Multiple regression

From Rosetta Code
Revision as of 19:11, 12 June 2024 by Jjuanhdez (talk | contribs) (Added various BASIC dialects (BASIC256, Chipmunk Basic, QBasic, QB64, True BASIC and Yabasic))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Task
Multiple regression
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Given a set of data vectors in the following format:

   
   

Compute the vector using ordinary least squares regression using the following equation:

   

You can assume y is given to you as a vector (a one-dimensional array), and X is given to you as a two-dimensional array (i.e. matrix).

Ada

Extension of Reduced row echelon form#Ada:

matrices.ads:

generic
   type Element_Type is private;
   Zero : Element_Type;
   One : Element_Type;
   with function "+" (Left, Right : Element_Type) return Element_Type is <>;
   with function "-" (Left, Right : Element_Type) return Element_Type is <>;
   with function "*" (Left, Right : Element_Type) return Element_Type is <>;
   with function "/" (Left, Right : Element_Type) return Element_Type is <>;
package Matrices is
   type Vector is array (Positive range <>) of Element_Type;
   type Matrix is
     array (Positive range <>, Positive range <>) of Element_Type;

   function "*" (Left, Right : Matrix) return Matrix;
   function Invert (Source : Matrix) return Matrix;
   function Reduced_Row_Echelon_Form (Source : Matrix) return Matrix;
   function Regression_Coefficients
     (Source     : Vector;
      Regressors : Matrix)
      return       Vector;
   function To_Column_Vector
     (Source : Matrix;
      Row    : Positive := 1)
      return   Vector;
   function To_Matrix
     (Source        : Vector;
      Column_Vector : Boolean := True)
      return          Matrix;
   function To_Row_Vector
     (Source : Matrix;
      Column : Positive := 1)
      return   Vector;
   function Transpose (Source : Matrix) return Matrix;

   Size_Mismatch     : exception;
   Not_Square_Matrix : exception;
   Not_Invertible    : exception;
end Matrices;

matrices.adb:

package body Matrices is
   function "*" (Left, Right : Matrix) return Matrix is
      Result : Matrix (Left'Range (1), Right'Range (2)) :=
        (others => (others => Zero));
   begin
      if Left'Length (2) /= Right'Length (1) then
         raise Size_Mismatch;
      end if;
      for I in Result'Range (1) loop
         for K in Result'Range (2) loop
            for J in Left'Range (2) loop
               Result (I, K) := Result (I, K) + Left (I, J) * Right (J, K);
            end loop;
         end loop;
      end loop;
      return Result;
   end "*";

   function Invert (Source : Matrix) return Matrix is
      Expanded : Matrix (Source'Range (1),
         Source'First (2) .. Source'Last (2) * 2);
      Result   : Matrix (Source'Range (1), Source'Range (2));
   begin
      -- Matrix has to be square.
      if Source'Length (1) /= Source'Length (2) then
         raise Not_Square_Matrix;
      end if;
      -- Copy Source into Expanded matrix and attach identity matrix to right
      for Row in Source'Range (1) loop
         for Col in Source'Range (2) loop
            Expanded (Row, Col)                    := Source (Row, Col);
            Expanded (Row, Source'Last (2) + Col)  := Zero;
         end loop;
         Expanded (Row, Source'Last (2) + Row)  := One;
      end loop;
      Expanded := Reduced_Row_Echelon_Form (Source => Expanded);
      -- Copy right side to Result (= inverted Source)
      for Row in Result'Range (1) loop
         for Col in Result'Range (2) loop
            Result (Row, Col) := Expanded (Row, Source'Last (2) + Col);
         end loop;
      end loop;
      return Result;
   end Invert;

   function Reduced_Row_Echelon_Form (Source : Matrix) return Matrix is
      procedure Divide_Row
        (From    : in out Matrix;
         Row     : Positive;
         Divisor : Element_Type)
      is
      begin
         for Col in From'Range (2) loop
            From (Row, Col) := From (Row, Col) / Divisor;
         end loop;
      end Divide_Row;

      procedure Subtract_Rows
        (From                : in out Matrix;
         Subtrahend, Minuend : Positive;
         Factor              : Element_Type)
      is
      begin
         for Col in From'Range (2) loop
            From (Minuend, Col) := From (Minuend, Col) -
                                   From (Subtrahend, Col) * Factor;
         end loop;
      end Subtract_Rows;

      procedure Swap_Rows (From : in out Matrix; First, Second : Positive) is
         Temporary : Element_Type;
      begin
         for Col in From'Range (2) loop
            Temporary          := From (First, Col);
            From (First, Col)  := From (Second, Col);
            From (Second, Col) := Temporary;
         end loop;
      end Swap_Rows;

      Result : Matrix   := Source;
      Lead   : Positive := Result'First (2);
      I      : Positive;
   begin
      Rows : for Row in Result'Range (1) loop
         exit Rows when Lead > Result'Last (2);
         I := Row;
         while Result (I, Lead) = Zero loop
            I := I + 1;
            if I = Result'Last (1) then
               I    := Row;
               Lead := Lead + 1;
               exit Rows when Lead = Result'Last (2);
            end if;
         end loop;
         if I /= Row then
            Swap_Rows (From => Result, First => I, Second => Row);
         end if;
         Divide_Row
           (From    => Result,
            Row     => Row,
            Divisor => Result (Row, Lead));
         for Other_Row in Result'Range (1) loop
            if Other_Row /= Row then
               Subtract_Rows
                 (From       => Result,
                  Subtrahend => Row,
                  Minuend    => Other_Row,
                  Factor     => Result (Other_Row, Lead));
            end if;
         end loop;
         Lead := Lead + 1;
      end loop Rows;
      return Result;
   end Reduced_Row_Echelon_Form;

   function Regression_Coefficients
     (Source     : Vector;
      Regressors : Matrix)
      return       Vector
   is
      Result : Matrix (Regressors'Range (2), 1 .. 1);
   begin
      if Source'Length /= Regressors'Length (1) then
         raise Size_Mismatch;
      end if;
      declare
         Regressors_T : constant Matrix := Transpose (Regressors);
      begin
         Result := Invert (Regressors_T * Regressors) *
                   Regressors_T *
                   To_Matrix (Source);
      end;
      return To_Row_Vector (Source => Result);
   end Regression_Coefficients;

   function To_Column_Vector
     (Source : Matrix;
      Row    : Positive := 1)
      return   Vector
   is
      Result : Vector (Source'Range (2));
   begin
      for Column in Result'Range loop
         Result (Column) := Source (Row, Column);
      end loop;
      return Result;
   end To_Column_Vector;

   function To_Matrix
     (Source        : Vector;
      Column_Vector : Boolean := True)
      return          Matrix
   is
      Result : Matrix (1 .. 1, Source'Range);
   begin
      for Column in Source'Range loop
         Result (1, Column) := Source (Column);
      end loop;
      if Column_Vector then
         return Transpose (Result);
      else
         return Result;
      end if;
   end To_Matrix;

   function To_Row_Vector
     (Source : Matrix;
      Column : Positive := 1)
      return   Vector
   is
      Result : Vector (Source'Range (1));
   begin
      for Row in Result'Range loop
         Result (Row) := Source (Row, Column);
      end loop;
      return Result;
   end To_Row_Vector;

   function Transpose (Source : Matrix) return Matrix is
      Result : Matrix (Source'Range (2), Source'Range (1));
   begin
      for Row in Result'Range (1) loop
         for Column in Result'Range (2) loop
            Result (Row, Column) := Source (Column, Row);
         end loop;
      end loop;
      return Result;
   end Transpose;
end Matrices;

Example multiple_regression.adb:

with Ada.Text_IO;
with Matrices;
procedure Multiple_Regression is
   package Float_Matrices is new Matrices (
      Element_Type => Float,
      Zero => 0.0,
      One => 1.0);
   subtype Vector is Float_Matrices.Vector;
   subtype Matrix is Float_Matrices.Matrix;
   use type Matrix;

   procedure Output_Matrix (X : Matrix) is
   begin
      for Row in X'Range (1) loop
         for Col in X'Range (2) loop
            Ada.Text_IO.Put (Float'Image (X (Row, Col)) & ' ');
         end loop;
         Ada.Text_IO.New_Line;
      end loop;
   end Output_Matrix;

   -- example from Ruby solution
   V : constant Vector := (1.0, 2.0, 3.0, 4.0, 5.0);
   M : constant Matrix :=
     ((1 => 2.0),
      (1 => 1.0),
      (1 => 3.0),
      (1 => 4.0),
      (1 => 5.0));
   C : constant Vector :=
      Float_Matrices.Regression_Coefficients (Source => V, Regressors => M);
   -- Wikipedia example
   Weight        : constant Vector (1 .. 15) :=
     (52.21, 53.12, 54.48, 55.84, 57.20,
      58.57, 59.93, 61.29, 63.11, 64.47,
      66.28, 68.10, 69.92, 72.19, 74.46);
   Height        : Vector (1 .. 15)          :=
     (1.47, 1.50, 1.52, 1.55, 1.57,
      1.60, 1.63, 1.65, 1.68, 1.70,
      1.73, 1.75, 1.78, 1.80, 1.83);
   Height_Matrix : Matrix (1 .. 15, 1 .. 3);
begin
   Ada.Text_IO.Put_Line ("Example from Ruby solution:");
   Ada.Text_IO.Put_Line ("V:");
   Output_Matrix (Float_Matrices.To_Matrix (V));
   Ada.Text_IO.Put_Line ("M:");
   Output_Matrix (M);
   Ada.Text_IO.Put_Line ("C:");
   Output_Matrix (Float_Matrices.To_Matrix (C));
   Ada.Text_IO.New_Line;
   Ada.Text_IO.Put_Line ("Example from Wikipedia:");
   for I in Height'Range loop
      Height_Matrix (I, 1) := 1.0;
      Height_Matrix (I, 2) := Height (I);
      Height_Matrix (I, 3) := Height (I) ** 2;
   end loop;
   Ada.Text_IO.Put_Line ("Matrix:");
   Output_Matrix (Height_Matrix);
   declare
      Coefficients : constant Vector :=
         Float_Matrices.Regression_Coefficients
           (Source     => Weight,
            Regressors => Height_Matrix);
   begin
      Ada.Text_IO.Put_Line ("Coefficients:");
      Output_Matrix (Float_Matrices.To_Matrix (Coefficients));
   end;
end Multiple_Regression;
Output:
Example from Ruby solution:
V:
 1.00000E+00
 2.00000E+00
 3.00000E+00
 4.00000E+00
 5.00000E+00
M:
 2.00000E+00
 1.00000E+00
 3.00000E+00
 4.00000E+00
 5.00000E+00
C:
 9.81818E-01

Example from Wikipedia:
Matrix:
 1.00000E+00  1.47000E+00  2.16090E+00
 1.00000E+00  1.50000E+00  2.25000E+00
 1.00000E+00  1.52000E+00  2.31040E+00
 1.00000E+00  1.55000E+00  2.40250E+00
 1.00000E+00  1.57000E+00  2.46490E+00
 1.00000E+00  1.60000E+00  2.56000E+00
 1.00000E+00  1.63000E+00  2.65690E+00
 1.00000E+00  1.65000E+00  2.72250E+00
 1.00000E+00  1.68000E+00  2.82240E+00
 1.00000E+00  1.70000E+00  2.89000E+00
 1.00000E+00  1.73000E+00  2.99290E+00
 1.00000E+00  1.75000E+00  3.06250E+00
 1.00000E+00  1.78000E+00  3.16840E+00
 1.00000E+00  1.80000E+00  3.24000E+00
 1.00000E+00  1.83000E+00  3.34890E+00
Coefficients:
 1.35403E+02
-1.51161E+02
 6.43514E+01

ALGOL 68

Translation of: Visual Basic .NET

...but using the "to reduced echelon form" routine from Reduced row echelon form#ALGOL_68.

Algol 68 doesn't have classes, though it does have structures.
Other than that, the main differences between this and the VB.NET sample are that Algol 68 has array slicing built in and generally uses a lower bound of 1 rather than 0 for arrays.
Also, although ( ( 1, 2, 3 ), ( 6, 5, 4 ) ) is a 2x3 array, ( ( 1, 2, 3 ) ) is a 3x1 array (because ( x ) is not an array, so the outer brackets are superfluous, leaving ( 1, 2, 3 ) - i.e. a 1-dimensoional array - as the context requires a two-dimensional array, each value is coerced to an array resulting in a 3x1 two-dimensional array).

