An   emirp   (prime spelled backwards)   are primes that when reversed   (in their decimal representation)   are a different prime.

Task
Emirp primes
You are encouraged to solve this task according to the task description, using any language you may know.

(This rules out palindromic primes.)


Task
  •   show the first   twenty   emirps
  •   show all emirps between   7,700   and   8,000
  •   show the   10,000th   emirp


In each list, the numbers should be in order.

Invoke the (same) program once per task requirement, this will show what limit is used as the upper bound for calculating surplus (regular) primes.

The specific method of how to determine if a range or if specific values are to be shown will be left to the programmer.


See also



Ada

he solution uses the package Miller_Rabin from the Miller-Rabin primality test.

<lang Ada>with Ada.Text_IO, Miller_Rabin;

procedure Emirp_Gen is

  type Num is range 0 .. 2**63-1; -- maximum for the gnat Ada compiler
  
  MR_Iterations: constant Positive := 25; 
    -- the probability Pr[Is_Prime(N, MR_Iterations) = Probably_Prime] 
    -- is 1 for prime N and < 4**(-MR_Iterations) for composed N
  
  function Is_Emirp(E: Num) return Boolean is
     package MR is new Miller_Rabin(Num); use MR;
     
     function Rev(E: Num) return Num is

N: Num := E; R: Num := 0;

     begin

while N > 0 loop R := 10*R + N mod 10; -- N mod 10 is least significant digit of N N := N / 10; -- delete least significant digit of N end loop; return R;

     end Rev;
     
     R: Num := Rev(E); 
  begin
     return E /= R and then

(Is_Prime(E, MR_Iterations) = Probably_Prime) and then (Is_Prime(R, MR_Iterations) = Probably_Prime);

  end Is_Emirp;
  function Next(P: Num) return Num is
     N: Num := P+1;
  begin
     while not (Is_Emirp(N)) Loop

N := N + 1;

     end loop;
     return N;
  end Next;
  
  Current: Num;
  Count: Num := 0;
  

begin

  -- show the first twenty emirps
  Ada.Text_IO.Put("First 20 emirps:");
  Current := 1;
  for I in 1 .. 20 loop
     Current := Next(Current);
     Ada.Text_IO.Put(Num'Image(Current));
  end loop;
  Ada.Text_IO.New_Line;
  
  -- show the emirps between 7700 and 8000
  Ada.Text_IO.Put("Emirps between 7700 and 8000:");
  Current := 7699;
  loop
     Current := Next(Current);
     exit when Current > 8000;
      Ada.Text_IO.Put(Num'Image(Current));
  end loop;
  
  -- the 10_000th emirp
  Ada.Text_IO.Put("The 10_000'th emirp:");
  for I in 1 .. 10_000 loop
     Current := Next(Current);
  end loop;
  Ada.Text_IO.Put_Line(Num'Image(Current));

end Emirp_Gen;</lang>

Output:
First 20 emirps: 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389
Emirps between 7700 and 8000: 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963
The 10_000'th emirp: 948349

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32

Uses Algol 68G specific argc and argv procedures to access to command line. Allows the user to specify the from and to range values or ordinals on the command line. The sieve size can also be specified. As suggested by the Fortran sample, from = to is treated as a special case for labeling the output. <lang algol68># sieve of Eratosthenes: sets s[i] to TRUE if i is prime, FALSE otherwise # PROC sieve = ( REF[]BOOL s )VOID:

    BEGIN
       # start with everything flagged as prime                              # 
       FOR i TO UPB s DO s[ i ] := TRUE OD;
       # sieve out the non-primes                                            #
       s[ 1 ] := FALSE;
       FOR i FROM 2 TO ENTIER sqrt( UPB s ) DO
           IF s[ i ] THEN FOR p FROM i * i BY i TO UPB s DO s[ p ] := FALSE OD FI
       OD
    END # sieve # ;
  1. parse the command line - ignore errors #

INT emirp from  := 1; # lowest emirp required # INT emirp to  := 10; # highest emirp required # BOOL value range := FALSE; # TRUE if the range is the value of the emirps #

                              # FALSE if the range is the ordinal of the     #
                              # emirps                                       #

INT max number  := 1 000 000; # sieve size #

  1. returns s converted to an integer - does not check s is a valid integer #

PROC to int = ( STRING s )INT:

    BEGIN
       INT result := 0;
       FOR ch pos FROM LWB s TO UPB s DO
           result *:= 10;
           result +:= ABS s[ ch pos ] - ABS "0"
       OD;
       result
    END # to int # ;

FOR arg pos TO argc DO

   IF   argv( arg pos ) = "FROM"    THEN
       emirp from  := to int( argv( arg pos + 1 ) )
   ELIF argv( arg pos ) = "TO"      THEN
       emirp to    := to int( argv( arg pos + 1 ) )
   ELIF argv( arg pos ) = "VALUE"   THEN
       value range := TRUE
   ELIF argv( arg pos ) = "ORDINAL" THEN
       value range := FALSE
   ELIF argv( arg pos ) = "SIEVE"   THEN
       max number  := to int( argv( arg pos + 1 ) )
   FI

OD;

  1. construct a sieve of primes up to the maximum number required for the task #

[ 1 : max number ]BOOL is prime; sieve( is prime );

  1. return TRUE if p is an emirp, FALSE otherwise #

PROC is emirp = ( INT p )BOOL:

    IF NOT is prime[ p ] THEN
       FALSE
    ELSE
       # reverse the digits of p, if this is a prime different from p,       #
       # p is an emirp                                                       #
       INT q    := 0;
       INT rest := ABS p;
       WHILE rest > 0 DO
           q    TIMESAB 10;
           q    PLUSAB  rest MOD 10;
           rest OVERAB  10
       OD;
       is prime[ q ] AND q /= p
    FI # is emirp # ;
  1. generate the required emirp list #

IF value range THEN

   # find emirps with values in the specified range                          #
   print( ( "emirps between ", whole( emirp from, 0 ), " and ", whole( emirp to, 0 ), ":" ) );
   FOR p FROM emirp from TO emirp to DO
       IF is emirp( p ) THEN
           print( ( " ", whole( p, 0 ) ) )
       FI
   OD

ELSE

   # find emirps with ordinals in the specified range                        #
   INT emirp count := 0;
   IF emirp from = emirp to THEN
       print( ( "emirp ", whole( emirp from, 0 ), ":" ) )
   ELSE
       print( ( "emirps ", whole( emirp from, 0 ), " to ", whole( emirp to, 0 ), ":" ) )
   FI;
   FOR p TO max number WHILE emirp count < emirp to DO
       IF is emirp( p ) THEN
           # have another emirp                                              #
           emirp count +:= 1;
           IF emirp count >= emirp from THEN
               print( ( " ", whole( p, 0 ) ) )
           FI
       FI
   OD

FI; print( ( newline ) )</lang>

Output:

a68g emirpPrimes.a68 - FROM 1 TO 20

emirps 1 to 20: 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389

a68g emirpPrimes.a68 - FROM 7700 TO 8000 VALUE

emirps between 7700 and 8000: 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963

a68g emirpPrimes.a68 - FROM 10000 TO 10000

emirp 10000: 948349

Arturo

<lang rebol>emirps: function [upto][

   result: new []
   loop range .step: 2 11 upto 'x [
       if prime? x [
           reversed: to :integer reverse to :string x
           if x <> reversed [
               if prime? reversed ->
                   'result ++ x
           ]
       ]
   ]
   return result

]

lst: emirps 1000000

print "The first 20 emirps:" print first.n: 20 lst

print "" print "Emirps between 7700 and 8000:" print select lst 'x -> and? x > 7700 x < 8000

print "" print "The 10000th emirp:" print lst\9999</lang>

Output:
The first 20 emirps:
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389 

Emirps between 7700 and 8000:
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963 

The 10000th emirp:
948349

AutoHotkey

<lang AutoHotkey>SetBatchLines, -1 p := 1 Loop, 20 { p := NextEmirp(p) a .= p " " } p := 7700 Loop { p := NextEmirp(p) if (p > 8000) break b .= p " " } p :=1 Loop, 10000 p := NextEmirp(p) MsgBox, % "First twenty emirps: " a . "`nEmirps between 7,700 and 8,000: " b . "`n10,000th emirp: " p

IsPrime(n) { if (n < 2) return, 0 else if (n < 4) return, 1 else if (!Mod(n, 2)) return, 0 else if (n < 9) return 1 else if (!Mod(n, 3)) return, 0 else { r := Floor(Sqrt(n)) f := 5 while (f <= r) { if (!Mod(n, f)) return, 0 if (!Mod(n, (f + 2))) return, 0 f += 6 } return, 1 } }

NextEmirp(n) { Loop if (IsPrime(++n)) { rev := Reverse(n) if (rev = n) continue if (IsPrime(rev)) return n } }

Reverse(s) { Loop, Parse, s r := A_LoopField r return r }</lang>

Output:
First twenty emirps: 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389 
Emirps between 7,700 and 8,000: 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963 
10,000th emirp: 948349

AWK

Based on C example here :

cat emirp.awk <lang AWK> function is_prime(n, p) {

       if (!(n%2) || !(n%3)) {

return 0 }

       p = 1
       while(p*p < n)
               if (n%(p += 4) == 0 || n%(p += 2) == 0) {
                       return 0 }
       return 1

}

function reverse(n, r) { r = 0

       for (r = 0; int(n) != 0; n /= 10)
               r = r*10 + int(n%10);
       return r

}

function is_emirp(n, r) {

       r = reverse(n)

return ((r != n) && is_prime(n) && is_prime(r)) ? 1 : 0 }

BEGIN { c = 0 for (x = 11; c < 20; x += 2) { if (is_emirp(x)) { printf(" %i,", x); ++c } } printf("\n") for (x = 7701; x < 8000; x += 2) { if (is_emirp(x)) { printf(" %i,", x); ++c } } printf("\n") c = 0 for (x = 11; ; x += 2)

                       if (is_emirp(x) && ++c == 10000) {
                               printf(" %i", x);
                               break;
                       }

printf("\n") } </lang>

Output:
$ awk -f emirp.awk 
 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389,
 7717, 7757, 7817, 7841, 7867, 7879, 7901, 7927, 7949, 7951, 7963,
 948349

