Partition an integer x into n primes

Partition a positive integer   X   into   N   distinct primes.

Task
Partition an integer x into n primes
You are encouraged to solve this task according to the task description, using any language you may know.
Task


Or, to put it in another way:

Find   N   unique primes such that they add up to   X.


Show in the output section the sum   X   and the   N   primes in ascending order separated by plus (+) signs:

       partition  99809  with   1 prime.
       partition    18   with   2 primes.
       partition    19   with   3 primes.
       partition    20   with   4 primes.
       partition   2017  with  24 primes.
       partition  22699  with   1,  2,  3,  and  4  primes.
       partition  40355  with   3 primes.

The output could/should be shown in a format such as:

    Partitioned  19  with  3  primes:  3+5+11
  •   Use any spacing that may be appropriate for the display.
  •   You need not validate the input(s).
  •   Use the lowest primes possible;   use  18 = 5+13,   not   18 = 7+11.
  •   You only need to show one solution.

This task is similar to factoring an integer.


Related tasks



11l

Translation of: D
F is_prime(a)
   R !(a < 2 | any((2 .. Int(a ^ 0.5)).map(x -> @a % x == 0)))

F generate_primes(n)
   V r = [2]
   V i = 3
   L
      I is_prime(i)
         r.append(i)
         I r.len == n
            L.break
      i += 2
   R r

V primes = generate_primes(50'000)

F find_combo(k, x, m, n, &combo)
   I k >= m
      I sum(combo.map(idx -> :primes[idx])) == x
         print(‘Partitioned #5 with #2 #.: ’.format(x, m, I m > 1 {‘primes’} E ‘prime ’), end' ‘’)
         L(i) 0 .< m
            print(:primes[combo[i]], end' I i < m - 1 {‘+’} E "\n")
         R 1B
   E
      L(j) 0 .< n
         I k == 0 | j > combo[k - 1]
            combo[k] = j
            I find_combo(k + 1, x, m, n, &combo)
               R 1B
   R 0B

F partition(x, m)
   V n = :primes.filter(a -> a <= @x).len
   V combo = [0] * m
   I !find_combo(0, x, m, n, &combo)
      print(‘Partitioned #5 with #2 #.: (not possible)’.format(x, m, I m > 1 {‘primes’} E ‘prime ’))

V data = [(99809, 1), (18, 2), (19, 3), (20, 4), (2017, 24),
          (22699, 1), (22699, 2), (22699, 3), (22699, 4), (40355, 3)]

L(n, cnt) data
   partition(n, cnt)
Output:
Partitioned 99809 with  1 prime : 99809
Partitioned    18 with  2 primes: 5+13
Partitioned    19 with  3 primes: 3+5+11
Partitioned    20 with  4 primes: (not possible)
Partitioned  2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with  1 prime : 22699
Partitioned 22699 with  2 primes: 2+22697
Partitioned 22699 with  3 primes: 3+5+22691
Partitioned 22699 with  4 primes: 2+3+43+22651
Partitioned 40355 with  3 primes: 3+139+40213

ALGOL 68

BEGIN # find the lowest n distinct primes that sum to an integer x           #

    INT max number = 100 000;              # largest number we will consider #
    # sieve the primes to max number                                         #
    [ 1 : max number ]BOOL prime; FOR i TO UPB prime DO prime[ i ] := ODD i OD;
    prime[ 1 ] := FALSE;
    prime[ 2 ] := TRUE;
    FOR s FROM 3 BY 2 TO ENTIER sqrt( max number ) DO
        IF prime[ s ] THEN
            FOR p FROM s * s BY s TO UPB prime DO prime[ p ] := FALSE OD
        FI
    OD;

    [ 1 : 0 ]INT no partition;       # empty array - used if can't partition #

    # returns n partitioned into p primes or an empty array if n can't be    #
    #         partitioned into p primes, the first prime to try is in pstart #
    PROC partition from = ( INT n, p, pstart )[]INT:
         IF   p < 1 OR n < 2 OR pstart < 2 THEN         # invalid parameters #
            no partition
         ELIF p = 1 THEN          # partition into 1 prime - n must be prime #
            IF NOT prime[ n ] THEN no partition ELSE n FI
         ELIF p = 2 THEN                   # partition into a pair of primes #
            INT  half n = n OVER 2;
            INT  p1    := 0, p2 := 0;
            BOOL found := FALSE;
            FOR p pos FROM pstart TO UPB prime WHILE NOT found AND p pos < half n DO
                IF prime[ p pos ] THEN
                    p1    := p pos;
                    p2    := n - p pos;
                    found := prime[ p2 ]
                FI
            OD;
            IF NOT found THEN no partition ELSE ( p1, p2 ) FI
         ELSE                              # partition into 3 or more primes #
            [ 1 : p ]INT p2;
            INT  half n = n OVER 2;
            INT  p1    := 0;
            BOOL found := FALSE;
            FOR p pos FROM pstart TO UPB prime WHILE NOT found AND p pos < half n DO
                IF prime[ p pos ] THEN
                    p1    := p pos;
                    []INT sub partition = partition from( n - p1, p - 1, p pos + 1 );
                    IF found := UPB sub partition = p - 1 THEN
                        # have p - 1 primes summing to n - p1                #
                        p2[ 1 ]     := p1;
                        p2[ 2 : p ] := sub partition
                    FI
                FI
            OD;
            IF NOT found THEN no partition ELSE p2 FI
         FI # partition from # ;

    # returns the partition of n into p primes or an empty array if that is  #
    #         not possible                                                   #
    PROC partition = ( INT n, p )[]INT: partition from( n, p, 2 );

    # show the first partition of n into p primes, if that is possible       #
    PROC show partition = ( INT n, p )VOID:
         BEGIN
            []INT primes = partition( n, p );
            STRING partition info = whole( n, -6 ) + " with " + whole( p, -2 )
                                  + " prime" + IF p = 1 THEN " " ELSE "s" FI + ": ";
            IF UPB primes < LWB primes THEN
                print( ( "Partitioning ", partition info, "is not possible" ) )
            ELSE
                print( ( "Partitioned  ", partition info ) );
                print( ( whole( primes[ LWB primes ], 0 ) ) );
                FOR p pos FROM LWB primes + 1 TO UPB primes DO
                    print( ( "+", whole( primes[ p pos ], 0 ) ) )
                OD
            FI;
            print( ( newline ) )
         END # show partition # ;

    # test cases                                                             #
    show partition( 99809,  1 );
    show partition(    18,  2 );
    show partition(    19,  3 );
    show partition(    20,  4 );
    show partition(  2017, 24 );
    show partition( 22699,  1 );
    show partition( 22699,  2 );
    show partition( 22699,  3 );
    show partition( 22699,  4 );
    show partition( 40355,  3 )

END
Output:
Partitioned   99809 with  1 prime : 99809
Partitioned      18 with  2 primes: 5+13
Partitioned      19 with  3 primes: 3+5+11
Partitioning     20 with  4 primes: is not possible
Partitioned    2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned   22699 with  1 prime : 22699
Partitioned   22699 with  2 primes: 2+22697
Partitioned   22699 with  3 primes: 3+5+22691
Partitioned   22699 with  4 primes: 2+3+43+22651
Partitioned   40355 with  3 primes: 3+139+40213

APL

Works with: Dyalog APL
primepart{
    sieve{
        ({0@(1×⍳⌊()÷)}/(1↓⍳),⊂(0,1/1))/
    }
    part{
        0=⍴⍺⍺:
        =1:(⍺⍺=)/⍺⍺
        0≠⍴r(-⊃⍺⍺)((1⍺⍺)∇∇)-1:(⍺⍺),r
        ((1⍺⍺)∇∇)
    }
    ((sieve )part)
}
primepart_test{
    tests(99809 1)(18 2)(19 3)(20 4)(2017 24)
    tests,(22699 1)(22699 2)(22699 3)(22699 4)(40355 3)
    {
        x n
        px primepart n
        'Partition ',(x),' with ',(n),' primes: '
        0=⍴p:'not possible.',⎕TC[2]
        (1↓∊'+',¨¨p),⎕TC[2]
    }¨tests
}
Output:
      primepart_test⍬
Partition 99809 with 1 primes: 99809
Partition 18 with 2 primes: 5+13
Partition 19 with 3 primes: 3+5+11
Partition 20 with 4 primes: not possible.
Partition 2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partition 22699 with 1 primes: 22699
Partition 22699 with 2 primes: 2+22697
Partition 22699 with 3 primes: 3+5+22691
Partition 22699 with 4 primes: 2+3+43+22651
Partition 40355 with 3 primes: 3+139+40213

BASIC

10 DIM P%(13000),PR(30),I%(50),N(50),NP%(50),CP(50): MP=99809!
20 FOR P=2 TO SQR(MP)
30 PRINT CHR$(13);"Sieving... ";P;
40 FOR C=P*P TO MP STEP P
50 B=FIX(C/8): V=C-B*8
60 P%(B) = P%(B) OR 2^V
70 NEXT C,P
80 PRINT CHR$(13);"Sieving done     "
90 READ N,NP%
100 IF N=0 THEN END
110 PRINT:PRINT "Partitioning";N;"with";NP%;"primes:"
120 S=1: N(0)=N: NP%(0)=NP%: I%(0)=1: CP(0)=1
130 IF S=0 THEN PRINT CHR$(13);"Impossible":GOTO 90
140 S=S-1: N=N(S): NP%=NP%(S): I%=I%(S): CP=CP(S)
150 CP=CP+1
160 B=FIX(CP/8):V=CP-B*8
170 IF P%(B) AND 2^V GOTO 150
175 PRINT CHR$(13);"@";CP;
180 IF N<CP GOTO 130
190 IF NP%=1 THEN 240
200 PR(I%)=CP
210 CP(S)=CP
220 N(S+1)=N-CP: NP%(S+1)=NP%-1: CP(S+1)=CP: I%(S+1)=I%+1: S=S+2
230 GOTO 130
240 B=FIX(N/8):V=N-B*8
250 IF P%(B) AND 2^V GOTO 130
260 PR(I%)=N
270 PRINT CHR$(13);PR(1);
280 FOR J%=2 TO I%: PRINT "+";PR(J%);: NEXT J%
290 PRINT
300 GOTO 90
310 DATA 99809,1, 18,2, 19,3, 20,4, 2017,24
320 DATA 22699,1, 22699,2, 22688,3, 22699,4, 40355,3, 0,0
Output:
Sieving done

Partitioning 99809 with 1 primes:
 99809

Partitioning 18 with 2 primes:
 5 + 13

Partitioning 19 with 3 primes:
 3 + 5 + 11

Partitioning 20 with 4 primes:
Impossible

Partitioning 2017 with 24 primes:
 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59
+ 61 + 67 + 71 + 73 + 79 + 97 + 1129

Partitioning 22699 with 1 primes:
 22699

Partitioning 22699 with 2 primes:
 2 + 22697

Partitioning 22688 with 3 primes:
 2 + 7 + 22679

Partitioning 22699 with 4 primes:
 2 + 3 + 43 + 22651

Partitioning 40355 with 3 primes:
 3 + 139 + 40213

BCPL

get "libhdr"

let sieve(n, prime) be
$(  let i = 2
    0!prime := false
    1!prime := false
    for i = 2 to n do i!prime := true
    while i*i <= n
    $(  let j = i*i
        while j <= n
        $(  j!prime := false
            j := j+i
        $)
        i := i+1
    $)
$)

let partition(x, n, prime, p, part) =
    p > x -> false,
    n = 1 -> valof $( !part := x; resultis x!prime $),
    valof
    $(  p := p+1 repeatuntil p!prime
        !part := p
        if partition(x-p, n-1, prime, p, part+1) resultis true
        resultis partition(x, n, prime, p, part)
    $)

let showpart(n, part) be
$(  writef("%N", !part)
    unless n=1 do
    $(  wrch('+')
        showpart(n-1, part+1)
    $)
$)

let show(x, n, prime) be
$(  let part = vec 32
    writef("Partitioned %N with %N prime%S: ", x, n, n=1->"", "s")
    test partition(x, n, prime, 1, part)
        do showpart(n, part)
        or writes("not possible")
    newline()
$)

let start() be
$(  let prime = getvec(100000)

    let tests = table 99809,1, 18,2, 19,3, 20,4, 2017,24,
                      22699,1, 22699,2, 22699,3, 22699,4, 40355,3

    sieve(100000, prime)
    for t = 0 to 9 do show(tests!(t*2), tests!(t*2+1), prime)
    freevec(prime)
$)
Output:
Partitioned 99809 with 1 prime: 99809
Partitioned 18 with 2 primes: 5+13
Partitioned 19 with 3 primes: 3+5+11
Partitioned 20 with 4 primes: not possible
Partitioned 2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with 1 prime: 22699
Partitioned 22699 with 2 primes: 2+22697
Partitioned 22699 with 3 primes: 3+5+22691
Partitioned 22699 with 4 primes: 2+3+43+22651
Partitioned 40355 with 3 primes: 3+139+40213

