I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Loops/With multiple ranges

(Redirected from Loops/with multiple ranges)

Loops/With multiple ranges
You are encouraged to solve this task according to the task description, using any language you may know.

Some languages allow multiple loop ranges, such as the PL/I example (snippet) below.

`                                       /* all variables are DECLARED as integers. */          prod=  1;                    /*start with a product of unity.           */           sum=  0;                    /*  "     "  "   sum    " zero.            */             x= +5;             y= -5;             z= -2;           one=  1;         three=  3;         seven=  7;                                       /*(below)  **  is exponentiation:  4**3=64 */           do j=   -three  to     3**3        by three   ,                   -seven  to   +seven        by   x     ,                      555  to      550 - y               ,                       22  to      -28        by -three  ,                     1927  to     1939                   ,                        x  to        y        by   z     ,                    11**x  to    11**x + one;                                                        /* ABS(n) = absolute value*/           sum= sum + abs(j);                           /*add absolute value of J.*/           if abs(prod)<2**27 & j¬=0  then prod=prod*j; /*PROD is small enough & J*/           end;                                         /*not 0, then multiply it.*/                     /*SUM and PROD are used for verification of J incrementation.*/         display (' sum= ' ||  sum);                    /*display strings to term.*/         display ('prod= ' || prod);                    /*   "       "     "   "  */`

Simulate/translate the above PL/I program snippet as best as possible in your language,   with particular emphasis on the   do   loop construct.

The   do   index must be incremented/decremented in the same order shown.

If feasible, add commas to the two output numbers (being displayed).

Show all output here.

`      A simple PL/I   DO  loop  (incrementing or decrementing)  has the construct of:             DO variable = start_expression    {TO ending_expression]       {BY increment_expression} ;                 ---or---            DO variable = start_expression    {BY increment_expression}    {TO ending_expression]    ;         where it is understood that all expressions will have a value.  The  variable  is normally a       scaler variable,  but need not be  (but for this task, all variables and expressions are declared      to be scaler integers).   If the   BY   expression is omitted,  a   BY   value of unity is used.      All expressions are evaluated before the   DO   loop is executed,  and those values are used      throughout the   DO   loop execution   (even though, for instance,  the value of   Z   may be      changed within the   DO   loop.    This isn't the case here for this task.         A multiple-range   DO   loop can be constructed by using a comma (,) to separate additional ranges      (the use of multiple   TO   and/or   BY   keywords).     This is the construct used in this task.       There are other forms of   DO   loops in PL/I involving the  WHILE  clause,  but those won't be       needed here.    DO  loops without a   TO   clause might need a   WHILE   clause  or some other       means of exiting the loop  (such as  LEAVE,  RETURN,  SIGNAL,  GOTO,  or  STOP),  or some other       (possible error) condition that causes transfer of control outside the  DO  loop.       Also, in PL/I, the check if the   DO   loop index value is outside the range is made at the       "head"  (start)  of the   DO  loop,  so it's possible that the   DO   loop isn't executed,  but       that isn't the case for any of the ranges used in this task.        In the example above, the clause:                    x    to y       by z           will cause the variable   J   to have to following values  (in this order):  5  3  1  -1  -3  -5       In the example above, the clause:                 -seven  to +seven  by x        will cause the variable   J   to have to following values  (in this order):  -7  -2   3  `

## AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
` /* ARM assembly AARCH64 Raspberry PI 3B *//*  program loopnrange64.s   */ /*******************************************//* Constantes file                         *//*******************************************//* for this file see task include a file in language AArch64 assembly*/.include "../includeConstantesARM64.inc" /*********************************//* Initialized data              *//*********************************/.dataszMessResult:      .asciz "@ \n"                    // message resultszCarriageReturn:  .asciz "\n"/*********************************//* UnInitialized data            *//*********************************/.bss qSum:                      .skip 8         // this program store sum and product in memoryqProd:                     .skip 8         // it is possible to use registers x22 and x28sZoneConv:                 .skip 24/*********************************//*  code section                 *//*********************************/.text.global main main:                                       // entry of program    ldr x0,qAdrqProd    mov x1,1    str x1,[x0]                             // init product    ldr x0,qAdrqSum    mov x1,0    str x1,[x0]                             // init sum     mov x25,5                               // x    mov x24,-5                              // y    mov x26,-2                              // z    mov x21,1                               // one    mov x23,3                               // three    mov x27,7                               // seven                                             // loop one    mov x0,3    mov x1,3    bl computePow                           // compute 3 pow 3    mov x20,x0                              // save result    mvn x9,x23                              // x9 = - three    add x9,x9,11:     mov x0,x9    bl computeSumProd    add x9,x9,x23                           // increment with three    cmp x9,x20    ble 1b                                            // loop two    mvn x9,x27                              // x9 = - seven    add x9,x9,12:     mov x0,x9    bl computeSumProd    add x9,x9,x25                           // increment with x    cmp x9,x27                              // compare to seven    ble 2b                                             // loop three    mov x9,#550    sub x20,x9,x24                          // x20 = 550 - y    mov x9,#5553:     mov x0,x9    bl computeSumProd    add x9,x9,#1    cmp x9,x20    ble 3b                                            // loop four    mov x9,#224:     mov x0,x9    bl computeSumProd    sub x9,x9,x23                           // decrement with three    cmp x9,#-28    bge 4b                                            // loop five    mov x9,1927    mov x20,19395:     mov x0,x9    bl computeSumProd    add x9,x9,1    cmp x9,x20    ble 5b                                            // loop six    mov x9,x25                              // x9 = x    mvn x20,x26                             // x20 = - z    add x20,x20,16:     mov x0,x9    bl computeSumProd    sub x9,x9,x20    cmp x9,x24    bge 6b                                            // loop seven    mov x0,x25    mov x1,11    bl computePow                           // compute 11 pow x    add x20,x0,x21                          // + one    mov x9,x07:     mov x0,x9    bl computeSumProd    add x9,x9,1    cmp x9,x20    ble 7b                                            // display result    ldr x0,qAdrqSum    ldr x0,[x0]    ldr x1,qAdrsZoneConv                    // signed conversion value    bl conversion10S                        // decimal conversion    ldr x0,qAdrszMessResult    ldr x1,qAdrsZoneConv    bl strInsertAtCharInc                   // insert result at @ character    bl affichageMess                        // display message    ldr x0,qAdrszCarriageReturn    bl affichageMess                        // display return line    ldr x0,qAdrqProd    ldr x0,[x0]    ldr x1,qAdrsZoneConv                    // conversion value    bl conversion10S                        // signed decimal conversion    ldr x0,qAdrszMessResult    ldr x1,qAdrsZoneConv    bl strInsertAtCharInc                   // insert result at  @ character    bl affichageMess                        // display message    ldr x0,qAdrszCarriageReturn    bl affichageMess                        // display return line  100:                                        // standard end of the program     mov x0,0                                // return code    mov x8,EXIT                             // request to exit program    svc 0                                   // perform the system call qAdrsZoneConv:            .quad sZoneConvqAdrszMessResult:         .quad szMessResultqAdrszCarriageReturn:     .quad szCarriageReturn/******************************************************************//*     compute the sum and prod                         */ /******************************************************************//* x0 contains the number  */computeSumProd:    stp x1,lr,[sp,-16]!          // save  registers    asr x10,x0,#63    eor x12,x10,x0    sub x12,x12,x10             // compute absolue value    ldr x13,qAdrqSum            // load sum    ldr x11,[x13]    add x11,x11,x12             // add sum    str x11,[x13]               // store sum    cmp x0,#0                   // j = 0 ?    beq 100f                    // yes    ldr x13,qAdrqProd    ldr x11,[x13]    asr x12,x11,#63             // compute absolute value of prod    eor x14,x11,x12    sub x12,x14,x12    ldr x10,qVal2P27    cmp x12,x10                 // compare 2 puissance 27    bgt 100f    mul x11,x0,x11    str x11,[x13]               // store prod100:    ldp x1,lr,[sp],16           // restaur  2 registers    ret                         // return to address lr x230qAdrqSum:                .quad qSumqAdrqProd:               .quad qProdqVal2P27:                .quad 1<<27/******************************************************************//*     compute pow                         */ /******************************************************************//* x0 contains pow  *//* x1 contains number */computePow:    stp x1,lr,[sp,-16]!          // save  registers    mov x12,x0    mov x0,#11:    cmp x12,#0    ble 100f    mul x0,x1,x0    sub x12,x12,#1    b 1b100:    ldp x1,lr,[sp],16           // restaur  2 registers    ret                         // return to address lr x230/********************************************************//*        File Include fonctions                        *//********************************************************//* for this file see task include a file in language AArch64 assembly */.include "../includeARM64.inc" `
Output:
```+348173
-793618560
```

## ALGOL 60

Works with: MARST
`begin  integer prod, sum, x, y, z, one, three, seven;  integer j;  prod := 1;  sum := 0;  x := 5; y := -5; z := -2;  one := 1;  three := 3;  seven := 7;   for j := -three  step  three  until 3^3    ,           -seven  step      x  until seven  ,              555  step      1  until 550 - y,               22  step -three  until -28    ,             1927  step      1  until 1939   ,                x  step      z  until y      ,             11^x  step      1  until 11^x + one  do begin    sum := sum + iabs(j);    if iabs(prod) < 2^27 & j != 0 then prod := prod*j  end;   outstring(1, " sum= "); outinteger(1, sum);  outstring(1, "\n");  outstring(1, "prod= "); outinteger(1, prod); outstring(1, "\n")end `
Output:
``` sum= 348173
prod= -793618560
```

## ALGOL 68

Translation of: ALGOL W

As with most of the other languages, Algol 68 doesn't support multiple loop ranges, so a sequence pf loops is used instead.