BEGIN # Multiple Regression - trnslation of the VB.NET sample but using the #
      # "to reduced row echelon form" routine from the Reduced row echelon Task #

    PROC require = ( BOOL condition, STRING message )VOID:
         IF NOT condition THEN
            print( ( message, newline ) );
            stop
         FI # requiree # ;

    MODE MATRIX = STRUCT( REF[,]REAL data
                        , INT row count
                        , INT col count
                        );

    PRIO NEWMATRIX = 1;
    OP   NEWMATRIX = ( INT rows, INT cols )MATRIX:
         BEGIN
            MATRIX result;
            require( rows > 0, "Need at least one row" );
            row count OF result := rows;
            require( cols > 0, "Need at least one column" );
            col count OF result := cols;
            data OF result := HEAP[ 1 : rows, 1 : cols ]REAL;
            FOR r TO rows DO FOR c TO cols DO ( data OF result )[ r, c ] := 0 OD OD;
            result
         END # NEWMATRIX # ;

    OP   NEWMATRIX = ( [,]REAL source )MATRIX:
         BEGIN
            MATRIX result;
            INT rows = 1 + ( 1 UPB source - 1 LWB source );
            require( rows > 0, "Need at least one row" );
            row count OF result := rows;
            INT cols = 1 + ( 2 UPB source - 2 LWB source );
            require( cols > 0, "Need at least one column" );
            col count OF result := cols;
            data OF result := HEAP[ 1 : rows, 1 : cols ]REAL := source[ AT 1, AT 1 ];
            result
         END # NEWMATRIX # ;

    OP   NEWMATRIX = ( []REAL source )MATRIX: # New Matrix(ConvertArray(source)) #
         BEGIN
            INT len = 1 + ( UPB source - LWB source );
            [ 1 : 1, 1 : len ]REAL dest;
            dest[ 1, : ] := source;
            NEWMATRIX dest
         END # NEWMATRIX # ;

    OP   * = ( MATRIX m1, m2 )MATRIX:
         BEGIN
            INT rc1 = row count OF m1;
            INT cc1 = col count OF m1;
            INT rc2 = row count OF m2;
            INT cc2 = col count OF m2;
            require( cc1 = rc2, "Cannot multiply if the first columns does not equal the second rows" );
            MATRIX result := rc1 NEWMATRIX cc2;
            FOR i TO rc1 DO
                FOR j TO cc2 DO
                    FOR k TO rc2 DO
                        ( data OF result ) [ i, j ] +:= ( data OF m1 )[ i, k ]
                                                      * ( data OF m2 )[ k, j ]
                    OD
                OD
            OD;
            result
         END # * # ;

    PROC transpose = ( MATRIX m )MATRIX:
         BEGIN
            INT rc = row count OF m;
            INT cc = col count OF m;
            MATRIX trans := cc NEWMATRIX rc;
            FOR i TO cc DO
                FOR j TO rc DO
                    ( data OF trans )[ i, j ] := ( data OF m )[ j, i ]
                OD
            OD;
            trans
         END # transpose # ;

  # BEGIN code from the Reduced row echelon form task #
    MODE FIELD = REAL; # FIELD can be REAL, LONG REAL etc, or COMPL, FRAC etc #
    MODE VEC = [0]FIELD;
    MODE MAT = [0,0]FIELD;
    PROC to reduced row echelon form = (REF MAT m)VOID: (
        INT lead col := 2 LWB m;

        FOR this row FROM LWB m TO UPB m DO
            IF lead col > 2 UPB m THEN return FI;
            INT other row := this row;
            WHILE m[other row,lead col] = 0 DO
                other row +:= 1;
                IF other row > UPB m THEN
                    other row := this row;
                    lead col +:= 1;
                    IF lead col > 2 UPB m THEN return FI
                FI
            OD;
            IF this row /= other row THEN
                VEC swap = m[this row,lead col:];
                m[this row,lead col:] := m[other row,lead col:];
                m[other row,lead col:] := swap
            FI;
            FIELD scale = 1/m[this row,lead col];
            IF scale /= 1 THEN
                m[this row,lead col] := 1;
                FOR col FROM lead col+1 TO 2 UPB m DO m[this row,col] *:= scale OD
            FI;
            FOR other row FROM LWB m TO UPB m DO
                IF this row /= other row THEN
                    REAL scale = m[other row,lead col];
                    m[other row,lead col]:=0;
                    FOR col FROM lead col+1 TO 2 UPB m DO m[other row,col] -:= scale*m[this row,col] OD
                FI
            OD;
            lead col +:= 1
        OD;
        return: EMPTY
    );
 # END code from the Reduced row echelon form task #
 
    PROC inverse = ( MATRIX m )MATRIX:
         BEGIN
            require( row count OF m = col count OF m, "Not a square matrix" );
            INT len = row count OF m;
            MATRIX aug := len NEWMATRIX ( 2 * len );
            FOR i TO len DO
                FOR j TO len DO
                    ( data OF aug )[ i, j       ] := ( data OF m )[ i, j ];
                    ( data OF aug )[ i, j + len ] := 0
                OD;
                # augment identity matrix to right #
                ( data OF aug )[ i, i + len ] := 1.0
            OD;
            to reduced row echelon form( data OF aug );
            MATRIX inv := len NEWMATRIX len;
            FOR i TO len DO
                FOR j FROM len + 1 TO 2 * len DO
                    ( data OF inv)[ i, j - len ] := ( data OF aug )[ i, j ]
                OD
            OD;
            inv
         END # inverse # ;

    PROC multiple regression = ( []REAL y, MATRIX x )[]REAL:
         BEGIN
            MATRIX tm := NEWMATRIX y;
            MATRIX cy := NEWMATRIX data OF transpose( tm );
            MATRIX cx := NEWMATRIX data OF transpose( x );
            ( data OF transpose( inverse( x * cx ) * x * cy ) )[ 1, : ]
         END # multiple regression # ;

    OP   PRINTARRAY = ( []REAL list )VOID:
         BEGIN
            print( ( "[" ) );
            FOR i FROM LWB list TO UPB list DO
                # convert list[ i ] to a string, remove trailing 0s and leading spaces #
                STRING v := fixed( list[ i ], -20, 15 )[ AT 1 ];
                WHILE v[ UPB v ] = "0" DO v := v[ : UPB v - 1 ] OD;
                IF v[ UPB v ] = "." THEN v := v[ : UPB v - 1 ] FI;
                WHILE v[ 1 ] = " " DO v := v[ 2 : ] OD;
                print( ( IF i > LWB list THEN ", " ELSE "" FI, v ) )
            OD;
            print( ( "]" ) )
         END # PRINTARRAY # ;

    BEGIN
        []REAL y  = ( 1.0, 2.0, 3.0, 4.0, 5.0 );
        MATRIX x := NEWMATRIX []REAL( 2.0, 1.0, 3.0, 4.0, 5.0 );
        []REAL v  = multiple regression( y, x );
        PRINTARRAY v;
        print( ( newline ) )
    END;
    BEGIN
        []REAL y  = ( 3.0, 4.0, 5.0 );
        MATRIX x := NEWMATRIX [,]REAL( ( 1.0, 2.0, 1.0 )
                                     , ( 1.0, 1.0, 2.0 )
                                     );
        []REAL v  = multiple regression( y, x );
        PRINTARRAY v;
        print( ( newline ) )
    END;
    BEGIN
        []REAL y = ( 52.21, 53.12, 54.48, 55.84, 57.2, 58.57, 59.93
                   , 61.29, 63.11, 64.47, 66.28, 68.1, 69.92, 72.19, 74.46
                   );
        []REAL a = ( 1.47, 1.5, 1.52, 1.55, 1.57, 1.6, 1.63, 1.65
                   , 1.68, 1.7, 1.73, 1.75, 1.78, 1.8, 1.83
                   );
        [ 1 : 3, 1 : 1 + ( UPB a - LWB a ) ]REAL xs;
        FOR i FROM LWB a TO UPB a DO
            xs[ 1, i ] := 1.0;
            xs[ 2, i ] := a[ i ];
            xs[ 3, i ] := a[ i ] * a[ i ]
        OD;
        MATRIX x := NEWMATRIX xs;
        []REAL v  = multiple regression( y, x );
        PRINTARRAY v;
        print( ( newline ) )
    END

END
Output:
[0.981818181818182]
[1, 2]
[128.812803581374, -143.162022866676, 61.9603254433538]

BASIC

BASIC256

Translation of: QB64
arraybase 0
N = 14: M = 2: Q = 3 # number of points and M.R. polynom degree

dim X(N+1) # data points
X[0] = 1.47 : X[1] = 1.50 : X[2] = 1.52
X[3] = 1.55 : X[4] = 1.57 : X[5] = 1.60
X[6] = 1.63 : X[7] = 1.65 : X[8] = 1.68
X[9] = 1.70 : X[10] = 1.73 : X[11] = 1.75
X[12] = 1.78 : X[13] = 1.80 : X[14] = 1.83
dim Y(N+1) # data points
Y[0] = 52.21 : Y[1] = 53.12 : Y[2] = 54.48
Y[3] = 55.84 : Y[4] = 57.20 : Y[5] = 58.57
Y[6] = 59.93 : Y[7] = 61.29 : Y[8] = 63.11
Y[9] = 64.47 : Y[10] = 66.28 : Y[11] = 68.10
Y[12] = 69.92 : Y[13] = 72.19 : Y[14] = 74.46
dim S(N+1): dim T(N+1) # linear system coefficient
dim A(M+1, Q+1)    # system to be solved
dim p(M+1, Q+1)

for k = 0 to 2 * M
	S[k] = 0: T[k] = 0
	for i = 0 to N
		S[k] = S[k] + X[i] ^ k
		if k <= M then T[k] = T[k] + Y[i] * X[i] ^ k
	next i
next k

# build linear system
for fila = 0 to M
	for columna = 0 to M
		A[fila, columna] = S[fila + columna]
	next columna
	A[fila, columna] = T[fila]
next fila

print "Linear system coefficents:"
for i = 0 to M
	for j = 0 to M + 1
		print rjust(A[i, j], 14.1);
	next j
	print
next i

for j = 0 to M
	for i = j to M
		if A[i, j] <> 0 then exit for
	next i
	if i = M + 1 then print: print "SINGULAR MATRIX '" : end
	for k = 0 to M + 1
		p[j,k] = A[i,k] : A[i,k] = p[j,k] : A[j,k] = A[i,k]
	next k
	z = 1 / A[j, j]
	for k = 0 to M + 1
		A[j, k] = z * A[j, k]
	next k
	for i = 0 to M
		if i <> j then
			z = -A[i, j]
			for k = 0 to M + 1
				A[i, k] = A[i, k] + z * A[j, k]
			next k
		end if
	next i
next j

print: print "Solutions:"
for i = 0 to M
	print rjust(A[i, M + 1], 16.7);
next i
end
Output:
Linear system coefficents:
          15.0         24.76       41.0532        931.17
         24.76       41.0532     68.367934     1548.2453
       41.0532     68.367934  114.34828728   2585.543151

Solutions:
    128.81280358  -143.162022867   61.9603254432

Chipmunk Basic

Translation of: FreeBASIC
Works with: Chipmunk Basic version 3.6.4
100 cls
110 n = 14 : m = 2 : q = 3 ' number of points and M.R. polynom degree
120 dim x(n)' data points
130 data 1.47,1.5,1.52,1.55,1.57,1.6,1.63,1.65,1.68,1.7,1.73,1.75,1.78,1.8,1.83
140 for c = 0 to n
150   read x(c)
160 next c
170 dim y(n)' data points
180 data 52.21,53.12,54.48,55.84,57.2,58.57,59.93,61.29,63.11,64.47,66.28,68.1,69.92,72.19,74.46
190 for c = 0 to n
200   read y(c)
210 next c
220 dim s(n) : dim t(n)' linear system coefficient
230 dim a(m,q)' sistem to be solved
240 dim p(m,q)
250 for k = 0 to 2*m
260   s(k) = 0 : t(k) = 0
270   for i = 0 to n
280     s(k) = s(k)+x(i)^k
290     if k <= m then t(k) = t(k)+y(i)*x(i)^k
300   next i
310 next k
320 ' build linear system
330 for fila = 0 to m
340   for columna = 0 to m
350     a(fila,columna) = s(fila+columna)
360   next columna
370   a(fila,columna) = t(fila)
380 next fila
390 print "Linear system coefficents:"
400 for i = 0 to m
410   for j = 0 to m+1
420     print using "######.#";a(i,j);
430   next j
440   print
450 next i
460 for j = 0 to m
470   for i = j to m
480     if a(i,j) <> 0 then goto 500
490   next i
500   if i = m+1 then
510     print : print "SINGULAR MATRIX '"
520     end
530   endif
540   for k = 0 to m+1
560     p(j,k) = a(i,k)
570     a(i,k) = p(j,k)
580     a(j,k) = a(i,k)
590   next k
600   z = 1/a(j,j)
610   for k = 0 to m+1
620     a(j,k) = z*a(j,k)
630   next k
640   for i = 0 to m
650     if i <> j then
660      z = -a(i,j)
670       for k = 0 to m+1
680         a(i,k) = a(i,k)+z*a(j,k)
690       next k
700     endif
710   next i
720 next j
730 print : print "Solutions:"
740 for i = 0 to m
750   print using "  #####.#######";a(i,m+1);
760 next i
770 print
780 end
Output:
Same as FreeBASIC entry.

QBasic

Works with: QBasic version 1.1
Works with: QuickBasic version 4.5

The QB64 solution works without any changes.

QB64

Translation of: FreeBASIC
Const N = 14, M = 2, Q = 3 ' number of points and M.R. polynom degree

Dim X(N) As Double ' data points
Data 1.47,1.50,1.52,1.55,1.57,1.60,1.63,1.65,1.68,1.70,1.73,1.75,1.78,1.80,1.83
For c = LBound(X) To UBound(X)
    Read X(c)
Next c
Dim As Double Y(N) ' data points
Data 52.21,53.12,54.48,55.84,57.20,58.57,59.93,61.29,63.11,64.47,66.28,68.10,69.92,72.19,74.46
For c = LBound(Y) To UBound(Y)
    Read Y(c)
Next c
Dim As Double S(N), T(N) ' linear system coefficient
Dim As Double A(M, Q)    ' system to be solved
Dim As Integer i, k, j, fila, columna
Dim As Double z

For k = 0 To 2 * M
    S(k) = 0: T(k) = 0
    For i = 0 To N
        S(k) = S(k) + X(i) ^ k
        If k <= M Then T(k) = T(k) + Y(i) * X(i) ^ k
    Next i
Next k

' build linear system
For fila = 0 To M
    For columna = 0 To M
        A(fila, columna) = S(fila + columna)
    Next columna
    A(fila, columna) = T(fila)
Next fila

Print "Linear system coefficents:"
For i = 0 To M
    For j = 0 To M + 1
        Print Using "######.#"; A(i, j);
    Next j
    Print
Next i

For j = 0 To M
    For i = j To M
        If A(i, j) <> 0 Then Exit For
    Next i
    If i = M + 1 Then
        Print: Print "SINGULAR MATRIX '"
        End
    End If
    For k = 0 To M + 1
        Swap A(j, k), A(i, k)
    Next k
    z = 1 / A(j, j)
    For k = 0 To M + 1
        A(j, k) = z * A(j, k)
    Next k
    For i = 0 To M
        If i <> j Then
            z = -A(i, j)
            For k = 0 To M + 1
                A(i, k) = A(i, k) + z * A(j, k)
            Next k
        End If
    Next i
Next j

Print: Print "Solutions:"
For i = 0 To M
    Print Using "  #####.#######"; A(i, M + 1);
Next i
End
Output:
Same as FreeBASIC entry.