C

Works with: C99
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

typedef struct bit_array_tag {
    uint32_t size;
    uint32_t* array;
} bit_array;

bool bit_array_create(bit_array* b, uint32_t size) {
    uint32_t* array = calloc((size + 31)/32, sizeof(uint32_t));
    if (array == NULL)
        return false;
    b->size = size;
    b->array = array;
    return true;
}

void bit_array_destroy(bit_array* b) {
    free(b->array);
    b->array = NULL;
}

void bit_array_set(bit_array* b, uint32_t index, bool value) {
    assert(index < b->size);
    uint32_t* p = &b->array[index >> 5];
    uint32_t bit = 1 << (index & 31);
    if (value)
        *p |= bit;
    else
        *p &= ~bit;
}

bool bit_array_get(const bit_array* b, uint32_t index) {
    assert(index < b->size);
    uint32_t bit = 1 << (index & 31);
    return (b->array[index >> 5] & bit) != 0;
}

typedef struct sieve_tag {
    uint32_t limit;
    bit_array not_prime;
} sieve;

bool sieve_create(sieve* s, uint32_t limit) {
    if (!bit_array_create(&s->not_prime, limit + 1))
        return false;
    bit_array_set(&s->not_prime, 0, true);
    bit_array_set(&s->not_prime, 1, true);
    for (uint32_t p = 2; p * p <= limit; ++p) {
        if (bit_array_get(&s->not_prime, p) == false) {
            for (uint32_t q = p * p; q <= limit; q += p)
                bit_array_set(&s->not_prime, q, true);
        }
    }
    s->limit = limit;
    return true;
}

void sieve_destroy(sieve* s) {
    bit_array_destroy(&s->not_prime);
}

bool is_prime(const sieve* s, uint32_t n) {
    assert(n <= s->limit);
    return bit_array_get(&s->not_prime, n) == false;
}

bool find_prime_partition(const sieve* s, uint32_t number, uint32_t count,
                          uint32_t min_prime, uint32_t* p) {
    if (count == 1) {
        if (number >= min_prime && is_prime(s, number)) {
            *p = number;
            return true;
        }
        return false;
    }
    for (uint32_t prime = min_prime; prime < number; ++prime) {
        if (!is_prime(s, prime))
            continue;
        if (find_prime_partition(s, number - prime, count - 1,
                                 prime + 1, p + 1)) {
            *p = prime;
            return true;
        }
    }
    return false;
}

void print_prime_partition(const sieve* s, uint32_t number, uint32_t count) {
    assert(count > 0);
    uint32_t* primes = malloc(count * sizeof(uint32_t));
    if (primes == NULL) {
        fprintf(stderr, "Out of memory\n");
        return;
    }
    if (!find_prime_partition(s, number, count, 2, primes)) {
        printf("%u cannot be partitioned into %u primes.\n", number, count);
    } else {
        printf("%u = %u", number, primes[0]);
        for (uint32_t i = 1; i < count; ++i)
            printf(" + %u", primes[i]);
        printf("\n");
    }
    free(primes);
}

int main() {
    const uint32_t limit = 100000;
    sieve s = { 0 };
    if (!sieve_create(&s, limit)) {
        fprintf(stderr, "Out of memory\n");
        return 1;
    }
    print_prime_partition(&s, 99809, 1);
    print_prime_partition(&s, 18, 2);
    print_prime_partition(&s, 19, 3);
    print_prime_partition(&s, 20, 4);
    print_prime_partition(&s, 2017, 24);
    print_prime_partition(&s, 22699, 1);
    print_prime_partition(&s, 22699, 2);
    print_prime_partition(&s, 22699, 3);
    print_prime_partition(&s, 22699, 4);
    print_prime_partition(&s, 40355, 3);
    sieve_destroy(&s);
    return 0;
}
Output:
99809 = 99809
18 = 5 + 13
19 = 3 + 5 + 11
20 cannot be partitioned into 4 primes.
2017 = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 97 + 1129
22699 = 22699
22699 = 2 + 22697
22699 = 3 + 5 + 22691
22699 = 2 + 3 + 43 + 22651
40355 = 3 + 139 + 40213

C#

Works with: C sharp version 7
using System;
using System.Collections;
using System.Collections.Generic;
using static System.Linq.Enumerable;

public static class Rosetta
{
    static void Main()
    {
        foreach ((int x, int n) in new [] {
            (99809, 1),
            (18, 2),
            (19, 3),
            (20, 4),
            (2017, 24),
            (22699, 1),
            (22699, 2),
            (22699, 3),
            (22699, 4),
            (40355, 3)
        }) {
            Console.WriteLine(Partition(x, n));
        }
    }

    public static string Partition(int x, int n) {
        if (x < 1 || n < 1) throw new ArgumentOutOfRangeException("Parameters must be positive.");
        string header = $"{x} with {n} {(n == 1 ? "prime" : "primes")}: ";
        int[] primes = SievePrimes(x).ToArray();
        if (primes.Length < n) return header + "not enough primes";
        int[] solution = CombinationsOf(n, primes).FirstOrDefault(c => c.Sum() == x);
        return header + (solution == null ? "not possible" : string.Join("+", solution);
    }

    static IEnumerable<int> SievePrimes(int bound) {
        if (bound < 2) yield break;
        yield return 2;

        BitArray composite = new BitArray((bound - 1) / 2);
        int limit = ((int)(Math.Sqrt(bound)) - 1) / 2;
        for (int i = 0; i < limit; i++) {
            if (composite[i]) continue;
            int prime = 2 * i + 3;
            yield return prime;
            for (int j = (prime * prime - 2) / 2; j < composite.Count; j += prime) composite[j] = true;
        }
        for (int i = limit; i < composite.Count; i++) {
            if (!composite[i]) yield return 2 * i + 3;
        }
    }

    static IEnumerable<int[]> CombinationsOf(int count, int[] input) {
        T[] result = new T[count];
        foreach (int[] indices in Combinations(input.Length, count)) {
            for (int i = 0; i < count; i++) result[i] = input[indices[i]];
            yield return result;
        }
    }

    static IEnumerable<int[]> Combinations(int n, int k) {
        var result = new int[k];
        var stack = new Stack<int>();
        stack.Push(0);
        while (stack.Count > 0) {
            int index = stack.Count - 1;
            int value = stack.Pop();
            while (value < n) {
                result[index++] = value++;
                stack.Push(value);
                if (index == k) {
                    yield return result;
                    break;
                }
            }
        }
    }

}
Output:
99809 with 1 prime: 99809
18 with 2 primes: 5+13
19 with 3 primes: 3+5+11
20 with 4 primes: not possible
2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
22699 with 1 prime: 22699
22699 with 2 primes: 2+22697
22699 with 3 primes: 3+5+22691
22699 with 4 primes: 2+3+43+22651
40355 with 3 primes: 3+139+40213

C++

Translation of: D
#include <algorithm>
#include <functional>
#include <iostream>
#include <vector>

std::vector<int> primes;

struct Seq {
public:
    bool empty() {
        return p < 0;
    }

    int front() {
        return p;
    }

    void popFront() {
        if (p == 2) {
            p++;
        } else {
            p += 2;
            while (!empty() && !isPrime(p)) {
                p += 2;
            }
        }
    }

private:
    int p = 2;

    bool isPrime(int n) {
        if (n < 2) return false;
        if (n % 2 == 0) return n == 2;
        if (n % 3 == 0) return n == 3;

        int d = 5;
        while (d * d <= n) {
            if (n % d == 0) return false;
            d += 2;
            if (n % d == 0) return false;
            d += 4;
        }
        return true;
    }
};

// generate the first 50,000 primes and call it good
void init() {
    Seq seq;

    while (!seq.empty() && primes.size() < 50000) {
        primes.push_back(seq.front());
        seq.popFront();
    }
}

bool findCombo(int k, int x, int m, int n, std::vector<int>& combo) {
    if (k >= m) {
        int sum = 0;
        for (int idx : combo) {
            sum += primes[idx];
        }

        if (sum == x) {
            auto word = (m > 1) ? "primes" : "prime";
            printf("Partitioned %5d with %2d %s ", x, m, word);
            for (int idx = 0; idx < m; ++idx) {
                std::cout << primes[combo[idx]];
                if (idx < m - 1) {
                    std::cout << '+';
                } else {
                    std::cout << '\n';
                }
            }
            return true;
        }
    } else {
        for (int j = 0; j < n; j++) {
            if (k == 0 || j > combo[k - 1]) {
                combo[k] = j;
                bool foundCombo = findCombo(k + 1, x, m, n, combo);
                if (foundCombo) {
                    return true;
                }
            }
        }
    }

    return false;
}

void partition(int x, int m) {
    if (x < 2 || m < 1 || m >= x) {
        throw std::runtime_error("Invalid parameters");
    }

    std::vector<int> filteredPrimes;
    std::copy_if(
        primes.cbegin(), primes.cend(),
        std::back_inserter(filteredPrimes),
        [x](int a) { return a <= x; }
    );

    int n = filteredPrimes.size();
    if (n < m) {
        throw std::runtime_error("Not enough primes");
    }

    std::vector<int> combo;
    combo.resize(m);
    if (!findCombo(0, x, m, n, combo)) {
        auto word = (m > 1) ? "primes" : "prime";
        printf("Partitioned %5d with %2d %s: (not possible)\n", x, m, word);
    }
}

int main() {
    init();

    std::vector<std::pair<int, int>> a{
        {99809,  1},
        {   18,  2},
        {   19,  3},
        {   20,  4},
        { 2017, 24},
        {22699,  1},
        {22699,  2},
        {22699,  3},
        {22699,  4},
        {40355,  3}
    };

    for (auto& p : a) {
        partition(p.first, p.second);
    }

    return 0;
}
Output:
Partitioned 99809 with  1 prime 99809
Partitioned    18 with  2 primes 5+13
Partitioned    19 with  3 primes 3+5+11
Partitioned    20 with  4 primes: (not possible)
Partitioned  2017 with 24 primes 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with  1 prime 22699
Partitioned 22699 with  2 primes 2+22697
Partitioned 22699 with  3 primes 3+5+22691
Partitioned 22699 with  4 primes 2+3+43+22651
Partitioned 40355 with  3 primes 3+139+40213

CLU

isqrt = proc (s: int) returns (int)
    x0: int := s/2
    if x0 = 0 then return(s) end
    x1: int := (x0 + s/x0) / 2
    while x1 < x0 do
        x0, x1 := x1, (x0 + s/x0) / 2
    end
    return(x0)
end isqrt

primes = proc (n: int) returns (sequence[int])
    prime: array[bool] := array[bool]$fill(1, n, true)
    prime[1] := false
    for p: int in int$from_to(2, isqrt(n)) do
        for c: int in int$from_to_by(p*p, n, p) do
            prime[c] := false
        end
    end

    pr: array[int] := array[int]$predict(1, n)
    for p: int in array[bool]$indexes(prime) do
        if prime[p] then array[int]$addh(pr, p) end
    end

    return(sequence[int]$a2s(pr))
end primes

partition_sum = proc (x, n: int, nums: sequence[int])
                returns (sequence[int])
                signals (impossible)
    if n<=0 cor sequence[int]$empty(nums) then signal impossible end

    if n=1 then
        for k: int in sequence[int]$elements(nums) do
            if x=k then return(sequence[int]$[x]) end
        end
        signal impossible
    end

    k: int := sequence[int]$bottom(nums)
    rest: sequence[int] := sequence[int]$reml(nums)

    return(sequence[int]$addl(partition_sum(x-k, n-1, rest), k))
    except when impossible:
        return(partition_sum(x, n, rest))
        resignal impossible
    end
end partition_sum

prime_partition = proc (x, n: int)
                  returns (sequence[int])
                  signals (impossible)
    return(partition_sum(x, n, primes(x))) resignal impossible
end prime_partition

format_sum = proc (nums: sequence[int]) returns (string)
    result: string := ""
    for n: int in sequence[int]$elements(nums) do
        result := result || "+" || int$unparse(n)
    end
    return(string$rest(result, 2))
end format_sum

start_up = proc ()
    test = struct[x: int, n: int]
    tests: sequence[test] := sequence[test]$[
        test${x:99809,n:1}, test${x:18,n:2}, test${x:19,n:3}, test${x:20,n:4},
        test${x:2017,n:24}, test${x:22699,n:1}, test${x:22699,n:2},
        test${x:22699,n:3}, test${x:22699,n:4}, test${x:40355,n:3}
    ]

    po: stream := stream$primary_output()
    for t: test in sequence[test]$elements(tests) do
        stream$puts(po, "Partitioned " || int$unparse(t.x) || " with "
                    || int$unparse(t.n) || " primes: ")
        stream$putl(po, format_sum(prime_partition(t.x, t.n)))
        except when impossible:
            stream$putl(po, "not possible.")
        end
    end
end start_up
Output:
Partitioned 99809 with 1 primes: 99809
Partitioned 18 with 2 primes: 5+13
Partitioned 19 with 3 primes: 3+5+11
Partitioned 20 with 4 primes: not possible.
Partitioned 2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with 1 primes: 22699
Partitioned 22699 with 2 primes: 2+22697
Partitioned 22699 with 3 primes: 3+5+22691
Partitioned 22699 with 4 primes: 2+3+43+22651
Partitioned 40355 with 3 primes: 3+139+40213

Cowgol

include "cowgol.coh";

const MAXPRIM := 100000;
const MAXPRIM_B := (MAXPRIM >> 3) + 1;

var primebits: uint8[MAXPRIM_B];
typedef ENTRY_T is @indexof primebits;

sub pentry(n: uint32): (ent: ENTRY_T, bit: uint8) is
    ent := (n >> 3) as ENTRY_T;
    bit := (n & 7) as uint8;
end sub;

sub setprime(n: uint32, prime: uint8) is
    var ent: ENTRY_T;
    var bit: uint8;
    (ent, bit) := pentry(n);
    var one: uint8 := 1;
    primebits[ent] := primebits[ent] & ~(one << bit);
    primebits[ent] := primebits[ent] | (prime << bit);
end sub;

sub prime(n: uint32): (prime: uint8) is
    var ent: ENTRY_T;
    var bit: uint8;
    (ent, bit) := pentry(n);
    prime := (primebits[ent] >> bit) & 1;
end sub;

sub sieve() is
    MemSet(&primebits[0], 0xFF, @bytesof primebits);
    setprime(0, 0);
    setprime(1, 0);
    var p: uint32 := 2;
    while p*p <= MAXPRIM loop
        var c := p*p;
        while c <= MAXPRIM loop
            setprime(c, 0);
            c := c + p;
        end loop;
        p := p + 1;
    end loop;
end sub;

sub nextprime(p: uint32): (r: uint32) is
    r := p;
    loop
        r := r + 1;
        if prime(r) != 0 then break; end if;
    end loop;
end sub;

sub partition(x: uint32, n: uint8, part: [uint32]): (r: uint8) is
    record State is
        x: uint32;
        n: uint8;
        p: uint32;
        part: [uint32];
    end record;

    var stack: State[128];
    var sp: @indexof stack := 0;

    sub Push(x: uint32, n: uint8, p: uint32, part: [uint32]) is
        stack[sp].x := x;
        stack[sp].n := n;
        stack[sp].p := p;
        stack[sp].part := part;
        sp := sp + 1;
    end sub;

    sub Pull(): (x: uint32, n: uint8, p: uint32, part: [uint32]) is
        sp := sp - 1;
        x := stack[sp].x;
        n := stack[sp].n;
        p := stack[sp].p;
        part := stack[sp].part;
    end sub;

    r := 0;
    Push(x, n, 1, part);
    while sp > 0 loop
        var p: uint32;
        (x, n, p, part) := Pull();
        p := nextprime(p);

        if x < p then
            continue;
        end if;

        if n == 1 then
            if prime(x) != 0 then
                r := 1;
                [part] := x;
                return;
            end if;
        else
            [part] := p;
            Push(x, n, p, part);
            Push(x-p, n-1, p, @next part);
        end if;
    end loop;
    r := 0;
end sub;

sub showpartition(x: uint32, n: uint8) is
    print("Partitioning ");
    print_i32(x);
    print(" with ");
    print_i8(n);
    print(" primes: ");

    var part: uint32[64];
    if partition(x, n, &part[0]) != 0 then
        print_i32(part[0]);
        var i: @indexof part := 1;
        while i < n as @indexof part loop
            print_char('+');
            print_i32(part[i]);
            i := i + 1;
        end loop;
    else
        print("Not possible");
    end if;
    print_nl();
end sub;

sieve();

record Test is
    x: uint32;
    n: uint8;
end record;

var tests: Test[] := {
    {99809, 1}, {18, 2}, {19, 3}, {20, 4}, {2017, 24},
    {22699, 1}, {22699, 2}, {22699, 3}, {22699, 4}, {40355, 3}
};

var test: @indexof tests := 0;
while test < @sizeof tests loop
    showpartition(tests[test].x, tests[test].n);
    test := test + 1;
end loop;
Output:
Partitioning 99809 with 1 primes: 99809
Partitioning 18 with 2 primes: 5+13
Partitioning 19 with 3 primes: 3+5+11
Partitioning 20 with 4 primes: Not possible
Partitioning 2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioning 22699 with 1 primes: 22699
Partitioning 22699 with 2 primes: 2+22697
Partitioning 22699 with 3 primes: 3+5+22691
Partitioning 22699 with 4 primes: 2+3+43+22651
Partitioning 40355 with 3 primes: 3+139+40213

