Fivenum
Many big data or scientific programs use boxplots to show distributions of data. In addition, sometimes saving large arrays for boxplots can be impractical and use extreme amounts of RAM. It can be useful to save large arrays as arrays with five numbers to save memory.
You are encouraged to solve this task according to the task description, using any language you may know.
For example, the R programming language implements Tukey's five-number summary as the fivenum function.
- Task
Given an array of numbers, compute the five-number summary.
- Note
While these five numbers can be used to draw a boxplot, statistical packages will typically need extra data.
Moreover, while there is a consensus about the "box" of the boxplot, there are variations among statistical packages for the whiskers.
11l
F fivenum(array)
V n = array.len
V x = sorted(array)
V n4 = floor((n + 3.0) / 2.0) / 2.0
V d = [1.0, n4, (n + 1) / 2, n + 1 - n4, Float(n)]
[Float] sum_array
L(e) 5
V fl = Int(floor(d[e] - 1))
V ce = Int(ceil(d[e] - 1))
sum_array.append(0.5 * (x[fl] + x[ce]))
R sum_array
V x = [0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555, -0.03035726, 1.46675970,
-0.74621349, -0.72588772, 0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469, 0.66206163,
1.04312009, -0.10305385, 0.75775634, 0.32566578]
print(fivenum(x))
- Output:
[-1.9506, -0.676741, 0.233247, 0.746071, 1.73132]
Ada
Direct C Translation
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Containers.Generic_Array_Sort;
procedure Main is
package Real_Io is new Float_IO (Long_Float);
use Real_Io;
type Data_Array is array (Natural range <>) of Long_Float;
subtype Five_Num_Type is Data_Array (0 .. 4);
procedure Sort is new Ada.Containers.Generic_Array_Sort
(Index_Type => Natural, Element_Type => Long_Float,
Array_Type => Data_Array);
function Median (X : Data_Array) return Long_Float with
Pre => X'Length > 0;
function Median (X : Data_Array) return Long_Float is
M : constant Natural := X'First + X'Last / 2;
begin
if X'Length rem 2 = 1 then
return X (M);
else
return (X (M - 1) + X (M)) / 2.0;
end if;
end Median;
procedure fivenum (X : Data_Array; Result : out Five_Num_Type) is
Temp : Data_Array := X;
m : Natural := X'Length / 2;
Lower_end : Natural := (if X'Length rem 2 = 0 then m - 1 else m);
begin
Sort (Temp);
Result (0) := Temp (Temp'First);
Result (2) := Median (Temp);
Result (4) := Temp (Temp'Last);
Result (1) := Median (Temp (1 .. Lower_end));
Result (3) := Median (Temp (m .. Temp'Last));
end fivenum;
procedure print (Result : Five_Num_Type; Aft : Natural) is
begin
Put ("[");
for I in Result'Range loop
Put (Item => Result (I), Fore => 1, Aft => Aft, Exp => 0);
if I < Result'Last then
Put (", ");
else
Put_Line ("]");
end if;
end loop;
New_Line;
end print;
X1 : Data_Array :=
(15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0);
X2 : Data_Array := (36.0, 40.0, 7.0, 39.0, 41.0, 15.0);
X3 : Data_Array :=
(0.140_828_34, 0.097_487_90, 1.731_315_07, 0.876_360_09, -1.950_595_94,
0.734_385_55, -0.030_357_26, 1.466_759_70, -0.746_213_49, -0.725_887_72,
0.639_051_60, 0.615_015_27, -0.989_837_80, -1.004_478_74, -0.627_594_69,
0.662_061_63, 1.043_120_09, -0.103_053_85, 0.757_756_34, 0.325_665_78);
Result : Five_Num_Type;
begin
fivenum (X1, Result);
print (Result, 1);
fivenum (X2, Result);
print (Result, 1);
fivenum (X3, Result);
print (Result, 9);
end Main;
- Output:
[6.0, 36.0, 40.0, 48.0, 49.0] [7.0, 25.5, 25.5, 41.0, 41.0] [-1.950595940, -0.627594690, 0.119158120, 1.599037385, 1.731315070]
Using Ada Enumeration
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Containers.Generic_Array_Sort;
procedure Main is
package Real_Io is new Float_IO (Long_Float);
use Real_Io;
type Data_Array is array (Natural range <>) of Long_Float;
type fivenum_index is (minimum, lower_hinge, median, upper_hinge, maximum);
type Five_Num_Type is array (fivenum_index) of Long_Float;
procedure Sort is new Ada.Containers.Generic_Array_Sort
(Index_Type => Natural, Element_Type => Long_Float,
Array_Type => Data_Array);
function Median (X : Data_Array) return Long_Float with
Pre => X'Length > 0;
function Median (X : Data_Array) return Long_Float is
M : constant Natural := X'First + X'Last / 2;
begin
if X'Length rem 2 = 1 then
return X (M);
else
return (X (M - 1) + X (M)) / 2.0;
end if;
end Median;
procedure fivenum (X : Data_Array; Result : out Five_Num_Type) is
Temp : Data_Array := X;
m : Natural := X'Length / 2;
Lower_end : Natural := (if X'Length rem 2 = 0 then m - 1 else m);
begin
Sort (Temp);
Result (minimum) := Temp (Temp'First);
Result (lower_hinge) := Median (Temp (0 .. Lower_end));
Result (median) := Median (Temp);
Result (upper_hinge) := Median (Temp (m .. Temp'Last));
Result (maximum) := Temp (Temp'Last);
end fivenum;
procedure print (Result : Five_Num_Type) is
package five_io is new Enumeration_IO (fivenum_index);
use five_io;
begin
for I in fivenum_index loop
Put(" ");
Put (Item => I, Width => 12);
end loop;
New_Line;
Put ("[");
for I in Result'Range loop
Put (Item => Result (I), Fore => 3, Aft => 9, Exp => 0);
if I < Result'Last then
Put (", ");
else
Put_Line ("]");
end if;
end loop;
New_Line;
end print;
X1 : Data_Array :=
(15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0);
X2 : Data_Array := (36.0, 40.0, 7.0, 39.0, 41.0, 15.0);
X3 : Data_Array :=
(0.140_828_34, 0.097_487_90, 1.731_315_07, 0.876_360_09, -1.950_595_94,
0.734_385_55, -0.030_357_26, 1.466_759_70, -0.746_213_49, -0.725_887_72,
0.639_051_60, 0.615_015_27, -0.989_837_80, -1.004_478_74, -0.627_594_69,
0.662_061_63, 1.043_120_09, -0.103_053_85, 0.757_756_34, 0.325_665_78);
Result : Five_Num_Type;
begin
fivenum (X1, Result);
print (Result);
fivenum (X2, Result);
print (Result);
fivenum (X3, Result);
print (Result);
end Main;
- Output:
MINIMUM LOWER_HINGE MEDIAN UPPER_HINGE MAXIMUM [ 6.000000000, 11.000000000, 40.000000000, 48.000000000, 49.000000000] MINIMUM LOWER_HINGE MEDIAN UPPER_HINGE MAXIMUM [ 7.000000000, 15.000000000, 25.500000000, 41.000000000, 41.000000000] MINIMUM LOWER_HINGE MEDIAN UPPER_HINGE MAXIMUM [ -1.950595940, -0.736050605, 0.119158120, 1.599037385, 1.731315070]
ALGOL 68
Includes additional test cases and adjustment to n4 for odd length array as in a number of other samples.
BEGIN # construct an R-style fivenum function #
PR read "rows.incl.a68" PR
PR read "sort.incl.a68" PR
PROC fivenum = ( []REAL array )[]REAL:
BEGIN
INT n = ( UPB array + 1 ) - LWB array;
[ 1 : n ]REAL x := array[ AT 1 ];
QUICKSORT x;
REAL n4 = ( ( ( n + IF ODD n THEN 3 ELSE 2 FI ) / 2 ) / 2 ) ;
[]REAL d = ( 1, n4, ( n + 1 ) / 2, n + 1 - n4, n );
[ 1 : 5 ]REAL sum_array;
FOR e TO 5 DO
INT fl = ENTIER d[ e ];
INT ce = IF fl < d[ e ] THEN 1 + fl ELSE fl FI;
sum_array[ e ] := 0.5 * ( x[ fl ] + x[ ce ] )
OD;
sum_array
END # five num # ;
SHOW fivenum( ( 36, 40, 7, 39, 41, 15 ) );
print( ( newline ) );
SHOW fivenum( ( 15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43 ) );
print( ( newline ) );
SHOW fivenum( ( 0.14082834, 0.09748790, 1.73131507, 0.87636009
, -1.95059594, 0.73438555, -0.03035726, 1.46675970
, -0.74621349, -0.72588772, 0.63905160, 0.61501527
, -0.98983780, -1.00447874, -0.62759469, 0.66206163
, 1.04312009, -0.10305385, 0.75775634, 0.32566578
)
)
END
- Output:
7.00000000 15.00000000 37.50000000 40.00000000 41.00000000 6.00000000 25.50000000 40.00000000 42.50000000 49.00000000 -1.95059594 -0.67674120 0.23324706 0.74607095 1.73131507
AppleScript
use AppleScript version "2.4" -- Mac OS X 10.10. (Yosemite) or later.