C

Note the unusual commandline argument parsing to sastisfy the "invoke three times" magic requirement. <lang c>#include <stdio.h>

typedef unsigned uint; int is_prime(uint n) {

       if (!(n%2) || !(n%3)) return 0;
       uint p = 1;
       while(p*p < n)
               if (n%(p += 4) == 0 || n%(p += 2) == 0)
                       return 0;
       return 1;

}

uint reverse(uint n) {

       uint r;
       for (r = 0; n; n /= 10)
               r = r*10 + (n%10);
       return r;

}

int is_emirp(uint n) {

       uint r = reverse(n);
       return r != n && is_prime(n) && is_prime(r);

}

int main(int argc, char **argv) {

       uint x, c = 0;
       switch(argc) { // advanced args parsing
       case 1: for (x = 11; c < 20; x += 2)
                       if (is_emirp(x))
                               printf(" %u", x), ++c;
               break;
       case 2: for (x = 7701; x < 8000; x += 2)
                       if (is_emirp(x))
                               printf(" %u", x);
               break;
       default:
               for (x = 11; ; x += 2)
                       if (is_emirp(x) && ++c == 10000) {
                               printf("%u", x);
                               break;
                       }
       }
       putchar('\n');
       return 0;

}</lang>

Output:
% ./a.out           # no argument: task 1
 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389
% ./a.out a         # one argument: task 2
 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963
% ./a.out a b       # you get the idea
948349

C#

Works with: C sharp version 7

<lang csharp>using static System.Console; using System; using System.Linq; using System.Collections.Generic;

public class Program {

   public static void Main() {
       const int limit = 1_000_000;
       WriteLine("First 20:");
       WriteLine(FindEmirpPrimes(limit).Take(20).Delimit());
       WriteLine();
       WriteLine("Between 7700 and 8000:");
       WriteLine(FindEmirpPrimes(limit).SkipWhile(p => p < 7700).TakeWhile(p => p < 8000).Delimit());
       WriteLine();
       WriteLine("10000th:");
       WriteLine(FindEmirpPrimes(limit).ElementAt(9999));
   }
   private static IEnumerable<int> FindEmirpPrimes(int limit)
   {
       var primes = Primes(limit).ToHashSet();
       foreach (int prime in primes) {
           int reverse = prime.Reverse();
           if (reverse != prime && primes.Contains(reverse)) yield return prime;

}

   }
   private static IEnumerable<int> Primes(int bound) {
       if (bound < 2) yield break;
       yield return 2;
       BitArray composite = new BitArray((bound - 1) / 2);
       int limit = ((int)(Math.Sqrt(bound)) - 1) / 2;
       for (int i = 0; i < limit; i++) {
           if (composite[i]) continue;

int prime = 2 * i + 3; yield return prime;

for (int j = (prime * prime - 2) / 2; j < composite.Count; j += prime) composite[j] = true;

       }

for (int i = limit; i < composite.Count; i++) if (!composite[i]) yield return 2 * i + 3;

   }

}

public static class Extensions {

   public static HashSet<T> ToHashSet<T>(this IEnumerable<T> source) => new HashSet<T>(source);
   private const string defaultSeparator = " ";
   public static string Delimit<T>(this IEnumerable<T> source, string separator = defaultSeparator) =>
       string.Join(separator ?? defaultSeparator, source);
   public static int Reverse(this int number)
   {

if (number < 0) return -Reverse(-number); if (number < 10) return number; int reverse = 0; while (number > 0) { reverse = reverse * 10 + number % 10; number /= 10; } return reverse;

   }

}</lang>

Output:
First 20:
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389

Between 7700 and 8000:
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963

10000th:
948349

C++

<lang Cpp>#include <vector>

  1. include <iostream>
  2. include <algorithm>
  3. include <sstream>
  4. include <string>
  5. include <cmath>

bool isPrime ( int number ) {

  if ( number <= 1 ) 
     return false ;
  if ( number == 2 )
     return true ;
  for ( int i = 2 ; i <= std::sqrt( number ) ; i++ ) {
     if ( number % i == 0 )

return false ;

  }
  return true ;

}

int reverseNumber ( int n ) {

  std::ostringstream oss ;
  oss << n ;
  std::string numberstring ( oss.str( ) ) ;
  std::reverse ( numberstring.begin( ) , numberstring.end( ) ) ;
  return std::stoi ( numberstring ) ;

}

bool isEmirp ( int n ) {

  return isPrime ( n ) && isPrime ( reverseNumber ( n ) )
     && n != reverseNumber ( n ) ;

}

int main( ) {

  std::vector<int> emirps ;
  int i = 1 ;
  while ( emirps.size( ) < 20 ) {
     if ( isEmirp( i ) ) {
        emirps.push_back( i ) ;
     }
     i++ ;
  }
  std::cout << "The first 20 emirps:\n" ;
  for ( int i : emirps ) 
     std::cout << i << " " ;
  std::cout << '\n' ;
  int newstart = 7700 ;
  while ( newstart < 8001 ) {
     if ( isEmirp ( newstart ) ) 

std::cout << newstart << '\n' ;

     newstart++ ;
  }
  while ( emirps.size( ) < 10000 ) {
     if ( isEmirp ( i ) ) {

emirps.push_back( i ) ;

     }
     i++ ;
  }
  std::cout << "the 10000th emirp is " << emirps[9999] << " !\n" ;
  return 0 ;

}</lang>

Output:
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389 
7717
7757
7817
7841
7867
7879
7901
7927
7949
7951
7963
the 10000th emirp is 948349 !

Clojure

Using biginteger's isProbablePrime()

The isProbablePrime() method performs a Miller-Rabin primality test to within a given certainty. <lang clojure>(defn emirp? [v]

 (let [a (biginteger v)
       b (biginteger (clojure.string/reverse (str v)))]
   (and (not= a b)
        (.isProbablePrime a 16)
        (.isProbablePrime b 16))))
Generate the output

(println "first20: " (clojure.string/join " " (take 20 (filter emirp? (iterate inc 0))))) (println "7700-8000: " (clojure.string/join " " (filter emirp? (range 7700 8000)))) (println "10,000: " (nth (filter emirp? (iterate inc 0)) 9999))

</lang>

Output:
first20:     13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389
7700-8000:   7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963
10,000:      948349

Common Lisp

It uses a primitive prime function found in http://www.rosettacode.org/wiki/Primality_by_trial_division, not optimized at all. <lang Lisp>(defun primep (n)

 "Is N prime?"
 (and (> n 1) 
      (or (= n 2) (oddp n))
      (loop for i from 3 to (isqrt n) by 2

never (zerop (rem n i)))))

(defun reverse-digits (n)

 (labels ((next (n v)
            (if (zerop n) v
                (multiple-value-bind (q r)
                    (truncate n 10)
                  (next q (+ (* v 10) r))))))
   (next n 0)))

(defun emirp (&key (count nil) (start 10) (end nil) (print-all nil))

 (do* ((n start (1+ n))
       (c count) )
      ((or (and count (<= c 0)) (and end (>= n end))))
   (when (and (primep n) (not (= n (reverse-digits n))) (primep (reverse-digits n)))
     (when print-all (format t "~a " n))
     (when count (decf c)) )))


(progn

 (format t "First 20 emirps: ") (emirp :count 20 :print-all t)
 (format t "~%Emirps between 7700 and 8000: ") (emirp :start 7700 :end 8000 :print-all t)
 (format t "~%The 10,000'th emirp: ") (emirp :count 10000 :print-all nil) )

</lang>

Output:
First 20 emirps: 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389 
Emirps between 7700 and 8000: 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963 
The 10,000'th emirp: 948349

D

<lang d>bool isEmirp(uint n) pure nothrow @nogc {

   bool isPrime(in uint n) pure nothrow @nogc {
       if (n == 2 || n == 3)
           return true;
       else if (n < 2 || n % 2 == 0 || n % 3 == 0)
           return false;
       for (uint div = 5, inc = 2; div ^^ 2 <= n;
            div += inc, inc = 6 - inc)
           if (n % div == 0)
               return false;
       return true;
   }
   uint reverse(uint n) pure nothrow @nogc {
       uint r;
       for (r = 0; n; n /= 10)
           r = r * 10 + (n % 10);
       return r;
   }
   immutable r = reverse(n);
   return r != n && isPrime(n) && isPrime(r);

}

void main() {

   import std.stdio, std.algorithm, std.range;
   auto uints = uint.max.iota;
   writeln("First 20:\n", uints.filter!isEmirp.take(20));
   writeln("Between 7700 and 8000:\n",
           iota(7_700, 8_001).filter!isEmirp);
   writeln("10000th: ", uints.filter!isEmirp.drop(9_999).front);

}</lang>

Output:
First 20:
[13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389]
Between 7700 and 8000:
[7717, 7757, 7817, 7841, 7867, 7879, 7901, 7927, 7949, 7951, 7963]
10000th: 948349

This code is not efficient, but the run-time is acceptable, about 0.33 seconds with the ldc2 compiler.

Sieve-Based Version

<lang d>import std.stdio, std.algorithm, std.range, std.bitmanip;

/// Not extendible Sieve of Eratosthenes. BitArray sieve(in uint n) pure nothrow /*@safe*/ {

   BitArray composites;
   composites.init([true, true]);
   composites.length = n;
   if (n < 2)
       return composites;
   foreach (immutable uint i; 2 .. cast(uint)(n ^^ 0.5) + 1)
       if (!composites[i])
           for (uint k = i * i; k < n; k += i)
               composites[k] = true;
   return composites;

}

__gshared BitArray composites;

bool isEmirp(uint n) nothrow @nogc {

   uint reverse(uint n) pure nothrow @safe @nogc {
       uint r;
       for (r = 0; n; n /= 10)
           r = r * 10 + (n % 10);
       return r;
   }
   immutable r = reverse(n);
   // BitArray doesn't perform bound tests yet.
   assert(n < composites.length && r < composites.length);
   return r != n && !composites[n] && !composites[r];

}

void main() {

   composites = 1_000_000.sieve;
   auto uints = uint.max.iota;
   writeln("First 20:\n", uints.filter!isEmirp.take(20));
   writeln("Between 7700 and 8000:\n",
           iota(7_700, 8_001).filter!isEmirp);
   writeln("10000th: ", uints.filter!isEmirp.drop(9_999).front);

}</lang> The output is the same. With ldc2 compiler the run-time is about 0.06 seconds.