`BEGIN    # translation of task PL/1 code, with minimal changes, semicolons required by      #    # PL/1 but not allowed in Algol 68 removed, unecessary rounding removed            #    # Note that in Algol 68, the loop counter is a local variable to the loop and      #    # the value of j is not available outside the loops                                #    PROC loop body = ( INT j )VOID:          #(below)  **  is exponentiation:  4**3=64 #    BEGIN sum +:= ABS j;                                      #add absolute value of J.#          IF ABS prod<2**27 AND j /= 0 THEN prod *:= j FI     #PROD is small enough & J#                                                              # ABS(n) = absolute value#          END;                                                #not 0, then multiply it.#                           #SUM and PROD are used for verification of J incrementation.#     INT  prod :=  1;                        #start with a product of unity.           #     INT   sum :=  0;                        #  "     "  "   sum    " zero.            #     INT     x := +5;     INT     y := -5;     INT     z := -2;     INT   one :=  1;     INT three :=  3;     INT seven :=  7;         FOR j FROM -three  BY  three TO      ( 3**3 )        DO loop body( j ) OD;         FOR j FROM -seven  BY  x     TO    +seven            DO loop body( j ) OD;         FOR j FROM    555            TO    550 - y           DO loop body( j ) OD;         FOR j FROM     22  BY -three TO   -28                DO loop body( j ) OD;         FOR j FROM   1927            TO  1939                DO loop body( j ) OD;         FOR j FROM      x  BY  z     TO     y                DO loop body( j ) OD;         FOR j FROM      ( 11**x )    TO      ( 11**x ) + one DO loop body( j ) OD;         print((" sum= ", whole( sum,0), newline));           #display strings to term.#         print(("prod= ", whole(prod,0), newline))            #   "       "     "   "  #END `
Output:
``` sum= 348173
prod= -793618560
```

## ALGOL W

As with most of the other languages, Algol W doesn't support multiple loop ranges, so a sequence pf loops is used instead.

`begin    % translation of task PL/1 code, with minimal changes, semicolons required by      %    % PL/1 but redundant in Algol W retained ( technically they introduce empty        %    % statements after the "if" in the loop body and before the final "end" )          %    % Note that in Algol W, the loop counter is a local variable to the loop and       %    % the value of j is not available outside the loops                                %    procedure loopBody ( integer value j );  %(below)  **  is exponentiation:  4**3=64 %    begin sum := sum + abs(j);                                %add absolute value of J.%          if abs(prod)<2**27 and j not = 0 then prod := prod*j; %PROD is small enough & J%                                                              % ABS(n) = absolute value%          end;                                                %not 0, then multiply it.%                           %SUM and PROD are used for verification of J incrementation.%      integer prod, sum, x, y, z, one, three, seven;          prod :=  1;                        %start with a product of unity.           %           sum :=  0;                        %  "     "  "   sum    " zero.            %             x := +5;             y := -5;             z := -2;           one :=  1;         three :=  3;         seven :=  7;         for j :=   -three  step  three until round( 3**3 )        do loopBody( j );         for j :=   -seven  step  x     until    +seven            do loopBody( j );         for j :=      555              until    550 - y           do loopBody( j );         for j :=       22  step -three until   -28                do loopBody( j );         for j :=     1927              until  1939                do loopBody( j );         for j :=        x  step  z     until     y                do loopBody( j );         for j := round( 11**x )        until round( 11**x ) + one do loopBody( j );         write(s_w := 0, " sum= ",  sum);                    %display strings to term.%         write(s_w := 0, "prod= ", prod);                    %   "       "     "   "  %end.`
Output:
``` sum=         348173
prod=     -793618560
```

## ARM Assembly

Works with: as version Raspberry Pi
` /* ARM assembly Raspberry PI  *//*  program loopnrange.s   */ /* REMARK 1 : this program use routines in a include file    see task Include a file language arm assembly    for the routine affichageMess conversion10    see at end of this program the instruction include *//*********************************//* Constantes                    *//*********************************/.equ STDOUT, 1     @ Linux output console.equ EXIT,   1     @ Linux syscall.equ WRITE,  4     @ Linux syscall /*********************************//* Initialized data              *//*********************************/.dataszMessResult:      .ascii ""                    @ message resultsMessValeur:       .fill 11, 1, ' 'szCarriageReturn:  .asciz "\n"/*********************************//* UnInitialized data            *//*********************************/.bss iSum:                      .skip 4         @ this program store sum and product in memoryiProd:                     .skip 4         @ it is possible to use registers r2 and r11/*********************************//*  code section                 *//*********************************/.text.global main main:                                       @ entry of program    ldr r0,iAdriProd    mov r1,#1    str r1,[r0]                             @ init product    ldr r0,iAdriSum    mov r1,#0    str r1,[r0]                             @ init sum     mov r5,#5                               @ x    mov r4,#-5                              @ y    mov r6,#-2                              @ z    mov r8,#1                               @ one    mov r3,#3                               @ three    mov r7,#7                               @ seven                                             @ loop one    mov r0,#3    mov r1,#3    bl computePow                           @ compute 3 pow 3    mov r10,r0                              @ save result    mvn r9,r3                               @ r9 = - three    add r9,#11:     mov r0,r9    bl computeSumProd    add r9,r3                               @ increment with three    cmp r9,r10    ble 1b                                            @ loop two    mvn r9,r7                               @ r9 = - seven    add r9,#12:     mov r0,r9    bl computeSumProd    add r9,r5                               @ increment with x    cmp r9,r7                               @ compare to seven    ble 2b                                             @ loop three    mov r9,#550    sub r10,r9,r4                           @ r10 = 550 - y    mov r9,#5553:     mov r0,r9    bl computeSumProd    add r9,#1    cmp r9,r10    ble 3b                                            @ loop four    mov r9,#224:     mov r0,r9    bl computeSumProd    sub r9,r3                               @ decrement with three    cmp r9,#-28    bge 4b                                            @ loop five    mov r9,#1927    ldr r10,iVal19395:     mov r0,r9    bl computeSumProd    add r9,#1    cmp r9,r10    ble 5b                                            @ loop six    mov r9,r5                               @ r9 = x    mvn r10,r6                              @ r10 = - z    add r10,#16:     mov r0,r9    bl computeSumProd    sub r9,r10    cmp r9,r4    bge 6b                                            @ loop seven    mov r0,r5    mov r1,#11    bl computePow                           @ compute 11 pow x    add r10,r0,r8                           @ + one    mov r9,r07:     mov r0,r9    bl computeSumProd    add r9,#1    cmp r9,r10    ble 7b                                            @ display result    ldr r0,iAdriSum    ldr r0,[r0]    ldr r1,iAdrsMessValeur                  @ signed conversion value    bl conversion10S                        @ decimal conversion    ldr r0,iAdrszMessResult    bl affichageMess                        @ display message    ldr r0,iAdrszCarriageReturn    bl affichageMess                        @ display return line    ldr r0,iAdriProd    ldr r0,[r0]    ldr r1,iAdrsMessValeur                  @ conversion value    bl conversion10S                        @ signed decimal conversion    ldr r0,iAdrszMessResult    bl affichageMess                        @ display message    ldr r0,iAdrszCarriageReturn    bl affichageMess                        @ display return line  100:                                        @ standard end of the program     mov r0, #0                              @ return code    mov r7, #EXIT                           @ request to exit program    svc #0                                  @ perform the system call iAdrsMessValeur:          .int sMessValeuriAdrszMessResult:         .int szMessResultiAdrszCarriageReturn:     .int szCarriageReturniVal1939:                 .int 1939/******************************************************************//*     compute the sum and prod                         */ /******************************************************************//* r0 contains the number  */computeSumProd:    push {r1-r4,lr}             @ save  registers     asr r1,r0,#31    eor r2,r0,r1    sub r2,r2,r1                @ compute absolue value    //vidregtit somme    ldr r3,iAdriSum             @ load sum    ldr r1,[r3]    add r1,r2                   @ add sum    str r1,[r3]                 @ store sum    cmp r0,#0                   @ j = 0 ?    beq 100f                    @ yes    ldr r3,iAdriProd    ldr r1,[r3]    asr r2,r1,#31               @ compute absolute value of prod    eor r4,r1,r2    sub r2,r4,r2    cmp r2,#1<<27               @ compare 2 puissance 27    bgt 100f    mul r1,r0,r1    str r1,[r3]                 @ store prod100:    pop {r1-r4,lr}              @ restaur registers    bx lr                       @ returniAdriSum:                .int iSumiAdriProd:               .int iProd/******************************************************************//*     compute pow                         */ /******************************************************************//* r0 contains pow  *//* r1 contains number */computePow:    push {r1-r2,lr}             @ save  registers     mov r2,r0    mov r0,#11:    cmp r2,#0    ble 100f    mul r0,r1,r0    sub r2,#1    b 1b100:    pop {r1-r2,lr}              @ restaur registers    bx lr                       @ return/***************************************************//*      ROUTINES INCLUDE                           *//***************************************************/.include "../affichage.inc" `
Output:
```    +348173

-793618560
```