use framework "Foundation"
on fivenum(listOfNumbers, l, r)
script o
property lst : missing value
on medianFromRange(l, r)
set m1 to (l + r) div 2
set m2 to m1 + (l + r) mod 2
set median to my lst's item m1
if (m2 > m1) then set median to (median + (my lst's item m2)) / 2
return {median, m1, m2}
end medianFromRange
end script
if ((listOfNumbers is {}) or (r - l < 0)) then return missing value
set o's lst to current application's class "NSMutableArray"'s arrayWithArray:(listOfNumbers)
tell o's lst to sortUsingSelector:("compare:")
set o's lst to o's lst as list
set {median, m1, m2} to o's medianFromRange(l, r)
set {lowerQuartile} to o's medianFromRange(l, m1)
set {upperQuartile} to o's medianFromRange(m2, r)
return {o's lst's beginning, lowerQuartile, median, upperQuartile, o's lst's end}
end fivenum
-- Test code:
set x to {15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43}
set y to {36, 40, 7, 39, 41, 15}
set z to {0.14082834, 0.0974879, 1.73131507, 0.87636009, -1.95059594, 0.73438555, -0.03035726, 1.4667597, -0.74621349, -0.72588772, ¬
0.6390516, 0.61501527, -0.9898378, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578}
return {fivenum(x, 1, count x), fivenum(y, 1, count y), fivenum(z, 1, count z)}
- Output:
{{6, 25.5, 40, 42.5, 49}, {7, 15, 37.5, 40, 41}, {-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507}}
Arturo
fivenum: function [lst][
lst: sort lst
m: (size lst)/2
lowerEnd: (odd? size lst)? -> m -> m-1
return @[
first lst
median slice lst 0 lowerEnd
median slice lst 0 dec size lst
median slice lst m dec size lst
last lst
]
]
lists: @[
@[15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0],
@[36.0, 40.0, 7.0, 39.0, 41.0, 15.0],
@[0.14082834, 0.09748790, 1.73131507, 0.87636009,0-1.95059594,
0.73438555,0-0.03035726, 1.46675970,0-0.74621349,0-0.72588772,
0.63905160, 0.61501527,0-0.98983780,0-1.00447874,0-0.62759469,
0.66206163, 1.04312009,0-0.10305385, 0.75775634, 0.32566578]
]
loop lists 'l [
print [l "->"]
print [fivenum l]
print ""
]
- Output:
[15.0 6.0 42.0 41.0 7.0 36.0 49.0 40.0 39.0 47.0 43.0] -> [6.0 25.5 40.0 42.5 49.0] [36.0 40.0 7.0 39.0 41.0 15.0] -> [7.0 15.0 37.5 40.0 41.0] [0.14082834 0.0974879 1.73131507 0.87636009 -1.95059594 0.7343855500000001 -0.03035726 1.4667597 -0.74621349 -0.72588772 0.6390516000000001 0.61501527 -0.9898378 -1.00447874 -0.62759469 0.66206163 1.04312009 -0.10305385 0.75775634 0.32566578] -> [-1.95059594 -0.676741205 0.23324706 0.746070945 1.73131507]
BASIC
FreeBASIC
#define floor(x) ((x*2.0-0.5) Shr 1)
Sub rapidSort (array()As Single, l As Integer, r As Integer)
Dim As Integer n, wert, nptr, rep
Dim As Single arr, LoVal = array(l), HiVal = array(r)
For n = l To r
If LoVal > array(n) Then LoVal = array(n)
If HiVal < array(n) Then HiVal = array(n)
Next n
Redim SortArray(LoVal To HiVal) As Single
For n = l To r
wert = array(n)
SortArray(wert) += 1
Next n
nptr = l-1
For arr = LoVal To HiVal
rep = SortArray(arr)
For n = 1 To rep
nptr += 1
array(nptr) = arr
Next n
Next arr
Erase SortArray
End Sub
Function median(tbl() As Single, lo As Integer, hi As Integer) As Single
Dim As Integer l = hi-lo+1
Dim As Integer m = lo+floor(l/2)
If l Mod 2 = 1 Then Return tbl(m)
Return (tbl(m-1)+tbl(m))/2
End Function
Sub fivenum(tbl() As Single)
rapidSort(tbl(), Lbound(tbl), Ubound(tbl))
Dim As Integer l = Ubound(tbl)
Dim As Single m = floor(l/2) + (l Mod 2)
Dim As Single r1,r2,r3,r4,r5
r1 = tbl(1)
r2 = median(tbl(),1,m)
r3 = median(tbl(),1,l)
r4 = median(tbl(),m+1,l)
r5 = tbl(l)
Print "[" & r1; ","; r2; ","; r3; ","; r4; ", "; r5 & "]"
End Sub
Dim As Single x1(1 To ...) = {15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43}
Dim As Single x2(1 To ...) = {36, 40, 7, 39, 41, 15}
Dim As Single x3(1 To ...) = {_
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, _
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772, _
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469, _
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578}
fivenum(x1())
fivenum(x2())
fivenum(x3())
Sleep
- Output:
[6, 25.5, 40, 43, 49] [7, 15, 37.5, 40, 41] [-1.950596,-0.950596, 0.04940403, 1.049404, 0.3256658]
VBA
Uses Quicksort.
Option Base 1
Private Function median(tbl As Variant, lo As Integer, hi As Integer)
Dim l As Integer: l = hi - lo + 1
Dim m As Integer: m = lo + WorksheetFunction.Floor_Precise(l / 2)
If l Mod 2 = 1 Then
median = tbl(m)
Else
median = (tbl(m - 1) + tbl(m)) / 2
End if
End Function
Private Function fivenum(tbl As Variant) As Variant
Sort tbl, UBound(tbl)
Dim l As Integer: l = UBound(tbl)
Dim m As Integer: m = WorksheetFunction.Floor_Precise(l / 2) + l Mod 2
Dim r(5) As String
r(1) = CStr(tbl(1))
r(2) = CStr(median(tbl, 1, m))
r(3) = CStr(median(tbl, 1, l))
r(4) = CStr(median(tbl, m + 1, l))
r(5) = CStr(tbl(l))
fivenum = r
End Function
Public Sub main()
Dim x1 As Variant, x2 As Variant, x3 As Variant
x1 = [{15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43}]
x2 = [{36, 40, 7, 39, 41, 15}]
x3 = [{0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578}]
Debug.Print Join(fivenum(x1), " | ")
Debug.Print Join(fivenum(x2), " | ")
Debug.Print Join(fivenum(x3), " | ")
End Sub
- Output:
6 | 25,5 | 40 | 43 | 49 7 | 15 | 37,5 | 40 | 41 -1,95059594 | -0,676741205 | 0,23324706 | 0,746070945 | 1,73131507
Visual Basic .NET
Imports System.Runtime.CompilerServices
Imports System.Text
Module Module1
<Extension()>
Function AsString(Of T)(c As ICollection(Of T), Optional format As String = "{0}") As String
Dim sb As New StringBuilder("[")
Dim it = c.GetEnumerator()
If it.MoveNext() Then
sb.AppendFormat(format, it.Current)
End If
While it.MoveNext()
sb.Append(", ")
sb.AppendFormat(format, it.Current)
End While
Return sb.Append("]").ToString()
End Function
Function Median(x As Double(), start As Integer, endInclusive As Integer) As Double
Dim size = endInclusive - start + 1
If size <= 0 Then
Throw New ArgumentException("Array slice cannot be empty")
End If
Dim m = start + size \ 2
Return If(size Mod 2 = 1, x(m), (x(m - 1) + x(m)) / 2.0)
End Function
Function Fivenum(x As Double()) As Double()
For Each d In x
If Double.IsNaN(d) Then
Throw New ArgumentException("Unable to deal with arrays containing NaN")
End If
Next
Array.Sort(x)
Dim result(4) As Double
result(0) = x.First()
result(2) = Median(x, 0, x.Length - 1)
result(4) = x.Last()
Dim m = x.Length \ 2
Dim lowerEnd = If(x.Length Mod 2 = 1, m, m - 1)
result(1) = Median(x, 0, lowerEnd)
result(3) = Median(x, m, x.Length - 1)
Return result
End Function
Sub Main()
Dim x1 = {
New Double() {15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0},
New Double() {36.0, 40.0, 7.0, 39.0, 41.0, 15.0},
New Double() {
0.14082834, 0.0974879, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.4667597, -0.74621349, -0.72588772, 0.6390516, 0.61501527,
-0.9898378, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578
}
}
For Each x In x1
Dim result = Fivenum(x)
Console.WriteLine(result.AsString("{0:F8}"))
Next
End Sub
End Module
- Output:
[6.00000000, 25.50000000, 40.00000000, 42.50000000, 49.00000000] [7.00000000, 15.00000000, 37.50000000, 40.00000000, 41.00000000] [-1.95059594, -0.67674121, 0.23324706, 0.74607095, 1.73131507]
C
#include <stdio.h>
#include <stdlib.h>
double median(double *x, int start, int end_inclusive) {
int size = end_inclusive - start + 1;
if (size <= 0) {
printf("Array slice cannot be empty\n");
exit(1);
}
int m = start + size / 2;
if (size % 2) return x[m];
return (x[m - 1] + x[m]) / 2.0;
}
int compare (const void *a, const void *b) {
double aa = *(double*)a;
double bb = *(double*)b;
if (aa > bb) return 1;
if (aa < bb) return -1;
return 0;
}
int fivenum(double *x, double *result, int x_len) {
int i, m, lower_end;
for (i = 0; i < x_len; i++) {
if (x[i] != x[i]) {
printf("Unable to deal with arrays containing NaN\n\n");
return 1;
}
}
qsort(x, x_len, sizeof(double), compare);
result[0] = x[0];
result[2] = median(x, 0, x_len - 1);
result[4] = x[x_len - 1];
m = x_len / 2;
lower_end = (x_len % 2) ? m : m - 1;
result[1] = median(x, 0, lower_end);
result[3] = median(x, m, x_len - 1);
return 0;
}
int show(double *result, int places) {
int i;
char f[7];
sprintf(f, "%%.%dlf", places);
printf("[");
for (i = 0; i < 5; i++) {
printf(f, result[i]);
if (i < 4) printf(", ");
}
printf("]\n\n");
}
int main() {
double result[5];
double x1[11] = {15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0};
if (!fivenum(x1, result, 11)) show(result, 1);
double x2[6] = {36.0, 40.0, 7.0, 39.0, 41.0, 15.0};
if (!fivenum(x2, result, 6)) show(result, 1);
double x3[20] = {
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527,
-0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578
};
if (!fivenum(x3, result, 20)) show(result, 9);
