Munching squares

From Rosetta Code
Revision as of 15:33, 25 October 2015 by Trizen (talk | contribs) (→‎{{header|Sidef}}: modified code to work with the latest version of Sidef)
Task
Munching squares
You are encouraged to solve this task according to the task description, using any language you may know.

Render a graphical pattern where each pixel is colored by the value of 'x xor y' from an arbitrary color table.

Ada

Library: GtkAda

Uses the Cairo component of GtkAda to create and save as png <lang Ada>with Cairo; use Cairo; with Cairo.Png; use Cairo.Png; with Cairo.Image_Surface; use Cairo.Image_Surface; procedure XorPattern is

  type xorable is mod 256;
  Surface : Cairo_Surface;
  Data : RGB24_Array_Access;
  Status : Cairo_Status;
  Num : Byte;

begin

  Data := new RGB24_Array(0..256*256-1);
  for x in Natural range 0..255 loop
     for y in Natural range 0..255 loop
        Num := Byte(xorable(x) xor xorable(y));
        Data(x+256*y) := RGB24_Data'(Num,0,Num);
     end loop;
  end loop;
  Surface := Create_For_Data_RGB24(Data, 256, 256);
  Status := Write_To_Png (Surface, "AdaXorPattern.png");
  pragma Assert (Status = Cairo_Status_Success);

end XorPattern;</lang>

Output:

Ada Output

Burlesque

<lang burlesque> blsq ) 0 25r@{0 25r@\/{$$Sh2' P[}\/+]m[}m[sp

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1  0  3  2  5  4  7  6  9  8 11 10 13 12 15 14 17 16 19 18 21 20 23 22 25 24
2  3  0  1  6  7  4  5 10 11  8  9 14 15 12 13 18 19 16 17 22 23 20 21 26 27
3  2  1  0  7  6  5  4 11 10  9  8 15 14 13 12 19 18 17 16 23 22 21 20 27 26
4  5  6  7  0  1  2  3 12 13 14 15  8  9 10 11 20 21 22 23 16 17 18 19 28 29
5  4  7  6  1  0  3  2 13 12 15 14  9  8 11 10 21 20 23 22 17 16 19 18 29 28
6  7  4  5  2  3  0  1 14 15 12 13 10 11  8  9 22 23 20 21 18 19 16 17 30 31
7  6  5  4  3  2  1  0 15 14 13 12 11 10  9  8 23 22 21 20 19 18 17 16 31 30
8  9 10 11 12 13 14 15  0  1  2  3  4  5  6  7 24 25 26 27 28 29 30 31 16 17
9  8 11 10 13 12 15 14  1  0  3  2  5  4  7  6 25 24 27 26 29 28 31 30 17 16

10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 26 27 24 25 30 31 28 29 18 19 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 27 26 25 24 31 30 29 28 19 18 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 28 29 30 31 24 25 26 27 20 21 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 29 28 31 30 25 24 27 26 21 20 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 30 31 28 29 26 27 24 25 22 23 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30 1 0 3 2 5 4 7 6 9 8 18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29 2 3 0 1 6 7 4 5 10 11 19 18 17 16 23 22 21 20 27 26 25 24 31 30 29 28 3 2 1 0 7 6 5 4 11 10 20 21 22 23 16 17 18 19 28 29 30 31 24 25 26 27 4 5 6 7 0 1 2 3 12 13 21 20 23 22 17 16 19 18 29 28 31 30 25 24 27 26 5 4 7 6 1 0 3 2 13 12 22 23 20 21 18 19 16 17 30 31 28 29 26 27 24 25 6 7 4 5 2 3 0 1 14 15 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0 15 14 24 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23 8 9 10 11 12 13 14 15 0 1 25 24 27 26 29 28 31 30 17 16 19 18 21 20 23 22 9 8 11 10 13 12 15 14 1 0 </lang>

Must be converted to an image with a seperate program.