## AutoHotkey

As with most of the other languages, AutoHotkey doesn't support multiple loop ranges, so a workaround function is used instead.

`for_J(doFunction, start, stop, step:=1){	j := start	while (j<=stop) && (start<=stop) && (step>0)		%doFunction%(j),		j+=step	while (j>=stop) && (start>stop) && (step<0)		%doFunction%(j),		j+=step}`
Examples:
`prod := 1sum := 0x := +5y := -5z := -2one :=  1three :=  3seven :=  7 for_J("doTHis", -three, 3**3, three)for_J("doTHis", -seven, +seven, x)for_J("doTHis", 555, 550-y)for_J("doTHis", 22, -28, -three)for_J("doTHis", 1927, 1939)for_J("doTHis", x, y, z)for_J("doTHis", 11**x, 11**x+one) MsgBox % "sum = " RegExReplace(sum, "\B(?=(\d{3})+\$)", ",") . "`nprod = "  RegExReplace(prod, "\B(?=(\d{3})+\$)", ",") return;----------------------------------------------doThis(j){	global sum, prod	sum += Abs(j)	if (Abs(prod) < 2**27) && (j != 0)		prod *= j}return`
Output:
```sum = 348,173
prod = -793,618,560```

## C

`#include <stdio.h>#include <stdlib.h>#include <locale.h> long prod = 1L, sum = 0L; void process(int j) {    sum += abs(j);    if (labs(prod) < (1 << 27) && j) prod *= j;} long ipow(int n, uint e) {    long pr = n;    int i;    if (e == 0) return 1L;    for (i = 2; i <= e; ++i) pr *= n;    return pr;} int main() {    int j;    const int x = 5, y = -5, z = -2;    const int one = 1, three = 3, seven = 7;    long p = ipow(11, x);    for (j = -three; j <= ipow(3, 3); j += three) process(j);    for (j = -seven; j <= seven; j += x) process(j);    for (j = 555; j <= 550 - y; ++j) process(j);    for (j = 22; j >= -28; j -= three) process(j);    for (j = 1927; j <= 1939; ++j) process(j);    for (j = x; j >= y; j -= -z) process(j);    for (j = p; j <= p + one; ++j) process(j);    setlocale(LC_NUMERIC, "");    printf("sum  = % 'ld\n", sum);    printf("prod = % 'ld\n", prod);    return 0;}`
Output:
```sum  =  348,173
prod = -793,618,560
```

## C#

Multiple ranges don't exist in C# out-of-the-box but it is easy to make something.

`using System;using System.Collections.Generic;using System.Linq; public static class LoopsWithMultipleRanges{    public static void Main() {        int prod = 1;        int sum = 0;        int x = 5;        int y = -5;        int z = -2;        int one = 1;        int three = 3;        int seven = 7;          foreach (int j in Concat(            For(-three, 3.Pow(3), three),            For(-seven, seven, x),            For(555, 550 - y),            For(22, -28, -three),            For(1927, 1939),            For(x, y, z),            For(11.Pow(x), 11.Pow(x) + one)        )) {            sum += Math.Abs(j);            if (Math.Abs(prod) < (1 << 27) && j != 0) prod *= j;        }        Console.WriteLine(\$" sum = {sum:N0}");        Console.WriteLine(\$"prod = {prod:N0}");    }     static IEnumerable<int> For(int start, int end, int by = 1) {        for (int i = start; by > 0 ? (i <= end) : (i >= end); i += by) yield return i;    }     static IEnumerable<int> Concat(params IEnumerable<int>[] ranges) => ranges.Aggregate((acc, r) => acc.Concat(r));    static int Pow(this int b, int e) => (int)Math.Pow(b, e);}`
Output:
``` sum = 348,173
prod = -793,618,560```

## Common Lisp

Using raw code and DO iterator

` (let ((prod 1)				; Initialize aggregator      (sum 0)      (x 5)				; Initialize variables      (y -5)      (z -2)      (one 1)      (three 3)      (seven 7))   (flet ((loop-body (j)			; Set the loop function	    (incf sum (abs j))	    (if (and (< (abs prod) (expt 2 27))		     (/= j 0))		(setf prod (* prod j)))))     (do ((i (- three) (incf i three)))	; Just a serie of individual loops	((> i (expt 3 3)))      (loop-body i))    (do ((i (- seven) (incf i x)))	((> i seven))      (loop-body i))    (do ((i 555 (incf i -1)))	((< i (- 550 y)))      (loop-body i))    (do ((i 22 (incf i (- three))))	((< i -28))      (loop-body i))    (do ((i 1927 (incf i)))	((> i 1939))      (loop-body i))    (do ((i x (incf i z)))	((< i y))      (loop-body i))    (do ((i (expt 11 x) (incf i)))	((> i (+ (expt 11 x) one)))      (loop-body i)))   (format t "~&sum  = ~14<~:d~>" sum)  (format t "~&prod = ~14<~:d~>" prod)) `

or with loop ranges and increments as list to dolist

` (let ((prod 1)      (sum 0)      (x 5)      (y -5)      (z -2)      (one 1)      (three 3)      (seven 7))   (flet ((loop-body (j)			; Set the loop function	   (incf sum (abs j))	   (if (and (< (abs prod) (expt 2 27))		    (/= j 0))	       (setf prod (* prod j)))))     (dolist (lst `((,(- three) ,(expt 3 3) ,three)		   (,(- seven) ,seven ,x)		   (555 ,(- 550 y) -1)		   (22 -28 ,(- three))		   (1927 1939 1)		   (,x ,y ,z)		   (,(expt 11 x) ,(+ (expt 11 x) one) 1)))      (do ((i (car lst) (incf i (caddr lst))))	  ((if (plusp (caddr lst))	       (> i (cadr lst))	       (< i (cadr lst))))	(loop-body i))))   (format t "~&sum  = ~14<~:d~>" sum)  (format t "~&prod = ~14<~:d~>" prod)) `
Output:
```sum  =        348,173
prod =   -793,618,560
```

## Delphi

Translation of: C

Delphi don't have for with multiples ranges and for with different increments (except +1 and -1). The workaround is using while loop.