return 0;
}
- Output:
[6.0, 25.5, 40.0, 42.5, 49.0] [7.0, 15.0, 37.5, 40.0, 41.0] [-1.950595940, -0.676741205, 0.233247060, 0.746070945, 1.731315070]
C#
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace Fivenum {
public static class Helper {
public static string AsString<T>(this ICollection<T> c, string format = "{0}") {
StringBuilder sb = new StringBuilder("[");
int count = 0;
foreach (var t in c) {
if (count++ > 0) {
sb.Append(", ");
}
sb.AppendFormat(format, t);
}
return sb.Append("]").ToString();
}
}
class Program {
static double Median(double[] x, int start, int endInclusive) {
int size = endInclusive - start + 1;
if (size <= 0) throw new ArgumentException("Array slice cannot be empty");
int m = start + size / 2;
return (size % 2 == 1) ? x[m] : (x[m - 1] + x[m]) / 2.0;
}
static double[] Fivenum(double[] x) {
foreach (var d in x) {
if (Double.IsNaN(d)) {
throw new ArgumentException("Unable to deal with arrays containing NaN");
}
}
double[] result = new double[5];
Array.Sort(x);
result[0] = x.First();
result[2] = Median(x, 0, x.Length - 1);
result[4] = x.Last();
int m = x.Length / 2;
int lowerEnd = (x.Length % 2 == 1) ? m : m - 1;
result[1] = Median(x, 0, lowerEnd);
result[3] = Median(x, m, x.Length - 1);
return result;
}
static void Main(string[] args) {
double[][] x1 = new double[][]{
new double[]{ 15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0},
new double[]{ 36.0, 40.0, 7.0, 39.0, 41.0, 15.0},
new double[]{
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527,
-0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578
},
};
foreach(var x in x1) {
var result = Fivenum(x);
Console.WriteLine(result.AsString("{0:F8}"));
}
}
}
}
- Output:
[6.00000000, 25.50000000, 40.00000000, 42.50000000, 49.00000000] [7.00000000, 15.00000000, 37.50000000, 40.00000000, 41.00000000] [-1.95059594, -0.67674121, 0.23324706, 0.74607095, 1.73131507]
C++
#include <algorithm>
#include <iostream>
#include <ostream>
#include <vector>
/////////////////////////////////////////////////////////////////////////////
// The following is taken from https://cpplove.blogspot.com/2012/07/printing-tuples.html
// Define a type which holds an unsigned integer value
template<std::size_t> struct int_ {};
template <class Tuple, size_t Pos>
std::ostream& print_tuple(std::ostream& out, const Tuple& t, int_<Pos>) {
out << std::get< std::tuple_size<Tuple>::value - Pos >(t) << ", ";
return print_tuple(out, t, int_<Pos - 1>());
}
template <class Tuple>
std::ostream& print_tuple(std::ostream& out, const Tuple& t, int_<1>) {
return out << std::get<std::tuple_size<Tuple>::value - 1>(t);
}
template <class... Args>
std::ostream& operator<<(std::ostream& out, const std::tuple<Args...>& t) {
out << '(';
print_tuple(out, t, int_<sizeof...(Args)>());
return out << ')';
}
/////////////////////////////////////////////////////////////////////////////
template <class RI>
double median(RI beg, RI end) {
if (beg == end) throw std::runtime_error("Range cannot be empty");
auto len = end - beg;
auto m = len / 2;
if (len % 2 == 1) {
return *(beg + m);
}
return (beg[m - 1] + beg[m]) / 2.0;
}
template <class C>
auto fivenum(C& c) {
std::sort(c.begin(), c.end());
auto cbeg = c.cbegin();
auto cend = c.cend();
auto len = cend - cbeg;
auto m = len / 2;
auto lower = (len % 2 == 1) ? m : m - 1;
double r2 = median(cbeg, cbeg + lower + 1);
double r3 = median(cbeg, cend);
double r4 = median(cbeg + lower + 1, cend);
return std::make_tuple(*cbeg, r2, r3, r4, *(cend - 1));
}
int main() {
using namespace std;
vector<vector<double>> cs = {
{ 15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0 },
{ 36.0, 40.0, 7.0, 39.0, 41.0, 15.0 },
{
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527,
-0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578
}
};
for (auto & c : cs) {
cout << fivenum(c) << endl;
}
return 0;
}
- Output:
(6, 25.5, 40, 43, 49) (7, 15, 37.5, 40, 41) (-1.9506, -0.676741, 0.233247, 0.746071, 1.73132)
D
import std.algorithm;
import std.exception;
import std.math;
import std.stdio;
double median(double[] x) {
enforce(x.length >= 0, "Array slice cannot be empty");
int m = x.length / 2;
if (x.length % 2 == 1) {
return x[m];
}
return (x[m-1] + x[m]) / 2.0;
}
double[] fivenum(double[] x) {
foreach (d; x) {
enforce(!d.isNaN, "Unable to deal with arrays containing NaN");
}
double[] result;
result.length = 5;
x.sort;
result[0] = x[0];
result[2] = median(x);
result[4] = x[$-1];
int m = x.length / 2;
int lower = (x.length % 2 == 1) ? m : m - 1;
result[1] = median(x[0..lower+1]);
result[3] = median(x[lower+1..$]);
return result;
}
void main() {
double[][] x1 = [
[15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0],
[36.0, 40.0, 7.0, 39.0, 41.0, 15.0],
[
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527,
-0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578
]
];
foreach(x; x1) {
writeln(fivenum(x));
}
}
- Output:
[6, 25.5, 40, 43, 49] [7, 15, 37.5, 40, 41] [-1.9506, -0.676741, 0.233247, 0.746071, 1.73132]
Delphi
program Fivenum;
{$APPTYPE CONSOLE}
uses
System.SysUtils,
System.Generics.Collections;
function Median(x: TArray<Double>; start, endInclusive: Integer): Double;
var
size, m: Integer;
begin
size := endInclusive - start + 1;
if (size <= 0) then
raise EArgumentException.Create('Array slice cannot be empty');
m := start + size div 2;
if (odd(size)) then
Result := x[m]
else
Result := (x[m - 1] + x[m]) / 2;
end;
function FiveNumber(x: TArray<Double>): TArray<Double>;
var
m, lowerEnd: Integer;
begin
SetLength(result, 5);
TArray.Sort<double>(x);
result[0] := x[0];
result[2] := median(x, 0, length(x) - 1);
result[4] := x[length(x) - 1];
m := length(x) div 2;
if odd(length(x)) then
lowerEnd := m
else
lowerEnd := m - 1;
result[1] := median(x, 0, lowerEnd);
result[3] := median(x, m, length(x) - 1);
end;
function ArrayToString(x: TArray<double>): string;
var
i: Integer;
begin
Result := '[';
for i := 0 to High(x) do
begin
if i > 0 then
Result := Result + ',';
Result := Result + format('%.4f', [x[i]]);
end;
Result := Result + ']';
end;
var
xl: array of TArray<double> = [[15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0,
39.0, 47.0, 43.0], [36.0, 40.0, 7.0, 39.0, 41.0, 15.0], [0.14082834,
0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555, -0.03035726,
1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527, -0.98983780, -
1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634,
0.32566578]];
x: TArray<double>;
begin
for x in xl do
writeln(ArrayToString(FiveNumber(x)), #10);
readln;
end.
- Output:
[6,0000,25,5000,40,0000,42,5000,49,0000] [7,0000,15,0000,37,5000,40,0000,41,0000] [-1,9506,-0,6767,0,2332,0,7461,1,7313]
EasyLang
func median t[] low high .
l = high - low + 1
m = low + l div 2
if l mod 2 = 1
return t[m]
.
return (t[m - 1] + t[m]) / 2
.
proc sort . d[] .
for i = 1 to len d[] - 1
for j = i + 1 to len d[]
if d[j] < d[i]
swap d[j] d[i]
.
.
.
.
func[] fivenum t[] .
sort t[]
l = len t[]
m = l div 2 + l mod 2
r1 = t[1]
r2 = median t[] 1 m
r3 = median t[] 1 l
r4 = median t[] (m + 1) l
r5 = t[l]
return [ r1 r2 r3 r4 r5 ]
.
print fivenum [ 0.14082834 0.09748790 1.73131507 0.87636009 -1.95059594 0.73438555 -0.03035726 1.46675970 -0.74621349 -0.72588772 0.63905160 0.61501527 -0.98983780 -1.00447874 -0.62759469 0.66206163 1.04312009 -0.10305385 0.75775634 0.32566578 ]
print fivenum [ 36 40 7 39 41 15 ]
- Output:
[ -1.95 -0.68 0.23 0.75 1.73 ] [ 7 15 37.50 40 41 ]
EMal
type Fivenum
int ILLEGAL_ARGUMENT = 0
fun median = real by List x, int start, int endInclusive
int size = endInclusive - start + 1
if size <= 0 do Event.error(ILLEGAL_ARGUMENT, "Array slice cannot be empty").raise() end
int m = start + size / 2
return when(size % 2 == 1, x[m], (x[m - 1] + x[m]) / 2.0)
end
fun fivenum = List by List x
List result = real[].with(5)
x.order()
result[0] = x[0]
result[2] = median(x, 0, x.length - 1)
result[4] = x[x.length - 1]
int m = x.length / 2
int lowerEnd = when(x.length % 2 == 1, m, m - 1)
result[1] = median(x, 0, lowerEnd)
result[3] = median(x, m, x.length - 1)
return result
end
List lists = List[
real[15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0],
real[36.0, 40.0, 7.0, 39.0, 41.0, 15.0],
real[ 0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160,
0.61501527, -0.98983780, -1.00447874, -0.62759469, 0.66206163,
1.04312009, -0.10305385, 0.75775634, 0.32566578] ]
for each List list in lists
writeLine(text!fivenum(list))
end
- Output:
[6.0,25.5,40.0,42.5,49.0] [7.0,15.0,37.5,40.0,41.0] [-1.95059594,-0.676741205,0.23324706,0.746070945,1.73131507]
F#
open System
// Take from https://stackoverflow.com/a/1175123
let rec last = function
| hd :: [] -> hd
| _ :: tl -> last tl
| _ -> failwith "Empty list."
