Polynomial synthetic division

Revision as of 13:41, 13 June 2021 by Shuisman (talk | contribs)
Polynomial synthetic division is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
This page uses content from Wikipedia. The original article was at Synthetic division. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)


In algebra, polynomial synthetic division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree in an efficient way using a trick involving clever manipulations of coefficients, which results in a lower time complexity than polynomial long division.



11l

Translation of: Python

<lang 11l>F extended_synthetic_division(dividend, divisor)

  ‘Fast polynomial division by using Extended Synthetic Division. Also works with non-monic polynomials.’
  V out = copy(dividend)
  V normalizer = divisor[0]
  L(i) 0 .< dividend.len - (divisor.len - 1)
     out[i] /= normalizer
     V coef = out[i]
     I coef != 0
        L(j) 1 .< divisor.len
           out[i + j] += -divisor[j] * coef
  V separator = divisor.len - 1
  R (out[0 .< (len)-separator], out[(len)-separator..])

print(‘POLYNOMIAL SYNTHETIC DIVISION’) V n = [1, -12, 0, -42] V D = [1, -3] print(‘ #. / #. =’.format(n, D), end' ‘ ’) V (a, b) = extended_synthetic_division(n, D) print(‘#. remainder #.’.format(a, b))</lang>

Output:
POLYNOMIAL SYNTHETIC DIVISION
  [1, -12, 0, -42] / [1, -3] = [1, -9, -27] remainder [-123]

C++

Translation of: Java

<lang cpp>/*

* C++ Polynomial Sythetic Division
* GNU Compile example for filename <synthdiv.cpp>
* g++ -std=c++11 -o synthdiv synthdiv.cpp
*/
  1. include <iostream>
  2. include <vector>
  3. include <string>
  4. include <cmath>

/*

* frmtPolynomial method
* Returns string for formatted 
* polynomial from int vector of coefs.
* String looks like ax^2 + bx + c, 
* a, b, and c being the integer
* coefs in the vector.
*/

std::string frmtPolynomial(std::vector<int> polynomial, bool remainder = false) { std::string r = "";

if (remainder) { r = " r: " + std::to_string(polynomial.back()); polynomial.pop_back(); }

std::string formatted = "";

int degree = polynomial.size() - 1; int d = degree;

for (int i : polynomial) { if (d < degree) { if (i >= 0) { formatted += " + "; } else { formatted += " - "; } }

formatted += std::to_string(abs(i));

if (d > 1) { formatted += "x^" + std::to_string(d); } else if (d == 1) { formatted += "x"; }

d--; }

return formatted; }

/*

* syntheticDiv Method
* Performs Integer Polynomial Sythetic Division
* on polynomials expressed as vectors of coefs.
* Takes int vector param for dividend and 
* divisor, and returns int vector quotient.
*/

std::vector<int> syntheticDiv(std::vector<int> dividend, std::vector<int> divisor) { std::vector<int> quotient; quotient = dividend;

int normalizer = divisor[0];

for (int i = 0; i < dividend.size() - (divisor.size() - 1); i++) { quotient[i] /= normalizer; int coef = quotient[i];

if (coef != 0) { for (int j = 1; j < divisor.size(); j++) { quotient[i + j] += -divisor[j] * coef; }

       }

}

return quotient; }

/*

* Example of using the syntheticDiv method
* and the frmtPolynomial method.
* Assigns dividend and divisor polynomials:
* dividend: 1x^3 - 12x^2 + 0x - 42
* divisor: 1x - 3
* Outputs both to cout using frmtPolynomial.
* Printed polynomials look like above format.
* Processes dividend and divisor in the 
* syntheticDiv method, returns quotient.
* Outputs quotient to cout using frmtPolynomial again.
* quotient: 1x^2 - 9x - 27 r: -123
*/

int main(int argc, char **argv) { std::vector<int> dividend{ 1, -12, 0, -42}; std::vector<int> divisor{ 1, -3};

std::cout << frmtPolynomial(dividend) << "\n"; std::cout << frmtPolynomial(divisor) << "\n";

std::vector<int> quotient = syntheticDiv(dividend, divisor);

std::cout << frmtPolynomial(quotient, true) << "\n";

