then do; changed= 1 /*it's changed*/
@ !.set=@ !.set @!.other; @ !.other=
iterate set
end
end /*other*/
end /*item */
end /*set */
end /*until ¬changed*/
 
do set=1 for n#; new $= /*remove duplicates in a set. /*elide dups*/
do items=1 for words(@!.set); x= word(!.set, items)
x=word(@.set,items); if x==',' then iterate; if x=='' then leave
new $=new $ x /*start building the new set. /*build new.*/
do forever; until if \isIn(x,@ !.set); then leave _= wordpos(x, !.set)
_= wordpos(x,@ !.set)
@ !.set= subword(@!.set, 1, _-1) ',' subword(@!.set, _+1) /*purify set.*/
end end /*foreveruntil ¬isIn ··· */
end /*items*/
@ !.set= translate( strip(new$), ',', " ")
end /*set*/
 
do newi=1 for n#; if @!.newi=='' then iterate /*ignore any set that is a null set. */
new= space(new '{'!.i"}") /*prepend and append a set identifier. */
newBunch=space(newbunch '{'@.new"}")
end /*newi*/
 
say ' the new setsset=' newBunch new; say
return</syntaxhighlight>
return
{{out|output|text=&nbsp; when using the (internal) default supplied sample sets:}}
/*──────────────────────────────────isIn subroutine─────────────────────*/
<pre>
isIn: return wordpos(arg(1),arg(2))\==0 /*is (word) arg1 in set arg2? */</lang>
the old set= {A,B} {C,D}
'''output''' when using the default supplied sample sets
the new set= {A,B} {C,D}
<pre style="overflow:scroll">
the old sets= {A,B} {C,D}
the new sets= {A,B} {C,D}
 
the old setsset= {A,B} {B,D}
the new setsset= {A,B,D}
 
the old setsset= {A,B} {C,D} {D,B}
the new setsset= {A,B,D,C}
 
the old setsset= {H,I,K} {A,B} {C,D} {D,B} {F,G,H}
the new setsset= {H,I,K,F,G} {A,B,D,C}
 
the old setsset= {snow,ice,slush,frost,fog} {iceburgsicebergs,icecubes} {rain,fog,sleet}
the new setsset= {snow,ice,slush,frost,fog,rain,sleet} {iceburgsicebergs,icecubes}
</pre>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
# Project : Set consolidation
 
load "stdlib.ring"
test = ["AB","AB,CD","AB,CD,DB","HIK,AB,CD,DB,FGH"]
for t in test
see consolidate(t) + nl
next
func consolidate(s)
sets = split(s,",")
n = len(sets)
for i = 1 to n
p = i
ts = ""
for j = i to 1 step -1
if ts = ""
p = j
ok
ts = ""
for k = 1 to len(sets[p])
if j > 1
if substring(sets[j-1],substr(sets[p],k,1),1) = 0
ts = ts + substr(sets[p],k,1)
ok
ok
next
if len(ts) < len(sets[p])
if j > 1
sets[j-1] = sets[j-1] + ts
sets[p] = "-"
ts = ""
ok
else
p = i
ok
next
next
consolidate = s + " = " + substr(list2str(sets),nl,",")
return consolidate
</syntaxhighlight>
Output:
<pre>
AB = AB
AB,CD = AB,CD
AB,CD,DB = ABCD,-,-
HIK,AB,CD,DB,FGH = HIKFG,ABCD,-,-,-
</pre>
 
=={{header|Ruby}}==
<langsyntaxhighlight lang="ruby">require 'set'
 
tests = [[[':A', ':B'], [':C',':D']],
[[':A',':B'], [':B',':D']],
[[':A',':B'], [':C',':D'], [':D',':B']],
[[':H',':I',':K'], [':A',':B'], [':C',':D'], [':D',':B'], [':F',':G',':H']]]
tests = tests.map!{|sets| sets.map(&:to_set)}
 
tests.mapeach do |sets|
loop until sets.combination(2).none? do {|a,b| a.merge(b) && sets.delete(b) if a.intersect?(b)}
if a.intersect?(b) then
a.merge(b)
sets.delete(b)
end
end
p sets
end</syntaxhighlight>
end
{{out}}
</lang>
<pre>
{{Output}}
[#<Set: {:A, :B}>, #<Set: {:C, :D}>]
[#<Set: {:A, :B, :D}>]
[#<Set: {:A, :B, :D, :C}>]
[#<Set: {:H, :I, :K, :F, :G}>, #<Set: {:A, :B, :D, :C}>]
</pre>
Note: After execution, the contents of tests are exchanged.
 