C

<lang c>#include <stdlib.h>

  1. include <stdio.h>
  2. include <math.h>
  3. include <string.h>

void hue_to_rgb(double hue, double sat, unsigned char *p) { double x; int c = 255 * sat; hue /= 60; x = (1 - fabs(fmod(hue, 2) - 1)) * 255;

switch((int)hue) { case 0: p[0] = c; p[1] = x; p[2] = 0; return; case 1: p[0] = x; p[1] = c; p[2] = 0; return; case 2: p[0] = 0; p[1] = c; p[2] = x; return; case 3: p[0] = 0; p[1] = x; p[2] = c; return; case 4: p[0] = x; p[1] = 0; p[2] = c; return; case 5: p[0] = c; p[1] = 0; p[2] = x; return; } }

int main(void) { const int size = 512; int i, j; unsigned char *colors = malloc(size * 3); unsigned char *pix = malloc(size * size * 3), *p; FILE *fp;

for (i = 0; i < size; i++) hue_to_rgb(i * 240. / size, i * 1. / size, colors + 3 * i);

for (i = 0, p = pix; i < size; i++) for (j = 0; j < size; j++, p += 3) memcpy(p, colors + (i ^ j) * 3, 3);

fp = fopen("xor.ppm", "wb"); fprintf(fp, "P6\n%d %d\n255\n", size, size); fwrite(pix, size * size * 3, 1, fp); fclose(fp);

return 0; }</lang>

Output:

C output

C++

<lang cpp>

  1. include <windows.h>
  2. include <string>

//-------------------------------------------------------------------------------------------------- using namespace std;

//-------------------------------------------------------------------------------------------------- const int BMP_SIZE = 512;

//-------------------------------------------------------------------------------------------------- class myBitmap { public:

   myBitmap() : pen( NULL ), brush( NULL ), clr( 0 ), wid( 1 ) {}
   ~myBitmap()
   {

DeleteObject( pen ); DeleteObject( brush ); DeleteDC( hdc ); DeleteObject( bmp );

   }

   bool create( int w, int h )
   {

BITMAPINFO bi; ZeroMemory( &bi, sizeof( bi ) ); bi.bmiHeader.biSize = sizeof( bi.bmiHeader ); bi.bmiHeader.biBitCount = sizeof( DWORD ) * 8; bi.bmiHeader.biCompression = BI_RGB; bi.bmiHeader.biPlanes = 1; bi.bmiHeader.biWidth = w; bi.bmiHeader.biHeight = -h;

HDC dc = GetDC( GetConsoleWindow() ); bmp = CreateDIBSection( dc, &bi, DIB_RGB_COLORS, &pBits, NULL, 0 ); if( !bmp ) return false;

hdc = CreateCompatibleDC( dc ); SelectObject( hdc, bmp ); ReleaseDC( GetConsoleWindow(), dc );

width = w; height = h; return true;

   }

   void clear( BYTE clr = 0 )
   {

memset( pBits, clr, width * height * sizeof( DWORD ) );

   }

   void setBrushColor( DWORD bClr )
   {

if( brush ) DeleteObject( brush ); brush = CreateSolidBrush( bClr ); SelectObject( hdc, brush );

   }

   void setPenColor( DWORD c ) { clr = c; createPen(); }

   void setPenWidth( int w )   { wid = w; createPen(); }

   void saveBitmap( string path )
   {

BITMAPFILEHEADER fileheader; BITMAPINFO infoheader; BITMAP bitmap; DWORD wb;

GetObject( bmp, sizeof( bitmap ), &bitmap ); DWORD* dwpBits = new DWORD[bitmap.bmWidth * bitmap.bmHeight];