} </lang>

C#

Translation of: Java

<lang csharp>using System; using System.Collections.Generic; using System.Linq;

namespace SyntheticDivision {

   class Program
   {
       static (List<int>,List<int>) extendedSyntheticDivision(List<int> dividend, List<int> divisor)
       {
           List<int> output = dividend.ToList();
           int normalizer = divisor[0];
           for (int i = 0; i < dividend.Count() - (divisor.Count() - 1); i++)
           {
               output[i] /= normalizer;
               int coef = output[i];
               if (coef != 0)
               {
                   for (int j = 1; j < divisor.Count(); j++)
                       output[i + j] += -divisor[j] * coef;
               }
           }
           int separator = output.Count() - (divisor.Count() - 1);
           return (
               output.GetRange(0, separator),
               output.GetRange(separator, output.Count() - separator)
           );
       }
       static void Main(string[] args)
       {
           List<int> N = new List<int>{ 1, -12, 0, -42 };
           List<int> D = new List<int> { 1, -3 };
           var (quotient, remainder) = extendedSyntheticDivision(N, D);
           Console.WriteLine("[ {0} ] / [ {1} ] = [ {2} ], remainder [ {3} ]" ,
               string.Join(",", N),
               string.Join(",", D),
               string.Join(",", quotient),
               string.Join(",", remainder)
           );
       }
   }

} </lang>

Delphi

Translation of: Go

Thanks Rudy Velthuis for the Velthuis.BigRationals library.
<lang Delphi> program Polynomial_synthetic_division;

{$APPTYPE CONSOLE}

uses

 System.SysUtils,
 Velthuis.BigRationals;

type

 TPollynomy = record
 public
   Terms: TArray<BigRational>;
   class operator Divide(a, b: TPollynomy): TArray<TPollynomy>;
   constructor Create(Terms: TArray<BigRational>);
   function ToString: string;
 end;

{ TPollynomy }

constructor TPollynomy.Create(Terms: TArray<BigRational>); begin

 self.Terms := copy(Terms, 0, length(Terms));

end;

class operator TPollynomy.Divide(a, b: TPollynomy): TArray<TPollynomy>; var

 q, r: TPollynomy;

begin

 var o: TArray<BigRational>;
 SetLength(o, length(a.Terms));
 for var i := 0 to High(a.Terms) do
   o[i] := BigRational.Create(a.Terms[i]);
 for var i := 0 to length(a.Terms) - length(b.Terms) do
 begin
   o[i] := BigRational.Create(o[i] div b.Terms[0]);
   var coef := BigRational.Create(o[i]);
   if coef.Sign <> 0 then
   begin
     var aa: BigRational := 0;
     for var j := 1 to High(b.Terms) do
     begin
       aa := (-b.Terms[j]) * coef;
       o[i + j] := o[i + j] + aa;
     end;
   end;
 end;
 var separator := length(o) - (length(b.Terms) - 1);
 q := TPollynomy.Create(copy(o, 0, separator));
 r := TPollynomy.Create(copy(o, separator, length(o)));
 result := [q, r];

end;

function TPollynomy.ToString: string; begin

 Result := '[';
 for var e in Terms do
   Result := Result + e.ToString + ' ';
 Result := Result + ']';

end;

var

 p1, p2: TPollynomy;

begin

 p1 := TPollynomy.Create([BigRational.Create(1, 1), BigRational.Create(-12, 1),
   BigRational.Create(0, 1), BigRational.Create(-42, 1)]);
 p2 := TPollynomy.Create([BigRational.Create(1, 1), BigRational.Create(-3, 1)]);
 write(p1.ToString, ' / ', p2.ToString, ' = ');
 var result := p1 / p2;
 writeln(result[0].ToString, ' remainder ', result[1].ToString);
 readln;

end.</lang>

Output:
[1 -12 0 -42 ] / [1 -3 ] = [1 -9 -27 ] remainder [-123 ]


