Percolation/Mean run density
You are encouraged to solve this task according to the task description, using any language you may know.
Percolation Simulation
This is a simulation of aspects of mathematical percolation theory.
Mean run density
2D finite grid simulations
Site percolation | Bond percolation | Mean cluster density
Let be a vector of values of either 1 or 0 where the probability of any value being 1 is ; the probability of a value being 0 is therefore . Define a run of 1s as being a group of consecutive 1s in the vector bounded either by the limits of the vector or by a 0. Let the number of such runs in a given vector of length be .
For example, the following vector has
[1 1 0 0 0 1 0 1 1 1] ^^^ ^ ^^^^^
Percolation theory states that
- Task
Any calculation of for finite is subject to randomness so should be computed as the average of runs, where .
For values of of 0.1, 0.3, 0.5, 0.7, and 0.9, show the effect of varying on the accuracy of simulated .
Show your output here.
- See also
- s-Run on Wolfram mathworld.
11l
UInt32 seed = 0
F nonrandom()
:seed = 1664525 * :seed + 1013904223
R Int(:seed >> 16) / Float(FF'FF)
V (p, t) = (0.5, 500)
F newv(n, p)
R (0 .< n).map(i -> Int(nonrandom() < @p))
F runs(v)
R sum(zip(v, v[1..] [+] [0]).map((a, b) -> (a [&] ~b)))
F mean_run_density(n, p)
R runs(newv(n, p)) / Float(n)
L(p10) (1.<10).step(2)
p = p10 / 10
V limit = p * (1 - p)
print(‘’)
L(n2) (10.<16).step(2)
V n = 2 ^ n2
V sim = sum((0 .< t).map(i -> mean_run_density(@n, :p))) / t
print(‘t=#3 p=#.2 n=#5 p(1-p)=#.3 sim=#.3 delta=#.1%’.format(
t, p, n, limit, sim, I limit {abs(sim - limit) / limit * 100} E sim * 100))
- Output:
t=500 p=0.10 n= 1024 p(1-p)=0.090 sim=0.090 delta=0.0% t=500 p=0.10 n= 4096 p(1-p)=0.090 sim=0.090 delta=0.1% t=500 p=0.10 n=16384 p(1-p)=0.090 sim=0.090 delta=0.0% t=500 p=0.30 n= 1024 p(1-p)=0.210 sim=0.210 delta=0.1% t=500 p=0.30 n= 4096 p(1-p)=0.210 sim=0.210 delta=0.0% t=500 p=0.30 n=16384 p(1-p)=0.210 sim=0.210 delta=0.0% t=500 p=0.50 n= 1024 p(1-p)=0.250 sim=0.251 delta=0.2% t=500 p=0.50 n= 4096 p(1-p)=0.250 sim=0.250 delta=0.1% t=500 p=0.50 n=16384 p(1-p)=0.250 sim=0.250 delta=0.0% t=500 p=0.70 n= 1024 p(1-p)=0.210 sim=0.211 delta=0.3% t=500 p=0.70 n= 4096 p(1-p)=0.210 sim=0.210 delta=0.1% t=500 p=0.70 n=16384 p(1-p)=0.210 sim=0.210 delta=0.0% t=500 p=0.90 n= 1024 p(1-p)=0.090 sim=0.091 delta=1.0% t=500 p=0.90 n= 4096 p(1-p)=0.090 sim=0.090 delta=0.0% t=500 p=0.90 n=16384 p(1-p)=0.090 sim=0.090 delta=0.0%
ALGOL 68
BEGIN
# just generate 0s and 1s without storing them #
PROC run test = ( REAL p, INT len, runs )REAL:
BEGIN
INT count := 0;
REAL thresh = p;
TO runs DO
INT x := 0;
FOR i FROM len BY -1 TO 1 DO
INT y = ABS ( random < thresh );
count +:= ABS ( x < y );
x := y
OD
OD;
count / runs / len
END # run test # ;
print( ( "running 1000 tests each:", newline ) );
print( ( " p n K p(1-p) diff", newline ) );
print( ( "----------------------------------------------", newline ) );
FOR ip BY 2 TO 9 DO
REAL p = ip / 10;
REAL p1p = p * (1 - p);
INT n := 10;
WHILE ( n *:= 10 ) <= 100000 DO
REAL k = run test( p, n, 1000 );
print( ( fixed( p, -4, 1 ), whole( n, -9 ), fixed( k, -8, 4 )
, fixed( p1p, -8, 4 ), fixed( k - p1p, 9, 4 )
, " (", fixed( ( k - p1p ) / p1p * 100, 5, 2 ), "%)", newline
)
)
OD;
print( ( newline ) )
OD
END
- Output:
running 1000 tests each: p n K p(1-p) diff ---------------------------------------------- 0.1 100 0.0898 0.0900 -0.0002 (-0.21%) 0.1 1000 0.0902 0.0900 +0.0002 (+0.20%) 0.1 10000 0.0900 0.0900 +0.0000 (+0.05%) 0.1 100000 0.0900 0.0900 +0.0000 (+0.04%) 0.3 100 0.2105 0.2100 +0.0005 (+0.22%) 0.3 1000 0.2098 0.2100 -0.0002 (-0.12%) 0.3 10000 0.2100 0.2100 +0.0000 (+0.02%) 0.3 100000 0.2101 0.2100 +0.0001 (+0.03%) 0.5 100 0.2536 0.2500 +0.0035 (+1.42%) 0.5 1000 0.2504 0.2500 +0.0004 (+0.16%) 0.5 10000 0.2501 0.2500 +0.0001 (+0.03%) 0.5 100000 0.2500 0.2500 +0.0000 (+0.01%) 0.7 100 0.2155 0.2100 +0.0055 (+2.60%) 0.7 1000 0.2107 0.2100 +0.0007 (+0.33%) 0.7 10000 0.2101 0.2100 +0.0001 (+0.06%) 0.7 100000 0.2100 0.2100 -0.0000 (-0.02%) 0.9 100 0.0982 0.0900 +0.0082 (+9.12%) 0.9 1000 0.0902 0.0900 +0.0002 (+0.27%) 0.9 10000 0.0901 0.0900 +0.0001 (+0.11%) 0.9 100000 0.0900 0.0900 +0.0000 (+0.01%)
C
#include <stdio.h>
#include <stdlib.h>
// just generate 0s and 1s without storing them
double run_test(double p, int len, int runs)
{
int r, x, y, i, cnt = 0, thresh = p * RAND_MAX;
for (r = 0; r < runs; r++)
for (x = 0, i = len; i--; x = y)
cnt += x < (y = rand() < thresh);
return (double)cnt / runs / len;
}
int main(void)
{
double p, p1p, K;
int ip, n;
puts( "running 1000 tests each:\n"
" p\t n\tK\tp(1-p)\t diff\n"
"-----------------------------------------------");
for (ip = 1; ip < 10; ip += 2) {
p = ip / 10., p1p = p * (1 - p);
for (n = 100; n <= 100000; n *= 10) {
K = run_test(p, n, 1000);
printf("%.1f\t%6d\t%.4f\t%.4f\t%+.4f (%+.2f%%)\n",
p, n, K, p1p, K - p1p, (K - p1p) / p1p * 100);
}
putchar('\n');
}
return 0;
}