Delphi

See Pascal.

Elixir

<lang elixir>defmodule Emirp do

 defp prime?(2), do: true
 defp prime?(n) when n<2 or rem(n,2)==0, do: false
 defp prime?(n), do: prime?(n,3)
 
 defp prime?(n,k) when n<k*k, do: true
 defp prime?(n,k) when rem(n,k)==0, do: false
 defp prime?(n,k), do: prime?(n,k+2)
 
 def emirp?(n) do
   if prime?(n) do
     reverse = to_string(n) |> String.reverse |> String.to_integer
     n != reverse and prime?(reverse)
   end
 end
 
 def task do
   emirps = Stream.iterate(1, &(&1+1)) |> Stream.filter(&emirp?/1)
   first = Enum.take(emirps,20) |> Enum.join(" ")
   IO.puts "First 20 emirps: #{first}"
   between = Enum.reduce_while(emirps, [], fn x,acc ->
     cond do
       x < 7700        -> {:cont, acc}
       x in 7700..8000 -> {:cont, [x | acc]}
       true            -> {:halt, Enum.reverse(acc)}
     end
   end) |> Enum.join(" ")
   IO.puts "Emirps between 7,700 and 8,000: #{between}"
   IO.puts "10,000th emirp: #{Enum.at(emirps, 9999)}"
 end

end

Emirp.task</lang>

Output:
First 20 emirps: 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389
Emirps between 7,700 and 8,000: 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963
10,000th emirp: 948349

F#

The function

This task uses Extensible Prime Generator (F#) <lang fsharp> // Generate emirps. Nigel Galloway: November 19th., 2017 let emirp =

 let rec fN n g = match n with |0->g |_->fN (n/10) (g*10+n%10)
 let     fG n g = n<>g && isPrime g
 primes32() |> Seq.filter (fun n -> fG n (fN n 0))

</lang>

The Task

<lang fsharp> emirps |> (Seq.take 20) |> Seq.iter (printf "%d ") </lang>

Output:
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389

<lang fsharp> emirps |> Seq.skipWhile (fun n->n<7700) |> Seq.takeWhile (fun n->n<=8000) |> Seq.iter (printf "%d ") </lang>

Output:
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963

<lang fsharp> printfn "%d" (Seq.item 9999 emirps) </lang>

Output:
948349

<lang fsharp> // count # of emirps with n = 2 to 7 digits. Nigel Galloway: August 8th., 2018 let n=emirp |> Seq.takeWhile(fun n->n<10000000) |> Seq.countBy(fun n->match n with |n when n>999999->7

                                                                                  |n when n> 99999->6
                                                                                  |n when n>  9999->5
                                                                                  |n when n>   999->4
                                                                                  |n when n>    99->3
                                                                                  |_              ->2)

for n,g in n do printfn "%d -> %d" n g </lang>

Output:
2 -> 8                      
3 -> 28
4 -> 204
5 -> 1406
6 -> 9538
7 -> 70474
Real: 00:07:19.408, CPU: 00:07:23.250, GC gen0: 59744, gen1: 3

Factor

<lang factor>USING: io kernel lists lists.lazy math.extras math.parser

   math.primes sequences ;

FROM: prettyprint => . pprint ; IN: rosetta-code.emirp

rev ( n -- n' )
   number>string reverse string>number ;
emirp? ( n -- ? )
   dup rev [ = not ] [ [ prime? ] bi@ ] 2bi and and ;
   
nemirps ( n -- seq )
   0 lfrom [ emirp? ] lfilter ltake list>array ;
   
print-seq ( seq -- )
   [ pprint bl ] each nl ;
   
part1 ( -- )
   "First 20 emirps:" print 20 nemirps print-seq ;
   
part2 ( -- )
   "Emirps between 7700 and 8000:" print
   7700 ... 8000 [ emirp? ] filter print-seq ;
   
part3 ( -- )
   "10,000th emirp:" print 10,000 nemirps last . ;
   
main ( -- )
   part1 nl part2 nl part3 ;
   

MAIN: main</lang>

Output:
First 20 emirps:
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389

Emirps between 7700 and 8000:
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963

10,000th emirp:
948349

Forth

Keeps a pair of numbers on the stack to represent a generator. This generator approach means that all tasks start from the first Emirp (13), even task 2. <lang Forth>

  1. ! /usr/bin/gforth-fast
reverse ( n -- n )
   0 swap
   begin
       10 /mod >r  swap 10 * +
   r> dup 0= until drop ;
2^ 1 swap lshift ;

create 235-wheel 6 c, 4 c, 2 c, 4 c, 2 c, 4 c, 6 c, 2 c,

   does> swap 7 and + c@ ;

0 1 2constant init-235 \ roll 235 wheel at position 1 2 11 2constant emirp-start \ starting position to roll wheel for emirp search.

next-235 over 235-wheel + swap 1+ swap ;

\ check that n is prime excepting multiples of 2, 3, 5.

sq dup * ;
wheel-prime? ( n -- f )
   >r init-235 begin
       next-235
       dup sq r@ >    if  rdrop 2drop true  exit  then
       r@ over mod 0= if  rdrop 2drop false exit  then
   again ;
prime? ( n -- f )
   dup 2 <
   if drop false
   else
       dup 1 and 0=
       if 2 =
       else dup 3 mod 0=
           if 3 =
           else dup 5 mod 0=
               if 5 =
               else wheel-prime?
               then
           then
       then
   then ;
emirp? ( n -- f )
   dup reverse 2dup <>
   swap prime? and
   swap wheel-prime? and ;
next-emirp ( m n -- m' n' )
   begin
       next-235
   dup emirp? until ;


task1
   cr ." The first 20 emirps are: " 0 { count }
   emirp-start begin
       next-emirp dup .
       count 1+ dup to count
   20 = until 2drop ;
task2
   cr ." emirps between 7700 and 8000: "
   emirp-start begin
       next-emirp dup 7700 8000 within if dup . then
   dup 8000 > until 2drop ;
task3
   cr ." The 10,000th emirp is " 0 { count }
   emirp-start begin
       next-emirp
       count 1+ dup to count
   10000 = until nip . ;

task1 task2 task3 cr bye </lang>

Output:
The first 20 emirps are: 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389 
emirps between 7700 and 8000: 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963 
The 10,000th emirp is 948349 

Fortran

Fortran has no standard interface arrangements whereby a run can be supplied with parameters from a command line. Some implementations do provide a routine, possibly called something like GETARG and with a variety of parameters and usages. One can of course read a disc file containing suitable parameters, but this is not as specified. So, to meet the three invocations, a subroutine is devised with parameters that allow it to perform the three different tasks. To handle "the first twenty", the parameters are easy 1,20. For "the 10,000'th", they are 10000,10000. Meeting the requirement for an invocation that lists all emirPs between 7,700 and 8,000 involved further bending, with the result that the subroutine has four parameters. Then I thought: why not specify the base for the numerology? So, five.

Now arise such questions as well-based emirPs. For instance, 17 is a base ten emirP, and in (say) base thirteen, 17 is 14 (and not an even number); 41 in base thirteen is 53 and that is a prime also. So, 17 (the number) is an emirP in both base ten and base thirteen. Is there a maximally-based emirP? But, for now, onwards in base ten.

The source would be F77, except for the idea of having the assistant routines GETPRIME(i), NEXTPRIME(n), and ISPRIME(n) all share the responsibility for the updating of a stash of prime numbers as they find the need rather than pre-emptively calculating a table of primes that is large enough for any expected usage, possibly by some high-speed trickery. Since the routines invoke each other back and forth, the dreaded attribute of RECURSIVE must be declared to encourage the compiler and so F90 is required. Otherwise, each routine would have to be careful over its own usage. Each would separately have to be able to proceed past the end of the current stash of prime numbers should its need arise, and augment the table as possible. For use in factoring numbers, the table need not be large as P(4792) = 46337, and the square of this exceeds the capacity of a signed thirty-two bit integer. But in this task, actual prime numbers are required well beyond that. Each run announces the table size, thereby showing the limit of its table of primes; there seemed no point in clearing the table each time to more closely follow the notion of separate runs.

For factoring numbers up to the 32-bit two's complement integer limit, the table need not be large, and it can easily enough be stored as a collection of sixteen and thirty-two bit numbers to save some space. Accessing an array PRIME(i) can be made a function GETPRIME(i) without a change in syntax (as needed in pascal: Prime[i] for an array, GetPrime(i) for a function), at least for reading. So, instead of 4792x4 = 19168 bytes, 12144 are needed, to set against the additional code complexity. These days, this is a difference of small importance. Actually, a further value is needed to hold Prime(4793) = 46349. Function ISPRIME does not determine its stepping point via the near universal usage of SQRT(n). If calculated in double precision this will give acceptable results for a 32-bit integer, but I have been burnt by an ad-hoc calculation nDgits = LOG10(x) + 1 failing for x = 10 because Log10(10) = 0·9999etc. which may well round to one, but truncates to zero. So, a SQRT-free demonstration, needed if the MOD function were unavailable. Actually, if P(i) is the last factor to be checked, this suffices up to the square of P(i + 1), not P(i). But this bound is only useful when successive numbers are being tested; for an individual factorisation it is too messy.