D

Translation of: Kotlin
import std.array : array;
import std.range : take;
import std.stdio;

bool isPrime(int n) {
    if (n < 2) return false;
    if (n % 2 == 0) return n == 2;
    if (n % 3 == 0) return n == 3;

    int d = 5;
    while (d*d <= n) {
        if (n % d == 0) return false;
        d += 2;
        if (n % d == 0) return false;
        d += 4;
    }
    return true;
}

auto generatePrimes() {
    struct Seq {
        int p = 2;

        bool empty() {
            return p < 0;
        }

        int front() {
            return p;
        }

        void popFront() {
            if (p==2) {
                p++;
            } else {
                p += 2;
                while (!empty && !p.isPrime) {
                    p += 2;
                }
            }
        }
    }

    return Seq();
}

bool findCombo(int k, int x, int m, int n, int[] combo) {
    import std.algorithm : map, sum;
    auto getPrime = function int(int idx) => primes[idx];

    if (k >= m) {
        if (combo.map!getPrime.sum == x) {
            auto word = (m > 1) ? "primes" : "prime";
            writef("Partitioned %5d with %2d %s ", x, m, word);
            foreach (i; 0..m) {
                write(primes[combo[i]]);
                if (i < m-1) {
                    write('+');
                } else {
                    writeln();
                }
            }
            return true;
        }
    } else {
        foreach (j; 0..n) {
            if (k==0 || j>combo[k-1]) {
                combo[k] = j;
                bool foundCombo = findCombo(k+1, x, m, n, combo);
                if (foundCombo) {
                    return true;
                }
            }
        }
    }
    return false;
}

void partition(int x, int m) {
    import std.exception : enforce;
    import std.algorithm : filter;
    enforce(x>=2 && m>=1 && m<x);

    auto lessThan = delegate int(int a) => a<=x;
    auto filteredPrimes = primes.filter!lessThan.array;
    auto n = filteredPrimes.length;
    enforce(n>=m, "Not enough primes");

    int[] combo = new int[m];
    if (!findCombo(0, x, m, n, combo)) {
        auto word = (m > 1) ? "primes" : "prime";
        writefln("Partitioned %5d with %2d %s: (not possible)", x, m, word);
    }
}

int[] primes;
void main() {
    // generate first 50,000 and call it good
    primes = generatePrimes().take(50_000).array;

    auto a = [
        [99809,  1],
        [   18,  2],
        [   19,  3],
        [   20,  4],
        [ 2017, 24],
        [22699,  1],
        [22699,  2],
        [22699,  3],
        [22699,  4],
        [40355,  3]
    ];

    foreach(p; a) {
        partition(p[0], p[1]);
    }
}
Output:
Partitioned 99809 with  1 prime 99809
Partitioned    18 with  2 primes 5+13
Partitioned    19 with  3 primes 3+5+11
Partitioned    20 with  4 primes: (not possible)
Partitioned  2017 with 24 primes 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with  1 prime 22699
Partitioned 22699 with  2 primes 2+22697
Partitioned 22699 with  3 primes 3+5+22691
Partitioned 22699 with  4 primes 2+3+43+22651
Partitioned 40355 with  3 primes 3+139+40213

EasyLang

maxn = 100000
len sieve[] maxn
global prim[] .
proc mksieve . .
   max = sqrt len sieve[]
   for d = 2 to max
      if sieve[d] = 0
         for i = d * d step d to len sieve[]
            sieve[i] = 1
         .
      .
   .
   for n = 2 to len sieve[]
      if sieve[n] = 0
         prim[] &= n
      .
   .
.
mksieve
proc find n k start . found res[] .
   found = 0
   if k = 0
      if n = 0
         res[] = [ ]
         found = 1
      .
      return
   .
   for i = start to len prim[]
      p = prim[i]
      if p > n
         return
      .
      find (n - p) (k - 1) (i + 1) found r[]
      if found = 1
         swap res[] r[]
         res[] &= p
         return
      .
   .
   print "error: need more primes"
.
test[][] = [ [ 99809 1 ] [ 18 2 ] [ 19 3 ] [ 20 4 ] [ 2017 24 ] [ 22699 1 ] [ 22699 2 ] [ 22699 3 ] [ 22699 4 ] [ 40355 3 ] ]
for i to len test[][]
   find test[i][1] test[i][2] 1 f res[]
   write test[i][1] & "(" & test[i][2] & ") = "
   if f = 1
      for j = len res[] downto 2
         write res[j] & " + "
      .
      print res[1]
   else
      print "not possible"
   .
.
Output:
99809(1) = 99809
18(2) = 5 + 13
19(3) = 3 + 5 + 11
20(4) = not possible
2017(24) = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 97 + 1129
22699(1) = 22699
22699(2) = 2 + 22697
22699(3) = 3 + 5 + 22691
22699(4) = 2 + 3 + 43 + 22651
40355(3) = 3 + 139 + 40213

F#

This task uses Extensible Prime Generator (F#)

// Partition an integer as the sum of n primes. Nigel Galloway: November 27th., 2017
let rcTask n ng =
  let rec fN i g e l = seq{
    match i with
    |1 -> if isPrime g then yield Some (g::e) else yield None
    |_ -> yield! Seq.mapi (fun n a->fN (i-1) (g-a) (a::e) (Seq.skip (n+1) l)) (l|>Seq.takeWhile(fun n->(g-n)>n))|>Seq.concat}
  match fN n ng [] primes |> Seq.tryPick id with
    |Some n->printfn "%d is the sum of %A" ng n
    |_     ->printfn "No Solution"
Output:
rcTask 1 99089 -> 99089 is the sum of [99089]
rcTask 2 18    -> 18 is the sum of [13; 5]
rcTask 3 19    -> 19 is the sum of [11; 5; 3]
rcTask 4 20    -> No Solution
rcTask 24 2017 -> 2017 is the sum of [1129; 97; 79; 73; 71; 67; 61; 59; 53; 47; 43; 41; 37; 31; 29; 23; 19; 17; 13; 11; 7; 5; 3; 2]
rcTask 1 2269  -> 2269 is the sum of [2269]
rcTask 2 2269  -> 2269 is the sum of [2267; 2]
rcTask 3 2269  -> 2269 is the sum of [2243; 23; 3]
rcTask 4 2269  -> 2269 is the sum of [2251; 13; 3; 2]
rcTask 3 40355 -> 40355 is the sum of [40213; 139; 3]

Factor

USING: formatting fry grouping kernel math.combinatorics
math.parser math.primes sequences ;

: partition ( x n -- str )
    over [ primes-upto ] 2dip '[ sum _ = ] find-combination
    [ number>string ] map "+" join ;
    
: print-partition ( x n seq -- )
    [ "no solution" ] when-empty
    "Partitioned %5d with %2d primes: %s\n" printf ;
    
{ 99809 1 18 2 19 3 20 4 2017 24 22699 1 22699 2 22699 3 22699
  4 40355 3 } 2 group
[ first2 2dup partition print-partition ] each
Output:
Partitioned 99809 with  1 primes: 99809
Partitioned    18 with  2 primes: 5+13
Partitioned    19 with  3 primes: 3+5+11
Partitioned    20 with  4 primes: no solution
Partitioned  2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with  1 primes: 22699
Partitioned 22699 with  2 primes: 2+22697
Partitioned 22699 with  3 primes: 3+5+22691
Partitioned 22699 with  4 primes: 2+3+43+22651
Partitioned 40355 with  3 primes: 3+139+40213

Fortran

Translation of: VBScript
 
   module primes_module
    implicit none
    integer,allocatable :: p(:)
    integer :: a(0:32), b(0:32)
    integer,private :: sum_primes, number
    contains
!
    subroutine setnum(val)
        implicit none
        integer :: val
        number = val
        return
    end subroutine setnum
!
    subroutine init(thesize)
    implicit none
    integer :: thesize
    !
    allocate(p(thesize))
    p=0
    a=0
    b=0
    return
    end subroutine init
!
    subroutine genp(high) ! Store all primes up to high in the array p
        integer, intent(in) :: high
        integer :: i, numprimes, j,k
        logical*1 :: bk(0:high)
        !
        bk = .false.
        p = 0
        a = 0
        b = 0
        call eratosthenes(bk , high)
        j = 0
        numprimes = count(bk)
        k = 0
        do i = 1,high
            if(bk(i))then
                j = j+1
                p(j) = i
                if(j==numprimes)exit    !No need to loop more, all primes stored
            endif
        end do
        print*,'numprimes',numprimes, i,p(j)
        return
    end subroutine genp

    subroutine getp(z) ! used to update the zth prime number in the sequence of primes that are being used to partition the integer number.
        integer :: z
        integer :: w
!
        if (a(z) == 0)a(z) = a(z-1)
        a(z) = a(z) + 1
        b(z) = p(a(z))
        return
    end subroutine getp

    subroutine part(num_found)
        integer, intent(in) :: num_found
        integer :: i, s, k, r
        logical :: bu
        a = 0
        do i = 1, num_found
            call getp(i)
        end do
   infinite: do
            sum_primes = 0
            bu = .false.
    nextin:do s = 1, num_found
                sum_primes = sum_primes + b(s)  !Adds the sth prime to sum_primes.
                if (sum_primes > number) then   !If the sum of primes exceeds number:
                    if (s == 1)then
                        exit infinite           !If only one prime has been added, exit the infinite loop.
                    endif
                    a(s:num_found) = 0          ! Resets the indices of the primes from s to num_found
                    do r = s - 1, num_found     ! Gets the next set of primes from s-1 to num_found
                        call getp(r)
                    end do
                    bu = .true.                 ! Sets bu to true and exits the loop over the primes
                    exit nextin
                end if
            end do nextin
            if (.not. bu) then                  ! If bu is false (meaning the sum of primes does not exceed number)
                if (sum_primes == number) exit infinite !We got it so go
                if (sum_primes < number) then
                    call getp(num_found)        ! If the sum of primes is less than number, gets the next prime
                else
                    error stop " Something wrong here!"
                endif
            endif
        end do infinite
        write( *,'(/,a,1x,i0,1x,a,1x,i0,1x,a)',advance='yes') "Partition", number, "into", num_found,trim(adjustl(list(num_found)))
    end subroutine part
!
    function list(num_found)
        integer, intent(in) :: num_found
        integer :: i
        character(len=128) :: list
        character(len = 10):: pooka
!
        write(list,'(i0)') b(1)
        if (sum_primes == number) then
            do i = 2, num_found
                pooka = ''
                write(pooka,'(i0)') b(i)
                list = trim(list) // " + " // adjustl(pooka)
            end do
        else
            list = "(not possible)"
        end if
        list = "primes: " // list
    end function list
    !
    subroutine eratosthenes(p , n)
      implicit none
!
! dummy arguments
!
      integer  ::  n
      logical*1 , dimension(0:*)  ::  p
      intent (in) n
      intent (inout) p
!
! local variables
!
      integer  ::  i
      integer  ::  ii
      logical  ::  oddeven
      integer  ::  pr
!
      p(0:n) = .false.
      p(1) = .false.
      p(2) = .true.
      oddeven = .true.
      do i = 3 , n,2
          p(i) = .true.
      end do
      do i = 2 , int(sqrt(float(n)))
         ii = i + i
         if( p(i) )then
            do pr = i*i , n , ii
               p(pr) = .false.
            end do
         end if
      end do
      return
      end subroutine eratosthenes

end module primes_module

program prime_partition
    use primes_module
    implicit none
    integer :: x, n,i
    integer :: xx,yy
    integer :: values(10,2)
! The given dataset from Rosetta Code
     !    partition  99809  with   1 prime.
     !    partition    18   with   2 primes.
     !    partition    19   with   3 primes.
     !    partition    20   with   4 primes.
     !    partition   2017  with  24 primes.
     !    partition  22699  with   1,  2,  3,  and  4  primes.
     !    partition  40355  with   3 primes.
    values(1,:) = (/99809,1/)
    values(2,:) = (/18,2/)
    values(3,:) = (/19,3/)
    values(4,:) = (/20,4/)
    values(5,:) = (/2017,24/)
    values(6,:) = (/22699, 1/)
    values(7,:) = (/22699, 2/)
    values(8,:) = (/22699, 3/)
    values(9,:) = (/22699, 4/)
    values(10,:) = (/40355, 3/)
    i = maxval(values(1:10,1))*2
    call init(i)	! Set up a few basics
    call genp(i)	! Generate primes up to i
    do i = 1,10
        call setnum( values(i,1))
        call part(values(i,2))
    end do
    Stop 'Successfully completed'
end program prime_partition
Output:
Partition 99809 into 1 primes: 99809
Partition 18 into 2 primes   : 5 + 13
Partition 19 into 3 primes   : 3 + 5 + 11
Partition 20 into 4 primes   : (not possible)
Partition 2017 into 24 primes: 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 97 + 1129
Partition 22699 into 1 primes: 22699
Partition 22699 into 2 primes: 2 + 22697
Partition 22699 into 3 primes: 3 + 5 + 22691
Partition 22699 into 4 primes: 2 + 3 + 43 + 22651
Partition 40355 into 3 primes: 3 + 139 + 40213

FreeBASIC

Translation of: Phix
'#include "isprime.bas"

Function getPrime(idx As Integer) As Integer
    Dim As Integer count = 0
    Dim As Integer num = 1
    Do
        num += 1
        If isPrime(num) Then count += 1
    Loop Until count = idx
    Return num
End Function

Function partition(v As Integer, n As Integer, idx As Integer = 0) As String
    If n = 1 Then Return Iif(isPrime(v), Str(v), "0")
    
    Do
        idx += 1
        Dim As Integer np = getPrime(idx)
        If np >= Int(v / 2) Then Exit Do
        Dim As String res = partition(v - np, n - 1, idx)
        If res <> "0" Then Return Str(np) & " + " & res
    Loop
    Return "0"
End Function

Dim tests(10, 2) As Integer
tests(1, 1) = 99809: tests(1, 2) = 1
tests(2, 1) = 18: tests(2, 2) = 2
tests(3, 1) = 19: tests(3, 2) = 3
tests(4, 1) = 20: tests(4, 2) = 4
tests(5, 1) = 2017: tests(5, 2) = 24
tests(6, 1) = 22699: tests(6, 2) = 1
tests(7, 1) = 22699: tests(7, 2) = 2
tests(8, 1) = 22699: tests(8, 2) = 3
tests(9, 1) = 22699: tests(9, 2) = 4
tests(10, 1) = 40355: tests(10, 2) = 3

For i As Integer = 1 To 10
    Dim As Integer v = tests(i, 1)
    Dim As Integer n = tests(i, 2)
    Dim As String res = partition(v, n)
    Print "Partition "; v; " into "; n; " primes: "; Iif(res = "0", "not possible", res)
Next

Sleep
Output:
Same as Phix entry.