- Output:
running 1000 tests each: p n K p(1-p) diff ----------------------------------------------- 0.1 100 0.0900 0.0900 -0.0001 (-0.06%) 0.1 1000 0.0899 0.0900 -0.0001 (-0.11%) 0.1 10000 0.0902 0.0900 +0.0002 (+0.17%) 0.1 100000 0.0900 0.0900 -0.0000 (-0.03%) 0.3 100 0.2110 0.2100 +0.0010 (+0.46%) 0.3 1000 0.2104 0.2100 +0.0004 (+0.19%) 0.3 10000 0.2100 0.2100 -0.0000 (-0.02%) 0.3 100000 0.2100 0.2100 -0.0000 (-0.01%) 0.5 100 0.2516 0.2500 +0.0016 (+0.66%) 0.5 1000 0.2498 0.2500 -0.0002 (-0.10%) 0.5 10000 0.2500 0.2500 +0.0000 (+0.01%) 0.5 100000 0.2500 0.2500 +0.0000 (+0.01%) 0.7 100 0.2162 0.2100 +0.0062 (+2.93%) 0.7 1000 0.2107 0.2100 +0.0007 (+0.33%) 0.7 10000 0.2101 0.2100 +0.0001 (+0.06%) 0.7 100000 0.2100 0.2100 -0.0000 (-0.02%) 0.9 100 0.0982 0.0900 +0.0082 (+9.07%) 0.9 1000 0.0905 0.0900 +0.0005 (+0.57%) 0.9 10000 0.0901 0.0900 +0.0001 (+0.09%) 0.9 100000 0.0900 0.0900 +0.0000 (+0.03%)
C++
#include <algorithm>
#include <random>
#include <vector>
#include <iostream>
#include <numeric>
#include <iomanip>
using VecIt = std::vector<int>::const_iterator ;
//creates vector of length n, based on probability p for 1
std::vector<int> createVector( int n, double p ) {
std::vector<int> result( n ) ;
std::random_device rd ;
std::mt19937 gen( rd( ) ) ;
std::uniform_real_distribution<> dis( 0 , 1 ) ;
for ( int i = 0 ; i < n ; i++ ) {
double number = dis( gen ) ;
if ( number <= p )
result[ i ] = 1 ;
else
result[ i ] = 0 ;
}
return result ;
}
//find number of 1 runs in the vector
int find_Runs( const std::vector<int> & numberVector ) {
int runs = 0 ;
VecIt found = numberVector.begin( ) ;
while ( ( found = std::find( found , numberVector.end( ) , 1 ) )
!= numberVector.end( ) ) {
runs++ ;
while ( found != numberVector.end( ) && ( *found == 1 ) )
std::advance( found , 1 ) ;
if ( found == numberVector.end( ) )
break ;
}
return runs ;
}
int main( ) {
std::cout << "t = 100\n" ;
std::vector<double> p_values { 0.1 , 0.3 , 0.5 , 0.7 , 0.9 } ;
for ( double p : p_values ) {
std::cout << "p = " << p << " , K(p) = " << p * ( 1 - p ) << std::endl ;
for ( int n = 10 ; n < 100000 ; n *= 10 ) {
std::vector<double> runsFound ;
for ( int i = 0 ; i < 100 ; i++ ) {
std::vector<int> ones_and_zeroes = createVector( n , p ) ;
runsFound.push_back( find_Runs( ones_and_zeroes ) / static_cast<double>( n ) ) ;
}
double average = std::accumulate( runsFound.begin( ) , runsFound.end( ) , 0.0 ) / runsFound.size( ) ;
std::cout << " R(" << std::setw( 6 ) << std::right << n << ", p) = " << average << std::endl ;
}
}
return 0 ;
}
- Output:
t = 100 p = 0.1 , K(p) = 0.09 R( 10, p) = 0.088 R( 100, p) = 0.0931 R( 1000, p) = 0.09013 R( 10000, p) = 0.089947 p = 0.3 , K(p) = 0.21 R( 10, p) = 0.225 R( 100, p) = 0.2089 R( 1000, p) = 0.21043 R( 10000, p) = 0.20991 p = 0.5 , K(p) = 0.25 R( 10, p) = 0.271 R( 100, p) = 0.253 R( 1000, p) = 0.25039 R( 10000, p) = 0.250278 p = 0.7 , K(p) = 0.21 R( 10, p) = 0.264 R( 100, p) = 0.2155 R( 1000, p) = 0.20829 R( 10000, p) = 0.209977 p = 0.9 , K(p) = 0.09 R( 10, p) = 0.167 R( 100, p) = 0.0928 R( 1000, p) = 0.09071 R( 10000, p) = 0.090341
D
import std.stdio, std.range, std.algorithm, std.random, std.math;
enum n = 100, p = 0.5, t = 500;
double meanRunDensity(in size_t n, in double prob) {
return n.iota.map!(_ => uniform01 < prob)
.array.uniq.sum / double(n);
}
void main() {
foreach (immutable p; iota(0.1, 1.0, 0.2)) {
immutable limit = p * (1 - p);
writeln;
foreach (immutable n2; iota(10, 16, 2)) {
immutable n = 2 ^^ n2;
immutable sim = t.iota.map!(_ => meanRunDensity(n, p))
.sum / t;
writefln("t=%3d, p=%4.2f, n=%5d, p(1-p)=%5.5f, " ~
"sim=%5.5f, delta=%3.1f%%", t, p, n, limit, sim,
limit ? abs(sim - limit) / limit * 100 : sim*100);
}
}
}
- Output:
t=500, p=0.10, n= 1024, p(1-p)=0.09000, sim=0.08949, delta=0.6% t=500, p=0.10, n= 4096, p(1-p)=0.09000, sim=0.08976, delta=0.3% t=500, p=0.10, n=16384, p(1-p)=0.09000, sim=0.08988, delta=0.1% t=500, p=0.30, n= 1024, p(1-p)=0.21000, sim=0.20979, delta=0.1% t=500, p=0.30, n= 4096, p(1-p)=0.21000, sim=0.21020, delta=0.1% t=500, p=0.30, n=16384, p(1-p)=0.21000, sim=0.21005, delta=0.0% t=500, p=0.50, n= 1024, p(1-p)=0.25000, sim=0.25016, delta=0.1% t=500, p=0.50, n= 4096, p(1-p)=0.25000, sim=0.25026, delta=0.1% t=500, p=0.50, n=16384, p(1-p)=0.25000, sim=0.24990, delta=0.0% t=500, p=0.70, n= 1024, p(1-p)=0.21000, sim=0.21050, delta=0.2% t=500, p=0.70, n= 4096, p(1-p)=0.21000, sim=0.20993, delta=0.0% t=500, p=0.70, n=16384, p(1-p)=0.21000, sim=0.21009, delta=0.0% t=500, p=0.90, n= 1024, p(1-p)=0.09000, sim=0.09019, delta=0.2% t=500, p=0.90, n= 4096, p(1-p)=0.09000, sim=0.09047, delta=0.5% t=500, p=0.90, n=16384, p(1-p)=0.09000, sim=0.09007, delta=0.1%
EasyLang
numfmt 3 6
for p in [ 0.1 0.3 0.5 0.7 0.9 ]
theory = p * (1 - p)
print "p:" & p & " theory:" & theory
print " n sim"
for n in [ 1e2 1e3 1e4 ]
sum = 0
for t to 100
run = 0
for j to n
h = if randomf < p
if h = 1 and run = 0
sum += 1
.
run = h
.
.
print n & " " & sum / n / t
.
print ""
.