The initial version ran very slowly once past the first run, and this prompted some instrumentation, the addition of counters for the invocations. It transpired that GETPRIME(i) was being invoked thousands of millions of times... Once again, a N2 process is to be avoided, here when NEXTPRIME(n) was stepping linearly along the array of primes (in the hope of knowing the next prime along without having to recalculate it) and being invoked many times to do so. This was fixed by introducing a binary search, the list of primes being of course in order. The early version of NEXTPRIME(n) also did not attempt to save new primes, as it might be invoked with a value well beyond the end of the table and the next value on from n might be past many lesser primes. But by working on from PRIME(NP) up to n they can be found and saved along the way. Saving new primes in NEXTPRIME meant that GETPRIME should no longer itself attempt saving, as it is invoking NEXTPRIME. Mutual recursion is all very well, but organisation is important also. <lang Fortran> MODULE BAG !A mixed assortment.

      INTEGER MSG	!I/O unit number to share about.
      INTEGER PF16LIMIT,PF32LIMIT,NP			!Know that P(3512) = 32749, the last within two's complement 16-bit integers.
      PARAMETER (PF16LIMIT = 3512, PF32LIMIT = 4793)	!32749² = 1,072,497,001; the integer limit is 2,147,483,647 in 32-bit integers.
      INTEGER*2 PRIME16(PF16LIMIT)			!P(4792) =  46337, next is 46349 and 46337² = 2,147,117,569.
      INTEGER*4 PRIME32(PF16LIMIT + 1:PF32LIMIT)	!Let the compiler track the offsets.
      DATA NP,PRIME16(1),PRIME16(2)/2,2,3/	!But, start off with this. Note that Prime(NP) is odd...
      INTEGER NGP,NNP,NIP	!Invocation counts.
      DATA NGP,NNP,NIP/3*0/	!Starting at zero.
      CONTAINS		!Some co-operating routines.
       RECURSIVE INTEGER FUNCTION GETPRIME(I)	!They are numbered. As if in an array Prime(i).

Chooses from amongst two arrays, of sizes known from previous work.

        INTEGER I		!The desired index.
        INTEGER P		!A potential prime.
        INTEGER MP		!Counts beyond NP.
         NGP = NGP + 1		!Another try.
         IF (I.LE.0) THEN	!A silly question?
           GETPRIME = -666		!This should cause trouble!
         ELSE IF (I.LE.NP) THEN	!I have a little list.
           IF (I.LE.PF16LIMIT) THEN		!Well actually, two little lists.
             GETPRIME = PRIME16(I)		!So, direct access from this.
            ELSE				!Or, for the larger numbers,
             GETPRIME = PRIME32(I)		!This.
           END IF			!So much for previous effort.
         ELSE IF (I.LE.PF32LIMIT) THEN	!My list may not yet be completely filled.
           MP = NP			!This is the last stashed so far.
           P = GETPRIME(NP)		!I'll ask me to figure out where this is stashed.
  10       P = NEXTPRIME(P)		!Go for the next one along.
           MP = MP + 1			!Advance my count.
           IF (MP.LT.I) GO TO 10	!Are we there yet?
           GETPRIME = P		!Yep.
          ELSE			!But, my list may be too short.
           WRITE (MSG,*) "Hic!",I	!So, give an indication.
           STOP "Too far..."		!And quit.
         END IF		!For factoring 32-bit, need only 4792 elements.
       END FUNCTION GETPRIME	!This is probably faster than reading from a monster disc file.
       SUBROUTINE STASHPRIME(P)	!Saves a value in the stash.
        INTEGER P	!The prime to be stashed.
         NP = NP + 1		!Count another in.
         IF (NP.LE.PF16LIMIT) THEN	!But, where to?
           PRIME16(NP) = P			!The short list.
         ELSE IF (NP.LE.PF32LIMIT) THEN!Or,
           PRIME32(NP) = P			!The long list (which is shorter)
         ELSE				!Or,
           STOP "Stash overflow!"		!Oh dear.
         END IF			!It is stashed.
       END SUBROUTINE STASHPRIME	!The checking should be redundant.
       INTEGER FUNCTION FINDPRIME(IT)	!Via binary search.
        INTEGER IT	!The value to be found.
        INTEGER L,R,P	!Assistants.
         L = 0		!This is the *exclusive bounds* version.
         R = NP + 1	!Thus, L = first - 1; R = Last + 1.
   1     P = (R - L)/2		!Probe offset.
         IF (P.LE.0) THEN	!No span?
           FINDPRIME = -L		!Not found. IT follows Prime(L).
           RETURN			!Escape.
         END IF		!But otherwise,
         P = P + L		!Convert to an index into array PRIME, manifested via GETPRIME.
         IF (IT - GETPRIME(P)) 2,4,3	!Compare... Three way result.
   2     R = P; GO TO 1	!IT < PRIME(P): move R back.
   3     L = P; GO TO 1	!PRIME(P) < IT: move L forward.
   4     FINDPRIME = P		!PRIME(P) = IT: Found here!
       END FUNCTION FINDPRIME	!Simple and fast.
       RECURSIVE INTEGER FUNCTION NEXTPRIME(P)	!Some effort may ensue.

Checks the stash in PRIME in the hope of finding the next prime directly, otherwise advances from P. Collates a stash of primes in PRIME16 and PRIME32, advancing NP from 2 to PF32LIMIT as it goes.

        INTEGER P	!Not necessarily itself a prime number.
        INTEGER PI	!A possibly prime increment.
        INTEGER IT	!A finger.
         NNP = NNP + 1	!Another try
         IF (P.LE.1) THEN	!Dodge annoying effects.	Otherwise, FINDPRIME(P) would be zero.
           PI = 2		!The first prime is known.	Because P precedes Prime(1).
          ELSE			!The first stashed value is two.
           IT = (ABS(FINDPRIME(P)))	!The stash is ordered, and P = 2 will be found at 1.
           IF (IT.LT.NP) THEN		!Before my last-known prime? FINDPRIME(4) = -2 as it follows Prime(NP=2).
             PI = GETPRIME(IT + 1)	!Yes, so I know the next along already.
            ELSE	!Otherwise, it is past Prime(NP). and IT = NP thanks to the ABS.
             IF (NP.LT.PF32LIMIT) THEN	!If my stash is not yet filled,
               PI = GETPRIME(IT)	!I want to start with its last entry, known to be an odd number.
              ELSE			!So that I can stash each next prime along the way.
               PI = P			!Otherwise, start with P.
               IF (MOD(PI,2).EQ.0) PI = PI - 1	!And some suspicion.
             END IF			!So  much for a starting position.
             DO WHILE (PI.LE.P)	!Perhaps I must go further.
  11           PI = PI + 2			!Advance to a possibility.
               IF (.NOT.ISPRIME(PI)) GO TO 11	!Discard it?
               IF (IT.EQ.NP .AND. IT.LT.PF32LIMIT) THEN	!Am I one further on from NP?
                 CALL STASHPRIME(PI)		!Yes, and there is space to stash it.
                 IT = IT + 1			!Ready for the next one along, if it comes.
               END IF			!All are candidates for my stash.
             END DO		!Perhaps this prime will be big enough.
           END IF		!It may be a long way past PRIME(NP).
         END IF		!And I may have filled my stash along the way.
         NEXTPRIME = PI	!Take that.
       END FUNCTION NEXTPRIME	!Messy.
       RECURSIVE LOGICAL FUNCTION ISPRIME(N)	!Checks an arbitrary number, though limited by INTEGER size.

Crunches up to SQRT(N), and at worst needs to be able to reach Prime(4793) = 46349; greater than SQRT(2147483647) = 46340·95...

        INTEGER N	!The number.
        INTEGER I,F,Q	!Assistants.
         NIP = NIP + 1	!Another try.
         IF (N.LT.2) THEN	!Dodge annoyances.
           ISPRIME = .FALSE.	!Such as N = 1, and the first F being 2.
         ELSE			!Otherwise, some effort.
           ISPRIME = .FALSE.	!The usual result.
           I = 1		!Start at the start with PRIME(1).
  10       F = GETPRIME(I)	!Thus, no special case with F = 2.
           Q = N/F		!So, how many times? (Truncation, remember)
           IF (Q .GE. F) THEN	!Q < F means F² > N.
             IF (Q*F .EQ. N) RETURN	!A factor is found!
             I = I + 1		!Very well.
             GO TO 10		!Try the next possible factor.
           END IF		!And if we get through all that,
           ISPRIME = .TRUE.	!It is a prime number.
         END IF		!And we're done.
       END FUNCTION ISPRIME	!After a lot of divisions.
       INTEGER FUNCTION ESREVER(IT,BASE)	!Reversed digits.
        INTEGER IT	!The number to be reversed. Presumably positive.
        INTEGER BASE	!For the numerology.
        INTEGER N,R	!Assistants.
         IF (BASE.LE.1) STOP "Base 2 at least!"	!Ah, distrust.
         N = IT	!A copy I can damage.
         R = 0		!Here we go.
         DO WHILE(N.GT.0)	!A digit remains?
           R = R*BASE + MOD(N,BASE)	!Yes. Grab the low-order digit of N.
           N = N/BASE			!And reduce N by another power of BASE.
         END DO		!Test afresh.
         ESREVER = R		!That's it.
       END FUNCTION ESREVER	!Easy enough.
       SUBROUTINE EMIRP(BASE,N1,N2,I1,I2)	!Two-part interface.
        INTEGER BASE	!Avoid decimalist chauvinism.
        INTEGER N1,N2	!Count span to show those found.
        INTEGER I1,I2	!Search span.
        INTEGER N	!Counter.
        INTEGER P,R	!Assistants.
         WRITE (MSG,1) N1,N2,BASE,I1,I2	!Declare the purpose.
   1     FORMAT ("Show the first ",I0," to ",I0,	!So as to encompass
    &     " emirP numbers (base ",I0,") between ",I0," and ",I0)	!The specified options.
         N = 0		!None found so far.
         P = I1 - 1	!Syncopation. The starting position might itself be a prime number.

Chase another emirP.

