Jump to content

Percolation/Bond percolation

From Rosetta Code
Task
Percolation/Bond percolation
You are encouraged to solve this task according to the task description, using any language you may know.

Percolation Simulation
This is a simulation of aspects of mathematical percolation theory.

For other percolation simulations, see Category:Percolation Simulations, or:
1D finite grid simulation
Mean run density
2D finite grid simulations

Site percolation | Bond percolation | Mean cluster density

Given an rectangular array of cells numbered , assume is horizontal and is downwards. Each is bounded by (horizontal) walls and ; (vertical) walls and

Assume that the probability of any wall being present is a constant where

Except for the outer horizontal walls at and which are always present.

The task

Simulate pouring a fluid onto the top surface () where the fluid will enter any empty cell it is adjacent to if there is no wall between where it currently is and the cell on the other side of the (missing) wall.

The fluid does not move beyond the horizontal constraints of the grid.

The fluid may move “up” within the confines of the grid of cells. If the fluid reaches a bottom cell that has a missing bottom wall then the fluid can be said to 'drip' out the bottom at that point.

Given repeat the percolation times to estimate the proportion of times that the fluid can percolate to the bottom for any given .

Show how the probability of percolating through the random grid changes with going from to in increments and with the number of repetitions to estimate the fraction at any given as .

Use an grid of cells for all cases.

Optionally depict fluid successfully percolating through a grid graphically.

Show all output on this page.

11l

Translation of: Python
UInt32 seed = 0
F nonrandom()
   :seed = 1664525 * :seed + 1013904223
   R Int(:seed >> 16) / Float(FF'FF)

T Grid = ([[Int]] cell, [[Int]] hwall, [[Int]] vwall)

V (M, nn, t) = (10, 10, 100)

T PercolatedException
   (Int, Int) t
   F (t)
      .t = t

V HVF = ([‘ .’, ‘ _’], [‘:’, ‘|’], [‘ ’, ‘#’])

F newgrid(p)
   V hwall = (0 .. :nn).map(n -> (0 .< :M).map(m -> Int(nonrandom() < @@p)))
   V vwall = (0 .< :nn).map(n -> (0 .. :M).map(m -> (I m C (0, :M) {1} E Int(nonrandom() < @@p))))
   V cell = (0 .< :nn).map(n -> (0 .< :M).map(m -> 0))
   R Grid(cell, hwall, vwall)

F pgrid(grid, percolated)
   V (cell, hwall, vwall) = grid
   V (h, v, f) = :HVF
   L(n) 0 .< :nn
      print(‘    ’(0 .< :M).map(m -> @h[@hwall[@n][m]]).join(‘’))
      print(‘#.)  ’.format(n % 10)‘’(0 .. :M).map(m -> @v[@vwall[@n][m]]‘’@f[I m < :M {@cell[@n][m]} E 0]).join(‘’)[0 .< (len)-1])
   V n = :nn
   print(‘    ’(0 .< :M).map(m -> @h[@hwall[@n][m]]).join(‘’))
   I percolated != (-1, -1)
      V where = percolated[0]
      print(‘!)  ’(‘  ’ * where)‘ ’f[1])

F flood_fill(m, n, &cell, hwall, vwall) -> Void
   cell[n][m] = 1
   I n < :nn - 1 & !hwall[n + 1][m] & !cell[n + 1][m]
      flood_fill(m, n + 1, &cell, hwall, vwall)
   E I n == :nn - 1 & !hwall[n + 1][m]
      X.throw PercolatedException((m, n + 1))
   I m & !vwall[n][m] & !cell[n][m - 1]
      flood_fill(m - 1, n, &cell, hwall, vwall)
   I m < :M - 1 & !vwall[n][m + 1] & !cell[n][m + 1]
      flood_fill(m + 1, n, &cell, hwall, vwall)
   I n != 0 & !hwall[n][m] & !cell[n - 1][m]
      flood_fill(m, n - 1, &cell, hwall, vwall)

F pour_on_top(Grid &grid) -> (Int, Int)?
   V n = 0
   X.try
      L(m) 0 .< :M
         I grid.hwall[n][m] == 0
            flood_fill(m, n, &grid.cell, grid.hwall, grid.vwall)
   X.catch PercolatedException ex
      R ex.t
   R N

V sample_printed = 0B
[Float = Int] pcount
L(p10) 11
   V p = (10 - p10) / 10.0
   pcount[p] = 0
   L(tries) 0 .< t
      V grid = newgrid(p)
      (Int, Int)? percolated = pour_on_top(&grid)
      I percolated != N
         pcount[p]++
         I !sample_printed
            print("\nSample percolating #. x #. grid".format(M, nn))
            pgrid(grid, percolated ? (-1, -1))
            sample_printed = 1B
print("\n p: Fraction of #. tries that percolate through".format(t))

L(p, c) sorted(pcount.items())
   print(‘#.1: #.’.format(p, c / Float(t)))
Output:

Sample percolating 10 x 10 grid
     . _ _ _ . _ . _ _ _
0)  |#:#:#| |#:#|#:#:#| |
     . _ . _ _ _ _ _ . _
1)  |#|#:#| | | | |#:#:#|
     _ _ . _ . _ _ _ _ .
2)  | |#:#| : : : | | |#|
     . _ _ . _ _ _ _ . .
3)  | | | : | : | | | :#|
     _ . . _ _ _ . . _ .
4)  | | : : | | |#:#| |#|
     . _ _ _ _ _ . . . .
5)  | : | | | : |#|#:#:#|
     _ _ _ _ _ _ . _ _ _
6)  | | | | | : :#: : | |
     _ _ _ _ . . . . . .
7)  | | | | | | |#:#:#| |
     _ _ . . . _ _ _ . _
8)  | : | | | | : | |#: |
     . . . . _ . _ _ . .
9)  | | | : | | | : |#| |
     _ . _ _ . _ . . . .
!)                   #

 p: Fraction of 100 tries that percolate through
0.0: 1
0.1: 1
0.2: 1
0.3: 0.99
0.4: 0.89
0.5: 0.49
0.6: 0.06
0.7: 0
0.8: 0
0.9: 0
1.0: 0

C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// cell states
#define FILL 1
#define RWALL 2 // right wall
#define BWALL 4 // bottom wall

typedef unsigned int c_t;

c_t *cells, *start, *end;
int m, n;

void make_grid(double p, int x, int y)
{
    int i, j, thresh = RAND_MAX * p;
    m = x, n = y;

    // Allocate two addition rows to avoid checking bounds.
    // Bottom row is also required by drippage
    start = realloc(start, m * (n + 2) * sizeof(c_t));
    cells = start + m;

    for (i = 0; i < m; i++)
        start[i] = BWALL | RWALL;

    for (i = 0, end = cells; i < y; i++) {
        for (j = x; --j; )
            *end++ = (rand() < thresh ? BWALL : 0)
                |(rand() < thresh ? RWALL : 0);
        *end++ = RWALL | (rand() < thresh ? BWALL: 0);
    }
    memset(end, 0, sizeof(c_t) * m);
}

void show_grid(void)
{
    int i, j;

    for (j = 0; j < m; j++) printf("+--");
    puts("+");

    for (i = 0; i <= n; i++) {
        putchar(i == n ? ' ' : '|');
        for (j = 0; j < m; j++) {
            printf((cells[i*m + j] & FILL) ? "[]" : "  ");
            putchar((cells[i*m + j] & RWALL) ? '|' : ' ');
        }
        putchar('\n');

        if (i == n) return;

        for (j = 0; j < m; j++)
            printf((cells[i*m + j] & BWALL) ? "+--" : "+  ");
        puts("+");
    }
}

int fill(c_t *p)
{
    if ((*p & FILL)) return 0;
    *p |= FILL;
    if (p >= end) return 1; // success: reached bottom row

    return  ( !(p[ 0] & BWALL) && fill(p + m) ) ||
        ( !(p[ 0] & RWALL) && fill(p + 1) ) ||
        ( !(p[-1] & RWALL) && fill(p - 1) ) ||
        ( !(p[-m] & BWALL) && fill(p - m) );
}

int percolate(void)
{
    int i;
    for (i = 0; i < m && !fill(cells + i); i++);

    return i < m;
}

int main(void)
{
    make_grid(.5, 10, 10);
    percolate();
    show_grid();

    int cnt, i, p;

    puts("\nrunning 10x10 grids 10000 times for each p:");
    for (p = 1; p < 10; p++) {
        for (cnt = i = 0; i < 10000; i++) {
            make_grid(p / 10., 10, 10);
            cnt += percolate();
            //show_grid(); // don't
        }
        printf("p = %3g: %.4f\n", p / 10., (double)cnt / i);
    }

    free(start);
    return 0;
}
Output:
+--+--+--+--+--+--+--+--+--+--+
|[]|[] []|[] [] [] [] []      |
+  +  +  +--+--+--+--+  +  +--+
|[]|[]|[]|  |         [] []|  |
+  +--+  +--+--+--+  +--+  +  +
|[] [] [] []|        |   []|  |
+--+  +--+--+  +--+  +--+  +--+
|  |[]|     |  |        |[]   |
+--+--+  +  +  +  +  +--+  +  +
|     |  |     |         []   |
+--+  +  +--+  +--+--+  +  +--+
|  |     |     |[] [] [] []|  |
+  +  +  +--+  +  +--+--+--+--+
|  |  |     |   []   |  |  |  |
+--+  +--+--+--+  +  +  +--+  +
|  |  |  |  |  |[]|           |
+--+  +  +  +  +  +--+  +  +  +
|  |  |  |   [] []|  |  |  |  |
+--+  +--+--+  +--+  +  +  +  +
|  |     |   []|           |  |
+--+  +--+--+  +  +--+--+  +  +
             []                

running 10x10 grids 10000 times for each p:
p = 0.1: 1.0000
p = 0.2: 1.0000
p = 0.3: 0.9958
p = 0.4: 0.9123
p = 0.5: 0.5014
p = 0.6: 0.0791
p = 0.7: 0.0037
p = 0.8: 0.0000
p = 0.9: 0.0000

C++

Translation of: D
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <string>

using namespace std;

class Grid {
public:
    Grid(const double p, const int x, const int y) : m(x), n(y) {
        const int thresh = static_cast<int>(RAND_MAX * p);

        // Allocate two addition rows to avoid checking bounds.
        // Bottom row is also required by drippage
        start = new cell[m * (n + 2)];
        cells = start + m;
        for (auto i = 0; i < m; i++) start[i] = RBWALL;
        end = cells;
        for (auto i = 0; i < y; i++) {
            for (auto j = x; --j;)
                *end++ = (rand() < thresh ? BWALL : 0) | (rand() < thresh ? RWALL : 0);
            *end++ = RWALL | (rand() < thresh ? BWALL : 0);
        }
        memset(end, 0u, sizeof(cell) * m);
    }

    ~Grid() {
        delete[] start;
        cells = 0;
        start = 0;
        end = 0;
    }

    int percolate() const {
        auto i = 0;
        for (; i < m && !fill(cells + i); i++);
        return i < m;
    }

    void show() const {
        for (auto j = 0; j < m; j++)
            cout << ("+-");
        cout << '+' << endl;

        for (auto i = 0; i <= n; i++) {
            cout << (i == n ? ' ' : '|');
            for (auto j = 0; j < m; j++) {
                cout << ((cells[i * m + j] & FILL) ? "#" : " ");
                cout << ((cells[i * m + j] & RWALL) ? '|' : ' ');
            }
            cout << endl;

            if (i == n) return;

            for (auto j = 0; j < m; j++)
                cout << ((cells[i * m + j] & BWALL) ? "+-" : "+ ");
            cout << '+' << endl;
        }
    }

private:
    enum cell_state {
        FILL   = 1 << 0,
        RWALL  = 1 << 1,       // right wall
        BWALL  = 1 << 2,       // bottom wall
        RBWALL = RWALL | BWALL // right/bottom wall
    };

    typedef unsigned int cell;

    bool fill(cell* p) const {
        if ((*p & FILL)) return false;
        *p |= FILL;
        if (p >= end) return true; // success: reached bottom row

        return (!(p[0] & BWALL) && fill(p + m)) || (!(p[0] & RWALL) && fill(p + 1))
                ||(!(p[-1] & RWALL) && fill(p - 1)) || (!(p[-m] & BWALL) && fill(p - m));
    }

    cell* cells;
    cell* start;
    cell* end;
    const int m;
    const int n;
};

int main() {
    const auto M = 10, N = 10;
    const Grid grid(.5, M, N);
    grid.percolate();
    grid.show();

    const auto C = 10000;
    cout << endl << "running " << M << "x" << N << " grids " << C << " times for each p:" << endl;
    for (auto p = 1; p < M; p++) {
        auto cnt = 0, i = 0;
        for (; i < C; i++)
            cnt += Grid(p / static_cast<double>(M), M, N).percolate();
        cout << "p = " << p / static_cast<double>(M) << ": " << static_cast<double>(cnt) / i << endl;
    }

    return EXIT_SUCCESS;
}

D

Translation of: C
import std.stdio, std.random, std.array, std.range, std.algorithm;

struct Grid {
    // Not enforced by runtime and type system:
    // a Cell must contain only the flags bits.
    alias Cell = uint;

    enum : Cell { // Cell states (bit flags).
        empty      = 0,
        filled     = 1,
        rightWall  = 2,
        bottomWall = 4
    }

    const size_t nc, nr;
    Cell[] cells;

    this(in size_t nRows, in size_t nCols) pure nothrow {
        nr = nRows;
        nc = nCols;