let median x =
for e in x do
if Double.IsNaN(e) then failwith "unable to deal with lists containing NaN"
let size = List.length(x)
if size <= 0 then failwith "Array slice cannot be empty"
let m = size / 2
if size % 2 = 1 then x.[m]
else (x.[m - 1] + x.[m]) / 2.0
let fivenum x =
let x2 = List.sort(x)
let m = List.length(x2) / 2
let lowerEnd = if List.length(x2) % 2 = 1 then m else m - 1
[List.head x2, median x2.[..lowerEnd], median x2, median x2.[m..], last x2]
[<EntryPoint>]
let main _ =
let x1 = [
[15.0; 6.0; 42.0; 41.0; 7.0; 36.0; 49.0; 40.0; 39.0; 47.0; 43.0];
[36.0; 40.0; 7.0; 39.0; 41.0; 15.0];
[
0.14082834; 0.09748790; 1.73131507; 0.87636009; -1.95059594;
0.73438555; -0.03035726; 1.46675970; -0.74621349; -0.72588772;
0.63905160; 0.61501527; -0.98983780; -1.00447874; -0.62759469;
0.66206163; 1.04312009; -0.10305385; 0.75775634; 0.32566578
]
]
for a in x1 do
let y = fivenum a
Console.WriteLine("{0}", y);
0 // return an integer exit code
- Output:
[(6, 25.5, 40, 42.5, 49)] [(7, 15, 37.5, 40, 41)] [(-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507)]
Factor
USING: combinators combinators.smart kernel math
math.statistics prettyprint sequences sorting ;
IN: rosetta-code.five-number
<PRIVATE
: bisect ( seq -- lower upper )
dup length even? [ halves ]
[ dup midpoint@ 1 + [ head ] [ tail* ] 2bi ] if ;
: (fivenum) ( seq -- summary )
natural-sort {
[ infimum ]
[ bisect drop median ]
[ median ]
[ bisect nip median ]
[ supremum ]
} cleave>array ;
PRIVATE>
ERROR: fivenum-empty data ;
ERROR: fivenum-nan data ;
: fivenum ( seq -- summary )
{
{ [ dup empty? ] [ fivenum-empty ] }
{ [ dup [ fp-nan? ] any? ] [ fivenum-nan ] }
[ (fivenum) ]
} cond ;
: fivenum-demo ( -- )
{ 15 6 42 41 7 36 49 40 39 47 43 }
{ 36 40 7 39 41 15 }
{ 0.14082834 0.09748790 1.73131507 0.87636009
-1.95059594 0.73438555 -0.03035726 1.46675970
-0.74621349 -0.72588772 0.63905160 0.61501527
-0.98983780 -1.00447874 -0.62759469 0.66206163
1.04312009 -0.10305385 0.75775634 0.32566578 }
[ fivenum . ] tri@ ;
MAIN: fivenum-demo
- Output:
{ 6 25+1/2 40 42+1/2 49 } { 7 15 37+1/2 40 41 } { -1.95059594 -0.676741205 0.23324706 0.746070945 1.73131507 }
Go
package main
import (
"fmt"
"math"
"sort"
)
func fivenum(a []float64) (n5 [5]float64) {
sort.Float64s(a)
n := float64(len(a))
n4 := float64((len(a)+3)/2) / 2
d := []float64{1, n4, (n + 1) / 2, n + 1 - n4, n}
for e, de := range d {
floor := int(de - 1)
ceil := int(math.Ceil(de - 1))
n5[e] = .5 * (a[floor] + a[ceil])
}
return
}
var (
x1 = []float64{36, 40, 7, 39, 41, 15}
x2 = []float64{15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43}
x3 = []float64{
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578,
}
)
func main() {
fmt.Println(fivenum(x1))
fmt.Println(fivenum(x2))
fmt.Println(fivenum(x3))
}
- Output:
[7 15 37.5 40 41] [6 25.5 40 42.5 49] [-1.95059594 -0.676741205 0.23324706 0.746070945 1.73131507]
Alternate:
This solution is aimed at handling larger data sets more efficiently. It replaces the O(n log n) sort with O(n) quickselect. It also does not attempt to reproduce the R result exactly, to average values to get a median of an even number of data values, or otherwise estimate quantiles. The quickselect here leaves the input partitioned around the selected value, which allows another small optimization: The first quickselect call partitions the full input around the median. The second call, to get the first quartile, thus only has to process the partition up to the median. The third call, to get the minimum, only has to process the partition up to the first quartile. The 3rd quartile and maximum are obtained similarly.
package main
import (
"fmt"
"math/rand"
)
func fivenum(a []float64) (n [5]float64) {
last := len(a) - 1
m := last / 2
n[2] = qsel(a, m)
q1 := len(a) / 4
n[1] = qsel(a[:m], q1)
n[0] = qsel(a[:q1], 0)
a = a[m:]
q3 := last - m - q1
n[3] = qsel(a, q3)
a = a[q3:]
n[4] = qsel(a, len(a)-1)
return
}
func qsel(a []float64, k int) float64 {
for len(a) > 1 {
px := rand.Intn(len(a))
pv := a[px]
last := len(a) - 1
a[px], a[last] = a[last], pv
px = 0
for i, v := range a[:last] {
if v < pv {
a[px], a[i] = v, a[px]
px++
}
}
a[px], a[last] = pv, a[px]
if px == k {
return pv
}
if k < px {
a = a[:px]
} else {
a = a[px+1:]
k -= px + 1
}
}
return a[0]
}
var (
x1 = []float64{36, 40, 7, 39, 41, 15}
x2 = []float64{15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43}
x3 = []float64{
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578,
}
)
func main() {
fmt.Println(fivenum(x1))
fmt.Println(fivenum(x2))
fmt.Println(fivenum(x3))
}
- Output:
[7 15 36 40 41] [6 15 40 43 49] [-1.95059594 -0.62759469 0.14082834 0.73438555 1.73131507]
Groovy
class Fivenum {
static double median(double[] x, int start, int endInclusive) {
int size = endInclusive - start + 1
if (size <= 0) {
throw new IllegalArgumentException("Array slice cannot be empty")
}
int m = start + (int) (size / 2)
return (size % 2 == 1) ? x[m] : (x[m - 1] + x[m]) / 2.0
}
static double[] fivenum(double[] x) {
for (Double d : x) {
if (d.isNaN()) {
throw new IllegalArgumentException("Unable to deal with arrays containing NaN")
}
}
double[] result = new double[5]
Arrays.sort(x)
result[0] = x[0]
result[2] = median(x, 0, x.length - 1)
result[4] = x[x.length - 1]
int m = (int) (x.length / 2)
int lowerEnd = (x.length % 2 == 1) ? m : m - 1
result[1] = median(x, 0, lowerEnd)
result[3] = median(x, m, x.length - 1)
return result
}
static void main(String[] args) {
double[][] xl = [
[15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0],
[36.0, 40.0, 7.0, 39.0, 41.0, 15.0],
[
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527,
-0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578
]
]
for (double[] x : xl) {
println("${fivenum(x)}")
}
}
}
- Output:
[6.0, 25.5, 40.0, 42.5, 49.0] [7.0, 15.0, 37.5, 40.0, 41.0] [-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507]
Haskell
import Data.List (sort)
fivenum :: [Double] -> [Double]
fivenum [] = []
fivenum xs
| l >= 5 =
fmap
( (/ 2)
. ( (+) . (!!) s
. floor
<*> (!!) s . ceiling
)
. pred
)
[1, q, succ l / 2, succ l - q, l]
| otherwise = s
where
l = realToFrac $ length xs
q = realToFrac (floor $ (l + 3) / 2) / 2
s = sort xs
main :: IO ()
main =
print $
fivenum
[ 0.14082834,
0.09748790,
1.73131507,
0.87636009,
-1.95059594,
0.73438555,
-0.03035726,
1.46675970,
-0.74621349,
-0.72588772,
0.63905160,
0.61501527,
-0.98983780,
-1.00447874,
-0.62759469,
0.66206163,
1.04312009,
-0.10305385,
0.75775634,
0.32566578
]
- Output:
[-1.95059594,-0.676741205,0.23324706,0.746070945,1.73131507]
J
Solution
midpts=: (1 + #) <:@(] , -:@[ , -) -:@<.@-:@(3 + #) NB. mid points of y
quartiles=: -:@(+/)@((<. ,: >.)@midpts { /:~@]) NB. quartiles of y
fivenum=: <./ , quartiles , >./ NB. fivenum summary of y
Example Usage
test1=: 15 6 42 41 7 36 49 40 39 47 43
test2=: 36 40 7 39 41 15
test3=: , 0 ". ];._2 noun define
0.14082834 0.09748790 1.73131507 0.87636009 -1.95059594
0.73438555 -0.03035726 1.46675970 -0.74621349 -0.72588772
0.63905160 0.61501527 -0.98983780 -1.00447874 -0.62759469
0.66206163 1.04312009 -0.10305385 0.75775634 0.32566578
)
fivenum &> test1;test2;test3
6 25.5 40 42.5 49
7 15 37.5 40 41
_1.9506 _0.676741 0.233247 0.746071 1.73132
Java
import java.util.Arrays;
public class Fivenum {
static double median(double[] x, int start, int endInclusive) {
int size = endInclusive - start + 1;
if (size <= 0) throw new IllegalArgumentException("Array slice cannot be empty");
int m = start + size / 2;
return (size % 2 == 1) ? x[m] : (x[m - 1] + x[m]) / 2.0;
}
static double[] fivenum(double[] x) {
for (Double d : x) {
if (d.isNaN())
throw new IllegalArgumentException("Unable to deal with arrays containing NaN");
}
double[] result = new double[5];
Arrays.sort(x);
result[0] = x[0];
result[2] = median(x, 0, x.length - 1);
result[4] = x[x.length - 1];
int m = x.length / 2;
int lowerEnd = (x.length % 2 == 1) ? m : m - 1;
result[1] = median(x, 0, lowerEnd);
result[3] = median(x, m, x.length - 1);
return result;
}
public static void main(String[] args) {
double xl[][] = {
{15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0},