Go

Translation of: Python

<lang go>package main

import (

   "fmt"
   "math/big"

)

func div(dividend, divisor []*big.Rat) (quotient, remainder []*big.Rat) {

   out := make([]*big.Rat, len(dividend))
   for i, c := range dividend {
       out[i] = new(big.Rat).Set(c)
   }
   for i := 0; i < len(dividend)-(len(divisor)-1); i++ {
       out[i].Quo(out[i], divisor[0])
       if coef := out[i]; coef.Sign() != 0 {
           var a big.Rat
           for j := 1; j < len(divisor); j++ {
               out[i+j].Add(out[i+j], a.Mul(a.Neg(divisor[j]), coef))
           }
       }
   }
   separator := len(out) - (len(divisor) - 1)
   return out[:separator], out[separator:]

}

func main() {

   N := []*big.Rat{
       big.NewRat(1, 1),
       big.NewRat(-12, 1),
       big.NewRat(0, 1),
       big.NewRat(-42, 1)}
   D := []*big.Rat{big.NewRat(1, 1), big.NewRat(-3, 1)}
   Q, R := div(N, D)
   fmt.Printf("%v / %v = %v remainder %v\n", N, D, Q, R)

}</lang>

Output:
[1/1 -12/1 0/1 -42/1] / [1/1 -3/1] = [1/1 -9/1 -27/1] remainder [-123/1]

J

Solving this the easy way:

<lang J> psd=: [:(}. ;{.) ([ (] -/@,:&}. (* {:)) ] , %&{.~)^:(>:@-~&#)~</lang>

Task example:

<lang J> (1, (-12), 0, -42) psd (1, -3) ┌────────┬────┐ │1 _9 _27│_123│ └────────┴────┘ </lang>

Java

Translation of: Python

<lang java>import java.util.Arrays;

public class Test {

   public static void main(String[] args) {
       int[] N = {1, -12, 0, -42};
       int[] D = {1, -3};
       System.out.printf("%s / %s = %s",
               Arrays.toString(N),
               Arrays.toString(D),
               Arrays.deepToString(extendedSyntheticDivision(N, D)));
   }
   static int[][] extendedSyntheticDivision(int[] dividend, int[] divisor) {
       int[] out = dividend.clone();
       int normalizer = divisor[0];
       for (int i = 0; i < dividend.length - (divisor.length - 1); i++) {
           out[i] /= normalizer;
           int coef = out[i];
           if (coef != 0) {
               for (int j = 1; j < divisor.length; j++)
                   out[i + j] += -divisor[j] * coef;
           }
       }
       int separator = out.length - (divisor.length - 1);
       return new int[][]{
           Arrays.copyOfRange(out, 0, separator),
           Arrays.copyOfRange(out, separator, out.length)
       };
   }

}</lang>

[1, -12, 0, -42] / [1, -3] = [[1, -9, -27], [-123]]

Julia

Translation of: Perl

<lang julia>function divrem(dividend::Vector, divisor::Vector)

   result = copy(dividend)
   quotientlen = length(divisor) - 1
   for i in 1:length(dividend)-quotientlen
       if result[i] != 0
           result[i] /= divisor[1]
           for j in 1:quotientlen
               result[i + j] -= divisor[j + 1] * result[i]
           end
       end
   end
   return result[1:end-quotientlen], result[end-quotientlen+1:end]

end

testpolys = [([1, -12, 0, -42], [1, -3]), ([1, 0, 0, 0, -2], [1, 1, 1, 1])]

for (n, d) in testpolys

   quotient, remainder = divrem(n, d)
   println("[$n] / [$d] = [$quotient] with remainder [$remainder]")

end

</lang>

Output:
[[1, -12, 0, -42]] / [[1, -3]] = [[1, -9, -27]] with remainder [[-123]]
[[1, 0, 0, 0, -2]] / [[1, 1, 1, 1]] = [[1, -1]] with remainder [[0, 0, -1]]