  10     P = NEXTPRIME(P)		!I want the next prime.
         IF (P.LT.I1) GO TO 10		!Up to the starting mark yet?
         IF (P.GT.I2) GO TO 900	!Past the finishing mark?
         R = ESREVER(P,BASE)		!Righto, a candidate.
         IF (P .EQ. R) GO TO 10	!Palindromes are rejected.
         IF (.NOT.ISPRIME(R)) GO TO 10	!As are non-primes.
         N = N + 1			!Aha, a success!

c if (mod(n,100) .eq. 0) then c write (6,66) N,P,R,NP,NGP,NNP,NIP c 66 format ("N=",I5,",p=",I6,",R=",I6,",NP=",I6,3I12) c end if

         IF (N.GE.N1) WRITE (6,*) P,R	!Are we within the count span?
         IF (N.LT.N2) GO TO 10		!Past the end?

Closedown.

 900     WRITE (MSG,901) NP,GETPRIME(NP)	!Might be of interest.
 901     FORMAT ("Stashed up to Prime(",I0,") = ",I0,/)
       END SUBROUTINE EMIRP	!Well, that was odd.
     END MODULE BAG	!Mixed.
     PROGRAM POKE	!Now put it all to the test.
     USE BAG		!With ease.
     MSG = 6		!Standard output.
     CALL EMIRP(10,    1,   20,   1,   1000)	!These parameters
     CALL EMIRP(10,    1,   28,7700,   8000)	!Meet the specifiction
     CALL EMIRP(10,10000,10000,   1,1000000)	!Of three separate invocations.
     END	!Whee!</lang>

Output:

Show the first 1 to 20 emirP numbers (base 10) between 1 and 1000
          13          31
          17          71
          31          13
          37          73
          71          17
          73          37
          79          97
          97          79
         107         701
         113         311
         149         941
         157         751
         167         761
         179         971
         199         991
         311         113
         337         733
         347         743
         359         953
         389         983
Stashed up to Prime(77) = 389

Show the first 1 to 28 emirP numbers (base 10) between 7700 and 8000
        7717        7177
        7757        7577
        7817        7187
        7841        1487
        7867        7687
        7879        9787
        7901        1097
        7927        7297
        7949        9497
        7951        1597
        7963        3697
Stashed up to Prime(1008) = 8009

Show the first 10000 to 10000 emirP numbers (base 10) between 1 and 1000000
      948349      943849
Stashed up to Prime(4793) = 46349

And the invocation counts: GETPRIME 15,200,926; NEXTPRIME 74,799; ISPRIME 548,944. The execution time is small: the run completes even as the new output window stabilises on the screen.

An earlier version used a larger table of primes (size 123,456) as EMIRP advanced via I = I + 1; P = GETPRIME(I) thereby only considering successive primes as candidates without having to check factors to find them. By converting to P = NEXTPRIME(P) the table could be made smaller, but this meant being clear within NEXTPRIME that if P was greater than the last stashed prime, and the table was filled, then the table no longer offered an advantage and the search should start from P. With larger P, starting from Prime(NP) meant more and more catching up.

Function ISPRIME uses GETPRIME(i) for its successive factor trials, and thus works only up to the table limit unless GETPRIME were to be extended. If NEXTPRIME were used instead the table would be accessed where possible, otherwise a march would begin. If ISPRIME were to be changed to accept say a 64-bit integer the table size limit could be increased, but alas a complete table would require around 139,094,144 entries, and all those trial divisions would take a while. Still, the possible factors go no further than F = SQRT(N), approximately calculated now, and to check that F has no factors requires only tests up to SQRT(F)...

Project Extensible_prime_generator#Fortran offers a scheme supporting such routines as PRIME(i) instead of GETPRIME(i), NEXTPRIME(N), and ISPRIME(N), using a disc file in place of a large array in memory - whose values would be lost when the run finishes. But instead of about a hundred lines of Fortran to provide primes for EMIRP, module PRIMEBAG requires 311 lines.

FreeBASIC

<lang freebasic>' FB 1.05.0 Win64

Function isPrime(n As UInteger) As Boolean

 If n < 2 Then Return False
 If n Mod 2 = 0 Then Return n = 2
 If n Mod 3 = 0 Then Return n = 3
 Dim d As Integer = 5
 While d * d <= n
   If n Mod d = 0 Then Return False
   d += 2
   If n Mod d = 0 Then Return False
   d += 4
 Wend
 Return True

End Function

Function reverseNumber(n As UInteger) As UInteger

 If n < 10 Then Return n
 Dim As Integer sum = 0
 While n > 0
   sum = 10 * sum  + (n Mod 10)
   n \= 10
 Wend
 Return sum

End Function

Function isEmirp(n As UInteger) As Boolean

 If Not isPrime(n) Then Return False
 Dim As UInteger reversed = reverseNumber(n)
 Return reversed <> n AndAlso CInt(isPrime(reversed))

End Function

' We can immediately rule out all primes from 2 to 11 as these are palindromic ' and not therefore Emirp primes Print "The first 20 Emirp primes are :" Dim As UInteger count = 0, i = 13 Do

 If isEmirp(i) Then
   Print Using "####"; i;
   count + = 1
 End If
 i += 2

Loop Until count = 20 Print : Print Print "The Emirp primes between 7700 and 8000 are:" i = 7701 Do

 If isEmirp(i) Then Print Using "#####"; i;
 i += 2

Loop While i < 8000 Print : Print Print "The 10,000th Emirp prime is : "; i = 13 : count = 0 Do

 If isEmirp(i) Then count += 1
 If count = 10000 Then Exit Do
 i += 2

Loop Print i Print Print "Press any key to quit" Sleep</lang>

Output:
The first 20 Emirp primes are :
  13  17  31  37  71  73  79  97 107 113 149 157 167 179 199 311 337 347 359 389


The Emirp primes between 7700 and 8000 are:
 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963

The 10,000th Emirp prime is : 948349

Frink

<lang frink> isEmirp[x] := {

  if isPrime[x]
  {
     s = toString[x]
     rev = reverse[s]
     return s != rev and isPrime[parseInt[rev]]
  }
  return false  

}

// Functions that return finite and infinite enumerating expressions of emirps emirps[] := select[primes[], getFunction["isEmirp", 1]] emirps[begin, end] := select[primes[begin, end], getFunction["isEmirp", 1]]

println["First 20: " + first[emirps[], 20]] println["Range: " + emirps[7700, 8000]] println["10000th: " + last[first[emirps[], 10000]]] </lang>

Output:
First 20: [13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389]
Range: [7717, 7757, 7817, 7841, 7867, 7879, 7901, 7927, 7949, 7951, 7963]
10000th: 948349

Go

This has a bit more to it than required but little optimization, other than using a fast Sieve of Atkin implementation for the prime numbers and skipping some tests on ranges of impossible Emirps (thanks to a comment on the discussion page).

As a side note, by using the same API as the prime number generator this also demonstrates how Go interfaces can be used (and note it doesn't require the existing code/package to know anything about the interface being defined). <lang go>package main

import ( "flag" "fmt" "github.com/jbarham/primegen.go" // Sieve of Atkin implementation "math" )

// primeCache is a simple cache of small prime numbers, it very // well might be faster to just regenerate them as needed. type primeCache struct { gen *primegen.Primegen primes []uint64 }

func NewPrimeCache() primeCache { g := primegen.New() return primeCache{gen: g, primes: []uint64{g.Next()}} }

// upto returns a slice of primes <= n. // The returned slice is shared with all callers, do not modify it! func (pc *primeCache) upto(n uint64) []uint64 { if p := pc.primes[len(pc.primes)-1]; p <= n { for p <= n { p = pc.gen.Next() pc.primes = append(pc.primes, p) } return pc.primes[:len(pc.primes)-1] } for i, p := range pc.primes { if p > n { return pc.primes[:i] } } panic("not reached") }

var cache = NewPrimeCache()

func sqrt(x uint64) uint64 { return uint64(math.Sqrt(float64(x))) }

// isprime does a simple test if n is prime. // See also math/big.ProbablyPrime(). func isprime(n uint64) bool { for _, p := range cache.upto(sqrt(n)) { if n%p == 0 { return false } } return true }

func reverse(n uint64) (r uint64) { for n > 0 { r = 10*r + n%10 n /= 10 } return }

// isEmirp does a simple test if n is Emirp, n must be prime func isEmirp(n uint64) bool { r := reverse(n) return r != n && isprime(r) }

// EmirpGen is a sequence generator for Emirp primes type EmirpGen struct { pgen *primegen.Primegen nextn uint64 r1l, r1h uint64 r2l, r2h uint64 r3l, r3h uint64 }

func NewEmirpGen() *EmirpGen { e := &EmirpGen{pgen: primegen.New()} e.Reset() return e }

func (e *EmirpGen) Reset() { e.pgen.Reset() e.nextn = 0 // Primes >7 cannot end in 2,4,5,6,8 (leaving 1,3,7) e.r1l, e.r1h = 20, 30 e.r2l, e.r2h = 40, 70 e.r3l, e.r3h = 80, 90 }

func (e *EmirpGen) next() (n uint64) { for n = e.pgen.Next(); !isEmirp(n); n = e.pgen.Next() { // Skip over inpossible ranges // Benchmarks show this saves ~20% when generating n upto 1e6 switch { case e.r1l <= n && n < e.r1h: e.pgen.SkipTo(e.r1h) case e.r2l <= n && n < e.r2h: e.pgen.SkipTo(e.r2h) case e.r3l <= n && n < e.r3h: e.pgen.SkipTo(e.r3h) case n > e.r3h: e.r1l *= 10 e.r1h *= 10 e.r2l *= 10 e.r2h *= 10 e.r3l *= 10 e.r3h *= 10 } } return }

func (e *EmirpGen) Next() (n uint64) { if n = e.nextn; n != 0 { e.nextn = 0 return } return e.next() }

func (e *EmirpGen) Peek() uint64 { if e.nextn == 0 { e.nextn = e.next() } return e.nextn }

func (e *EmirpGen) SkipTo(nn uint64) { e.pgen.SkipTo(nn) e.nextn = 0 return }

// SequenceGen defines an arbitrary sequence generator. // Both *primegen.Primegen and *EmirpGen implement this. type SequenceGen interface { Next() uint64 Peek() uint64 Reset() SkipTo(uint64) //Count(uint64) uint64 // not implemented for *EmirpGen }

func main() { var start, end uint64 var n, skip uint var oneline, primes bool flag.UintVar(&n, "n", math.MaxUint64, "number of emirps to print") flag.UintVar(&skip, "skip", 0, "number of emirps to skip") flag.Uint64Var(&start, "start", 0, "start at x>=start") flag.Uint64Var(&end, "end", math.MaxUint64, "stop at x<=end") flag.BoolVar(&oneline, "oneline", false, "output on a single line") flag.BoolVar(&primes, "primes", false, "generate primes rather than emirps") flag.Parse()

sep := "\n" if oneline { sep = " " }

// Here's where making SequenceGen an interface comes in handy: var seq SequenceGen if primes { seq = primegen.New() } else { seq = NewEmirpGen() }

for seq.Peek() < start { seq.Next() } for ; skip > 0; skip-- { seq.Next() } for ; n > 0 && seq.Peek() <= end; n-- { fmt.Print(seq.Next(), sep) } if oneline { fmt.Println() } }</lang>