{36.0, 40.0, 7.0, 39.0, 41.0, 15.0},
{
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527,
-0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578
}
};
for (double[] x : xl) System.out.printf("%s\n\n", Arrays.toString(fivenum(x)));
}
}
- Output:
[6.0, 25.5, 40.0, 42.5, 49.0] [7.0, 15.0, 37.5, 40.0, 41.0] [-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507]
JavaScript
function median(arr) {
let mid = Math.floor(arr.length / 2);
return (arr.length % 2 == 0) ? (arr[mid-1] + arr[mid]) / 2 : arr[mid];
}
Array.prototype.fiveNums = function() {
this.sort(function(a, b) { return a - b} );
let mid = Math.floor(this.length / 2),
loQ = (this.length % 2 == 0) ? this.slice(0, mid) : this.slice(0, mid+1),
hiQ = this.slice(mid);
return [ this[0],
median(loQ),
median(this),
median(hiQ),
this[this.length-1] ];
}
// testing
let test = [15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43];
console.log( test.fiveNums() );
test = [0, 0, 1, 2, 63, 61, 27, 13];
console.log( test.fiveNums() );
test = [ 0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578];
console.log( test.fiveNums() );
- Output:
> Array(5) [ 6, 25.5, 40, 42.5, 49 ] > Array(5) [ 0, 0.5, 7.5, 44, 63 ] > Array(5) [ -1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507 ]
jq
def fivenum:
def mid($i):
.[($i - 1)|floor] as $floor
| .[($i - 1)|ceil] as $ceil
| if $ceil == $floor then $ceil else ($floor+$ceil)/2 end;
sort
| length as $n
| (($n + 3) / 2 | floor / 2) as $n4
| [mid(1, $n4, (($n + 1)/2), $n + 1 - $n4, $n)] ;
def x1: [36, 40, 7, 39, 41, 15];
def x2: [15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43];
def x3: [
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578
];
[x1, x2, x3][] | fivenum
- Output:
As for #Wren.
Julia
function mediansorted(x::AbstractVector{T}, i::Integer, l::Integer)::T where T
len = l - i + 1
len > zero(len) || throw(ArgumentError("Array slice cannot be empty."))
mid = i + len ÷ 2
return isodd(len) ? x[mid] : (x[mid-1] + x[mid]) / 2
end
function fivenum(x::AbstractVector{T}) where T<:AbstractFloat
r = Vector{T}(5)
xs = sort(x)
mid::Int = length(xs) ÷ 2
lowerend::Int = isodd(length(xs)) ? mid : mid - 1
r[1] = xs[1]
r[2] = mediansorted(xs, 1, lowerend)
r[3] = mediansorted(xs, 1, endof(xs))
r[4] = mediansorted(xs, mid, endof(xs))
r[end] = xs[end]
return r
end
for v in ([15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0],
[36.0, 40.0, 7.0, 39.0, 41.0, 15.0],
[0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527,
-0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578])
println("# ", v, "\n -> ", fivenum(v))
end
- Output:
# [15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0] -> [6.0, 15.0, 40.0, 42.0, 49.0] # [36.0, 40.0, 7.0, 39.0, 41.0, 15.0] -> [7.0, 11.0, 37.5, 39.5, 41.0] # [0.140828, 0.0974879, 1.73132, 0.87636, -1.9506, 0.734386, -0.0303573, 1.46676, -0.746213, -0.725888, 0.639052, 0.615015, -0.989838, -1.00448, -0.627595,0.662062, 1.04312, -0.103054, 0.757756, 0.325666] -> [-1.9506, -0.725888, 0.233247, 0.734386, 1.73132]
Kotlin
The following uses Tukey's method for calculating the lower and upper quartiles (or 'hinges') which is what the R function, fivenum, appears to use.
As arrays containing NaNs and nulls cannot really be dealt with in a sensible fashion in Kotlin, they've been excluded altogether.
// version 1.2.21
fun median(x: DoubleArray, start: Int, endInclusive: Int): Double {
val size = endInclusive - start + 1
require (size > 0) { "Array slice cannot be empty" }
val m = start + size / 2
return if (size % 2 == 1) x[m] else (x[m - 1] + x[m]) / 2.0
}
fun fivenum(x: DoubleArray): DoubleArray {
require(x.none { it.isNaN() }) { "Unable to deal with arrays containing NaN" }
val result = DoubleArray(5)
x.sort()
result[0] = x[0]
result[2] = median(x, 0, x.size - 1)
result[4] = x[x.lastIndex]
val m = x.size / 2
var lowerEnd = if (x.size % 2 == 1) m else m - 1
result[1] = median(x, 0, lowerEnd)
result[3] = median(x, m, x.size - 1)
return result
}
fun main(args: Array<String>) {
var xl = listOf(
doubleArrayOf(15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0),
doubleArrayOf(36.0, 40.0, 7.0, 39.0, 41.0, 15.0),
doubleArrayOf(
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527,
-0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578
)
)
xl.forEach { println("${fivenum(it).asList()}\n") }
}
- Output:
[6.0, 25.5, 40.0, 42.5, 49.0] [7.0, 15.0, 37.5, 40.0, 41.0] [-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507]
Lua
function slice(tbl, low, high)
local copy = {}
for i=low or 1, high or #tbl do
copy[#copy+1] = tbl[i]
end
return copy
end
-- assumes that tbl is sorted
function median(tbl)
m = math.floor(#tbl / 2) + 1
if #tbl % 2 == 1 then
return tbl[m]
end
return (tbl[m-1] + tbl[m]) / 2
end
function fivenum(tbl)
table.sort(tbl)
r0 = tbl[1]
r2 = median(tbl)
r4 = tbl[#tbl]
m = math.floor(#tbl / 2)
if #tbl % 2 == 1 then
low = m
else
low = m - 1
end
r1 = median(slice(tbl, nil, low+1))
r3 = median(slice(tbl, low+2, nil))
return r0, r1, r2, r3, r4
end
x1 = {
{15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0},
{36.0, 40.0, 7.0, 39.0, 41.0, 15.0},
{
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527,
-0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578
}
}
for i,x in ipairs(x1) do
print(fivenum(x))
end
- Output:
6 25.5 40 43 49 7 15 37.5 40 41 -1.95059594 -0.676741205 0.23324706 0.746070945 1.73131507
MATLAB / Octave
function r = fivenum(x)
r = quantile(x,[0:4]/4);
end;
- Output:
fivenum([15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43]) ans = 6.0000 20.2500 40.0000 42.7500 49.0000 fivenum([36, 40, 7, 39, 41, 15]) ans = 7.0000 15.0000 37.5000 40.0000 41.0000 fivenum([0.14082834, 0.0974879, 1.73131507, 0.87636009, -1.95059594, 0.73438555, -0.03035726, 1.4667597, -0.74621349, -0.72588772, 0.6390516, 0.61501527, -0.9898378, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578]) ans = -1.95060 -0.67674 0.23325 0.74607 1.73132
Mathematica / Wolfram Language
ClearAll[FiveNum]
FiveNum[x_List] := Quantile[x, Range[0, 1, 1/4]]
FiveNum[RandomVariate[NormalDistribution[], 10000]]
- Output:
{-3.70325, -0.686977, -0.0087185, 0.652979, 3.67416}
Modula-2
MODULE Fivenum;
FROM FormatString IMPORT FormatString;
FROM LongStr IMPORT RealToStr;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
PROCEDURE WriteLongReal(v : LONGREAL);
VAR buf : ARRAY[0..63] OF CHAR;
BEGIN
RealToStr(v, buf);
WriteString(buf)
END WriteLongReal;
PROCEDURE WriteArray(arr : ARRAY OF LONGREAL);
VAR i : CARDINAL;
BEGIN
WriteString("[");
FOR i:=0 TO HIGH(arr) DO
WriteLongReal(arr[i]);
WriteString(", ")
END;
WriteString("]")
END WriteArray;
(* Assumes that the input is sorted *)
PROCEDURE Median(x : ARRAY OF LONGREAL; beg,end : CARDINAL) : LONGREAL;
VAR m,cnt : CARDINAL;
BEGIN
cnt := end - beg + 1;
m := cnt / 2;
IF cnt MOD 2 = 1 THEN
RETURN x[beg + m]
END;
RETURN (x[beg + m - 1] + x[beg + m]) / 2.0
END Median;
TYPE Summary = ARRAY[0..4] OF LONGREAL;
PROCEDURE Fivenum(input : ARRAY OF LONGREAL) : Summary;
PROCEDURE Sort();
VAR
i,j : CARDINAL;
t : LONGREAL;
BEGIN
FOR i:=0 TO HIGH(input) DO
FOR j:=0 TO HIGH(input) DO
IF (i#j) AND (input[i] < input[j]) THEN
t := input[i];
input[i] := input[j];
input[j] := t
END
END
END
END Sort;
VAR
result : Summary;
size,m,low : CARDINAL;
BEGIN
size := HIGH(input);
Sort();
result[0] := input[0];
result[2] := Median(input,0,size);
result[4] := input[size];
m := size / 2;
IF (size MOD 2 = 1) THEN
low := m
ELSE
low := m - 1
END;
result[1] := Median(input, 0, m);
result[3] := Median(input, m+1, size);
RETURN result;
END Fivenum;
TYPE
A6 = ARRAY[0..5] OF LONGREAL;
A11 = ARRAY[0..10] OF LONGREAL;
A20 = ARRAY[0..19] OF LONGREAL;
VAR
a6 : A6;
a11 : A11;
a20 : A20;
BEGIN
a11 := A11{15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0};
WriteArray(Fivenum(a11));
WriteLn;
WriteLn;
a6 := A6{36.0, 40.0, 7.0, 39.0, 41.0, 15.0};
WriteArray(Fivenum(a6));
WriteLn;
WriteLn;
a20 := A20{
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527,
-0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578
};
WriteArray(Fivenum(a20));
WriteLn;
ReadChar
END Fivenum.