Kotlin

Translation of: Python

<lang scala>// version 1.1.2

fun extendedSyntheticDivision(dividend: IntArray, divisor: IntArray): Pair<IntArray, IntArray> {

   val out = dividend.copyOf()
   val normalizer = divisor[0]
   val separator = dividend.size - divisor.size + 1
   for (i in 0 until separator) {
       out[i] /= normalizer
       val coef = out[i]
       if (coef != 0) { 
           for (j in 1 until divisor.size) out[i + j] += -divisor[j] * coef
       }
   }
   return out.copyOfRange(0, separator) to out.copyOfRange(separator, out.size) 

}

fun main(args: Array<String>) {

   println("POLYNOMIAL SYNTHETIC DIVISION")
   val n = intArrayOf(1, -12, 0, -42)
   val d = intArrayOf(1, -3)
   val (q, r) = extendedSyntheticDivision(n, d)
   print("${n.contentToString()} / ${d.contentToString()}  =  ")
   println("${q.contentToString()}, remainder ${r.contentToString()}")
   println()
   val n2 = intArrayOf(1, 0, 0, 0, -2)
   val d2 = intArrayOf(1, 1, 1, 1)
   val (q2, r2) = extendedSyntheticDivision(n2, d2)
   print("${n2.contentToString()} / ${d2.contentToString()}  =  ")
   println("${q2.contentToString()}, remainder ${r2.contentToString()}")

}</lang>

Output:
POLYNOMIAL SYNTHETIC DIVISION
[1, -12, 0, -42] / [1, -3]  =  [1, -9, -27], remainder [-123]

[1, 0, 0, 0, -2] / [1, 1, 1, 1]  =  [1, -1], remainder [0, 0, -1]

Mathematica / Wolfram Language

<lang Mathematica>MakePolynomial[l_List, x_] := FromCoefficientRules[Thread[List /@ Range[Length[l] - 1, 0, -1] -> l], {x}] num = MakePolynomial[{1, -12, 0, -42}, x]; den = MakePolynomial[{1, -3}, x]; PolynomialQuotient[num, den, x] PolynomialRemainder[num, den, x]</lang>

Output:
-27 - 9 x + x^2
-123

Perl

Translation of: Raku

<lang perl>sub synthetic_division {

   my($numerator,$denominator) = @_;
   my @result = @$numerator;
   my $end    = @$denominator-1;
   for my $i (0 .. @$numerator-($end+1)) {
       next unless $result[$i];
       $result[$i]    /= @$denominator[0];
       $result[$i+$_] -= @$denominator[$_] * $result[$i] for 1 .. $end;
   }
   return join(' ', @result[0 .. @result-($end+1)]), join(' ', @result[-$end .. -1]);

}

sub poly_divide {

   *n = shift; *d = shift;
   my($quotient,$remainder)= synthetic_division( \@n, \@d );
   "[@n] / [@d] = [$quotient], remainder [$remainder]\n";

}

print poly_divide([1, -12, 0, -42], [1, -3]); print poly_divide([1, 0, 0, 0, -2], [1, 1, 1, 1]);</lang>

Output:
[1 -12 0 -42] / [1 -3] = [1 -9 -27], remainder [-123]
[1 0 0 0 -2] / [1 1 1 1] = [1 -1], remainder [0 0 -1]