        // Allocate two addition rows to avoid checking bounds.
        // Bottom row is also required by drippage.
        cells = new Cell[nc * (nr + 2)];
    }

    void initialize(in double prob, ref Xorshift rng) {
        cells[0 .. nc] = bottomWall | rightWall; // First row.

        uint pos = nc;
        foreach (immutable r; 1 .. nr + 1) {
            foreach (immutable c; 1 .. nc)
                cells[pos++] = (uniform01 < prob ?bottomWall : empty) |
                               (uniform01 < prob ? rightWall : empty);
            cells[pos++] = rightWall |
                           (uniform01 < prob ? bottomWall : empty);
        }

        cells[$ - nc .. $] = empty; // Last row.
    }

    bool percolate() pure nothrow @nogc {
        bool fill(in size_t i) pure nothrow @nogc {
            if (cells[i] & filled)
                return false;

            cells[i] |= filled;

            if (i >= cells.length - nc)
                return true; // Success: reached bottom row.

            return (!(cells[i]      & bottomWall) && fill(i + nc)) ||
                   (!(cells[i]      & rightWall)  && fill(i + 1)) ||
                   (!(cells[i - 1]  & rightWall)  && fill(i - 1)) ||
                   (!(cells[i - nc] & bottomWall) && fill(i - nc));
        }

        return iota(nc, nc + nc).any!fill;
    }

    void show() const {
        writeln("+-".replicate(nc), '+');

        foreach (immutable r; 1 .. nr + 2) {
            write(r == nr + 1 ? ' ' : '|');
            foreach (immutable c; 0 .. nc) {
                immutable cell = cells[r * nc + c];
                write((cell & filled) ? (r <= nr ? '#' : 'X') : ' ');
                write((cell & rightWall) ? '|' : ' ');
            }
            writeln;

            if (r == nr + 1)
                return;

            foreach (immutable c; 0 .. nc)
                write((cells[r * nc + c] & bottomWall) ? "+-" : "+ ");
            '+'.writeln;
        }
    }
}

void main() {
    enum uint nr = 10, nc = 10; // N. rows and columns of the grid.
    enum uint nTries = 10_000;  // N. simulations for each probability.
    enum uint nStepsProb = 10;  // N. steps of probability.

    auto rng = Xorshift(2);
    auto g = Grid(nr, nc);
    g.initialize(0.5, rng);
    g.percolate;
    g.show;

    writefln("\nRunning %dx%d grids %d times for each p:",
             nr, nc, nTries);
    foreach (immutable p; 0 .. nStepsProb) {
        immutable probability = p / double(nStepsProb);
        uint nPercolated = 0;
        foreach (immutable i; 0 .. nTries) {
            g.initialize(probability, rng);
            nPercolated += g.percolate;
        }
        writefln("p = %0.2f: %.4f",
                 probability, nPercolated / double(nTries));
    }
}
Output:
+-+-+-+-+-+-+-+-+-+-+
|#|#|#|#|     | |   |
+ +-+-+ +-+-+-+ +-+-+
|#| |  #  | | |   | |
+ +-+-+ + +-+-+ + +-+
|#|# #|#|   | |     |
+ +-+ + +-+ + + +-+ +
|#|# #|#|   | |   | |
+-+ + + + +-+-+-+-+-+
|# # # # #  | |   | |
+ + + + + + + +-+ +-+
|#|# # #|# # #  |   |
+-+ + + +-+-+ + + + +
| |#|# #| | |#      |
+-+-+-+-+ +-+ +-+-+-+
| |   |    # #|     |
+-+-+-+ +-+ +-+-+-+ +
| | |      # # #    |
+ + +-+ +-+-+-+ +-+ +
|     |   |   |#    |
+ +-+ + + + +-+ + + +
               X     

Running 10x10 grids 10000 times for each p:
p = 0.00: 1.0000
p = 0.10: 1.0000
p = 0.20: 1.0000
p = 0.30: 0.9973
p = 0.40: 0.9177
p = 0.50: 0.5050
p = 0.60: 0.0880
p = 0.70: 0.0035
p = 0.80: 0.0001
p = 0.90: 0.0000

With LDC2 compiler this code runs in 0.26 seconds (almost two times faster than the C entry).

FreeBASIC

Randomize Timer

Const RAND_MAX = 32767
Const FILL = 1
Const RWALL = 2
Const BWALL = 4

Dim Shared As Integer x = 10, y = 10
Dim Shared As Integer grid(x * (y + 2))
Dim Shared As Integer m, n
Dim Shared As Integer cells, endPos

Sub makeGrid(p As Double)
    Dim As Integer i, j, thresh, r1, r2, r3
    
    thresh = Int(p * RAND_MAX)
    m = x
    n = y
    
    For i = 0 To Ubound(grid) :  grid(i) = 0 : Next
    
    For i = 0 To m-1: grid(i) = BWALL Or RWALL : Next
    
    cells = m
    endPos = m
    
    For i = 0 To y-1
        For j = x-1 To 1 Step -1
            r1 = Int(Rnd * (RAND_MAX + 1))
            r2 = Int(Rnd * (RAND_MAX + 1))
            grid(endPos) = Iif(r1 < thresh, BWALL, 0) Or Iif(r2 < thresh, RWALL, 0)
            endPos += 1
        Next
        r3 = Int(Rnd * (RAND_MAX + 1))
        grid(endPos) = RWALL Or Iif(r3 < thresh, BWALL, 0)
        endPos += 1
    Next
End Sub

Sub showGrid()
    Dim As Integer i, j
    
    For j = 0 To m-1
        Print "+--";
    Next
    Print "+"
    
    For i = 0 To n
        Print Iif(i = n, " ", "|");
        For j = 0 To m-1
            Print Iif((grid(i * m + j + cells) And FILL) <> 0, "[]", "  ");
            Print Iif((grid(i * m + j + cells) And RWALL) <> 0, "|", " ");
        Next
        Print
        If i = n Then Exit Sub
        For j = 0 To m-1
            Print Iif((grid(i * m + j + cells) And BWALL) <> 0, "+--", "+  ");
        Next
        Print "+"
    Next
End Sub

Function filled(p As Integer) As Boolean
    If (grid(p) And FILL) <> 0 Then Return False
    grid(p) = grid(p) Or FILL
    If p >= endPos Then Return True
    
    Return ((grid(p + 0) And BWALL) = 0 Andalso filled(p + m)) Orelse _
    ((grid(p + 0) And RWALL) = 0 Andalso filled(p + 1)) Orelse _
    ((grid(p - 1) And RWALL) = 0 Andalso filled(p - 1)) Orelse _
    ((grid(p - m) And BWALL) = 0 Andalso filled(p - m))
End Function

Function percolate() As Boolean
    Dim i As Integer = 0
    While i < m Andalso Not filled(cells + i)
        i += 1
    Wend
    Return i < m
End Function

' Main program
makeGrid(0.5)
percolate()
showGrid()

Print !"\nRunning " & x & " x " & y & " grids 10,000 times for each p:"
For p As Integer = 1 To 9
    Dim As Integer cnt = 0
    Dim As Double pp = p / 10
    For i As Integer = 0 To 9999
        makeGrid(pp)
        If percolate() Then cnt += 1
    Next
    Print Using "p = #.#    : #.####"; pp; cnt / 10000
Next

Sleep
Output:
+--+--+--+--+--+--+--+--+--+--+
|[]|[] [] [] []         |  |  |
+--+  +  +--+  +  +--+--+--+  +
|[] []|[]|[] []|  |  |     |  |
+  +--+--+  +--+  +--+--+--+  +
|[]|     |[]            |  |  |
+  +--+  +  +  +  +  +  +  +  +
|[]|  |  |[]            |  |  |
+--+  +  +  +  +--+--+  +--+  +
|  |  |  |[]|  |     |  |     |
+  +  +--+  +--+--+  +  +  +  +
|     |[] []|  |     |        |
+  +  +  +--+  +  +  +  +--+  +
|  |   []|     |  |     |     |
+  +--+  +  +--+  +  +  +  +  +
|  |   [] []|     |  |  |     |
+  +--+--+  +--+  +  +  +--+--+
|  |  |[] []|     |     |  |  |
+  +  +  +--+  +  +--+--+--+--+
|      []   |  |  |           |
+  +  +  +--+--+  +  +--+  +--+
       []

Running 10 x 10 grids 10,000 times for each p:
p = 0.1    : 1.0000
p = 0.2    : 1.0000
p = 0.3    : 0.9967
p = 0.4    : 0.9187
p = 0.5    : 0.4965
p = 0.6    : 0.0875
p = 0.7    : 0.0036
p = 0.8    : 0.0000
p = 0.9    : 0.0000

Go

Translation of: C
package main

import (
	"fmt"
	"math/rand"
	"strings"
	"time"
)

func main() {
	const (
		m, n           = 10, 10
		t              = 1000
		minp, maxp, Δp = 0.1, 0.99, 0.1
	)

	// Purposely don't seed for a repeatable example grid:
	g := NewGrid(.5, m, n)
	g.Percolate()
	fmt.Println(g)

	rand.Seed(time.Now().UnixNano()) // could pick a better seed
	for p := float64(minp); p < maxp; p += Δp {
		count := 0
		for i := 0; i < t; i++ {
			g := NewGrid(p, m, n)
			if g.Percolate() {
				count++
			}
		}
		fmt.Printf("p=%.2f, %.3f\n", p, float64(count)/t)
	}
}

type cell struct {
	full        bool
	right, down bool // true if open to the right (x+1) or down (y+1)
}

type grid struct {
	cell [][]cell // row first, i.e. [y][x]
}

func NewGrid(p float64, xsize, ysize int) *grid {
	g := &grid{cell: make([][]cell, ysize)}
	for y := range g.cell {
		g.cell[y] = make([]cell, xsize)
		for x := 0; x < xsize-1; x++ {
			if rand.Float64() > p {
				g.cell[y][x].right = true
			}
			if rand.Float64() > p {
				g.cell[y][x].down = true
			}
		}
		if rand.Float64() > p {
			g.cell[y][xsize-1].down = true
		}
	}
	return g
}

var (
	full  = map[bool]string{false: "  ", true: "**"}
	hopen = map[bool]string{false: "--", true: "  "}
	vopen = map[bool]string{false: "|", true: " "}
)

func (g *grid) String() string {
	var buf strings.Builder
	// Don't really need to call Grow but it helps avoid multiple
	// reallocations if the size is large.
	buf.Grow((len(g.cell) + 1) * len(g.cell[0]) * 7)

	for _ = range g.cell[0] {
		buf.WriteString("+")
		buf.WriteString(hopen[false])
	}
	buf.WriteString("+\n")
	for y := range g.cell {
		buf.WriteString(vopen[false])
		for x := range g.cell[y] {
			buf.WriteString(full[g.cell[y][x].full])
			buf.WriteString(vopen[g.cell[y][x].right])
		}
		buf.WriteByte('\n')
		for x := range g.cell[y] {
			buf.WriteString("+")
			buf.WriteString(hopen[g.cell[y][x].down])
		}
		buf.WriteString("+\n")
	}
	ly := len(g.cell) - 1
	for x := range g.cell[ly] {
		buf.WriteByte(' ')
		buf.WriteString(full[g.cell[ly][x].down && g.cell[ly][x].full])
	}
	return buf.String()
}

func (g *grid) Percolate() bool {
	for x := range g.cell[0] {
		if g.fill(x, 0) {
			return true
		}
	}
	return false
}

func (g *grid) fill(x, y int) bool {
	if y >= len(g.cell) {
		return true // Out the bottom
	}
	if g.cell[y][x].full {
		return false // Allready filled
	}
	g.cell[y][x].full = true

	if g.cell[y][x].down && g.fill(x, y+1) {
		return true
	}
	if g.cell[y][x].right && g.fill(x+1, y) {
		return true
	}
	if x > 0 && g.cell[y][x-1].right && g.fill(x-1, y) {
		return true
	}
	if y > 0 && g.cell[y-1][x].down && g.fill(x, y-1) {
		return true
	}
	return false
}
Output:
+--+--+--+--+--+--+--+--+--+--+
|** ** **|  |  |     |  |  |  |
+  +--+  +--+--+  +--+--+--+  +
|**|  |** **|  |     |     |  |
+--+  +--+  +  +  +--+  +  +--+
|     |   **|  |              |
+--+  +--+  +--+--+--+--+--+--+
|     |   ** **|        |     |
+--+  +  +--+  +  +--+  +--+  +
|           |** ** **|     |  |
+  +  +--+  +--+  +  +--+  +--+
|  |  |  |   ** ** ** **|  |  |
+  +--+--+  +  +--+--+  +--+--+
|  |** ** **|**|**|  |** ** **|
+  +  +  +  +  +  +--+  +--+  +
|** **|**|** ** **|  |** ** **|
+  +  +--+--+--+--+  +  +--+  +
|**|** ** **|     |  |**|  |**|
+  +--+--+--+  +  +--+--+--+--+
|**               |  |  |  |  |
+  +  +  +  +--+--+  +--+--+  +
 **                           
p=0.10, 1.000
p=0.20, 1.000
p=0.30, 0.998
p=0.40, 0.915
p=0.50, 0.502
p=0.60, 0.081
p=0.70, 0.002
p=0.80, 0.000
p=0.90, 0.000