` program with_multiple_ranges; {\$APPTYPE CONSOLE} uses  System.SysUtils; var  prod: Int64 = 1;  sum: Int64 = 0; function labs(value: Int64): Int64;begin  Result := value;  if value < 0 then    Result := -Result;end; procedure process(j: Int64);begin  sum := sum + (abs(j));  if (labs(prod) < (1 shl 27)) and (j <> 0) then    prod := prod * j;end; function ipow(n: Integer; e: Cardinal): Int64;var  pr: Int64;  max, i: Cardinal;begin  result := n;  if e = 0 then    Exit(1);  max := e;  for i := 2 to max do    result := result * n;end; var  j: Int64;  p: Int64; const  x = 5;  y = -5;  z = -2;  one = 1;  three = 3;  seven = 7; begin  p := ipow(11, x);   j := -three;  while j <= ipow(3, 3) do  begin    process(j);    inc(j, three);  end;   j := -seven;  while j <= seven do  begin    process(j);    inc(j, x);  end;   j := 555;  while j <= (550 - y) do  begin    process(j);    inc(j, x);  end;   j := 22;  while j >= -28 do  begin    process(j);    dec(j, three);  end;   j := 1927;  while j <= 1939 do  begin    process(j);    inc(j);  end;   j := x;  while j >= y do  begin    process(j);    dec(j, -z);  end;   j := p;  while j <= p + one do  begin    process(j);    inc(j);  end;   writeln(format('sum  =  %d  ', [sum]));  writeln(format('prod =  %d  ', [prod]));  Readln;end.`
Output:
```sum  =  348173
prod =  -793618560```

## EasyLang

`prod = 1sum = 0x = 5y = -5z = -2one = 1three = 3seven = 7ranges[][] &= [ -three (pow 3 3) three ]ranges[][] &= [ -seven seven x ]ranges[][] &= [ 555 (550 - y) ]ranges[][] &= [ 22 -28 (-three) ]ranges[][] &= [ 1927 1939 ]ranges[][] &= [ x y z ]ranges[][] &= [ (pow 11 x) (pow 11 x + one) ]# for i range len ranges[][]  j = ranges[i]  to = ranges[i]  inc = 1  if len ranges[i][] = 3    inc = ranges[i]  .  repeat    until inc > 0 and j > to or inc < 0 and j < to    sum += abs j    if abs prod < pow 2 27 and j <> 0      prod *= j    .    j += inc  ..print sumprint prod`

## Eiffel

Eiffel does not support multiple ranges in the same fashion as PL/I. However, it does have an across loop, which does the trick, together with an inline agent (lambda function).

` class	APPLICATION create	make feature 	prod, sum, x, y, z, one, three, seven: INTEGER 	make		local			process: PROCEDURE		do			prod := 1; x := 5; y := -5; z := -2; one := 1; three := 3; seven := 7			process := (agent (j: INTEGER)								do									print (j.out + ", ")									sum := sum + j.abs									if prod.abs < 2^27 and j /= 0 then										prod := prod * j									end								end) 			across (-three |..| (3^3).truncated_to_integer).new_cursor + (three - 1)  as ic loop process.call (ic.item) end			across (-seven |..| seven).new_cursor + (x - 1)	as ic loop process.call (ic.item) end			across 555 |..| (550 - y) as ic loop process.call (ic.item) end			across (-26 |..| 22).new_cursor + (three - 1) as ic loop process.call (ic.item) end			across 1927 |..| 1939 as ic loop process.call (ic.item) end			across (y |..| x).new_cursor + (-z - 1)	as ic loop process.call (ic.item) end			across (11^x).truncated_to_integer |..| ((11^x).truncated_to_integer + 1) as ic loop process.call (ic.item) end 			print ("%N")			print ("sum = " + sum.out + "%N") 		-- sum = 348,173			print ("prod = " + prod.out + "%N")		-- prod = -793,618,560		end end `

Alternatively, there is the "symbolic form" of the across loop, which modifies the code as follows:

` class	APPLICATION create	make feature 	prod, sum, x, y, z, one, three, seven: INTEGER 	make		local			process: PROCEDURE		do			prod := 1; x := 5; y := -5; z := -2; one := 1; three := 3; seven := 7			process := (agent (j: INTEGER)								do									print (j.out + ", ")									sum := sum + j.abs									if prod.abs < 2^27 and j /= 0 then										prod := prod * j									end								end) 			⟳ ic: (-three |..| (3^3).truncated_to_integer).new_cursor + (three - 1) ¦ process.call (ic) ⟲			⟳ ic: (-seven |..| seven).new_cursor + (x - 1) ¦ process.call (ic) ⟲			⟳ ic:555 |..| (550 - y) ¦ process.call (ic) ⟲			⟳ ic: (-26 |..| 22).new_cursor + (three - 1) ¦ process.call (ic) ⟲			⟳ ic: 1927 |..| 1939 ¦ process.call (ic) ⟲			⟳ ic: (y |..| x).new_cursor + (-z - 1) ¦ process.call (ic) ⟲			⟳ ic: (11^x).truncated_to_integer |..| ((11^x).truncated_to_integer + 1) ¦ process.call (ic) ⟲ 			print ("%N")			print ("sum = " + sum.out + "%N") 		-- sum = 348,173			print ("prod = " + prod.out + "%N")		-- prod = -793,618,560		end end `
Output:
``` sum=  348,173
prod= -793,618,560
```

## Factor

Factor doesn't have any special support for this sort of thing, but we can store iterable `range` objects in a collection and loop over them.

`USING: formatting kernel locals math math.functions math.rangessequences sequences.generalizations tools.memory.private ; [let                            ! Allow lexical variables.     1 :> prod!                 ! Start with a product of unity.     0 :> sum!                  !   "     "  "   sum    " zero.     5 :> x    -5 :> y    -2 :> z     1 :> one     3 :> three     7 :> seven     three neg 3 3 ^ three <range>              ! Create array    seven neg seven x     <range>              ! of 7 ranges.    555 550 y -             [a,b]    22 -28 three neg      <range>    1927 1939               [a,b]    x y z                 <range>    11 x ^ 11 x ^ 1 +       [a,b] 7 narray     [        [            :> j j abs sum + sum!            prod abs 2 27 ^ < j zero? not and            [ prod j * prod! ] when        ] each                      ! Loop over range.    ] each                          ! Loop over array of ranges.     ! SUM and PROD are used for verification of J incrementation.    sum prod [ commas ] [email protected] " sum=  %s\nprod= %s\n" printf]`
Output:
``` sum=  348,173
prod= -793,618,560
```

## Go

Nothing fancy from Go here (is there ever?), just a series of individual for loops.

`package main import "fmt" func pow(n int, e uint) int {    if e == 0 {        return 1    }    prod := n    for i := uint(2); i <= e; i++ {        prod *= n    }    return prod} func abs(n int) int {    if n >= 0 {        return n    }    return -n} func commatize(n int) string {    s := fmt.Sprintf("%d", n)    if n < 0 {        s = s[1:]    }    le := len(s)    for i := le - 3; i >= 1; i -= 3 {        s = s[0:i] + "," + s[i:]    }    if n >= 0 {        return " " + s    }    return "-" + s} func main() {    prod := 1    sum := 0    const (        x     = 5        y     = -5        z     = -2        one   = 1        three = 3        seven = 7    )    p := pow(11, x)    var j int     process := func() {        sum += abs(j)        if abs(prod) < (1<<27) && j != 0 {            prod *= j        }    }     for j = -three; j <= pow(3, 3); j += three {        process()    }    for j = -seven; j <= seven; j += x {        process()    }    for j = 555; j <= 550-y; j++ {        process()    }    for j = 22; j >= -28; j -= three {        process()    }    for j = 1927; j <= 1939; j++ {        process()    }    for j = x; j >= y; j -= -z {        process()    }    for j = p; j <= p+one; j++ {        process()    }    fmt.Println("sum  = ", commatize(sum))    fmt.Println("prod = ", commatize(prod))}`
Output:
```sum  =   348,173
prod =  -793,618,560
```

## Groovy

Solution:

`def (prod, sum, x, y, z, one, three, seven) = [1, 0, +5, -5, -2, 1, 3, 7] for (    j in (        ((-three) .. (3**3)       ).step(three)      + ((-seven) .. (+seven)     ).step(x)      + (555      .. (550-y)      )      + (22       .. (-28)        ).step(three)    // This is correct!      // Groovy interprets positive step size as stride through the LIST ELEMENTS as ordered      // and negative step size as stride through the REVERSED LIST ELEMENTS as ordered      //   so step(-3) gives:   -28, -25, -22, ... ,  20      //   while step(3) gives:  22,  19,  16, ... , -26      + (1927     .. 1939         )      + (x        .. y            ).step(z)      + (11**x    .. (11**x + one))    )) {     sum = sum + j.abs()    if ( prod.abs() < 2**27 && j != 0) prod *= j} println " sum= \${sum}"println "prod= \${prod}"`

Output:

``` sum= 348177
prod= -793618560```

## J

J uses the names x, y, m, n, u, v to pass arguments into explicit definitions. Treating these as reserved names is reasonable practice. Originally these had been x. , y. etceteras however the dots must have been deemed "noisy".