True BASIC

Translation of: QB64
OPTION BASE 0
LET n = 14                        ! number of points and M.R. polynom degree
LET m = 2
LET q = 3
DIM x(0)                          ! data points
MAT REDIM x(n)
DATA 1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83
FOR c = LBOUND(x) TO UBOUND(x)
    READ x(c)
NEXT c
DIM y(0)                          ! data points
MAT REDIM y(n)
DATA 52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46
FOR c = LBOUND(y) TO UBOUND(y)
    READ y(c)
NEXT c
DIM s(0)                          ! linear system coefficient
MAT REDIM s(n)
DIM t(0)
MAT REDIM t(n)
DIM a(0,0)                        ! system to be solved
MAT REDIM a(m, q)
DIM p(0,0)
MAT REDIM p(m, q)

FOR k = 0 TO 2*m
    LET s(k) = 0
    LET t(k) = 0
    FOR i = 0 TO n
        LET s(k) = s(k)+x(i)^k
        IF k <= m THEN LET t(k) = t(k)+y(i)*x(i)^k
    NEXT i
NEXT k
! build linear system
FOR fila = 0 TO m
    FOR columna = 0 TO m
        LET a(fila, columna) = s(fila+columna)
    NEXT columna
    LET a(fila, columna) = t(fila)
NEXT fila
PRINT "Linear system coefficents:"
FOR i = 0 TO m
    FOR j = 0 TO m+1
        PRINT  USING "######.#": a(i, j);
    NEXT j
    PRINT
NEXT i
FOR j = 0 TO m
    FOR i = j TO m
        IF a(i, j) <> 0 THEN EXIT FOR
    NEXT i
    IF i = m+1 THEN
       PRINT
       PRINT "SINGULAR MATRIX '"
       STOP
    END IF
    FOR k = 0 TO m+1
        LET p(j, k) = a(i, k)
        LET a(i, k) = p(j, k)
        LET a(j, k) = a(i, k)
    NEXT k
    LET z = 1/a(j, j)
    FOR k = 0 TO m+1
        LET a(j, k) = z*a(j, k)
    NEXT k
    FOR i = 0 TO m
        IF i <> j THEN
           LET z = -a(i, j)
           FOR k = 0 TO m+1
               LET a(i, k) = a(i, k)+z*a(j, k)
           NEXT k
        END IF
    NEXT i
NEXT j
PRINT
PRINT "Solutions:"
FOR i = 0 TO m
    PRINT  USING "  #####.#######": a(i, m+1);
NEXT i
END

Yabasic

Translation of: QB64
// number of points and M.R. polynom degree
N = 14
M = 2
Q = 3    

dim X(N)            // data points
X(0) = 1.47 : X(1) = 1.50 : X(2) = 1.52
X(3) = 1.55 : X(4) = 1.57 : X(5) = 1.60
X(6) = 1.63 : X(7) = 1.65 : X(8) = 1.68
X(9) = 1.70 : X(10) = 1.73 : X(11) = 1.75
X(12) = 1.78 : X(13) = 1.80 : X(14) = 1.83
dim Y(N)            // data points
Y(0) = 52.21 : Y(1) = 53.12 : Y(2) = 54.48
Y(3) = 55.84 : Y(4) = 57.20 : Y(5) = 58.57
Y(6) = 59.93 : Y(7) = 61.29 : Y(8) = 63.11
Y(9) = 64.47 : Y(10) = 66.28 : Y(11) = 68.10
Y(12) = 69.92 : Y(13) = 72.19 : Y(14) = 74.46

dim S(N), T(N)        // linear system coefficient
dim A(M, Q)           // sistem to be solved
dim p(M, Q)

for k = 0 to 2*M
    S(k) = 0 : T(k) = 0
    for i = 0 to N
        S(k) = S(k) + X(i) ^ k
        if k <= M  T(k) = T(k) + Y(i) * X(i) ^ k
    next i
next k

// build linear system
for fila = 0 to M
    for columna = 0 to M
        A(fila, columna) = S(fila+columna)
    next columna
    A(fila, columna) = T(fila)
next fila

print "Linear system coefficents:"
for i = 0 to M
    for j = 0 to M+1
        print A(i,j) using "#####.#";
    next j
    print
next i

for j = 0 to M
    for i = j to M
        if A(i,j) <> 0  break
    next i
    if i = M+1 then
        print "\nSINGULAR MATRIX '"
        end
    end if
    for k = 0 to M+1
		p(j,k) = A(i,k) : A(i,k) = p(j,k) : A(j,k) = A(i,k)
    next k
    z = 1 / A(j,j)
    for k = 0 to M+1
        A(j,k) = z * A(j,k)
    next k
    for i = 0 to M
        if i <> j then
            z = -A(i,j)
            for k = 0 to M+1
                A(i,k) = A(i,k) + z * A(j,k)
            next k
        end if
    next i
next j

print "\nSolutions:"
for i = 0 to M
    print A(i,M+1) using "#######.#######";
next i
print
end

BBC BASIC

      *FLOAT 64
      INSTALL @lib$+"ARRAYLIB"
      
      DIM y(14), x(2,14), c(2)
      y() = 52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, \
      \     63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46
      x() =  1.47,  1.50,  1.52,  1.55,  1.57,  1.60,  1.63,  1.65, \
      \      1.68,  1.70,  1.73,  1.75,  1.78,  1.80,  1.83
      
      FOR row% = DIM(x(),1) TO 0 STEP -1
        FOR col% = 0 TO DIM(x(),2)
          x(row%,col%) = x(0,col%) ^ row%
        NEXT
      NEXT row%
      
      PROCmultipleregression(y(), x(), c())
      FOR i% = 0 TO DIM(c(),1) : PRINT c(i%) "  "; : NEXT
      PRINT
      END
      
      DEF PROCmultipleregression(y(), x(), c())
      LOCAL m(), t()
      DIM m(DIM(x(),1), DIM(x(),1)), t(DIM(x(),2),DIM(x(),1))
      PROC_transpose(x(), t())
      m() = x().t()
      PROC_invert(m())
      t() = t().m()
      c() = y().t()
      ENDPROC
Output:
128.812804  -143.162023  61.9603254

C

Using GNU gsl and c99, with the WP data

#include <stdio.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_multifit.h>

double w[] = {	52.21, 53.12, 54.48, 55.84, 57.20,
		58.57, 59.93, 61.29, 63.11, 64.47,
		66.28, 68.10, 69.92, 72.19, 74.46 };
double h[] = {	1.47, 1.50, 1.52, 1.55, 1.57,
		1.60, 1.63, 1.65, 1.68, 1.70,
		1.73, 1.75, 1.78, 1.80, 1.83	};

int main()
{
	int n = sizeof(h)/sizeof(double);
	gsl_matrix *X = gsl_matrix_calloc(n, 3);
	gsl_vector *Y = gsl_vector_alloc(n);
	gsl_vector *beta = gsl_vector_alloc(3);

	for (int i = 0; i < n; i++) {
		gsl_vector_set(Y, i, w[i]);

		gsl_matrix_set(X, i, 0, 1);
		gsl_matrix_set(X, i, 1, h[i]);
		gsl_matrix_set(X, i, 2, h[i] * h[i]);
	}

	double chisq;
	gsl_matrix *cov = gsl_matrix_alloc(3, 3);
	gsl_multifit_linear_workspace * wspc = gsl_multifit_linear_alloc(n, 3);
	gsl_multifit_linear(X, Y, beta, cov, &chisq, wspc);

	printf("Beta:");
	for (int i = 0; i < 3; i++)
		printf("  %g", gsl_vector_get(beta, i));
	printf("\n");

	gsl_matrix_free(X);
	gsl_matrix_free(cov);
	gsl_vector_free(Y);
	gsl_vector_free(beta);
	gsl_multifit_linear_free(wspc);

}

C++

Translation of: Java
#include <array>
#include <iostream>

void require(bool condition, const std::string &message) {
    if (condition) {
        return;
    }
    throw std::runtime_error(message);
}

template<typename T, size_t N>
std::ostream &operator<<(std::ostream &os, const std::array<T, N> &a) {
    auto it = a.cbegin();
    auto end = a.cend();

    os << '[';
    if (it != end) {
        os << *it;
        it = std::next(it);
    }
    while (it != end) {
        os << ", " << *it;
        it = std::next(it);
    }
    return os << ']';
}

template <size_t RC, size_t CC>
class Matrix {
    std::array<std::array<double, CC>, RC> data;

public:
    Matrix() : data{} {
        // empty
    }

    Matrix(std::initializer_list<std::initializer_list<double>> values) {
        size_t rp = 0;
        for (auto row : values) {
            size_t cp = 0;
            for (auto col : row) {
                data[rp][cp] = col;
                cp++;
            }
            rp++;
        }
    }

    double get(size_t row, size_t col) const {
        return data[row][col];
    }

    void set(size_t row, size_t col, double value) {
        data[row][col] = value;
    }

    std::array<double, CC> get(size_t row) {
        return data[row];
    }

    void set(size_t row, const std::array<double, CC> &values) {
        std::copy(values.begin(), values.end(), data[row].begin());
    }

    template <size_t D>
    Matrix<RC, D> operator*(const Matrix<CC, D> &rhs) const {
        Matrix<RC, D> result;
        for (size_t i = 0; i < RC; i++) {
            for (size_t j = 0; j < D; j++) {
                for (size_t k = 0; k < CC; k++) {
                    double prod = get(i, k) * rhs.get(k, j);
                    result.set(i, j, result.get(i, j) + prod);
                }
            }
        }
        return result;
    }

    Matrix<CC, RC> transpose() const {
        Matrix<CC, RC> trans;
        for (size_t i = 0; i < RC; i++) {
            for (size_t j = 0; j < CC; j++) {
                trans.set(j, i, data[i][j]);
            }
        }
        return trans;
    }

    void toReducedRowEchelonForm() {
        size_t lead = 0;
        for (size_t r = 0; r < RC; r++) {
            if (CC <= lead) {
                return;
            }
            auto i = r;

            while (get(i, lead) == 0.0) {
                i++;
                if (RC == i) {
                    i = r;
                    lead++;
                    if (CC == lead) {
                        return;
                    }
                }
            }

            auto temp = get(i);
            set(i, get(r));
            set(r, temp);

            if (get(r, lead) != 0.0) {
                auto div = get(r, lead);
                for (size_t j = 0; j < CC; j++) {
                    set(r, j, get(r, j) / div);
                }
            }

            for (size_t k = 0; k < RC; k++) {
                if (k != r) {
                    auto mult = get(k, lead);
                    for (size_t j = 0; j < CC; j++) {
                        auto prod = get(r, j) * mult;
                        set(k, j, get(k, j) - prod);
                    }
                }
            }

            lead++;
        }
    }

    Matrix<RC, RC> inverse() {
        require(RC == CC, "Not a square matrix");

        Matrix<RC, 2 * RC> aug;
        for (size_t i = 0; i < RC; i++) {
            for (size_t j = 0; j < RC; j++) {
                aug.set(i, j, get(i, j));
            }
            // augment identify matrix to right
            aug.set(i, i + RC, 1.0);
        }

        aug.toReducedRowEchelonForm();

        // remove identity matrix to left
        Matrix<RC, RC> inv;
        for (size_t i = 0; i < RC; i++) {
            for (size_t j = RC; j < 2 * RC; j++) {
                inv.set(i, j - RC, aug.get(i, j));
            }
        }
        return inv;
    }

    template <size_t RC, size_t CC>
    friend std::ostream &operator<<(std::ostream &, const Matrix<RC, CC> &);
};

template <size_t RC, size_t CC>
std::ostream &operator<<(std::ostream &os, const Matrix<RC, CC> &m) {
    for (size_t i = 0; i < RC; i++) {
        os << '[';
        for (size_t j = 0; j < CC; j++) {
            if (j > 0) {
                os << ", ";
            }
            os << m.get(i, j);
        }
        os << "]\n";
    }

    return os;
}

template <size_t RC, size_t CC>
std::array<double, RC> multiple_regression(const std::array<double, CC> &y, const Matrix<RC, CC> &x) {
    Matrix<1, CC> tm;
    tm.set(0, y);

    auto cy = tm.transpose();
    auto cx = x.transpose();
    return ((x * cx).inverse() * x * cy).transpose().get(0);
}

void case1() {
    std::array<double, 5> y{ 1.0, 2.0, 3.0, 4.0, 5.0 };
    Matrix<1, 5> x{ {2.0, 1.0, 3.0, 4.0, 5.0} };
    auto v = multiple_regression(y, x);
    std::cout << v << '\n';
}

void case2() {
    std::array<double, 3> y{ 3.0, 4.0, 5.0 };
    Matrix<2, 3> x{
        {1.0, 2.0, 1.0},
        {1.0, 1.0, 2.0}
    };
    auto v = multiple_regression(y, x);
    std::cout << v << '\n';
}

void case3() {
    std::array<double, 15> y{ 52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46 };
    std::array<double, 15> a{ 1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83 };

    Matrix<3, 15> x;
    for (size_t i = 0; i < 15; i++) {
        x.set(0, i, 1.0);
    }
    x.set(1, a);
    for (size_t i = 0; i < 15; i++) {
        x.set(2, i, a[i] * a[i]);
    }

    auto v = multiple_regression(y, x);
    std::cout << v << '\n';
}

int main() {
    case1();
    case2();
    case3();

    return 0;
}
Output:
[0.981818]
[1, 2]
[128.813, -143.162, 61.9603]

C#

Library: Math.Net
using System;
using MathNet.Numerics.LinearRegression;
using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.LinearAlgebra.Double;

class Program
{
    static void Main(string[] args)
    {
        var col = DenseVector.OfArray(new double[] { 1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65,
            1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83 });
        var X = DenseMatrix.OfColumns(new Vector<double>[] { col.PointwisePower(0), col, col.PointwisePower(2) });
        var y = DenseVector.OfArray(new double[] { 52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93,
            61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46 });
        var β = MultipleRegression.QR(X, y);
        Console.WriteLine(β);
    }
}
Output:
DenseVector 3-Double
 128.813
-143.162
 61.9603

Common Lisp

Uses the routine (chol A) from Cholesky decomposition, (mmul A B) from Matrix multiplication, (mtp A) from Matrix transposition.

