I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

Loops/with multiple ranges

From Rosetta Code


Task
Loops/with multiple ranges
You are encouraged to solve this task according to the task description, using any language you may know.

Some languages allow multiple loop ranges, such as the PL/I example (snippet) below.

                                       /* all variables are DECLARED as integers. */
prod= 1; /*start with a product of unity. */
sum= 0; /* " " " sum " zero. */
x= +5;
y= -5;
z= -2;
one= 1;
three= 3;
seven= 7;
/*(below) ** is exponentiation: 4**3=64 */
do j= -three to 3**3 by three ,
-seven to +seven by x ,
555 to 550 - y ,
22 to -28 by -three ,
1927 to 1939 ,
x to y by z ,
11**x to 11**x + one;
/* ABS(n) = absolute value*/
sum= sum + abs(j); /*add absolute value of J.*/
if abs(prod)<2**27 &=0 then prod=prod*j; /*PROD is small enough & J*/
end; /*not 0, then multiply it.*/
/*SUM and PROD are used for verification of J incrementation.*/
display (' sum= ' || sum); /*display strings to term.*/
display ('prod= ' || prod); /* " " " " */


Task

Simulate/translate the above PL/I program snippet as best as possible in your language,   with particular emphasis on the   do   loop construct.

The   do   index must be incremented/decremented in the same order shown.

If feasible, add commas to the two output numbers (being displayed).

Show all output here.

      A simple PL/I   DO  loop  (incrementing or decrementing)  has the construct of:
 
DO variable = start_expression {TO ending_expression] {BY increment_expression} ;
---or---
DO variable = start_expression {BY increment_expression} {TO ending_expression]  ;
 
where it is understood that all expressions will have a value. The variable is normally a
scaler variable, but need not be (but for this task, all variables and expressions are declared
to be scaler integers). If the BY expression is omitted, a BY value of unity is used.
All expressions are evaluated before the DO loop is executed, and those values are used
throughout the DO loop execution (even though, for instance, the value of Z may be
changed within the DO loop. This isn't the case here for this task.
 
A multiple-range DO loop can be constructed by using a comma (,) to separate additional ranges
(the use of multiple TO and/or BY keywords). This is the construct used in this task.
 
There are other forms of DO loops in PL/I involving the WHILE clause, but those won't be
needed here. DO loops without a TO clause might need a WHILE clause or some other
means of exiting the loop (such as LEAVE, RETURN, SIGNAL, GOTO, or STOP), or some other
(possible error) condition that causes transfer of control outside the DO loop.
 
Also, in PL/I, the check if the DO loop index value is outside the range is made at the
"head" (start) of the DO loop, so it's possible that the DO loop isn't executed, but
that isn't the case for any of the ranges used in this task.
 
In the example above, the clause: x to y by z
will cause the variable J to have to following values (in this order): 5 3 1 -1 -3 -5
 
In the example above, the clause: -seven to +seven by x
will cause the variable J to have to following values (in this order): -7 -2 3


Related tasks



AArch64 Assembly[edit]

Works with: as version Raspberry Pi 3B version Buster 64 bits
 
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program loopnrange64.s */
 
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
 
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessResult: .asciz "@ \n" // message result
szCarriageReturn: .asciz "\n"
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
qSum: .skip 8 // this program store sum and product in memory
qProd: .skip 8 // it is possible to use registers x22 and x28
sZoneConv: .skip 24
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: // entry of program
ldr x0,qAdrqProd
mov x1,1
str x1,[x0] // init product
ldr x0,qAdrqSum
mov x1,0
str x1,[x0] // init sum
 
mov x25,5 // x
mov x24,-5 // y
mov x26,-2 // z
mov x21,1 // one
mov x23,3 // three
mov x27,7 // seven
 
// loop one
mov x0,3
mov x1,3
bl computePow // compute 3 pow 3
mov x20,x0 // save result
mvn x9,x23 // x9 = - three
add x9,x9,1
1:
mov x0,x9
bl computeSumProd
add x9,x9,x23 // increment with three
cmp x9,x20
ble 1b
// loop two
mvn x9,x27 // x9 = - seven
add x9,x9,1
2:
mov x0,x9
bl computeSumProd
add x9,x9,x25 // increment with x
cmp x9,x27 // compare to seven
ble 2b
 
// loop three
mov x9,#550
sub x20,x9,x24 // x20 = 550 - y
mov x9,#555
3:
mov x0,x9
bl computeSumProd
add x9,x9,#1
cmp x9,x20
ble 3b
// loop four
mov x9,#22
4:
mov x0,x9
bl computeSumProd
sub x9,x9,x23 // decrement with three
cmp x9,#-28
bge 4b
// loop five
mov x9,1927
mov x20,1939
5:
mov x0,x9
bl computeSumProd
add x9,x9,1
cmp x9,x20
ble 5b
// loop six
mov x9,x25 // x9 = x
mvn x20,x26 // x20 = - z
add x20,x20,1
6:
mov x0,x9
bl computeSumProd
sub x9,x9,x20
cmp x9,x24
bge 6b
// loop seven
mov x0,x25
mov x1,11
bl computePow // compute 11 pow x
add x20,x0,x21 // + one
mov x9,x0
7:
mov x0,x9
bl computeSumProd
add x9,x9,1
cmp x9,x20
ble 7b
// display result
ldr x0,qAdrqSum
ldr x0,[x0]
ldr x1,qAdrsZoneConv // signed conversion value
bl conversion10S // decimal conversion
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
ldr x0,qAdrszCarriageReturn
bl affichageMess // display return line
ldr x0,qAdrqProd
ldr x0,[x0]
ldr x1,qAdrsZoneConv // conversion value
bl conversion10S // signed decimal conversion
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess // display message
ldr x0,qAdrszCarriageReturn
bl affichageMess // display return line
 
 
100: // standard end of the program
mov x0,0 // return code
mov x8,EXIT // request to exit program
svc 0 // perform the system call
 
qAdrsZoneConv: .quad sZoneConv
qAdrszMessResult: .quad szMessResult
qAdrszCarriageReturn: .quad szCarriageReturn
/******************************************************************/
/* compute the sum and prod */
/******************************************************************/
/* x0 contains the number */
computeSumProd:
stp x1,lr,[sp,-16]! // save registers
asr x10,x0,#63
eor x12,x10,x0
sub x12,x12,x10 // compute absolue value
ldr x13,qAdrqSum // load sum
ldr x11,[x13]
add x11,x11,x12 // add sum
str x11,[x13] // store sum
cmp x0,#0 // j = 0 ?
beq 100f // yes
ldr x13,qAdrqProd
ldr x11,[x13]
asr x12,x11,#63 // compute absolute value of prod
eor x14,x11,x12
sub x12,x14,x12
ldr x10,qVal2P27
cmp x12,x10 // compare 2 puissance 27
bgt 100f
mul x11,x0,x11
str x11,[x13] // store prod
100:
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x230
qAdrqSum: .quad qSum
qAdrqProd: .quad qProd
qVal2P27: .quad 1<<27
/******************************************************************/
/* compute pow */
/******************************************************************/
/* x0 contains pow */
/* x1 contains number */
computePow:
stp x1,lr,[sp,-16]! // save registers
mov x12,x0
mov x0,#1
1:
cmp x12,#0
ble 100f
mul x0,x1,x0
sub x12,x12,#1
b 1b
100:
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x230
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
 