ZeroMemory( dwpBits, bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD ) ); ZeroMemory( &infoheader, sizeof( BITMAPINFO ) ); ZeroMemory( &fileheader, sizeof( BITMAPFILEHEADER ) );

infoheader.bmiHeader.biBitCount = sizeof( DWORD ) * 8; infoheader.bmiHeader.biCompression = BI_RGB; infoheader.bmiHeader.biPlanes = 1; infoheader.bmiHeader.biSize = sizeof( infoheader.bmiHeader ); infoheader.bmiHeader.biHeight = bitmap.bmHeight; infoheader.bmiHeader.biWidth = bitmap.bmWidth; infoheader.bmiHeader.biSizeImage = bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD );

fileheader.bfType = 0x4D42; fileheader.bfOffBits = sizeof( infoheader.bmiHeader ) + sizeof( BITMAPFILEHEADER ); fileheader.bfSize = fileheader.bfOffBits + infoheader.bmiHeader.biSizeImage;

GetDIBits( hdc, bmp, 0, height, ( LPVOID )dwpBits, &infoheader, DIB_RGB_COLORS );

HANDLE file = CreateFile( path.c_str(), GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL ); WriteFile( file, &fileheader, sizeof( BITMAPFILEHEADER ), &wb, NULL ); WriteFile( file, &infoheader.bmiHeader, sizeof( infoheader.bmiHeader ), &wb, NULL ); WriteFile( file, dwpBits, bitmap.bmWidth * bitmap.bmHeight * 4, &wb, NULL ); CloseHandle( file );

delete [] dwpBits;

   }

   HDC getDC() const     { return hdc; }
   int getWidth() const  { return width; }
   int getHeight() const { return height; }

private:

   void createPen()
   {

if( pen ) DeleteObject( pen ); pen = CreatePen( PS_SOLID, wid, clr ); SelectObject( hdc, pen );

   }

   HBITMAP bmp;
   HDC     hdc;
   HPEN    pen;
   HBRUSH  brush;
   void    *pBits;
   int     width, height, wid;
   DWORD   clr;

}; //-------------------------------------------------------------------------------------------------- class mSquares { public:

   mSquares()
   {
       bmp.create( BMP_SIZE, BMP_SIZE );
       createPallete();
   }
   void draw()
   {

HDC dc = bmp.getDC(); for( int y = 0; y < BMP_SIZE; y++ ) for( int x = 0; x < BMP_SIZE; x++ ) { int c = ( x ^ y ) % 256; SetPixel( dc, x, y, clrs[c] ); }

BitBlt( GetDC( GetConsoleWindow() ), 30, 30, BMP_SIZE, BMP_SIZE, dc, 0, 0, SRCCOPY ); //bmp.saveBitmap( "f:\\rc\\msquares_cpp.bmp" );

   }

private:

   void createPallete()
   {

for( int x = 0; x < 256; x++ ) clrs[x] = RGB( x<<1, x, x<<2 );//rand() % 180 + 50, rand() % 200 + 50, rand() % 180 + 50 );

   }
   unsigned int clrs[256];
   myBitmap bmp;

}; //-------------------------------------------------------------------------------------------------- int main( int argc, char* argv[] ) {

   ShowWindow( GetConsoleWindow(), SW_MAXIMIZE );
   srand( GetTickCount() );
   mSquares s; s.draw();
   return system( "pause" );

} //-------------------------------------------------------------------------------------------------- </lang>

C#

<lang csharp>using System.Drawing; using System.Drawing.Imaging; using System.Linq;

class XORPattern {

   static void Main()
   {
       var size = 0x100;
       var black = Color.Black.ToArgb();
       var palette = Enumerable.Range(black, size).Select(Color.FromArgb).ToArray();
       using (var image = new Bitmap(size, size))
       {
           for (var x = 0; x < size; x++)
           {
               for (var y = 0; y < size; y++)
               {
                   image.SetPixel(x, y, palette[x ^ y]);
               }
           }
           image.Save("XORPatternCSharp.png", ImageFormat.Png);
       }
   }

}</lang>

Output:

XORPatternCSharp.png

D

<lang d>void main() {

   import std.stdio;
   enum width = 512, height = 512;
   auto f = File("xor_pattern.ppm", "wb");
   f.writefln("P6\n%d %d\n255", width, height);
   foreach (immutable y; 0 .. height)
       foreach (immutable x; 0 .. width) {
           immutable c = (x ^ y) & ubyte.max;
           immutable ubyte[3] u3 = [255 - c, c / 2, c];
           f.rawWrite(u3);
       }