=={{header|Scala}}==
<syntaxhighlight lang="scala">object SetConsolidation extends App {
def consolidate[Type](sets: Set[Set[Type]]): Set[Set[Type]] = {
var result = sets // each iteration combines two sets and reiterates, else returns
for (i <- sets; j <- sets - i; k = i.intersect(j);
if result == sets && k.nonEmpty) result = result - i - j + i.union(j)
if (result == sets) sets else consolidate(result)
}
 
// Tests:
def parse(s: String) =
s.split(",").map(_.split("").toSet).toSet
def pretty[Type](sets: Set[Set[Type]]) =
sets.map(_.mkString("{",",","}")).mkString(" ")
val tests = List(
parse("AB,CD") -> Set(Set("A", "B"), Set("C", "D")),
parse("AB,BD") -> Set(Set("A", "B", "D")),
parse("AB,CD,DB") -> Set(Set("A", "B", "C", "D")),
parse("HIK,AB,CD,DB,FGH") -> Set(Set("A", "B", "C", "D"), Set("F", "G", "H", "I", "K"))
)
require(Set("A", "B", "C", "D") == Set("B", "C", "A", "D"))
assert(tests.forall{case (test, expect) =>
val result = consolidate(test)
println(s"${pretty(test)} -> ${pretty(result)}")
expect == result
})
 
}</syntaxhighlight>
{{out}}
<pre>{A,B} {C,D} -> {A,B} {C,D}
{A,B} {B,D} -> {A,B,D}
{A,B} {C,D} {D,B} -> {C,D,A,B}
{D,B} {F,G,H} {A,B} {C,D} {H,I,K} -> {F,I,G,H,K} {A,B,C,D}</pre>
 
=={{header|SETL}}==
<syntaxhighlight lang="setl">program set_consolidation;
tests := [
{{'A','B'}, {'C','D'}},
{{'A','B'}, {'B','D'}},
{{'A','B'}, {'C','D'}, {'D','B'}},
{{'H','I','K'}, {'A','B'}, {'C','D'}, {'D','B'}, {'F','G','H'}}
];
 
loop for t in tests do
print(consolidate(t));
end loop;
 
proc consolidate(sets);
outp := {};
loop while sets /= {} do
set_ from sets;
loop until overlap = {} do
overlap := {s : s in sets | exists el in s | el in set_};
set_ +:= {} +/ overlap;
sets -:= overlap;
end loop;
outp with:= set_;
end loop;
return outp;
end proc;
end program;</syntaxhighlight>
{{out}}
<pre>{{A B} {C D}}
{{A B D}}
{{A B C D}}
{{A B C D} {F G H I K}}</pre>
 
=={{header|Sidef}}==
{{trans|Raku}}
<syntaxhighlight lang="ruby">func consolidate() { [] }
func consolidate(this, *those) {
gather {
consolidate(those...).each { |that|
if (this & that) { this |= that }
else { take that }
}
take this;
}
}
 
enum |A="A", B, C, D, _E, F, G, H, I, _J, K|;
 
func format(ss) {
ss.map{ '(' + .join(' ') + ')' }.join(' ')
}
 
[
[[A,B], [C,D]],
[[A,B], [B,D]],
[[A,B], [C,D], [D,B]],
[[H,I,K], [A,B], [C,D], [D,B], [F,G,H]]
].each { |ss|
say (format(ss), "\n\t==> ", format(consolidate(ss...)));
}</syntaxhighlight>
{{out}}
<pre>
(A B) (C D)
==> (C D) (A B)
(A B) (B D)
==> (A D B)
(A B) (C D) (D B)
==> (A C D B)
(H I K) (A B) (C D) (D B) (F G H)
==> (A C D B) (I K F G H)
</pre>
 
=={{header|SQL}}==
{{works with|ORACLE 19c}}
This is not a particularly efficient solution, but it gets the job done.
 