Output:
+348173
-793618560

ALGOL 60[edit]

Works with: MARST
begin
integer prod, sum, x, y, z, one, three, seven;
integer j;
prod := 1;
sum := 0;
x := 5; y := -5; z := -2;
one := 1;
three := 3;
seven := 7;
 
for j := -three step three until 3^3 ,
-seven step x until seven ,
555 step 1 until 550 - y,
22 step -three until -28 ,
1927 step 1 until 1939 ,
x step z until y ,
11^x step 1 until 11^x + one
do begin
sum := sum + iabs(j);
if iabs(prod) < 2^27 & j != 0 then prod := prod*j
end;
 
outstring(1, " sum= "); outinteger(1, sum); outstring(1, "\n");
outstring(1, "prod= "); outinteger(1, prod); outstring(1, "\n")
end
 
Output:
 sum= 348173 
prod= -793618560 

ALGOL 68[edit]

Translation of: ALGOL W

As with most of the other languages, Algol 68 doesn't support multiple loop ranges, so a sequence pf loops is used instead.

BEGIN
# translation of task PL/1 code, with minimal changes, semicolons required by #
# PL/1 but not allowed in Algol 68 removed, unecessary rounding removed #
# Note that in Algol 68, the loop counter is a local variable to the loop and #
# the value of j is not available outside the loops #
PROC loop body = ( INT j )VOID: #(below) ** is exponentiation: 4**3=64 #
BEGIN sum +:= ABS j; #add absolute value of J.#
IF ABS prod<2**27 AND j /= 0 THEN prod *:= j FI #PROD is small enough & J#
# ABS(n) = absolute value#
END; #not 0, then multiply it.#
#SUM and PROD are used for verification of J incrementation.#
INT prod := 1; #start with a product of unity. #
INT sum := 0; # " " " sum " zero. #
INT x := +5;
INT y := -5;
INT z := -2;
INT one := 1;
INT three := 3;
INT seven := 7;
FOR j FROM -three BY three TO ( 3**3 ) DO loop body( j ) OD;
FOR j FROM -seven BY x TO +seven DO loop body( j ) OD;
FOR j FROM 555 TO 550 - y DO loop body( j ) OD;
FOR j FROM 22 BY -three TO -28 DO loop body( j ) OD;
FOR j FROM 1927 TO 1939 DO loop body( j ) OD;
FOR j FROM x BY z TO y DO loop body( j ) OD;
FOR j FROM ( 11**x ) TO ( 11**x ) + one DO loop body( j ) OD;
print((" sum= ", whole( sum,0), newline)); #display strings to term.#
print(("prod= ", whole(prod,0), newline)) # " " " " #
END
 
Output:
 sum= 348173
prod= -793618560

ALGOL W[edit]

As with most of the other languages, Algol W doesn't support multiple loop ranges, so a sequence pf loops is used instead.

begin
 % translation of task PL/1 code, with minimal changes, semicolons required by  %
 % PL/1 but redundant in Algol W retained ( technically they introduce empty  %
 % statements after the "if" in the loop body and before the final "end" )  %
 % Note that in Algol W, the loop counter is a local variable to the loop and  %
 % the value of j is not available outside the loops  %
procedure loopBody ( integer value j );  %(below) ** is exponentiation: 4**3=64 %
begin sum := sum + abs(j);  %add absolute value of J.%
if abs(prod)<2**27 and j not = 0 then prod := prod*j; %PROD is small enough & J%
 % ABS(n) = absolute value%
end;  %not 0, then multiply it.%
 %SUM and PROD are used for verification of J incrementation.%
integer prod, sum, x, y, z, one, three, seven;
prod := 1;  %start with a product of unity.  %
sum := 0;  % " " " sum " zero.  %
x := +5;
y := -5;
z := -2;
one := 1;
three := 3;
seven := 7;
for j := -three step three until round( 3**3 ) do loopBody( j );
for j := -seven step x until +seven do loopBody( j );
for j := 555 until 550 - y do loopBody( j );
for j := 22 step -three until -28 do loopBody( j );
for j := 1927 until 1939 do loopBody( j );
for j := x step z until y do loopBody( j );
for j := round( 11**x ) until round( 11**x ) + one do loopBody( j );
write(s_w := 0, " sum= ", sum);  %display strings to term.%
write(s_w := 0, "prod= ", prod);  % " " " "  %
end.
Output:
 sum=         348173
prod=     -793618560

ARM Assembly[edit]

Works with: as version Raspberry Pi
 
/* ARM assembly Raspberry PI */
/* program loopnrange.s */
 
/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/*********************************/
/* Constantes */
/*********************************/
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
 
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessResult: .ascii "" @ message result
sMessValeur: .fill 11, 1, ' '
szCarriageReturn: .asciz "\n"
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
iSum: .skip 4 @ this program store sum and product in memory
iProd: .skip 4 @ it is possible to use registers r2 and r11
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: @ entry of program
ldr r0,iAdriProd
mov r1,#1
str r1,[r0] @ init product
ldr r0,iAdriSum
mov r1,#0
str r1,[r0] @ init sum
 
mov r5,#5 @ x
mov r4,#-5 @ y
mov r6,#-2 @ z
mov r8,#1 @ one
mov r3,#3 @ three
mov r7,#7 @ seven
 
@ loop one
mov r0,#3
mov r1,#3
bl computePow @ compute 3 pow 3
mov r10,r0 @ save result
mvn r9,r3 @ r9 = - three
add r9,#1
1:
mov r0,r9
bl computeSumProd
add r9,r3 @ increment with three
cmp r9,r10
ble 1b
@ loop two
mvn r9,r7 @ r9 = - seven
add r9,#1
2:
mov r0,r9
bl computeSumProd
add r9,r5 @ increment with x
cmp r9,r7 @ compare to seven
ble 2b
 