}</lang>

GLSL

This is an example that will work directly on shadertoy.com, Example [1] <lang GLSL>vec3 color; float c,p; vec2 b;

void main(void) { vec2 uv = gl_FragCoord.xy / iResolution.xy; float scale = iResolution.x / iResolution.y; uv = uv-0.5; uv.y/=scale;

b = uv*256.0+256.0; c = 0.0;


for(float i=16.0;i>=1.0;i-=1.0) { p = pow(2.0,i);

if((p < b.x) ^^ (p < b.y)) { c += p; }

if(p < b.x) { b.x -= p; }

if(p < b.y) { b.y -= p; }

}

c=mod(c/128.0,1.0);

color = vec3(sin(c+uv.x*cos(uv.y*1.2)), tan(c+uv.y-0.3)*1.1, cos(c-uv.y+0.9));

gl_FragColor = vec4(color,1.0); }</lang>

Gnuplot

<lang gnuplot>set pm3d map set size square set isosamples 255,255 splot [0:255][0:255]-(floor(x)^floor(y))</lang>

Output:

Gnuplot output

Haskell

<lang haskell>import Data.ByteString import Data.Bits

main = Data.ByteString.writeFile "out.pgm" (pack (fmap (fromIntegral . fromEnum) "P5\n256 256\n256\n" ++ [x `xor` y | x <- [0..255], y <- [0..255]])) </lang>

Go

<lang go>package main

import (

   "image"
   "image/png"
   "os"

)

func main() {

   g := image.NewGray(image.Rect(0, 0, 256, 256))
   for i := range g.Pix {
       g.Pix[i] = uint8(i>>8 ^ i)
   }
   f, _ := os.Create("xor.png")
   png.Encode(f, g)
   f.Close()

}</lang>

Icon and Unicon

512x512 bit green and red

<lang Icon>link printf

procedure main(A) #: XOR graphic

  wsize := 512
  cmax  := 32768
  wparms := ["Xmas Xor Graphic","g",sprintf("size=%d,%d",wsize),"bg=black"]
  &window := open!wparms | stop("Unable to open window")

  every y := 0 to wsize - 1 do
     every x := 0 to wsize - 1 do {
        c := cmax/wsize * iand(wsize-1,ixor(x,y))
        Fg(sprintf("%d,%d,%d",c,cmax-c,0))
        DrawPoint(x,y)
        }

 until Event() == &lpress     # wait for left button to quit
 close(&window)

end</lang>

printf.icn provides formatting

J

<lang J> require 'viewmat'

  viewmat ~:"1/&.#: ~ i.256</lang>

Java

Library: Swing

This example will repeat the pattern if you expand the window. <lang java>import java.awt.Color; import java.awt.Graphics;

import javax.swing.JFrame; import javax.swing.JPanel;

public class XorPattern extends JFrame{

   private JPanel xorPanel;
   public XorPattern(){
       xorPanel = new JPanel(){
           @Override
           public void paint(Graphics g) {
               for(int y = 0; y < getHeight();y++){
                   for(int x = 0; x < getWidth();x++){
                       g.setColor(new Color(0, (x ^ y) % 256, 0));
                       g.drawLine(x, y, x, y);
                   }
               }
           }
       };
       add(xorPanel);
       setSize(300, 300);
       setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
       setVisible(true);
   }
   public static void main(String[] args){
       new XorPattern();
   }

}</lang>

jq

Works with: jq version 1.4

The following is an adaptation of the Ruby entry, but generates an SVG image file: <lang sh>jq -n -r -f Munching_squares.jq > Munching_squares.svg</lang> Part 1: Infrastructure <lang jq># Convert the input integer to an array of bits with lsb first def integer_to_lsb:

 [recurse(if . > 0 then ./2|floor else empty end) | . % 2] ;
  1. input array of bits (with lsb first) is converted to an integer

def lsb_to_integer:

 reduce .[] as $bit
   # state: [power, ans]
   ([1,0]; (.[0] * 2) as $b | [$b, .[1] + (.[0] * $bit)])
 | .[1];

def xor(x;y):

  def lxor(a;b):  # a and/or b may be null
    if a == 1 then if b==1 then 0 else 1 end
    elif b==1 then if a==1 then 0 else 1 end
    else 0
    end;
  (x|integer_to_lsb) as $s
  | (y|integer_to_lsb) as $t
  | ([$s|length, $t|length] | max) as $length
  | reduce range(0;$length) as $i
     ([]; . + [ lxor($s[$i]; $t[$i]) ] )
  | lsb_to_integer;</lang>

Part 2: SVG <lang jq>def rgb2rgb:

 def p: (. + 0.5) | floor;  # to nearest integer
 "rgb(\(.red|p),\(.green|p),\(.blue|p))";

def svg(width; height):

 "<svg width='\(width // "100%")' height='\(height // "100%")'
          xmlns='http://www.w3.org/2000/svg'>";

def pixel(x; y; color):

 (color | if type == "string" then . else rgb2rgb end) as $c
 | "<circle r='1' cx='\(x)' cy='\(y)' fill='\($c)' />";</lang>

Part 3: xor pattern <lang jq># rgb is a JSON object: { "red": _, "green": _, "blue": _}

def xor_pattern(width; height; rgb1; rgb2):

   # create colour table
   256 as $size 
   | (reduce range(0;$size) as $i
       ([]; . + [ 
       {"red":   (rgb1.red + (rgb2.red - rgb1.red) * $i / $size), 
        "green": (rgb1.green + (rgb2.green - rgb1.green) * $i / $size), 
        "blue":  (rgb1.blue + (rgb2.blue - rgb1.blue) * $i / $size) }])
     )  as $colours
   # create the image
   | svg(width; height),
     ( (range(0;width) as $x
       | range(0;height) as $y
       |   pixel($x; $y; $colours[ xor($x; $y) % $size] ) ) ),
    "</svg>" ;</lang>

Part 4: Example <lang jq>def black: { "red": 0, "green": 0, "blue": 0}; def red: black + { "red": 255 }; def yellow: red + { "green": 255 };

xor_pattern(384; 384; red; yellow)</lang>

Liberty BASIC

<lang lb>

   nomainwin
   w =512
   '   allow for title bar and window border
   WindowWidth  =w +2
   WindowHeight =w +34
   open "XOR Pattern" for graphics_nsb_nf as #w
   #w "trapclose quit"
   #w "down"
   for x =0 to w -1
       for y =0 to w -1
           b =( x xor y) and 255
           print b
           #w "color "; 255 -b; " "; b /2; " "; b
           #w "set "; x; " "; w -y -1
           scan
       next y
   next x
   #w "flush"
   wait
   sub quit j$
   close #w
   end
   end sub

</lang> Image available at [[2]]

Mathematica

<lang Mathematica>ListDensityPlot[

Table[Table[
  FromDigits[BitXor[IntegerDigits[x, 2, 8], IntegerDigits[y, 2, 8]], 
   2], {x, 0, 255}], {y, 0, 255}]]</lang>
Output #1:

Mathematica output #1

<lang Mathematica>ArrayPlot[Array[BitXor, {511, 511}]]</lang>

Output #2:

Mathematica output #2

MATLAB

<lang matlab>size = 256; [x,y] = meshgrid([0:size-1]);

c = bitxor(x,y);

colormap bone(size); image(c); axis equal;</lang>

Output:

MATLAB output

OCaml

<lang ocaml>open Graphics

let () =

 open_graph "";
 resize_window 256 256;
 for y = 0 to pred (size_y()) do
   for x = 0 to pred (size_x()) do
     let v = (x lxor y) land 0xFF in
     set_color (rgb v (255 - v) 0);
     plot x y
   done;
 done;
 ignore(read_key())</lang>