We've passed the range list argument literally for evaluation in local scope. Verb f evaluates and concatenates the ranges, then perhaps the ensuing for. loop looks somewhat like familiar code.

` NB. http://rosettacode.org/wiki/Loops/Wrong_ranges#JNB. define range as a linear polynomialstart =: 0&{stop =: 1&{increment =: 2&{ :: 1:  NB. on error use 1range =: (start , increment) p. [: i. [: >: [: <. (stop - start) % increment f =: 3 :0 input =. y 'prod sum x y z one three seven' =. 1 0 5 _5 _2 1 3 7 J =. ([: ; range&.>) ". input for_j. J do.  sum =. sum + | j  if. ((|prod)<2^27) *. (0 ~: j) do.   prod =. prod * j  end. end. sum , prod) `
```   ] A =: f '((-three), (3^3), three); ((-seven),seven,x); (555 , 550-y); (22 _28, -three); 1927 1939; (x,y,z); (0 1 + 11^x)'
348173 _7.93619e8

20j0 ": A
348173          _793618560
```

## Java

Java does not support multiple ranges. Use list to simulate multiple ranges. Accumulate values in a list, then iterate over the list.

With Java 8, streams are available. Streams can be concatenated. However, the Java 9 feature `takeWhile` is important to this task to specify the iteration limit.

Maintain formatting similar to the original code.

` import java.util.ArrayList;import java.util.List; public class LoopsWithMultipleRanges {     private static long sum = 0;    private static long prod = 1;     public static void main(String[] args) {        long x = 5;        long y = -5;        long z = -2;        long one = 1;        long three = 3;        long seven = 7;         List<Long> jList = new ArrayList<>();        for ( long j = -three     ; j <= pow(3, 3)        ; j += three )  jList.add(j);        for ( long j = -seven     ; j <= seven            ; j += x )      jList.add(j);        for ( long j = 555        ; j <= 550-y            ; j += 1 )      jList.add(j);        for ( long j = 22         ; j >= -28              ; j += -three ) jList.add(j);        for ( long j = 1927       ; j <= 1939             ; j += 1 )      jList.add(j);        for ( long j = x          ; j >= y                ; j += z )      jList.add(j);        for ( long j = pow(11, x) ; j <= pow(11, x) + one ; j += 1 )      jList.add(j);         List<Long> prodList = new ArrayList<>();        for ( long j : jList ) {            sum += Math.abs(j);            if ( Math.abs(prod) < pow(2, 27) && j != 0 ) {                prodList.add(j);                prod *= j;            }                    }         System.out.printf(" sum        = %,d%n", sum);        System.out.printf("prod        = %,d%n", prod);        System.out.printf("j values    = %s%n", jList);        System.out.printf("prod values = %s%n", prodList);    }     private static long pow(long base, long exponent) {        return (long) Math.pow(base, exponent);    } } `
Output:
``` sum        = 348,173
prod        = -793,618,560
j values    = [-3, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, -7, -2, 3, 555, 22, 19, 16, 13, 10, 7, 4, 1, -2, -5, -8, -11, -14, -17, -20, -23, -26, 1927, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 5, 3, 1, -1, -3, -5, 161051, 161052]
prod values = [-3, 3, 6, 9, 12, 15, 18, 21, 24]
```

## Julia

Julia allows concatenation of iterators with the ; iterator within a vector. An attempt was made to preserve the shape of the PL/1 code.

`using Formatting function PL1example()                                     # all variables are DECLARED as integers.    prod  =  1;                     # start with a product of unity.    sum   =  0;                     #   "     "  "   sum    " zero.    x     = +5;    y     = -5;    z     = -2;    one   =  1;    three =  3;    seven =  7;                                    # (below)  **  is exponentiation:  4**3=64    for j in [           -three   :  three :  3^3           ;                         -seven   :   x    :  +seven        ;                            555            :  550 - y       ;                             22   : -three :  -28           ;                           1927            :  1939          ;                              x   :  z     :  y             ;                           11^x            :   11^x + one   ]                                                        # ABS(n) = absolute value        sum = sum + abs(j);                             # add absolute value of J.        if abs(prod) < 2^27 && j !=0 prod = prod*j      # PROD is small enough & J        end;                                            # not 0, then multiply it.    end             # SUM and PROD are used for verification of J incrementation.    println(" sum = \$(format(sum, commas=true))");      # display strings to term.    println("prod = \$(format(prod, commas=true))");     #   "       "     "   "end PL1example() `
Output:
```
sum = 348,173
prod = -793,618,560

```

## Kotlin

Nothing special here, just a series of individual for loops.

`// Version 1.2.70 import kotlin.math.abs infix fun Int.pow(e: Int): Int {    if (e == 0) return 1    var prod = this    for (i in 2..e) {        prod *= this    }    return prod} fun main(args: Array<String>) {    var prod = 1    var sum = 0    val x = 5    val y = -5    val z = -2    val one = 1    val three = 3    val seven = 7    val p = 11 pow x    fun process(j: Int) {        sum += abs(j)        if (abs(prod) < (1 shl 27) && j != 0) prod *= j    }     for (j in -three..(3 pow 3) step three) process(j)    for (j in -seven..seven step x) process(j)    for (j in 555..550-y) process(j)    for (j in 22 downTo -28 step three) process(j)    for (j in 1927..1939) process(j)    for (j in x downTo y step -z) process(j)    for (j in p..p + one) process(j)    System.out.printf("sum  = % ,d\n", sum)    System.out.printf("prod = % ,d\n", prod)}`
Output:
```sum  =  348,173
prod = -793,618,560
```

## M2000 Interpreter

Using lambda functions and a final While End While to perform a multiple range.

Values by default are double, but we can make them Long (32 bit integer), or Decimal or Currency or single (prod for single has less accuracy here), but not integer (16 bit) because we get overflow.

In M2000 expressions can change numeric type to hold the produced value. Variables take once the type, so we get overflow if we pass a value frome an expression which can't convert to variable's type.

`Module MultipleLoop {	def long prod=1, sum=0, x=+5,y=-5, z=-2, one=1, three=3, seven=7, j	Range=lambda (a, b, c=1) ->{		=lambda a, b, c (&f)-> {			if compare(a,b)=sgn(c) then =false else =true: f=a: a+=c		}	}	MultipleRange=Lambda -> {		a=array([])  '  convert stack items in current stack [] to an array of items		=lambda  a, k=0 (&f) ->{			do : if k<len(a) Else exit			if a#eval(k, &f) then =true: exit			k++ : always		}	}	Exec=MultipleRange(Range(-three, 3**3, three), Range(-seven, +seven, x), Range(555, 550-y), Range(22, -28, -three), Range(1927, 1939), Range(x,y,z), Range(11**x, 11**x+one))	j=0	while Exec(&j)		sum+=abs(j)		if abs(prod) < 2^27 And j <> 0 then prod*=j	End While 	Print "sum=";sum	Print "prod=";prod}MultipleLoop `
Output:
```sum=348173
prod=-793618560
```

## Nim

Nim doesn’t provide loops with multiple ranges. There are several ways to translate the PL/1 program: using a sequence of for loops, using a sequence of while loops, using an iterator and, probably, too, some way using macros.

### Using a sequence of loops

This solution is the obvious one, but it supposes that the direction of the loop is known (i.e. the sign of the step is known) as we have to choose between iterators “countup” and “countdown”. Using this method, the PL/1 example can be translated the following way:

` import math, strutils var  prod = 1  sum = 0 let  x = +5  y = -5  z = -2  one = 1  three = 3  seven = 7 proc body(j: int) =  sum += abs(j)  if abs(prod) < 2^27 and j != 0: prod *= j  for j in countup(-three, 3^3, three): body(j)for j in countup(-seven, seven, x): body(j)for j in countup(555, 550 - y): body(j)for j in countdown(22, -28, three): body(j)for j in countup(1927, 1939): body(j)for j in countdown(x, y, -z): body(j)for j in countup(11^x, 11^x + one): body(j) let s = (\$sum).insertSep(',')let p = (\$prod).insertSep(',')let m = max(s.len, p.len)echo " sum = ", s.align(m)echo "prod = ", p.align(m)`

Note that for “countdown” we must change the sign of the step to insure that it is positive.