Phix

Translation of: Kotlin

<lang Phix>function extendedSyntheticDivision(sequence dividend, divisor)

   sequence out = dividend
   integer normalizer = divisor[1]
   integer separator = length(dividend) - length(divisor) + 1
   for i=1 to separator do
       out[i] /= normalizer
       integer coef = out[i]
       if (coef != 0) then
           for j=2 to length(divisor) do out[i+j-1] += -divisor[j] * coef end for
       end if
   end for
   return {out[1..separator],out[separator+1..$]}

end function

constant tests = {{{1, -12, 0, -42},{1, -3}},

                 {{1, 0, 0, 0, -2},{1, 1, 1, 1}}}

printf(1,"Polynomial synthetic division\n") for t=1 to length(tests) do

   sequence {n,d} = tests[t],
            {q,r} = extendedSyntheticDivision(n, d)
   printf(1,"%v / %v  =  %v, remainder %v\n",{n,d,q,r})

end for</lang>

Output:
Polynomial synthetic division
{1,-12,0,-42} / {1,-3}  =  {1,-9,-27}, remainder {-123}
{1,0,0,0,-2} / {1,1,1,1}  =  {1,-1}, remainder {0,0,-1}

Python

Here is an extended synthetic division algorithm, which means that it supports a divisor polynomial (instead of just a monomial/binomial). It also supports non-monic polynomials (polynomials which first coefficient is different than 1). Polynomials are represented by lists of coefficients with decreasing degree (left-most is the major degree , right-most is the constant).

Works with: Python 2.x

<lang python># -*- coding: utf-8 -*-

def extended_synthetic_division(dividend, divisor):

   Fast polynomial division by using Extended Synthetic Division. Also works with non-monic polynomials.
   # dividend and divisor are both polynomials, which are here simply lists of coefficients. Eg: x^2 + 3x + 5 will be represented as [1, 3, 5]
   out = list(dividend) # Copy the dividend
   normalizer = divisor[0]
   for i in xrange(len(dividend)-(len(divisor)-1)):
       out[i] /= normalizer # for general polynomial division (when polynomials are non-monic),
                                # we need to normalize by dividing the coefficient with the divisor's first coefficient
       coef = out[i]
       if coef != 0: # useless to multiply if coef is 0
           for j in xrange(1, len(divisor)): # in synthetic division, we always skip the first coefficient of the divisor,
                                             # because it's only used to normalize the dividend coefficients
               out[i + j] += -divisor[j] * coef
   # The resulting out contains both the quotient and the remainder, the remainder being the size of the divisor (the remainder
   # has necessarily the same degree as the divisor since it's what we couldn't divide from the dividend), so we compute the index
   # where this separation is, and return the quotient and remainder.
   separator = -(len(divisor)-1)
   return out[:separator], out[separator:] # return quotient, remainder.

if __name__ == '__main__':

   print "POLYNOMIAL SYNTHETIC DIVISION"
   N = [1, -12, 0, -42]
   D = [1, -3]
   print "  %s / %s =" % (N,D),
   print " %s remainder %s" % extended_synthetic_division(N, D)

</lang>

Sample output:

POLYNOMIAL SYNTHETIC DIVISION
  [1, -12, 0, -42] / [1, -3] =  [1, -9, -27] remainder [-123]

Racket

Translation of: Python

<lang racket>#lang racket/base (require racket/list)

dividend and divisor are both polynomials, which are here simply lists of coefficients.
Eg
x^2 + 3x + 5 will be represented as (list 1 3 5)

(define (extended-synthetic-division dividend divisor)

 (define out (list->vector dividend)) ; Copy the dividend
 ;; for general polynomial division (when polynomials are non-monic), we need to normalize by
 ;; dividing the coefficient with the divisor's first coefficient
 (define normaliser (car divisor))
 (define divisor-length (length divisor)) ; } we use these often enough
 (define out-length (vector-length out))  ; }
 