Haskell

{-# LANGUAGE OverloadedStrings #-}
import Control.Monad
import Control.Monad.Random
import Data.Array.Unboxed
import Data.List
import Formatting
 
data Field = Field { f :: UArray (Int, Int) Char  
                   , hWall :: UArray (Int, Int) Bool  
                   , vWall :: UArray (Int, Int) Bool  
                   }
 
-- Start percolating some seepage through a field.
-- Recurse to continue percolation with new seepage.
percolateR :: [(Int, Int)] -> Field -> (Field, [(Int,Int)])
percolateR [] (Field f h v) = (Field f h v, [])
percolateR seep (Field f h v) = 
    let ((xLo,yLo),(xHi,yHi)) = bounds f
        validSeep = filter (\p@(x,y) ->    x >= xLo 
                                        && x <= xHi 
                                        && y >= yLo 
                                        && y <= yHi 
                                        && f!p == ' ') $ nub $ sort seep

        north (x,y) = if v ! (x  ,y  ) then [] else [(x  ,y-1)]
        south (x,y) = if v ! (x  ,y+1) then [] else [(x  ,y+1)]
        west  (x,y) = if h ! (x  ,y  ) then [] else [(x-1,y  )]
        east  (x,y) = if h ! (x+1,y  ) then [] else [(x+1,y  )]
        neighbors (x,y) = north(x,y) ++ south(x,y) ++ west(x,y) ++ east(x,y)

    in  percolateR 
            (concatMap neighbors validSeep)
            (Field (f // map (\p -> (p,'.')) validSeep) h v) 
 
-- Percolate a field;  Return the percolated field.
percolate :: Field -> Field
percolate start@(Field f _ _) = 
    let ((_,_),(xHi,_)) = bounds f
        (final, _) = percolateR [(x,0) | x <- [0..xHi]] start
    in final
 
-- Generate a random field.
initField :: Int -> Int -> Double -> Rand StdGen Field
initField width height threshold = do
    let f = listArray ((0,0), (width-1, height-1)) $ repeat ' '

    hrnd <- fmap (<threshold) <$> getRandoms
    let h0 = listArray ((0,0),(width, height-1)) hrnd       
        h1 = h0 // [((0,y), True) | y <- [0..height-1]]     -- close left 
        h2 = h1 // [((width,y), True) | y <- [0..height-1]] -- close right 

    vrnd <- fmap (<threshold) <$> getRandoms 
    let v0 = listArray ((0,0),(width-1, height)) vrnd   
        v1 = v0 // [((x,0), True) | x <- [0..width-1]]  -- close top

    return $ Field f h2 v1
 
-- Assess whether or not percolation reached bottom of field.
leaks :: Field -> [Bool]
leaks (Field f _ v) = 
    let ((xLo,_),(xHi,yHi)) = bounds f
    in [f!(x,yHi)=='.' && not (v!(x,yHi+1)) | x <- [xLo..xHi]]

-- Run test once; Return bool indicating success or failure.
oneTest :: Int -> Int -> Double -> Rand StdGen Bool
oneTest width height threshold = 
    or.leaks.percolate <$> initField width height threshold
 
-- Run test multple times; Return the number of tests that pass.
multiTest :: Int -> Int -> Int -> Double -> Rand StdGen Double
multiTest testCount width height threshold = do
    results <- replicateM testCount $ oneTest width height threshold
    let leakyCount = length $ filter id results
    return $ fromIntegral leakyCount / fromIntegral testCount

-- Helper function for display
alternate :: [a] -> [a] -> [a]
alternate [] _ = []
alternate (a:as) bs = a : alternate bs as
 
-- Display a field with walls and leaks.
showField :: Field -> IO ()
showField field@(Field a h v) =  do
    let ((xLo,yLo),(xHi,yHi)) = bounds a
        fLines =  [ [ a!(x,y) | x <- [xLo..xHi]] | y <- [yLo..yHi]]
        hLines =  [ [ if h!(x,y) then '|' else ' ' | x <- [xLo..xHi+1]] | y <- [yLo..yHi]]
        vLines =  [ [ if v!(x,y) then '-' else ' ' | x <- [xLo..xHi]] | y <- [yLo..yHi+1]]
        lattice =  [ [ '+' | x <- [xLo..xHi+1]] | y <- [yLo..yHi+1]]

        hDrawn = zipWith alternate hLines fLines
        vDrawn = zipWith alternate lattice vLines
    mapM_ putStrLn $ alternate vDrawn hDrawn

    let leakLine = [ if l then '.' else ' ' | l <- leaks field]
    putStrLn $ alternate (repeat ' ') leakLine

main :: IO ()
main = do
  g <- getStdGen
  let threshold = 0.45
      (startField, g2) = runRand (initField 10 10 threshold) g

  putStrLn ("Unpercolated field with " ++ show threshold ++ " threshold.")
  putStrLn ""
  showField startField
 
  putStrLn ""
  putStrLn "Same field after percolation."
  putStrLn ""
  showField $ percolate startField

  let testCount = 10000
      densityCount = 10
  putStrLn ""
  putStrLn ("Results of running percolation test " ++ show testCount ++ " times with thresholds ranging from 0/" ++ show densityCount ++ " to " ++ show densityCount ++ "/" ++ show densityCount ++ " .")
  let densities = [0..densityCount]
  let tests = sequence [multiTest testCount 10 10 v 
                           | density <- densities,
                             let v = fromIntegral density / fromIntegral densityCount ]
  let results = zip densities (evalRand tests g2)
  mapM_ print [format ("p=" % int % "/" % int % " -> " % fixed 4) density densityCount x | (density,x) <- results]
Output:
Unpercolated field with 0.45 threshold.

+-+-+-+-+-+-+-+-+-+-+
|       | | | | | | |
+-+-+ +-+ + + + + +-+
| | |       | | | | |
+ + +-+-+ + +-+-+ + +
| |         |       |
+ +-+-+-+ +-+-+ +-+ +
| |     | |       | |
+ +-+ + + +-+-+ + +-+
| |     |       | | |
+-+-+ + + + + +-+ + +
| | |   | | | |     |
+-+ + + + + + + +-+-+
|         |   |   | |
+ + + + + +-+ +-+ + +
| | | | |     | | | |
+ + + +-+-+-+-+-+ + +
| |       |     |   |
+ +-+ +-+ +-+ + + +-+
| | | |           | |
+ + + + +-+ +-+-+-+ +
                     

Same field after percolation.

+-+-+-+-+-+-+-+-+-+-+
|. . . .|.|.|.|.|.|.|
+-+-+ +-+ + + + + +-+
| |.|. . . .|.|.|.|.|
+ + +-+-+ + +-+-+ + +
| |. . . . .|. . . .|
+ +-+-+-+ +-+-+ +-+ +
| |. . .|.|. . . .|.|
+ +-+ + + +-+-+ + +-+
| |. . .|. . . .|.|.|
+-+-+ + + + + +-+ + +
| |.|. .|.|.|.|. . .|
+-+ + + + + + + +-+-+
|. . . . .|. .|. .|.|
+ + + + + +-+ +-+ + +
|.|.|.|.|. . .| |.|.|
+ + + +-+-+-+-+-+ + +
|.|. . . .|. . .|. .|
+ +-+ +-+ +-+ + + +-+
|.| |.|. . . . . .| |
+ + + + +-+ +-+-+-+ +
 .   . .   .         

Results of running percolation test 10000 times with thresholds ranging from 0/10 to 10/10 .
"p=0/10 -> 1.0000"
"p=1/10 -> 1.0000"
"p=2/10 -> 1.0000"
"p=3/10 -> 0.9969"
"p=4/10 -> 0.9171"
"p=5/10 -> 0.5026"
"p=6/10 -> 0.0901"
"p=7/10 -> 0.0025"
"p=8/10 -> 0.0000"
"p=9/10 -> 0.0000"
"p=10/10 -> 0.0000"

Java

import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;

public final class PercolationBond {

	public static void main(String[] aArgs) {
		System.out.println("Sample percolation with a " + COL_COUNT + " x " + ROW_COUNT + " grid:");
		makeGrid(0.5);
		percolate();
		showGrid();
		
		System.out.println("Using 10,000 repetitions for each probability p:");
	    for ( int p = 1; p <= 9; p++ ) {
	        int percolationCount = 0;
	        double probability = p / 10.0;
	        for ( int i = 0; i < 10_000; i++ ) {
	            makeGrid(probability); 
	            if ( percolate() ) {
	            	percolationCount += 1;
	            }
	        }
	        final double percolationProportion = (double) percolationCount / 10_000;
	        System.out.println(String.format("%s%.1f%s%.4f", "p = ", probability, ":  ", percolationProportion));
	    }
	}
	
	private static void makeGrid(double aProbability) {	    
	    Arrays.fill(grid, 0);
	    for ( int i = 0; i < COL_COUNT; i++ ) {
	    	grid[i] = LOWER_WALL | RIGHT_WALL;
	    }

	    endOfRow = COL_COUNT;
	    for ( int i = 0; i < ROW_COUNT; i++ ) {
	        for ( int j = COL_COUNT - 1; j >= 1; j-- ) {	        	
	        	final boolean chance1 = RANDOM.nextDouble() < aProbability;
	        	final boolean chance2 = RANDOM.nextDouble() < aProbability;
	            grid[endOfRow++] = ( chance1 ? LOWER_WALL : 0 ) | ( chance2 ? RIGHT_WALL : 0 );
	        }
	        final boolean chance3 = RANDOM.nextDouble() < aProbability;
	        grid[endOfRow++] = RIGHT_WALL | ( chance3 ? LOWER_WALL : 0 );
	    }
	}
	
	private static void showGrid() {
		for ( int j = 0; j < COL_COUNT; j++ ) {
	    	System.out.print("+--");
	    }
	    System.out.println("+");
		
		for ( int i = 0; i < ROW_COUNT; i++ ) {
			System.out.print("|"); 
	        for ( int j = 0; j < COL_COUNT; j++ ) {
	            System.out.print( ( ( grid[i * COL_COUNT + j + COL_COUNT] & FILL ) != 0 ) ? "[]" : "  " );
	            System.out.print( ( ( grid[i * COL_COUNT + j + COL_COUNT] & RIGHT_WALL ) != 0 ) ? "|" : " " );
	        }
	        System.out.println();
		
	        for ( int j = 0; j < COL_COUNT; j++ ) {
	            System.out.print( ( ( grid[i * COL_COUNT + j + COL_COUNT] & LOWER_WALL) != 0 ) ? "+--" : "+  " );
	        }
	        System.out.println("+");
		}
		
		System.out.print(" "); 
		for ( int j = 0; j < COL_COUNT; j++ ) {
            System.out.print( ( ( grid[ROW_COUNT * COL_COUNT + j + COL_COUNT] & FILL ) != 0 ) ? "[]" : "  " );
            System.out.print( ( ( grid[ROW_COUNT * COL_COUNT + j + COL_COUNT] & RIGHT_WALL ) != 0 ) ? "|" : " " );
        }
        System.out.println(System.lineSeparator());
	}
	
	private static boolean fill(int aGridIndex) {
	    if ( ( grid[aGridIndex] & FILL ) != 0 ) {
	    	return false;
	    }	    
	    grid[aGridIndex] |= FILL;
	    
	    if ( aGridIndex >= endOfRow ) {
	    	return true;
	    }	    
	    return ( ( ( grid[aGridIndex]             & LOWER_WALL ) == 0 ) && fill(aGridIndex + COL_COUNT) ) ||
	           ( ( ( grid[aGridIndex]             & RIGHT_WALL ) == 0 ) && fill(aGridIndex + 1) )         ||
	           ( ( ( grid[aGridIndex - 1]         & RIGHT_WALL ) == 0 ) && fill(aGridIndex - 1) )         ||
	           ( ( ( grid[aGridIndex - COL_COUNT] & LOWER_WALL ) == 0 ) && fill(aGridIndex - COL_COUNT) );
	}

	private static boolean percolate() {
		int i = 0;
	    while ( i < COL_COUNT && ! fill(COL_COUNT + i) ) {
	    	i++;
	    }
	    return i < COL_COUNT;
	}
		
	private static final int ROW_COUNT = 10;
	private static final int COL_COUNT = 10;
	
	private static int endOfRow = COL_COUNT;
	private static int[] grid = new int[COL_COUNT * ( ROW_COUNT + 2 )];

	private static final int FILL = 1;
	private static final int RIGHT_WALL = 2;
	private static final int LOWER_WALL = 4;

	private static final ThreadLocalRandom RANDOM = ThreadLocalRandom.current();
	