EchoLisp
;; count 1-runs - The vector is not stored
(define (runs p n)
(define ct 0)
(define run-1 #t)
(for ([i n])
(if (< (random) p)
(set! run-1 #t) ;; 0 case
(begin ;; 1 case
(when run-1 (set! ct (1+ ct)))
(set! run-1 #f))))
(// ct n))
;; mean of t counts
(define (truns p (n 1000 ) (t 1000))
(// (for/sum ([i t]) (runs p n)) t))
(define (task)
(for ([p (in-range 0.1 1.0 0.2)])
(writeln)
(writeln '🔸 'p p 'Kp (* p (- 1 p)))
(for ([n '(10 100 1000)])
(printf "\t-- n %5d → %d" n (truns p n)))))
- Output:
(task) ;; t = 1000 🔸 p 0.1 Kp 0.09 -- n 10 → 0.171 -- n 100 → 0.0974 -- n 1000 → 0.0907 🔸 p 0.3 Kp 0.21 -- n 10 → 0.2642 -- n 100 → 0.2161 -- n 1000 → 0.2105 🔸 p 0.5 Kp 0.25 -- n 10 → 0.2764 -- n 100 → 0.2519 -- n 1000 → 0.2503 🔸 p 0.7 Kp 0.21 -- n 10 → 0.2218 -- n 100 → 0.2106 -- n 1000 → 0.2098 🔸 p 0.9 Kp 0.09 -- n 10 → 0.087 -- n 100 → 0.0894 -- n 1000 → 0.0905
Factor
USING: formatting fry io kernel math math.ranges math.statistics
random sequences ;
IN: rosetta-code.mean-run-density
: rising? ( ? ? -- ? ) [ f = ] [ t = ] bi* and ;
: count-run ( n ? ? -- m ? )
2dup rising? [ [ 1 + ] 2dip ] when nip ;
: runs ( n p -- n )
[ 0 f ] 2dip '[ random-unit _ < count-run ] times drop ;
: rn ( n p -- x ) over [ runs ] dip /f ;
: sim ( n p -- avg )
[ 1000 ] 2dip [ rn ] 2curry replicate mean ;
: theory ( p -- x ) 1 over - * ;
: result ( n p -- )
[ swap ] [ sim ] [ nip theory ] 2tri 2dup - abs
"%.1f %-5d %.4f %.4f %.4f\n" printf ;
: test ( p -- )
{ 100 1,000 10,000 } [ swap result ] with each nl ;
: header ( -- )
"1000 tests each:\np n K p(1-p) diff" print ;
: main ( -- ) header .1 .9 .2 <range> [ test ] each ;
MAIN: main
- Output:
1000 tests each: p n K p(1-p) diff 0.1 100 0.0909 0.0900 0.0009 0.1 1000 0.0902 0.0900 0.0002 0.1 10000 0.0899 0.0900 0.0001 0.3 100 0.2111 0.2100 0.0011 0.3 1000 0.2101 0.2100 0.0001 0.3 10000 0.2100 0.2100 0.0000 0.5 100 0.2524 0.2500 0.0024 0.5 1000 0.2504 0.2500 0.0004 0.5 10000 0.2501 0.2500 0.0001 0.7 100 0.2149 0.2100 0.0049 0.7 1000 0.2106 0.2100 0.0006 0.7 10000 0.2100 0.2100 0.0000 0.9 100 0.0978 0.0900 0.0078 0.9 1000 0.0905 0.0900 0.0005 0.9 10000 0.0901 0.0900 0.0001
Fortran
! loosely translated from python. We do not need to generate and store the entire vector at once.
! compilation: gfortran -Wall -std=f2008 -o thisfile thisfile.f08
program percolation_mean_run_density
implicit none
integer :: i, p10, n2, n, t
real :: p, limit, sim, delta
data n,p,t/100,0.5,500/
write(6,'(a3,a5,4a7)')'t','p','n','p(1-p)','sim','delta%'
do p10=1,10,2
p = p10/10.0
limit = p*(1-p)
write(6,'()')
do n2=10,15,2
n = 2**n2
sim = 0
do i=1,t
sim = sim + mean_run_density(n,p)
end do
sim = sim/t
if (limit /= 0) then
delta = abs(sim-limit)/limit
else
delta = sim
end if
delta = delta * 100
write(6,'(i3,f5.2,i7,2f7.3,f5.1)')t,p,n,limit,sim,delta
end do
end do
contains
integer function runs(n, p)
integer, intent(in) :: n
real, intent(in) :: p
real :: harvest
logical :: q
integer :: count, i
count = 0
q = .false.
do i=1,n
call random_number(harvest)
if (harvest < p) then
q = .true.
else
if (q) count = count+1
q = .false.
end if
end do
runs = count
end function runs
real function mean_run_density(n, p)
integer, intent(in) :: n
real, intent(in) :: p
mean_run_density = real(runs(n,p))/real(n)
end function mean_run_density
end program percolation_mean_run_density
$ ./f t p n p(1-p) sim delta% 500 0.10 1024 0.090 0.090 0.2 500 0.10 4096 0.090 0.090 0.2 500 0.10 16384 0.090 0.090 0.0 500 0.30 1024 0.210 0.210 0.2 500 0.30 4096 0.210 0.210 0.0 500 0.30 16384 0.210 0.210 0.0 500 0.50 1024 0.250 0.250 0.1 500 0.50 4096 0.250 0.250 0.1 500 0.50 16384 0.250 0.250 0.1 500 0.70 1024 0.210 0.210 0.1 500 0.70 4096 0.210 0.210 0.1 500 0.70 16384 0.210 0.210 0.0 500 0.90 1024 0.090 0.090 0.1 500 0.90 4096 0.090 0.090 0.4 500 0.90 16384 0.090 0.090 0.1
FreeBASIC
Function run_test(p As Double, longitud As Integer, runs As Integer) As Double
Dim As Integer r, l, cont = 0
Dim As Integer v, pv
For r = 1 To runs
pv = 0
For l = 1 To longitud
v = Rnd < p
cont += Iif(pv < v, 1, 0)
pv = v
Next l
Next r
Return (cont/runs/longitud)
End Function
Print "Running 1000 tests each:"
Print " p n K p(1-p) delta"
Print String(46,"-")
Dim As Double K, p, p1p
Dim As Integer n, ip
For ip = 1 To 10 Step 2
p = ip / 10
p1p = p * (1-p)
n = 100
While n <= 100000
K = run_test(p, n, 1000)
Print Using !"#.# ###### #.#### #.#### +##.#### (##.## \b%)"; _
p; n; K; p1p; K-p1p; (K-p1p)/p1p*100
n *= 10
Wend
Print
Next ip
Sleep
Same as Phix, C, Kotlin, Wren, Pascal or zkl entry.
Go
package main
import (
"fmt"
"math/rand"
)
var (
pList = []float64{.1, .3, .5, .7, .9}
nList = []int{1e2, 1e3, 1e4, 1e5}
t = 100
)
func main() {
for _, p := range pList {
theory := p * (1 - p)
fmt.Printf("\np: %.4f theory: %.4f t: %d\n", p, theory, t)
fmt.Println(" n sim sim-theory")
for _, n := range nList {
sum := 0
for i := 0; i < t; i++ {
run := false
for j := 0; j < n; j++ {
one := rand.Float64() < p
if one && !run {
sum++
}
run = one
}
}
K := float64(sum) / float64(t) / float64(n)
fmt.Printf("%9d %15.4f %9.6f\n", n, K, K-theory)
}
}
}
- Output:
p: 0.1000 theory: 0.0900 t: 100 n sim sim-theory 100 0.0883 -0.001700 1000 0.0903 0.000300 10000 0.0898 -0.000242 100000 0.0900 -0.000024 p: 0.3000 theory: 0.2100 t: 100 n sim sim-theory 100 0.2080 -0.002000 1000 0.2106 0.000600 10000 0.2097 -0.000341 100000 0.2100 0.000018 p: 0.5000 theory: 0.2500 t: 100 n sim sim-theory 100 0.2512 0.001200 1000 0.2486 -0.001440 10000 0.2500 0.000021 100000 0.2500 -0.000025 p: 0.7000 theory: 0.2100 t: 100 n sim sim-theory 100 0.2108 0.000800 1000 0.2086 -0.001370 10000 0.2102 0.000247 100000 0.2100 -0.000031 p: 0.9000 theory: 0.0900 t: 100 n sim sim-theory 100 0.0970 0.007000 1000 0.0916 0.001580 10000 0.0905 0.000501 100000 0.0900 0.000050