;; Solve a linear system AX=B where A is symmetric and positive definite, so it can be Cholesky decomposed.
(defun linsys (A B)
  (let* ((n (car  (array-dimensions A)))
         (m (cadr (array-dimensions B)))
         (y (make-array n        :element-type 'long-float :initial-element 0.0L0))
         (X (make-array `(,n ,m) :element-type 'long-float :initial-element 0.0L0))
         (L (chol A))) ; A=LL'

    (loop for col from 0 to (- m 1) do
       ;; Forward substitution: y = L\B
       (loop for k from 0 to (- n 1)
             do (setf (aref y k)
                      (/ (- (aref B k col)
                            (loop for j from 0 to (- k 1)
                                  sum (* (aref L k j)
                                         (aref y j))))
                         (aref L k k))))

       ;; Back substitution. x=L'\y
       (loop for k from (- n 1) downto 0
             do (setf (aref X k col)
                      (/ (- (aref y k)
                            (loop for j from (+ k 1) to (- n 1)
                                  sum (* (aref L j k)
                                         (aref X j col))))
                         (aref L k k)))))
    X))

;; Solve a linear least squares problem. Ax=b, with A being mxn, with m>n.
;; Solves the linear system A'Ax=A'b.
(defun lsqr (A b)
  (linsys (mmul (mtp A) A)
          (mmul (mtp A) b)))

To show an example of multiple regression, (polyfit x y n) from Polynomial regression, which itself uses (linsys A B) and (lsqr A b), will be used to fit a second degree order polynomial to data.

(let ((x (make-array '(1 11) :initial-contents '((0 1 2 3 4 5 6 7 8 9 10))))
      (y (make-array '(1 11) :initial-contents '((1 6 17 34 57 86 121 162 209 262 321)))))
  (polyfit x y 2))
 
#2A((0.9999999999999759d0) (2.000000000000005d0) (3.0d0))

D

Translation of: Java
import std.algorithm;
import std.array;
import std.exception;
import std.range;
import std.stdio;

public class Matrix {
    private double[][] data;
    private size_t rowCount;
    private size_t colCount;

    public this(size_t size)
    in(size > 0, "Must have at least one element")
    {
        this(size, size);
    }

    public this(size_t rows, size_t cols) 
    in(rows > 0, "Must have at least one row")
    in(cols > 0, "Must have at least one column")
    {
        rowCount = rows;
        colCount = cols;

        data = uninitializedArray!(double[][])(rows, cols);
        foreach (ref row; data) {
            row[] = 0.0;
        }
    }

    public this(const double[][] source) {
        enforce(source.length > 0, "Must have at least one row");
        rowCount = source.length;

        enforce(source[0].length > 0, "Must have at least one column");
        colCount = source[0].length;

        data = uninitializedArray!(double[][])(rowCount, colCount);
        foreach (i; 0 .. rowCount) {
            enforce(source[i].length == colCount, "All rows must have equal columns");
            data[i] = source[i].dup;
        }
    }

    public auto opIndex(size_t r, size_t c) const {
        return data[r][c];
    }

    public auto opIndex(size_t r) const {
        return data[r];
    }

    public auto opBinary(string op)(const Matrix rhs) const {
        static if (op == "*") {
            auto rc1 = rowCount;
            auto cc1 = colCount;
            auto rc2 = rhs.rowCount;
            auto cc2 = rhs.colCount;
            enforce(cc1 == rc2, "Cannot multiply if the first columns does not equal the second rows");
            auto result = new Matrix(rc1, cc2);
            foreach (i; 0 .. rc1) {
                foreach (j; 0 .. cc2) {
                    foreach (k; 0 .. rc2) {
                        result[i, j] += this[i, k] * rhs[k, j];
                    }
                }
            }
            return result;
        } else {
            assert(false, "Not implemented");
        }
    }

    public void opIndexAssign(double value, size_t r, size_t c) {
        data[r][c] = value;
    }

    public void opIndexAssign(const double[] value, size_t r) {
        enforce(colCount == value.length, "Slice size must match column size");
        data[r] = value.dup;
    }

    public void opIndexOpAssign(string op)(double value, size_t r, size_t c) {
        mixin("data[r][c] " ~ op ~ "= value;");
    }

    public auto transpose() const {
        auto rc = rowCount;
        auto cc = colCount;
        auto t = new Matrix(cc, rc);
        foreach (i; 0 .. cc) {
            foreach (j; 0 .. rc) {
                t[i, j] = this[j, i];
            }
        }
        return t;
    }

    public void toReducedRowEchelonForm() {
        auto lead = 0;
        auto rc = rowCount;
        auto cc = colCount;
        foreach (r; 0 .. rc) {
            if (cc <= lead) {
                return;
            }
            auto i = r;

            while (this[i, lead] == 0.0) {
                i++;
                if (rc == i) {
                    i = r;
                    lead++;
                    if (cc == lead) {
                        return;
                    }
                }
            }

            auto temp = this[i];
            this[i] = this[r];
            this[r] = temp;

            if (this[r, lead] != 0.0) {
                auto div = this[r, lead];
                foreach (j; 0 .. cc) {
                    this[r, j] = this[r, j] / div;
                }
            }

            foreach (k; 0 .. rc) {
                if (k != r) {
                    auto mult = this[k, lead];
                    foreach (j; 0 .. cc) {
                        this[k, j] -= this[r, j] * mult;
                    }
                }
            }

            lead++;
        }
    }

    public auto inverse() const {
        enforce(rowCount == colCount, "Not a square matrix");
        auto len = rowCount;
        auto aug = new Matrix(len, 2 * len);
        foreach (i; 0 .. len) {
            foreach (j; 0 .. len) {
                aug[i, j] = this[i, j];
            }
            // augment identity matrix to right
            aug[i, i + len] = 1.0;
        }
        aug.toReducedRowEchelonForm;
        auto inv = new Matrix(len);
        // remove identify matrix to left
        foreach (i; 0 .. len) {
            foreach (j; len .. 2 * len) {
                inv[i, j - len] = aug[i, j];
            }
        }
        return inv;
    }

    void toString(scope void delegate(const(char)[]) sink) const {
        import std.format;
        auto fmt = FormatSpec!char("%s");

        put(sink, "[");
        foreach (i; 0 .. rowCount) {
            if (i > 0) {
                put(sink, " [");
            } else {
                put(sink, "[");
            }

            formatValue(sink, this[i, 0], fmt);
            foreach (j; 1 .. colCount) {
                put(sink, ", ");
                formatValue(sink, this[i, j], fmt);
            }

            if (i + 1 < rowCount) {
                put(sink, "]\n");
            } else {
                put(sink, "]");
            }
        }
        put(sink, "]");
    }
}

auto multipleRegression(double[] y, Matrix x) {
    auto tm = new Matrix([y]);
    auto cy = tm.transpose;
    auto cx = x.transpose;
    return ((x * cx).inverse * x * cy).transpose[0].dup;
}

void main() {
    auto y = [1.0, 2.0, 3.0, 4.0, 5.0];
    auto x = new Matrix([[2.0, 1.0, 3.0, 4.0, 5.0]]);
    auto v = multipleRegression(y, x);
    v.writeln;

    y = [3.0, 4.0, 5.0];
    x = new Matrix([
        [1.0, 2.0, 1.0],
        [1.0, 1.0, 2.0]
    ]);
    v = multipleRegression(y, x);
    v.writeln;

    y = [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46];
    auto a = [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83];
    x = new Matrix([
        repeat(1.0, a.length).array,
        a,
        a.map!"a * a".array
    ]);
    v = multipleRegression(y, x);
    v.writeln;
}
Output:
[0.981818]
[1, 2]
[128.813, -143.162, 61.9603]

Emacs Lisp

Library: calc
(let ((x1 '(0 1 2 3 4 5 6 7 8 9 10))
      (x2 '(0 1 1 3 3 7 6 7 3 9 8))
      (y '(1 6 17 34 57 86 121 162 209 262 321)))
  (apply #'calc-eval "fit(a*X1+b*X2+c,[X1,X2],[a,b,c],[$1 $2 $3])" nil
         (mapcar (lambda (items) (cons 'vec items)) (list x1 x2 y))))
Output:
 "35.2014388489*X1 - 3.95683453237*X2 - 42.7410071942"

ERRE

PROGRAM MULTIPLE_REGRESSION

!$DOUBLE

CONST N=14,M=2,Q=3 ! number of points and M.R. polynom degree

DIM X[N],Y[N]      ! data points
DIM S[N],T[N]      ! linear system coefficient
DIM A[M,Q]         ! sistem to be solved

BEGIN

   DATA(1.47,1.50,1.52,1.55,1.57,1.60,1.63,1.65,1.68,1.70,1.73,1.75,1.78,1.80,1.83)
   DATA(52.21,53.12,54.48,55.84,57.20,58.57,59.93,61.29,63.11,64.47,66.28,68.10,69.92,72.19,74.46)

   FOR I%=0 TO N DO
     READ(X[I%])
   END FOR

   FOR I%=0 TO N DO
     READ(Y[I%])
   END FOR

   FOR K%=0 TO 2*M DO
      S[K%]=0  T[K%]=0
      FOR I%=0 TO N DO
         S[K%]=S[K%]+X[I%]^K%
         IF K%<=M THEN T[K%]=T[K%]+Y[I%]*X[I%]^K% END IF
      END FOR
   END FOR

! build linear system

   FOR ROW%=0 TO M DO
     FOR COL%=0 TO M DO
       A[ROW%,COL%]=S[ROW%+COL%]
     END FOR
     A[ROW%,COL%]=T[ROW%]
   END FOR

   PRINT("LINEAR SYSTEM COEFFICENTS") PRINT
   FOR I%=0 TO M DO
     FOR J%=0 TO M+1 DO
        WRITE(" ######.#";A[I%,J%];)
     END FOR
     PRINT
   END FOR
   PRINT

   FOR J%=0 TO M DO
         FOR I%=J% TO M DO
              EXIT IF A[I%,J%]<>0
         END FOR
         IF I%=M+1 THEN
             PRINT("SINGULAR MATRIX !")
             !$STOP
         END IF
         FOR K%=0 TO M+1 DO
             SWAP(A[J%,K%],A[I%,K%])
         END FOR
         Y=1/A[J%,J%]
         FOR K%=0 TO M+1 DO
             A[J%,K%]=Y*A[J%,K%]
         END FOR
         FOR I%=0 TO M DO
             IF I%<>J% THEN
                 Y=-A[I%,J%]
                 FOR K%=0 TO M+1 DO
                    A[I%,K%]=A[I%,K%]+Y*A[J%,K%]
                 END FOR
             END IF
         END FOR
   END FOR
   PRINT

   PRINT("SOLUTIONS") PRINT
   FOR I%=0 TO M DO
      PRINT("c";I%;"=";)
      WRITE("#####.#######";A[I%,M+1])
   END FOR

END PROGRAM
Output:
LINEAR SYSTEM COEFFICENTS

     15.0     24.8     41.1    931.2
     24.8     41.1     68.4   1548.2
     41.1     68.4    114.3   2585.5


SOLUTIONS

c 0 =  128.8128036
c 1 = -143.1620229
c 2 =   61.9603254

Fortran

Library: SLATEC

Available at the Netlib

*-----------------------------------------------------------------------
* MR - multiple regression using the SLATEC library routine DHFTI
*
* Finds the nearest approximation to BETA in the system of linear equations:
*                     
*              X(j,i) . BETA(i) = Y(j)
* where   
*                  1 ... j ... N  
*                  1 ... i ... K
* and               
*                  K .LE. N
*
* INPUT ARRAYS ARE DESTROYED!
*
*___Name___________Type_______________In/Out____Description_____________
*   X(N,K)         Double precision   In        Predictors
*   Y(N)           Double precision   Both      On input:   N Observations
*                                               On output:  K beta weights
*   N              Integer            In        Number of observations
*   K              Integer            In        Number of predictor variables
*   DWORK(N+2*K)   Double precision   Neither   Workspace
*   IWORK(K)       Integer            Neither   Workspace
*-----------------------------------------------------------------------
      SUBROUTINE MR (X, Y, N, K, DWORK, IWORK)
       IMPLICIT NONE
       INTEGER K, N, IWORK
       DOUBLE PRECISION X, Y, DWORK
       DIMENSION X(N,K), Y(N), DWORK(N+2*K), IWORK(K)
       
*         local variables
       INTEGER I, J
       DOUBLE PRECISION TAU, TOT
       
*        maximum of all column sums of magnitudes
       TAU = 0.
       DO J = 1, K
         TOT = 0.
         DO I = 1, N
           TOT = TOT + ABS(X(I,J))
         END DO
         IF (TOT > TAU) TAU = TOT
       END DO
       TAU = TAU * EPSILON(TAU)        ! tolerance argument
       
*            call function
       CALL DHFTI (X, N, N, K, Y, N, 1, TAU, 
     $  J, DWORK(1), DWORK(N+1), DWORK(N+K+1), IWORK)
       IF (J < K) PRINT *, 'mr: solution is rank deficient!'
       RETURN
      END  ! of MR
      
*-----------------------------------------------------------------------
      PROGRAM t_mr        ! polynomial regression example
       IMPLICIT NONE
       INTEGER N, K
       PARAMETER (N=15, K=3)
       INTEGER IWORK(K), I, J
       DOUBLE PRECISION XIN(N), X(N,K), Y(N), DWORK(N+2*K)

       DATA XIN / 1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 
     $            1.70, 1.73, 1.75, 1.78, 1.80, 1.83 /
       DATA Y / 52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29,
     $          63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46 /

*              make coefficient matrix
       DO J = 1, K
         DO I = 1, N
           X(I,J) = XIN(I) **(J-1)
         END DO
       END DO