@ loop three
mov r9,#550
sub r10,r9,r4 @ r10 = 550 - y
mov r9,#555
3:
mov r0,r9
bl computeSumProd
add r9,#1
cmp r9,r10
ble 3b
@ loop four
mov r9,#22
4:
mov r0,r9
bl computeSumProd
sub r9,r3 @ decrement with three
cmp r9,#-28
bge 4b
@ loop five
mov r9,#1927
ldr r10,iVal1939
5:
mov r0,r9
bl computeSumProd
add r9,#1
cmp r9,r10
ble 5b
@ loop six
mov r9,r5 @ r9 = x
mvn r10,r6 @ r10 = - z
add r10,#1
6:
mov r0,r9
bl computeSumProd
sub r9,r10
cmp r9,r4
bge 6b
@ loop seven
mov r0,r5
mov r1,#11
bl computePow @ compute 11 pow x
add r10,r0,r8 @ + one
mov r9,r0
7:
mov r0,r9
bl computeSumProd
add r9,#1
cmp r9,r10
ble 7b
@ display result
ldr r0,iAdriSum
ldr r0,[r0]
ldr r1,iAdrsMessValeur @ signed conversion value
bl conversion10S @ decimal conversion
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdrszCarriageReturn
bl affichageMess @ display return line
ldr r0,iAdriProd
ldr r0,[r0]
ldr r1,iAdrsMessValeur @ conversion value
bl conversion10S @ signed decimal conversion
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdrszCarriageReturn
bl affichageMess @ display return line
 
 
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc #0 @ perform the system call
 
iAdrsMessValeur: .int sMessValeur
iAdrszMessResult: .int szMessResult
iAdrszCarriageReturn: .int szCarriageReturn
iVal1939: .int 1939
/******************************************************************/
/* compute the sum and prod */
/******************************************************************/
/* r0 contains the number */
computeSumProd:
push {r1-r4,lr} @ save registers
asr r1,r0,#31
eor r2,r0,r1
sub r2,r2,r1 @ compute absolue value
//vidregtit somme
ldr r3,iAdriSum @ load sum
ldr r1,[r3]
add r1,r2 @ add sum
str r1,[r3] @ store sum
cmp r0,#0 @ j = 0 ?
beq 100f @ yes
ldr r3,iAdriProd
ldr r1,[r3]
asr r2,r1,#31 @ compute absolute value of prod
eor r4,r1,r2
sub r2,r4,r2
cmp r2,#1<<27 @ compare 2 puissance 27
bgt 100f
mul r1,r0,r1
str r1,[r3] @ store prod
100:
pop {r1-r4,lr} @ restaur registers
bx lr @ return
iAdriSum: .int iSum
iAdriProd: .int iProd
/******************************************************************/
/* compute pow */
/******************************************************************/
/* r0 contains pow */
/* r1 contains number */
computePow:
push {r1-r2,lr} @ save registers
mov r2,r0
mov r0,#1
1:
cmp r2,#0
ble 100f
mul r0,r1,r0
sub r2,#1
b 1b
100:
pop {r1-r2,lr} @ restaur registers
bx lr @ return
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
.include "../affichage.inc"
 
Output:
    +348173

 -793618560

C[edit]

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
 
long prod = 1L, sum = 0L;
 
void process(int j) {
sum += abs(j);
if (labs(prod) < (1 << 27) && j) prod *= j;
}
 
long ipow(int n, uint e) {
long pr = n;
int i;
if (e == 0) return 1L;
for (i = 2; i <= e; ++i) pr *= n;
return pr;
}
 
int main() {
int j;
const int x = 5, y = -5, z = -2;
const int one = 1, three = 3, seven = 7;
long p = ipow(11, x);
for (j = -three; j <= ipow(3, 3); j += three) process(j);
for (j = -seven; j <= seven; j += x) process(j);
for (j = 555; j <= 550 - y; ++j) process(j);
for (j = 22; j >= -28; j -= three) process(j);
for (j = 1927; j <= 1939; ++j) process(j);
for (j = x; j >= y; j -= -z) process(j);
for (j = p; j <= p + one; ++j) process(j);
setlocale(LC_NUMERIC, "");
printf("sum = % 'ld\n", sum);
printf("prod = % 'ld\n", prod);
return 0;
}
Output:
sum  =  348,173
prod = -793,618,560

C#[edit]

Multiple ranges don't exist in C# out-of-the-box but it is easy to make something.

using System;
using System.Collections.Generic;
using System.Linq;
 
public static class LoopsWithMultipleRanges
{
public static void Main() {
int prod = 1;
int sum = 0;
int x = 5;
int y = -5;
int z = -2;
int one = 1;
int three = 3;
int seven = 7;
 
foreach (int j in Concat(
For(-three, 3.Pow(3), three),
For(-seven, seven, x),
For(555, 550 - y),
For(22, -28, -three),
For(1927, 1939),
For(x, y, z),
For(11.Pow(x), 11.Pow(x) + one)
)) {
sum += Math.Abs(j);
if (Math.Abs(prod) < (1 << 27) && j != 0) prod *= j;
}
Console.WriteLine($" sum = {sum:N0}");
Console.WriteLine($"prod = {prod:N0}");
}
 
static IEnumerable<int> For(int start, int end, int by = 1) {
for (int i = start; by > 0 ? (i <= end) : (i >= end); i += by) yield return i;
}
 
static IEnumerable<int> Concat(params IEnumerable<int>[] ranges) => ranges.Aggregate((acc, r) => acc.Concat(r));
static int Pow(this int b, int e) => (int)Math.Pow(b, e);
}
Output:
 sum = 348,173
prod = -793,618,560

Common Lisp[edit]

Using raw code and DO iterator

 
(let ((prod 1) ; Initialize aggregator
(sum 0)
(x 5) ; Initialize variables
(y -5)
(z -2)
(one 1)
(three 3)
(seven 7))
 
(flet ((loop-body (j) ; Set the loop function
(incf sum (abs j))
(if (and (< (abs prod) (expt 2 27))
(/= j 0))
(setf prod (* prod j)))))
 
(do ((i (- three) (incf i three))) ; Just a serie of individual loops
((> i (expt 3 3)))
(loop-body i))
(do ((i (- seven) (incf i x)))
((> i seven))
(loop-body i))
(do ((i 555 (incf i -1)))
((< i (- 550 y)))
(loop-body i))
(do ((i 22 (incf i (- three))))
((< i -28))
(loop-body i))
(do ((i 1927 (incf i)))
((> i 1939))
(loop-body i))
(do ((i x (incf i z)))
((< i y))
(loop-body i))
(do ((i (expt 11 x) (incf i)))
((> i (+ (expt 11 x) one)))
(loop-body i)))
 
(format t "~&sum = ~14<~:d~>" sum)
(format t "~&prod = ~14<~:d~>" prod))
 

or with loop ranges and increments as list to dolist

 
(let ((prod 1)
(sum 0)
(x 5)
(y -5)
(z -2)
(one 1)
(three 3)
(seven 7))
 
(flet ((loop-body (j) ; Set the loop function
(incf sum (abs j))
(if (and (< (abs prod) (expt 2 27))
(/= j 0))
(setf prod (* prod j)))))
 