Run with:

$ ocaml graphics.cma xor_pattern.ml
Output:

OCaml output

Octave

<lang Octave>size = 256; [x,y] = meshgrid([0:size-1]);

c = bitxor(x,y);

colormap(jet(size)); image(c); axis equal;</lang>

Output:

Octave output

Perl

<lang perl>use GD;

my $img = new GD::Image(256, 256, 1);

for my $y(0..255) {

       for my $x(0..255) {
               my $color = $img->colorAllocate( abs(255 - $x - $y),  (255-$x) ^ $y , $x ^ (255-$y));
               $img->setPixel($x, $y, $color);
       }

}

print $img->png</lang>

Output:

Perl output

Perl 6

Here's one simple way:

<lang perl6>my $ppm = open("munching.ppm", :w, :bin) or

 die "Can't create munching.ppm: $!";

$ppm.print(q :to 'EOT'); P3 256 256 255 EOT

for 0 .. 255 -> $row {

   for 0 .. 255 -> $col {
       my $color = $row +^ $col;
       $ppm.print("0 $color 0 ");
   }
   $ppm.say();

}

$ppm.close(); </lang>

Another way:

<lang perl6>my @colors = map -> $r, $g, $b { Buf.new: $r, $g, $b }, map -> $x { floor ($x/256) ** 3 * 256 }, ((0...255) Z (255...0) Z (0,2...254),(254,252...0));


my $PPM = open "munching.ppm", :w, :bin or die "Can't create munching.ppm: $!";

$PPM.print: qq:to/EOH/;

   P6
   # munching.pgm
   256 256 
   255
   EOH

$PPM.write: @colors[$_] for ^256 X+^ ^256;

$PPM.close;</lang> Perl 6 output

PHP

<lang php>header("Content-Type: image/png");

$w = 256; $h = 256;

$im = imagecreate($w, $h)

   or die("Cannot Initialize new GD image stream");

$color = array(); for($i=0;$i<256;$i++) {

       array_push($color,imagecolorallocate($im,sin(($i)*(2*3.14/256))*128+128,$i/2,$i));

}

for($i=0;$i<$w;$i++) {

       for($j=0;$j<$h;$j++)
       {
               imagesetpixel($im,$i,$j,$color[$i^$j]);
       }

}

imagepng($im); imagedestroy($im);</lang>

Output:

PHP output

PL/I

<lang PL/I>munch: procedure options (main); /* 21 May 2014 */

  declare screen (0:255, 0:255) bit(24) aligned;
  declare b bit(8) aligned;
  declare (x, y) unsigned fixed binary (8);
  do x = 0 upthru hbound(screen,2);
     do y = 0 upthru hbound(screen,1);
        b = unspec(x) ^ unspec(y);
        screen(x,y) = b;
     end;
  end;
  call writeppm(screen);

end munch;</lang>

Prolog

Works with SWI-Prolog and his GUI XPCE. <lang Prolog>xor_pattern :- new(D, window('XOR Pattern')), send(D, size, size(512,512)), new(Img, image(@nil, width := 512, height := 512 , kind := pixmap)),

forall(between(0,511, I), ( forall(between(0,511, J), ( V is I xor J, R is (V * 1024) mod 65536, G is (65536 - V * 1024) mod 65536, ( V mod 2 =:= 0 -> B is (V * 4096) mod 65536  ; B is (65536 - (V * 4096)) mod 65536), send(Img, pixel(I, J, colour(@default, R, G, B))))))),

new(Bmp, bitmap(Img)), send(D, display, Bmp, point(0,0)), send(D, open). </lang>

PureBasic

<lang purebasic>#palletteSize = 128 Procedure.f XorPattern(x, y) ;compute the gradient value from the pixel values

 Protected result = x ! y
 ProcedureReturn Mod(result, #palletteSize) / #palletteSize

EndProcedure

Procedure drawPattern()