<syntaxhighlight lang="sql">
/*
This code is an implementation of "Set consolidation" in SQL ORACLE 19c
p_list_of_sets -- input string
delimeter by default "|"
*/
with
function set_consolidation(p_list_of_sets in varchar2)
return varchar2 is
--
v_list_of_sets varchar2(32767) := p_list_of_sets;
v_output varchar2(32767) ;
v_set_1 varchar2(2000) ;
v_set_2 varchar2(2000) ;
v_pos_set_1 pls_integer;
v_pos_set_2 pls_integer;
--
function remove_duplicates(p_set varchar2)
return varchar2 is
v_set varchar2(1000) := p_set;
begin
for i in 1..length(v_set)
loop
v_set := regexp_replace(v_set, substr(v_set, i, 1), '', i+1, 0) ;
end loop;
return v_set;
end;
--
begin
--cleaning
v_list_of_sets := ltrim(v_list_of_sets, '{') ;
v_list_of_sets := rtrim(v_list_of_sets, '}') ;
v_list_of_sets := replace(v_list_of_sets, ' ', '') ;
v_list_of_sets := replace(v_list_of_sets, ',', '') ;
--set delimeter "|"
v_list_of_sets := replace(v_list_of_sets, '}{', '|') ;
--
<<loop_through_sets>>
while regexp_count(v_list_of_sets, '[^|]+') > 0
loop
v_set_1 := regexp_substr(v_list_of_sets, '[^|]+', 1, 1) ;
v_pos_set_1 := regexp_instr(v_list_of_sets, '[^|]+', 1, 1) ;
--
<<loop_for>>
for i in 1..regexp_count(v_list_of_sets, '[^|]+')-1
loop
--
v_set_2 := regexp_substr(v_list_of_sets, '[^|]+', 1, i+1) ;
v_pos_set_2 := regexp_instr(v_list_of_sets, '[^|]+', 1, i+1) ;
--
if regexp_count(v_set_2, '['||v_set_1||']') > 0 then
v_list_of_sets := regexp_replace(v_list_of_sets, v_set_1, remove_duplicates(v_set_1||v_set_2), v_pos_set_1, 1) ;
v_list_of_sets := regexp_replace(v_list_of_sets, v_set_2, '', v_pos_set_2, 1) ;
continue loop_through_sets;
end if;
--
end loop loop_for;
--
v_output := v_output||'{'||rtrim(regexp_replace(v_set_1, '([A-Z])', '\1,'), ',') ||'}';
v_list_of_sets := regexp_replace(v_list_of_sets, v_set_1, '', 1, 1) ;
--
end loop loop_through_sets;
--
return replace(nvl(v_output,'{}'),'}{','},{') ;
end;
 
--Test
select lpad('{}',50) || ' ==> ' || set_consolidation('{}') as output from dual
union all
select lpad('{},{}',50) || ' ==> ' || set_consolidation('{},{}') as output from dual
union all
select lpad('{},{B}',50) || ' ==> ' || set_consolidation('{},{B}') as output from dual
union all
select lpad('{D}',50) || ' ==> ' || set_consolidation('{D}') as output from dual
union all
select lpad('{F},{A},{A}',50) || ' ==> ' || set_consolidation('{F},{A},{A}') as output from dual
union all
select lpad('{A,B},{B}',50) || ' ==> ' || set_consolidation('{A,B},{B}') as output from dual
union all
select lpad('{A,D},{D,A}',50) || ' ==> ' || set_consolidation('{A,D},{D,A}') as output from dual
union all
--Test RosettaCode
select '-- Test RosettaCode' as output from dual
union all
select lpad('{A,B},{C,D}',50) || ' ==> ' || set_consolidation('{A,B},{C,D}') as output from dual
union all
select lpad('{A,B},{B,D}',50) || ' ==> ' || set_consolidation('{A,B},{B,D}') as output from dual
union all
select lpad('{A,B},{C,D},{D,B}',50) || ' ==> ' || set_consolidation('{A,B},{C,D},{D,B}') as output from dual
union all
select lpad('{H, I, K}, {A,B}, {C,D}, {D,B}, {F,G,H}',50) || ' ==> ' || set_consolidation('{H, I, K}, {A,B}, {C,D}, {D,B}, {F,G,H}') as output from dual
union all
select lpad('HIK|AB|CD|DB|FGH',50) || ' ==> ' || set_consolidation('HIK|AB|CD|DB|FGH') as output from dual
;
/
</syntaxhighlight>
 