}
Output:
Sample percolation with a 10 x 10 grid:
+--+--+--+--+--+--+--+--+--+--+
|[] []|[]|     |        |     |
+--+--+  +--+--+  +--+  +--+--+
|  |  |[]               |  |  |
+  +  +  +--+  +  +--+  +  +  +
|  |   []|              |  |  |
+  +--+  +--+--+  +  +--+--+--+
|     |[]   |     |           |
+  +--+  +--+--+--+  +--+--+--+
|  |   []|     |  |  |  |  |  |
+--+  +  +  +--+--+  +  +--+  +
|     |[]   |        |  |  |  |
+--+  +  +  +  +--+--+  +  +--+
|   [] []|  |  |              |
+  +  +--+--+  +--+--+--+  +--+
|  |[]   |     |  |     |     |
+  +  +--+  +--+  +  +--+  +  +
|   []|        |     |  |  |  |
+  +  +--+  +--+--+--+--+  +  +
|  |[] []      |              |
+  +--+  +--+--+  +--+  +--+--+
       []                      

Using 10,000 repetitions for each probability p:
p = 0.1:  1.0000
p = 0.2:  0.9999
p = 0.3:  0.9973
p = 0.4:  0.9223
p = 0.5:  0.5011
p = 0.6:  0.0872
p = 0.7:  0.0022
p = 0.8:  0.0000
p = 0.9:  0.0000

Julia

Translation of: Python
using Printf, Distributions

struct Grid
    cells::BitArray{2}
    hwall::BitArray{2}
    vwall::BitArray{2}
end
function Grid(p::AbstractFloat, m::Integer=10, n::Integer=10)
    cells = fill(false, m, n)
    hwall = rand(Bernoulli(p), m + 1, n)
    vwall = rand(Bernoulli(p), m, n + 1)
    vwall[:, 1] = true
    vwall[:, end] = true
    return Grid(cells, hwall, vwall)
end

function Base.show(io::IO, g::Grid)
    H = (" .", " _")
    V = (":", "|")
    C = (" ", "#")
    ind = findfirst(g.cells[end, :] .& .!g.hwall[end, :])
    percolated = !iszero(ind)
    println(io, "$(size(g.cells, 1))×$(size(g.cells, 2)) $(percolated ? "Percolated" : "Not percolated") grid")
    for r in 1:size(g.cells, 1)
        println(io, "    ", join(H[w+1] for w in g.hwall[r, :]))
        println(io, " $(r % 10)) ", join(V[w+1] * C[c+1] for (w, c) in zip(g.vwall[r, :], g.cells[r, :])))
    end
    println(io, "    ", join(H[w+1] for w in g.hwall[end, :]))
    if percolated
        println(io, " !)  ", "  " ^ (ind - 1), '#')
    end
end

function floodfill!(m::Integer, n::Integer, cells::AbstractMatrix{<:Integer},
                    hwall::AbstractMatrix{<:Integer}, vwall::AbstractMatrix{<:Integer})
    # fill cells
    cells[m, n] = true
    percolated = false
    # bottom
    if m < size(cells, 1) && !hwall[m+1, n] && !cells[m+1, n]
        percolated = percolated || floodfill!(m + 1, n, cells, hwall, vwall)
    # The Bottom
    elseif m == size(cells, 1) && !hwall[m+1, n]
        return true
    end
    # left
    if n > 1 && !vwall[m, n] && !cells[m, n-1]
        percolated = percolated || floodfill!(m, n - 1, cells, hwall, vwall)
    end
    # right
    if n < size(cells, 2) && !vwall[m, n+1] && !cells[m, n+1]
        percolated = percolated || floodfill!(m, n + 1, cells, hwall, vwall)
    end
    # top
    if m > 1 && !hwall[m, n] && !cells[m-1, n]
        percolated = percolated || floodfill!(m - 1, n, cells, hwall, vwall)
    end
    return percolated
end
function pourontop!(g::Grid)
    m, n = 1, 1
    percolated = false
    while !percolated && n  size(g.cells, 2)
        percolated = !g.hwall[m, n] && floodfill!(m, n, g.cells, g.hwall, g.vwall)
        n += 1
    end
    return percolated
end

function main(probs, nrep::Integer=1000)
    sampleprinted = false
    pcount = zeros(Int, size(probs))
    for (i, p) in enumerate(probs), _ in 1:nrep
        g = Grid(p)
        percolated = pourontop!(g)
        if percolated
            pcount[i] += 1
            if !sampleprinted
                println(g)
                sampleprinted = true
            end
        end
    end
    return pcount ./ nrep
end

probs = collect(10:-1:0) ./ 10
percprobs = main(probs)

println("Fraction of 1000 tries that percolate through:")
for (pr, pp) in zip(probs, percprobs)
    @printf("\tp = %.3f ⇒ freq. = %5.3f\n", pr, pp)
end
Output:
10×10 Percolated grid
     _ . . _ _ _ . _ . .
 1) | |#:#| | : | : | :
     _ _ . _ _ _ _ _ . _
 2) | | |#| : : | : | |
     _ _ . _ _ _ _ _ _ .
 3) | | |#:#| : | : | :
     . _ _ . _ _ _ . _ _
 4) | | | :#: : | | | |
     . _ _ . _ _ _ . _ _
 5) | | : |#| | : | | :
     _ . _ . _ _ . . . _
 6) | | | |#| | | | | |
     . . _ . _ _ _ . . .
 7) | |#:#:#: | | : | |
     _ . . _ . . . . _ _
 8) | |#|#| | | : | | |
     _ . . _ _ _ . _ _ _
 9) |#:#|#| : : | : | |
     . _ _ _ _ . _ _ _ .
 0) |#: | : | | | : : |
     . . _ _ _ _ . _ _ _
 !)  #

Fraction of 1000 tries that percolate through:
    p = 1.000 ⇒ freq. = 0.000
    p = 0.900 ⇒ freq. = 0.000
    p = 0.800 ⇒ freq. = 0.000
    p = 0.700 ⇒ freq. = 0.001
    p = 0.600 ⇒ freq. = 0.064
    p = 0.500 ⇒ freq. = 0.470
    p = 0.400 ⇒ freq. = 0.895
    p = 0.300 ⇒ freq. = 0.997
    p = 0.200 ⇒ freq. = 1.000
    p = 0.100 ⇒ freq. = 1.000
    p = 0.000 ⇒ freq. = 1.000

Kotlin

Translation of: C
// version 1.2.10

import java.util.Random

val rand = Random()
const val RAND_MAX = 32767

// cell states
const val FILL  = 1
const val RWALL = 2  // right wall
const val BWALL = 4  // bottom wall

val x = 10
val y = 10
var grid = IntArray(x * (y + 2))
var cells = 0
var end = 0
var m = 0
var n = 0

fun makeGrid(p: Double) {
    val thresh = (p * RAND_MAX).toInt()
    m = x
    n = y
    grid.fill(0)  // clears grid
    for (i in 0 until m) grid[i] = BWALL or RWALL
    cells = m
    end = m
    for (i in 0 until y) {
        for (j in x - 1 downTo 1) {
            val r1 = rand.nextInt(RAND_MAX + 1)
            val r2 = rand.nextInt(RAND_MAX + 1)
            grid[end++] = (if (r1 < thresh) BWALL else 0) or
                          (if (r2 < thresh) RWALL else 0)
        }
        val r3 = rand.nextInt(RAND_MAX + 1)
        grid[end++] = RWALL or (if (r3 < thresh) BWALL else 0)
    }
}

fun showGrid() {
    for (j in 0 until m) print("+--")
    println("+")

    for (i in 0..n) {
        print(if (i == n) " " else "|")
        for (j in 0 until m) {
            print(if ((grid[i * m + j + cells] and FILL) != 0) "[]" else "  ")
            print(if ((grid[i * m + j + cells] and RWALL) != 0) "|" else " ")
        }
        println()
        if (i == n) return
        for (j in 0 until m) {
            print(if ((grid[i * m + j + cells] and BWALL) != 0) "+--" else "+  ")
        }
        println("+")
    }
}

fun fill(p: Int): Boolean {
    if ((grid[p] and FILL) != 0) return false
    grid[p] = grid[p] or FILL
    if (p >= end) return true  // success: reached bottom row
    return (((grid[p + 0] and BWALL) == 0) && fill(p + m)) ||
           (((grid[p + 0] and RWALL) == 0) && fill(p + 1)) ||
           (((grid[p - 1] and RWALL) == 0) && fill(p - 1)) ||
           (((grid[p - m] and BWALL) == 0) && fill(p - m))
}

fun percolate(): Boolean {
    var i = 0
    while (i < m && !fill(cells + i)) i++
    return i < m
}

fun main(args: Array<String>) {
    makeGrid(0.5)
    percolate()
    showGrid()

    println("\nrunning $x x $y grids 10,000 times for each p:")
    for (p in 1..9) {
        var cnt = 0
        val pp = p / 10.0
        for (i in 0 until 10_000) {
            makeGrid(pp)
            if (percolate()) cnt++
        }
        println("p = %3g: %.4f".format(pp, cnt.toDouble() / 10_000))
    }
}

Sample output:

+--+--+--+--+--+--+--+--+--+--+
|[]|[] [] [] [] []|  |  |  |  |
+--+--+--+--+--+  +--+  +  +  +
|     |  |  |   []|           |
+--+--+--+--+--+  +  +--+  +  +
|  |  |  |  |[] []|           |
+  +  +  +  +  +--+--+--+--+--+
|  |  |   [] [] []|     |     |
+--+--+  +  +--+--+--+--+--+  +
|  |     |[] []|  |        |  |
+--+--+  +  +  +  +--+  +--+--+
|  |  |  |[]|[]|     |     |  |
+--+  +--+--+  +--+--+  +  +  +
|  |     |   []|  |  |  |     |
+--+  +  +  +  +--+--+  +  +  +
|     |  |[] []|  |           |
+  +--+--+  +--+  +--+  +  +--+
|  |      []   |  |        |  |
+  +  +--+  +  +--+--+--+--+  +
|         []      |  |     |  |
+  +--+--+  +  +--+--+  +--+  +
          []                   

running 10 x 10 grids 10,000 times for each p:
p = 0.100000: 1.0000
p = 0.200000: 1.0000
p = 0.300000: 0.9968
p = 0.400000: 0.9184
p = 0.500000: 0.5047
p = 0.600000: 0.0828
p = 0.700000: 0.0034
p = 0.800000: 0.0000
p = 0.900000: 0.0000

Nim

Translation of: Go
import random, sequtils, strformat, tables

type

  Cell = object
    full: bool
    right, down: bool     # True if open to the right (x+1) or down (y+1).

  Grid = seq[seq[Cell]]   # Row first, i.e. [y][x].


proc newGrid(p: float; xsize, ysize: Positive): Grid =

  result = newSeqWith(ysize, newSeq[Cell](xsize))
  for row in result.mitems:
    for x in 0..(xsize - 2):
      if rand(1.0) > p: row[x].right = true
      if rand(1.0) > p: row[x].down = true
    if rand(1.0) > p: row[xsize - 1].down = true


const
  Full = {false: "  ", true: "()"}.toTable
  HOpen = {false: "--", true: "  "}.toTable
  VOpen = {false: "|", true: " "}.toTable

proc `$`(grid: Grid): string =

  # Preallocate result to avoid multiple reallocations.
  result = newStringOfCap((grid.len + 1) * grid[0].len * 7)

  for _ in 0..grid[0].high:
    result.add '+'
    result.add HOpen[false]
  result.add "+\n"

  for row in grid:
    result.add VOpen[false]
    for cell in row:
      result.add Full[cell.full]
      result.add VOpen[cell.right]
    result.add '\n'
    for cell in row:
      result.add '+'
      result.add HOpen[cell.down]
    result.add "+\n"

  for cell in grid[^1]:
    result.add ' '
    result.add Full[cell.down and cell.full]


proc fill(grid: var Grid; x, y: Natural): bool =

  if y >= grid.len: return true     # Out the bottom.
  if grid[y][x].full: return false  # Already filled.
  grid[y][x].full = true

  if grid[y][x].down and grid.fill(x, y + 1): return true
  if grid[y][x].right and grid.fill(x + 1, y): return true
  if x > 0 and grid[y][x - 1].right and grid.fill(x - 1, y): return true
  if y > 0 and grid[y - 1][x].down and grid.fill(x, y - 1): return true


proc percolate(grid: var Grid): bool =
  for x in 0..grid[0].high:
    if grid.fill(x, 0): return true


const
  M = 10
  N = 10
  T = 1000
  MinP = 0.1
  MaxP = 0.99
  ΔP = 0.1

# Purposely don't seed for a repeatable example grid.
var grid = newGrid(0.4, M, N)
discard grid.percolate()
echo grid
echo ""

randomize()
var p = MinP
while p < MaxP:
  var count = 0
  for _ in 1..T:
    var grid = newGrid(p, M, N)
    if grid.percolate(): inc count
  echo &"p = {p:.2f}: {count / T:.3f}"
  p += ΔP
Output:
+--+--+--+--+--+--+--+--+--+--+
|()|()|() () () () ()|()|()   |
+  +  +--+--+  +  +  +--+  +--+
|() ()|  |() () ()|() ()|()   |
+  +--+--+  +  +--+  +--+  +--+
|() ()|  |() ()|() ()|   ()   |
+  +  +  +--+--+--+  +--+  +--+
|() ()|        |() ()|   ()   |
+  +--+--+--+  +--+--+--+  +  +
|()|              |      ()|  |
+--+  +  +--+  +  +--+--+  +  +
|        |        |   () ()|  |
+--+--+  +--+  +  +  +  +--+  +
|              |     |()|     |
+--+--+--+  +  +  +  +  +  +--+
|        |     |() () ()|     |
+  +--+--+  +  +  +--+  +  +  +
|     |      () ()|()|()|  |  |
+--+  +--+  +  +--+  +  +--+  +
|        |   ()   |() ()|     |
+  +  +--+--+  +  +--+--+  +--+
             ()               

p = 0.10: 1.000
p = 0.20: 0.999
p = 0.30: 0.996
p = 0.40: 0.905
p = 0.50: 0.497
p = 0.60: 0.077
p = 0.70: 0.004
p = 0.80: 0.000
p = 0.90: 0.000