Output:
``` sum =      347,937
prod = -793,618,560```

### Using an iterator

If the sign of the step is not known (or may vary), it is no longer possible to use the previous method. One could use a while loop but it seems better to use an iterator.

`import math, strutils var  prod = 1  sum = 0 let  x = +5  y = -5  z = -2  one = 1  three = 3  seven = 7 type Range = tuple[first, last, step: int] func initRange(first, last, step = 1): Range = (first, last, step) iterator loop(ranges: varargs[Range]): int =  for r in ranges:    if r.step > 0:      for i in countup(r.first, r.last, r.step):        yield i    elif r.step < 0:      for i in countdown(r.first, r.last, -r.step):        yield i    else:      raise newException(ValueError, "step cannot be zero") for j in loop(initRange(-three, 3^3, three),              initRange(-seven, seven, x),              initRange(555, 550 - y),              initRange(22, -28, three),              initRange(1927, 1939),              initRange(x, y, -z),              initRange(11^x, 11^x + one)):  sum += abs(j)  if abs(prod) < 2^27 and j != 0: prod *= j let s = (\$sum).insertSep(',')let p = (\$prod).insertSep(',')let m = max(s.len, p.len)echo " sum = ", s.align(m)echo "prod = ", p.align(m)`

Note that we have defined a function “initRange” to create the ranges. This is needed to make the step optional. If we suppressed this requirement (i.e. we required the step to be always specified), we could get ride of “initRange” and write the loop this way:

`for j in loop((-three, 3^3, three),              (-seven, seven, x),              (555, 550 - y),              (22, -28, three),              (1927, 1939, 1),              (x, y, -z),              (11^x, 11^x + one)):  sum += abs(j)  if abs(prod) < 2^27 and j != 0: prod *= j`

## Perl

`use constant   one =>  1;use constant three =>  3;use constant seven =>  7;use constant     x =>  5;use constant    yy => -5; # 'y' conflicts with use as equivalent to 'tr' operator (a carry-over from 'sed')use constant     z => -2; my \$prod = 1; sub from_to_by {    my(\$begin,\$end,\$skip) = @_;    my \$n = 0;    grep{ !(\$n++ % abs \$skip) } \$begin <= \$end ? \$begin..\$end : reverse \$end..\$begin;} sub commatize {    (my \$s = reverse shift) =~ s/(.{3})/\$1,/g;    \$s =~ s/,(-?)\$/\$1/;    \$s = reverse \$s;} for my \$j (    from_to_by(-three,3**3,three),    from_to_by(-seven,seven,x),    555 .. 550 - yy,    from_to_by(22,-28,-three),    1927 .. 1939,    from_to_by(x,yy,z),    11**x .. 11**x+one,   ) {     \$sum  += abs(\$j);     \$prod *= \$j if \$j and abs(\$prod) < 2**27;} printf "%-8s %12s\n", 'Sum:',     commatize \$sum;printf "%-8s %12s\n", 'Product:', commatize \$prod;`
Output:
```Sum:          348,173
Product: -793,618,560```

## Phix

```integer prod =  1,
total =  0,  -- (renamed as sum is a Phix builtin)
x = +5,
y = -5,
z = -2,
one =  1,
three =  3,
seven =  7

sequence loopset = {{     -three,        power(3,3), three },
{     -seven,            +seven,   x   },
{        555,           550 - y,   1   },
{         22,               -28, -three},
{       1927,              1939,   1   },
{          x,                 y,   z   },
{power(11,x), power(11,x) + one,   1   }}

for i=1 to length(loopset) do
integer {f,t,s} = loopset[i]
for j=f to t by s do
total += abs(j)
if abs(prod)<power(2,27) and j!=0 then
prod *= j
end if
end for
end for
printf(1," sum = %,d\n",total)
printf(1,"prod = %,d\n",prod)
```
Output:
``` sum = 348,173
prod = -793,618,560
```

## Prolog

Prolog does not have the richness of some other languages where it comes to loops, variables and the like, but does have some rather interesting features such as difference lists and backtracking for generating solutions.

`for(Lo,Hi,Step,Lo)  :- Step>0, Lo=<Hi.for(Lo,Hi,Step,Val) :- Step>0, plus(Lo,Step,V), V=<Hi, !, for(V,Hi,Step,Val).for(Hi,Lo,Step,Hi)  :- Step<0, Lo=<Hi.for(Hi,Lo,Step,Val) :- Step<0, plus(Hi,Step,V), Lo=<V, !, for(V,Lo,Step,Val). sym(x,5).                 % symbolic lookups for valuessym(y,-5).sym(z,-2).sym(one,1).sym(three,3).sym(seven,7). range(-three,3^3,three).  % as close as we can syntactically getrange(-seven,seven,x).range(555,550-y,1).range(22,-28, -three).range(1927,1939,1).range(x,y,z).range(11^x,11^x+one,1). translate(V, V)   :- number(V), !.    % difference list based parsertranslate(S, V)   :- sym(S,V), !.translate(-S, V)  :- translate(S,V0), !, V is -V0.translate(A+B, V) :- translate(A,A0), translate(B, B0), !, V is A0+B0.translate(A-B, V) :- translate(A,A0), translate(B, B0), !, V is A0-B0.translate(A^B, V) :- translate(A,A0), translate(B, B0), !, V is A0^B0. range_value(Val) :-             % enumerate values for all ranges in order	range(From,To,Step), 	translate(From,F), translate(To,T), translate(Step,S), 	for(F,T,S,Val). calc_values([], S, P, S, P).    % calculate all values in generated ordercalc_values([J|Js], S, P, Sum, Product) :-  S0 is S + abs(J), ((abs(P)< 2^27, J \= 0) -> P0 is P * J; P0=P),  !, calc_values(Js, S0, P0, Sum, Product). calc_values(Sum, Product) :-    % Find the sum and product	findall(V, range_value(V), Values),	calc_values(Values, 0, 1, Sum, Product).`
```?- calc_values(Sum, Product).
Sum = 348173,
Product = -793618560.```

## PureBasic

`#X = 5 : #Y = -5 : #Z = -2#ONE   = 1 : #THREE = 3 : #SEVEN = 7Define j.iGlobal prod.i = 1, sum.i = 0 Macro ipow(n, e)  Int(Pow(n, e))EndMacro Macro ifn(x)  FormatNumber(x,0,".",",")EndMacro Macro loop_for(start, stop, step_for=1)  For j = start To stop Step step_for    proc(j)  NextEndMacro Procedure proc(j.i)  sum + Abs(j)  If (Abs(prod) < ipow(2 , 27)) And (j<>0)    prod * j  EndIfEndProcedure loop_for(-#THREE, ipow(3, 3), #THREE)loop_for(-#SEVEN, #SEVEN, #X)loop_for(555, 550 - #Y)loop_for(22, -28, -#THREE)loop_for(1927, 1939)loop_for(#X, #Y, #Z)loop_for(ipow(11, #X), ipow(11, #X) + 1) If OpenConsole("Loops/with multiple ranges")  PrintN("sum  = " + ifn(sum))  PrintN("prod = " + ifn(prod))  Input()EndIf`
Output:
```sum  = 348,173
prod = -793,618,560```

## Python

Pythons range function does not include the second argument hence the definition of _range()