(dolist (lst `((,(- three) ,(expt 3 3) ,three)
(,(- seven) ,seven ,x)
(555 ,(- 550 y) -1)
(22 -28 ,(- three))
(1927 1939 1)
(,x ,y ,z)
(,(expt 11 x) ,(+ (expt 11 x) one) 1)))
(do ((i (car lst) (incf i (caddr lst))))
((if (plusp (caddr lst))
(> i (cadr lst))
(< i (cadr lst))))
(loop-body i))))
 
(format t "~&sum = ~14<~:d~>" sum)
(format t "~&prod = ~14<~:d~>" prod))
 
Output:
sum  =        348,173
prod =   -793,618,560

Delphi[edit]

Translation of: C

Delphi don't have for with multiples ranges and for with different increments (except +1 and -1). The workaround is using while loop.

 
program with_multiple_ranges;
 
{$APPTYPE CONSOLE}
 
uses
System.SysUtils;
 
var
prod: Int64 = 1;
sum: Int64 = 0;
 
function labs(value: Int64): Int64;
begin
Result := value;
if value < 0 then
Result := -Result;
end;
 
procedure process(j: Int64);
begin
sum := sum + (abs(j));
if (labs(prod) < (1 shl 27)) and (j <> 0) then
prod := prod * j;
end;
 
function ipow(n: Integer; e: Cardinal): Int64;
var
pr: Int64;
max, i: Cardinal;
begin
result := n;
if e = 0 then
Exit(1);
max := e;
for i := 2 to max do
result := result * n;
end;
 
var
j: Int64;
p: Int64;
 
const
x = 5;
y = -5;
z = -2;
one = 1;
three = 3;
seven = 7;
 
begin
p := ipow(11, x);
 
j := -three;
while j <= ipow(3, 3) do
begin
process(j);
inc(j, three);
end;
 
j := -seven;
while j <= seven do
begin
process(j);
inc(j, x);
end;
 
j := 555;
while j <= (550 - y) do
begin
process(j);
inc(j, x);
end;
 
j := 22;
while j >= -28 do
begin
process(j);
dec(j, three);
end;
 
j := 1927;
while j <= 1939 do
begin
process(j);
inc(j);
end;
 
j := x;
while j >= y do
begin
process(j);
dec(j, -z);
end;
 
j := p;
while j <= p + one do
begin
process(j);
inc(j);
end;
 
writeln(format('sum =  %d ', [sum]));
writeln(format('prod =  %d ', [prod]));
Readln;
end.
Output:
sum  =  348173
prod =  -793618560

Factor[edit]

Factor doesn't have any special support for this sort of thing, but we can store iterable range objects in a collection and loop over them.

USING: formatting kernel locals math math.functions math.ranges
sequences sequences.generalizations tools.memory.private ;
 
[let  ! Allow lexical variables.
1 :> prod!  ! Start with a product of unity.
0 :> sum!  ! " " " sum " zero.
5 :> x
-5 :> y
-2 :> z
1 :> one
3 :> three
7 :> seven
 
three neg 3 3 ^ three <range>  ! Create array
seven neg seven x <range>  ! of 7 ranges.
555 550 y - [a,b]
22 -28 three neg <range>
1927 1939 [a,b]
x y z <range>
11 x ^ 11 x ^ 1 + [a,b] 7 narray
 
[
[
 :> j j abs sum + sum!
prod abs 2 27 ^ < j zero? not and
[ prod j * prod! ] when
] each  ! Loop over range.
] each  ! Loop over array of ranges.
 
 ! SUM and PROD are used for verification of J incrementation.
sum prod [ commas ] [email protected] " sum=  %s\nprod= %s\n" printf
]
Output:
 sum=  348,173
prod= -793,618,560

Go[edit]

Nothing fancy from Go here (is there ever?), just a series of individual for loops.

package main
 
import "fmt"
 
func pow(n int, e uint) int {
if e == 0 {
return 1
}
prod := n
for i := uint(2); i <= e; i++ {
prod *= n
}
return prod
}
 
func abs(n int) int {
if n >= 0 {
return n
}
return -n
}
 
func commatize(n int) string {
s := fmt.Sprintf("%d", n)
if n < 0 {
s = s[1:]
}
le := len(s)
for i := le - 3; i >= 1; i -= 3 {
s = s[0:i] + "," + s[i:]
}
if n >= 0 {
return " " + s
}
return "-" + s
}
 
func main() {
prod := 1
sum := 0
const (
x = 5
y = -5
z = -2
one = 1
three = 3
seven = 7
)
p := pow(11, x)
var j int
 
process := func() {
sum += abs(j)
if abs(prod) < (1<<27) && j != 0 {
prod *= j
}
}
 
for j = -three; j <= pow(3, 3); j += three {
process()
}
for j = -seven; j <= seven; j += x {
process()
}
for j = 555; j <= 550-y; j++ {
process()
}
for j = 22; j >= -28; j -= three {
process()
}
for j = 1927; j <= 1939; j++ {
process()
}
for j = x; j >= y; j -= -z {
process()
}
for j = p; j <= p+one; j++ {
process()
}
fmt.Println("sum = ", commatize(sum))
fmt.Println("prod = ", commatize(prod))
}
Output:
sum  =   348,173
prod =  -793,618,560

Groovy[edit]

Solution:

def (prod, sum, x, y, z, one, three, seven) = [1, 0, +5, -5, -2, 1, 3, 7]
 
for (
j in (
((-three) .. (3**3) ).step(three)
+ ((-seven) .. (+seven) ).step(x)
+ (555 .. (550-y) )
+ (22 .. (-28) ).step(three) // This is correct!
// Groovy interprets positive step size as stride through the LIST ELEMENTS as ordered
// and negative step size as stride through the REVERSED LIST ELEMENTS as ordered
// so step(-3) gives: -28, -25, -22, ... , 20
// while step(3) gives: 22, 19, 16, ... , -26
+ (1927 .. 1939 )
+ (x .. y ).step(z)
+ (11**x .. (11**x + one))
)
) {
 
sum = sum + j.abs()
if ( prod.abs() < 2**27 && j != 0) prod *= j
}
 
println " sum= ${sum}"
println "prod= ${prod}"

Output:

 sum= 348177
prod= -793618560

J[edit]

J uses the names x, y, m, n, u, v to pass arguments into explicit definitions. Treating these as reserved names is reasonable practice. Originally these had been x. , y. etceteras however the dots must have been deemed "noisy".

We've passed the range list argument literally for evaluation in local scope. Verb f evaluates and concatenates the ranges, then perhaps the ensuing for. loop looks somewhat like familiar code.