*               solve
       CALL MR (X, Y, N, K, DWORK, IWORK)
       
*               print result
  10   FORMAT ('beta: ', $)
  20   FORMAT (F12.4, $)
  30   FORMAT ()
       PRINT 10
       DO J = 1, K
         PRINT 20, Y(J)
       END DO       
       PRINT 30
       STOP 'program complete'
      END
Output:
beta:     128.8126   -143.1618     61.9603
STOP program complete

FreeBASIC

Translation of: ERRE
Const N = 14, M = 2, Q = 3    ' number of points and M.R. polynom degree

Dim As Double X(0 to N) = {1.47,1.50,1.52,1.55,1.57, _
1.60,1.63,1.65,1.68,1.70,1.73,1.75,1.78,1.80,1.83}              ' data points
Dim As Double Y(0 to N) = {52.21,53.12,54.48,55.84,57.20, _
58.57,59.93,61.29,63.11,64.47,66.28,68.10,69.92,72.19,74.46}    ' data points
Dim As Double S(N), T(N)        ' linear system coefficient
Dim As Double A(M, Q)           ' sistem to be solved
Dim As Integer i, k, j, fila, columna
Dim as Double z

For k = 0 To 2*M
    S(k) = 0 : T(k) = 0
    For i = 0 To N
        S(k) += X(i) ^ k
        If k <= M Then T(k) += Y(i) * X(i) ^ k
    Next i
Next k

' build linear system
For fila = 0 To M
    For columna = 0 To M
        A(fila, columna) = S(fila+columna)
    Next columna
    A(fila, columna) = T(fila)
Next fila

Print "Linear system coefficents:"
For i = 0 To M
    For j = 0 To M+1
        Print Using "######.#"; A(i,j);
    Next j
    Print
Next i

For j = 0 To M
    For i = j To M
        If A(i,j) <> 0 Then Exit For
    Next i
    If i = M+1 Then
        Print !"\nSINGULAR MATRIX '"
        Sleep: End
    End If
    For k = 0 To M+1
        Swap A(j,k), A(i,k)
    Next k
    z = 1 / A(j,j)
    For k = 0 To M+1
        A(j,k) = z * A(j,k)
    Next k
    For i = 0 To M
        If i <> j Then
            z = -A(i,j)
            For k = 0 To M+1
                A(i,k) += z * A(j,k)
            Next k
        End If
    Next i
Next j

Print !"\nSolutions:"
For i = 0 To M
    Print Using "  #####.#######"; A(i,M+1);
Next i

Sleep
Output:
Linear system coefficents:
    15.0    24.8    41.1   931.2
    24.8    41.1    68.4  1548.2
    41.1    68.4   114.3  2585.5

Solutions:
    128.8128036   -143.1620229     61.9603254

Go

The example on WP happens to be a polynomial regression example, and so code from the Polynomial regression task can be reused here. The only difference here is that givens x and y are computed in a separate function as a task prerequisite.

Library gonum/matrix

package main

import (
    "fmt"

    "github.com/gonum/matrix/mat64"
)

func givens() (x, y *mat64.Dense) {
    height := []float64{1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63,
        1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83}
    weight := []float64{52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93,
        61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46}
    degree := 2
    x = Vandermonde(height, degree)
    y = mat64.NewDense(len(weight), 1, weight)
    return
}

func Vandermonde(a []float64, degree int) *mat64.Dense {
    x := mat64.NewDense(len(a), degree+1, nil)
    for i := range a {
        for j, p := 0, 1.; j <= degree; j, p = j+1, p*a[i] {
            x.Set(i, j, p)
        }
    }
    return x
}

func main() {
    x, y := givens()
    fmt.Printf("%.4f\n", mat64.Formatted(mat64.QR(x).Solve(y)))
}
Output:
⎡ 128.8128⎤
⎢-143.1620⎥
⎣  61.9603⎦

Library go.matrix

package main

import (
    "fmt"

    "github.com/skelterjohn/go.matrix"
)

func givens() (x, y *matrix.DenseMatrix) {
    height := []float64{1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63,
        1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83}
    weight := []float64{52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93,
        61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46}
    m := len(height)
    n := 3
    y = matrix.MakeDenseMatrix(weight, m, 1)
    x = matrix.Zeros(m, n)
    for i := 0; i < m; i++ {
        ip := float64(1)
        for j := 0; j < n; j++ {
            x.Set(i, j, ip)
            ip *= height[i]
        }
    }
    return
}

func main() {
    x, y := givens()
    n := x.Cols()
    q, r := x.QR()
    qty, err := q.Transpose().Times(y)
    if err != nil {
        fmt.Println(err)
        return
    }
    c := make([]float64, n)
    for i := n - 1; i >= 0; i-- {
        c[i] = qty.Get(i, 0)
        for j := i + 1; j < n; j++ {
            c[i] -= c[j] * r.Get(i, j)
        }
        c[i] /= r.Get(i, i)
    }
    fmt.Println(c)
}
Output:
[128.8128035784373 -143.16202286476116 61.960325442472865]

Haskell

Using package hmatrix from HackageDB

import Numeric.LinearAlgebra
import Numeric.LinearAlgebra.LAPACK

m :: Matrix Double
m = (3><3) 
  [7.589183,1.703609,-4.477162,
    -4.597851,9.434889,-6.543450,
    0.4588202,-6.115153,1.331191]

v :: Matrix Double
v = (3><1)
  [1.745005,-4.448092,-4.160842]

Using lapack::dgels

*Main> linearSolveLSR m v
(3><1)
 [ 0.9335611922087276
 ,  1.101323491272865
 ,    1.6117769115824 ]

Or

*Main> inv m `multiply`  v
(3><1)
 [ 0.9335611922087278
 ,  1.101323491272865
 , 1.6117769115824006 ]

Hy

(import
  [numpy [ones column-stack]]
  [numpy.random [randn]]
  [numpy.linalg [lstsq]])

(setv n 1000)
(setv x1 (randn n))
(setv x2 (randn n))
(setv y (+ 3 (* 1 x1) (* -2 x2) (* .25 x1 x2) (randn n)))

(print (first (lstsq
  (column-stack (, (ones n) x1 x2 (* x1 x2)))
  y)))

J

   NB. Wikipedia data
   x=: 1.47 1.50 1.52 1.55 1.57 1.60 1.63 1.65 1.68 1.70 1.73 1.75 1.78 1.80 1.83
   y=: 52.21 53.12 54.48 55.84 57.20 58.57 59.93 61.29 63.11 64.47 66.28 68.10 69.92 72.19 74.46

   y %. x ^/ i.3   NB. calculate coefficients b1, b2 and b3 for 2nd degree polynomial
128.813 _143.162 61.9603

Breaking it down:

   X=: x ^/ i.3                  NB. form Design matrix
   X=: (x^0) ,. (x^1) ,. (x^2)   NB. equivalent of previous line
   4{.X                          NB. show first 4 rows of X
1 1.47 2.1609
1  1.5   2.25
1 1.52 2.3104
1 1.55 2.4025

   NB. Where y is a set of observations and X is the design matrix
   NB. y %. X does matrix division and gives the regression coefficients
   y %. X
128.813 _143.162 61.9603

In other words beta=: y %. X is the equivalent of:

To confirm:

   mp=: +/ .*                    NB. matrix product
                                 NB. %.X is matrix inverse of X
                                 NB. |:X is transpose of X
   
   (%.(|:X) mp X) mp (|:X) mp y
128.814 _143.163 61.9606
   xpy=: mp~ |:                  NB. Or factoring out "X prime y" (monadically "X prime X")
   X (%.@:xpy@[ mp xpy) y
128.814 _143.163 61.9606

LAPACK routines are also available via the Addon math/lapack.

   load 'math/lapack'
   load 'math/lapack/gels'
   gels_jlapack_ X;y
128.813 _143.162 61.9603

Java

Translation of: Kotlin
import java.util.Arrays;
import java.util.Objects;

public class MultipleRegression {
    public static void require(boolean condition, String message) {
        if (condition) {
            return;
        }
        throw new IllegalArgumentException(message);
    }

    public static class Matrix {
        private final double[][] data;
        private final int rowCount;
        private final int colCount;

        public Matrix(int rows, int cols) {
            require(rows > 0, "Need at least one row");
            this.rowCount = rows;

            require(cols > 0, "Need at least one column");
            this.colCount = cols;

            this.data = new double[rows][cols];
            for (double[] row : this.data) {
                Arrays.fill(row, 0.0);
            }
        }

        public Matrix(double[][] source) {
            require(source.length > 0, "Need at least one row");
            this.rowCount = source.length;

            require(source[0].length > 0, "Need at least one column");
            this.colCount = source[0].length;

            this.data = new double[this.rowCount][this.colCount];
            for (int i = 0; i < this.rowCount; i++) {
                set(i, source[i]);
            }
        }

        public double[] get(int row) {
            Objects.checkIndex(row, this.rowCount);
            return this.data[row];
        }

        public void set(int row, double[] data) {
            Objects.checkIndex(row, this.rowCount);
            require(data.length == this.colCount, "The column in the row must match the number of columns in the matrix");
            System.arraycopy(data, 0, this.data[row], 0, this.colCount);
        }

        public double get(int row, int col) {
            Objects.checkIndex(row, this.rowCount);
            Objects.checkIndex(col, this.colCount);
            return this.data[row][col];
        }

        public void set(int row, int col, double value) {
            Objects.checkIndex(row, this.rowCount);
            Objects.checkIndex(col, this.colCount);
            this.data[row][col] = value;
        }

        @SuppressWarnings("UnnecessaryLocalVariable")
        public Matrix times(Matrix that) {
            var rc1 = this.rowCount;
            var cc1 = this.colCount;
            var rc2 = that.rowCount;
            var cc2 = that.colCount;
            require(cc1 == rc2, "Cannot multiply if the first columns does not equal the second rows");
            var result = new Matrix(rc1, cc2);
            for (int i = 0; i < rc1; i++) {
                for (int j = 0; j < cc2; j++) {
                    for (int k = 0; k < rc2; k++) {
                        var prod = get(i, k) * that.get(k, j);
                        result.set(i, j, result.get(i, j) + prod);
                    }
                }
            }
            return result;
        }

        public Matrix transpose() {
            var rc = this.rowCount;
            var cc = this.colCount;
            var trans = new Matrix(cc, rc);
            for (int i = 0; i < cc; i++) {
                for (int j = 0; j < rc; j++) {
                    trans.set(i, j, get(j, i));
                }
            }
            return trans;
        }

        public void toReducedRowEchelonForm() {
            int lead = 0;
            var rc = this.rowCount;
            var cc = this.colCount;
            for (int r = 0; r < rc; r++) {
                if (cc <= lead) {
                    return;
                }
                var i = r;

                while (get(i, lead) == 0.0) {
                    i++;
                    if (rc == i) {
                        i = r;
                        lead++;
                        if (cc == lead) {
                            return;
                        }
                    }
                }

                var temp = get(i);
                set(i, get(r));
                set(r, temp);

                if (get(r, lead) != 0.0) {
                    var div = get(r, lead);
                    for (int j = 0; j < cc; j++) {
                        set(r, j, get(r, j) / div);
                    }
                }

                for (int k = 0; k < rc; k++) {
                    if (k != r) {
                        var mult = get(k, lead);
                        for (int j = 0; j < cc; j++) {
                            var prod = get(r, j) * mult;
                            set(k, j, get(k, j) - prod);
                        }
                    }
                }

                lead++;
            }
        }

        public Matrix inverse() {
            require(this.rowCount == this.colCount, "Not a square matrix");
            var len = this.rowCount;
            var aug = new Matrix(len, 2 * len);
            for (int i = 0; i < len; i++) {
                for (int j = 0; j < len; j++) {
                    aug.set(i, j, get(i, j));
                }
                // augment identity matrix to right
                aug.set(i, i + len, 1.0);
            }
            aug.toReducedRowEchelonForm();
            var inv = new Matrix(len, len);
            // remove identity matrix to left
            for (int i = 0; i < len; i++) {
                for (int j = len; j < 2 * len; j++) {
                    inv.set(i, j - len, aug.get(i, j));
                }
            }
            return inv;
        }
    }

    public static double[] multipleRegression(double[] y, Matrix x) {
        var tm = new Matrix(new double[][]{y});
        var cy = tm.transpose();
        var cx = x.transpose();
        return x.times(cx).inverse().times(x).times(cy).transpose().get(0);
    }

    public static void printVector(double[] v) {
        System.out.println(Arrays.toString(v));
        System.out.println();
    }

    public static double[] repeat(int size, double value) {
        var a = new double[size];
        Arrays.fill(a, value);
        return a;
    }

    public static void main(String[] args) {
        double[] y = new double[]{1.0, 2.0, 3.0, 4.0, 5.0};
        var x = new Matrix(new double[][]{{2.0, 1.0, 3.0, 4.0, 5.0}});
        var v = multipleRegression(y, x);
        printVector(v);

        y = new double[]{3.0, 4.0, 5.0};
        x = new Matrix(new double[][]{
            {1.0, 2.0, 1.0},
            {1.0, 1.0, 2.0}
        });
        v = multipleRegression(y, x);
        printVector(v);

        y = new double[]{52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46};
        var a = new double[]{1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83};
        x = new Matrix(new double[][]{
            repeat(a.length, 1.0),
            a,
            Arrays.stream(a).map(it -> it * it).toArray()
        });

        v = multipleRegression(y, x);
        printVector(v);
    }
}
Output:
[0.9818181818181818]

[0.9999999999999996, 2.000000000000001]

[128.8128035798277, -143.1620228653037, 61.960325442985436]

JavaScript

Works with: SpiderMonkey

for the print() and Array.map() functions.