Haskell
import Control.Monad.Random
import Control.Applicative
import Text.Printf
import Control.Monad
import Data.Bits
data OneRun = OutRun | InRun deriving (Eq, Show)
randomList :: Int -> Double -> Rand StdGen [Int]
randomList n p = take n . map f <$> getRandomRs (0,1)
where f n = if (n > p) then 0 else 1
countRuns xs = fromIntegral . sum $
zipWith (\x y -> x .&. xor y 1) xs (tail xs ++ [0])
calcK :: Int -> Double -> Rand StdGen Double
calcK n p = (/ fromIntegral n) . countRuns <$> randomList n p
printKs :: StdGen -> Double -> IO ()
printKs g p = do
printf "p= %.1f, K(p)= %.3f\n" p (p * (1 - p))
forM_ [1..5] $ \n -> do
let est = evalRand (calcK (10^n) p) g
printf "n=%7d, estimated K(p)= %5.3f\n" (10^n::Int) est
main = do
x <- newStdGen
forM_ [0.1,0.3,0.5,0.7,0.9] $ printKs x
./percolation p= 0.1, K(p)= 0.090 n= 10, estimated K(p)= 0.000 n= 100, estimated K(p)= 0.130 n= 1000, estimated K(p)= 0.099 n= 10000, estimated K(p)= 0.090 n= 100000, estimated K(p)= 0.091 p= 0.3, K(p)= 0.210 n= 10, estimated K(p)= 0.200 n= 100, estimated K(p)= 0.250 n= 1000, estimated K(p)= 0.209 n= 10000, estimated K(p)= 0.209 n= 100000, estimated K(p)= 0.211 p= 0.5, K(p)= 0.250 n= 10, estimated K(p)= 0.200 n= 100, estimated K(p)= 0.290 n= 1000, estimated K(p)= 0.252 n= 10000, estimated K(p)= 0.250 n= 100000, estimated K(p)= 0.250 p= 0.7, K(p)= 0.210 n= 10, estimated K(p)= 0.300 n= 100, estimated K(p)= 0.200 n= 1000, estimated K(p)= 0.210 n= 10000, estimated K(p)= 0.209 n= 100000, estimated K(p)= 0.210 p= 0.9, K(p)= 0.090 n= 10, estimated K(p)= 0.200 n= 100, estimated K(p)= 0.090 n= 1000, estimated K(p)= 0.089 n= 10000, estimated K(p)= 0.095 n= 100000, estimated K(p)= 0.090
Icon and Unicon
The following works in both languages:
procedure main(A)
t := integer(A[2]) | 500
write(left("p",8)," ",left("n",8)," ",left("p(1-p)",10)," ",left("SimK(p)",10))
every (p := 0.1 | 0.3 | 0.5 | 0.7 | 0.9, n := 1000 | 2000 | 3000) do {
Ka := 0.0
every !t do {
every (v := "", !n) do v ||:= |((?0.1 > p,"0")|"1")
R := 0
v ? while tab(upto('1')) do R +:= (tab(many('1')), 1)
Ka +:= real(R)/n
}
write(left(p,8)," ",left(n,8)," ",left(p*(1-p),10)," ",left(Ka/t, 10))
}
end
Output:
->pmrd p n p(1-p) SimK(p) 0.1 1000 0.09000000 0.09021400 0.1 2000 0.09000000 0.08984799 0.1 3000 0.09000000 0.08993666 0.3 1000 0.21 0.21080999 0.3 2000 0.21 0.209953 0.3 3000 0.21 0.210564 0.5 1000 0.25 0.250024 0.5 2000 0.25 0.25007399 0.5 3000 0.25 0.24975266 0.7 1000 0.21 0.21098799 0.7 2000 0.21 0.20987700 0.7 3000 0.21 0.21047333 0.9 1000 0.08999999 0.09016400 0.9 2000 0.08999999 0.09004800 0.9 3000 0.08999999 0.09023200 ->
J
NB. translation of python
NB. 'N P T' =: 100 0.5 500 NB. hypothetical example values, to aid comprehension...
newv =: (> ?@(#&0))~ NB. generate a random binary vector. Use: N newv P
runs =: {: + [: +/ 1 0&E. NB. add the tail to the sum of 1 0 occurrences Use: runs V
mean_run_density =: [ %~ [: runs newv NB. perform experiment. Use: N mean_run_density P
main =: 3 : 0 NB.Usage: main T
T =. y
smoutput' T P N P(1-P) SIM DELTA%'
for_P. 10 %~ >: +: i. 5 do.
LIMIT =. (* -.) P
smoutput ''
for_N. 2 ^ 10 + +: i. 3 do.
SIM =. T %~ +/ (N mean_run_density P"_)^:(<T) 0
smoutput 4 5j2 6 6j3 6j3 4j1 ": T, P, N, LIMIT, SIM, SIM (100 * [`(|@:(- % ]))@.(0 ~: ])) LIMIT
end.
end.
EMPTY
)
Session:
main 500 T P N P(1-P) SIM DELTA% 500 0.10 1024 0.090 0.090 0.1 500 0.10 4096 0.090 0.090 0.2 500 0.10 16384 0.090 0.090 0.2 500 0.30 1024 0.210 0.210 0.2 500 0.30 4096 0.210 0.209 0.3 500 0.30 16384 0.210 0.210 0.1 500 0.50 1024 0.250 0.250 0.2 500 0.50 4096 0.250 0.250 0.1 500 0.50 16384 0.250 0.250 0.2 500 0.70 1024 0.210 0.210 0.0 500 0.70 4096 0.210 0.210 0.2 500 0.70 16384 0.210 0.210 0.2 500 0.90 1024 0.090 0.091 1.1 500 0.90 4096 0.090 0.090 0.1 500 0.90 16384 0.090 0.090 0.1
Java
import java.util.concurrent.ThreadLocalRandom;
public final class PercolationMeanRun {
public static void main(String[] aArgs) {
System.out.println("Running 1000 tests each:" + System.lineSeparator());
System.out.println(" p\tlength\tresult\ttheory\t difference");
System.out.println("-".repeat(48));
for ( double probability = 0.1; probability <= 0.9; probability += 0.2 ) {
double theory = probability * ( 1.0 - probability );
int length = 100;
while ( length <= 100_000 ) {
double result = runTest(probability, length, 1_000);
System.out.println(String.format("%.1f\t%6d\t%.4f\t%.4f\t%+.4f (%+.2f%%)",
probability, length, result, theory, result - theory, ( result - theory ) / theory * 100));
length *= 10;
}
System.out.println();
}
}
private static double runTest(double aProbability, int aLength, int aRunCount) {
double count = 0.0;
for ( int run = 0; run < aRunCount; run++ ) {
int previousBit = 0;
int length = aLength;
while ( length-- > 0 ) {
int nextBit = ( random.nextDouble(1.0) < aProbability ) ? 1 : 0;
if ( previousBit < nextBit ) {
count += 1.0;
}
previousBit = nextBit;
}
}
return count / aRunCount / aLength;
}
private static ThreadLocalRandom random = ThreadLocalRandom.current();
}
- Output:
Running 1000 tests each: p length result theory difference ------------------------------------------------ 0.1 100 0.0899 0.0900 -0.0001 (-0.07%) 0.1 1000 0.0902 0.0900 +0.0002 (+0.18%) 0.1 10000 0.0900 0.0900 +0.0000 (+0.02%) 0.1 100000 0.0900 0.0900 -0.0000 (-0.00%) 0.3 100 0.2110 0.2100 +0.0010 (+0.47%) 0.3 1000 0.2101 0.2100 +0.0001 (+0.05%) 0.3 10000 0.2100 0.2100 -0.0000 (-0.01%) 0.3 100000 0.2100 0.2100 -0.0000 (-0.01%) 0.5 100 0.2516 0.2500 +0.0015 (+0.62%) 0.5 1000 0.2509 0.2500 +0.0009 (+0.37%) 0.5 10000 0.2499 0.2500 -0.0001 (-0.04%) 0.5 100000 0.2500 0.2500 +0.0000 (+0.00%) 0.7 100 0.2145 0.2100 +0.0045 (+2.12%) 0.7 1000 0.2106 0.2100 +0.0006 (+0.28%) 0.7 10000 0.2101 0.2100 +0.0001 (+0.06%) 0.7 100000 0.2100 0.2100 -0.0000 (-0.00%) 0.9 100 0.0970 0.0900 +0.0070 (+7.74%) 0.9 1000 0.0910 0.0900 +0.0010 (+1.15%) 0.9 10000 0.0901 0.0900 +0.0001 (+0.06%) 0.9 100000 0.0900 0.0900 +0.0000 (+0.00%)