 
NB. http://rosettacode.org/wiki/Loops/Wrong_ranges#J
NB. define range as a linear polynomial
start =: 0&{
stop =: 1&{
increment =: 2&{ :: 1: NB. on error use 1
range =: (start , increment) p. [: i. [: >: [: <. (stop - start) % increment
 
f =: 3 :0
input =. y
'prod sum x y z one three seven' =. 1 0 5 _5 _2 1 3 7
J =. ([: ; range&.>) ". input
for_j. J do.
sum =. sum + | j
if. ((|prod)<2^27) *. (0 ~: j) do.
prod =. prod * j
end.
end.
sum , prod
)
 
   ] A =: f '((-three), (3^3), three); ((-seven),seven,x); (555 , 550-y); (22 _28, -three); 1927 1939; (x,y,z); (0 1 + 11^x)'
348173 _7.93619e8
   
   20j0 ": A
              348173          _793618560

Java[edit]

Java does not support multiple ranges. Use list to simulate multiple ranges. Accumulate values in a list, then iterate over the list.

With Java 8, streams are available. Streams can be concatenated. However, the Java 9 feature takeWhile is important to this task to specify the iteration limit.

Maintain formatting similar to the original code.

 
import java.util.ArrayList;
import java.util.List;
 
public class LoopsWithMultipleRanges {
 
private static long sum = 0;
private static long prod = 1;
 
public static void main(String[] args) {
long x = 5;
long y = -5;
long z = -2;
long one = 1;
long three = 3;
long seven = 7;
 
List<Long> jList = new ArrayList<>();
for ( long j = -three ; j <= pow(3, 3) ; j += three ) jList.add(j);
for ( long j = -seven ; j <= seven ; j += x ) jList.add(j);
for ( long j = 555 ; j <= 550-y ; j += 1 ) jList.add(j);
for ( long j = 22 ; j >= -28 ; j += -three ) jList.add(j);
for ( long j = 1927 ; j <= 1939 ; j += 1 ) jList.add(j);
for ( long j = x ; j >= y ; j += z ) jList.add(j);
for ( long j = pow(11, x) ; j <= pow(11, x) + one ; j += 1 ) jList.add(j);
 
List<Long> prodList = new ArrayList<>();
for ( long j : jList ) {
sum += Math.abs(j);
if ( Math.abs(prod) < pow(2, 27) && j != 0 ) {
prodList.add(j);
prod *= j;
}
}
 
System.out.printf(" sum = %,d%n", sum);
System.out.printf("prod = %,d%n", prod);
System.out.printf("j values = %s%n", jList);
System.out.printf("prod values = %s%n", prodList);
}
 
private static long pow(long base, long exponent) {
return (long) Math.pow(base, exponent);
}
 
}
 
Output:
 sum        = 348,173
prod        = -793,618,560
j values    = [-3, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, -7, -2, 3, 555, 22, 19, 16, 13, 10, 7, 4, 1, -2, -5, -8, -11, -14, -17, -20, -23, -26, 1927, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 5, 3, 1, -1, -3, -5, 161051, 161052]
prod values = [-3, 3, 6, 9, 12, 15, 18, 21, 24]

Julia[edit]

Julia allows concatenation of iterators with the ; iterator within a vector. An attempt was made to preserve the shape of the PL/1 code.

using Formatting
 
function PL1example()
 
# all variables are DECLARED as integers.
prod = 1; # start with a product of unity.
sum = 0; # " " " sum " zero.
x = +5;
y = -5;
z = -2;
one = 1;
three = 3;
seven = 7;
# (below) ** is exponentiation: 4**3=64
for j in [ -three  : three : 3^3  ;
-seven  : x  : +seven  ;
555  : 550 - y  ;
22  : -three : -28  ;
1927  : 1939  ;
x  : z  : y  ;
11^x  : 11^x + one ]
# ABS(n) = absolute value
sum = sum + abs(j); # add absolute value of J.
if abs(prod) < 2^27 && j !=0 prod = prod*j # PROD is small enough & J
end; # not 0, then multiply it.
end # SUM and PROD are used for verification of J incrementation.
println(" sum = $(format(sum, commas=true))"); # display strings to term.
println("prod = $(format(prod, commas=true))"); # " " " "
end
 
PL1example()
 
Output:

    sum = 348,173      
   prod = -793,618,560 

Kotlin[edit]

Nothing special here, just a series of individual for loops.

// Version 1.2.70
 
import kotlin.math.abs
 
infix fun Int.pow(e: Int): Int {
if (e == 0) return 1
var prod = this
for (i in 2..e) {
prod *= this
}
return prod
}
 
fun main(args: Array<String>) {
var prod = 1
var sum = 0
val x = 5
val y = -5
val z = -2
val one = 1
val three = 3
val seven = 7
val p = 11 pow x
fun process(j: Int) {
sum += abs(j)
if (abs(prod) < (1 shl 27) && j != 0) prod *= j
}
 
for (j in -three..(3 pow 3) step three) process(j)
for (j in -seven..seven step x) process(j)
for (j in 555..550-y) process(j)
for (j in 22 downTo -28 step three) process(j)
for (j in 1927..1939) process(j)
for (j in x downTo y step -z) process(j)
for (j in p..p + one) process(j)
System.out.printf("sum = % ,d\n", sum)
System.out.printf("prod = % ,d\n", prod)
}
Output:
sum  =  348,173
prod = -793,618,560

M2000 Interpreter[edit]

Using lambda functions and a final While End While to perform a multiple range.

Values by default are double, but we can make them Long (32 bit integer), or Decimal or Currency or single (prod for single has less accuracy here), but not integer (16 bit) because we get overflow.

In M2000 expressions can change numeric type to hold the produced value. Variables take once the type, so we get overflow if we pass a value frome an expression which can't convert to variable's type.

Module MultipleLoop {
def long prod=1, sum=0, x=+5,y=-5, z=-2, one=1, three=3, seven=7, j
Range=lambda (a, b, c=1) ->{
=lambda a, b, c (&f)-> {
if compare(a,b)=sgn(c) then =false else =true: f=a: a+=c
}
}
MultipleRange=Lambda -> {
a=array([]) ' convert stack items in current stack [] to an array of items
=lambda a, k=0 (&f) ->{
do : if k<len(a) Else exit
if a#eval(k, &f) then =true: exit
k++ : always
}
}
Exec=MultipleRange(Range(-three, 3**3, three), Range(-seven, +seven, x), Range(555, 550-y), Range(22, -28, -three), Range(1927, 1939), Range(x,y,z), Range(11**x, 11**x+one))
j=0
while Exec(&j)
sum+=abs(j)
if abs(prod) < 2^27 And j <> 0 then prod*=j
End While
 
Print "sum=";sum
Print "prod=";prod
}
MultipleLoop
 
Output:
sum=348173
prod=-793618560

Perl[edit]

use constant   one =>  1;
use constant three => 3;
use constant seven => 7;
use constant x => 5;
use constant yy => -5; # 'y' conflicts with use as equivalent to 'tr' operator (a carry-over from 'sed')
use constant z => -2;
 
my $prod = 1;
 
sub from_to_by {
my($begin,$end,$skip) = @_;
my $n = 0;
grep{ !($n++ % abs $skip) } $begin <= $end ? $begin..$end : reverse $end..$begin;
}
 
sub commatize {
(my $s = reverse shift) =~ s/(.{3})/$1,/g;
$s =~ s/,(-?)$/$1/;
$s = reverse $s;
}
 
for my $j (
from_to_by(-three,3**3,three),
from_to_by(-seven,seven,x),
555 .. 550 - yy,
from_to_by(22,-28,-three),
1927 .. 1939,
from_to_by(x,yy,z),
11**x .. 11**x+one,
) {
$sum += abs($j);
$prod *= $j if $j and abs($prod) < 2**27;
}
 
printf "%-8s %12s\n", 'Sum:', commatize $sum;
printf "%-8s %12s\n", 'Product:', commatize $prod;
Output:
Sum:          348,173
Product: -793,618,560