Output:
$ ./emirp -h
Usage of ./emirp:
  -end=18446744073709551615: stop at x<=end
  -n=18446744073709551615: number of emirps to print
  -oneline=false: output on a single line
  -primes=false: generate primes rather than emirps
  -skip=0: number of emirps to skip
  -start=0: start at x>=start

$ ./emirp -oneline -n 20 -primes # not asked for, just demonstrating SequenceGen interface
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 

$ ./emirp -oneline -n 20
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389 

$ ./emirp -oneline -start 7800 -end 8000
7817 7841 7867 7879 7901 7927 7949 7951 7963 

$ ./emirp -skip 9999 -n 1
948349

Groovy

Translation of: Java

<lang groovy>class Emirp {

   //trivial prime algorithm, sub in whatever algorithm you want
   static boolean isPrime(long x) {
       if (x < 2) return false
       if (x == 2) return true
       if ((x & 1) == 0) return false
       for (long i = 3; i <= Math.sqrt(x); i += 2) {
           if (x % i == 0) return false
       }
       return true
   }
   static boolean isEmirp(long x) {
       String xString = Long.toString(x)
       if (xString.length() == 1) return false
       if (xString.matches("[24568].*") || xString.matches(".*[24568]")) return false //eliminate some easy rejects
       long xR = Long.parseLong(new StringBuilder(xString).reverse().toString())
       if (xR == x) return false
       return isPrime(x) && isPrime(xR)
   }
   static void main(String[] args) {
       int count = 0
       long x = 1
       println("First 20 emirps:")
       while (count < 20) {
           if (isEmirp(x)) {
               count++
               print(x + " ")
           }
           x++
       }
       println("\nEmirps between 7700 and 8000:")
       for (x = 7700; x <= 8000; x++) {
           if (isEmirp(x)) {
               print(x + " ")
           }
       }
       println("\n10,000th emirp:")
       x = 1
       count = 0
       for (; count < 10000; x++) {
           if (isEmirp(x)) {
               count++
           }
       }
       //--x to fix the last increment from the loop
       println(--x)
   }

}</lang>

Output:
First 20 emirps:
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389 
Emirps between 7700 and 8000:
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963 
10,000th emirp:
948349

Haskell

Library: primes
Works with: GHC version 7.8.3
Works with: primes version 0.2.1.0

<lang haskell>#!/usr/bin/env runghc

import Data.HashSet (HashSet, fromList, member) import Data.List import Data.Numbers.Primes import System.Environment import System.Exit import System.IO

-- optimization mentioned on the talk page startDigOK :: Integer -> Bool startDigOK n = head (show n) `elem` "1379"

-- infinite list of primes that have an acceptable first digit filtPrimes :: [Integer] filtPrimes = filter startDigOK primes

-- finite list of primes that have an acceptable first digit and -- are the specified number of digits in length nDigsFPr :: Integer -> [Integer] nDigsFPr n =

 takeWhile (< hi) $ dropWhile (< lo) filtPrimes
 where lo = 10 ^ (n - 1)
       hi = 10 ^ n

-- hash set of the filtered primes of the specified number of digits nDigsFPrHS :: Integer -> HashSet Integer nDigsFPrHS n = fromList $ nDigsFPr n

-- infinite list of hash sets, where each hash set contains primes of -- a specific number of digits, i. e. index 2 contains 2 digit primes, -- index 3 contains 3 digit primes, etc. -- Don't access index 0, because it will return an error fPrByDigs :: [HashSet Integer] fPrByDigs = map nDigsFPrHS [0 ..]

isEmirp :: Integer -> Bool isEmirp n =

 let revStr = reverse $ show n
     reversed = read revStr
     hs = fPrByDigs !! length revStr
 in (startDigOK n) && (reversed /= n) && (reversed `member` hs)

emirps :: [Integer] emirps = filter isEmirp primes

emirpSlice :: Integer -> Integer -> [Integer] emirpSlice from to =

 genericTake numToTake $ genericDrop numToDrop emirps
 where
   numToDrop = from - 1
   numToTake = 1 + to - from

emirpValues :: Integer -> Integer -> [Integer] emirpValues lo hi =

 dropWhile (< lo) $ takeWhile (<= hi) emirps

usage = do

 name <- getProgName
 putStrLn $ "usage: " ++ name ++ " lo hi [slice | values]"
 exitFailure

main = do

 hSetBuffering stdout NoBuffering
 args <- getArgs
 fixedArgs <- case length args of
   1 -> return $ args ++ args ++ ["slice"]
   2 -> return $ args ++ ["slice"]
   3 -> return args
   _ -> usage
 let lo = read $ fixedArgs !! 0
     hi = read $ fixedArgs !! 1
 case fixedArgs !! 2 of
  "slice" -> print $ emirpSlice lo hi
  "values" -> print $ emirpValues lo hi
  _ -> usage</lang>
Output:

This program uses the same format for command line arguments as the Raku example.

$ ./Emirp.hs 1 20
[13,17,31,37,71,73,79,97,107,113,149,157,167,179,199,311,337,347,359,389]
$ ./Emirp.hs 7700 8000 values
[7717,7757,7817,7841,7867,7879,7901,7927,7949,7951,7963]
$ ./Emirp.hs 10000
[948349]

List-based

Using list-based incremental sieve from here and trial division from here, <lang haskell> λ> let emirp p = let q=(read.reverse.show) p in q /= p && noDivsBy primesW q

λ> take 20 . filter emirp $ primesW

[13,17,31,37,71,73,79,97,107,113,149,157,167,179,199,311,337,347,359,389]

λ> filter emirp . takeWhile (< 8000) . dropWhile (< 7700) $ primesW

[7717,7757,7817,7841,7867,7879,7901,7927,7949,7951,7963] -- 0.02 secs

λ> (!! (10000-1)) . filter emirp $ primesW

948349 -- 0.69 secs</lang>

J

Solution:<lang j> emirp =: (] #~ ~: *. 1 p: ]) |.&.:":"0 NB. Input is array of primes</lang>

In other words: select numbers from the argument list whose decimal reverse is both different and prime and return those decimal reversed values as numbers. (For simplicity, we require that our argument be a list of prime numbers.)

Examples<lang j> /:~ emirp p: 2+i.75 13 17 31 37 71 73 79 97 113 311 701 733 743 751 761 941 953 971 983 991

  (#~ 7700&< * 8000&>) /:~ emirp i.&.(_1&p:) 9999

7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963

  # emirp p: i.74791                          NB. 10,000th emirp is 74,790th prime 

10000

  p: 74790  

948349

  NB. alternative approach (first emirp value would be at index 0):
  9999 { /:~ emirp p:i.1e5

943849</lang>

Java

This implementation uses a slight optimization discussed in the talk page. It will not actually check the primality (forwards or backwards) for a number that starts or ends with the digits 2, 4, 5, 6, or 8 since no primes greater than 7 end with those digits. <lang java>public class Emirp{

//trivial prime algorithm, sub in whatever algorithm you want public static boolean isPrime(long x){ if(x < 2) return false; if(x == 2) return true; if((x & 1) == 0) return false;

for(long i = 3; i <= Math.sqrt(x);i+=2){ if(x % i == 0) return false; }

return true; }

public static boolean isEmirp(long x){ String xString = Long.toString(x); if(xString.length() == 1) return false; if(xString.matches("[24568].*") || xString.matches(".*[24568]")) return false; //eliminate some easy rejects long xR = Long.parseLong(new StringBuilder(xString).reverse().toString()); if(xR == x) return false; return isPrime(x) && isPrime(xR); }

public static void main(String[] args){ int count = 0; long x = 1;

System.out.println("First 20 emirps:"); while(count < 20){ if(isEmirp(x)){ count++; System.out.print(x + " "); } x++; }

System.out.println("\nEmirps between 7700 and 8000:"); for(x = 7700; x <= 8000; x++){ if(isEmirp(x)){ System.out.print(x +" "); } }

System.out.println("\n10,000th emirp:"); for(x = 1, count = 0;count < 10000; x++){ if(isEmirp(x)){ count++; } } //--x to fix the last increment from the loop System.out.println(--x); } }</lang>

Output:
First 20 emirps:
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389 
Emirps between 7700 and 8000:
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963 
10,000th emirp:
948349

JavaScript

Script source <lang javascript>function isPrime(n) {

   if (!(n % 2) || !(n % 3)) return 0;
   var p = 1;
   while (p * p < n) {
       if (n % (p += 4) == 0 || n % (p += 2) == 0) {
           return false
       }
   }
   return true

}

function isEmirp(n) {

   var s = n.toString();
   var r = s.split("").reverse().join("");
   return r != n && isPrime(n) && isPrime(r);

}

function main() {

   var out = document.getElementById("content");
   var c = 0;
   var x = 11;
   var last;
   var str;
   while (c < 10000) {
       if (isEmirp(x)) {
           c += 1;
           // first twenty emirps
           if (c == 1) {

str = "

" + x; } else if (c < 20) { str += " " + x; } else if (c == 20) { out.innerHTML = str + " " + x + "

";

           }
           // all emirps between 7,700 and 8,000
           else if (7700 <= x && x <= 8001) {
               if (last < 7700) {

str = "

" + x; } else { str += " " + x; } } else if (x > 7700 && last < 8001) { out.innerHTML += str + "

";

           }
           // the 10,000th emirp
           else if (c == 10000) {

out.innerHTML += "

" + x + "

";

           }
           last = x;
       }
       x += 2;
   }

} </lang>

Solution page <lang html><!DOCTYPE html> <html>

   <head>
       <title>Emirp primes</title>
       <script src="emirp.js"></script>
   </head>
   <body onload="main()">
   </body>

</html></lang>

Output:
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963
948349

jq

Works with: jq version with foreach

The given tasks are simple to implement in jq if unbounded streams can be harnessed, which is possible in versions of jq that support "foreach" and "break". This article accordingly showcases the use of these builtins, which have been available since July 7, 2014.