Go

Translation of: Kotlin

... though uses a sieve to generate the relevant primes.

package main

import (
    "fmt"
    "log"
)

var (
    primes     = sieve(100000)
    foundCombo = false
)

func sieve(limit uint) []uint {
    primes := []uint{2}
    c := make([]bool, limit+1) // composite = true
    // no need to process even numbers > 2
    p := uint(3)
    for {
        p2 := p * p
        if p2 > limit {
            break
        }
        for i := p2; i <= limit; i += 2 * p {
            c[i] = true
        }
        for {
            p += 2
            if !c[p] {
                break
            }
        }
    }
    for i := uint(3); i <= limit; i += 2 {
        if !c[i] {
            primes = append(primes, i)
        }
    }
    return primes
}

func findCombo(k, x, m, n uint, combo []uint) {
    if k >= m {
        sum := uint(0)
        for _, c := range combo {
            sum += primes[c]
        }
        if sum == x {
            s := "s"
            if m == 1 {
                s = " "
            }
            fmt.Printf("Partitioned %5d with %2d prime%s: ", x, m, s)
            for i := uint(0); i < m; i++ {
                fmt.Print(primes[combo[i]])
                if i < m-1 {
                    fmt.Print("+")
                } else {
                    fmt.Println()
                }
            }
            foundCombo = true
        }
    } else {
        for j := uint(0); j < n; j++ {
            if k == 0 || j > combo[k-1] {
                combo[k] = j
                if !foundCombo {
                    findCombo(k+1, x, m, n, combo)
                }
            }
        }
    }
}

func partition(x, m uint) error {
    if !(x >= 2 && m >= 1 && m < x) {
        return fmt.Errorf("x must be at least 2 and m in [1, x)")
    }
    n := uint(0)
    for _, prime := range primes {
        if prime <= x {
            n++
        }
    }
    if n < m {
        return fmt.Errorf("not enough primes")
    }
    combo := make([]uint, m)
    foundCombo = false
    findCombo(0, x, m, n, combo)
    if !foundCombo {
        s := "s"
        if m == 1 {
            s = " "
        }
        fmt.Printf("Partitioned %5d with %2d prime%s: (impossible)\n", x, m, s)
    }
    return nil
}

func main() {
    a := [...][2]uint{
        {99809, 1}, {18, 2}, {19, 3}, {20, 4}, {2017, 24},
        {22699, 1}, {22699, 2}, {22699, 3}, {22699, 4}, {40355, 3},
    }
    for _, p := range a {
        err := partition(p[0], p[1])
        if err != nil {
            log.Println(err)
        }
    }
}
Output:
Partitioned 99809 with  1 prime : 99809
Partitioned    18 with  2 primes: 5+13
Partitioned    19 with  3 primes: 3+5+11
Partitioned    20 with  4 primes: (impossible)
Partitioned  2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with  1 prime : 22699
Partitioned 22699 with  2 primes: 2+22697
Partitioned 22699 with  3 primes: 3+5+22691
Partitioned 22699 with  4 primes: 2+3+43+22651
Partitioned 40355 with  3 primes: 3+139+40213

Haskell

import Data.List (delete, intercalate)
import Data.Numbers.Primes (primes)
import Data.Bool (bool)

-------------------- PRIME PARTITIONS ---------------------
partitions :: Int -> Int -> [Int]
partitions x n
  | n <= 1 =
    [ x
    | x == last ps ]
  | otherwise = go ps x n
  where
    ps = takeWhile (<= x) primes
    go ps_ x 1 =
      [ x
      | x `elem` ps_ ]
    go ps_ x n = ((flip bool [] . head) <*> null) (ps_ >>= found)
      where
        found p =
          ((flip bool [] . return . (p :)) <*> null)
            ((go =<< delete p . flip takeWhile ps_ . (>=)) (x - p) (pred n))

-------------------------- TEST ---------------------------
main :: IO ()
main =
  mapM_ putStrLn $
  (\(x, n) ->
      intercalate
        " -> "
        [ justifyLeft 9 ' ' (show (x, n))
        , let xs = partitions x n
          in bool
               (tail $ concatMap (('+' :) . show) xs)
               "(no solution)"
               (null xs)
        ]) <$>
  concat
    [ [(99809, 1), (18, 2), (19, 3), (20, 4), (2017, 24)]
    , (,) 22699 <$> [1 .. 4]
    , [(40355, 3)]
    ]

------------------------- GENERIC -------------------------
justifyLeft :: Int -> Char -> String -> String
justifyLeft n c s = take n (s ++ replicate n c)
Output:
(99809,1) -> 99809
(18,2)    -> 5+13
(19,3)    -> 3+5+11
(20,4)    -> (no solution)
(2017,24) -> 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
(22699,1) -> 22699
(22699,2) -> 2+22697
(22699,3) -> 3+5+22691
(22699,4) -> 2+3+43+22651
(40355,3) -> 3+139+40213

J

load 'format/printf'
 
NB. I don't know of any way to easily make an idiomatic lazy exploration, 
NB. except falling back on explicit imperative control strutures.
NB. However this is clearly not where J shines neither with speed nor elegance.
 
primes_up_to  =: monad def 'p: i. _1 p: 1 + y'
terms_as_text =: monad def '; }: , (": each y),.<'' + ''' 
 
search_next_terms =: dyad define
 acc=. x     NB. -> an accumulator that contains given beginning of the partition.
 p=.   >0{y  NB. -> number of elements wanted in the partition
 ns=.  >1{y  NB. -> candidate values to be included in the partition
 sum=. >2{y  NB. -> the integer to partition 
 
 if. p=0 do.
    if. sum=+/acc do. acc return. end.
 else.
   for_m. i. (#ns)-(p-1) do.
     r =. (acc,m{ns) search_next_terms (p-1);((m+1)}.ns);sum
     if. #r do. r return. end.
   end.
 end.
 
 0$0   NB. Empty result if nothing found at the end of this path.
)
 
 
NB. Prints  a partition of y primes whose sum equals x.
partitioned_in =: dyad define    
    terms =. (0$0) search_next_terms y;(primes_up_to x);x
    if. #terms do.
       'As the sum of %d primes, %d = %s' printf y;x; terms_as_text terms
    else.
       'Didn''t find a way to express %d as a sum of %d different primes.' printf x;y
    end.
)


tests=: (99809 1) ; (18 2) ; (19 3) ; (20 4) ; (2017 24) ; (22699 1) ; (22699 2) ; (22699 3) ; (22699 4)
(0&{ partitioned_in 1&{) each tests


Output:
As the sum of 1 primes, 99809 = 99809
As the sum of 2 primes, 18 = 5 + 13
As the sum of 3 primes, 19 = 3 + 5 + 11
Didn't find a way to express 20 as a sum of 4 different primes.
As the sum of 24 primes, 2017 = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 97 + 1129
As the sum of 1 primes, 22699 = 22699
As the sum of 2 primes, 22699 = 2 + 22697
As the sum of 3 primes, 22699 = 3 + 5 + 22691
As the sum of 4 primes, 22699 = 2 + 3 + 43 + 22651
As the sum of 3 primes, 40355 = 3 + 139 + 40213

Java

Translation of: Kotlin
import java.util.Arrays;
import java.util.stream.IntStream;

public class PartitionInteger {
    private static final int[] primes = IntStream.concat(IntStream.of(2), IntStream.iterate(3, n -> n + 2))
        .filter(PartitionInteger::isPrime)
        .limit(50_000)
        .toArray();

    private static boolean isPrime(int n) {
        if (n < 2) return false;
        if (n % 2 == 0) return n == 2;
        if (n % 3 == 0) return n == 3;
        int d = 5;
        while (d * d <= n) {
            if (n % d == 0) return false;
            d += 2;
            if (n % d == 0) return false;
            d += 4;
        }
        return true;
    }

    private static boolean findCombo(int k, int x, int m, int n, int[] combo) {
        boolean foundCombo = false;
        if (k >= m) {
            if (Arrays.stream(combo).map(i -> primes[i]).sum() == x) {
                String s = m > 1 ? "s" : "";
                System.out.printf("Partitioned %5d with %2d prime%s: ", x, m, s);
                for (int i = 0; i < m; ++i) {
                    System.out.print(primes[combo[i]]);
                    if (i < m - 1) System.out.print('+');
                    else System.out.println();
                }
                foundCombo = true;
            }
        } else {
            for (int j = 0; j < n; ++j) {
                if (k == 0 || j > combo[k - 1]) {
                    combo[k] = j;
                    if (!foundCombo) {
                        foundCombo = findCombo(k + 1, x, m, n, combo);
                    }
                }
            }
        }
        return foundCombo;
    }

    private static void partition(int x, int m) {
        if (x < 2 || m < 1 || m >= x) {
            throw new IllegalArgumentException();
        }
        int[] filteredPrimes = Arrays.stream(primes).filter(it -> it <= x).toArray();
        int n = filteredPrimes.length;
        if (n < m) throw new IllegalArgumentException("Not enough primes");
        int[] combo = new int[m];
        boolean foundCombo = findCombo(0, x, m, n, combo);
        if (!foundCombo) {
            String s = m > 1 ? "s" : " ";
            System.out.printf("Partitioned %5d with %2d prime%s: (not possible)\n", x, m, s);
        }
    }

    public static void main(String[] args) {
        partition(99809, 1);
        partition(18, 2);
        partition(19, 3);
        partition(20, 4);
        partition(2017, 24);
        partition(22699, 1);
        partition(22699, 2);
        partition(22699, 3);
        partition(22699, 4);
        partition(40355, 3);
    }
}
Output:
Partitioned 99809 with  1 prime: 99809
Partitioned    18 with  2 primes: 5+13
Partitioned    19 with  3 primes: 3+5+11
Partitioned    20 with  4 primes: (not possible)
Partitioned  2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with  1 prime: 22699
Partitioned 22699 with  2 primes: 2+22697
Partitioned 22699 with  3 primes: 3+5+22691
Partitioned 22699 with  4 primes: 2+3+43+22651
Partitioned 40355 with  3 primes: 3+139+40213

jq

Works with jq and with gojq, the Go implementation of jq

Prime-number functions

 
# Is the input integer a prime?
def is_prime:
  if . == 2 then true
  else 2 < . and . % 2 == 1 and
       . as $in
       | (($in + 1) | sqrt) as $m
       | (((($m - 1) / 2) | floor) + 1) as $max
       | all( range(1; $max) ; $in % ((2 * .) + 1) > 0 )
  end;

# Is the input integer a prime?
# `previous` should be a sorted array of consecutive primes
# greater than 1 and at least including the greatest prime less than (.|sqrt)
def is_prime(previous):
  . as $in
  | (($in + 1) | sqrt) as $sqrt
  | first(previous[]
          | if . > $sqrt then 1
            elif 0 == ($in % .) then 0
            else empty
            end) // 1
  | . == 1;

# This assumes . is an array of consecutive primes beginning with [2,3]
def next_prime:
  . as $previous
  | (2 +  .[-1] ) 
  | until(is_prime($previous); . + 2) ;

# Emit primes from 2 up
def primes:
  # The helper function has arity 0 for TCO
  # It expects its input to be an array of previously found primes, in order:
  def next:
     . as $previous
     | ($previous|next_prime) as $next
     | $next, (($previous + [$next]) | next) ;
  2, 3, ([2,3] | next);

# The primes less than or equal to $x
def primes($x):
  label $out
  | primes | if . > $x then break $out else . end;

Helper function

# Emit a stream consisting of arrays, a, of $n items from the input array, 
# preserving order, subject to (a|add) == $sum
def take($n; $sum):
  def take:
    . as [$m, $in, $s]
    | if $m==0 and $s == 0 then []
      elif $m==0 or $s <= 0 then empty
      else range(0;$in|length) as $i
      | $in[$i] as $x
      | if $x > $s then empty
        else [$x] + ([$m-1, $in[$i+1:], $s - $x] | take)
        end
      end;
  [$n, ., $sum] | take;

Partitioning an integer into $n primes

# This function emits a possibly empty stream of arrays.
# Assuming $primes is primes(.), each array corresponds to a
# partition of the input into $n distinct primes.
# The algorithm is unoptimized.
# The output is a stream of arrays, which would be empty
def primepartition($n; $primes):
  . as $x
  | if $n == 1
    then if $primes[-1] == $x then [$x] else null end
    else (if $primes[-1] == $x then $primes[:-1] else $primes end) as $primes
    | ($primes | take($n; $x)) 
    end ;