Julia
using Printf, Distributions, IterTools
newv(n::Int, p::Float64) = rand(Bernoulli(p), n)
runs(v::Vector{Int}) = sum((a & ~b) for (a, b) in zip(v, IterTools.chain(v[2:end], v[1])))
mrd(n::Int, p::Float64) = runs(newv(n, p)) / n
nrep = 500
for p in 0.1:0.2:1
lim = p * (1 - p)
println()
for ex in 10:2:14
n = 2 ^ ex
sim = mean(mrd.(n, p) for _ in 1:nrep)
@printf("nrep = %3i\tp = %4.2f\tn = %5i\np · (1 - p) = %5.3f\tsim = %5.3f\tΔ = %3.1f%%\n",
nrep, p, n, lim, sim, lim > 0 ? abs(sim - lim) / lim * 100 : sim * 100)
end
end
- Output:
nrep = 500 p = 0.10 n = 1024 p · (1 - p) = 0.090 sim = 0.090 Δ = 0.4% nrep = 500 p = 0.10 n = 4096 p · (1 - p) = 0.090 sim = 0.090 Δ = 0.2% nrep = 500 p = 0.10 n = 16384 p · (1 - p) = 0.090 sim = 0.090 Δ = 0.0% nrep = 500 p = 0.30 n = 1024 p · (1 - p) = 0.210 sim = 0.211 Δ = 0.5% nrep = 500 p = 0.30 n = 4096 p · (1 - p) = 0.210 sim = 0.210 Δ = 0.1% nrep = 500 p = 0.30 n = 16384 p · (1 - p) = 0.210 sim = 0.210 Δ = 0.0% nrep = 500 p = 0.50 n = 1024 p · (1 - p) = 0.250 sim = 0.250 Δ = 0.0% nrep = 500 p = 0.50 n = 4096 p · (1 - p) = 0.250 sim = 0.250 Δ = 0.1% nrep = 500 p = 0.50 n = 16384 p · (1 - p) = 0.250 sim = 0.250 Δ = 0.0% nrep = 500 p = 0.70 n = 1024 p · (1 - p) = 0.210 sim = 0.209 Δ = 0.3% nrep = 500 p = 0.70 n = 4096 p · (1 - p) = 0.210 sim = 0.210 Δ = 0.1% nrep = 500 p = 0.70 n = 16384 p · (1 - p) = 0.210 sim = 0.210 Δ = 0.0% nrep = 500 p = 0.90 n = 1024 p · (1 - p) = 0.090 sim = 0.090 Δ = 0.0% nrep = 500 p = 0.90 n = 4096 p · (1 - p) = 0.090 sim = 0.090 Δ = 0.0% nrep = 500 p = 0.90 n = 16384 p · (1 - p) = 0.090 sim = 0.090 Δ = 0.1%
Kotlin
// version 1.2.10
import java.util.Random
val rand = Random()
const val RAND_MAX = 32767
// just generate 0s and 1s without storing them
fun runTest(p: Double, len: Int, runs: Int): Double {
var cnt = 0
val thresh = (p * RAND_MAX).toInt()
for (r in 0 until runs) {
var x = 0
var i = len
while (i-- > 0) {
val y = if (rand.nextInt(RAND_MAX + 1) < thresh) 1 else 0
if (x < y) cnt++
x = y
}
}
return cnt.toDouble() / runs / len
}
fun main(args: Array<String>) {
println("running 1000 tests each:")
println(" p\t n\tK\tp(1-p)\t diff")
println("------------------------------------------------")
val fmt = "%.1f\t%6d\t%.4f\t%.4f\t%+.4f (%+.2f%%)"
for (ip in 1..9 step 2) {
val p = ip / 10.0
val p1p = p * (1.0 - p)
var n = 100
while (n <= 100_000) {
val k = runTest(p, n, 1000)
println(fmt.format(p, n, k, p1p, k - p1p, (k - p1p) / p1p * 100))
n *= 10
}
println()
}
}
Sample output:
running 1000 tests each: p n K p(1-p) diff ------------------------------------------------ 0.1 100 0.0908 0.0900 +0.0008 (+0.93%) 0.1 1000 0.0900 0.0900 +0.0000 (+0.02%) 0.1 10000 0.0899 0.0900 -0.0001 (-0.08%) 0.1 100000 0.0900 0.0900 -0.0000 (-0.05%) 0.3 100 0.2112 0.2100 +0.0012 (+0.56%) 0.3 1000 0.2096 0.2100 -0.0004 (-0.21%) 0.3 10000 0.2101 0.2100 +0.0001 (+0.05%) 0.3 100000 0.2101 0.2100 +0.0001 (+0.03%) 0.5 100 0.2522 0.2500 +0.0022 (+0.90%) 0.5 1000 0.2504 0.2500 +0.0004 (+0.15%) 0.5 10000 0.2500 0.2500 -0.0000 (-0.00%) 0.5 100000 0.2500 0.2500 +0.0000 (+0.00%) 0.7 100 0.2162 0.2100 +0.0062 (+2.95%) 0.7 1000 0.2106 0.2100 +0.0006 (+0.29%) 0.7 10000 0.2101 0.2100 +0.0001 (+0.03%) 0.7 100000 0.2100 0.2100 +0.0000 (+0.01%) 0.9 100 0.0982 0.0900 +0.0083 (+9.17%) 0.9 1000 0.0911 0.0900 +0.0011 (+1.17%) 0.9 10000 0.0902 0.0900 +0.0002 (+0.18%) 0.9 100000 0.0900 0.0900 -0.0000 (-0.02%)
Mathematica /Wolfram Language
meanRunDensity[p_, len_, trials_] :=
Mean[Length[Cases[Split@#, {1, ___}]] & /@
Unitize[Chop[RandomReal[1, {trials, len}], 1 - p]]]/len
Column@Table[
Grid[Join[{{p, n, K, diff}},
Table[{q, n, x = meanRunDensity[q, n, 100] // N,
q (1 - q) - x}, {n, {100, 1000, 10000, 100000}}], {}],
Alignment -> Left], {q, {.1, .3, .5, .7, .9}}]
- Output:
p n K diff 0.1 100 0.0905 -0.0005 0.1 1000 0.0900 -0.00001 0.1 10000 0.0902 -0.00015 0.1 100000 0.0901 -0.0001265 p n K diff 0.3 100 0.2088 0.0012 0.3 1000 0.2101 -0.00011 0.3 10000 0.2099 0.000049 0.3 100000 0.2100 -0.0000352 p n K diff 0.5 100 0.2533 -0.0033 0.5 1000 0.2515 -0.00146 0.5 10000 0.2501 -0.000131 0.5 100000 0.2500 -0.0000425 p n K diff 0.7 100 0.2172 -0.0072 0.7 1000 0.2106 -0.0006 0.7 10000 0.2098 0.000194 0.7 100000 0.2102 -0.0002176 p n K diff 0.9 100 0.0924 -0.0024 0.9 1000 0.0895 0.00049 0.9 10000 0.0899 0.00013 0.9 100000 0.0900 -0.0000144
Nim
import random, strformat
const T = 100
var
pList = [0.1, 0.3, 0.5, 0.7, 0.9]
nList = [100, 1_000, 10_000, 100_000]
for p in pList:
let theory = p * (1 - p)
echo &"\np: {p:.4f} theory: {theory:.4f} t: {T}"
echo " n sim sim-theory"
for n in nList:
var sum = 0
for _ in 1..T:
var run = false
for _ in 1..n:
let one = rand(1.0) < p
if one and not run: inc sum
run = one
let k = sum / (T * n)
echo &"{n:9} {k:15.4f} {k - theory:10.6f}"
- Output:
p: 0.1000 theory: 0.0900 t: 100 n sim sim-theory 100 0.0886 -0.001400 1000 0.0907 0.000750 10000 0.0903 0.000330 100000 0.0900 -0.000013 p: 0.3000 theory: 0.2100 t: 100 n sim sim-theory 100 0.2135 0.003500 1000 0.2086 -0.001390 10000 0.2102 0.000180 100000 0.2099 -0.000132 p: 0.5000 theory: 0.2500 t: 100 n sim sim-theory 100 0.2546 0.004600 1000 0.2495 -0.000550 10000 0.2502 0.000232 100000 0.2500 -0.000032 p: 0.7000 theory: 0.2100 t: 100 n sim sim-theory 100 0.2148 0.004800 1000 0.2110 0.001010 10000 0.2105 0.000525 100000 0.2099 -0.000077 p: 0.9000 theory: 0.0900 t: 100 n sim sim-theory 100 0.0968 0.006800 1000 0.0916 0.001570 10000 0.0903 0.000334 100000 0.0901 0.000113
Pascal
{$MODE objFPC}//for using result,parameter runs becomes for variable..