{{out}}
<pre>
{} ==> {}
[#<Set: {"A", "B"}>, #<Set: {"C", "D"}>]
{},{} ==> {}
[#<Set: {"A", "B", "D"}>]
{},{B} ==> {B}
[#<Set: {"A", "B", "D", "C"}>]
{D} ==> {D}
[#<Set: {"H", "I", "K", "F", "G"}>, #<Set: {"A", "B", "D", "C"}>]
{F},{A},{A} ==> {F},{A}
{A,B},{B} ==> {A,B}
{A,D},{D,A} ==> {A,D}
-- Test RosettaCode
{A,B},{C,D} ==> {A,B},{C,D}
{A,B},{B,D} ==> {A,B,D}
{A,B},{C,D},{D,B} ==> {A,B,D,C}
{H, I, K}, {A,B}, {C,D}, {D,B}, {F,G,H} ==> {H,I,K,F,G},{A,B,D,C}
HIK|AB|CD|DB|FGH ==> {H,I,K,F,G},{A,B,D,C}
</pre>
 
Line 1,401 ⟶ 3,585:
{{tcllib|struct::set}}
This uses just the recursive version, as this is sufficient to handle substantial merges.
<langsyntaxhighlight lang="tcl">package require struct::set
 
proc consolidate {sets} {
Line 1,418 ⟶ 3,602:
}
return [lset r 0 $r0]
}</langsyntaxhighlight>
Demonstrating:
<langsyntaxhighlight lang="tcl">puts 1:[consolidate {{A B} {C D}}]
puts 2:[consolidate {{A B} {B D}}]
puts 3:[consolidate {{A B} {C D} {D B}}]
puts 4:[consolidate {{H I K} {A B} {C D} {D B} {F G H}}]</langsyntaxhighlight>
{{out}}
<pre>1:{A B} {C D}
Line 1,434 ⟶ 3,618:
Original solution:
 
<syntaxhighlight lang="txrlisp">(defun mkset (p x) (set [p x] (or [p x] x)))
<lang txr>@(do
(defun mkset (p x) (set [p x] (or [p x] x)))
 
(defun fnd (p x) (if (eq [p x] x) x (fnd p [p x])))
 
(defun uni (p x y)
(let ((xr (fnd p x)) (yr (fnd p y)))
(set [p xr] yr)))
 
(defun consoli (sets)
(let ((p (hash)))
(each ((s sets))
(each ((e s))
(mkset p e)
(uni p e (car s))))
(hash-values
[group-by (op fnd p) (hash-keys
[group-by identity (flatten sets)])])))
 
;; tests
 
(each ((test '(((a b) (c d))
((a b) (b d))
((a b) (c d) (d b))
((h i k) (a b) (c d) (d b) (f g h)))))
(format t "~s -> ~s\n" test (consoli test))))</langsyntaxhighlight>
 
{{out}}
Output:
<pre>((a b) (c d)) -> ((b a) (d c))
((a b) (b d)) -> ((b a d))
((a b) (c d) (d b)) -> ((b a d c))
((h i k) (a b) (c d) (d b) (f g h)) -> ((g f k i h) (b a d c)</pre>
 
{{trans|Racket}}
<pre>((a b) (c d)) -> ((d c) (b a))
 
<syntaxhighlight lang="txrlisp">(defun mkset (items) [group-by identity items])
 
(defun empty-p (set) (zerop (hash-count set)))
 
(defun consoli (ss)
(defun combi (cs s)
(cond ((empty-p s) cs)
((null cs) (list s))
((empty-p (hash-isec s (first cs)))
(cons (first cs) (combi (rest cs) s)))
(t (consoli (cons (hash-uni s (first cs)) (rest cs))))))
[reduce-left combi ss nil])
 
;; tests
(each ((test '(((a b) (c d))
((a b) (b d))
((a b) (c d) (d b))
((h i k) (a b) (c d) (d b) (f g h)))))
(format t "~s -> ~s\n" test
[mapcar hash-keys (consoli [mapcar mkset test])]))</syntaxhighlight>
 
{{out}}
<pre>((a b) (c d)) -> ((b a) (d c))
((a b) (b d)) -> ((d b a))
((a b) (c d) (d b)) -> ((d c b a))
((h i k) (a b) (c d) (d b) (f g h)) -> ((d c b a) (g f k i h) (d c b a))</pre>
 