# See primepartition/2
def primepartition($n):
  . as $x
  | if $n == 1
    then if is_prime then [.] else null end
    else primepartition($n; [primes($x)])
    end;

# Compute first(primepartition($n)) for each $n in the array $ary
def primepartitions($ary):
  . as $x
  | [primes($x)] as $px
  | $ary[] as $n
  | $x
  | first(primepartition($n; $px));

def task($x; $n):
  def pp:
    if . then join("+") else "(not possible)" end;

  if $n|type == "array" then task($x; $n[])
  else "A partition of \($x) into \($n) parts: \(first($x | primepartition($n)) | pp )"
  end;

The tasks

task(18; 2),
task(19; 3),
task(20; 4),
task(2017; 24),
task(22699; [1,2,3,4]),
task(40355; 3)
Output:
A partition of 18 into 2 parts: 5+13
A partition of 19 into 3 parts: 3+5+11
A partition of 2017 into 24 parts: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
A partition of 22699 into 1 parts: 22699
A partition of 22699 into 2 parts: 2+22697
A partition of 22699 into 3 parts: 3+5+22691
A partition of 22699 into 4 parts: 2+3+43+22651
A partition of 40355 into 3 parts: 3+139+40213

Julia

Translation of: Sidef
using Primes, Combinatorics

function primepartition(x::Int64, n::Int64)
    if n == oftype(n, 1)
        return isprime(x) ? [x] : Int64[]
    else
        for combo in combinations(primes(x), n)
            if sum(combo) == x
                return combo
            end
        end
    end
    return Int64[]
end

for (x, n) in [[   18, 2], [   19, 3], [   20,  4], [99807, 1], [99809, 1],
         [ 2017, 24],[22699, 1], [22699, 2], [22699,  3], [22699, 4] ,[40355, 3]]
    ans = primepartition(x, n)
    println("Partition of ", x, " into ", n, " primes: ",
        isempty(ans) ? "impossible" : join(ans, " + "))
end
Output:
Partition of 18 into 2 prime pieces: 5 + 13
Partition of 19 into 3 prime pieces: 3 + 5 + 11
Partition of 20 into 4 prime pieces: impossible
Partition of 99807 into 1 prime piece: impossible
Partition of 99809 into 1 prime piece: 99809
Partition of 2017 into 24 prime pieces: 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 97 + 1129
Partition of 22699 into 1 prime piece: 22699
Partition of 22699 into 2 prime pieces: 2 + 22697
Partition of 22699 into 3 prime pieces: 3 + 5 + 22691
Partition of 22699 into 4 prime pieces: 2 + 3 + 43 + 22651
Partition of 40355 into 3 prime pieces: 3 + 139 + 40213

Kotlin

// version 1.1.2

// compiled with flag -Xcoroutines=enable to suppress 'experimental' warning
 
import kotlin.coroutines.experimental.* 

val primes = generatePrimes().take(50_000).toList()  // generate first 50,000 say
var foundCombo = false
 
fun isPrime(n: Int) : Boolean {
    if (n < 2) return false 
    if (n % 2 == 0) return n == 2
    if (n % 3 == 0) return n == 3
    var d : Int = 5
    while (d * d <= n) {
        if (n % d == 0) return false
        d += 2
        if (n % d == 0) return false
        d += 4
    }
    return true
}
 
fun generatePrimes() =
    buildSequence {
        yield(2)
        var p = 3
        while (p <= Int.MAX_VALUE) { 
           if (isPrime(p)) yield(p)
           p += 2
        }
    }

fun findCombo(k: Int, x: Int, m: Int, n: Int, combo: IntArray) {
    if (k >= m) {
        if (combo.sumBy { primes[it] } == x) {
           val s = if (m > 1) "s" else " "
           print("Partitioned ${"%5d".format(x)} with ${"%2d".format(m)} prime$s: ")
           for (i in 0 until m) {
               print(primes[combo[i]])
               if (i < m - 1) print("+") else println()
           } 
           foundCombo = true
        }            
    }
    else { 
        for (j in 0 until n) {
            if (k == 0 || j > combo[k - 1]) {
                combo[k] = j
                if (!foundCombo) findCombo(k + 1, x, m, n, combo)
            }
        }
    }
}

fun partition(x: Int, m: Int) {
    require(x >= 2 && m >= 1 && m < x)
    val filteredPrimes = primes.filter { it <= x }
    val n = filteredPrimes.size
    if (n < m) throw IllegalArgumentException("Not enough primes")
    val combo = IntArray(m)
    foundCombo = false
    findCombo(0, x, m, n, combo)   
    if (!foundCombo) {
        val s = if (m > 1) "s" else " "   
        println("Partitioned ${"%5d".format(x)} with ${"%2d".format(m)} prime$s: (not possible)")
    }
}
    
fun main(args: Array<String>) {
    val a = arrayOf(
        99809 to 1,
        18 to 2,
        19 to 3,
        20 to 4,
        2017 to 24,
        22699 to 1,
        22699 to 2,
        22699 to 3,
        22699 to 4,
        40355 to 3
    )
    for (p in a) partition(p.first, p.second)    
}
Output:
Partitioned 99809 with  1 prime : 99809
Partitioned    18 with  2 primes: 5+13
Partitioned    19 with  3 primes: 3+5+11
Partitioned    20 with  4 primes: (not possible)
Partitioned  2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with  1 prime : 22699
Partitioned 22699 with  2 primes: 2+22697
Partitioned 22699 with  3 primes: 3+5+22691
Partitioned 22699 with  4 primes: 2+3+43+22651
Partitioned 40355 with  3 primes: 3+139+40213

Lingo

Using the prime generator class "sieve" from task Extensible prime generator#Lingo.

----------------------------------------
-- returns a sorted list of the <cnt> smallest unique primes that add up to <n>,
-- or FALSE if there is no such partition of primes for <n>
----------------------------------------
on getPrimePartition (n, cnt,   primes, ptr, res)
    if voidP(primes) then 
        primes = _global.sieve.getPrimesInRange(2, n)
        ptr = 1
        res = []
    end if  
    if cnt=1 then
        if primes.getPos(n)>=ptr then
            res.addAt(1, n)
            if res.count=cnt+ptr-1 then
                return res
            end if
            return TRUE
        end if
    else
        repeat with i = ptr to primes.count
            p = primes[i]
            ok = getPrimePartition(n-p, cnt-1,   primes, i+1, res)
            if ok then
                res.addAt(1, p)
                if res.count=cnt+ptr-1 then
                    return res
                end if
                return TRUE
            end if
        end repeat
    end if
    return FALSE
end

----------------------------------------
-- gets partition, prints formatted result
----------------------------------------
on showPrimePartition (n, cnt)
    res = getPrimePartition(n, cnt) 
    if res=FALSE then res = "not prossible"
    else res = implode("+", res)
    put "Partitioned "&n&" with "&cnt&" primes: " & res
end

----------------------------------------
-- implodes list into string
----------------------------------------
on implode (delim, tList)
    str = ""
    repeat with i=1 to tList.count
        put tList[i]&delim after str
    end repeat
    delete char (str.length+1-delim.length) to str.length of str
    return str
end
-- main
_global.sieve = script("sieve").new()

showPrimePartition(99809, 1)
showPrimePartition(18, 2)
showPrimePartition(19, 3)
showPrimePartition(20, 4)
showPrimePartition(2017, 24)
showPrimePartition(22699, 1)
showPrimePartition(22699, 2)
showPrimePartition(22699, 3)
showPrimePartition(22699, 4)
showPrimePartition(40355, 3)
Output:
-- "Partitioned 99809 with 1 primes: 99809"
-- "Partitioned 18 with 2 primes: 5+13"
-- "Partitioned 19 with 3 primes: 3+5+11"
-- "Partitioned 20 with 4 primes: not prossible"
-- "Partitioned 2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129"
-- "Partitioned 22699 with 1 primes: 22699"
-- "Partitioned 22699 with 2 primes: 2+22697"
-- "Partitioned 22699 with 3 primes: 3+5+22691"
-- "Partitioned 22699 with 4 primes: 2+3+43+22651"
-- "Partitioned 40355 with 3 primes: 3+139+40213"

Mathematica /Wolfram Language

NextPrimeMemo[n_] := (NextPrimeMemo[n] = NextPrime[n]);(*This improves performance by 30% or so*)
PrimeList[count_] := Prime/@Range[count];(*Just a helper to create an initial list of primes of the desired length*)
AppendPrime[list_] := Append[list,NextPrimeMemo[Last@list]];(*Another helper that makes creating the next candidate less verbose*)

NextCandidate[{list_, target_}] :=
 With[
  {len = Length@list, nextHead = NestWhile[Drop[#, -1] &, list, Total[#] > target &]},
  Which[
   {} == nextHead, {{}, target},
   Total[nextHead] == target && Length@nextHead == len, {nextHead, target},
   True, {NestWhile[AppendPrime, MapAt[NextPrimeMemo, nextHead, -1], Length[#] < Length[list] &], target}
   ]
  ];(*This is the meat of the matter. If it determines that the job is impossible, it returns a structure with an empty list of summands. If the input satisfies the success criteria, it just returns it (this will be our fixed point). Otherwise, it generates a subsequent candidate.*)

FormatResult[{list_, number_}, targetCount_] := 
 StringForm[
  "Partitioned `1` with `2` prime`4`: `3`", 
  number, 
  targetCount, 
  If[0 == Length@list, "no solutions found", StringRiffle[list, "+"]],
  If[1 == Length@list, "", "s"]]; (*Just a helper for pretty-printing the output*)

PrimePartition[number_, count_] := FixedPoint[NextCandidate, {PrimeList[count], number}];(*This is where things kick off. NextCandidate will eventually return the failure format or a success, and either of those are fixed points of the function.*)

TestCases =
  {
   {99809, 1},
   {18, 2},
   {19, 3},
   {20, 4},
   {2017, 24},
   {22699, 1},
   {22699, 2},
   {22699, 3},
   {22699, 4},
   {40355, 3}
   };

TimedResults = ReleaseHold[Hold[AbsoluteTiming[FormatResult[PrimePartition @@ #, Last@#]]] & /@TestCases](*I thought it would be interesting to include the timings, which are in seconds*)

TimedResults // TableForm


Output:
0.111699	Partitioned 99809 with 1 prime: 99809
0.000407	Partitioned 18 with 2 primes: 5+13
0.000346	Partitioned 19 with 3 primes: 3+5+11
0.000765	Partitioned 20 with 4 primes: no solutions found
0.008381	Partitioned 2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
0.028422	Partitioned 22699 with 1 prime: 22699
0.02713		Partitioned 22699 with 2 primes: 2+22697
20.207		Partitioned 22699 with 3 primes: 3+5+22691
0.357536	Partitioned 22699 with 4 primes: 2+3+43+22651
57.9928		Partitioned 40355 with 3 primes: 3+139+40213

Miranda

main :: [sys_message]
main = [Stdout (lay (map do_test tests))]

tests :: [(num,num)]
tests = [(99809, 1), (18, 2), (19, 3), (20, 4), (2017, 24),
         (22699, 1), (22699, 2), (22699, 3), (22699, 4),
         (40355, 3)]

do_test :: (num,num)->[char]
do_test (x,n)
    = description ++ format_result (partition x n)
      where description = "Partition " ++ show x ++ " with " ++ show n ++ " primes: "


format_result :: maybe [num]->[char]
format_result Nothing = "impossible"
format_result (Just nums) = tl (concat ['+' : show num | num<-nums])

maybe * ::= Nothing | Just *

primes :: [num]
primes = sieve [2..] where sieve (p:x) = p:sieve [n | n<-x; n mod p ~= 0]

partition :: num->num->maybe [num]
partition x n
    = search x n (takewhile (<=x) primes)
      where search x n []     = Nothing
            search x 1 ps     = Just [x], if x $in ps
                              = Nothing, otherwise
            search x n (p:ps) = Just (p : result), if step ~= Nothing
                              = search x n ps, otherwise
                                where step = search (x-p) (n-1) ps
                                      Just result = step

in :: *->[*]->bool
in x []     = False
in x (x:xs) = True
in x (y:xs) = x $in xs
Output:
Partition 99809 with 1 primes: 99809
Partition 18 with 2 primes: 5+13
Partition 19 with 3 primes: 3+5+11
Partition 20 with 4 primes: impossible
Partition 2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partition 22699 with 1 primes: 22699
Partition 22699 with 2 primes: 2+22697
Partition 22699 with 3 primes: 3+5+22691
Partition 22699 with 4 primes: 2+3+43+22651
Partition 40355 with 3 primes: 3+139+40213

Nim

import math, sugar

const N = 100_000

# Fill a sieve of Erathostenes.
var isPrime {.noInit.}: array[2..N, bool]
for item in isPrime.mitems: item = true
for n in 2..int(sqrt(N.toFloat)):
  if isPrime[n]:
    for k in countup(n * n, N, n):
      isPrime[k] = false

# Build list of primes.
let primes = collect(newSeq):
               for n in 2..N:
                 if isPrime[n]: n


proc partition(n, k: int; start = 0): seq[int] =
  ## Partition "n" in "k" primes starting at position "start" in "primes".
  ## Return the list of primes or an empty list if partitionning is impossible.

  if k == 1:
    return if isPrime[n] and n >= primes[start]: @[n] else: @[]

  for i in start..primes.high:
    let a = primes[i]
    if n - a <= 1: break
    result = partition(n - a, k - 1, i + 1)
    if result.len != 0:
      return a & result


when isMainModule:

  import strutils

  func plural(k: int): string =
    if k <= 1: "" else: "s"

  for (n, k) in [(99809, 1), (18, 2), (19, 3), (20, 4),
                (2017, 24), (22699, 1), (22699, 2),
                (22699, 3), (22699, 4), (40355, 3)]:
    let part = partition(n, k)
    if part.len == 0:
      echo n, " cannot be partitionned into ", k, " prime", plural(k)
    else:
      echo n, " = ", part.join(" + ")
Output:
99809 = 99809
18 = 5 + 13
19 = 3 + 5 + 11
20 cannot be partitionned into 4 primes
2017 = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 97 + 1129
22699 = 22699
22699 = 2 + 22697
22699 = 3 + 5 + 22691
22699 = 2 + 3 + 43 + 22651
40355 = 3 + 139 + 40213