 (for ((i (in-range 0 (- out-length divisor-length -1))))
   (vector-set! out i (quotient (vector-ref out i) normaliser))
   (define coef (vector-ref out i))
   (unless (zero? coef) ; useless to multiply if coef is 0
     (for ((i+j (in-range (+ i 1)                ; in synthetic division, we always skip the first
                          (+ i divisor-length))) ; coefficient of the divisior, because it's
           (divisor_j (in-list (cdr divisor))))  ;  only used to normalize the dividend coefficients
       (vector-set! out i+j (+ (vector-ref out i+j) (* coef divisor_j -1))))))
 ;; The resulting out contains both the quotient and the remainder, the remainder being the size of
 ;; the divisor (the remainder has necessarily the same degree as the divisor since it's what we
 ;; couldn't divide from the dividend), so we compute the index where this separation is, and return
 ;; the quotient and remainder.
 ;; return quotient, remainder (conveniently like quotient/remainder)
 (split-at (vector->list out) (- out-length (sub1 divisor-length))))

(module+ main

 (displayln "POLYNOMIAL SYNTHETIC DIVISION")
 (define N '(1 -12 0 -42))
 (define D '(1 -3))
 (define-values (Q R) (extended-synthetic-division N D))
 (printf "~a / ~a = ~a remainder ~a~%" N D Q R))</lang>
Output:
POLYNOMIAL SYNTHETIC DIVISION
(1 -12 0 -42) / (1 -3) = (1 -9 -27) remainder (-123)

Raku

(formerly Perl 6)

Translation of: Python
Works with: Rakudo version 2018.09

<lang perl6>sub synthetic-division ( @numerator, @denominator ) {

   my @result = @numerator;
   my $end    = @denominator.end;
   for ^(@numerator-$end) -> $i {
       @result[$i]    /= @denominator[0];
       @result[$i+$_] -= @denominator[$_] * @result[$i] for 1..$end;
   }
   'quotient' => @result[0 ..^ *-$end],
   'remainder' => @result[*-$end .. *];

}

my @tests = [1, -12, 0, -42], [1, -3], [1, 0, 0, 0, -2], [1, 1, 1, 1];

for @tests -> @n, @d {

   my %result = synthetic-division( @n, @d );
   say "[{@n}] / [{@d}] = [%result<quotient>], remainder [%result<remainder>]";

}</lang>

Output:
[1 -12 0 -42] / [1 -3] = [1 -9 -27], remainder [-123] 
[1 0 0 0 -2] / [1 1 1 1] = [1 -1], remainder [0 0 -1] 

REXX

<lang rexx>/* REXX Polynomial Division */ /* extended to support order of divisor >1 */ call set_dd '1 0 0 0 -1' Call set_dr '1 1 1 1' Call set_dd '1 -12 0 -42' Call set_dr '1 -3' q.0=0 Say list_dd '/' list_dr do While dd.0>=dr.0

 q=dd.1/dr.1
 Do j=1 To dr.0
   dd.j=dd.j-q*dr.j
   End
 Call set_q q
 Call shift_dd
 End

say 'Quotient:' mk_list_q() 'Remainder:' mk_list_dd() Exit

set_dd: Parse Arg list list_dd='[' Do i=1 To words(list)

 dd.i=word(list,i)
 list_dd=list_dd||dd.i','
 End

dd.0=i-1 list_dd=left(list_dd,length(list_dd)-1)']' Return

set_dr: Parse Arg list list_dr='[' Do i=1 To words(list)

 dr.i=word(list,i)
 list_dr=list_dr||dr.i','
 End

dr.0=i-1 list_dr=left(list_dr,length(list_dr)-1)']' Return

set_q: z=q.0+1 q.z=arg(1) q.0=z Return

shift_dd: Do i=2 To dd.0

 ia=i-1
 dd.ia=dd.i
 End

dd.0=dd.0-1 Return

mk_list_q: list='['q.1 Do i=2 To q.0

 list=list','q.i
 End

Return list']'

mk_list_dd: list='['dd.1 Do i=2 To dd.0

 list=list','dd.i
 End

Return list']'

</lang>

Output:
[1,-12,0,-42] / [1,-3]
Quotient: [1,-9,-27] Remainder: -123

[1,0,0,0,-2] / [1,1,1,1]
Quotient: [1,-1] Remainder: [0,0,-1]

Scala

Java Interoperability

Output:

Best seen running in your browser either by ScalaFiddle (ES aka JavaScript, non JVM) or Scastie (remote JVM).