- Output:
[6.000000000000000, 25.499999999999900, 40.000000000000000, 42.499999999999900, 49.000000000000000, ] [7.000000000000000, 15.000000000000000, 35.500000000000000, 40.000000000000000, 40.499999999999900, ] [-1.950594000000000, -0.676741205000000, 0.233247060000000, 0.746070945000000, 1.731315070000000, ]
Nim
import algorithm
type FiveNum = array[5, float]
template isOdd(n: SomeInteger): bool = (n and 1) != 0
func median(x: openArray[float]; startIndex, endIndex: Natural): float =
let size = endIndex - startIndex + 1
assert(size > 0, "array slice cannot be empty")
let m = startIndex + size div 2
result = if size.isOdd: x[m] else: (x[m-1] + x[m]) / 2
func fivenum(x: openArray[float]): FiveNum =
let x = sorted(x)
let m = x.len div 2
let lowerEnd = if x.len.isOdd: m else: m - 1
result[0] = x[0]
result[1] = median(x, 0, lowerEnd)
result[2] = median(x, 0, x.high)
result[3] = median(x, m, x.high)
result[4] = x[^1]
const Lists = [@[15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0],
@[36.0, 40.0, 7.0, 39.0, 41.0, 15.0],
@[0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578]]
for list in Lists:
echo ""
echo list
echo " → ", list.fivenum
- Output:
@[15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0] → [6.0, 25.5, 40.0, 42.5, 49.0] @[36.0, 40.0, 7.0, 39.0, 41.0, 15.0] → [7.0, 15.0, 37.5, 40.0, 41.0] @[0.14082834, 0.0974879, 1.73131507, 0.87636009, -1.95059594, 0.7343855500000001, -0.03035726, 1.4667597, -0.74621349, -0.72588772, 0.6390516000000001, 0.61501527, -0.9898378, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578] → [-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507]
Perl
use POSIX qw(ceil floor);
sub fivenum {
my(@array) = @_;
my $n = scalar @array;
die "No values were entered into fivenum!" if $n == 0;
my @x = sort {$a <=> $b} @array;
my $n4 = floor(($n+3)/2)/2;
my @d = (1, $n4, ($n +1)/2, $n+1-$n4, $n);
my @sum_array;
for my $e (0..4) {
my $floor = floor($d[$e]-1);
my $ceil = ceil($d[$e]-1);
push @sum_array, (0.5 * ($x[$floor] + $x[$ceil]));
}
return @sum_array;
}
my @x = (15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43);
my @tukey = fivenum(\@x);
say join (',', @tukey);
#----------
@x = (36, 40, 7, 39, 41, 15),
@tukey = fivenum(\@x);
say join (',', @tukey);
#----------
@x = (0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578);
@tukey = fivenum(\@x);
say join (',', @tukey);
- Output:
6,25.5,40,42.5,49 7,15,37.5,40,41 -1.95059594,-0.676741205,0.23324706,0.746070945,1.73131507
Phix
with javascript_semantics function median(sequence tbl, integer lo, hi) integer l = hi-lo+1 integer m = lo+floor(l/2) if remainder(l,2)=1 then return tbl[m] end if return (tbl[m-1]+tbl[m])/2 end function function fivenum(sequence tbl) tbl = sort(deep_copy(tbl)) integer l = length(tbl), m = floor(l/2)+remainder(l,2) atom r1 = tbl[1], r2 = median(tbl,1,m), r3 = median(tbl,1,l), r4 = median(tbl,m+1,l), r5 = tbl[l] return {r1, r2, r3, r4, r5} end function constant x1 = {15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43}, x2 = {36, 40, 7, 39, 41, 15}, x3 = {0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578} pp(fivenum(x1)) pp(fivenum(x2)) pp(fivenum(x3))
- Output:
{6,25.5,40,43,49} {7,15,37.5,40,41} {-1.95059594,-0.676741205,0.23324706,0.746070945,1.73131507}
PicoLisp
(de median (Lst)
(let N (length Lst)
(if (bit? 1 N)
(get Lst (/ (inc N) 2))
(setq Lst (nth Lst (/ N 2)))
(/ (+ (car Lst) (cadr Lst)) 2) ) ) )
(de fivenum (Lst) # destructive
(let
(Len (length Lst)
M (/ Len 2)
S (sort Lst) )
(list
(format (car S) *Scl)
(format
(median (head (+ M (% Len 2)) S))
*Scl )
(format (median S) *Scl)
(format (median (tail M S)) *Scl)
(format (last S) *Scl) ) ) )
(scl 2)
(println (fivenum (36.0 40.0 7.0 39.0 41.0 15.0)))
(scl 8)
(println
(fivenum
(0.14082834 0.09748790 1.73131507 0.87636009 -1.95059594
0.73438555 -0.03035726 1.46675970 -0.74621349 -0.72588772
0.63905160 0.61501527 -0.98983780 -1.00447874 -0.62759469
0.66206163 1.04312009 -0.10305385 0.75775634 0.32566578 ) ) )
- Output:
("7.00" "15.00" "37.50" "40.00" "41.00") ("-1.95059594" "-0.67674120" "0.23324706" "0.74607094" "1.73131507")
Python
Python: Standard commands
Work with: Python 2
Work with: Python 3
from __future__ import division
import math
import sys
def fivenum(array):
n = len(array)
if n == 0:
print("you entered an empty array.")
sys.exit()
x = sorted(array)
n4 = math.floor((n+3.0)/2.0)/2.0
d = [1, n4, (n+1)/2, n+1-n4, n]
sum_array = []
for e in range(5):
floor = int(math.floor(d[e] - 1))
ceil = int(math.ceil(d[e] - 1))
sum_array.append(0.5 * (x[floor] + x[ceil]))
return sum_array
x = [0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555, -0.03035726, 1.46675970,
-0.74621349, -0.72588772, 0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469, 0.66206163,
1.04312009, -0.10305385, 0.75775634, 0.32566578]
y = fivenum(x)
print(y)
- Output:
[-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507]
Python: Pandas library
There are many ways to compute this kind of summary statistics (see wp:Percentile#Definitions). The Python Pandas library supports a range.
Pandas is a well known Python library. Its Dataframe.describe method produces summary stats from data.
(Though these 25% and 75% values do not correspond to the Fivenum Tukey quartile values specified in this task)
import pandas as pd
pd.DataFrame([1, 2, 3, 4, 5, 6]).describe()
- Output:
0 count 6.000000 mean 3.500000 std 1.870829 min 1.000000 25% 2.250000 50% 3.500000 75% 4.750000 max 6.000000
To get the fivenum values asked for, the pandas.DataFrame.quantile function can be used:
import pandas as pd
pd.DataFrame([1, 2, 3, 4, 5, 6]).quantile([.0, .25, .50, .75, 1.00], interpolation='nearest')
- Output:
0 0.00 1 0.25 2 0.50 3 0.75 5 1.00 6
The interpolation value supports more of the differing ways of calculation in use.
Python: Functional – without imports
Works with: Python 3
# fiveNums :: [Float] -> (Float, Float, Float, Float, Float)
def fiveNums(xs):
def median(xs):
lng = len(xs)
m = lng // 2
return xs[m] if (
0 != lng % 2
) else (xs[m - 1] + xs[m]) / 2
ys = sorted(xs)
lng = len(ys)
m = lng // 2
return (
ys[0],
median(ys[0:(m + (lng % 2))]),
median(ys),
median(ys[m:]),
ys[-1]
) if 0 < lng else None
# TEST --------------------------------------------------------------------
for xs in [[15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43],
[36, 40, 7, 39, 41, 15],
[
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578
]]:
print(
fiveNums(xs)
)
- Output:
(6, 25.5, 40, 42.5, 49) (7, 15, 37.5, 40, 41) (-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507)
R
The fivenum function is built-in, see R manual.
x <- c(0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578)
fivenum(x)
Output
[1] -1.9505959 -0.6767412 0.2332471 0.7460709 1.7313151
Racket
Racket's =quantile= functions use a different method to Tukey; so a new implementation was made.