PARI/GP

partDistinctPrimes(x,n,mn=2)=
{
  if(n==1, return(if(isprime(x) && mn<=x, [x], 0)));
  if((x-n)%2,
    if(mn>2, return(0));
    my(t=partDistinctPrimes(x-2,n-1,3));
    return(if(t, concat(2,t), 0))
  );
  if(n==2,
    forprime(p=mn,(x-1)\2,
      if(isprime(x-p), return([p,x-p]))
    );
    return(0)
  );
  if(n<1, return(if(n, 0, [])));

  \\ x is the sum of 3 or more odd primes
  my(t);
  forprime(p=mn,(x-1)\n,
    t=partDistinctPrimes(x-p,n-1,p+2);
    if(t, return(concat(p,t)))
  );
  0;
}
displayNicely(x,n)=
{
  printf("Partitioned%6d with%3d prime", x, n);
  if(n!=1, print1("s"));
  my(t=partDistinctPrimes(x,n));
  if(t===0, print(": (not possible)"); return);
  if(#t, print1(": "t[1]));
  for(i=2,#t, print1("+"t[i]));
  print();
}
V=[[99809,1], [18,2], [19,3], [20,4], [2017,24], [22699,1], [22699,2], [22699,3], [22699,4], [40355,3]];
for(i=1,#V, call(displayNicely, V[i]))
Output:
Partitioned 99809 with  1 prime: 99809
Partitioned    18 with  2 primes: 5+13
Partitioned    19 with  3 primes: 3+5+11
Partitioned    20 with  4 primes: (not possible)
Partitioned  2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with  1 prime: 22699
Partitioned 22699 with  2 primes: 2+22697
Partitioned 22699 with  3 primes: 3+5+22691
Partitioned 22699 with  4 primes: 2+3+43+22651
Partitioned 40355 with  3 primes: 3+139+40213

PascalABC.NET

uses School;

function primepartition(x, n: Integer): List<integer>;
begin
  result := new List<integer>;
  foreach var combo in Primes(x).Combinations(n) do
    if combo.Sum = x then 
    begin
      result := combo.ToList;
      exit
    end;
end;

begin
  foreach var (x, n) in |(18, 2), (19, 3), (20,  4), (99807, 1), (99809, 1),
  (2017, 24), (22699, 1), (22699, 2), (22699,  3), (22699, 4), (40355, 3)| do
  begin
    var ans := primepartition(x, n);
    writeln('Partitioned', x:6, ' with', n:3, ' primes: ',
        if ans.Count = 0 then 'impossible' else ans.JoinToString('+'));
  end
end.
Output:
Partitioned    18 with  2 primes: 5+13
Partitioned    19 with  3 primes: 3+5+11
Partitioned    20 with  4 primes: impossible
Partitioned 99807 with  1 primes: impossible
Partitioned 99809 with  1 primes: 99809
Partitioned  2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with  1 primes: 22699
Partitioned 22699 with  2 primes: 2+22697
Partitioned 22699 with  3 primes: 3+5+22691
Partitioned 22699 with  4 primes: 2+3+43+22651
Partitioned 40355 with  3 primes: 3+139+40213

Perl

It is tempting to use the partition iterator which takes a "isprime" flag, but this task calls for unique values. Hence the combination iterator over an array of primes makes more sense.

Library: ntheory
use ntheory ":all";

sub prime_partition {
  my($num, $parts) = @_;
  return is_prime($num) ? [$num] : undef if $parts == 1;
  my @p = @{primes($num)};
  my $r;
  forcomb { lastfor, $r = [@p[@_]] if vecsum(@p[@_]) == $num; } @p, $parts;
  $r;
}

foreach my $test ([18,2], [19,3], [20,4], [99807,1], [99809,1], [2017,24], [22699,1], [22699,2], [22699,3], [22699,4], [40355,3]) {
  my $partar = prime_partition(@$test);
  printf "Partition %5d into %2d prime piece%s %s\n", $test->[0], $test->[1], ($test->[1] == 1) ? ": " : "s:", defined($partar) ? join("+",@$partar) : "not possible";
}
Output:
Partition    18 into  2 prime pieces: 5+13
Partition    19 into  3 prime pieces: 3+5+11
Partition    20 into  4 prime pieces: not possible
Partition 99807 into  1 prime piece:  not possible
Partition 99809 into  1 prime piece:  99809
Partition  2017 into 24 prime pieces: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partition 22699 into  1 prime piece:  22699
Partition 22699 into  2 prime pieces: 2+22697
Partition 22699 into  3 prime pieces: 3+5+22691
Partition 22699 into  4 prime pieces: 2+3+43+22651
Partition 40355 into  3 prime pieces: 3+139+40213

Phix

with javascript_semantics
requires("1.0.2") -- (join(fmt))
function partition(integer v, n, idx=0)
    if n=1 then
        return iff(is_prime(v)?{v}:0)
    end if
    while true do
        idx += 1
        integer np = get_prime(idx)
        if np>=floor(v/2) then exit end if
        object res = partition(v-np, n-1, idx)
        if sequence(res) then
            res = prepend(res,np)
            return res
        end if
    end while
    return 0
end function
 
constant tests = {{99809, 1},
                  {18, 2},
                  {19, 3},
                  {20, 4},
                  {2017, 24},
                  {22699, 1},
                  {22699, 2},
                  {22699, 3},
                  {22699, 4},
                  {40355, 3}}
 
for i=1 to length(tests) do
    integer {v,n} = tests[i]
    object res = partition(v,n)
    res = iff(res=0?"not possible":join(res," + ",fmt:="%d"))
    printf(1,"Partition %d into %d primes: %s\n",{v,n,res})
end for
Output:
Partition 99809 into 1 primes: 99809
Partition 18 into 2 primes: 5 + 13
Partition 19 into 3 primes: 3 + 5 + 11
Partition 20 into 4 primes: not possible
Partition 2017 into 24 primes: 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 97 + 1129
Partition 22699 into 1 primes: 22699
Partition 22699 into 2 primes: 2 + 22697
Partition 22699 into 3 primes: 3 + 5 + 22691
Partition 22699 into 4 primes: 2 + 3 + 43 + 22651
Partition 40355 into 3 primes: 3 + 139 + 40213

Prolog

Works with: SWI Prolog
prime_partition(N, 1, [N], Min):-
    is_prime(N),
    N > Min,
    !.
prime_partition(N, K, [P|Rest], Min):-
    K > 1,
    is_prime(P),
    P > Min,
    P < N,
    K1 is K - 1,
    N1 is N - P,
    prime_partition(N1, K1, Rest, P),
    !.

prime_partition(N, K, Primes):-
    prime_partition(N, K, Primes, 1).

print_primes([Prime]):-
    !,
    writef('%w\n', [Prime]).
print_primes([Prime|Primes]):-
    writef('%w + ', [Prime]),
    print_primes(Primes).

print_prime_partition(N, K):-
    prime_partition(N, K, Primes),
    !,
    writef('%w = ', [N]),
    print_primes(Primes).
print_prime_partition(N, K):-
    writef('%w cannot be partitioned into %w primes.\n', [N, K]).

main:-
    find_prime_numbers(100000),
    print_prime_partition(99809, 1),
    print_prime_partition(18, 2),
    print_prime_partition(19, 3),
    print_prime_partition(20, 4),
    print_prime_partition(2017, 24),
    print_prime_partition(22699, 1),
    print_prime_partition(22699, 2),
    print_prime_partition(22699, 3),
    print_prime_partition(22699, 4),
    print_prime_partition(40355, 3).

Module for finding prime numbers up to some limit:

:- module(prime_numbers, [find_prime_numbers/1, is_prime/1]).
:- dynamic is_prime/1.

find_prime_numbers(N):-
    retractall(is_prime(_)),
    assertz(is_prime(2)),
    init_sieve(N, 3),
    sieve(N, 3).

init_sieve(N, P):-
    P > N,
    !.
init_sieve(N, P):-
    assertz(is_prime(P)),
    Q is P + 2,
    init_sieve(N, Q).

sieve(N, P):-
    P * P > N,
    !.
sieve(N, P):-
    is_prime(P),
    !,
    S is P * P,
    cross_out(S, N, P),
    Q is P + 2,
    sieve(N, Q).
sieve(N, P):-
    Q is P + 2,
    sieve(N, Q).

cross_out(S, N, _):-
    S > N,
    !.
cross_out(S, N, P):-
    retract(is_prime(S)),
    !,
    Q is S + 2 * P,
    cross_out(Q, N, P).
cross_out(S, N, P):-
    Q is S + 2 * P,
    cross_out(Q, N, P).
Output:
99809 = 99809
18 = 5 + 13
19 = 3 + 5 + 11
20 cannot be partitioned into 4 primes.
2017 = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 97 + 1129
22699 = 22699
22699 = 2 + 22697
22699 = 3 + 5 + 22691
22699 = 2 + 3 + 43 + 22651
40355 = 3 + 139 + 40213

Python

from itertools import combinations as cmb


def isP(n):
    if n == 2:
        return True
    if n % 2 == 0:
        return False
    return all(n % x > 0 for x in range(3, int(n ** 0.5) + 1, 2))


def genP(n):
    p = [2]
    p.extend([x for x in range(3, n + 1, 2) if isP(x)])
    return p


data = [
    (99809, 1), (18, 2), (19, 3), (20, 4), (2017, 24),
    (22699, 1), (22699, 2), (22699, 3), (22699, 4), (40355, 3)]


for n, cnt in data:
    ci = iter(cmb(genP(n), cnt))
    while True:
        try:
            c = next(ci)
            if sum(c) == n:
                print(' '.join(
                    [repr((n, cnt)), "->", '+'.join(str(s) for s in c)]
                ))
                break
        except StopIteration:
            print(repr((n, cnt)) + " -> Not possible")
            break
Output:
(99809, 1) -> 99809
(18, 2) -> 5+13
(19, 3) -> 3+5+11
(20, 4) -> Not possible
(2017, 24) -> 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
(22699, 1) -> 22699
(22699, 2) -> 2+22697
(22699, 3) -> 3+5+22691
(22699, 4) -> 2+3+43+22651
(40355, 3) -> 3+139+40213

Racket

#lang racket
(require math/number-theory)

(define memoised-next-prime
  (let ((m# (make-hash)))
    (λ (P) (hash-ref! m# P (λ () (next-prime P))))))

(define (partition-X-into-N-primes X N)
  (define (partition-x-into-n-primes-starting-at-P x n P result)
    (cond ((= n x 0) result)
          ((or (= n 0) (= x 0) (> P x)) #f)
          (else
           (let ((P′ (memoised-next-prime P)))
             (or (partition-x-into-n-primes-starting-at-P (- x P) (- n 1) P′ (cons P result))
                 (partition-x-into-n-primes-starting-at-P x n P′ result))))))
  
  (reverse (or (partition-x-into-n-primes-starting-at-P X N 2 null) (list 'no-solution))))

(define (report-partition X N)
  (let ((result (partition-X-into-N-primes X N)))
    (printf "partition ~a\twith ~a\tprimes: ~a~%" X N (string-join (map ~a result) " + "))))

(module+ test
  (report-partition 99809 1)
  (report-partition 18 2)
  (report-partition 19 3)
  (report-partition 20 4)
  (report-partition 2017 24)
  (report-partition 22699 1)
  (report-partition 22699 2)
  (report-partition 22699 3)
  (report-partition 22699 4)
  (report-partition 40355 3))
Output:
partition 99809	with 1	primes: 99809
partition 18	with 2	primes: 5 + 13
partition 19	with 3	primes: 3 + 5 + 11
partition 20	with 4	primes: no-solution
partition 2017	with 24	primes: 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 97 + 1129
partition 22699	with 1	primes: 22699
partition 22699	with 2	primes: 2 + 22697
partition 22699	with 3	primes: 3 + 5 + 22691
partition 22699	with 4	primes: 2 + 3 + 43 + 22651
partition 40355	with 3	primes: 3 + 139 + 40213

Raku

(formerly Perl 6)

Attempt This Online!

# short circuit for '1' partition
multi partition ( Int $number, 1 ) { $number.is-prime ?? $number !! () }

my @primes = lazy (^Inf).grep: &is-prime;

multi partition ( Int $number, Int $parts where * > 1 = 2 ) {
    my @these = @primes[^($number div $parts)];
    shift @these if (($number %% 2) && ($parts %% 2)) || (($number % 2) && ($parts % 2));
    for @these.combinations($parts - 1) { 
        my $maybe = $number - .sum;
        return (|$_, $maybe) if $maybe.is-prime && ($maybe$_)
    };
    ()
}

# TESTING
(18,2, 19,3, 20,4, 99807,1, 99809,1, 99820,6, 2017,24, 22699,1, 22699,2, 22699,3, 22699,4, 40355,3)\
  .race(:1batch).map: -> $number, $parts {
    say (sprintf "Partition %5d into %2d prime piece", $number, $parts),
    $parts == 1 ?? ':  ' !! 's: ', join '+', partition($number, $parts) || 'not possible'
}
Output:
Partition    18 into  2 prime pieces: 5+13
Partition    19 into  3 prime pieces: 3+5+11
Partition    20 into  4 prime pieces: not possible
Partition 99807 into  1 prime piece:  not possible
Partition 99809 into  1 prime piece:  99809
Partition 99820 into  6 prime pieces: 3+5+7+11+61+99733
Partition  2017 into 24 prime pieces: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partition 22699 into  1 prime piece:  22699
Partition 22699 into  2 prime pieces: 2+22697
Partition 22699 into  3 prime pieces: 3+5+22691
Partition 22699 into  4 prime pieces: 2+3+43+22651
Partition 40355 into  3 prime pieces: 3+139+40213

Refal

$ENTRY Go {
    = <Each Test <Tests>>;
};

Tests {
    = (99809 1) (18 2) (19 3) (20 4) (2017 24)
      (22699 1) (22699 2) (22699 3) (22699 4) (40355 3);
};

Test {
    (s.X s.N) =
        <Prout 'Partitioned ' <Symb s.X> ' with ' <Symb s.N> ' primes: '
               <Format <PrimePartition s.X s.N>>>;
};

Format {
    F = 'not possible';
    T s.N = <Symb s.N>;
    T s.N e.X = <Symb s.N> '+' <Format T e.X>;
};

PrimePartition {
    s.X s.N = <Partition s.X s.N <Primes s.X>>;
};

Partition {
    s.X 1 e.Nums, e.Nums: {
        e.1 s.X e.2 = T s.X;
        e.1 = F;
    };
    s.X s.N = F;
    s.X s.N s.Num e.Nums, <Compare s.X s.Num>: '-' =
        <Partition s.X s.N e.Nums>;
    s.X s.N s.Num e.Nums,
        <Partition <- s.X s.Num> <- s.N 1> e.Nums>: {
            T e.List = T s.Num e.List;
            F = <Partition s.X s.N e.Nums>;
        };
};

Primes {
    s.N = <Sieve <Iota 2 s.N>>;
};

Iota {
    s.End s.End = s.End;
    s.Start s.End = s.Start <Iota <+ 1 s.Start> s.End>;
};

Cross {
    s.Step e.List = <Cross (s.Step 1) s.Step e.List>;
    (s.Step s.Skip) = ;
    (s.Step 1) s.Item e.List = X <Cross (s.Step s.Step) e.List>;
    (s.Step s.N) s.Item e.List = s.Item <Cross (s.Step <- s.N 1>) e.List>;
};

Sieve {
    = ;
    X e.List = <Sieve e.List>;
    s.N e.List = s.N <Sieve <Cross s.N e.List>>;
};

Each {
    s.F = ;
    s.F t.X e.R = <Mu s.F t.X> <Each s.F e.R>;
};
Output:
Partitioned 99809 with 1 primes: 99809
Partitioned 18 with 2 primes: 5+13
Partitioned 19 with 3 primes: 3+5+11
Partitioned 20 with 4 primes: not possible
Partitioned 2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with 1 primes: 22699
Partitioned 22699 with 2 primes: 2+22697
Partitioned 22699 with 3 primes: 3+5+22691
Partitioned 22699 with 4 primes: 2+3+43+22651
Partitioned 40355 with 3 primes: 3+139+40213

REXX

Modules: How to use
Modules: Source code
First, the needed primes are sieved. Then this program maintains a small array 'work', holding indices to the array 'prim'. The task is solved by manipulating 'work' and check its sum.