Phix[edit]

integer prod =  1,
total = 0, -- (renamed as sum is a Phix builtin)
x = +5,
y = -5,
z = -2,
one = 1,
three = 3,
seven = 7
 
sequence loopset = {{ -three, power(3,3), three },
{ -seven, +seven, x },
{ 555, 550 - y, 1 },
{ 22, -28, -three},
{ 1927, 1939, 1 },
{ x, y, z },
{power(11,x), power(11,x) + one, 1 }}
 
for i=1 to length(loopset) do
integer {f,t,s} = loopset[i]
for j=f to t by s do
total += abs(j)
if abs(prod)<power(2,27) and j!=0 then
prod *= j
end if
end for
end for
printf(1," sum = %,d\n",total)
printf(1,"prod = %,d\n",prod)
Output:
 sum = 348,173
prod = -793,618,560

Prolog[edit]

Prolog does not have the richness of some other languages where it comes to loops, variables and the like, but does have some rather interesting features such as difference lists and backtracking for generating solutions.

for(Lo,Hi,Step,Lo)  :- Step>0, Lo=<Hi.
for(Lo,Hi,Step,Val) :- Step>0, plus(Lo,Step,V), V=<Hi, !, for(V,Hi,Step,Val).
for(Hi,Lo,Step,Hi) :- Step<0, Lo=<Hi.
for(Hi,Lo,Step,Val) :- Step<0, plus(Hi,Step,V), Lo=<V, !, for(V,Lo,Step,Val).
 
sym(x,5). % symbolic lookups for values
sym(y,-5).
sym(z,-2).
sym(one,1).
sym(three,3).
sym(seven,7).
 
range(-three,3^3,three). % as close as we can syntactically get
range(-seven,seven,x).
range(555,550-y,1).
range(22,-28, -three).
range(1927,1939,1).
range(x,y,z).
range(11^x,11^x+one,1).
 
translate(V, V) :- number(V), !. % difference list based parser
translate(S, V) :- sym(S,V), !.
translate(-S, V) :- translate(S,V0), !, V is -V0.
translate(A+B, V) :- translate(A,A0), translate(B, B0), !, V is A0+B0.
translate(A-B, V) :- translate(A,A0), translate(B, B0), !, V is A0-B0.
translate(A^B, V) :- translate(A,A0), translate(B, B0), !, V is A0^B0.
 
range_value(Val) :- % enumerate values for all ranges in order
range(From,To,Step),
translate(From,F), translate(To,T), translate(Step,S),
for(F,T,S,Val).
 
calc_values([], S, P, S, P). % calculate all values in generated order
calc_values([J|Js], S, P, Sum, Product) :-
S0 is S + abs(J), ((abs(P)< 2^27, J \= 0) -> P0 is P * J; P0=P),
!, calc_values(Js, S0, P0, Sum, Product).
 
calc_values(Sum, Product) :- % Find the sum and product
findall(V, range_value(V), Values),
calc_values(Values, 0, 1, Sum, Product).
?- calc_values(Sum, Product).
Sum = 348173,
Product = -793618560.

PureBasic[edit]

#X = 5 : #Y = -5 : #Z = -2
#ONE = 1 : #THREE = 3 : #SEVEN = 7
Define j.i
Global prod.i = 1, sum.i = 0
 
Macro ipow(n, e)
Int(Pow(n, e))
EndMacro
 
Macro ifn(x)
FormatNumber(x,0,".",",")
EndMacro
 
Macro loop_for(start, stop, step_for=1)
For j = start To stop Step step_for
proc(j)
Next
EndMacro
 
Procedure proc(j.i)
sum + Abs(j)
If (Abs(prod) < ipow(2 , 27)) And (j<>0)
prod * j
EndIf
EndProcedure
 
loop_for(-#THREE, ipow(3, 3), #THREE)
loop_for(-#SEVEN, #SEVEN, #X)
loop_for(555, 550 - #Y)
loop_for(22, -28, -#THREE)
loop_for(1927, 1939)
loop_for(#X, #Y, #Z)
loop_for(ipow(11, #X), ipow(11, #X) + 1)
 
If OpenConsole("Loops/with multiple ranges")
PrintN("sum = " + ifn(sum))
PrintN("prod = " + ifn(prod))
Input()
EndIf
Output:
sum  = 348,173
prod = -793,618,560

Python[edit]

Pythons range function does not include the second argument hence the definition of _range()

from itertools import chain
 
prod, sum_, x, y, z, one,three,seven = 1, 0, 5, -5, -2, 1, 3, 7
 
def _range(x, y, z=1):
return range(x, y + (1 if z > 0 else -1), z)
 
print(f'list(_range(x, y, z)) = {list(_range(x, y, z))}')
print(f'list(_range(-seven, seven, x)) = {list(_range(-seven, seven, x))}')
 
for j in chain(_range(-three, 3**3, three), _range(-seven, seven, x),
_range(555, 550 - y), _range(22, -28, -three),
_range(1927, 1939), _range(x, y, z),
_range(11**x, 11**x + 1)):
sum_ += abs(j)
if abs(prod) < 2**27 and (j != 0):
prod *= j
print(f' sum= {sum_}\nprod= {prod}')
Output:
list(_range(x, y, z)) = [5, 3, 1, -1, -3, -5]
list(_range(-seven, seven, x)) = [-7, -2, 3]
 sum= 348173
prod= -793618560

Raku[edit]

(formerly Perl 6)

This task is really conflating two separate things, (at least in Raku). Sequences and loops are two different concepts and may be considered / implemented separately from each other.

Yes, you can generate a sequence with a loop, and a loop can use a sequence for an iteration value, but the two are somewhat orthogonal and don't necessarily overlap.

Sequences are first class objects in Raku. You can (and typically do) generate a sequence using the (appropriately enough) sequence operator and can assign it to a variable and/or pass it as a parameter; the entire sequence, not just it's individual values. It may be used in a looping construct, but it is not necessary to do so.

Various looping constructs often do use sequences as their iterator but not exclusively, possibly not even in the majority.