Translation of: Ruby

Extends the Matrix class from Matrix Transpose#JavaScript, Matrix multiplication#JavaScript, Reduced row echelon form#JavaScript. Uses the IdentityMatrix from Matrix exponentiation operator#JavaScript

// modifies the matrix "in place"
Matrix.prototype.inverse = function() {
    if (this.height != this.width) {
        throw "can't invert a non-square matrix";
    }   

    var I = new IdentityMatrix(this.height);
    for (var i = 0; i < this.height; i++) 
        this.mtx[i] = this.mtx[i].concat(I.mtx[i])
    this.width *= 2;

    this.toReducedRowEchelonForm();

    for (var i = 0; i < this.height; i++) 
        this.mtx[i].splice(0, this.height);
    this.width /= 2;

    return this;
}

function ColumnVector(ary) {
    return new Matrix(ary.map(function(v) {return [v]}))
}
ColumnVector.prototype = Matrix.prototype

Matrix.prototype.regression_coefficients = function(x) {
    var x_t = x.transpose();
    return x_t.mult(x).inverse().mult(x_t).mult(this);
}

// the Ruby example
var y = new ColumnVector([1,2,3,4,5]);
var x = new ColumnVector([2,1,3,4,5]);
print(y.regression_coefficients(x));
print();

// the Tcl example
y = new ColumnVector([
    52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 
    63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46
]);
x = new Matrix(
    [1.47,1.50,1.52,1.55,1.57,1.60,1.63,1.65,1.68,1.70,1.73,1.75,1.78,1.80,1.83].map(
        function(v) {return [Math.pow(v,0), Math.pow(v,1), Math.pow(v,2)]}
    )
);
print(y.regression_coefficients(x));
Output:
0.9818181818181818

128.8128035798277
-143.1620228653037
61.960325442985436

jq

Translation of: Wren
Works with: jq

Works with gojq, the Go implementation of jq

See e.g. https://rosettacode.org/wiki/Gauss-Jordan_matrix_inversion#jq for a suitable definition of `inverse` as used here.

Preliminaries

def dot_product(a; b):
  reduce range(0;a|length) as $i (0; . + (a[$i] * b[$i]) );

# A and B should both be numeric matrices, A being m by n, and B being n by p.
def multiply(A; B):
  (B[0]|length) as $p
  | (B|transpose) as $BT
  | reduce range(0; A|length) as $i
       ([];
       reduce range(0; $p) as $j 
         (.;
          .[$i][$j] = dot_product( A[$i]; $BT[$j] ) ));

Multiple Regression

def multipleRegression(y; x):
    (y|transpose) as $cy
    | (x|transpose) as $cx
    | multiply( multiply( multiply(x;$cx)|inverse; x); $cy)
    | transpose[0];
 
def ys: [
    [ [1, 2, 3, 4, 5] ],
    [ [3, 4, 5] ],
    [ [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29,
                  63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46] ]
];
 
def a:
  [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83];

def xs:[
    [ [2, 1, 3, 4, 5] ],
    [ [1, 2, 1], [1, 1, 2] ],
    [ [range(0;a|length) | 1], a, (a|map(.*.))]
];

range(0; ys|length) as $i
| multipleRegression(ys[$i]; xs[$i])
Output:
[0.9818181818181818]
[0.9999999999999996,2.000000000000001]
[128.8128035798277,-143.1620228653037,61.960325442985436]


Julia

Translation of: MATLAB

As in Matlab, the backslash or slash operator (depending on the matrix ordering) can be used for solving this problem, for example:

x = [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83]
y = [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46]
X = [x.^0 x.^1 x.^2];
b = X \ y
Output:
3-element Array{Float64,1}:
  128.813 
 -143.162 
   61.9603

Kotlin

As neither the JDK nor the Kotlin Standard Library has matrix operations built-in, we re-use functions written for various other tasks.

// Version 1.2.31

typealias Vector = DoubleArray
typealias Matrix = Array<Vector>
 
operator fun Matrix.times(other: Matrix): Matrix {
    val rows1 = this.size
    val cols1 = this[0].size
    val rows2 = other.size
    val cols2 = other[0].size
    require(cols1 == rows2)
    val result = Matrix(rows1) { Vector(cols2) }
    for (i in 0 until rows1) {
        for (j in 0 until cols2) {
            for (k in 0 until rows2) {
                result[i][j] += this[i][k] * other[k][j]
            }
        }
    }
    return result
}

fun Matrix.transpose(): Matrix {
    val rows = this.size
    val cols = this[0].size
    val trans = Matrix(cols) { Vector(rows) }
    for (i in 0 until cols) {
        for (j in 0 until rows) trans[i][j] = this[j][i]
    }
    return trans
}

fun Matrix.inverse(): Matrix {
    val len = this.size
    require(this.all { it.size == len }) { "Not a square matrix" }
    val aug = Array(len) { DoubleArray(2 * len) }
    for (i in 0 until len) {
        for (j in 0 until len) aug[i][j] = this[i][j]
        // augment by identity matrix to right
        aug[i][i + len] = 1.0
    }
    aug.toReducedRowEchelonForm()
    val inv = Array(len) { DoubleArray(len) }
    // remove identity matrix to left
    for (i in 0 until len) {
        for (j in len until 2 * len) inv[i][j - len] = aug[i][j]
    }
    return inv
}

fun Matrix.toReducedRowEchelonForm() {
    var lead = 0
    val rowCount = this.size
    val colCount = this[0].size
    for (r in 0 until rowCount) {
        if (colCount <= lead) return
        var i = r

        while (this[i][lead] == 0.0) {
            i++
            if (rowCount == i) {
                i = r
                lead++
                if (colCount == lead) return
            }
        }

        val temp = this[i]
        this[i] = this[r]
        this[r] = temp

        if (this[r][lead] != 0.0) {
           val div = this[r][lead]
           for (j in 0 until colCount) this[r][j] /= div
        }
 
        for (k in 0 until rowCount) {
            if (k != r) {
                val mult = this[k][lead]
                for (j in 0 until colCount) this[k][j] -= this[r][j] * mult
            }
        }

        lead++
    }
}

fun printVector(v: Vector) {
    println(v.asList())
    println()
}

fun multipleRegression(y: Vector, x: Matrix): Vector {
    val cy = (arrayOf(y)).transpose()  // convert 'y' to column vector
    val cx = x.transpose()             // convert 'x' to column vector array
    return ((x * cx).inverse() * x * cy).transpose()[0]
}

fun main(args: Array<String>) {
    var y = doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0)
    var x = arrayOf(doubleArrayOf(2.0, 1.0, 3.0, 4.0, 5.0))
    var v = multipleRegression(y, x)
    printVector(v)

    y = doubleArrayOf(3.0, 4.0, 5.0)
    x = arrayOf(
        doubleArrayOf(1.0, 2.0, 1.0),
        doubleArrayOf(1.0, 1.0, 2.0)
    )
    v = multipleRegression(y, x)
    printVector(v)

    y = doubleArrayOf(52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29,
                      63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46)

    val a = doubleArrayOf(1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70,
                          1.73, 1.75, 1.78, 1.80, 1.83)
    x = arrayOf(DoubleArray(a.size) { 1.0 }, a, a.map { it * it }.toDoubleArray())
    v = multipleRegression(y, x)
    printVector(v)
}
Output:
[0.9818181818181818]

[0.9999999999999996, 2.000000000000001]

[128.8128035798277, -143.1620228653037, 61.960325442985436]

Maple

First build a random dataset.

n:=200:
X:=<ArrayTools[RandomArray](n,4,distribution=normal)|Vector(n,1,datatype=float[8])>:
Y:=X.<4.2,-2.8,-1.4,3.1,1.75>+convert(ArrayTools[RandomArray](n,1,distribution=normal),Vector):

Now the linear regression, with either the LinearAlgebra package, or the Statistics package.

LinearAlgebra[LeastSquares](X,Y)^+;
# [4.33701132468683, -2.78654498997457, -1.41840666085642, 2.92065133466547, 1.76076442997642]

Statistics[LinearFit]([x1,x2,x3,x4,c],X,Y,[x1,x2,x3,x4,c],summarize=true)
# Summary:
# ----------------
# Model: 4.3370113*x1-2.7865450*x2-1.4184067*x3+2.9206513*x4+1.7607644*c
# ----------------
# Coefficients:
#               Estimate  Std. Error  t-value  P(>|t|)
# Parameter 1    4.3370    0.0691      62.7409   0.0000
# Parameter 2   -2.7865    0.0661     -42.1637   0.0000
# Parameter 3   -1.4184    0.0699     -20.2937   0.0000
# Parameter 4    2.9207    0.0687      42.5380   0.0000
# Parameter 5    1.7608    0.0701      25.1210   0.0000
# ----------------
# R-squared: 0.9767, Adjusted R-squared: 0.9761
# 4.33701132468683 x1 - 2.78654498997457 x2 - 1.41840666085642 x3
#    + 2.92065133466547 x4 + 1.76076442997642 c

Mathematica /Wolfram Language

x = {1.47, 1.50 , 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83};
y = {52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46};
X = {x^0, x^1, x^2};
LeastSquares[Transpose@X, y]
Output:
{128.813, -143.162, 61.9603}

MATLAB

The slash and backslash operator can be used for solving this problem. Here some random data is generated.

  n=100; k=10; 
  y = randn (1,n);  % generate random vector y
  X = randn (k,n);  % generate random matrix X
  b = y / X
  b = 0.1457109  -0.0777564  -0.0712427  -0.0166193   0.0292955  -0.0079111   0.2265894  -0.0561589  -0.1752146  -0.2577663

In its transposed form yt = Xt * bt, the backslash operator can be used.

  yt = y'; Xt = X';
  bt = Xt \ yt
  bt = 
   0.1457109
  -0.0777564
  -0.0712427
  -0.0166193
   0.0292955
  -0.0079111
   0.2265894
  -0.0561589
  -0.1752146
  -0.2577663

Here is the example for estimating the polynomial fit

  x = [1.47 1.50 1.52 1.55 1.57 1.60 1.63 1.65 1.68 1.70 1.73 1.75 1.78 1.80 1.83]
  y = [52.21 53.12 54.48 55.84 57.20 58.57 59.93 61.29 63.11 64.47 66.28 68.10 69.92 72.19 74.46]
  X = [x.^0;x.^1;x.^2];
  b = y/X

   128.813  -143.162    61.960

Instead of "/", the slash operator, one can also write :

 b = y * X' * inv(X * X')

or

 b = y * pinv(X)

Nim

Library: arraymancer
# Using Wikipedia data sample.

import math
import arraymancer, sequtils

var

  height = [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65,
            1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83].toTensor()

  weight = [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29,
            63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46].toTensor()

# Create Vandermonde matrix.
var a = stack(height.ones_like, height, height *. height, axis = 1)

echo toSeq(least_squares_solver(a, weight).solution.items)
Output:
@[128.8128035784397, -143.1620228647656, 61.96032544247468]

PARI/GP

pseudoinv(M)=my(sz=matsize(M),T=conj(M))~;if(sz[1]<sz[2],T/(M*T),(T*M)^-1*T)
addhelp(pseudoinv, "pseudoinv(M): Moore pseudoinverse of the matrix M.");

y*pseudoinv(X)

Perl

use strict;
use warnings;
use Statistics::Regression;

my @y =  (52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46);
my @x =  ( 1.47,  1.50,  1.52,  1.55,  1.57,  1.60,  1.63,  1.65,  1.68,  1.70,  1.73,  1.75,  1.78,  1.80,  1.83);

my @model = ('const', 'X', 'X**2');
my $reg = Statistics::Regression->new( '', [@model] );
$reg->include( $y[$_], [ 1.0, $x[$_], $x[$_]**2 ]) for 0..@y-1;
my @coeff = $reg->theta();

printf "%-6s %8.3f\n", $model[$_], $coeff[$_] for 0..@model-1;
Output:
const   128.813
X      -143.162
X**2     61.960

Phix

Translation of: ERRE
with javascript_semantics
constant N = 15, M=3
sequence x = {1.47,1.50,1.52,1.55,1.57,
              1.60,1.63,1.65,1.68,1.70,
              1.73,1.75,1.78,1.80,1.83},
         y = {52.21,53.12,54.48,55.84,57.20,
              58.57,59.93,61.29,63.11,64.47,
              66.28,68.10,69.92,72.19,74.46},
         s = repeat(0,N),
         t = repeat(0,N),
         a = repeat(repeat(0,M+1),M)
 
for k=1 to 2*M do
    for i=1 to N do
        s[k] += power(x[i],k-1)
        if k<=M then t[k] += y[i]*power(x[i],k-1) end if
    end for
end for

-- build linear system

for row=1 to M do
    for col=1 to M do
        a[row,col] = s[row+col-1]
    end for
    a[row,M+1] = t[row]
end for

puts(1,"Linear system coefficents:\n")
pp(a,{pp_Nest,1,pp_IntFmt,"%7.1f",pp_FltFmt,"%7.1f"})

for j=1 to M do
    integer i = j
    while a[i,j]=0 do i += 1 end while
    if i=M+1 then
        ?"SINGULAR MATRIX !"
        ?9/0
    end if
    for k=1 to M+1 do
        {a[j,k],a[i,k]} = {a[i,k],a[j,k]}
    end for
    atom Y = 1/a[j,j]
    a[j] = sq_mul(a[j],Y)
    for k=1 to M do
        if k<>j then
            Y=-a[k,j]
            for m=1 to M+1 do
                a[k,m] += Y*a[j,m]
            end for
        end if
    end for
end for

puts(1,"Solutions:\n")
?columnize(a,M+1)[1]
Output:
Linear system coefficents:
{{   15.0,   24.8,   41.1,  931.2},
 {   24.8,   41.1,   68.4, 1548.2},
 {   41.1,   68.4,  114.3, 2585.5}}
Solutions:
{128.8128036,-143.1620229,61.96032544}

PicoLisp

(scl 20)

# Matrix transposition
(de matTrans (Mat)
   (apply mapcar Mat list) )

# Matrix multiplication
(de matMul (Mat1 Mat2)
   (mapcar
      '((Row)
         (apply mapcar Mat2
            '(@ (sum */ Row (rest) (1.0 .))) ) )
      Mat1 ) )