<lang Scala>import java.util

object PolynomialSyntheticDivision extends App {

 val N: Array[Int] = Array(1, -12, 0, -42)
 val D: Array[Int] = Array(1, -3)
 def extendedSyntheticDivision(dividend: Array[Int],
                               divisor: Array[Int]): Array[Array[Int]] = {
   val out = dividend.clone
   val normalizer = divisor(0)
   for (i <- 0 until dividend.length - (divisor.length - 1)) {
     out(i) /= normalizer
     val coef = out(i)
     if (coef != 0)
       for (j <- 1 until divisor.length) out(i + j) += -divisor(j) * coef
   }
   val separator = out.length - (divisor.length - 1)
   Array[Array[Int]](util.Arrays.copyOfRange(out, 0, separator),
     util.Arrays.copyOfRange(out, separator, out.length))
 }
 println(f"${util.Arrays.toString(N)}%s / ${util.Arrays.toString(D)}%s = ${
   util.Arrays
     .deepToString(extendedSyntheticDivision(N, D).asInstanceOf[Array[AnyRef]])
 }%s")

}</lang>

Sidef

Translation of: Python

<lang ruby>func extended_synthetic_division(dividend, divisor) {

   var end = divisor.end
   var out = dividend.clone
   var normalizer = divisor[0]
   for i in ^(dividend.len - end) {
       out[i] /= normalizer
       var coef = out[i]
       if (coef != 0) {
           for j in (1 .. end) {
               out[i+j] += -(divisor[j] * coef)
           }
       }
   }
   var remainder = out.splice(-end)
   var quotient = out
   return(quotient, remainder)

}

var (n, d) = ([1, -12, 0, -42], [1, -3]) print(" %s / %s =" % (n, d)) print(" %s remainder %s\n" % extended_synthetic_division(n, d))</lang>

Output:
 [1, -12, 0, -42] / [1, -3] = [1, -9, -27] remainder [-123]

Tcl

Translation of: Python

This uses a common utility proc range, and a less common one called lincr, which increments elements of lists. The routine for polynomial division is placed in a namespace ensemble, such that it can be conveniently shared with other commands for polynomial arithmetic (eg polynomial multiply).

<lang Tcl># range ?start? end+1

  1. start defaults to 0: [range 5] = {0 1 2 3 4}

proc range {a {b ""}} {

   if {$b eq ""} {
       set b $a
       set a 0
   }
   for {set r {}} {$a<$b} {incr a} {
       lappend r $a
   }
   return $r

}

  1. lincr list idx ?...? increment
  2. By analogy with [lset] and [incr]:
  3. Adds incr to the item at [lindex list idx ?...?]. incr may be a float.

proc lincr {_ls args} {

   upvar 1 $_ls ls
   set incr [lindex $args end]
   set idxs [lrange $args 0 end-1]
   lset ls {*}$idxs [expr {$incr + [lindex $ls {*}$idxs]}]

}

namespace eval polynomial {

   # polynomial division, returns [list $dividend $remainder]
   proc divide {top btm} {
       set out $top
       set norm [lindex $btm 0]
       foreach i [range [expr {[llength $top] - [llength $btm] + 1}]] {
           lset out $i [set coef [expr {[lindex $out $i] * 1.0 / $norm}]]
           if {$coef != 0} {
               foreach j [range 1 [llength $btm]] {
                   lincr out [expr {$i+$j}] [expr {-[lindex $btm $j] * $coef}]
               }
           }
       }
       set terms [expr {[llength $btm]-1}]
       list [lrange $out 0 end-$terms] [lrange $out end-[incr terms -1] end]
   }
   namespace export *
   namespace ensemble create