Infrastructure: prime numbers <lang jq>def is_prime:

 if  . == 2 then true
 else
    2 < . and . % 2 == 1 and
      (. as $in
      | (($in + 1) | sqrt) as $m
      | [false, 3] | until( .[0] or .[1] > $m; [$in % .[1] == 0, .[1] + 2])
      | .[0]
      | not)
 end ;

def relatively_prime:

 .[0] as $n
 | .[1] as $primes
 | ($n | sqrt) as $s
 | (.[1] | length) as $length
 | [0, true]
 | until( .[0] > $length or ($primes[.[0]] > $s) or .[1] == false;
         [.[0] + 1, ($n % $primes[.[0]] != 0)] )
 | .[1] ;

def primes:

 # The helper function, next, has arity 0 for tail recursion optimization;
 # its input must be an array of primes of length at least 2, 
 # the last also being the greatest.
 def next:
    . as $previous
    | .[length-1] as $last
    | [(2 + $last), $previous]
    | until( relatively_prime ; .[0] += 2) as $nextp
    | ( $previous + [$nextp[0]] );
 2, ([2,3] | recurse( next ) | .[-1]) ;</lang>

Emirps <lang jq>def is_emirp:

 . as $n
 | tostring | explode | reverse | implode | tonumber | (. != $n) and is_prime ;
  1. emirps(n) emits [i, p] where p is the i-th emirp, up to and including i == n

def emirps(n):

 label $start
 | # state: [count, $emirp]
 foreach primes as $p ([0, null];
   if .[0] >= n then break $start
   else if ($p | is_emirp) then [.[0] + 1, $p] else .[1] = null end
   end;
   if .[1] then . else empty end ) ;</lang>

The tasks

(0) The three separate subtasks can be accomplished in one step as follows: <lang jq>emirps(10000) | select( .[0] <= 20 or (7700 <= .[1] and .[1] <= 8000) or .[0] == 10000)</lang>

The output of the above is shown below.

To accomplish the three subtasks separately:

(1) First twenty: <lang jq>emirps(20)</lang>

(2) Selection by value <lang>label $top | primes | if (7700 <= .) and (. <= 8000) and is_emirp then .

  elif . > 8000 then break $top
  else empty
  end</lang>

(3) 10,000th <lang>last(emirps(10000)) | .[1]</lang>

Output:

<lang sh>$ jq -c -n -f Emirp_primes.jq [1,13] [2,17] [3,31] [4,37] [5,71] [6,73] [7,79] [8,97] [9,107] [10,113] [11,149] [12,157] [13,167] [14,179] [15,199] [16,311] [17,337] [18,347] [19,359] [20,389] [180,7717] [181,7757] [182,7817] [183,7841] [184,7867] [185,7879] [186,7901] [187,7927] [188,7949] [189,7951] [190,7963] [10000,948349]</lang>

Julia

<lang julia>using Primes

function collapse(n::Array{<:Integer})

   sum = 0
   for (p, d) in enumerate(n)
       sum += d * 10 ^ (p - 1)
   end
   return sum

end

Base.reverse(n::Integer) = collapse(reverse(digits(n))) isemirp(n::Integer) = (if isprime(n) m = reverse(n); return m != n && isprime(m) end; false)

function firstnemirps(m::Integer)

   rst = zeros(typeof(m), m)
   i, n = 1, 2
   while i ≤ m
       if isemirp(n)
           rst[i] = n
           i += 1
       end
       n += 1
   end
   return rst

end

emirps = firstnemirps(10000) println("First 20:\n", emirps[1:20]) println("Between 7700 and 8000:\n", filter(x -> 7700 ≤ x ≤ 8000, emirps)) println("10000th:\n", emirps[10000])

</lang>

Output:
First 20:
[13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389]
Between 7700 and 8000:
[7717, 7757, 7817, 7841, 7867, 7879, 7901, 7927, 7949, 7951, 7963]
10000th:
948349

Kotlin

Translation of: FreeBASIC

<lang scala>// version 1.1.4

fun isPrime(n: Int) : Boolean {

   if (n < 2) return false
   if (n % 2 == 0) return n == 2
   if (n % 3 == 0) return n == 3
   var d = 5
   while (d * d <= n) {
       if (n % d == 0) return false
       d += 2
       if (n % d == 0) return false
       d += 4
   }
   return true

}

fun reverseNumber(n: Int) : Int {

   if (n < 10) return n
   var sum = 0
   var nn = n
   while (nn > 0) {
       sum = 10 * sum + nn % 10
       nn /= 10
   }
   return sum

}

fun isEmirp(n: Int) : Boolean {

   if (!isPrime(n)) return false
   val reversed = reverseNumber(n)
   return reversed != n && isPrime(reversed)

}

fun main(args: Array<String>) {

   println("The first 20 Emirp primes are :")
   var count = 0
   var i = 13
   do {
       if (isEmirp(i)) {
           print(i.toString() + " ")
           count++
       }
       i += 2
   }
   while (count < 20)
   println()
   println()
   println("The Emirp primes between 7700 and 8000 are :")
   i = 7701
   do {
       if (isEmirp(i)) print(i.toString() + " ")
       i += 2
   }
   while (i < 8000)
   println()
   println()
   print("The 10,000th Emirp prime is : ")
   i = 13
   count = 0
   do {
       if (isEmirp(i)) count++
       if (count == 10000) break
       i += 2
   }
   while(true)
   print(i)

}</lang>

Output:
The first 20 Emirp primes are :
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389

The Emirp primes between 7700 and 8000 are :
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963

The 10,000th Emirp prime is : 948349

Lua

<lang Lua> function isPrime (n)

   if n < 2 then return false end
   if n < 4 then return true end
   if n % 2 == 0 then return false end
   for d = 3, math.sqrt(n), 2 do
       if n % d == 0 then return false end
   end
   return true

end

function isEmirp (n)

   if not isPrime(n) then return false end
   local rev = tonumber(string.reverse(n))
   if rev == n then return false end
   return isPrime(rev)

end

function emirpGen (mode, a, b)

   local count, n, eString = 0, 0, ""
   if mode == "between" then
       for n = a, b do
           if isEmirp(n) then eString = eString .. n .. " " end
       end
       return eString
   end
   while count < a do
       n = n + 1
       if isEmirp(n) then
           eString = eString .. n .. " "
           count = count + 1
       end
   end
   if mode == "first" then return eString end
   if mode == "Nth" then return n end

end

if #arg > 1 and #arg < 4 then

   print(emirpGen(arg[1], tonumber(arg[2]), tonumber(arg[3])))

else

   print("Wrong number of arguments")

end </lang> Command prompt session:

>lua emirp.lua first 20
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389

>lua emirp.lua between 7700 8000
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963

>lua emirp.lua Nth 10000
948349

Maple

<lang Maple>EmirpPrime := proc(n)

   local eprime;
   eprime := parse(StringTools:-Reverse(convert(n,string)));
   if n <> eprime and isprime(n) and isprime(eprime) then
       return n;
   end if;

end proc: EmirpsList := proc( n )

   local i, values;
   values := Array([]):
   i := 0:
   do
       i := i + 1;
       if EmirpPrime(i) <> NULL then
           ArrayTools:-Append(values, i);
       end if;
   until numelems(values) = n;
   return convert(values,list);

end proc: EmirpsList(20); EmirpPrime~([seq(7700..8000)]); EmirpsList(10000)[-1]; </lang>

Output:
[13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389]
[7717, 7757, 7817, 7841, 7867, 7879, 7901, 7927, 7949, 7951, 7963]
948349

Mathematica/Wolfram Language

First a simple helper function <lang Mathematica>reverseDigits[n_Integer] := FromDigits@Reverse@IntegerDigits@n</lang> A function to test whether n is an emirp prime <lang Mathematica>emirpQ[n_Integer] :=

Block[{rev = reverseDigits@n}, And[n != rev, PrimeQ[rev]]]</lang>

Note, this test function assumes n is prime. Adding a check to verify n is prime will have an impact on execution time for finding the mth emirp prime particularly when m is large.