=={{transheader|RacketVBA}}==
{{trans|Phix}}
This solutions uses collections as sets. The first three coroutines are based on the Phix solution. Two coroutines are written to create the example sets as collections, and another coroutine to show the consolidated set.
<syntaxhighlight lang="vb">Private Function has_intersection(set1 As Collection, set2 As Collection) As Boolean
For Each element In set1
On Error Resume Next
tmp = set2(element)
If tmp = element Then
has_intersection = True
Exit Function
End If
Next element
End Function
Private Sub union(set1 As Collection, set2 As Collection)
For Each element In set2
On Error Resume Next
tmp = set1(element)
If tmp <> element Then
set1.Add element, element
End If
Next element
End Sub
Private Function consolidate(sets As Collection) As Collection
For i = sets.Count To 1 Step -1
For j = sets.Count To i + 1 Step -1
If has_intersection(sets(i), sets(j)) Then
union sets(i), sets(j)
sets.Remove j
End If
Next j
Next i
Set consolidate = sets
End Function
Private Function mc(s As Variant) As Collection
Dim res As New Collection
For i = 1 To Len(s)
res.Add Mid(s, i, 1), Mid(s, i, 1)
Next i
Set mc = res
End Function
Private Function ms(t As Variant) As Collection
Dim res As New Collection
Dim element As Collection
For i = LBound(t) To UBound(t)
Set element = t(i)
res.Add t(i)
Next i
Set ms = res
End Function
Private Sub show(x As Collection)
Dim t() As String
Dim u() As String
ReDim t(1 To x.Count)
For i = 1 To x.Count
ReDim u(1 To x(i).Count)
For j = 1 To x(i).Count
u(j) = x(i)(j)
Next j
t(i) = "{" & Join(u, ", ") & "}"
Next i
Debug.Print "{" & Join(t, ", ") & "}"
End Sub
Public Sub main()
show consolidate(ms(Array(mc("AB"), mc("CD"))))
show consolidate(ms(Array(mc("AB"), mc("BD"))))
show consolidate(ms(Array(mc("AB"), mc("CD"), mc("DB"))))
show consolidate(ms(Array(mc("HIK"), mc("AB"), mc("CD"), mc("DB"), mc("FGH"))))
End Sub</syntaxhighlight>{{out}}
<pre>{{A, B}, {C, D}}
{{A, B, D}}
{{A, B, C, D}}
{{H, I, K, F, G}, {A, B, C, D}}</pre>
 
=={{header|VBScript}}==
<lang txr>@(do
<syntaxhighlight lang="vb">
(defun mkset (items) [group-by identity items])
Function consolidate(s)
sets = Split(s,",")
n = UBound(sets)
For i = 1 To n
p = i
ts = ""
For j = i To 1 Step -1
If ts = "" Then
p = j
End If
ts = ""
For k = 1 To Len(sets(p))
If InStr(1,sets(j-1),Mid(sets(p),k,1)) = 0 Then
ts = ts & Mid(sets(p),k,1)
End If
Next
If Len(ts) < Len(sets(p)) Then
sets(j-1) = sets(j-1) & ts
sets(p) = "-"
ts = ""
Else
p = i
End If
Next
Next
consolidate = s & " = " & Join(sets," , ")
End Function
 
'testing
(defun empty-p (set) (zerop (hash-count set)))
test = Array("AB","AB,CD","AB,CD,DB","HIK,AB,CD,DB,FGH")
For Each t In test
WScript.StdOut.WriteLine consolidate(t)
Next
</syntaxhighlight>
 
{{Out}}
(defun consoli (ss)
<pre>
(defun comb (cs s)
AB = AB
(cond ((empty-p s) cs)
AB,CD = AB , CD
((null cs) (list s))
AB,CD,DB = ABCD , - , -
((empty-p (hash-isec s (first cs)))
HIK,AB,CD,DB,FGH = HIKFG , ABCD , - , - , -
(cons (first cs) (comb (rest cs) s)))
</pre>
(t (consoli (cons (hash-uni s (first cs)) (rest cs))))))
[reduce-left comb ss nil])
 
=={{header|Wren}}==
;; tests
{{trans|Kotlin}}
(each ((test '(((a b) (c d))
{{libheader|Wren-set}}
((a b) (b d))
Note that (as implemented in the above module) it is not possible to have a 'Set of Sets' because Set elements can only be certain primitives which can act as Map keys. However, you can have a List of Sets and so that's what we use here.
((a b) (c d) (d b))
((h i k) (a b) (c d) (d b) (f g h)))))
(format t "~s -> ~s\n" test
[mapcar hash-keys (consoli [mapcar mkset test])])))</lang>
 