uses
sysutils;//Format
const
MaxN = 100*1000;
function run_test(p:double;len,runs: NativeInt):double;
var
x, y, i,cnt : NativeInt;
Begin
result := 1/ (runs * len);
cnt := 0;
for runs := runs-1 downto 0 do
Begin
x := 0;
y := 0;
for i := len-1 downto 0 do
begin
x := y;
y := Ord(Random() < p);
cnt := cnt+ord(x < y);
end;
end;
result := result *cnt;
end;
//main
var
p, p1p, K : double;
ip, n : nativeInt;
Begin
randomize;
writeln( 'running 1000 tests each:'#13#10,
' p n K p(1-p) diff'#13#10,
'-----------------------------------------------');
ip:= 1;
while ip < 10 do
Begin
p := ip / 10;
p1p := p * (1 - p);
n := 100;
While n <= MaxN do
Begin
K := run_test(p, n, 1000);
writeln(Format('%4.1f %6d %6.4f %6.4f %7.4f (%5.2f %%)',
[p, n, K, p1p, K - p1p, (K - p1p) / p1p * 100]));
n := n*10;
end;
writeln;
ip := ip+2;
end;
end.
Output
running 1000 tests each: p n K p(1-p) diff ----------------------------------------------- 0.1 100 0.0894 0.0900 -0.0006 (-0.70 %) 0.1 1000 0.0898 0.0900 -0.0002 (-0.17 %) 0.1 10000 0.0900 0.0900 0.0000 ( 0.02 %) 0.1 100000 0.0900 0.0900 0.0000 ( 0.04 %) 0.3 100 0.2112 0.2100 0.0012 ( 0.57 %) 0.3 1000 0.2101 0.2100 0.0001 ( 0.04 %) 0.3 10000 0.2099 0.2100 -0.0001 (-0.04 %) 0.3 100000 0.2099 0.2100 -0.0001 (-0.03 %) 0.5 100 0.2516 0.2500 0.0016 ( 0.66 %) 0.5 1000 0.2497 0.2500 -0.0003 (-0.14 %) 0.5 10000 0.2501 0.2500 0.0001 ( 0.03 %) 0.5 100000 0.2500 0.2500 0.0000 ( 0.01 %) 0.7 100 0.2144 0.2100 0.0044 ( 2.08 %) 0.7 1000 0.2107 0.2100 0.0007 ( 0.32 %) 0.7 10000 0.2101 0.2100 0.0001 ( 0.02 %) 0.7 100000 0.2100 0.2100 0.0000 ( 0.01 %) 0.9 100 0.0978 0.0900 0.0078 ( 8.69 %) 0.9 1000 0.0909 0.0900 0.0009 ( 0.96 %) 0.9 10000 0.0901 0.0900 0.0001 ( 0.10 %) 0.9 100000 0.0900 0.0900 0.0000 ( 0.02 %)
Perl
sub R {
my ($n, $p) = @_;
my $r = join '',
map { rand() < $p ? 1 : 0 } 1 .. $n;
0+ $r =~ s/1+//g;
}
use constant t => 100;
printf "t= %d\n", t;
for my $p (qw(.1 .3 .5 .7 .9)) {
printf "p= %f, K(p)= %f\n", $p, $p*(1-$p);
for my $n (qw(10 100 1000)) {
my $r; $r += R($n, $p) for 1 .. t; $r /= $n;
printf " R(n, p)= %f\n", $r / t;
}
}
- Output:
t= 100 p= 0.100000, K(p)= 0.090000 R(n, p)= 0.095000 R(n, p)= 0.088100 R(n, p)= 0.089420 p= 0.300000, K(p)= 0.210000 R(n, p)= 0.225000 R(n, p)= 0.208800 R(n, p)= 0.210020 p= 0.500000, K(p)= 0.250000 R(n, p)= 0.289000 R(n, p)= 0.249900 R(n, p)= 0.248980 p= 0.700000, K(p)= 0.210000 R(n, p)= 0.262000 R(n, p)= 0.213200 R(n, p)= 0.209690 p= 0.900000, K(p)= 0.090000 R(n, p)= 0.177000 R(n, p)= 0.096200 R(n, p)= 0.091730
Phix
with javascript_semantics function run_test(atom p, integer len, runs) integer count = 0 for r=1 to runs do bool v, pv = false for l=1 to len do v = rnd()<p count += pv<v pv = v end for end for return count/runs/len end function procedure main() printf(1,"Running 1000 tests each:\n") printf(1," p n K p(1-p) delta\n") printf(1,"--------------------------------------------\n") for ip=1 to 10 by 2 do atom p = ip/10, p1p = p*(1-p) integer n = 100 while n<=100000 do atom K = run_test(p, n, 1000) printf(1,"%.1f %6d %6.4f %6.4f %+7.4f (%+5.2f%%)\n", {p, n, K, p1p, K-p1p, (K-p1p)/p1p*100}) n *= 10 end while printf(1,"\n") end for end procedure main()
- Output:
Running 1000 tests each: p n K p(1-p) delta -------------------------------------------- 0.1 100 0.0889 0.0900 -0.0011 (-1.20%) 0.1 1000 0.0896 0.0900 -0.0004 (-0.45%) 0.1 10000 0.0900 0.0900 -0.0000 (-0.02%) 0.1 100000 0.0900 0.0900 -0.0000 (-0.04%) 0.3 100 0.2112 0.2100 +0.0012 (+0.57%) 0.3 1000 0.2101 0.2100 +0.0001 (+0.07%) 0.3 10000 0.2101 0.2100 +0.0001 (+0.06%) 0.3 100000 0.2100 0.2100 -0.0000 (-0.01%) 0.5 100 0.2528 0.2500 +0.0028 (+1.13%) 0.5 1000 0.2500 0.2500 +0.0000 (+0.01%) 0.5 10000 0.2500 0.2500 +0.0000 (+0.00%) 0.5 100000 0.2500 0.2500 -0.0000 (-0.00%) 0.7 100 0.2174 0.2100 +0.0074 (+3.50%) 0.7 1000 0.2105 0.2100 +0.0005 (+0.26%) 0.7 10000 0.2101 0.2100 +0.0001 (+0.06%) 0.7 100000 0.2100 0.2100 +0.0000 (+0.01%) 0.9 100 0.0986 0.0900 +0.0086 (+9.53%) 0.9 1000 0.0908 0.0900 +0.0008 (+0.88%) 0.9 10000 0.0901 0.0900 +0.0001 (+0.11%) 0.9 100000 0.0900 0.0900 +0.0000 (+0.03%)
Python
from __future__ import division
from random import random
from math import fsum
n, p, t = 100, 0.5, 500
def newv(n, p):
return [int(random() < p) for i in range(n)]
def runs(v):
return sum((a & ~b) for a, b in zip(v, v[1:] + [0]))
def mean_run_density(n, p):
return runs(newv(n, p)) / n
for p10 in range(1, 10, 2):
p = p10 / 10
limit = p * (1 - p)
print('')
for n2 in range(10, 16, 2):
n = 2**n2
sim = fsum(mean_run_density(n, p) for i in range(t)) / t
print('t=%3i p=%4.2f n=%5i p(1-p)=%5.3f sim=%5.3f delta=%3.1f%%'
% (t, p, n, limit, sim, abs(sim - limit) / limit * 100 if limit else sim * 100))
- Output:
t=500 p=0.10 n= 1024 p(1-p)=0.090 sim=0.090 delta=0.2% t=500 p=0.10 n= 4096 p(1-p)=0.090 sim=0.090 delta=0.0% t=500 p=0.10 n=16384 p(1-p)=0.090 sim=0.090 delta=0.1% t=500 p=0.30 n= 1024 p(1-p)=0.210 sim=0.210 delta=0.0% t=500 p=0.30 n= 4096 p(1-p)=0.210 sim=0.210 delta=0.0% t=500 p=0.30 n=16384 p(1-p)=0.210 sim=0.210 delta=0.0% t=500 p=0.50 n= 1024 p(1-p)=0.250 sim=0.251 delta=0.3% t=500 p=0.50 n= 4096 p(1-p)=0.250 sim=0.250 delta=0.0% t=500 p=0.50 n=16384 p(1-p)=0.250 sim=0.250 delta=0.0% t=500 p=0.70 n= 1024 p(1-p)=0.210 sim=0.210 delta=0.0% t=500 p=0.70 n= 4096 p(1-p)=0.210 sim=0.210 delta=0.1% t=500 p=0.70 n=16384 p(1-p)=0.210 sim=0.210 delta=0.0% t=500 p=0.90 n= 1024 p(1-p)=0.090 sim=0.091 delta=0.6% t=500 p=0.90 n= 4096 p(1-p)=0.090 sim=0.090 delta=0.2% t=500 p=0.90 n=16384 p(1-p)=0.090 sim=0.090 delta=0.0%
Racket
#lang racket
(require racket/fixnum)
(define t (make-parameter 100))
(define (Rn v)
(define (inner-Rn rv idx b-1)
(define b (fxvector-ref v idx))
(define rv+ (if (and (= b 1) (= b-1 0)) (add1 rv) rv))
(if (zero? idx) rv+ (inner-Rn rv+ (sub1 idx) b)))
(inner-Rn 0 (sub1 (fxvector-length v)) 0))
(define ((make-random-bit-vector p) n)
(for/fxvector
#:length n ((i n))
(if (<= (random) p) 1 0)))
(define (Rn/n l->p n) (/ (Rn (l->p n)) n))
(for ((p (in-list '(1/10 3/10 1/2 7/10 9/10))))
(define l->p (make-random-bit-vector p))
(define Kp (* p (- 1 p)))
(printf "p = ~a\tK(p) =\t~a\t~a~%" p Kp (real->decimal-string Kp 4))
(for ((n (in-list '(10 100 1000 10000))))
(define sum-Rn/n (for/sum ((i (in-range (t)))) (Rn/n l->p n)))
(define sum-Rn/n/t (/ sum-Rn/n (t)))
(printf "mean(R_~a/~a) =\t~a\t~a~%"
n n sum-Rn/n/t (real->decimal-string sum-Rn/n/t 4)))
(newline))
(module+ test
(require rackunit)
(check-eq? (Rn (fxvector 1 1 0 0 0 1 0 1 1 1)) 3))
- Output:
p = 1/10 K(p) = 9/100 0.0900 mean(R_10/10) = 3/40 0.0750 mean(R_100/100) = 221/2500 0.0884 mean(R_1000/1000) = 4469/50000 0.0894 mean(R_10000/10000) = 90313/1000000 0.0903 p = 3/10 K(p) = 21/100 0.2100 mean(R_10/10) = 231/1000 0.2310 mean(R_100/100) = 1049/5000 0.2098 mean(R_1000/1000) = 131/625 0.2096 mean(R_10000/10000) = 209873/1000000 0.2099 p = 1/2 K(p) = 1/4 0.2500 mean(R_10/10) = 297/1000 0.2970 mean(R_100/100) = 1263/5000 0.2526 mean(R_1000/1000) = 24893/100000 0.2489 mean(R_10000/10000) = 124963/500000 0.2499 p = 7/10 K(p) = 21/100 0.2100 mean(R_10/10) = 131/500 0.2620 mean(R_100/100) = 2147/10000 0.2147 mean(R_1000/1000) = 1049/5000 0.2098 mean(R_10000/10000) = 210453/1000000 0.2105 p = 9/10 K(p) = 9/100 0.0900 mean(R_10/10) = 169/1000 0.1690 mean(R_100/100) = 119/1250 0.0952 mean(R_1000/1000) = 4503/50000 0.0901 mean(R_10000/10000) = 89939/1000000 0.0899
REXX
/* REXX */
Numeric Digits 20
Call random(,12345) /* make the run reproducable */
pList = '.1 .3 .5 .7 .9'
nList = '1e2 1e3 1e4 1e5'
t = 100
Do While plist<>''
Parse Var plist p plist
theory=p*(1-p)
Say ' '
Say 'p:' format(p,2,4)' theory:'format(theory,2,4)' t:'format(t,4)
Say ' n sim sim-theory'
nl=nlist
Do While nl<>''
Parse Var nl n nl
sum=0
Do i=1 To t
run=0
Do j=1 To n
one=random(1000)<p*1000
If one & (run=0) Then
sum=sum+1
run=one
End
End
sim=sum/(n*100)
Say format(n,10)' ' format(sim,2,4)' 'format(sim-theory,2,6)
End
End
- Output:
p: 0.1000 theory: 0.0900 t: 100 n sim sim-theory 100 0.0875 -0.002500 1000 0.0894 -0.000560 10000 0.0902 0.000237 100000 0.0899 -0.000112 p: 0.3000 theory: 0.2100 t: 100 n sim sim-theory 100 0.2088 -0.001200 1000 0.2116 0.001570 10000 0.2101 0.000056 100000 0.2099 -0.000120 p: 0.5000 theory: 0.2500 t: 100 n sim sim-theory 100 0.2557 0.005700 1000 0.2513 0.001280 10000 0.2497 -0.000267 100000 0.2501 0.000107 p: 0.7000 theory: 0.2100 t: 100 n sim sim-theory 100 0.2171 0.007100 1000 0.2095 -0.000490 10000 0.2099 -0.000137 100000 0.2103 0.000321 p: 0.9000 theory: 0.0900 t: 100 n sim sim-theory 100 0.0999 0.009900 1000 0.0898 -0.000240 10000 0.0906 0.000568 100000 0.0908 0.000775
Raku
(formerly Perl 6)
sub R($n, $p) { [+] ((rand < $p) xx $n).squish }
say 't= ', constant t = 100;
for .1, .3 ... .9 -> $p {
say "p= $p, K(p)= {$p*(1-$p)}";
for 10, 100, 1000 -> $n {
printf " R(%6d, p)= %f\n", $n, t R/ [+] R($n, $p)/$n xx t
}
}
- Output:
t= 100 p= 0.1, K(p)= 0.09 R( 10, p)= 0.088000 R( 100, p)= 0.085600 R( 1000, p)= 0.089150 p= 0.3, K(p)= 0.21 R( 10, p)= 0.211000 R( 100, p)= 0.214600 R( 1000, p)= 0.211160 p= 0.5, K(p)= 0.25 R( 10, p)= 0.279000 R( 100, p)= 0.249200 R( 1000, p)= 0.250870 p= 0.7, K(p)= 0.21 R( 10, p)= 0.258000 R( 100, p)= 0.215400 R( 1000, p)= 0.209560 p= 0.9, K(p)= 0.09 R( 10, p)= 0.181000 R( 100, p)= 0.094500 R( 1000, p)= 0.091330
Sidef
func R(n,p) {
n.of { 1.rand < p ? 1 : 0}.sum;
}
const t = 100;
say ('t=', t);
range(.1, .9, .2).each { |p|
printf("p= %f, K(p)= %f\n", p, p*(1-p));
[10, 100, 1000].each { |n|
printf (" R(n, p)= %f\n", t.of { R(n, p) }.sum/n / t);
}
}
- Output:
t=100 p= 0.100000, K(p)= 0.090000 R(n, p)= 0.099000 R(n, p)= 0.105000 R(n, p)= 0.099810 p= 0.300000, K(p)= 0.210000 R(n, p)= 0.301000 R(n, p)= 0.289800 R(n, p)= 0.300720 p= 0.500000, K(p)= 0.250000 R(n, p)= 0.481000 R(n, p)= 0.501800 R(n, p)= 0.498260 p= 0.700000, K(p)= 0.210000 R(n, p)= 0.695000 R(n, p)= 0.698400 R(n, p)= 0.701220 p= 0.900000, K(p)= 0.090000 R(n, p)= 0.910000 R(n, p)= 0.898500 R(n, p)= 0.899080
Tcl
proc randomString {length probability} {