`from itertools import chain prod, sum_, x, y, z, one,three,seven = 1, 0, 5, -5, -2, 1, 3, 7 def _range(x, y, z=1):    return range(x, y + (1 if z > 0 else -1), z) print(f'list(_range(x, y, z)) = {list(_range(x, y, z))}')print(f'list(_range(-seven, seven, x)) = {list(_range(-seven, seven, x))}') for j in chain(_range(-three, 3**3, three), _range(-seven, seven, x),                _range(555, 550 - y), _range(22, -28, -three),               _range(1927, 1939), _range(x, y, z),               _range(11**x, 11**x + 1)):    sum_ += abs(j)    if abs(prod) < 2**27 and (j != 0):        prod *= jprint(f' sum= {sum_}\nprod= {prod}')`
Output:
```list(_range(x, y, z)) = [5, 3, 1, -1, -3, -5]
list(_range(-seven, seven, x)) = [-7, -2, 3]
sum= 348173
prod= -793618560```

## Raku

(formerly Perl 6)

This task is really conflating two separate things, (at least in Raku). Sequences and loops are two different concepts and may be considered / implemented separately from each other.

Yes, you can generate a sequence with a loop, and a loop can use a sequence for an iteration value, but the two are somewhat orthogonal and don't necessarily overlap.

Sequences are first class objects in Raku. You can (and typically do) generate a sequence using the (appropriately enough) sequence operator and can assign it to a variable and/or pass it as a parameter; the entire sequence, not just it's individual values. It may be used in a looping construct, but it is not necessary to do so.

Various looping constructs often do use sequences as their iterator but not exclusively, possibly not even in the majority.

Displaying the j sequence as well since it isn't very large.

`sub comma { (\$^i < 0 ?? '-' !! '') ~ \$i.abs.flip.comb(3).join(',').flip } my \x     =  5;my \y     = -5;my \z     = -2;my \one   =  1;my \three =  3;my \seven =  7; my \$j = flat  ( -three, *+three … 3³         ),  ( -seven, *+x     …^ * > seven ),  ( 555   .. 550 - y             ),  ( 22,     *-three …^ * < -28   ),  ( 1927  .. 1939                ),  ( x,      *+z     …^ * < y     ),  ( 11**x .. 11**x + one         ); put 'j sequence: ', \$j;put '       Sum: ', comma [+] \$j».abs;put '   Product: ', comma ([\*] \$j.grep: so +*).first: *.abs > 2²⁷; # Or, an alternate method for generating the 'j' sequence, employing user-defined# operators to preserve the 'X to Y by Z' layout of the example code.# Note that these operators will only work for monotonic sequences. sub infix:<to> { \$^a ... \$^b }sub infix:<by> { \$^a[0, \$^b.abs ... *] } \$j = cache flat    -three  to          3**3  by  three ,    -seven  to         seven  by      x ,       555  to     (550 - y)            ,        22  to           -28  by -three ,      1927  to          1939  by    one ,         x  to             y  by      z ,     11**x  to (11**x + one)            ; put "\nLiteral minded variant:";put '       Sum: ', comma [+] \$j».abs;put '   Product: ', comma ([\*] \$j.grep: so +*).first: *.abs > 2²⁷;`
Output:
```j sequence: -3 0 3 6 9 12 15 18 21 24 27 -7 -2 3 555 22 19 16 13 10 7 4 1 -2 -5 -8 -11 -14 -17 -20 -23 -26 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 5 3 1 -1 -3 -5 161051 161052
Sum: 348,173
Product: -793,618,560

Literal minded variant:
Sum: 348,173
Product: -793,618,560
```

## Red

As "to" has another meaning in Red, we name "->" the range operator.

`Red ["For loop with multiple ranges"] ->: make op! function [start end][    res: copy []    repeat n 1 + absolute to-integer end - start [        append res start + either start > end [1 - n][n - 1]    ]]by: make op! function [s w] [extract s absolute w] for: function ['word ranges body][    inp: copy []     foreach c reduce ranges [append inp c]    foreach i inp [set word i do body]]  prod:  1                     sum:  0                x: +5    y: -5    z: -2  one:  1three:  3seven:  7 for j [    0 - three -> (3 ** 3)   by three    0 - seven -> seven      by x        555   -> (550 - y)                    22    -> -28        by (0 - three)        1927  -> 1939                          x     -> y          by z        11 ** x   -> (11 ** x + one)] [    sum: sum + absolute j;                              if all [(absolute prod) < power 2 27 j <> 0] [prod: prod * j]]print ["sum: " sum "^/prod:" prod]`
Output:
```sum:  348173
prod: -793618560```

## REXX

Programming note:   the (sympathetic) trailing semicolons (;) after each REXX statement are optional,   they are only there to mimic what the PL/I language requires after each statement.

The technique used by this REXX version is to "break up" the various   do   iterating clauses (ranges) into separate   do   loops,   and have them invoke a subroutine to perform the actual computations.

`/*REXX program emulates a multiple─range  DO  loop  (all variables can be any numbers). */ prod=  1;  sum=  0;    x= +5;    y= -5;    z= -2;  one=  1;three=  3;seven=  7;       do j=   -three  to      3**3      by three  ;      call meat;      end;      do j=   -seven  to    seven       by   x    ;      call meat;      end;      do j=      555  to      550 - y             ;      call meat;      end;      do j=       22  to      -28       by -three ;      call meat;      end;      do j=     1927  to     1939                 ;      call meat;      end;      do j=        x  to        y       by   z    ;      call meat;      end;      do j=    11**x  to    11**x + one           ;      call meat;      end; say ' sum= ' || commas( sum);                          /*display   SUM   with commas.   */say 'prod= ' || commas(prod);                          /*   "     PROD     "     "      */exit;                                                  /*stick a fork in it, we're done.*//*──────────────────────────────────────────────────────────────────────────────────────*/commas: procedure; parse arg _;     n= _'.9';     #= 123456789;     b= verify(n, #, "M")                                    e= verify(n, #'0', , verify(n, #"0.", 'M') )  - 4          do j=e  to b  by -3;      _= insert(',', _, j);   end;                  return _/*──────────────────────────────────────────────────────────────────────────────────────*/meat:  sum= sum + abs(j);       if abs(prod)<2**27 & j\==0  then prod= prod * j;       return;`
output   when using the same variable values:
``` sum= 348,173
prod= -793,618,560
```

## Ruby

Uses chaining of enumerables, which was introduced with Ruby 2.6

`x, y, z, one, three, seven = 5, -5, -2, 1, 3, 7 enums = (-three).step(3**3, three) +        (-seven).step(seven, x) +        555     .step(550-y, -1) +        22      .step(-28, -three) +        (1927..1939) +                # just toying, 1927.step(1939) is fine too        x       .step(y, z) +        (11**x) .step(11**x + one)# enums is an enumerator, consisting of a bunch of chained enumerators,# none of which has actually produced a value. puts "Sum of absolute numbers:  #{enums.sum(&:abs)}"prod = enums.inject(1){|prod, j| ((prod.abs < 2**27) && j!=0) ? prod*j : prod}puts "Product (but not really): #{prod}" `
Output:
```Sum of absolute numbers:  348173
Product (but not really): -793618560
```

## Smalltalk

Ranges (called Interval in Smalltalk) are collections, which - like all collections - can be concatenated with the , (comma) message. Intervals are created by sending a to: or to:by: message to a magnitude-like thingy (i.e. other than numbers are possible):

`prod := 1.        sum := 0.x := 5.y := -5.z := -2.one := 1.three := 3.seven := 7. (three negated to: 3**3  by: three       ) ,(seven negated to: seven by: x           ) ,(555           to: 550-y                 ) ,(22            to: -28  by: three negated) ,(1927          to: 1939                  ) ,(x             to: y    by:z             ) ,(11**x         to: 11**x + one           )    do:[:j |        sum := sum + j abs.        ((prod abs < (2**27)) and:[ j ~= 0 ]) ifTrue:[            prod := prod*j        ].    ].Transcript show:' sum = '; showCR:sum.Transcript show:'prod = '; showCR:prod`

The above creates a temporary "collection of ranges" and enumerates that, which might be inconvenient, if the collections are huge.
One alternative is to loop over each individually.

Of course, we definitely don't want to retype the loop body and we usually don't want to the code to be non-local (i.e. define another method for it).
That's what blocks (aka lambdas or anonymous functions) are perfect for:

`prod := 1.        sum := 0.x := 5.y := -5.z := -2.one := 1.three := 3.seven := 7. action :=     [:j |       sum := sum + j abs.        ((prod abs < (2**27)) and:[ j ~= 0 ]) ifTrue:[            prod := prod*j        ].    ]. (three negated to: 3**3  by: three       ) do:action.(seven negated to: seven by: x           ) do:action.(555           to: 550-y                 ) do:action.(22            to: -28  by: three negated) do:action.(1927          to: 1939                  ) do:action.(x             to: y    by:z             ) do:action.(11**x         to: 11**x + one           ) do:action.Transcript show:' sum = '; showCR:sum.Transcript show:'prod = '; showCR:prod`

As another alternative to the first solution above, we can loop over the ranges. This avoids the concatenations and generation of the intermediate big collection (which does not really make a difference here, but would, if each collection consisted of millions of objects):

Works with: Smalltalk/X
`...{    (three negated to: 3**3  by: three       ) .    (seven negated to: seven by: x           ) .    (555           to: 550-y                 ) .    (22            to: -28  by: three negated) .    (1927          to: 1939                  ) .    (x             to: y    by:z             ) .    (11**x         to: 11**x + one           ) .} do:[:eachRange |    eachRange         select:[:j | ((prod abs < (2**27)) and:[ j ~= 0 ]) ]        thenDo:[:j | prod := prod*j ].    ]]....`

Notice: this creates only 8 objects and also demonstrates an alternative element selection scheme, which may be more readable.