Perl

Translation of: Raku
my @bond;
my $grid = 10;
my $water = '▒';
$D{$_} = $i++ for qw<DeadEnd Up Right Down Left>;

sub percolate {
    generate(shift || 0.6);
    fill(my $x = 1,my $y = 0);
    my @stack;

    while () {
        if (my $dir = direction($x,$y)) {
            push @stack, [$x,$y];
            ($x,$y) = move($dir, $x, $y)
        } else {
            return 0 unless @stack;
            ($x,$y) = @{pop @stack}
        }
        return 1 if $y == $#bond;
    }
}

sub direction {
    my($x, $y) = @_;
    return $D{Down}  if $bond[$y+1][$x  ] =~ / /;
    return $D{Left}  if $bond[$y  ][$x-1] =~ / /;
    return $D{Right} if $bond[$y  ][$x+1] =~ / /;
    return $D{Up}    if defined $bond[$y-1][$x  ] && $bond[$y-1][$x] =~ / /;
    return $D{DeadEnd}
}

sub move {
    my($dir,$x,$y) = @_;
    fill(  $x,--$y), fill(  $x,--$y) if $dir == $D{Up};
    fill(  $x,++$y), fill(  $x,++$y) if $dir == $D{Down};
    fill(--$x,  $y), fill(--$x,  $y) if $dir == $D{Left};
    fill(++$x,  $y), fill(++$x,  $y) if $dir == $D{Right};
    $x, $y
}

sub fill {
    my($x, $y) = @_;
    $bond[$y][$x] =~ s/ /$water/g
}

sub generate {
    our($prob) = shift || 0.5;
    @bond = ();
    our $sp = '   ';
    push @bond, ['│', ($sp, ' ') x ($grid-1), $sp, '│'],
                ['├', hx('┬'), h(), '┤'];
    push @bond, ['│', vx(   ), $sp, '│'],
                ['├', hx('┼'), h(), '┤'] for 1..$grid-1;
    push @bond, ['│', vx(   ), $sp, '│'],
                ['├', hx('┴'), h(), '┤'],
                ['│', ($sp, ' ') x ($grid-1), $sp, '│'];

    sub hx { my($c)=@_; my @l; push @l, (h(),$c) for 1..$grid-1; return @l; }
    sub vx {            my @l; push @l, $sp, v() for 1..$grid-1; return @l; }
    sub h { rand() < $prob ? $sp : '───' }
    sub v { rand() < $prob ? ' ' : '│'   }
}

print "Sample percolation at .6\n";
percolate(.6);
for my $row (@bond) {
    my $line = '';
    $line .= join '', $_ for @$row;
    print "$line\n";
}

my $tests = 100;
print "Doing $tests trials at each porosity:\n";
my @table;
for my $p (1 .. 10) {
    $p = $p/10;
    my $total = 0;
    $total += percolate($p) for 1..$tests;
    printf "p = %0.1f: %0.2f\n", $p, $total / $tests
}
Output:
Sample percolation at .6
│▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒                          │
├───┬───┬───┬▒▒▒┬   ┬   ┬   ┬───┬   ┬───┤
│        ▒▒▒▒▒▒▒             │       │   │
├───┼───┼▒▒▒┼───┼───┼   ┼───┼───┼   ┼   ┤
│   │▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒│         │   │   │
├───┼───┼───┼───┼▒▒▒┼▒▒▒┼   ┼───┼───┼───┤
│       │       │▒▒▒│▒▒▒▒▒▒▒             │
├───┼───┼   ┼───┼───┼───┼▒▒▒┼   ┼   ┼   ┤
│   │                ▒▒▒▒▒▒▒     │       │
├───┼───┼───┼   ┼   ┼▒▒▒┼───┼   ┼   ┼───┤
│       │           │▒▒▒            │   │
├───┼   ┼───┼   ┼───┼▒▒▒┼   ┼   ┼───┼   ┤
│   │            ▒▒▒▒▒▒▒│        │       │
├   ┼   ┼   ┼   ┼▒▒▒┼───┼   ┼───┼───┼   ┤
│       │        ▒▒▒│   │               │
├   ┼   ┼   ┼   ┼▒▒▒┼───┼   ┼   ┼───┼   ┤
│           │    ▒▒▒│               │   │
├───┼   ┼───┼   ┼▒▒▒┼   ┼   ┼   ┼   ┼   ┤
│   │           │▒▒▒        │   │   │   │
├───┼───┼   ┼   ┼▒▒▒┼───┼   ┼   ┼   ┼───┤
│           │    ▒▒▒│       │   │       │
├   ┴───┴   ┴   ┴▒▒▒┴   ┴───┴   ┴   ┴───┤
│                ▒▒▒                    │
Doing 100 trials at each porosity:
p = 0.1: 0.00
p = 0.2: 0.00
p = 0.3: 0.00
p = 0.4: 0.03
p = 0.5: 0.38
p = 0.6: 0.83
p = 0.7: 0.99
p = 0.8: 1.00
p = 0.9: 1.00
p = 1.0: 1.00

Phix

with javascript_semantics
constant w = 10, h = 10
 
sequence wall = join(repeat("+",w+1),"---")&"\n",
         cell = join(repeat("|",w+1),"   ")&"\n",
         grid
 
procedure new_grid(atom p)
    grid = split(join(repeat(wall,h+1),cell),'\n')
    -- now knock down some walls
    for i=1 to length(grid)-1 do
        integer jstart = 5-mod(i,2)*3,
                jlimit = length(grid[i])-3
        -- (ie 2..38 on odd lines, 5..37 on even)
        for j=jstart to jlimit by 4 do
            if rnd()>p then
                grid[i][j..j+2] = "   "
            end if
        end for
    end for
end procedure
 
function percolate(integer x=0, y=0)
    if x=0 then
        for j=3 to length(grid[1])-2 by 4 do
            if grid[1][j]=' ' and percolate(1,j) then
                return true
            end if
        end for
    elsif grid[x][y]=' ' then
        grid[x][y] = '*'
        if (x=length(grid)-1)
        or (         grid[x+1][y]=' ' and percolate(x+1,y))
        or (y>6  and grid[x][y-2]=' ' and percolate(x,y-4))
        or (y<36 and grid[x][y+2]=' ' and percolate(x,y+4))
        or (x>1  and grid[x-1][y]=' ' and percolate(x-1,y)) then
            return true
        end if
    end if
    return false
end function
 
constant LIM=1000
 
for p=0 to 10 do
    integer count = 0
    for t=1 to LIM do
        new_grid(p/10)
        count += percolate()
    end for
    printf(1,"p=%.1f: %5.3f\n",{p/10,count/LIM})
end for
puts(1,"sample grid for p=0.6:\n")
new_grid(0.6)
{} = percolate()
printf(1,"%s\n",{join(grid,'\n')})
Output:
p=0.0: 1.000
p=0.1: 1.000
p=0.2: 1.000
p=0.3: 0.997
p=0.4: 0.897
p=0.5: 0.434
p=0.6: 0.067
p=0.7: 0.003
p=0.8: 0.000
p=0.9: 0.000
p=1.0: 0.000
sample grid for p=0.6:
+---+---+ * +---+ * + * +---+---+ * + * +
| *   *   * |   | *   * | * |   | *   * |
+---+---+ * +   +---+ * + * +---+---+ * +
| *   * | * |   |   | * | * | *   *   * |
+---+ * + * +---+---+---+ * +---+ * +---+
|   | * | * | * | * | *   *   *   *   * |
+   + * + * + * + * + * +---+ * + * +---+
|   | *   *   *   * | *   * | *   *   * |
+   + * + * +---+ * +---+ * +---+ * + * +
|   | * | *   *   * | *   * | *   * | * |
+---+ * +---+ * +---+---+---+---+ * + * +
|   | * |   | *   *   *   * | *   * | * |
+   +---+   +---+ * +---+---+---+---+ * +
|   |   |   |   | * |           |   | * |
+   +---+---+   +---+---+---+---+---+---+
|   |   |       |   |   |   |   |   |   |
+---+---+---+   +   +---+   +   +---+---+
|   |   |   |   |   |   |       |       |
+   +---+   +---+---+   +---+---+---+---+
|   |   |       |   |   |   |   |   |   |
+---+---+   +   +   +---+---+---+---+   +

Python

from collections import namedtuple
from random import random
from pprint import pprint as pp

Grid = namedtuple('Grid', 'cell, hwall, vwall')

M, N, t = 10, 10, 100

class PercolatedException(Exception): pass

HVF = [(' .', ' _'), (':', '|'), (' ', '#')]  # Horiz, vert, fill chars

def newgrid(p):
    hwall = [[int(random() < p) for m in range(M)] 
             for n in range(N+1)]
    vwall = [[(1 if m in (0, M) else int(random() < p)) for m in range(M+1)] 
             for n in range(N)]
    cell = [[0 for m in range(M)] 
             for n in range(N)]
    return Grid(cell, hwall, vwall)

def pgrid(grid, percolated=None):
    cell, hwall, vwall = grid
    h, v, f = HVF
    for n in range(N):
        print('    ' + ''.join(h[hwall[n][m]] for m in range(M)))
        print('%i)  ' % (n % 10) + ''.join(v[vwall[n][m]] + f[cell[n][m] if m < M else 0]
                                          for m in range(M+1))[:-1])
    n = N
    print('    ' + ''.join(h[hwall[n][m]] for m in range(M)))
    if percolated: 
        where = percolated.args[0][0]
        print('!)  ' + '  ' * where + ' ' + f[1])
    
def pour_on_top(grid):
    cell, hwall, vwall = grid
    n = 0
    try:
        for m in range(M):
            if not hwall[n][m]:
                flood_fill(m, n, cell, hwall, vwall)
    except PercolatedException as ex:
        return ex
    return None
        

def flood_fill(m, n, cell, hwall, vwall):
    # fill cell 
    cell[n][m] = 1
    # bottom
    if n < N - 1 and not hwall[n + 1][m] and not cell[n+1][m]:
        flood_fill(m, n+1, cell, hwall, vwall)
    # THE bottom
    elif n == N - 1 and not hwall[n + 1][m]:
        raise PercolatedException((m, n+1))
    # left
    if m and not vwall[n][m] and not cell[n][m - 1]:
        flood_fill(m-1, n, cell, hwall, vwall)
    # right
    if m < M - 1 and not vwall[n][m + 1] and not cell[n][m + 1]:
        flood_fill(m+1, n, cell, hwall, vwall)
    # top
    if n and not hwall[n][m] and not cell[n-1][m]:
        flood_fill(m, n-1, cell, hwall, vwall)

if __name__ == '__main__':
    sample_printed = False
    pcount = {}
    for p10 in range(11):
        p = (10 - p10) / 10.0    # count down so sample print is interesting
        pcount[p] = 0
        for tries in range(t):
            grid = newgrid(p)
            percolated = pour_on_top(grid)
            if percolated:
                pcount[p] += 1
                if not sample_printed:
                    print('\nSample percolating %i x %i grid' % (M, N))
                    pgrid(grid, percolated)
                    sample_printed = True
    print('\n p: Fraction of %i tries that percolate through' % t )
    
    pp({p:c/float(t) for p, c in pcount.items()})
Output:

In the Ascii art, cells are either a space or a hash and are surrounded by either '_', '|' for intact walls and '.' and ':' for missing (leaky) walls.

The bottom-most line starting '!)' shows where the fluid can drip out from. (The percolation stops when one route through the bottom is found).

Sample percolating 10 x 10 grid
     _ _ . _ . _ _ . _ _
0)  | |#:#:#|#| | :#| | |
     _ _ . _ _ _ . . _ _
1)  | | |#:#| | | |#| : |
     _ _ _ . _ . . . . _
2)  | | |#:#| : | |#: | |
     _ _ _ _ . . _ . . .
3)  | : : | | | : |#: | |
     _ _ . _ . . _ . _ _
4)  | : : : | | | |#: : |
     _ _ _ . _ _ _ . . _
5)  | : | | : | | :#| | |
     _ _ . . _ _ _ . _ .
6)  | : | | : | |#:#:#| |
     _ . _ _ . _ _ _ . .
7)  | : | : | : | | |#: |
     _ _ _ . . _ _ . . _
8)  | | : | | | |#:#:#: |
     _ _ _ . . . . _ _ .
9)  | : : | : : :#: | : |
     . _ . _ . . . . _ _
!)               #

 p: Fraction of 100 tries that percolate through
{0.0: 1.0,
 0.1: 1.0,
 0.2: 1.0,
 0.3: 1.0,
 0.4: 0.9,
 0.5: 0.47,
 0.6: 0.06,
 0.7: 0.0,
 0.8: 0.0,
 0.9: 0.0,
 1.0: 0.0}

Note the abrupt cut-off in percolation at around p = 0.5 which is to be expected.