for {set s ""} {[string length $s] < $length} {} {
append s [expr {rand() < $probability}]
}
return $s
}
# By default, [regexp -all] gives the number of times that the RE matches
proc runs {str} {
regexp -all {1+} $str
}
# Compute the mean run density
proc mrd {t p n} {
for {set i 0;set total 0.0} {$i < $t} {incr i} {
set run [randomString $n $p]
set total [expr {$total + double([runs $run])/$n}]
}
return [expr {$total / $t}]
}
# Parameter sweep with nested [foreach]
set runs 500
foreach p {0.10 0.30 0.50 0.70 0.90} {
foreach n {1024 4096 16384} {
set theory [expr {$p * (1 - $p)}]
set sim [mrd $runs $p $n]
set diffpc [expr {abs($theory-$sim)*100/$theory}]
puts [format "t=%d, p=%.2f, n=%5d, p(1-p)=%.3f, sim=%.3f, delta=%.2f%%" \
$runs $p $n $theory $sim $diffpc]
}
puts ""
}
- Output:
t=500, p=0.10, n= 1024, p(1-p)=0.090, sim=0.090, delta=0.07% t=500, p=0.10, n= 4096, p(1-p)=0.090, sim=0.090, delta=0.06% t=500, p=0.10, n=16384, p(1-p)=0.090, sim=0.090, delta=0.17% t=500, p=0.30, n= 1024, p(1-p)=0.210, sim=0.210, delta=0.23% t=500, p=0.30, n= 4096, p(1-p)=0.210, sim=0.210, delta=0.09% t=500, p=0.30, n=16384, p(1-p)=0.210, sim=0.210, delta=0.01% t=500, p=0.50, n= 1024, p(1-p)=0.250, sim=0.250, delta=0.10% t=500, p=0.50, n= 4096, p(1-p)=0.250, sim=0.250, delta=0.07% t=500, p=0.50, n=16384, p(1-p)=0.250, sim=0.250, delta=0.08% t=500, p=0.70, n= 1024, p(1-p)=0.210, sim=0.211, delta=0.33% t=500, p=0.70, n= 4096, p(1-p)=0.210, sim=0.210, delta=0.00% t=500, p=0.70, n=16384, p(1-p)=0.210, sim=0.210, delta=0.01% t=500, p=0.90, n= 1024, p(1-p)=0.090, sim=0.091, delta=1.61% t=500, p=0.90, n= 4096, p(1-p)=0.090, sim=0.090, delta=0.08% t=500, p=0.90, n=16384, p(1-p)=0.090, sim=0.090, delta=0.09%
Wren
import "random" for Random
import "./fmt" for Fmt
var rand = Random.new()
var RAND_MAX = 32767
// just generate 0s and 1s without storing them
var runTest = Fn.new { |p, len, runs|
var cnt = 0
var thresh = (p * RAND_MAX).truncate
for (r in 0...runs) {
var x = 0
var i = len
while (i > 0) {
i = i - 1
var y = (rand.int(RAND_MAX + 1) < thresh) ? 1 : 0
if (x < y) cnt = cnt + 1
x = y
}
}
return cnt / runs / len
}
System.print("Running 1000 tests each:")
System.print(" p\t n\tK\tp(1-p)\t diff")
System.print("------------------------------------------------")
var fmt = "$.1f\t$6d\t$.4f\t$.4f\t$+.4f ($+.2f\%)"
for (ip in [1, 3, 5, 7, 9]) {
var p = ip / 10
var p1p = p * (1 - p)
var n = 100
while (n <= 1e5) {
var k = runTest.call(p, n, 1000)
Fmt.lprint(fmt, [p, n, k, p1p, k - p1p, (k - p1p) /p1p * 100])
n = n * 10
}
System.print()
}
- Output:
Sample run:
Running 1000 tests each: p n K p(1-p) diff ------------------------------------------------ 0.1 100 0.0919 0.0900 +0.0019 (+2.09%) 0.1 1000 0.0902 0.0900 +0.0002 (+0.23%) 0.1 10000 0.0900 0.0900 +0.0000 (+0.00%) 0.1 100000 0.0900 0.0900 -0.0000 (-0.03%) 0.3 100 0.2109 0.2100 +0.0009 (+0.43%) 0.3 1000 0.2102 0.2100 +0.0002 (+0.09%) 0.3 10000 0.2100 0.2100 -0.0000 (-0.01%) 0.3 100000 0.2100 0.2100 +0.0000 (+0.00%) 0.5 100 0.2527 0.2500 +0.0027 (+1.08%) 0.5 1000 0.2497 0.2500 -0.0003 (-0.10%) 0.5 10000 0.2501 0.2500 +0.0001 (+0.05%) 0.5 100000 0.2500 0.2500 -0.0000 (-0.01%) 0.7 100 0.2166 0.2100 +0.0066 (+3.14%) 0.7 1000 0.2107 0.2100 +0.0007 (+0.35%) 0.7 10000 0.2101 0.2100 +0.0001 (+0.05%) 0.7 100000 0.2100 0.2100 +0.0000 (+0.01%) 0.9 100 0.0970 0.0900 +0.0070 (+7.79%) 0.9 1000 0.0910 0.0900 +0.0010 (+1.14%) 0.9 10000 0.0901 0.0900 +0.0001 (+0.11%) 0.9 100000 0.0900 0.0900 +0.0000 (+0.04%)
zkl
fcn run_test(p,len,runs){
cnt:=0; do(runs){
pv:=0; do(len){
v:=0 + ((0.0).random(1.0)<p); // 0 or 1, value of V[n]
cnt += (pv<v); // if v is 1 & prev v was zero, inc cnt
pv = v;
}
}
return(cnt.toFloat() / runs / len);
}
println("Running 1000 tests each:\n"
" p\t n\tK\tp(1-p)\t diff\n"
"-----------------------------------------------");
foreach p in ([0.1..0.9,0.2]) {
p1p:=p*(1.0 - p);
n:=100; while(n <= 100000) {
K:=run_test(p, n, 1000);
"%.1f\t%6d\t%.4f\t%.4f\t%+.4f (%+.2f%%)".fmt(
p, n, K, p1p, K - p1p, (K - p1p) / p1p * 100).println();
n *= 10;
}
println();
}
- Output:
Running 1000 tests each: p n K p(1-p) diff ----------------------------------------------- 0.1 100 0.0903 0.0900 +0.0003 (+0.36%) 0.1 1000 0.0900 0.0900 -0.0000 (-0.01%) 0.1 10000 0.0901 0.0900 +0.0001 (+0.16%) 0.1 100000 0.0900 0.0900 +0.0000 (+0.01%) 0.3 100 0.2115 0.2100 +0.0015 (+0.73%) 0.3 1000 0.2105 0.2100 +0.0005 (+0.23%) 0.3 10000 0.2098 0.2100 -0.0002 (-0.07%) 0.3 100000 0.2100 0.2100 +0.0000 (+0.00%) 0.5 100 0.2521 0.2500 +0.0021 (+0.86%) 0.5 1000 0.2503 0.2500 +0.0003 (+0.13%) 0.5 10000 0.2500 0.2500 -0.0000 (-0.01%) 0.5 100000 0.2500 0.2500 -0.0000 (-0.00%) 0.7 100 0.2151 0.2100 +0.0051 (+2.41%) 0.7 1000 0.2103 0.2100 +0.0003 (+0.16%) 0.7 10000 0.2100 0.2100 +0.0000 (+0.00%) 0.7 100000 0.2100 0.2100 -0.0000 (-0.01%) 0.9 100 0.0979 0.0900 +0.0079 (+8.74%) 0.9 1000 0.0911 0.0900 +0.0011 (+1.17%) 0.9 10000 0.0902 0.0900 +0.0002 (+0.18%) 0.9 100000 0.0900 0.0900 -0.0000 (-0.00%)