#lang racket/base
(require math/private/statistics/quickselect)
;; racket's quantile uses "Method 1" of https://en.wikipedia.org/wiki/Quartile
;; Tukey (fivenum) uses "Method 2", so we will need a specialist median
(define (fivenum! data-v)
(define (tukey-median start end)
(define-values (n/2 parity) (quotient/remainder (- end start) 2))
(define mid (+ start n/2))
(if (zero? parity)
(/ (+ (data-kth-value! (+ mid (sub1 parity))) (data-kth-value! mid)) 2)
(data-kth-value! mid)))
(define n-data (let ((l (vector-length data-v)))
(if (zero? l)
(raise-argument-error 'data-v "nonempty (Vectorof Real)" data-v)
l)))
(define (data-kth-value! n) (kth-value! data-v n <))
(define subset-size (let-values (((n/2 parity) (quotient/remainder n-data 2))) (+ n/2 parity)))
(vector (data-kth-value! 0)
(tukey-median 0 subset-size)
(tukey-median 0 n-data)
(tukey-median (- n-data subset-size) n-data)
(data-kth-value! (sub1 n-data))))
(define (fivenum data-seq)
(fivenum! (if (and (vector? data-seq) (not (immutable? data-seq)))
data-seq
(for/vector ((datum data-seq)) datum))))
(module+ test
(require rackunit
racket/vector)
(check-equal? #(14 14 14 14 14) (fivenum #(14)) "Minimal case")
(check-equal? #(8 11 14 17 20) (fivenum #(8 14 20)) "3-value case")
(check-equal? #(8 11 15 18 20) (fivenum #(8 14 16 20)) "4-value case")
(define x1-seq #(36 40 7 39 41 15))
(define x1-v (vector-copy x1-seq))
(check-equal? x1-seq x1-v "before fivenum! sequence and vector were not `equal?`")
(check-equal? #(7 15 #e37.5 40 41) (fivenum! x1-v) "Test against Go results x1")
(check-not-equal? x1-seq x1-v "fivenum! did not mutate mutable input vectors")
(check-equal? #(6 #e25.5 40 #e42.5 49) (fivenum #(15 6 42 41 7 36 49 40 39 47 43)) "Test against Go results x2")
(check-equal? #(-1.95059594 -0.676741205 0.23324706 0.746070945 1.73131507)
(fivenum (vector 0.14082834 0.09748790 1.73131507 0.87636009 -1.95059594 0.73438555
-0.03035726 1.46675970 -0.74621349 -0.72588772 0.63905160 0.61501527
-0.98983780 -1.00447874 -0.62759469 0.66206163 1.04312009 -0.10305385
0.75775634 0.32566578))
"Test against Go results x3"))
This program passes its tests silently.
Raku
(formerly Perl 6)
sub fourths ( Int $end ) {
my $end_22 = $end div 2 / 2;
return 0, $end_22, $end/2, $end - $end_22, $end;
}
sub fivenum ( @nums ) {
my @x = @nums.sort(+*)
or die 'Input must have at least one element';
my @d = fourths(@x.end);
return ( @x[@d».floor] Z+ @x[@d».ceiling] ) »/» 2;
}
say .&fivenum for [15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43],
[36, 40, 7, 39, 41, 15], [
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578,
];
- Output:
(6 25.5 40 42.5 49) (7 15 37.5 40 41) (-1.95059594 -0.676741205 0.23324706 0.746070945 1.73131507)
Relation
Min, median and max are built in, quarter1 and quarter3 calculated.
program fivenum(X)
rename X^ x
order x 1
dup
project x min, x median, x max, x count
set q1 = x_count / 4
set q1min = floor(q1)
set q1weight = q1 - q1min
set q3 = x_count * 3 / 4
set q3min = floor(q3)
set q3weight = q3 - q3min
swap
dup
select rownumber = q1min + 1 or rownumber = q1min + 2
extend w = q1weight * (rownumber - 1) - (rownumber-1-1) * (1-q1weight)
extend xw = x * w
project xw sum
rename xw_sum x_quarter1
swap
select rownumber = q3min + 1 or rownumber = q3min + 2
extend w = q3weight * (rownumber - 1) - (rownumber-1-1) * (1-q3weight)
extend xw = x * w
project xw sum
rename xw_sum x_quarter3
join cross
join cross
project x_min, x_quarter1, x_median, x_quarter3, x_max
print
end program
relation a
insert 3
insert 4
insert 18
insert 12
insert 17
insert 5
insert 6
insert 11
insert 8
run fivenum("a")
- Output:
x_min | x_quarter1 | x_median | x_quarter3 | x_max |
---|---|---|---|---|
3 | 5.25 | 8 | 15.75 | 18 |
REXX
Programming note: this REXX program uses a unity─based array.
/*REXX program computes the five─number summary (LO─value, p25, medium, p75, HI─value).*/
parse arg x
if x='' then x= 15 6 42 41 7 36 49 40 39 47 43 /*Not specified? Then use the defaults*/
say 'input numbers: ' space(x) /*display the original list of numbers.*/
call 5num /*invoke the five─number function. */
say ' five─numbers: ' result /*display " " " results. */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
bSort: procedure expose @.; parse arg n; m=n-1 /*N: the number of @ array elements.*/
do m=m for m by -1 until ok; ok= 1 /*keep sorting the @ array 'til done.*/
do j=1 for m; k= j + 1; /*set K to the next item in @ array.*/
if @.j<=@.k then iterate /*Is @.J in numerical order? Good. */
parse value @.j @.k 0 with @.k @.j ok /*swap two elements and flag as ¬done.*/
end /*j*/
end /*m*/; return
/*──────────────────────────────────────────────────────────────────────────────────────*/
med: arg s,e; $=e-s+1; m=s+$%2; if $//2 then return @.m; _=m-1; return (@._+@.m)/2
/*──────────────────────────────────────────────────────────────────────────────────────*/
5num: #= words(x); if #==0 then return '***error*** array is empty.'
parse var x . 1 LO . 1 HI . /*assume values for LO and HI (for now)*/
q2= # % 2; er= '***error*** element'
do j=1 for #; @.j= word(x, j)
if \datatype(@.j, 'N') then return er j "isn't numeric: " @.j
LO= min(LO, @.j); HI= max(HI, @.j)
end /*j*/ /* [↑] traipse thru array, find min,max*/
call bSort # /*use a bubble sort (easiest to code). */
if #//2 then p25= q2 /*calculate the second quartile number.*/
else p25= q2 - 1 /* " " " " " */
return LO med(1, p25) med(1, #) med(q2, #) HI /*return list of 5 numbers.*/
- output when using the default input of: 15 6 42 41 7 36 49 40 39 47 43
input numbers: 15 6 42 41 7 36 49 40 39 47 43 five─numbers: 6 15 40 42 49
- output when using the (internal) default inputs of: 36 40 7 39 41 15
input numbers: 36 40 7 39 41 15 five─numbers: 7 11 37.5 39.5 41
Ring
rem1 = 0
rem2 = 0
rem3 = 0
rem4 = 0
rem5 = 0
fn1 = [15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43]
fn2 = [36, 40, 7, 39, 41, 15]
fn3 = [0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578]
decimals(1)
fivenum(fn1) showarray([rem1,rem2,rem3,rem4,rem5])
fivenum(fn2) showarray([rem1,rem2,rem3,rem4,rem5])
decimals(8)
fivenum(fn3) showarray([rem1,rem2,rem3,rem4,rem5])
func median(table,low,high)
l = high-low+1
m = low + floor(l/2)
if l%2 = 1
return table[m]
ok
return (table[m-1]+table[m])/2
func fivenum(table)
table = sort(table)
low = len(table)
m = floor(low/2)+low%2
rem1 = table[1]
rem2 = median(table,1,m)
rem3 = median(table,1,low)
rem4 = median(table,m+1,low)
rem5 = table[low]
return [rem1, rem2, rem3, rem4, rem5]
func showarray vect
svect = ""
for n in vect
svect += " " + n + ","
next
? "[" + left(svect, len(svect) - 1) + "]"
- Output:
[6,25.5,40,43,49] [7,15,37.5,40,41] [-1.95059594,-0.67674121,0.23324706,0.74607095,1.73131507]
RPL
≪ IF DUP SIZE 2 ≥ THEN LIST→ → len ≪ len 1 FOR n 1 n 1 - START IF DUP2 > THEN SWAP END n ROLLD NEXT n ROLLD -1 STEP len →LIST ≫ END ≫ ‘SORTL’ STO ≪ → data n ≪ data SIZE n * 4 n - + 4 / data OVER FLOOR GET n * data ROT CEIL GET 4 n - * + 4 / ≫ ≫ ‘QTL’ STO ≪ SORTL { } OVER 1 GET + OVER 1 QTL + OVER 2 QTL + OVER 3 QTL + OVER DUP SIZE GET + ≫ ‘SUMR5’ STO { 6 7 15 36 39 40 41 42 43 47 49 } SUMR5
- Output:
1: { 6 30.75 40 42.25 49 }
Ruby
def fivenum(array)
sorted_arr = array.sort
n = array.size
n4 = (((n + 3).to_f / 2.to_f) / 2.to_f).floor
d = Array.[](1, n4, ((n.to_f + 1) / 2).to_i, n + 1 - n4, n)
sum_array = []
(0..4).each do |e| # each loops have local scope, for loops don't
index_floor = (d[e] - 1).floor
index_ceil = (d[e] - 1).ceil
sum_array.push(0.5 * (sorted_arr[index_floor] + sorted_arr[index_ceil]))
end
sum_array
end
test_array = [15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43]
tukey_array = fivenum(test_array)
p tukey_array
test_array = [36, 40, 7, 39, 41, 15]
tukey_array = fivenum(test_array)
p tukey_array
test_array = [0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578]
tukey_array = fivenum(test_array)
p tukey_array
- Output:
[6.0, 15.0, 40.0, 43.0, 49.0] [7.0, 15.0, 36.0, 40.0, 41.0] [-1.95059594, -0.72588772, 0.14082834, 0.75775634, 1.73131507]
Rust
#[derive(Debug)]
struct FiveNum {
minimum: f64,
lower_quartile: f64,
median: f64,
upper_quartile: f64,
maximum: f64,
}
fn median(samples: &[f64]) -> f64 {
// input is already sorted
let n = samples.len();
let m = n / 2;
if n % 2 == 0 {
(samples[m] + samples[m - 1]) / 2.0
} else {
samples[m]
}
}
fn fivenum(samples: &[f64]) -> FiveNum {
let mut xs = samples.to_vec();
xs.sort_by(|x, y| x.partial_cmp(y).unwrap());
let m = xs.len() / 2;
FiveNum {
minimum: xs[0],
lower_quartile: median(&xs[0..(m + (xs.len() % 2))]),
median: median(&xs),
upper_quartile: median(&xs[m..]),
maximum: xs[xs.len() - 1],
}
}
fn main() {
let inputs = vec![
vec![15., 6., 42., 41., 7., 36., 49., 40., 39., 47., 43.],
vec![36., 40., 7., 39., 41., 15.],
vec![
0.14082834,
0.09748790,
1.73131507,
0.87636009,
-1.95059594,
0.73438555,
-0.03035726,
1.46675970,
-0.74621349,
-0.72588772,
0.63905160,
0.61501527,
-0.98983780,
-1.00447874,
-0.62759469,
0.66206163,
1.04312009,
-0.10305385,
0.75775634,
0.32566578,
],
];
for input in inputs {
let result = fivenum(&input);
println!("Fivenum",);
println!(" Minumum: {}", result.minimum);
println!(" Lower quartile: {}", result.lower_quartile);
println!(" Median: {}", result.median);
println!(" Upper quartile: {}", result.upper_quartile);
println!(" Maximum: {}", result.maximum);
}
}
- Output:
Fivenum Minumum: 6 Lower quartile: 25.5 Median: 40 Upper quartile: 42.5 Maximum: 49 Fivenum Minumum: 7 Lower quartile: 15 Median: 37.5 Upper quartile: 40 Maximum: 41 Fivenum Minumum: -1.95059594 Lower quartile: -0.676741205 Median: 0.23324706 Upper quartile: 0.746070945 Maximum: 1.73131507
SAS
/* build a dataset */
data test;
do i=1 to 10000;
x=rannor(12345);
output;
end;
keep x;
run;
/* compute the five numbers */
proc means data=test min p25 median p75 max;
var x;
run;
Output
Analysis Variable : x | ||||
Minimum | 25th Pctl | Median | 75th Pctl | Maximum |
-4.0692299 | -0.6533022 | 0.0066299 | 0.6768043 | 4.1328026 |
Scala
Array based solution
import java.util
object Fivenum extends App {
val xl = Array(
Array(15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0),
Array(36.0, 40.0, 7.0, 39.0, 41.0, 15.0),
Array(0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527, -0.98983780,
-1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578)
)
for (x <- xl) println(f"${util.Arrays.toString(fivenum(x))}%s\n\n")
def fivenum(x: Array[Double]): Array[Double] = {
require(x.forall(!_.isNaN), "Unable to deal with arrays containing NaN")
def median(x: Array[Double], start: Int, endInclusive: Int): Double = {
val size = endInclusive - start + 1
require(size > 0, "Array slice cannot be empty")
val m = start + size / 2
if (size % 2 == 1) x(m) else (x(m - 1) + x(m)) / 2.0
}
val result = new Array[Double](5)
util.Arrays.sort(x)
result(0) = x(0)
result(2) = median(x, 0, x.length - 1)
result(4) = x(x.length - 1)
val m = x.length / 2
val lowerEnd = if (x.length % 2 == 1) m else m - 1
result(1) = median(x, 0, lowerEnd)
result(3) = median(x, m, x.length - 1)
result
}
}
- Output:
See it running in your browser by ScalaFiddle (JavaScript, non JVM) or by Scastie (JVM).
Sidef
func fourths(e) {
var t = ((e>>1) / 2)
[0, t, e/2, e - t, e]
}
func fivenum(nums) {
var x = nums.sort
var d = fourths(x.end)
([x[d.map{.floor}]] ~Z+ [x[d.map{.ceil}]]) »/» 2
}
var nums = [
[15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43],
[36, 40, 7, 39, 41, 15], [
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578,
]]
nums.each { say fivenum(_).join(', ') }
- Output:
6, 25.5, 40, 42.5, 49 7, 15, 37.5, 40, 41 -1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507
Stata
First build a dataset:
clear
set seed 17760704
qui set obs 10000
gen x=rnormal()
The summarize command produces all the required statistics, and more:
qui sum x, detail
di r(min),r(p25),r(p50),r(p75),r(max)
Output
-3.6345866 -.66536 .0026834 .68398139 3.7997103
It's also possible to use the tabstat command
tabstat x, s(mi q ma)
Output
variable | min p25 p50 p75 max -------------+-------------------------------------------------- x | -3.634587 -.66536 .0026834 .6839814 3.79971 ----------------------------------------------------------------
Another example:
clear
mat a=0.14082834\0.09748790\1.73131507\0.87636009\-1.95059594\ ///
0.73438555\-0.03035726\1.46675970\-0.74621349\-0.72588772\ ///
0.63905160\0.61501527\-0.98983780\-1.00447874\-0.62759469\ ///
0.66206163\1.04312009\-0.10305385\0.75775634\0.32566578
svmat a
tabstat a1, s(mi q ma)
Output
variable | min p25 p50 p75 max -------------+-------------------------------------------------- a1 | -1.950596 -.6767412 .2332471 .746071 1.731315 ----------------------------------------------------------------
Wren
import "./sort" for Sort
var fivenum = Fn.new { |a|
Sort.quick(a)
var n5 = List.filled(5, 0)
var n = a.count
var n4 = ((n + 3)/2).floor / 2
var d = [1, n4, (n + 1)/2, n + 1 - n4, n]
var e = 0
for (de in d) {
var floor = (de - 1).floor
var ceil = (de - 1).ceil
n5[e] = 0.5 * (a[floor] + a[ceil])
e = e + 1
}
return n5
}
var x1 = [36, 40, 7, 39, 41, 15]
var x2 = [15, 6, 42, 41, 7, 36, 49, 40, 39, 47, 43]
var x3 = [
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594,
0.73438555, -0.03035726, 1.46675970, -0.74621349, -0.72588772,
0.63905160, 0.61501527, -0.98983780, -1.00447874, -0.62759469,
0.66206163, 1.04312009, -0.10305385, 0.75775634, 0.32566578
]
for (x in [x1, x2, x3]) System.print(fivenum.call(x))
- Output:
[7, 15, 37.5, 40, 41] [6, 25.5, 40, 42.5, 49] [-1.95059594, -0.676741205, 0.23324706, 0.746070945, 1.73131507]
XPL0
include xpllib; \for Print and RlSort
func real OurMedian(X, Start, EndInclusive);
real X; int Start, EndInclusive;
int Size, M;
[Size:= EndInclusive - Start + 1;
if Size <= 0 then
[Print("Array slice cannot be empty\n");
exit 1;
];
M:= Start + Size/2;
if rem(0) then return X(M);
return (X(M-1) + X(M)) / 2.0;
];
func FiveNum(X, Result, XLen);
real X, Result; int XLen;
int I, M, LowerEnd;
[for I:= 0 to XLen-1 do
[if X(I) # X(I) then
[Print("Unable to deal with arrays containing NaN\n\n");
return true;
];
];
RlSort(X, XLen);
Result(0):= X(0);
Result(2):= OurMedian(X, 0, XLen-1);
Result(4):= X(XLen-1);
M:= XLen/2;
LowerEnd:= if rem(0) then M else M-1;
Result(1):= OurMedian(X, 0, LowerEnd);
Result(3):= OurMedian(X, M, XLen-1);
return false;
];
proc Show(Result, Places);
real Result; int Places;
int I;
[Format(1, Places);
Print("[");
for I:= 0 to 5-1 do
[RlOut(0, Result(I));
if I < 4 then Print(", ");
];
Print("]\n\n");
];
real Result(5), X1, X2, X3;
[X1:= [15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0];
if not FiveNum(X1, Result, 11) then Show(Result, 1);
X2:= [36.0, 40.0, 7.0, 39.0, 41.0, 15.0];
if not FiveNum(X2, Result, 6) then Show(Result, 1);
X3:= [ 0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527,
-0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578
];
if not FiveNum(X3, Result, 20) then Show(Result, 9);
]
- Output:
[6.0, 25.5, 40.0, 42.5, 49.0] [7.0, 15.0, 37.5, 40.0, 41.0] [-1.950595940, -0.676741205, 0.233247060, 0.746070945, 1.731315070]
zkl
Uses GNU GSL library.
var [const] GSL=Import("zklGSL"); // libGSL (GNU Scientific Library)
fcn fiveNum(v){ // V is a GSL Vector, --> min, 1st qu, median, 3rd qu, max
v.sort();
return(v.min(),v.quantile(0.25),v.median(),v.quantile(0.75),v.max())
}
fiveNum(GSL.VectorFromData(
15.0, 6.0, 42.0, 41.0, 7.0, 36.0, 49.0, 40.0, 39.0, 47.0, 43.0)).println();
println(fiveNum(GSL.VectorFromData(36.0, 40.0, 7.0, 39.0, 41.0, 15.0)));
v:=GSL.VectorFromData(
0.14082834, 0.09748790, 1.73131507, 0.87636009, -1.95059594, 0.73438555,
-0.03035726, 1.46675970, -0.74621349, -0.72588772, 0.63905160, 0.61501527,
-0.98983780, -1.00447874, -0.62759469, 0.66206163, 1.04312009, -0.10305385,
0.75775634, 0.32566578);
println(fiveNum(v));
- Output:
L(6,25.5,40,42.5,49) L(7,20.25,37.5,39.75,41) L(-1.9506,-0.652168,0.233247,0.740228,1.73132)