# Matrix identity
(de matIdent (N)
   (let L (need N (1.0) 0)
      (mapcar '(() (copy (rot L))) L) ) )

# Reduced row echelon form
(de reducedRowEchelonForm (Mat)
   (let (Lead 1  Cols (length (car Mat)))
      (for (X Mat X (cdr X))
         (NIL
            (loop
               (T (seek '((R) (n0 (get R 1 Lead))) X)
                  @ )
               (T (> (inc 'Lead) Cols)) ) )
         (xchg @ X)
         (let D (get X 1 Lead)
            (map
               '((R) (set R (*/ (car R) 1.0 D)))
               (car X) ) )
         (for Y Mat
            (unless (== Y (car X))
               (let N (- (get Y Lead))
                  (map
                     '((Dst Src)
                        (inc Dst (*/ N (car Src) 1.0)) )
                     Y
                     (car X) ) ) ) )
         (T (> (inc 'Lead) Cols)) ) )
   Mat )
Translation of: JavaScript
(de matInverse (Mat)
   (let N (length Mat)
      (unless (= N (length (car Mat)))
         (quit "can't invert a non-square matrix") )
      (mapc conc Mat (matIdent N))
      (mapcar '((L) (tail N L)) (reducedRowEchelonForm Mat)) ) )

(de columnVector (Ary)
   (mapcar cons Ary) )

(de regressionCoefficients (Mat X)
   (let Xt (matTrans X)
      (matMul (matMul (matInverse (matMul Xt X)) Xt) Mat) ) )

(setq
   Y (columnVector (1.0 2.0 3.0 4.0 5.0))
   X (columnVector (2.0 1.0 3.0 4.0 5.0)) )

(round (caar (regressionCoefficients Y X)) 17)
Output:
-> "0.98181818181818182"

Python

Library: NumPy

Method with matrix operations

import numpy as np

height = [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63,
    1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83]
weight = [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93,
    61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46]

X = np.mat(height**np.arange(3)[:, None])
y = np.mat(weight)

print(y * X.T * (X*X.T).I)
Output:
[[ 128.81280359 -143.16202288   61.96032545]]

Using numpy lstsq function

import numpy as np

height = [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63,
    1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83]
weight = [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93,
    61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46]

X = np.array(height)[:, None]**range(3)
y = weight

print(np.linalg.lstsq(X, y)[0])
Output:
[ 128.81280358 -143.16202286   61.96032544]

R

R provides the lm function for linear regression.

x <- c(1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83)
y <- c(52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46)

lm( y ~ x + I(x^2))
Output:
Call:
lm(formula = y ~ x + I(x^2))

Coefficients:
(Intercept)            x       I(x^2)  
     128.81      -143.16        61.96

A simple implementation of multiple regression in native R is useful to illustrate R's model description and linear algebra capabilities.

simpleMultipleReg <- function(formula) {

    ## parse and evaluate the model formula
    mf <- model.frame(formula)

    ## create design matrix
    X <- model.matrix(mf)

    ## create dependent variable
    Y <- model.response(mf)

    ## solve
    solve(t(X) %*% X) %*% t(X) %*% Y
}

simpleMultipleReg(y ~ x + I(x^2))

This produces the same coefficients as lm()

                  [,1]
(Intercept)  128.81280
x           -143.16202
I(x^2)        61.96033


A more efficient way to solve , than the method above, is to solve the linear system directly and use the crossprod function:

solve(crossprod(X), crossprod(X, Y))

A numerically more stable way is to use the QR decomposition of the design matrix:

lm.impl <- function(formula) {
  mf <- model.frame(formula)
  X <- model.matrix(mf)
  Y <- model.response(mf)
  qr.coef(qr(X), Y)
}


lm(y ~ x + I(x^2))

# Call:
# lm(formula = y ~ x + I(x^2))
#
# Coefficients:
# (Intercept)            x       I(x^2)  
#      128.81      -143.16        61.96  

lm.impl(y ~ x + I(x^2))

# (Intercept)           x      I(x^2) 
#   128.81280  -143.16202    61.96033

Racket

#lang racket
(require math)
(define T matrix-transpose)

(define (fit X y)
  (matrix-solve (matrix* (T X) X) (matrix* (T X) y)))

Test:

(fit (matrix [[1 2]
              [2 5]
              [3 7]
              [4 9]])
     (matrix [[1]
              [2]
              [3]
              [9]]))
{{out}}
(array #[#[9 1/3] #[-3 1/3]])

Raku

This example is broken. It fails to compile or causes a runtime error. Please fix the code and remove this message.


(formerly Perl 6) We're going to solve the example on the Wikipedia article using Clifford, a geometric algebra module. Optimization for large vector space does not quite work yet, so it's going to take (a lof of) time and a fair amount of memory, but it should work.

Let's create four vectors containing our input data:

Then what we're looking for are three scalars , and such that:

To get for instance we can first make the and terms disappear:

Noting , we then get:

Note: a number of the formulae above are invisible to the majority of browsers, including Chrome, IE/Edge, Safari and Opera. They may (subject to the installation of necessary fronts) be visible to Firefox.


use Clifford;
my @height = <1.47 1.50 1.52 1.55 1.57 1.60 1.63 1.65 1.68 1.70 1.73 1.75 1.78 1.80 1.83>;
my @weight = <52.21 53.12 54.48 55.84 57.20 58.57 59.93 61.29 63.11 64.47 66.28 68.10 69.92 72.19 74.46>;

my $w = [+] @weight Z* @e;

my $h0 = [+] @e[^@weight];
my $h1 = [+] @height Z* @e;
my $h2 = [+] (@height X** 2) Z* @e;

my $I = $h0$h1$h2;
my $I2 = ($I·$I.reversion).Real;

say "α = ", ($w$h1$h2$I.reversion/$I2;
say "β = ", ($w$h2$h0$I.reversion/$I2;
say "γ = ", ($w$h0$h1$I.reversion/$I2;
Output:
α = 128.81280357844
β = -143.1620228648
γ = 61.960325442

April 2016: This computation took over an hour with MoarVM, running in a VirtualBox linux system guest hosted by a windows laptop with a i7 intel processor.
March 2020: With various improvements to the language, 6.d releases of Raku now run the code 2x to 3x as fast, depending on the hardware used, but even so it is generous to describe it as 'slow'.

Ruby

Using the standard library Matrix class:

require 'matrix'

def regression_coefficients y, x
  y = Matrix.column_vector y.map { |i| i.to_f }
  x = Matrix.columns x.map { |xi| xi.map { |i| i.to_f }}

  (x.t * x).inverse * x.t * y
end

Testing 2-dimension:

puts regression_coefficients([1, 2, 3, 4, 5], [ [2, 1, 3, 4, 5] ])
Output:
Matrix[[0.981818181818182]]

Testing 3-dimension: Points(x,y,z): [1,1,3], [2,1,4] and [1,2,5]

puts regression_coefficients([3,4,5], [ [1,2,1], [1,1,2] ])
Output:
Matrix[[0.9999999999999996], [2.0]]

SPSS

First, build a random dataset:

set rng=mc seed=17760704.
new file.
input program.
  vector x(4).
  loop #i=1 to 200.
    loop #j=1 to 4.
        compute x(#j)=rv.normal(0,1).
    end loop.
    end case.
  end loop.
  end file.
end input program.
compute y=1.5+0.8*x1-0.7*x2+1.1*x3-1.7*x4+rv.normal(0,1).
execute.

Now use the regression command:

regression /dependent=y
/method=enter x1 x2 x3 x4.
Output:
Regression
Notes
|--------------------------------------------------------------------|---------------------------------------------------------------------------|
|Output Created                                                      |21-MAR-2020 23:17:33                                                       |
|--------------------------------------------------------------------|---------------------------------------------------------------------------|
|Comments                                                            |                                                                           |
|----------------------|---------------------------------------------|---------------------------------------------------------------------------|
|Input                 |Filter                                       |<none>                                                                     |
|                      |---------------------------------------------|---------------------------------------------------------------------------|
|                      |Weight                                       |<none>                                                                     |
|                      |---------------------------------------------|---------------------------------------------------------------------------|
|                      |Split File                                   |<none>                                                                     |
|                      |---------------------------------------------|---------------------------------------------------------------------------|
|                      |N of Rows in Working Data File               |200                                                                        |
|----------------------|---------------------------------------------|---------------------------------------------------------------------------|
|Missing Value Handling|Definition of Missing                        |User-defined missing values are treated as missing.                        |
|                      |---------------------------------------------|---------------------------------------------------------------------------|
|                      |Cases Used                                   |Statistics are based on cases with no missing values for any variable used.|
|--------------------------------------------------------------------|---------------------------------------------------------------------------|
|Syntax                                                              |regression /dependent=y /method=enter x1 x2 x3 x4.                         |
|----------------------|---------------------------------------------|---------------------------------------------------------------------------|
|Resources             |Processor Time                               |00:00:00,00                                                                |
|                      |---------------------------------------------|---------------------------------------------------------------------------|
|                      |Elapsed Time                                 |00:00:00,00                                                                |
|                      |---------------------------------------------|---------------------------------------------------------------------------|
|                      |Memory Required                              |4080 bytes                                                                 |
|                      |---------------------------------------------|---------------------------------------------------------------------------|
|                      |Additional Memory Required for Residual Plots|0 bytes                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------|

Variables Entered/Removeda
|-----|-----------------|-----------------|------|
|Model|Variables Entered|Variables Removed|Method|
|-----|-----------------|-----------------|------|
|1    |x4, x3, x2, x1b  |.                |Enter |
|------------------------------------------------|
 a Dependent Variable: y
 b All requested variables entered.

Model Summary
|-----|-----|--------|-----------------|--------------------------|
|Model|R    |R Square|Adjusted R Square|Std. Error of the Estimate|
|-----|-----|--------|-----------------|--------------------------|
|1    |,929a|,863    |,860             |,94928                    |
|-----------------------------------------------------------------|
 a Predictors: (Constant), x4, x3, x2, x1

ANOVAa
|----------------|--------------|---|-----------|-------|-----|
|Model           |Sum of Squares|df |Mean Square|F      |Sig. |
|-----|----------|--------------|---|-----------|-------|-----|
|1    |Regression|1106,659      |4  |276,665    |307,021|,000b|
|     |----------|--------------|---|-----------|-------|-----|
|     |Residual  |175,720       |195|,901       |       |     |
|     |----------|--------------|---|-----------|-------|-----|
|     |Total     |1282,379      |199|           |       |     |
|-------------------------------------------------------------|
 a Dependent Variable: y
 b Predictors: (Constant), x4, x3, x2, x1

Coefficientsa
|----------------|--------------------------------------|-------------------------|-------|----|
|Model           |Unstandardized Coefficients           |Standardized Coefficients|t      |Sig.|
|                |---------------------------|----------|-------------------------|       |    |
|                |B                          |Std. Error|Beta                     |       |    |
|-----|----------|---------------------------|----------|-------------------------|-------|----|
|1    |(Constant)|1,550                      |,067      |                         |23,003 |,000|
|     |----------|---------------------------|----------|-------------------------|-------|----|
|     |x1        |,831                       |,062      |,360                     |13,457 |,000|
|     |----------|---------------------------|----------|-------------------------|-------|----|
|     |x2        |-,604                      |,075      |-,215                    |-8,051 |,000|
|     |----------|---------------------------|----------|-------------------------|-------|----|
|     |x3        |1,098                      |,065      |,451                     |16,989 |,000|
|     |----------|---------------------------|----------|-------------------------|-------|----|
|     |x4        |-1,770                     |,073      |-,656                    |-24,306|,000|
|----------------------------------------------------------------------------------------------|
 a Dependent Variable: y

Stata

First, build a random dataset:

clear
set seed 17760704
set obs 200
forv i=1/4 {
	gen x`i'=rnormal()
}
gen y=1.5+0.8*x1-0.7*x2+1.1*x3-1.7*x4+rnormal()

Now, use the regress command:

reg y x*

Output

The command shows the coefficients along with a bunch of useful information, such as R2, F statistic, standard errors of the coefficients...

      Source |       SS           df       MS      Number of obs   =       200
-------------+----------------------------------   F(4, 195)       =    355.15
       Model |  1343.81757         4  335.954392   Prob > F        =    0.0000
    Residual |  184.458622       195  .945941649   R-squared       =    0.8793
-------------+----------------------------------   Adj R-squared   =    0.8768
       Total |  1528.27619       199  7.67977985   Root MSE        =     .9726

------------------------------------------------------------------------------
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          x1 |   .7525247   .0689559    10.91   0.000     .6165295    .8885198
          x2 |  -.7036303   .0697456   -10.09   0.000    -.8411828   -.5660778
          x3 |   1.157477    .072189    16.03   0.000     1.015106    1.299849
          x4 |  -1.718201   .0621758   -27.63   0.000    -1.840824   -1.595577
       _cons |   1.399131   .0697862    20.05   0.000     1.261499    1.536764
------------------------------------------------------------------------------

The regress command also sets a number of ereturn values, which can be used by subsequent commands. The coefficients and their standard errors also have a special syntax:

. di _b[x1]
.75252466

. di _b[_cons]
1.3991314

. di _se[x1]
.06895593

. di _se[_cons]
.06978623

See regress postestimation for a list of commands that can be used after a regression.

Here we compute Akaike's AIC, the covariance matrix of the estimates, the predicted values and residuals:

. estat ic

Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |        Obs  ll(null)  ll(model)      df         AIC        BIC
-------------+---------------------------------------------------------------
           . |        200 -487.1455  -275.6985       5     561.397   577.8886
-----------------------------------------------------------------------------
               Note: N=Obs used in calculating BIC; see [R] BIC note.