Displaying the j sequence as well since it isn't very large.

sub comma { ($^i < 0 ?? '-' !! '') ~ $i.abs.flip.comb(3).join(',').flip }
 
my \x = 5;
my \y = -5;
my \z = -2;
my \one = 1;
my \three = 3;
my \seven = 7;
 
my $j = flat
( -three, *+three … 3³ ),
( -seven, *+x^ * > seven ),
( 555 .. 550 - y ),
( 22, *-three …^ * < -28 ),
( 1927 .. 1939 ),
( x, *+z …^ * < y ),
( 11**x .. 11**x + one );
 
put 'j sequence: ', $j;
put ' Sum: ', comma [+] $j».abs;
put ' Product: ', comma ([\*] $j.grep: so +*).first: *.abs > 2²⁷;
 
# Or, an alternate method for generating the 'j' sequence, employing user-defined
# operators to preserve the 'X to Y by Z' layout of the example code.
# Note that these operators will only work for monotonic sequences.
 
sub infix:<to> { $^a ... $^b }
sub infix:<by> { $^a[0, $^b.abs ... *] }
 
$j = cache flat
-three to 3**3 by three ,
-seven to seven by x ,
555 to (550 - y) ,
22 to -28 by -three ,
1927 to 1939 by one ,
x to y by z ,
11**x to (11**x + one) ;
 
put "\nLiteral minded variant:";
put ' Sum: ', comma [+] $j».abs;
put ' Product: ', comma ([\*] $j.grep: so +*).first: *.abs > 2²⁷;
Output:
j sequence: -3 0 3 6 9 12 15 18 21 24 27 -7 -2 3 555 22 19 16 13 10 7 4 1 -2 -5 -8 -11 -14 -17 -20 -23 -26 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 5 3 1 -1 -3 -5 161051 161052
       Sum: 348,173
   Product: -793,618,560

Literal minded variant:
       Sum: 348,173
   Product: -793,618,560

Red[edit]

As "to" has another meaning in Red, we name "->" the range operator.

Red ["For loop with multiple ranges"]
 
->: make op! function [start end][
res: copy []
repeat n 1 + absolute to-integer end - start [
append res start + either start > end [1 - n][n - 1]
]
]
by: make op! function [s w] [extract s absolute w]
 
for: function ['word ranges body][
inp: copy []
foreach c reduce ranges [append inp c]
foreach i inp [set word i do body]
]
 
prod: 1
sum: 0
x: +5
y: -5
z: -2
one: 1
three: 3
seven: 7
 
for j [
0 - three -> (3 ** 3) by three
0 - seven -> seven by x
555 -> (550 - y)
22 -> -28 by (0 - three)
1927 -> 1939
x -> y by z
11 ** x -> (11 ** x + one)
] [
sum: sum + absolute j;
if all [(absolute prod) < power 2 27 j <> 0] [prod: prod * j]
]
print ["sum: " sum "^/prod:" prod]
Output:
sum:  348173 
prod: -793618560

REXX[edit]

Programming note:   the (sympathetic) trailing semicolons (;) after each REXX statement are optional,   they are only there to mimic what the PL/I language requires after each statement.

The technique used by this REXX version is to "break up" the various   do   iterating clauses (ranges) into separate   do   loops,   and have them invoke a subroutine to perform the actual computations.

/*REXX program emulates a multiple─range  DO  loop  (all variables can be any numbers). */
prod= 1;
sum= 0;
x= +5;
y= -5;
z= -2;
one= 1;
three= 3;
seven= 7;
 
do j= -three to 3**3 by three  ; call meat; end;
do j= -seven to seven by x  ; call meat; end;
do j= 555 to 550 - y  ; call meat; end;
do j= 22 to -28 by -three ; call meat; end;
do j= 1927 to 1939  ; call meat; end;
do j= x to y by z  ; call meat; end;
do j= 11**x to 11**x + one  ; call meat; end;
 
say ' sum= ' || commas( sum); /*display SUM with commas. */
say 'prod= ' || commas(prod); /* " PROD " " */
exit; /*stick a fork in it, we're done.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: procedure; parse arg _; n= _'.9'; #= 123456789; b= verify(n, #, "M")
e= verify(n, #'0', , verify(n, #"0.", 'M') ) - 4
do j=e to b by -3; _= insert(',', _, j); end; return _
/*──────────────────────────────────────────────────────────────────────────────────────*/
meat: sum= sum + abs(j);
if abs(prod)<2**27 & j\==0 then prod= prod * j;
return;
output   when using the same variable values:
 sum= 348,173
prod= -793,618,560

Ruby[edit]

Uses chaining of enumerables, which was introduced with Ruby 2.6

x, y, z, one, three, seven = 5, -5, -2, 1, 3, 7
 
enums = (-three).step(3**3, three) +
(-seven).step(seven, x) +
555 .step(550-y, -1) +
22 .step(-28, -three) +
(1927..1939) + # just toying, 1927.step(1939) is fine too
x .step(y, z) +
(11**x) .step(11**x + one)
# enums is an enumerator, consisting of a bunch of chained enumerators,
# none of which has actually produced a value.
 
puts "Sum of absolute numbers: #{enums.sum(&:abs)}"
prod = enums.inject(1){|prod, j| ((prod.abs < 2**27) && j!=0) ? prod*j : prod}
puts "Product (but not really): #{prod}"
 
Output:
Sum of absolute numbers:  348173
Product (but not really): -793618560

Vala[edit]

const int CHARBIT = 8;
long prod = 1;
long sum = 0;
 
long labs(long n) {
long mask = n >> ((long)sizeof(long) * CHARBIT - 1);
return ((n + mask) ^ mask);
}
 
long lpow(long base_num, long exp)
{
long result = 1;
while (true)
{
if ((exp & 1) != 0) result *= base_num;
exp >>= 1;
if (exp == 0) break;
base_num *= base_num;
}
return result;
}
 
void process(long j) {
sum += labs(j);
if (labs(prod) < (1 << 27) && j != 0) prod *= j;
}
 
void main() {
const int x = 5;
const int y = -5;
const int z = -2;
const int one = 1;
const int three = 3;
const int seven = 11;
long p = lpow(11, x);
 
for (int j = -three; j <= lpow(3, 3); j += three ) process(j);
for (int j = -seven; j <= seven; j += x) process(j);
for (int j = 555; j <= 550 - y; ++j) process(j);
for (int j = 22; j >= -28; j -= three) process(j);
for (int j = 1928; j <= 1939; ++j) process(j);
for (int j = x; j >= y; j -= -z) process(j);
for (long j = p; j <= p + one; ++j) process(j);
stdout.printf("sum = %10ld\n", sum);
stdout.printf("prod = %10ld\n", prod);
}
Output:
sum  =     346265
prod = -793618560

VBA[edit]