-- 25 Mar 2025
include Settings

say 'PARTITION AN INTEGER X INTO N PRIMES'
say version
say
call GetPrimes 100000
call ShowPartition 99809,1
call ShowPartition 18,2
call ShowPartition 19,3
call ShowPartition 20,4
call ShowPartition 2017,24
call ShowPartition 22699,1
call ShowPartition 22699,2
call ShowPartition 22699,3
call ShowPartition 22699,4
call ShowPartition 40355,3
exit

GetPrimes:
procedure expose prim.
arg xx
call Time('r')
say 'Get primes up to' xx'...'
call Primes xx
say Format(Time('e'),,3) 'seconds'; say
return

ShowPartition:
procedure expose prim. work.
arg xx,yy
call Time('r')
s = 0
do i = 1 to yy
   work.i = i
end
s = Sumwork(yy)
do z = 1
   select
      when s = xx then
         leave z
      when s < xx then do
         work.yy = work.yy+1
         s = Sumwork(yy)
      end
      when s > xx then do
         do i = yy by -1 to 2 while s > xx
            i1 = i-1; a = work.i1+1
            if prim.a > xx then
               leave z
            work.i1 = a
            do j = i to yy
               a = a+1; work.j = a
            end
            s = Sumwork(yy)
         end
      end
   end
end
if s = xx then do
   p = work.1; z = prim.p
   do i = 2 to yy
      p = work.i; z = z'+'prim.p
   end
end
else do
   z = 'not possible'
end
say xx 'partioned into' yy 'primes is' z
say Format(Time('e'),,3) 'seconds'; say
return

Sumwork:
procedure expose prim. work.
arg yy
s = 0
do i = 1 to yy
   a = work.i; p = prim.a; s = s+p
end
return s

include Sequences
include Functions
include Constants
include Abend
Output:
PARTITION AN INTEGER X INTO N PRIMES
REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022

Get primes up to 100000...
0.049 seconds

99809 partioned into 1 primes is 99809
0.015 seconds

18 partioned into 2 primes is 5+13
0.000 seconds

19 partioned into 3 primes is 3+5+11
0.000 seconds

20 partioned into 4 primes is not possible
0.000 seconds

2017 partioned into 24 primes is 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
0.000 seconds

22699 partioned into 1 primes is 22699
0.000 seconds

22699 partioned into 2 primes is 2+22697
0.016 seconds

22699 partioned into 3 primes is 3+5+22691
2.869 seconds

22699 partioned into 4 primes is 2+3+43+22651
0.048 seconds

40355 partioned into 3 primes is 3+139+40213
8.227 seconds

Ring

# Project : Partition an integer X into N primes

load "stdlib.ring"
nr = 0
num = 0
list = list(100000)
items = newlist(pow(2,len(list))-1,100000)
while true
          nr = nr + 1
          if isprime(nr)
             num = num + 1
             list[num] = nr
          ok
          if num = 100000
              exit
          ok
end

powerset(list,100000)
showarray(items,100000)
see nl

func showarray(items,ind)
        for p = 1 to 20
              if (p > 17 and p < 21) or p = 99809 or p = 2017  or p = 22699  or p = 40355  
                  for n = 1 to len(items)
                       flag = 0
                       for m = 1 to ind
                             if items[n][m] = 0 
                                exit
                             ok   
                             flag = flag + items[n][m]
                       next
                       if flag = p
                          str = ""
                          for x = 1 to len(items[n])
                               if items[n][x] != 0  
                                  str = str + items[n][x] + " "
                               ok
                          next  
                          str = left(str, len(str) - 1) 
                          str = str + "]"
                          if substr(str, " ") > 0
                             see "" + p + " = [" 
                             see str + nl
                             exit
                          else
                             str = ""
                          ok
                       ok
                  next
              ok
        next

func powerset(list,ind)
        num = 0
        num2 = 0
        items = newlist(pow(2,len(list))-1,ind)
        for i = 2 to (2 << len(list)) - 1 step 2
             num2 = 0
             num = num + 1
             for j = 1 to len(list) 
                  if i & (1 << j)
                      num2 = num2 + 1
                      if list[j] != 0
                        items[num][num2] = list[j]
                     ok
                  ok
             next
        next
        return items

Output:

99809 = [99809]
18 = [5 13]
19 = [3 5 11]
20 = []
2017 = [2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 97 1129]
22699 = [22699]
22699 = [2 22697]
22699 = [3 5 22691]
22699 = [2 3 43 22651]
40355 = [3 139 40213]

Ruby

require "prime"

def prime_partition(x, n)
  Prime.each(x).to_a.combination(n).detect{|primes| primes.sum == x}
end

TESTCASES = [[99809, 1], [18, 2], [19, 3], [20, 4], [2017, 24], 
             [22699, 1], [22699, 2], [22699, 3], [22699, 4], [40355, 3]]

TESTCASES.each do |prime, num|
  res = prime_partition(prime, num) 
  str = res.nil? ? "no solution" : res.join(" + ")
  puts  "Partitioned #{prime} with #{num} primes: #{str}"
end
Output:
Partitioned 99809 with 1 primes: 99809
Partitioned 18 with 2 primes: 5 + 13
Partitioned 19 with 3 primes: 3 + 5 + 11
Partitioned 20 with 4 primes: no solution
Partitioned 2017 with 24 primes: 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 97 + 1129
Partitioned 22699 with 1 primes: 22699
Partitioned 22699 with 2 primes: 2 + 22697
Partitioned 22699 with 3 primes: 3 + 5 + 22691
Partitioned 22699 with 4 primes: 2 + 3 + 43 + 22651
Partitioned 40355 with 3 primes: 3 + 139 + 40213

Rust

Translation of: C
// main.rs
mod bit_array;
mod prime_sieve;

use prime_sieve::PrimeSieve;

fn find_prime_partition(
    sieve: &PrimeSieve,
    number: usize,
    count: usize,
    min_prime: usize,
    primes: &mut Vec<usize>,
    index: usize,
) -> bool {
    if count == 1 {
        if number >= min_prime && sieve.is_prime(number) {
            primes[index] = number;
            return true;
        }
        return false;
    }
    for p in min_prime..number {
        if sieve.is_prime(p)
            && find_prime_partition(sieve, number - p, count - 1, p + 1, primes, index + 1)
        {
            primes[index] = p;
            return true;
        }
    }
    false
}

fn print_prime_partition(sieve: &PrimeSieve, number: usize, count: usize) {
    let mut primes = vec![0; count];
    if !find_prime_partition(sieve, number, count, 2, &mut primes, 0) {
        println!("{} cannot be partitioned into {} primes.", number, count);
    } else {
        print!("{} = {}", number, primes[0]);
        for i in 1..count {
            print!(" + {}", primes[i]);
        }
        println!();
    }
}

fn main() {
    let s = PrimeSieve::new(100000);
    print_prime_partition(&s, 99809, 1);
    print_prime_partition(&s, 18, 2);
    print_prime_partition(&s, 19, 3);
    print_prime_partition(&s, 20, 4);
    print_prime_partition(&s, 2017, 24);
    print_prime_partition(&s, 22699, 1);
    print_prime_partition(&s, 22699, 2);
    print_prime_partition(&s, 22699, 3);
    print_prime_partition(&s, 22699, 4);
    print_prime_partition(&s, 40355, 3);
}
// prime_sieve.rs
use crate::bit_array;

pub struct PrimeSieve {
    composite: bit_array::BitArray,
}

impl PrimeSieve {
    pub fn new(limit: usize) -> PrimeSieve {
        let mut sieve = PrimeSieve {
            composite: bit_array::BitArray::new(limit / 2),
        };
        let mut p = 3;
        while p * p <= limit {
            if !sieve.composite.get(p / 2 - 1) {
                let inc = p * 2;
                let mut q = p * p;
                while q <= limit {
                    sieve.composite.set(q / 2 - 1, true);
                    q += inc;
                }
            }
            p += 2;
        }
        sieve
    }
    pub fn is_prime(&self, n: usize) -> bool {
        if n < 2 {
            return false;
        }
        if n % 2 == 0 {
            return n == 2;
        }
        !self.composite.get(n / 2 - 1)
    }
}
// bit_array.rs
pub struct BitArray {
    array: Vec<u32>,
}

impl BitArray {
    pub fn new(size: usize) -> BitArray {
        BitArray {
            array: vec![0; (size + 31) / 32],
        }
    }
    pub fn get(&self, index: usize) -> bool {
        let bit = 1 << (index & 31);
        (self.array[index >> 5] & bit) != 0
    }
    pub fn set(&mut self, index: usize, new_val: bool) {
        let bit = 1 << (index & 31);
        if new_val {
            self.array[index >> 5] |= bit;
        } else {
            self.array[index >> 5] &= !bit;
        }
    }
}
Output:
99809 = 99809
18 = 5 + 13
19 = 3 + 5 + 11
20 cannot be partitioned into 4 primes.
2017 = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 97 + 1129
22699 = 22699
22699 = 2 + 22697
22699 = 3 + 5 + 22691
22699 = 2 + 3 + 43 + 22651
40355 = 3 + 139 + 40213

Scala

object PartitionInteger {

  def sieve(nums: LazyList[Int]): LazyList[Int] =
    LazyList.cons(nums.head, sieve((nums.tail) filter (_ % nums.head != 0)))

  // An 'infinite' stream of primes, lazy evaluation and memo-ized
  private val oddPrimes = sieve(LazyList.from(3, 2))
  private val primes = sieve(2 #:: oddPrimes).take(3600 /*50_000*/)

  private def findCombo(k: Int, x: Int, m: Int, n: Int, combo: Array[Int]): Boolean = {
    var foundCombo = combo.map(i => primes(i)).sum == x
    if (k >= m) {
      if (foundCombo) {
        val s: String = if (m > 1) "s" else ""
        printf("Partitioned %5d with %2d prime%s: ", x, m, s)
        for (i <- 0 until m) {
          print(primes(combo(i)))
          if (i < m - 1) print('+') else println()
        }
      }
    } else for (j <- 0 until n if k == 0 || j > combo(k - 1)) {
      combo(k) = j
      if (!foundCombo) foundCombo = findCombo(k + 1, x, m, n, combo)
    }
    foundCombo
  }

  private def partition(x: Int, m: Int): Unit = {
    val n: Int = primes.count(it => it <= x)
    if (n < m) throw new IllegalArgumentException("Not enough primes")

    if (!findCombo(0, x, m, n, new Array[Int](m)))
      printf("Partitioned %5d with %2d prime%s: (not possible)\n", x, m, if (m > 1) "s" else " ")
  }

  def main(args: Array[String]): Unit = {
    partition(99809, 1)
    partition(18, 2)
    partition(19, 3)
    partition(20, 4)
    partition(2017, 24)
    partition(22699, 1)
    partition(22699, 2)
    partition(22699, 3)
    partition(22699, 4)
    partition(40355, 3)
  }

}

SETL

program primes_partition;
    tests := [[99809,1], [18,2], [19,3], [20,4], [2017,24],
              [22699,1], [22699,2], [22699,3], [22699,4], [40355,3]];

    loop for [x, n] in tests do
        nprint("Partitioned",x,"with",n,"primes:");
        if (p := partition(x,n)) = om then
            print(" not possible");
        else
            print(" " + (+/["+" + str pr : pr in p])(2..));
        end if;
    end loop;

    proc partition(x,n);
        return findpart(x,n,sieve(x));
    end proc;

    proc findpart(x,n,nums);
        if n=1 then
            return if x in nums then [x] else om end;
        end if;

        loop while nums /= [] do
            k fromb nums;
            if (l := findpart(x-k, n-1, nums)) /= om then
                return [k] + l;
            end if;
        end loop;
        return om;
    end proc;

    proc sieve(n);
        primes := [1..n];
        primes(1) := om;
        loop for p in [2..floor sqrt n] do
            loop for c in [p*p, p*p+p..n] do
                primes(c) := om;
            end loop;
        end loop;
        return [p : p in primes | p /= om];
    end proc;
end program;
Output:
Partitioned 99809 with 1 primes: 99809
Partitioned 18 with 2 primes: 5+13
Partitioned 19 with 3 primes: 3+5+11
Partitioned 20 with 4 primes: not possible
Partitioned 2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with 1 primes: 22699
Partitioned 22699 with 2 primes: 2+22697
Partitioned 22699 with 3 primes: 3+5+22691
Partitioned 22699 with 4 primes: 2+3+43+22651
Partitioned 40355 with 3 primes: 3+139+40213