. estat vce

Covariance matrix of coefficients of regress model

        e(V) |         x1          x2          x3          x4       _cons 
-------------+------------------------------------------------------------
          x1 |  .00475492                                                 
          x2 | -.00040258   .00486445                                     
          x3 | -.00042516   .00017355   .00521125                         
          x4 | -.00011915   -.0002568   .00054646   .00386583             
       _cons |  .00030777  -.00031109  -.00023794   .00058926   .00487012

. predict yhat, xb
. predict r, r

Tcl

Library: Tcllib (Package: math::linearalgebra)
package require math::linearalgebra
namespace eval multipleRegression {
    namespace export regressionCoefficients
    namespace import ::math::linearalgebra::*

    # Matrix inversion is defined in terms of Gaussian elimination
    # Note that we assume (correctly) that we have a square matrix
    proc invert {matrix} {
	solveGauss $matrix [mkIdentity [lindex [shape $matrix] 0]]
    }
    # Implement the Ordinary Least Squares method
    proc regressionCoefficients {y x} {
	matmul [matmul [invert [matmul $x [transpose $x]]] $x] $y
    }
}
namespace import multipleRegression::regressionCoefficients

Using an example from the Wikipedia page on the correlation of height and weight:

# Simple helper just for this example
proc map {n exp list} {
    upvar 1 $n v
    set r {}; foreach v $list {lappend r [uplevel 1 $exp]}; return $r
}

# Data from wikipedia
set x {
    1.47 1.50 1.52 1.55 1.57 1.60 1.63 1.65 1.68 1.70 1.73 1.75 1.78 1.80 1.83
}
set y {
    52.21 53.12 54.48 55.84 57.20 58.57 59.93 61.29 63.11 64.47 66.28 68.10
    69.92 72.19 74.46
}
# Wikipedia states that fitting up to the square of x[i] is worth it
puts [regressionCoefficients $y [map n {map v {expr {$v**$n}} $x} {0 1 2}]]
Output:

(a 3-vector of coefficients)

128.81280358170625 -143.16202286630732 61.96032544293041

TI-83 BASIC

Works with: TI-83 BASIC version TI-84Plus 2.55MP
{1.47,1.50,1.52,1.55,1.57,1.60,1.63,1.65,1.68,1.70,1.73,1.75,1.78,1.80,1.83}→L₁
{52.21,53.12,54.48,55.84,57.20,58.57,59.93,61.29,63.11,64.47,66.28,68.10,69.92,72.19,74.46}→L₂
QuadReg L₁,L₂
Output:
y=ax²+bx+c
a=61.96032544
b=–143.1620229
c=128.8128036


Ursala

This exact problem is solved by the DGELSD function from the Lapack library [1], which is callable in Ursala like this:

regression_coefficients = lapack..dgelsd

test program:

x = 

<
   <7.589183e+00,1.703609e+00,-4.477162e+00>,
   <-4.597851e+00,9.434889e+00,-6.543450e+00>,
   <4.588202e-01,-6.115153e+00,1.331191e+00>>

y = <1.745005e+00,-4.448092e+00,-4.160842e+00>

#cast %eL

example = regression_coefficients(x,y)

The matrix x needn't be square, and has one row for each data point. The length of y must equal the number of rows in x, and the number of coefficients returned will be the number of columns in x. It would be more typical in practice to initialize x by evaluating a set of basis functions chosen to model some empirical data, but the regression solver is indifferent to the model.

Output:
<9.335612e-01,1.101323e+00,1.611777e+00>

A similar method can be used for regression with complex numbers by substituting zgelsd for dgelsd, above.

Visual Basic .NET

Translation of: Java
Module Module1

    Sub Swap(Of T)(ByRef x As T, ByRef y As T)
        Dim temp = x
        x = y
        y = temp
    End Sub

    Sub Require(condition As Boolean, message As String)
        If condition Then
            Return
        End If
        Throw New ArgumentException(message)
    End Sub

    Class Matrix
        Private data As Double(,)
        Private rowCount As Integer
        Private colCount As Integer

        Public Sub New(rows As Integer, cols As Integer)
            Require(rows > 0, "Need at least one row")
            rowCount = rows

            Require(cols > 0, "Need at least one column")
            colCount = cols

            data = New Double(rows - 1, cols - 1) {}
        End Sub

        Public Sub New(source As Double(,))
            Dim rows = source.GetLength(0)
            Require(rows > 0, "Need at least one row")
            rowCount = rows

            Dim cols = source.GetLength(1)
            Require(cols > 0, "Need at least one column")
            colCount = cols

            data = New Double(rows - 1, cols - 1) {}
            For i = 1 To rows
                For j = 1 To cols
                    data(i - 1, j - 1) = source(i - 1, j - 1)
                Next
            Next
        End Sub

        Default Public Property Index(i As Integer, j As Integer) As Double
            Get
                Return data(i, j)
            End Get
            Set(value As Double)
                data(i, j) = value
            End Set
        End Property

        Public Property Slice(i As Integer) As Double()
            Get
                Dim m(colCount - 1) As Double
                For j = 1 To colCount
                    m(j - 1) = Index(i, j - 1)
                Next
                Return m
            End Get
            Set(value As Double())
                Require(colCount = value.Length, "Slice must match the number of columns")
                For j = 1 To colCount
                    Index(i, j - 1) = value(j - 1)
                Next
            End Set
        End Property

        Public Shared Operator *(m1 As Matrix, m2 As Matrix) As Matrix
            Dim rc1 = m1.rowCount
            Dim cc1 = m1.colCount
            Dim rc2 = m2.rowCount
            Dim cc2 = m2.colCount
            Require(cc1 = rc2, "Cannot multiply if the first columns does not equal the second rows")
            Dim result As New Matrix(rc1, cc2)
            For i = 1 To rc1
                For j = 1 To cc2
                    For k = 1 To rc2
                        result(i - 1, j - 1) += m1(i - 1, k - 1) * m2(k - 1, j - 1)
                    Next
                Next
            Next
            Return result
        End Operator

        Public Function Transpose() As Matrix
            Dim rc = rowCount
            Dim cc = colCount

            Dim trans As New Matrix(cc, rc)
            For i = 1 To cc
                For j = 1 To rc
                    trans(i - 1, j - 1) = Index(j - 1, i - 1)
                Next
            Next
            Return trans
        End Function

        Public Sub ToReducedRowEchelonForm()
            Dim lead = 0
            Dim rc = rowCount
            Dim cc = colCount
            For r = 1 To rc
                If cc <= lead Then
                    Return
                End If
                Dim i = r

                While Index(i - 1, lead) = 0.0
                    i += 1
                    If rc = i Then
                        i = r
                        lead += 1
                        If cc = lead Then
                            Return
                        End If
                    End If
                End While

                Dim temp = Slice(i - 1)
                Slice(i - 1) = Slice(r - 1)
                Slice(r - 1) = temp

                If Index(r - 1, lead) <> 0.0 Then
                    Dim div = Index(r - 1, lead)
                    For j = 1 To cc
                        Index(r - 1, j - 1) /= div
                    Next
                End If

                For k = 1 To rc
                    If k <> r Then
                        Dim mult = Index(k - 1, lead)
                        For j = 1 To cc
                            Index(k - 1, j - 1) -= Index(r - 1, j - 1) * mult
                        Next
                    End If
                Next

                lead += 1
            Next
        End Sub

        Public Function Inverse() As Matrix
            Require(rowCount = colCount, "Not a square matrix")
            Dim len = rowCount
            Dim aug As New Matrix(len, 2 * len)
            For i = 1 To len
                For j = 1 To len
                    aug(i - 1, j - 1) = Index(i - 1, j - 1)
                Next
                REM augment identity matrix to right
                aug(i - 1, i + len - 1) = 1.0
            Next
            aug.ToReducedRowEchelonForm()
            Dim inv As New Matrix(len, len)
            For i = 1 To len
                For j = len + 1 To 2 * len
                    inv(i - 1, j - len - 1) = aug(i - 1, j - 1)
                Next
            Next
            Return inv
        End Function
    End Class

    Function ConvertArray(source As Double()) As Double(,)
        Dim dest(0, source.Length - 1) As Double
        For i = 1 To source.Length
            dest(0, i - 1) = source(i - 1)
        Next
        Return dest
    End Function

    Function MultipleRegression(y As Double(), x As Matrix) As Double()
        Dim tm As New Matrix(ConvertArray(y))
        Dim cy = tm.Transpose
        Dim cx = x.Transpose
        Return ((x * cx).Inverse * x * cy).Transpose.Slice(0)
    End Function

    Sub Print(v As Double())
        Dim it = v.GetEnumerator()

        Console.Write("[")
        If it.MoveNext() Then
            Console.Write(it.Current)
        End If
        While it.MoveNext
            Console.Write(", ")
            Console.Write(it.Current)
        End While
        Console.Write("]")
    End Sub

    Sub Main()
        Dim y() = {1.0, 2.0, 3.0, 4.0, 5.0}
        Dim x As New Matrix({{2.0, 1.0, 3.0, 4.0, 5.0}})
        Dim v = MultipleRegression(y, x)
        Print(v)
        Console.WriteLine()

        y = {3.0, 4.0, 5.0}
        x = New Matrix({
            {1.0, 2.0, 1.0},
            {1.0, 1.0, 2.0}
        })
        v = MultipleRegression(y, x)
        Print(v)
        Console.WriteLine()

        y = {52.21, 53.12, 54.48, 55.84, 57.2, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.1, 69.92, 72.19, 74.46}
        Dim a = {1.47, 1.5, 1.52, 1.55, 1.57, 1.6, 1.63, 1.65, 1.68, 1.7, 1.73, 1.75, 1.78, 1.8, 1.83}

        Dim xs(2, a.Length - 1) As Double
        For i = 1 To a.Length
            xs(0, i - 1) = 1.0
            xs(1, i - 1) = a(i - 1)
            xs(2, i - 1) = a(i - 1) * a(i - 1)
        Next
        x = New Matrix(xs)
        v = MultipleRegression(y, x)
        Print(v)
        Console.WriteLine()
    End Sub

End Module
Output:
[0.981818181818182]
[1, 2]
[128.812803579828, -143.162022865304, 61.9603254429854]

Wren

Translation of: Kotlin
Library: Wren-matrix
import "./matrix" for Matrix

var multipleRegression = Fn.new { |y, x|
    var cy = y.transpose
    var cx = x.transpose
    return ((x * cx).inverse * x * cy).transpose[0]
}

var ys = [
    Matrix.new([ [1, 2, 3, 4, 5] ]),
    Matrix.new([ [3, 4, 5] ]),
    Matrix.new([ [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29,
                  63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46] ])
]

var a = [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83]

var xs = [
    Matrix.new([ [2, 1, 3, 4, 5] ]),
    Matrix.new([ [1, 2, 1], [1, 1, 2] ]),
    Matrix.new([ List.filled(a.count, 1), a, a.map { |e| e * e }.toList ])
]

for (i in 0...ys.count) {
    var v = multipleRegression.call(ys[i], xs[i])
    System.print(v)
    System.print()
}
Output:
[0.98181818181818]

[1, 2]

[128.81280357983, -143.1620228653, 61.960325442985]

zkl

Using the GNU Scientific Library:

var [const] GSL=Import("zklGSL");	// libGSL (GNU Scientific Library)
height:=GSL.VectorFromData(1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63,
		   1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83);
weight:=GSL.VectorFromData(52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93,
		   61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46);
v:=GSL.polyFit(height,weight,2);
v.format().println();
GSL.Helpers.polyString(v).println();
GSL.Helpers.polyEval(v,height).format().println();
Output:
128.81,-143.16,61.96
 128.813 - 143.162x + 61.9603x^2 
52.25,53.48,54.36,55.77,56.77,58.37,60.08,61.28,63.18,64.50,66.58,68.03,70.30,71.87,74.33

Or, using Lists:

Translation of: Common Lisp
// Solve a linear system AX=B where A is symmetric and positive definite, so it can be Cholesky decomposed.
fcn linsys(A,B){
   n,m:=A.len(),B[1].len();  // A.rows,B.cols
   y:=n.pump(List.createLong(n).write,0.0); // writable vector of n zeros
   X:=make_array(n,m,0.0);
   L:=cholesky(A); // A=LL'

   foreach col in (m){
      foreach k in (n){ // Forward substitution: y = L\B
         y[k]=( B[k][col] - k.reduce('wrap(s,j){ s + L[k][j]*y[j] },0.0) )
	      /L[k][k];
      }
      foreach k in ([n-1..0,-1]){   // Back substitution. x=L'\y
         X[k][col]=
	  ( y[k] - (k+1).reduce(n-k-1,'wrap(s,j){ s + L[j][k]*X[j][col] },0.0) )
	  /L[k][k];
      }
   }
   X   
}
fcn cholesky(mat){   // Cholesky decomposition task
   rows:=mat.len();
   r:=(0).pump(rows,List().write, (0).pump(rows,List,0.0).copy); // matrix of zeros
   foreach i,j in (rows,i+1){ 
      s:=(0).reduce(j,'wrap(s,k){ s + r[i][k]*r[j][k] },0.0);
      r[i][j]=( if(i==j)(mat[i][i] - s).sqrt()
	        else    1.0/r[j][j]*(mat[i][j] - s) );
   }
   r
}

// Solve a linear least squares problem. Ax=b, with A being mxn, with m>n.
// Solves the linear system A'Ax=A'b.
fcn lsqr(A,b){
   at:=transpose(A);
   linsys(matMult(at,A), matMult(at,b));
}
// Least square fit of a polynomial of order n the x-y-curve.
fcn polyfit(x,y,n){
   n+=1;
   m:=x[0].len();  // columns
   A:=make_array(m,n,0.0);
   foreach i,j in (m,n){ A[i][j]=x[0][i].pow(j); }
   lsqr(A, transpose(y));
}
fcn make_array(n,m,v){ (m).pump(List.createLong(m).write,v)*n }
fcn matMult(a,b){
   n,m,p:=a[0].len(),a.len(),b[0].len();
   ans:=make_array(m,p,0.0);
   foreach i,j,k in (m,p,n){ ans[i][j]+=a[i][k]*b[k][j]; }
   ans
}
fcn transpose(M){ 
   if(M.len()==1) M[0].pump(List,List.create); // 1 row --> n columns
   else M[0].zip(M.xplode(1));
}
height:=T(T(1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63,
        1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83));
weight:=T(T(52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93,
        61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46));
polyfit(height,weight,2).flatten().println();
Output:
L(128.813,-143.162,61.9603)