Racket

#lang racket

(define has-left-wall?   (lambda (x) (bitwise-bit-set? x 0)))
(define has-right-wall?  (lambda (x) (bitwise-bit-set? x 1)))
(define has-top-wall?    (lambda (x) (bitwise-bit-set? x 2)))
(define has-bottom-wall? (lambda (x) (bitwise-bit-set? x 3)))
(define has-fluid?       (lambda (x) (bitwise-bit-set? x 4)))

(define (walls->cell l? r? t? b?)
  (+ (if l? 1 0) (if r? 2 0) (if t? 4 0) (if b? 8 0)))

(define (bonded-percol-grid M N p)
  (define rv (make-vector (* M N)))
  (for* ((idx (in-range (* M N))))
    (define left-wall?
      (or (zero? (modulo idx M))
          (has-right-wall? (vector-ref rv (sub1 idx)))))
    (define right-wall?
      (or (= (modulo idx M) (sub1 M))
          (< (random) p)))
    (define top-wall?
      (if (< idx M) (< (random) p)
          (has-bottom-wall? (vector-ref rv (- idx M)))))
    (define bottom-wall? (< (random) p))    
    (define cell-value
      (walls->cell left-wall? right-wall? top-wall? bottom-wall?))
    (vector-set! rv idx cell-value))
  rv)

(define (display-percol-grid M . vs)
  (define N (/ (vector-length (car vs)) M))
  (define-syntax-rule (tab-eol m)
    (when (= m (sub1 M)) (printf "\t")))
  (for ((n N))
    (for* ((v vs) (m M))
      (when (zero? m) (printf "+"))
      (printf 
       (match (vector-ref v (+ (* n M) m))
         ((? has-top-wall?) "-+")
         ((? has-fluid?)    "#+")
         (else ".+")))
      (tab-eol m))
    (newline)
    (for* ((v vs) (m M))
      (when (zero? m) (printf "|"))
      (printf
       (match (vector-ref v (+ (* n M) m))
         ((and (? has-fluid?) (? has-right-wall?)) "#|")
         ((? has-right-wall?) ".|")
         ((? has-fluid?) "##")
         (else "..")))
      (tab-eol m))
    (newline))
  (for* ((v vs) (m M))
    (when (zero? m) (printf "+"))
    (printf 
     (match (vector-ref v (+ (* (sub1 M) M) m))
       ((? has-bottom-wall?) "-+")
       ((? has-fluid?)    "#+")
       (else ".+")))
    (tab-eol m))
  (newline))

(define (find-bonded-grid-t/b-path M v)
  (define N (/ (vector-length v) M))
  
  (define (flood-cell idx)
    (cond
      [(= (quotient idx M) N) #t] ; wootiments!
      [(has-fluid? (vector-ref v idx)) #f] ; been here
      [else (define cell (vector-ref v idx))
            (vector-set! v idx (bitwise-ior cell 16))                     
            (or (and (not (has-bottom-wall? cell)) (flood-cell (+ idx M)))
                (and (not (has-left-wall? cell))   (flood-cell (- idx 1)))
                (and (not (has-right-wall? cell))  (flood-cell (+ idx 1)))
                (and (not (has-top-wall? cell))
                     (>= idx M) ; not top row
                     (flood-cell (- idx M))))]))
  
  (for/first ((m (in-range M))
              #:unless (has-top-wall? (vector-ref v m))
              #:when (flood-cell m)) #t))

(define t (make-parameter 1000))
(define (experiment p)
  (/ (for*/sum ((sample (in-range (t)))
                (v (in-value (bonded-percol-grid 10 10 p)))
                #:when (find-bonded-grid-t/b-path 10 v)) 1)
     (t)))

(define (main)
  (for ((tenths (in-range 0 (add1 10))))
    (define p (/ tenths 10))
    (define e (experiment p))
    (printf "proportion of grids that percolate p=~a : ~a (~a)~%"
            p e (real->decimal-string e 5))))

(module+ test
  (define (make/display/flood/display-bonded-grid M N p attempts (atmpt 1))
    (define v (bonded-percol-grid M N p))
    (define v+ (vector-copy v))
    (cond [(or (find-bonded-grid-t/b-path M v+) (= attempts 0))
           (define v* (vector-copy v+))
           (define (flood-bonded-grid)
             (when (find-bonded-grid-t/b-path M v*)
               (flood-bonded-grid)))
           (flood-bonded-grid)
           (display-percol-grid M v v+ v*)
           (printf "After ~a attempt(s)~%~%" atmpt)]
          [else
           (make/display/flood/display-bonded-grid
            M N p (sub1 attempts) (add1 atmpt))]))
  
  (make/display/flood/display-bonded-grid 10 10 0   20)
  (make/display/flood/display-bonded-grid 10 10 .25 20)
  (make/display/flood/display-bonded-grid 10 10 .50 20)
  (make/display/flood/display-bonded-grid 10 10 .75 20000))
Output:
Welcome to DrRacket, version 5.3.5 [3m].
Language: racket [custom]; memory limit: 1024 MB.
+.+.+.+.+.+.+.+.+.+.+	+#+.+.+.+.+.+.+.+.+.+	+#+#+#+#+#+#+#+#+#+#+	
|...................|	|##.................|	|###################|	
+.+.+.+.+.+.+.+.+.+.+	+#+.+.+.+.+.+.+.+.+.+	+#+#+#+#+#+#+#+#+#+#+	
|...................|	|##.................|	|###################|	
+.+.+.+.+.+.+.+.+.+.+	+#+.+.+.+.+.+.+.+.+.+	+#+#+#+#+#+#+#+#+#+#+	
|...................|	|##.................|	|###################|	
+.+.+.+.+.+.+.+.+.+.+	+#+.+.+.+.+.+.+.+.+.+	+#+#+#+#+#+#+#+#+#+#+	
|...................|	|##.................|	|###################|	
+.+.+.+.+.+.+.+.+.+.+	+#+.+.+.+.+.+.+.+.+.+	+#+#+#+#+#+#+#+#+#+#+	
|...................|	|##.................|	|###################|	
+.+.+.+.+.+.+.+.+.+.+	+#+.+.+.+.+.+.+.+.+.+	+#+#+#+#+#+#+#+#+#+#+	
|...................|	|##.................|	|###################|	
+.+.+.+.+.+.+.+.+.+.+	+#+.+.+.+.+.+.+.+.+.+	+#+#+#+#+#+#+#+#+#+#+	
|...................|	|##.................|	|###################|	
+.+.+.+.+.+.+.+.+.+.+	+#+.+.+.+.+.+.+.+.+.+	+#+#+#+#+#+#+#+#+#+#+	
|...................|	|##.................|	|###################|	
+.+.+.+.+.+.+.+.+.+.+	+#+.+.+.+.+.+.+.+.+.+	+#+#+#+#+#+#+#+#+#+#+	
|...................|	|##.................|	|###################|	
+.+.+.+.+.+.+.+.+.+.+	+#+.+.+.+.+.+.+.+.+.+	+#+#+#+#+#+#+#+#+#+#+	
|...................|	|##.................|	|###################|	
+.+.+.+.+.+.+.+.+.+.+	+#+.+.+.+.+.+.+.+.+.+	+#+#+#+#+#+#+#+#+#+#+	
After 1 attempt(s)

+.+-+-+.+.+.+-+.+.+.+	+#+-+-+.+.+.+-+.+.+.+	+#+-+-+#+#+#+-+#+#+#+	
|...................|	|##.................|	|##..###############|	
+.+-+.+-+.+.+-+-+-+.+	+#+-+.+-+.+.+-+-+-+.+	+#+-+#+-+#+#+-+-+-+#+	
|.................|.|	|##...............|.|	|##..##..####.....|#|	
+.+-+.+.+.+.+-+.+.+.+	+#+-+.+.+.+.+-+.+.+.+	+#+-+#+.+#+#+-+.+.+#+	
|.............|.....|	|##...........|.....|	|######..#####|....#|	
+.+.+.+.+.+.+.+.+.+.+	+#+.+.+.+.+.+.+.+.+.+	+#+#+#+.+#+#+#+.+.+#+	
|.....|...|.|.......|	|##...|...|.|.......|	|#####|..#|#|##....#|	
+.+.+.+.+.+.+.+-+-+.+	+#+.+.+.+.+.+.+-+-+.+	+#+#+#+#+#+#+#+-+-+#+	
|.|.............|...|	|#|.............|...|	|#|############.|..#|	
+.+-+-+.+-+.+.+.+.+.+	+#+-+-+.+-+.+.+.+.+.+	+#+-+-+#+-+#+#+.+.+#+	
|...................|	|##.................|	|##....##..####....#|	
+.+.+-+.+.+.+.+-+-+.+	+#+.+-+.+.+.+.+-+-+.+	+#+.+-+#+.+#+#+-+-+#+	
|...|...|...........|	|##.|...|...........|	|##.|###|..####..###|	
+.+.+.+-+.+.+.+.+.+.+	+#+#+.+-+.+.+.+.+.+.+	+#+#+#+-+.+#+#+.+#+#+	
|...|...|.........|.|	|###|...|.........|.|	|###|##.|..####..#|#|	
+-+.+.+-+-+.+.+.+.+-+	+-+#+.+-+-+.+.+.+.+-+	+-+#+#+-+-+#+#+.+#+-+	
|.....|.........|...|	|..##.|.........|...|	|..###|....####.|###|	
+.+.+.+.+.+.+.+.+.+.+	+.+#+.+.+.+.+.+.+.+.+	+.+#+#+.+.+#+#+#+#+#+	
|.........|.......|.|	|..##.....|.......|.|	|..####...|#######|#|	
+.+.+.+-+.+.+-+.+-+.+	+.+#+.+-+.+.+-+.+-+.+	+.+#+#+-+.+#+-+#+-+#+	
After 1 attempt(s)

+.+.+.+.+-+-+.+-+.+.+	+#+#+#+#+-+-+.+-+.+.+	+#+#+#+#+-+-+#+-+#+#+	
|.........|.|.|...|.|	|########.|.|.|...|.|	|########.|.|#|###|#|	
+.+-+-+.+-+-+-+.+.+-+	+#+-+-+#+-+-+-+.+.+-+	+#+-+-+#+-+-+-+#+#+-+	
|...|...|...|.|.|.|.|	|###|..#|...|.|.|.|.|	|###|..#|...|.|#|#|.|	
+-+-+.+.+.+.+-+.+-+.+	+-+-+.+#+#+.+-+.+-+.+	+-+-+.+#+#+.+-+#+-+.+	
|.|.|.|...|.|.|.|...|	|.|.|.|###|.|.|.|...|	|.|.|.|###|.|.|#|...|	
+.+-+.+-+.+.+.+-+.+-+	+.+-+.+-+#+.+.+-+.+-+	+.+-+.+-+#+.+.+-+.+-+	
|.|...|...|.|.....|.|	|.|...|###|.|.....|.|	|.|...|###|.|.....|.|	
+.+-+.+.+.+-+-+.+.+.+	+.+-+.+#+#+-+-+.+.+.+	+.+-+.+#+#+-+-+.+.+.+	
|.|...|.|.....|.....|	|.|...|#|####.|.....|	|.|...|#|####.|.....|	
+-+.+-+.+-+.+-+.+-+-+	+-+.+-+#+-+#+-+#+-+-+	+-+.+-+#+-+#+-+#+-+-+	
|.|.|.....|.....|...|	|.|.|#####|#####|...|	|.|.|#####|#####|...|	
+-+-+.+.+.+.+-+.+-+-+	+-+-+#+#+#+#+-+#+-+-+	+-+-+#+#+#+#+-+#+-+-+	
|...|.|.....|.......|	|...|#|#####|..##...|	|...|#|#####|..##...|	
+-+-+-+-+-+-+-+.+-+-+	+-+-+-+-+-+-+-+#+-+-+	+-+-+-+-+-+-+-+#+-+-+	
|.|...|.|.|.......|.|	|.|...|.|.|######.|.|	|.|...|.|.|######.|.|	
+.+-+-+-+.+.+-+.+.+.+	+.+-+-+-+.+#+-+#+.+.+	+.+-+-+-+.+#+-+#+.+.+	
|.|...|.......|.|.|.|	|.|...|....##.|#|.|.|	|.|...|....##.|#|.|.|	
+.+.+-+.+.+.+-+-+-+-+	+.+.+-+.+.+#+-+-+-+-+	+.+.+-+.+.+#+-+-+-+-+	
|.|.........|.....|.|	|.|........#|.....|.|	|.|........#|.....|.|	
+-+.+-+-+-+.+.+.+-+.+	+-+.+-+-+-+#+.+.+-+.+	+-+.+-+-+-+#+.+.+-+.+	
After 2 attempt(s)