 StartDrawing(ImageOutput(0))
   DrawingMode(#PB_2DDrawing_Gradient)
   CustomGradient(@XorPattern())
   ;specify a gradient pallette from which only specific indexes will be used
   For i = 1 To #palletteSize 
     GradientColor(1 / i, i * $BACE9B) ; or alternatively use $BEEFDEAD
   Next 
   Box(0, 0, ImageWidth(0), ImageHeight(0))
 StopDrawing()

EndProcedure

If OpenWindow(0, 0, 0, 128, 128, "XOR Pattern", #PB_Window_SystemMenu)

 CreateImage(0, WindowWidth(0), WindowHeight(0))
 drawPattern()
 ImageGadget(0, 0, 0, ImageWidth(0), ImageHeight(0), ImageID(0))
 Repeat
   event = WaitWindowEvent(20)
 Until event = #PB_Event_CloseWindow

EndIf</lang> Sample display of PureBasic solution

Python

Library: PIL

<lang Python>import Image, ImageDraw

image = Image.new("RGB", (256, 256)) drawingTool = ImageDraw.Draw(image)

for x in range(256):

   for y in range(256):
       drawingTool.point((x, y), (0, x^y, 0))

del drawingTool image.save("xorpic.png", "PNG")</lang> Sample produced by the above code

Racket

<lang racket>

  1. lang racket

(require racket/draw) (define palette (for/vector ([x 256]) (make-object color% 0 0 x))) (define bm (make-object bitmap% 256 256)) (define dc (new bitmap-dc% [bitmap bm])) (for* ([x 256] [y 256])

 (define c (vector-ref palette (bitwise-xor x y)))
 (send dc set-pixel x y c))

bm </lang>

Ruby

Uses Raster graphics operations/Ruby

Sample output from Ruby program

<lang ruby>load 'raster_graphics.rb'

class Pixmap

 def self.xor_pattern(width, height, rgb1, rgb2)
   # create colour table
   size = 256
   colours = Array.new(size) do |i|
     RGBColour.new(
       (rgb1.red + (rgb2.red - rgb1.red) * i / size), 
       (rgb1.green + (rgb2.green - rgb1.green) * i / size), 
       (rgb1.blue + (rgb2.blue - rgb1.blue) * i / size), 
     )
   end
   # create the image
   pixmap = new(width, height)
   pixmap.each_pixel do |x, y|
     pixmap[x,y] = colours[(x^y)%size]
   end
   pixmap
 end

end

img = Pixmap.xor_pattern(384, 384, RGBColour::RED, RGBColour::YELLOW) img.save_as_png('xorpattern.png')</lang>

Run BASIC

<lang runbasic>w = 100 graphic #g, w,w for x = 0 to w

 for y = 0 to w
   b = (x xor y) and 255
   #g color(255 -b,b /2,b)
   #g "set "; x; " "; w -y -1
 next y

next x render #g

  1. g "flush"</lang>

Scala

Library: Scala

<lang Scala>import scala.swing.Swing.pair2Dimension import scala.swing.{ Color, Graphics2D, MainFrame, Panel, SimpleSwingApplication }

object XorPattern extends SimpleSwingApplication {

 val ui = new Panel {
   override def paintComponent(g: Graphics2D) = {
     super.paintComponent(g)
     for {
       y <- 0 until size.getHeight().toInt
       x <- 0 until size.getWidth().toInt
     } {
       g.setColor(new Color(0, (x ^ y) % 256, 0))
       g.drawLine(x, y, x, y)
     }
   }
 }
 def top = new MainFrame {
   preferredSize = (300, 300)
   title = "Rosetta Code >>> Task: Munching squares | Language: Scala"
   contents = ui
   centerOnScreen()
 }

}</lang>

Sidef

Translation of: Perl

<lang ruby>require 'GD';

var gd_img = 'GD::Image'.to_caller; var img = gd_img.new(256, 256, 1);

0...255 -> each { |y|

   0...255 -> each { |x|
       var color = img.colorAllocate((255 - x - y).abs, (255-x)^y, x^(255-y));
       img.setPixel(x, y, color);
   }