}

proc test {} {

   set top {1 -12 0 -42}
   set btm {1 -3}
   set div [polynomial divide $top $btm]
   puts "$top / $btm = $div"

} test</lang>

Output:
1 -12 0 -42 / 1 -3 = {1.0 -9.0 -27.0} -123.0

Wren

Translation of: Kotlin
Library: Wren-dynamic

<lang ecmascript>import "/dynamic" for Tuple

var Solution = Tuple.create("Solution", ["quotient", "remainder"])

var extendedSyntheticDivision = Fn.new { |dividend, divisor|

   var out = dividend.toList
   var normalizer = divisor[0]
   var separator = dividend.count - divisor.count + 1
   for (i in 0...separator) {
       out[i] = (out[i] / normalizer).truncate
       var coef = out[i]
       if (coef != 0) {
           for (j in 1...divisor.count) out[i + j] = out[i + j] - divisor[j] * coef
       }
   }
   return Solution.new(out[0...separator], out[separator..-1])

}

System.print("POLYNOMIAL SYNTHETIC DIVISION") var n = [1, -12, 0, -42] var d = [1, -3] var sol = extendedSyntheticDivision.call(n, d) System.write("%(n) / %(d) = ") System.print("%(sol.quotient), remainder %(sol.remainder)") System.print() var n2 = [1, 0, 0, 0, -2] var d2 = [1, 1, 1, 1] var sol2 = extendedSyntheticDivision.call(n2, d2) System.write("%(n2) / %(d2) = ") System.print("%(sol2.quotient), remainder %(sol2.remainder)")</lang>

Output:
POLYNOMIAL SYNTHETIC DIVISION
[1, -12, 0, -42] / [1, -3]  =  [1, -9, -27], remainder [-123]

[1, 0, 0, 0, -2] / [1, 1, 1, 1]  =  [1, -1], remainder [0, 0, -1]

zkl

Translation of: Python

<lang zkl>fcn extended_synthetic_division(dividend, divisor){

  1. Fast polynomial division by using Extended Synthetic Division. Also works with non-monic polynomials.
  2. dividend and divisor are both polynomials, which are here simply lists of coefficients. Eg: x^2 + 3x + 5 will be represented as [1, 3, 5]
  out,normalizer:=dividend.copy(), divisor[0];
  foreach i in (dividend.len() - (divisor.len() - 1)){
     out[i] /= normalizer; # for general polynomial division (when polynomials are non-monic),
                           # we need to normalize by dividing the coefficient with the divisor's first coefficient
     coef := out[i];
     if(coef != 0){  # useless to multiply if coef is 0

foreach j in ([1..divisor.len() - 1]){ # in synthetic division, we always skip the first coefficient of the divisior, out[i + j] += -divisor[j] * coef; # because it's only used to normalize the dividend coefficients }

     }
  }
   # out contains the quotient and remainder, the remainder being the size of the divisor (the remainder
   # has necessarily the same degree as the divisor since it's what we couldn't divide from the dividend), so we compute the index
   # where this separation is, and return the quotient and remainder.
  separator := -(divisor.len() - 1);
  return(out[0,separator], out[separator,*]) # return quotient, remainder.

}</lang> <lang zkl>println("POLYNOMIAL SYNTHETIC DIVISION"); N,D := T(1, -12, 0, -42), T(1, -3); print(" %s / %s =".fmt(N,D)); println(" %s remainder %s".fmt(extended_synthetic_division(N,D).xplode()));</lang>

Output:
POLYNOMIAL SYNTHETIC DIVISION
  L(1,-12,0,-42) / L(1,-3) = L(1,-9,-27) remainder L(-123)