+-+-+-+-+-+-+.+-+-+.+	+-+-+-+-+-+-+#+-+-+.+	+-+-+-+-+-+-+#+-+-+#+	
|.|.|...|.|.|.|.|...|	|.|.|...|.|.|#|.|...|	|.|.|...|.|.|#|.|###|	
+-+-+-+-+-+-+.+-+-+-+	+-+-+-+-+-+-+#+-+-+-+	+-+-+-+-+-+-+#+-+-+-+	
|.|.|.|...|.|...|.|.|	|.|.|.|...|.|##.|.|.|	|.|.|.|...|.|##.|.|.|	
+.+.+.+.+.+-+.+-+-+.+	+.+.+.+.+.+-+#+-+-+.+	+.+.+.+.+.+-+#+-+-+.+	
|.|.|.|.|...|.|...|.|	|.|.|.|.|...|#|...|.|	|.|.|.|.|...|#|...|.|	
+.+-+.+-+-+-+.+-+.+.+	+.+-+.+-+-+-+#+-+.+.+	+.+-+.+-+-+-+#+-+.+.+	
|...|...|.|.|...|.|.|	|...|...|.|.|###|.|.|	|...|...|.|.|###|.|.|	
+-+-+-+-+-+-+-+.+-+-+	+-+-+-+-+-+-+-+#+-+-+	+-+-+-+-+-+-+-+#+-+-+	
|.|.......|.....|.|.|	|.|.......|#####|.|.|	|.|.......|#####|.|.|	
+.+-+-+-+.+.+-+-+-+-+	+.+-+-+-+.+#+-+-+-+-+	+.+-+-+-+.+#+-+-+-+-+	
|.|.|.|.|.|.|.|.....|	|.|.|.|.|.|#|.|.....|	|.|.|.|.|.|#|.|.....|	
+-+-+-+-+-+.+.+-+.+-+	+-+-+-+-+-+#+.+-+.+-+	+-+-+-+-+-+#+.+-+.+-+	
|...|.|.|.|.|.|.|.|.|	|...|.|.|.|#|.|.|.|.|	|...|.|.|.|#|.|.|.|.|	
+.+.+.+-+-+.+.+-+.+-+	+.+.+.+-+-+#+#+-+.+-+	+.+.+.+-+-+#+#+-+.+-+	
|.|.|.|.|.|...|.|...|	|.|.|.|.|.|###|.|...|	|.|.|.|.|.|###|.|...|	
+-+-+-+-+-+-+.+.+.+-+	+-+-+-+-+-+-+#+.+.+-+	+-+-+-+-+-+-+#+.+.+-+	
|.|.|.|.|.|...|...|.|	|.|.|.|.|.|###|...|.|	|.|.|.|.|.|###|...|.|	
+-+-+.+-+-+.+-+-+-+.+	+-+-+.+-+-+#+-+-+-+.+	+-+-+.+-+-+#+-+-+-+.+	
|.|.|.|...|...|.|...|	|.|.|.|...|###|.|...|	|.|.|.|...|###|.|...|	
+-+-+.+-+.+-+.+.+.+-+	+-+-+.+-+.+-+#+.+.+-+	+-+-+.+-+.+-+#+.+.+-+	
After 4611 attempt(s)

> (main)
proportion of grids that percolate p=0 : 1 (1.00000)
proportion of grids that percolate p=1/10 : 1 (1.00000)
proportion of grids that percolate p=1/5 : 1 (1.00000)
proportion of grids that percolate p=3/10 : 199/200 (0.99500)
proportion of grids that percolate p=2/5 : 179/200 (0.89500)
proportion of grids that percolate p=1/2 : 451/1000 (0.45100)
proportion of grids that percolate p=3/5 : 29/500 (0.05800)
proportion of grids that percolate p=7/10 : 1/1000 (0.00100)
proportion of grids that percolate p=4/5 : 0 (0.00000)
proportion of grids that percolate p=9/10 : 0 (0.00000)
proportion of grids that percolate p=1 : 0 (0.00000)

Raku

(formerly Perl 6)

Works with: Rakudo version 2017.02

Starts "filling" from the top left. Fluid flow favours directions in Down, Left, Right, Up order. I interpreted p to be porosity, so small p mean low permeability, large p means high permeability.

my @bond;
my $grid = 10;
my $geom = $grid - 1;
my $water = '▒';

enum Direction <DeadEnd Up Right Down Left>;

say 'Sample percolation at .6';
percolate .6;
.join.say for @bond;
say "\n";

my $tests = 100;
say "Doing $tests trials at each porosity:";
for .1, .2 ... 1 -> $p {
    printf "p = %0.1f: %0.2f\n", $p, (sum percolate($p) xx $tests) / $tests
}

sub percolate ( $prob ) {
    generate $prob;
    my @stack;
    my $current = [1;0];
    $current.&fill;

    loop {
        if my $dir = direction( $current ) {
            @stack.push: $current;
            $current = move $dir, $current
        }
        else {
            return False unless @stack;
            $current = @stack.pop
        }
        return True if $current[1] == +@bond - 1
    }

    sub direction( [$x, $y] ) {
        ( Down  if @bond[$y + 1][$x].contains: ' ' ) ||
        ( Left  if @bond[$y][$x - 1].contains: ' ' ) ||
        ( Right if @bond[$y][$x + 1].contains: ' ' ) ||
        ( Up    if @bond[$y - 1][$x].defined && @bond[$y - 1][$x].contains: ' ' ) ||
        DeadEnd
    }

    sub move ( $dir, @cur ) {
        my ( $x, $y ) = @cur;
        given $dir {
            when Up    { [$x,--$y].&fill xx 2 }
            when Down  { [$x,++$y].&fill xx 2 }
            when Left  { [--$x,$y].&fill xx 2 }
            when Right { [++$x,$y].&fill xx 2 }
        }
        [$x, $y]
    }

    sub fill ( [$x, $y] ) { @bond[$y;$x].=subst(' ', $water, :g) }
}

sub generate ( $prob = .5 ) {
    @bond = ();
    my $sp = '   ';
    append @bond, [flat '│', ($sp, ' ') xx $geom, $sp, '│'],
                  [flat '├', (h(), '┬') xx $geom, h(), '┤'];
    append @bond, [flat '│', ($sp, v()) xx $geom, $sp, '│'],
                  [flat '├', (h(), '┼') xx $geom, h(), '┤'] for ^$geom;
    append @bond, [flat '│', ($sp, v()) xx $geom, $sp, '│'],
                  [flat '├', (h(), '┴') xx $geom, h(), '┤'],
                  [flat '│', ($sp, ' ') xx $geom, $sp, '│'];

    sub h () { rand < $prob ?? $sp !! '───' }
    sub v () { rand < $prob ?? ' ' !! '│'   }
}
Output:
Sample percolation at .6
│▒▒▒                                    │
├▒▒▒┬   ┬───┬   ┬   ┬   ┬   ┬   ┬───┬   ┤
│▒▒▒▒▒▒▒                │   │           │
├───┼▒▒▒┼   ┼   ┼   ┼   ┼   ┼───┼   ┼   ┤
│▒▒▒▒▒▒▒▒▒▒▒│   │   │   │   │   │       │
├▒▒▒┼───┼▒▒▒┼   ┼───┼   ┼───┼   ┼   ┼   ┤
│▒▒▒│▒▒▒▒▒▒▒▒▒▒▒                │   │   │
├▒▒▒┼───┼───┼▒▒▒┼   ┼   ┼───┼   ┼   ┼   ┤
│▒▒▒│        ▒▒▒│   │   │           │   │
├───┼   ┼   ┼▒▒▒┼───┼   ┼   ┼   ┼   ┼───┤
│           │▒▒▒    │                   │
├   ┼───┼   ┼▒▒▒┼───┼───┼───┼───┼   ┼───┤
│           │▒▒▒│                       │
├───┼   ┼───┼▒▒▒┼───┼───┼───┼───┼   ┼───┤
│▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒        │       │       │
├▒▒▒┼▒▒▒┼───┼▒▒▒┼───┼   ┼───┼   ┼   ┼   ┤
│▒▒▒│▒▒▒▒▒▒▒│▒▒▒▒▒▒▒│                   │
├▒▒▒┼───┼───┼───┼───┼───┼   ┼   ┼   ┼   ┤
│▒▒▒▒▒▒▒    │       │   │               │
├▒▒▒┼▒▒▒┼───┼───┼   ┼───┼───┼   ┼   ┼   ┤
│▒▒▒│▒▒▒    │               │           │
├───┴▒▒▒┴   ┴   ┴   ┴───┴   ┴   ┴   ┴───┤
│    ▒▒▒                                │

Doing 100 trials at each porosity:
p = 0.1: 0.00
p = 0.2: 0.00
p = 0.3: 0.00
p = 0.4: 0.05
p = 0.5: 0.42
p = 0.6: 0.92
p = 0.7: 1.00
p = 0.8: 1.00
p = 0.9: 1.00
p = 1.0: 1.00

Swift

Translation of: C
let randMax = 32767.0
let filled = 1 
let rightWall = 2
let bottomWall = 4

final class Percolate {
  let height: Int
  let width: Int

  private var grid: [Int]
  private var end: Int

  init(height: Int, width: Int) {
    self.height = height
    self.width = width
    self.end = width
    self.grid = [Int](repeating: 0, count: width * (height + 2))
  }

  private func fill(at p: Int) -> Bool {
    guard grid[p] & filled == 0 else { return false }

    grid[p] |= filled

    guard p < end else { return true }

    return (((grid[p + 0] & bottomWall) == 0) && fill(at: p + width)) ||
            (((grid[p + 0] & rightWall) == 0) && fill(at: p + 1)) ||
            (((grid[p - 1] & rightWall) == 0) && fill(at: p - 1)) ||
            (((grid[p - width] & bottomWall) == 0) && fill(at: p - width))
  }

  func makeGrid(porosity p: Double) {
    grid = [Int](repeating: 0, count: width * (height + 2))
    end = width

    let thresh = Int(randMax * p)

    for i in 0..<width {
      grid[i] = bottomWall | rightWall
    }

    for _ in 0..<height {
      for _ in stride(from: width - 1, through: 1, by: -1) {
        let r1 = Int.random(in: 0..<Int(randMax)+1)
        let r2 = Int.random(in: 0..<Int(randMax)+1)

        grid[end] = (r1 < thresh ? bottomWall : 0) | (r2 < thresh ? rightWall : 0)

        end += 1
      }

      let r3 = Int.random(in: 0..<Int(randMax)+1)

      grid[end] = rightWall | (r3 < thresh ? bottomWall : 0)

      end += 1
    }
  }

  @discardableResult
  func percolate() -> Bool {
    var i = 0

    while i < width && !fill(at: width + i) {
      i += 1
    }

    return i < width
  }

  func showGrid() {
    for _ in 0..<width {
      print("+--", terminator: "")
    }

    print("+")

    for i in 0..<height {
      print(i == height ? " " : "|", terminator: "")

      for j in 0..<width {
        print(grid[i * width + j + width] & filled != 0 ? "[]" : "  ", terminator: "")
        print(grid[i * width + j + width] & rightWall != 0 ? "|" : " ", terminator: "")
      }

      print()

      guard i != height else { return }

      for j in 0..<width {
        print(grid[i * width + j + width] & bottomWall != 0 ? "+--" : "+  ", terminator: "")
      }

      print("+")
    }
  }
}

let p = Percolate(height: 10, width: 10)

p.makeGrid(porosity: 0.5)
p.percolate()
p.showGrid()

print("Running \(p.height) x \(p.width) grid 10,000 times for each porosity")

for factor in 1...10 {
  var count = 0
  let porosity = Double(factor) / 10.0

  for _ in 0..<10_000 {
    p.makeGrid(porosity: porosity)

    if p.percolate() {
      count += 1
    }
  }

  print("p = \(porosity): \(Double(count) / 10_000.0)")
}
Output:
+--+--+--+--+--+--+--+--+--+--+
|[]|  |     |     |  |     |  |
+  +  +--+--+  +  +--+  +  +  +
|[] []   |  |           |     |
+--+  +--+--+  +--+--+  +--+  +
|   [] [] []|     |        |  |
+  +--+--+  +  +--+--+  +  +  +
|      [] []|     |           |
+--+--+  +--+  +  +  +  +--+  +
|      [] []   |  |     |     |
+  +--+--+  +--+--+--+--+  +--+
|  |  |  |[]         |  |     |
+  +  +--+  +--+--+--+--+--+--+
|  |     |[] [] []   |        |
+--+--+--+--+--+  +  +--+--+  +
|     |  |     |[]|  |     |  |
+  +  +  +  +--+  +--+  +  +--+
|  |  |  |   [] []|  |     |  |
+--+--+--+--+  +--+--+--+--+  +
|     |  |   []   |        |  |
+--+--+  +--+  +--+  +--+--+  +
Running 10 x 10 grid 10,000 times for each porosity
p = 0.1: 1.0
p = 0.2: 1.0
p = 0.3: 0.9968
p = 0.4: 0.9125
p = 0.5: 0.4959
p = 0.6: 0.0858
p = 0.7: 0.004
p = 0.8: 0.0
p = 0.9: 0.0
p = 1.0: 0.0