}

if (var fh = %f(xor.png).open('>:raw')) {

   fh << img.png;

}</lang>

Tcl

Library: Tk

<lang tcl>package require Tk

proc xorImage {img table} {

   set data {}
   set h [image height $img]
   set w [image width $img]
   for {set y 0} {$y < $h} {incr y} {

set row {} for {set x 0} {$x < $w} {incr x} { lappend row [lindex $table [expr {($x^$y) % [llength $table]}]] } lappend data $row

   }
   $img put $data

} proc inRange {i f t} {expr {$f + ($t-$f)*$i/255}} proc mkTable {rf rt gf gt bf bt} {

   for {set i 0} {$i < 256} {incr i} {

lappend tbl [format "#%02x%02x%02x" \ [inRange $i $rf $rt] [inRange $i $gf $gt] [inRange $i $bf $bt]]

   }
   return $tbl

}

set img [image create photo -width 512 -height 512] xorImage $img [mkTable 0 255 64 192 255 0] pack [label .l -image $img]</lang>

TI-83 BASIC

Due to the TI-83's 1 bit black and white display, this program uses the home screen and a gradient of characters. Since the TI-83 does not use a standard encoding, the first Sto→ to Str1 may be subjectively interpreted.


<lang ti-83b>PROGRAM:XORPATT " •.-,+-°-1+o*:πOX"→Str1

ClrHome

{0,0,0,0}→L1 {0,0,0,0)→L2

For(I,1,8,1) For(J,1,16,1) J→A I→B

If A>8 Then A-8→A 1→L1(1) Else 0→L1(1) End

If A>4 Then A-4→A 1→L1(2) Else 0→L1(2) End

If A>2 Then A-2→A 1→L1(3) Else 0→L1(3) End

If A>1 Then 1→L1(4) Else 0→L1(4) End

0→L2(1)

If B>4 Then B-4→B 1→L2(2) Else 0→L2(2) End

If B>2 Then B-2→B 1→L2(3) Else 0→L2(3) End

If B>1 Then 1→L2(4) Else 0→L2(4) End

L1≠L2→L3 8L3(1)+4L3(2)+2L3(3)+L3(4)→C Output(I,J,sub(Str1,C+1,1))

End End Pause </lang>

XPL0

<lang XPL0>include c:\cxpl\codes; \intrinsic 'code' declarations int X, Y; [SetVid($101); \set 640x480 graphics with 8-bit color port($3C8):= 0; \set color registers with beautiful shades for X:= 0 to 256-1 do

       [port($3C9):= X>>1;     \red
        port($3C9):= X>>3;     \green
        port($3C9):= X;        \blue
        ];

for Y:= 0 to 256-1 do \"color table" is array of 256 registers

   for X:= 0 to 256-1 do
       Point(X, Y, X|Y);       \"|" = XOR, not OR which is "!"

X:= ChIn(1); \wait for keystroke SetVid(3); \restore normal text mode ]</lang>

Output:

zkl

Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl

Translation of: XPL0

For a kaleidoscopic image, play with coolness. <lang zkl>fcn muncher{

  bitmap:=PPM(256,256);
  coolness:=(1).random(0x10000);  // 55379, 18180, 40, 51950, 57619, 43514, 65465
  foreach y,x in ([0 .. 255],[0 .. 255]){
     b:=x.bitXor(y);	// shades of blue

// rgb:=b*coolness; // kaleidoscopic image // rgb:=(b*coolness + b)*coolness + b; // more coolness

     rgb:=(b*0x10000 + b)*0x10000 + b;  // copy ADA image
     bitmap[x,y]=rgb;
  }
  bitmap.write(File("foo.ppm","wb"));

}();</lang> For a cheap slide show (on Linux): <lang zkl>while(1){ muncher(); Atomic.sleep(3); }</lang> run ImageViewer on foo.ppm and watch it [auto] update as the image changes.

Output:

Same as the ADA image: Ada Output