Output:
```  sum = 348173
prod = -793618560```

Note) Dialects with no **-method should use raisedTo:, or else define an alias for it in Number as:

`** arg    ^ self raisedTo: arg`

## Vala

`const int CHARBIT = 8;long prod = 1;long sum = 0; long labs(long n) {  long mask = n >> ((long)sizeof(long) * CHARBIT - 1);  return ((n + mask) ^ mask);} long lpow(long base_num, long exp){  long result = 1;  while (true)  {    if ((exp & 1) != 0) result *= base_num;    exp >>= 1;    if (exp == 0) break;    base_num *= base_num;  }  return result;} void process(long j) {  sum += labs(j);  if (labs(prod) < (1 << 27) && j != 0) prod *= j;} void main() {  const int x = 5;  const int y = -5;  const int z = -2;  const int one = 1;  const int three = 3;  const int seven = 11;  long p = lpow(11, x);   for (int j = -three; j <= lpow(3, 3); j += three ) process(j);  for (int j = -seven; j <= seven; j += x) process(j);  for (int j = 555; j <= 550 - y; ++j) process(j);  for (int j = 22; j >= -28; j -= three) process(j);  for (int j = 1928; j <= 1939; ++j) process(j);  for (int j = x; j >= y; j -= -z) process(j);  for (long j = p; j <= p + one; ++j) process(j);  stdout.printf("sum  = %10ld\n", sum);  stdout.printf("prod = %10ld\n", prod);}`
Output:
```sum  =     346265
prod = -793618560
```

## VBA

`Dim prod As Long, sum As LongPublic Sub LoopsWithMultipleRanges()    Dim x As Integer, y As Integer, z As Integer, one As Integer, three As Integer, seven As Integer, j As Long    prod = 1    sum = 0    x = 5    y = -5    z = -2    one = 1    three = 3    seven = 7    For j = -three To pow(3, 3) Step three: Call process(j): Next j    For j = -seven To seven Step x: Call process(j): Next j    For j = 555 To 550 - y: Call process(j): Next j    For j = 22 To -28 Step -three: Call process(j): Next j    For j = 1927 To 1939: Call process(j): Next j    For j = x To y Step z: Call process(j): Next j    For j = pow(11, x) To pow(11, x) + one: Call process(j): Next j    Debug.Print " sum= " & Format(sum, "#,##0")    Debug.Print "prod= " & Format(prod, "#,##0")End SubPrivate Function pow(x As Long, y As Integer) As Long    pow = WorksheetFunction.Power(x, y)End FunctionPrivate Sub process(x As Long)    sum = sum + Abs(x)    If Abs(prod) < pow(2, 27) And x <> 0 Then prod = prod * xEnd Sub`
Output:
``` sum= 348.173
prod= -793.618.560```

## Visual Basic .NET

VB.NET loops can't have multiple ranges, so this implementation will use the For Each loop and demonstrate various functions that produce concatenated ranges.

Composite formatting is used to add digit separators.

Using the following to provide the functionality of the For loop as a function,

`Partial Module Program    ' Stop and Step are language keywords and must be escaped with brackets.    Iterator Function Range(start As Integer, [stop] As Integer, Optional [step] As Integer = 1) As IEnumerable(Of Integer)        For i = start To [stop] Step [step]            Yield i        Next    End FunctionEnd Module`

and Enumerable.Concat (along with extension method syntax) to splice the ranges, the program ends up looking like this:

`Imports System.Globalization Partial Module Program    Sub Main()        ' All variables are inferred to be of type Integer.        Dim prod = 1,            sum = 0,            x = +5,            y = -5,            z = -2,            one = 1,            three = 3,            seven = 7         ' The exponent operator compiles to a call to Math.Pow, which returns Double, and so must be converted back to Integer.        For Each j In Range(-three,       CInt(3 ^ 3),        3     ).               Concat(Range(-seven,       +seven,             x     )).               Concat(Range(555,          550 - y                   )).               Concat(Range(22,           -28,                -three)).               Concat(Range(1927,         1939                      )).               Concat(Range(x,            y,                  z     )).               Concat(Range(CInt(11 ^ x), CInt(11 ^ x) + one        ))             sum = sum + Math.Abs(j)            If Math.Abs(prod) < 2 ^ 27 AndAlso j <> 0 Then prod = prod * j        Next         ' The invariant format info by default has two decimal places.        Dim format As New NumberFormatInfo() With {            .NumberDecimalDigits = 0        }         Console.WriteLine(String.Format(format, " sum= {0:N}", sum))        Console.WriteLine(String.Format(format, "prod= {0:N}", prod))    End SubEnd Module`

To improve the program's appearance, a ConcatRange method can be defined to combine the two method calls,

`    <Runtime.CompilerServices.Extension>    Function ConcatRange(source As IEnumerable(Of Integer), start As Integer, [stop] As Integer, Optional [step] As Integer = 1) As IEnumerable(Of Integer)        Return source.Concat(Range(start, [stop], [step]))    End Function`

which results in a loop that looks like this:

`        For Each j In Range(-three,       CInt(3 ^ 3),        3     ).                ConcatRange(-seven,       +seven,             x     ).                ConcatRange(555,          550 - y                   ).                ConcatRange(22,           -28,                -three).                ConcatRange(1927,         1939                      ).                ConcatRange(x, y,         z                         ).                ConcatRange(CInt(11 ^ x), CInt(11 ^ x) + one        )        Next`

An alternative to avoid the repeated method calls would be to make a Range function that accepts multiple ranges, in this case as a parameter array of tuples.

`    Function Range(ParamArray ranges() As (start As Integer, [stop] As Integer, [step] As Integer)) As IEnumerable(Of Integer)        ' Note: SelectMany is equivalent to bind, flatMap, etc.        Return ranges.SelectMany(Function(r) Range(r.start, r.stop, r.step))    End Function`

resulting in:

`        For Each j In Range((-three,       CInt(3 ^ 3),        3        ),                            (-seven,       +seven,             x        ),                            (555,          550 - y,            1        ),                            (22,           -28,                -three   ),                            (1927,         1939,               1        ),                            (x,            y,                  z        ),                            (CInt(11 ^ x), CInt(11 ^ x) + one, 1        ))        Next`

Note, however, that the inability to have a heterogenous array means that specifying the step is now mandatory. Using a parameter array of arrays is slightly less clear but results in the tersest loop.

`    Function Range(ParamArray ranges As Integer()()) As IEnumerable(Of Integer)        Return ranges.SelectMany(Function(r) Range(r(0), r(1), If(r.Length < 3, 1, r(2))))    End Function`
`        For Each j In Range({-three,       CInt(3 ^ 3),        3        },                            {-seven,       +seven,             x        },                            {555,          550 - y                      },                            {22,           -28,                -three   },                            {1927,         1939                         },                            {x,            y,                  z        },                            {CInt(11 ^ x), CInt(11 ^ x) + one           })        Next`
Output (for all variations):
``` sum= 348,173
prod= -793,618,560```

## Wren

Translation of: Go
`import "/fmt" for Fmt var prod = 1var sum = 0var x = 5var y = -5var z = -2var one = 1var three = 3var seven = 7var p = 11.pow(x)var j = 0 var process = Fn.new {    sum = sum + j.abs    if (prod.abs < (1 << 27) && j != 0) prod = prod * j} j = -threewhile (j <= 3.pow(3)) {    process.call()    j = j + three} j = -sevenwhile (j <= seven) {    process.call()    j = j + x} j = 555while (j <= 550 - y) {    process.call()    j = j + 1} j = 22while (j >= -28) {    process.call()    j = j - three} j = 1927while (j <= 1939) {    process.call()    j = j + 1} j = xwhile (j >= y) {    process.call()    j = j - (-z)} j = pwhile (j <= p + one) {    process.call()    j = j + 1} System.print("sum  =  %(Fmt.dc(sum))")System.print("prod = %(Fmt.dc(prod))")`
Output:
```sum  =  348,173
prod = -793,618,560
```

## zkl

`prod,sum := 1,0;  /* start with a product of unity, sum of 0 */x,y,z := 5, -5, -2;one,three,seven := 1,3,7;foreach j in (Walker.chain([-three..(3).pow(3),three], // do these sequentially               [-seven..seven,x], [555..550 - y], [22..-28,-three], #[start..last,step]               [1927..1939], [x..y,z], [(11).pow(x)..(11).pow(x) + one])){   sum+=j.abs();	/* add absolute value of J */   if(prod.abs()<(2).pow(27) and j!=0) prod*=j; /* PROD is small enough & J */}/* SUM and PROD are used for verification of J incrementation */println("sum  = %,d\nprod = %,d".fmt(sum,prod));`
Output:
```sum  = 348,173
prod = -793,618,560
```