Tcl

Works with: Tcl version 8.6
Translation of: Python
package require Tcl 8.6

# Structure the bond percolation system as a class
oo::class create BondPercolation {
    variable hwall vwall cells M N
    constructor {width height probability} {
	set M $height
	set N $width
	for {set i 0} {$i <= $height} {incr i} {
	    for {set j 0;set walls {}} {$j < $width} {incr j} {
		lappend walls [expr {rand() < $probability}]
	    }
	    lappend hwall $walls
	}
	for {set i 0} {$i <= $height} {incr i} {
	    for {set j 0;set walls {}} {$j <= $width} {incr j} {
		lappend walls [expr {$j==0 || $j==$width || rand() < $probability}]
	    }
	    lappend vwall $walls
	}
	set cells [lrepeat $height [lrepeat $width 0]]
    }

    method print {{percolated ""}} {
	set nw [string length $M]
	set grid $cells
	if {$percolated ne ""} {
	    lappend grid [lrepeat $N 0]
	    lset grid end $percolated 1
	}
	foreach hws $hwall vws [lrange $vwall 0 end-1] r $grid {
	    incr row
	    puts -nonewline [string repeat " " [expr {$nw+2}]]
	    foreach w $hws {
		puts -nonewline [if {$w} {subst "+-"} {subst "+ "}]
	    }
	    puts "+"
	    puts -nonewline [format "%-*s" [expr {$nw+2}] [expr {
		$row>$M ? $percolated eq "" ? " " : ">" : "$row)"
	    }]]
	    foreach v $vws c $r {
		puts -nonewline [if {$v==1} {subst "|"} {subst " "}]
		puts -nonewline [if {$c==1} {subst "#"} {subst " "}]
	    }
	    puts ""
	}
    }

    method percolate {} {
	try {
	    for {set i 0} {$i < $N} {incr i} {
		if {![lindex $hwall 0 $i]} {
		    my FloodFill $i 0
		}
	    }
	    return ""
	} trap PERCOLATED n {
	    return $n
	}
    }
    method FloodFill {x y} {
	# fill cell
	lset cells $y $x 1
	# bottom
	if {![lindex $hwall [expr {$y+1}] $x]} {
	    if {$y == $N-1} {
		# THE bottom
		throw PERCOLATED $x
	    }
	    if {$y < $N-1 && ![lindex $cells [expr {$y+1}] $x]} {
		my FloodFill $x [expr {$y+1}]
	    }
	}
	# left
	if {![lindex $vwall $y $x] && ![lindex $cells $y [expr {$x-1}]]} {
	    my FloodFill [expr {$x-1}] $y
	}
	# right
	if {![lindex $vwall $y [expr {$x+1}]] && ![lindex $cells $y [expr {$x+1}]]} {
	    my FloodFill [expr {$x+1}] $y
	}
	# top
	if {$y>0 && ![lindex $hwall $y $x] && ![lindex $cells [expr {$y-1}] $x]} {
	    my FloodFill $x [expr {$y-1}]
	}
    }
}

# Demonstrate one run
puts "Sample percolation, 10x10 p=0.5"
BondPercolation create bp 10 10 0.5
bp print [bp percolate]
bp destroy
puts ""

# Collect some aggregate statistics
apply {{} {
    puts "Percentage of tries that percolate, varying p"
    set tries 100
    for {set pint 0} {$pint <= 10} {incr pint} {
	set p [expr {$pint * 0.1}]
	set tot 0
	for {set i 0} {$i < $tries} {incr i} {
	    set bp [BondPercolation new 10 10 $p]
	    if {[$bp percolate] ne ""} {
		incr tot
	    }
	    $bp destroy
	}
	puts [format "p=%.2f: %2.1f%%" $p [expr {$tot*100./$tries}]]
    }
}}
Output:
Sample percolation, 10x10 p=0.5
    + + +-+-+-+ +-+ +-+ +
1)  |#  |   |   |   |   | 
    + +-+ + + +-+ + + +-+
2)  |#|       | |     | | 
    + + +-+ +-+ +-+ + +-+
3)  |# # #|# # #| | |   | 
    + +-+ + +-+ +-+ +-+ +
4)  |#|# # #| |#  |     | 
    +-+ + + +-+ +-+-+ +-+
5)  |# # # #| |#  |   | | 
    +-+-+-+-+ + + + +-+-+
6)  | |     | |#|   |   | 
    +-+-+-+-+-+ + +-+-+ +
7)  | | | |   |#      | | 
    + +-+ +-+-+ +-+ +-+ +
8)  |       |  #    |   | 
    + +-+-+ +-+ + + + + +
9)  |          #        | 
    + + +-+-+ + +-+-+ + +
10) |   | |    #  | |   | 
    + + + + + + +-+ +-+ +
>              #        

Percentage of tries that percolate, varying p
p=0.00: 100.0%
p=0.10: 100.0%
p=0.20: 100.0%
p=0.30: 100.0%
p=0.40: 86.0%
p=0.50: 50.0%
p=0.60: 6.0%
p=0.70: 0.0%
p=0.80: 0.0%
p=0.90: 0.0%
p=1.00: 0.0%

Wren

Translation of: Kotlin
Library: Wren-fmt
import "random" for Random
import "./fmt" for Fmt

var rand = Random.new()
var RAND_MAX = 32767

// cell states
var FILL  = 1
var RWALL = 2  // right wall
var BWALL = 4  // bottom wall

var x = 10
var y = 10
var grid = List.filled(x * (y + 2), 0)
var cells = 0
var end = 0
var m = 0
var n = 0

var makeGrid = Fn.new { |p|
    var thresh = (p * RAND_MAX).truncate
    m = x
    n = y
    for (i in 0...grid.count) grid[i] = 0  // clears grid
    for (i in 0...m) grid[i] = BWALL | RWALL
    cells = m
    end = m
    for (i in 0...y) {
        for (j in x - 1..1) {
            var r1 = rand.int(RAND_MAX + 1)
            var r2 = rand.int(RAND_MAX + 1)
            grid[end] = ((r1 < thresh) ? BWALL : 0) |
                        ((r2 < thresh) ? RWALL : 0)
            end = end + 1
        }
        var r3 = rand.int(RAND_MAX + 1)
        grid[end] = RWALL | ((r3 < thresh) ? BWALL : 0)
        end = end + 1
    }
}

var showGrid = Fn.new {
    for (j in 0...m) System.write("+--")
    System.print("+")

    for (i in 0..n) {
        System.write((i == n) ? " " : "|")
        for (j in 0...m) {
            System.write(((grid[i * m + j + cells] & FILL) != 0) ? "[]" : "  ")
            System.write(((grid[i * m + j + cells] & RWALL) != 0) ? "|" : " ")
        }
        System.print()
        if (i == n) return
        for (j in 0...m) {
            System.write(((grid[i * m + j + cells] & BWALL) != 0) ? "+--" : "+  ")
        }
        System.print("+")
    }
}

var fill // recursive 
fill = Fn.new { |p|
    if ((grid[p] & FILL) != 0) return false
    grid[p] = grid[p] | FILL
    if (p >= end) return true  // success: reached bottom row
    return (((grid[p + 0] & BWALL) == 0) && fill.call(p + m)) ||
           (((grid[p + 0] & RWALL) == 0) && fill.call(p + 1)) ||
           (((grid[p - 1] & RWALL) == 0) && fill.call(p - 1)) ||
           (((grid[p - m] & BWALL) == 0) && fill.call(p - m))
}

var percolate = Fn.new {
    var i = 0
    while (i < m && !fill.call(cells + i)) i = i + 1
    return i < m
}

makeGrid.call(0.5)
percolate.call()
showGrid.call()

System.print("\nRunning %(x) x %(y) grids 10,000 times for each p:")
for (p in 1..9) {
    var cnt = 0
    var pp = p / 10
    for (i in 0...10000) {
        makeGrid.call(pp)
        if (percolate.call()) cnt = cnt + 1
    }
    Fmt.print("p = $3g: $.4f", pp, cnt / 10000)
}
Output:

Sample run:

+--+--+--+--+--+--+--+--+--+--+
|[]|[] []|[] [] []|[] []|[] []|
+--+  +  +--+  +--+--+  +--+  +
|   [] []|[] []|[] [] []|[] []|
+--+--+--+--+--+--+--+--+  +  +
|  |  |     |  |[] [] [] [] []|
+--+--+  +  +  +--+--+--+  +--+
|  |           |[] [] [] []|  |
+--+  +--+  +  +  +  +--+  +  +
|  |           |[]|[]|[] []|  |
+  +--+--+  +  +  +--+--+--+--+
|     |     |  |[]|  |        |
+--+  +  +  +--+  +--+--+  +--+
|     |        |[]|  |        |
+  +  +  +--+--+  +  +--+--+--+
|           |[] []|           |
+  +--+--+--+  +--+  +--+--+--+
|  |         [] [] []|  |     |
+--+--+--+--+--+--+  +--+--+  +
|           |  |[] []|  |  |  |
+  +--+--+--+  +  +--+  +  +--+
                []             

Running 10 x 10 grids 10,000 times for each p:
p = 0.1     : 1.0000
p = 0.2     : 0.9999
p = 0.3     : 0.9970
p = 0.4     : 0.9120
p = 0.5     : 0.5022
p = 0.6     : 0.0829
p = 0.7     : 0.0026
p = 0.8     : 0.0000
p = 0.9     : 0.0000

zkl

Translation of: C
// cell states
const FILLED=1; // and odd
const RWALL =2; // right wall
const BWALL =4; // bottom wall
fcn P(p,wall){ (0.0).random(1)<p and wall or 0 }

fcn makeGrid(m,n,p){
    // Allocate two addition rows to avoid checking bounds.
    // Bottom row is also required by drippage
   grid:=Data(m*(n+2));
   do(m){ grid.write(BWALL + RWALL); } // grid is topped with walls
   do(n){
      do(m-1){ grid.write( P(p,BWALL) + P(p,RWALL) ) }
      grid.write(RWALL + P(p,BWALL));  // right border is all right wall, as is left border
   }
   do(m){ grid.write(0); } // for drips off the bottom of grid
   grid
}
fcn show(grid,m,n){ n+=1;
    println("+--"*m,"+");
    foreach i in ([1..n]){ y:=i*m;
       print(i==n and " " or "|"); // bottom row is special, otherwise always have left wall
       foreach j in (m){ c:=grid[y + j];
          print(c.bitAnd(FILLED) and "**" or "  ", c.bitAnd(RWALL)and"|"or" ");
       }
       println();
 
       if(i==n) return();  // nothing under the bottom row

       foreach j in (m){ print((grid[y + j].bitAnd(BWALL)) and "+--" or "+  "); }
       println("+");
    }
}
fcn fill(grid,x,m){
   if(grid[x].isOdd) return(False); // aka .bitAnd(FILLED) aka already been here
   grid[x]+=FILLED;
   if(x+m>=grid.len()) return(True); // success: reached bottom row
   return(( not grid[x]    .bitAnd(BWALL) and fill(grid,x + m,m) ) or // down
          ( not grid[x]    .bitAnd(RWALL) and fill(grid,x + 1,m) ) or // right
          ( not grid[x - 1].bitAnd(RWALL) and fill(grid,x - 1,m) ) or // left
          ( not grid[x - m].bitAnd(BWALL) and fill(grid,x - m,m) ));  // up
}
fcn percolate(grid,m){
   i:=0; while(i<m and not fill(grid,i+m,m)){ i+=1; }  // pour juice on top row
   return(i<m);  // percolated through the grid?
}
grid:=makeGrid(10,10,0.40);
println("Did liquid percolate: ",percolate(grid,10)); show(grid,10,10);

println("Running 10,000 tests for each case:");
foreach p in ([0.0 .. 1.0, 0.1]){
   cnt:=0.0; do(10000){ cnt+=percolate(makeGrid(10,10,p),10); }
   "p=%.1f:  %.4f".fmt(p, cnt/10000).println();
}
Output:
Did liquid percolate: True
+--+--+--+--+--+--+--+--+--+--+
|** **      |              |  |
+--+  +--+--+  +  +  +  +  +  +
|   **|  |        |        |  |
+  +  +  +--+  +--+--+  +--+--+
|   ** **      |              |
+--+--+  +  +  +  +--+  +  +--+
|     |**|  |        |        |
+  +  +  +  +--+  +  +--+  +  +
|      ** **|  |** **|     |  |
+  +--+--+  +--+  +  +--+  +  +
|     |  |**|  |**|** **      |
+  +  +  +  +--+  +--+  +  +  +
|     |  |** ** ** **|**      |
+--+--+--+--+  +--+--+  +--+--+
|  |     |** **|      **   |  |
+  +  +--+  +  +  +  +  +--+--+
|        |** **|     |**|  |  |
+  +--+  +--+--+--+--+  +  +  +
|              |  |   **|     |
+  +  +  +  +  +  +--+  +  +  +
                      **       
Running 10,000 tests for each case:
p=0.0:  1.0000
p=0.1:  1.0000
p=0.2:  1.0000
p=0.3:  0.9978
p=0.4:  0.9163
p=0.5:  0.5017
p=0.6:  0.0890
p=0.7:  0.0033
p=0.8:  0.0000
p=0.9:  0.0000
p=1.0:  0.0000
Cookies help us deliver our services. By using our services, you agree to our use of cookies.