Sidef

Translation of: Perl
func prime_partition(num, parts) {

    if (parts == 1) {
        return (num.is_prime ? [num] : [])
    }

    num.primes.combinations(parts, {|*c|
        return c if (c.sum == num)
    })

    return []
}

var tests = [
    [   18, 2], [   19, 3], [   20,  4],
    [99807, 1], [99809, 1], [ 2017, 24],
    [22699, 1], [22699, 2], [22699,  3],
    [22699, 4], [40355, 3],
]

for num,parts (tests) {
    say ("Partition %5d into %2d prime piece" % (num, parts),
    parts == 1 ? ':  ' : 's: ', prime_partition(num, parts).join('+') || 'not possible')
}
Output:
Partition    18 into  2 prime pieces: 5+13
Partition    19 into  3 prime pieces: 3+5+11
Partition    20 into  4 prime pieces: not possible
Partition 99807 into  1 prime piece:  not possible
Partition 99809 into  1 prime piece:  99809
Partition  2017 into 24 prime pieces: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partition 22699 into  1 prime piece:  22699
Partition 22699 into  2 prime pieces: 2+22697
Partition 22699 into  3 prime pieces: 3+5+22691
Partition 22699 into  4 prime pieces: 2+3+43+22651
Partition 40355 into  3 prime pieces: 3+139+40213

Swift

Translation of: Rust
import Foundation

class BitArray {
    var array: [UInt32]

    init(size: Int) {
        array = Array(repeating: 0, count: (size + 31)/32)
    }
    
    func get(index: Int) -> Bool {
        let bit = UInt32(1) << (index & 31)
        return (array[index >> 5] & bit) != 0
    }
    
    func set(index: Int, value: Bool) {
        let bit = UInt32(1) << (index & 31)
        if value {
            array[index >> 5] |= bit
        } else {
            array[index >> 5] &= ~bit
        }
    }
}

class PrimeSieve {
    let composite: BitArray
    
    init(size: Int) {
        composite = BitArray(size: size/2)
        var p = 3
        while p * p <= size {
            if !composite.get(index: p/2 - 1) {
                let inc = p * 2
                var q = p * p
                while q <= size {
                    composite.set(index: q/2 - 1, value: true)
                    q += inc
                }
            }
            p += 2
        }
    }
    
    func isPrime(number: Int) -> Bool {
        if number < 2 {
            return false
        }
        if (number & 1) == 0 {
            return number == 2
        }
        return !composite.get(index: number/2 - 1)
    }
}

func findPrimePartition(sieve: PrimeSieve, number: Int,
                        count: Int, minPrime: Int,
                        primes: inout [Int], index: Int) -> Bool {
    if count == 1 {
        if number >= minPrime && sieve.isPrime(number: number) {
            primes[index] = number
            return true
        }
        return false
    }
    if minPrime >= number {
        return false
    }
    for p in minPrime..<number {
        if sieve.isPrime(number: p)
            && findPrimePartition(sieve: sieve, number: number - p,
                                  count: count - 1, minPrime: p + 1,
                                  primes: &primes, index: index + 1) {
            primes[index] = p
            return true
        }
    }
    return false
}

func printPrimePartition(sieve: PrimeSieve, number: Int, count: Int) {
    var primes = Array(repeating: 0, count: count)
    if !findPrimePartition(sieve: sieve, number: number, count: count,
                           minPrime: 2, primes: &primes, index: 0) {
        print("\(number) cannot be partitioned into \(count) primes.")
    } else {
        print("\(number) = \(primes[0])", terminator: "")
        for i in 1..<count {
            print(" + \(primes[i])", terminator: "")
        }
        print()
    }
}

let sieve = PrimeSieve(size: 100000)
printPrimePartition(sieve: sieve, number: 99809, count: 1)
printPrimePartition(sieve: sieve, number: 18, count: 2)
printPrimePartition(sieve: sieve, number: 19, count: 3)
printPrimePartition(sieve: sieve, number: 20, count: 4)
printPrimePartition(sieve: sieve, number: 2017, count: 24)
printPrimePartition(sieve: sieve, number: 22699, count: 1)
printPrimePartition(sieve: sieve, number: 22699, count: 2)
printPrimePartition(sieve: sieve, number: 22699, count: 3)
printPrimePartition(sieve: sieve, number: 22699, count: 4)
printPrimePartition(sieve: sieve, number: 40355, count: 3)
Output:
99809 = 99809
18 = 5 + 13
19 = 3 + 5 + 11
20 cannot be partitioned into 4 primes.
2017 = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 97 + 1129
22699 = 22699
22699 = 2 + 22697
22699 = 3 + 5 + 22691
22699 = 2 + 3 + 43 + 22651
40355 = 3 + 139 + 40213

VBScript

Translation of: Rexx
' Partition an integer X into N primes
    dim p(),a(32),b(32),v,g: redim p(64)
    what="99809 1  18 2  19 3  20 4  2017 24  22699 1-4  40355 3"
    t1=split(what,"  ")
    for j=0 to ubound(t1)
        t2=split(t1(j)): x=t2(0): n=t2(1)
        t3=split(x,"-"): x=clng(t3(0))
        if ubound(t3)=1 then y=clng(t3(1)) else y=x
        t3=split(n,"-"): n=clng(t3(0))
        if ubound(t3)=1 then m=clng(t3(1)) else m=n
        genp y 'generate primes in p
        for g=x to y
            for q=n to m: part: next 'q
        next 'g
    next 'j

sub genp(high)
    p(1)=2: p(2)=3: c=2: i=p(c)+2
    do 'i
        k=2: bk=false
        do while k*k<=i and not bk 'k
            if i mod p(k)=0 then bk=true
            k=k+1
        loop 'k
        if not bk then
            c=c+1: if c>ubound(p) then redim preserve p(ubound(p)+8)
            p(c)=i
        end if
        i=i+2
    loop until p(c)>high 'i
end sub 'genp

sub getp(z)
    if a(z)=0 then w=z-1: a(z)=a(w)
    a(z)=a(z)+1: w=a(z): b(z)=p(w)
end sub 'getp

function list()
    w=b(1)
    if v=g then for i=2 to q: w=w&"+"&b(i): next else w="(not possible)"
    list="primes: "&w
end function 'list

sub part()
    for i=lbound(a) to ubound(a): a(i)=0: next 'i
    for i=1 to q: call getp(i): next 'i
    do while true: v=0: bu=false
        for s=1 to q
            v=v+b(s)
            if v>g then
                if s=1 then exit do
                for k=s to q: a(k)=0: next 'k
                for r=s-1 to q: call getp(r): next 'r
                bu=true: exit for
            end if
        next 's
        if not bu then
            if v=g then exit do
            if v<g then call getp(q)
        end if    
    loop
    wscript.echo "partition "&g&" into "&q&" "&list
end sub 'part
Output:
partition 99809 into 1 primes: 99809
partition 18 into 2 primes: 5+13
partition 19 into 3 primes: 3+5+11
partition 20 into 4 primes: (not possible)
partition 2017 into 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
partition 22699 into 1 primes: 22699
partition 22699 into 2 primes: 2+22697
partition 22699 into 3 primes: 3+5+22691
partition 22699 into 4 primes: 2+3+43+22651
partition 40355 into 3 primes: 3+139+40213

Visual Basic .NET

Translation of: Rexx
Works with: Visual Basic .NET version 2011
' Partition an integer X into N primes - 29/03/2017
Option Explicit On

Module PartitionIntoPrimes
    Dim p(8), a(32), b(32), v, g, q As Long

    Sub Main()
        Dim what, t1(), t2(), t3(), xx, nn As String
        Dim x, y, n, m As Long
        what = "99809 1  18 2  19 3  20 4  2017 24  22699 1-4  40355 3"
        t1 = Split(what, "  ")
        For j = 0 To UBound(t1)
            t2 = Split(t1(j)) : xx = t2(0) : nn = t2(1)
            t3 = Split(xx, "-") : x = CLng(t3(0))
            If UBound(t3) = 1 Then y = CLng(t3(1)) Else y = x
            t3 = Split(nn, "-") : n = CLng(t3(0))
            If UBound(t3) = 1 Then m = CLng(t3(1)) Else m = n
            genp(y) 'generate primes in p
            For g = x To y
                For q = n To m : part() : Next 'q
            Next 'g
        Next 'j
    End Sub 'Main

    Sub genp(high As Long)
        Dim c, i, k As Long
        Dim bk As Boolean
        p(1) = 2 : p(2) = 3 : c = 2 : i = p(c) + 2
        Do 'i
            k = 2 : bk = False
            Do While k * k <= i And Not bk 'k
                If i Mod p(k) = 0 Then bk = True
                k = k + 1
            Loop 'k
            If Not bk Then
                c = c + 1 : If c > UBound(p) Then ReDim Preserve p(UBound(p) + 8)
                p(c) = i
            End If
            i = i + 2
        Loop Until p(c) > high 'i
    End Sub 'genp

    Sub getp(z As Long)
        Dim w As Long
        If a(z) = 0 Then w = z - 1 : a(z) = a(w)
        a(z) = a(z) + 1 : w = a(z) : b(z) = p(w)
    End Sub 'getp

    Function list()
        Dim w As String
        w = b(1)
        If v = g Then
            For i = 2 To q : w = w & "+" & b(i) : Next
        Else
            w = "(not possible)"
        End If
        Return "primes: " & w
    End Function 'list

    Sub part()
        For i = LBound(a) To UBound(a) : a(i) = 0 : Next 'i
        For i = 1 To q : Call getp(i) : Next 'i
        Do While True : v = 0
            For s = 1 To q
                v = v + b(s)
                If v > g Then
                    If s = 1 Then Exit Do
                    For k = s To q : a(k) = 0 : Next 'k
                    For r = s - 1 To q : Call getp(r) : Next 'r
                    Continue Do
                End If
            Next 's
            If v = g Then Exit Do
            If v < g Then Call getp(q)
        Loop
        Console.WriteLine("partition " & g & " into " & q & " " & list())
    End Sub 'part

End Module 'PartitionIntoPrimes
Output:
partition 99809 into 1 primes: 99809
partition 18 into 2 primes: 5+13
partition 19 into 3 primes: 3+5+11
partition 20 into 4 primes: (not possible)
partition 2017 into 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
partition 22699 into 1 primes: 22699
partition 22699 into 2 primes: 2+22697
partition 22699 into 3 primes: 3+5+22691
partition 22699 into 4 primes: 2+3+43+22651
partition 40355 into 3 primes: 3+139+40213

Wren

Translation of: Kotlin
Library: Wren-math
Library: Wren-fmt

The relevant primes are generated here by a sieve.

import "./math" for Int, Nums
import "./fmt" for Fmt

var primes = Int.primeSieve(1e5)
var foundCombo = false

var findCombo // recursive
findCombo = Fn.new { |k, x, m, n, combo|
    if (k >= m) {
        if (Nums.sum(combo.map { |i| primes[i] }.toList) == x) {
            var s = (m > 1) ? "s" : ""
            Fmt.write("Partitioned $5d with $2d prime$s: ", x, m, s)
            for (i in 0...m) {
                System.write(primes[combo[i]])
                System.write((i < m - 1) ? "+" : "\n")
            }
            foundCombo = true
        }
    } else {
        for (j in 0...n) {
            if (k == 0 || j > combo[k - 1]) {
                combo[k] = j
                if (!foundCombo) findCombo.call(k + 1, x, m, n, combo)
            }
        }
    }
}

var partition = Fn.new { |x, m|
    if (x < 2 || m < 1 || m >= x) Fiber.abort("Invalid argument(s)")
    var n = primes.where { |p| p <= x }.count
    if (n < m) Fiber.abort("Not enough primes")
    var combo = List.filled(m, 0)
    foundCombo = false
    findCombo.call(0, x, m, n, combo)
    if (!foundCombo) {
        var s = (m > 1) ? "s" : ""
        Fmt.print("Partitioned $5d with $2d prime$s: (not possible)", x, m, s)
    }
}

var a = [
    [99809, 1],
    [18, 2],
    [19, 3],
    [20, 4],
    [2017, 24],
    [22699, 1],
    [22699, 2],
    [22699, 3],
    [22699, 4],
    [40355, 3]
]
for (p in a) partition.call(p[0], p[1])
Output:
Partitioned 99809 with  1 prime : 99809
Partitioned    18 with  2 primes: 5+13
Partitioned    19 with  3 primes: 3+5+11
Partitioned    20 with  4 primes: (not possible)
Partitioned  2017 with 24 primes: 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partitioned 22699 with  1 prime : 22699
Partitioned 22699 with  2 primes: 2+22697
Partitioned 22699 with  3 primes: 3+5+22691
Partitioned 22699 with  4 primes: 2+3+43+22651
Partitioned 40355 with  3 primes: 3+139+40213

zkl

Using the prime generator from task Extensible prime generator#zkl.

   // Partition integer N into M unique primes
fcn partition(N,M,idx=0,ps=List()){
   var [const] sieve=Utils.Generator(Import("sieve").postponed_sieve);
   var [const] primes=List();
   while(sieve.peek()<=N){ primes.append(sieve.next()) }
   if(M<2){
      z:=primes.find(N);
      return(if(Void!=z and z>=idx) ps.append(N) else Void);
   }
   foreach z in ([idx..primes.len()-1]){
      p:=primes[z];
      if(p<=N and self.fcn(N-p,M-1,z+1,ps)) return(ps.insert(0,p));
      if(p>N) break;
   }
   Void		// no solution
}
foreach n,m in (T( T(18,2),T(19,3),T(99809,1),T(20,4),T(2017,24),
      T(22699,1),T(22699,2),T(22699,3),T(22699,4),T(40355,3), )){
   ps:=partition(n,m);
   if(ps) println("Partition %d with %d prime(s): %s".fmt(n,m,ps.concat("+")));
   else   println("Can not partition %d with %d prime(s)".fmt(n,m));
}
Output:
Partition 18 with 2 prime(s): 5+13
Partition 19 with 3 prime(s): 3+5+11
Partition 99809 with 1 prime(s): 99809
Can not partition 20 with 4 prime(s)
Partition 2017 with 24 prime(s): 2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+97+1129
Partition 22699 with 1 prime(s): 22699
Partition 22699 with 2 prime(s): 2+22697
Partition 22699 with 3 prime(s): 3+5+22691
Partition 22699 with 4 prime(s): 2+3+43+22651
Partition 40355 with 3 prime(s): 3+139+40213