As Sets are Map-based, iteration (and hence printing) order are undefined.
Output:
<syntaxhighlight lang="wren">import "./set" for Set
 
var consolidateSets = Fn.new { |sets|
<pre>((a b) (c d)) -> ((b a) (d c))
var size = sets.count
((a b) (b d)) -> ((b a d))
var consolidated = List.filled(size, false)
((a b) (c d) (d b)) -> ((b a d c))
var i = 0
((h i k) (a b) (c d) (d b) (f g h)) -> ((g f k i h) (b a d c))</pre>
while (i < size - 1) {
if (!consolidated[i]) {
while (true) {
var intersects = 0
for (j in i+1...size) {
if (!consolidated[j]) {
if (!sets[i].intersect(sets[j]).isEmpty) {
sets[i].addAll(sets[j])
consolidated[j] = true
intersects = intersects + 1
}
}
}
if (intersects == 0) break
}
}
i = i + 1
}
return (0...size).where { |i| !consolidated[i] }.map { |i| sets[i] }.toList
}
 
var unconsolidatedSets = [
[Set.new(["A", "B"]), Set.new(["C", "D"])],
[Set.new(["A", "B"]), Set.new(["B", "D"])],
[Set.new(["A", "B"]), Set.new(["C", "D"]), Set.new(["D", "B"])],
[Set.new(["H", "I", "K"]), Set.new(["A", "B"]), Set.new(["C", "D"]),
Set.new(["D", "B"]), Set.new(["F", "G", "H"])]
]
for (sets in unconsolidatedSets) {
System.print("Unconsolidated: %(sets)")
System.print("Cosolidated : %(consolidateSets.call(sets))\n")
}</syntaxhighlight>
 
{{out}}
<pre>
Unconsolidated: [<B, A>, <C, D>]
Cosolidated : [<B, A>, <C, D>]
 
Unconsolidated: [<B, A>, <D, B>]
Cosolidated : [<D, B, A>]
 
Unconsolidated: [<B, A>, <C, D>, <D, B>]
Cosolidated : [<C, D, B, A>]
 
Unconsolidated: [<I, H, K>, <B, A>, <C, D>, <D, B>, <G, H, F>]
Cosolidated : [<I, G, H, F, K>, <C, D, B, A>]
</pre>
 
=={{header|zkl}}==
{{trans|Tcl}}
<syntaxhighlight lang="zkl">fcn consolidate(sets){ // set are munged if they are read/write
if(sets.len()<2) return(sets);
r,r0 := List(List()),sets[0];
foreach x in (consolidate(sets[1,*])){
i,ni:=x.filter22(r0.holds); //-->(intersection, !intersection)
if(i) r0=r0.extend(ni);
else r.append(x);
}
r[0]=r0;
r
}</syntaxhighlight>
<syntaxhighlight lang="zkl">fcn prettize(sets){
sets.apply("concat"," ").pump(String,"(%s),".fmt)[0,-1]
}
 
foreach sets in (T(
T(L("A","B")),
T(L("A","B"),L("C","D")),
T(L("A","B"),L("B","D")),
T(L("A","B"),L("C","D"),L("D","B")),
T(L("H","I","K"),L("A","B"),L("C","D"),L("D","B"),L("F","G","H")),
T(L("A","H"),L("H","I","K"),L("A","B"),L("C","D"),L("D","B"),L("F","G","H")),
T(L("H","I","K"),L("A","B"),L("C","D"),L("D","B"),L("F","G","H"), L("A","H")),
)){
prettize(sets).print(" --> ");
consolidate(sets) : prettize(_).println();
}</syntaxhighlight>
{{out}}
<pre>
(A B) --> (A B)
(A B),(C D) --> (A B),(C D)
(A B),(B D) --> (A B D)
(A B),(C D),(D B) --> (A B C D)
(H I K),(A B),(C D),(D B),(F G H) --> (H I K F G),(A B C D)
(A H),(H I K),(A B),(C D),(D B),(F G H) --> (A H I K F G B C D)
(H I K),(A B),(C D),(D B),(F G H),(A H) --> (H I K A B C D F G)
</pre>
2,115

edits