Dim prod As Long, sum As Long
Public Sub LoopsWithMultipleRanges()
Dim x As Integer, y As Integer, z As Integer, one As Integer, three As Integer, seven As Integer, j As Long
prod = 1
sum = 0
x = 5
y = -5
z = -2
one = 1
three = 3
seven = 7
For j = -three To pow(3, 3) Step three: Call process(j): Next j
For j = -seven To seven Step x: Call process(j): Next j
For j = 555 To 550 - y: Call process(j): Next j
For j = 22 To -28 Step -three: Call process(j): Next j
For j = 1927 To 1939: Call process(j): Next j
For j = x To y Step z: Call process(j): Next j
For j = pow(11, x) To pow(11, x) + one: Call process(j): Next j
Debug.Print " sum= " & Format(sum, "#,##0")
Debug.Print "prod= " & Format(prod, "#,##0")
End Sub
Private Function pow(x As Long, y As Integer) As Long
pow = WorksheetFunction.Power(x, y)
End Function
Private Sub process(x As Long)
sum = sum + Abs(x)
If Abs(prod) < pow(2, 27) And x <> 0 Then prod = prod * x
End Sub
Output:
 sum= 348.173
prod= -793.618.560

Visual Basic .NET[edit]

VB.NET loops can't have multiple ranges, so this implementation will use the For Each loop and demonstrate various functions that produce concatenated ranges.

Composite formatting is used to add digit separators.

Using the following to provide the functionality of the For loop as a function,

Partial Module Program
' Stop and Step are language keywords and must be escaped with brackets.
Iterator Function Range(start As Integer, [stop] As Integer, Optional [step] As Integer = 1) As IEnumerable(Of Integer)
For i = start To [stop] Step [step]
Yield i
Next
End Function
End Module

and Enumerable.Concat (along with extension method syntax) to splice the ranges, the program ends up looking like this:

Imports System.Globalization
 
Partial Module Program
Sub Main()
' All variables are inferred to be of type Integer.
Dim prod = 1,
sum = 0,
x = +5,
y = -5,
z = -2,
one = 1,
three = 3,
seven = 7
 
' The exponent operator compiles to a call to Math.Pow, which returns Double, and so must be converted back to Integer.
For Each j In Range(-three, CInt(3 ^ 3), 3 ).
Concat(Range(-seven, +seven, x )).
Concat(Range(555, 550 - y )).
Concat(Range(22, -28, -three)).
Concat(Range(1927, 1939 )).
Concat(Range(x, y, z )).
Concat(Range(CInt(11 ^ x), CInt(11 ^ x) + one ))
 
sum = sum + Math.Abs(j)
If Math.Abs(prod) < 2 ^ 27 AndAlso j <> 0 Then prod = prod * j
Next
 
' The invariant format info by default has two decimal places.
Dim format As New NumberFormatInfo() With {
.NumberDecimalDigits = 0
}
 
Console.WriteLine(String.Format(format, " sum= {0:N}", sum))
Console.WriteLine(String.Format(format, "prod= {0:N}", prod))
End Sub
End Module

To improve the program's appearance, a ConcatRange method can be defined to combine the two method calls,

    <Runtime.CompilerServices.Extension>
Function ConcatRange(source As IEnumerable(Of Integer), start As Integer, [stop] As Integer, Optional [step] As Integer = 1) As IEnumerable(Of Integer)
Return source.Concat(Range(start, [stop], [step]))
End Function

which results in a loop that looks like this:

        For Each j In Range(-three,       CInt(3 ^ 3),        3     ).
ConcatRange(-seven, +seven, x ).
ConcatRange(555, 550 - y ).
ConcatRange(22, -28, -three).
ConcatRange(1927, 1939 ).
ConcatRange(x, y, z ).
ConcatRange(CInt(11 ^ x), CInt(11 ^ x) + one )
Next

An alternative to avoid the repeated method calls would be to make a Range function that accepts multiple ranges, in this case as a parameter array of tuples.

    Function Range(ParamArray ranges() As (start As Integer, [stop] As Integer, [step] As Integer)) As IEnumerable(Of Integer)
' Note: SelectMany is equivalent to bind, flatMap, etc.
Return ranges.SelectMany(Function(r) Range(r.start, r.stop, r.step))
End Function

resulting in:

        For Each j In Range((-three,       CInt(3 ^ 3),        3        ),
(-seven, +seven, x ),
(555, 550 - y, 1 ),
(22, -28, -three ),
(1927, 1939, 1 ),
(x, y, z ),
(CInt(11 ^ x), CInt(11 ^ x) + one, 1 ))
Next

Note, however, that the inability to have a heterogenous array means that specifying the step is now mandatory. Using a parameter array of arrays is slightly less clear but results in the tersest loop.

    Function Range(ParamArray ranges As Integer()()) As IEnumerable(Of Integer)
Return ranges.SelectMany(Function(r) Range(r(0), r(1), If(r.Length < 3, 1, r(2))))
End Function
        For Each j In Range({-three,       CInt(3 ^ 3),        3        },
{-seven, +seven, x },
{555, 550 - y },
{22, -28, -three },
{1927, 1939 },
{x, y, z },
{CInt(11 ^ x), CInt(11 ^ x) + one })
Next
Output (for all variations):
 sum= 348,173
prod= -793,618,560

Wren[edit]

Translation of: Go
import "/fmt" for Fmt
 
var prod = 1
var sum = 0
var x = 5
var y = -5
var z = -2
var one = 1
var three = 3
var seven = 7
var p = 11.pow(x)
var j = 0
 
var process = Fn.new {
sum = sum + j.abs
if (prod.abs < (1 << 27) && j != 0) prod = prod * j
}
 
j = -three
while (j <= 3.pow(3)) {
process.call()
j = j + three
}
 
j = -seven
while (j <= seven) {
process.call()
j = j + x
}
 
j = 555
while (j <= 550 - y) {
process.call()
j = j + 1
}
 
j = 22
while (j >= -28) {
process.call()
j = j - three
}
 
j = 1927
while (j <= 1939) {
process.call()
j = j + 1
}
 
j = x
while (j >= y) {
process.call()
j = j - (-z)
}
 
j = p
while (j <= p + one) {
process.call()
j = j + 1
}
 
System.print("sum =  %(Fmt.dc(sum))")
System.print("prod = %(Fmt.dc(prod))")
Output:
sum  =  348,173
prod = -793,618,560

zkl[edit]

prod,sum := 1,0;  /* start with a product of unity, sum of 0 */
x,y,z := 5, -5, -2;
one,three,seven := 1,3,7;
foreach j in (Walker.chain([-three..(3).pow(3),three], // do these sequentially
[-seven..seven,x], [555..550 - y], [22..-28,-three], #[start..last,step]
[1927..1939], [x..y,z], [(11).pow(x)..(11).pow(x) + one])){
sum+=j.abs(); /* add absolute value of J */
if(prod.abs()<(2).pow(27) and j!=0) prod*=j; /* PROD is small enough & J */
}
/* SUM and PROD are used for verification of J incrementation */
println("sum = %,d\nprod = %,d".fmt(sum,prod));
Output:
sum  = 348,173
prod = -793,618,560