Finally, a function which returns the first emirp prime larger than the supplied argument <lang Mathematica>nextEmirp[n_Integer] :=

NestWhile[NextPrime, NextPrime[n], ! emirpQ[#] &]</lang>

With these the first 20 emirp primes are computed as: <lang Mathematica>Rest@NestList[nextEmirp, 1, 20]</lang>

Output:
{13,17,31,37,71,73,79,97,107,113,149,157,167,179,199,311,337,347,359,389}

The emirp primes betweewn 7700 and 8000 are: <lang Mathematica>Rest@NestWhileList[nextEmirp, 7700, # < 8000 &]</lang>

Output:
{7717,7757,7817,7841,7867,7879,7901,7927,7949,7951,7963,9001}

The 10,000th emirp prime is: <lang Mathematica>Nest[nextEmirp, 1, 10000]</lang>

Output:
948349

MATLAB

<lang Matlab> NN=(1:1:1e6); %Natural numbers between 1 and t pns=NN(isprime(NN)); %prime numbers p=fliplr(str2num(fliplr(num2str(pns)))); a=pns(isprime(p)); b=p(isprime(p)); c=a-b; emirps=NN(a(c~=0)); </lang>

Output:
the first twenty emirps are: emirps(1:20)
ans =

  Columns 1 through 14

    13    17    31    37    71    73    79    97   107   113   149   157   167   179

  Columns 15 through 20

   199   311   337   347   359   389
The emirp primes betweewn 7700 and 8000 are: 
emirps(emirps>=7700 & emirps<=8000)
ans =

  Columns 1 through 7

        7717        7757        7817        7841        7867        7879        7901

  Columns 8 through 11

        7927        7949        7951        7963
The 10,000th emirp prime is: emirps(10000)
ans =

      948349

Modula-2

<lang modula2>MODULE Emirp; FROM Conversions IMPORT StrToLong; FROM FormatString IMPORT FormatString; FROM LongMath IMPORT sqrt; FROM Terminal IMPORT WriteString,WriteLn,ReadChar;

PROCEDURE IsPrime(x : LONGINT) : BOOLEAN; VAR

   i : LONGINT;
   u : LONGREAL;
   v : LONGINT;

BEGIN

   IF x<2 THEN RETURN FALSE END;
   IF x=2 THEN RETURN TRUE END;
   IF x MOD 2 = 0 THEN RETURN FALSE END;
   u := sqrt(FLOAT(x));
   v := TRUNC(u);
   FOR i:=3 TO v BY 2 DO
       IF x MOD i = 0 THEN RETURN FALSE END
   END;
   RETURN TRUE

END IsPrime;

PROCEDURE IsEmirp(x : LONGINT) : BOOLEAN; VAR

   buf,rev : ARRAY[0..9] OF CHAR;
   i,j : INTEGER;
   y : LONGINT;

BEGIN

   (* Terminate early if the number is even *)
   IF x MOD 2 = 0 THEN RETURN FALSE END;
   (* First convert the input to a string *)
   FormatString("%l", buf, x);
   (* Create a copy of the string revered *)
   j := 0;
   WHILE buf[j] # 0C DO INC(j) END;
   DEC(j);
   i := 0;
   WHILE buf[i] # 0C DO
       rev[i] := buf[j];
       INC(i);
       DEC(j)
   END;
   rev[i] := 0C;
   (* Convert the reversed copy to a number *)
   StrToLong(rev,y);
   (* Terminate early if the number is even *)
   IF y MOD 2 = 0 THEN RETURN FALSE END;
   (* Discard palindromes *)
   IF x=y THEN RETURN FALSE END;
   RETURN IsPrime(x) AND IsPrime(y)

END IsEmirp;

VAR

   buf : ARRAY[0..63] OF CHAR;
   x,count : LONGINT;

BEGIN

   count := 0;
   x := 1;
   WriteString("First 20 emirps:");
   WriteLn;
   WHILE count<20 DO
       IF IsEmirp(x) THEN
           INC(count);
           FormatString("%l ", buf, x);
           WriteString(buf)
       END;
       INC(x)
   END;
   WriteLn;
   WriteString("Emirps between 7700 and 8000:");
   WriteLn;
   FOR x:=7700 TO 8000 DO
       IF IsEmirp(x) THEN
           FormatString("%l ", buf, x);
           WriteString(buf)
       END
   END;
   WriteLn;
   WriteString("10,000th emirp:");
   WriteLn;
   count := 0;
   x := 1;
   WHILE count<10000 DO
       IF IsEmirp(x) THEN
           INC(count);
       END;
       INC(x)
   END;
   FormatString("%l ", buf, x-1);
   WriteString(buf);
   WriteLn;
   ReadChar

END Emirp.</lang>

Nim

Using a simple test of primality

This is not the most efficient way to solve the tasks, but it doesn’t set a limit a priori. We have done some optimizations to speed up the primality test. Using a cache didn’t improve the times. The program runs in about 100 ms. <lang Nim>import math

  1. Increments to find the next divisor when testing primality.

const Incr = [4, 2, 4, 2, 4, 6, 2, 6]

  1. ---------------------------------------------------------------------------------------------------

func reversed(n: int): int =

 ## Return the reversed number in base 10 representation.
 var n = n
 while true:
   result = 10 * result + n mod 10
   n = n div 10
   if n == 0:
     break
  1. ---------------------------------------------------------------------------------------------------

func isPrime(n: int): bool =

 ## Check if a number is prime.
 ## We are already sure that "n" is not a multiple of 2, 3 or 5,
 ## so we don’t check the modulo.
 var k = 7
 var i = 0
 while k <= int(sqrt(n.toFloat)):
   if n mod k == 0:
     return false
   inc k, Incr[i]
   i = if i == Incr.high: 0 else: i + 1
 result = true
  1. ---------------------------------------------------------------------------------------------------

iterator emirps(): int =

 ## Yield the emirps.
 var n = 13
 var i = 2   # Current index in the increment array.
 while true:
   # We find the reversed number first as it allows to eliminate candidates.
   let r = reversed(n)
   if r != n and r mod 10 in [1, 3, 7, 9] and n.isPrime and r.isPrime:
     yield n
   inc n, Incr[i]
   i = if i == Incr.high: 0 else: i + 1
  1. ———————————————————————————————————————————————————————————————————————————————————————————————————

stdout.write "First 20 emirps:" var count = 0 for n in emirps():

 stdout.write ' ', n
 inc count
 if count == 20:
   echo ""
   break

stdout.write "Emirps between 7700 and 8000:" for n in emirps():

 if n in 7700..8000:
   stdout.write ' ', n
 elif n > 8000:
   echo ""
   break

stdout.write "The 10000th emirp: " count = 0 for n in emirps():

 inc count
 if count == 10000:
   echo n
   break</lang>
Output:
First 20 emirps: 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389
Emirps between 7700 and 8000: 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963
The 10000th emirp: 948349

Using a sieve of Erathostenes

The sieve is a simple one, with no optimization to reduce its size. As it is a non-extensible sieve, there is a limit. So, in task 3, we check if the sieve size must be increased. The program runs in about 6 ms.

<lang Nim>import math

const N = 1_000_000

  1. Sieve of Erathostenes.

var isPrime: array[2..N, bool] for item in isPrime.mitems: item = true

  1. Initialize the sieve.

for n in 2..int(sqrt(N.toFloat)):

 if isPrime[n]:
   for k in countup(n * n, N, n):
     isPrime[k] = false
  1. ---------------------------------------------------------------------------------------------------

func reversed(n: int): int =

 ## Return the reversed number in base 10 representation.
 var n = n
 while true:
   result = 10 * result + n mod 10
   n = n div 10
   if n == 0:
     break
  1. ---------------------------------------------------------------------------------------------------

iterator emirps(): int =

 ## Yield the emirps.
 for n, prime in isPrime:
   if prime:
     let r = reversed(n)
     if r > N:
       break   # Unable to continue.
     if r != n and isPrime[r]:
       yield n
  1. ———————————————————————————————————————————————————————————————————————————————————————————————————

stdout.write "First 20 emirps:" var count = 0 for n in emirps():

 stdout.write ' ', n
 inc count
 if count == 20:
   echo ""
   break

stdout.write "Emirps between 7700 and 8000:" for n in emirps():

 if n in 7700..8000:
   stdout.write ' ', n
 elif n > 8000:
   echo ""
   break

stdout.write "The 10000th emirp: " count = 0 for n in emirps():

 inc count
 if count == 10000:
   echo n
   break

if count < 10000:

 echo "Not enough primes. Increase value of N."</lang>
Output:
First 20 emirps: 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389
Emirps between 7700 and 8000: 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963
The 10000th emirp: 948349

Oforth

Using isPrime function of Primality by trial division task :

<lang Oforth>: isEmirp(n)

  n isPrime ifFalse: [ false return ]
  n asString reverse asInteger dup n == ifTrue: [ drop false ] else: [ isPrime ] ;
main(min, max, length)

| l |

  ListBuffer new ->l
  min while(l size length < ) [
     dup max > ifTrue: [ break ] 
     dup isEmirp ifTrue: [ dup l add ] 1 + 
     ] 
  drop l ;</lang>
Output:
>main(2, 9999999, 20) println
[13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389]

>main(7700, 8000, 300) println
[7717, 7757, 7817, 7841, 7867, 7879, 7901, 7927, 7949, 7951, 7963]

>main(2, 9999999999, 10000) last println 
948349

PARI/GP

<lang parigp>rev(n)=subst(Polrev(digits(n)),'x,10); emirp(n)=my(r=rev(n)); isprime(r) && isprime(n) && n!=r select(emirp, primes(100))[1..20] select(emirp, primes([7700,8000])) s=10000; forprime(p=2,,if(emirp(p) && s--==0, return(p)))</lang>

Output:
%1 = [13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389]
%2 = [7717, 7757, 7817, 7841, 7867, 7879, 7901, 7927, 7949, 7951, 7963]
%3 = 948349

Pascal

Library: primTrial

using trial division unit , but jumping over number ranges, where the reversed numbers can't be a prime. Compiles with Delphi and Free Pascal. <lang pascal>program Emirp; //palindrome prime 13 <-> 31 {$IFDEF FPC}

 {$MODE DELPHI}
 {$OPTIMIZATION ON}
 {$OPTIMIZATION REGVAR}
 {$OPTIMIZATION PEEPHOLE}
 {$OPTIMIZATION CSE}
 {$OPTIMIZATION ASMCSE}
 {$Smartlink ON}
 {$CODEALIGN proc=32}

{$ELSE}

 {$APPLICATION CONSOLE}

{$ENDIF} uses

 primtrial,sysutils; //IntToStr

const

 helptext : array[0..5] of string =
    ('  usage ',
     '  t     -> test of functions',
     '  b l u -> Emirps betwenn l,u       b 7700 8000',
     '  c n   -> count of Emirps up to n  c 99999',
     '  f n   -> output n first Emirp     f 20',
     '  n     -> output the n.th Emirps   10000');
 StepToNextPrimeEnd : Array[0..9] of byte =
             (1,0,3,0,7,7,7,0,9,0);
 base = 10;

var

 s: AnsiString;
 pow,
 powLen  : NativeUint;

procedure OutputHelp; var

 i : NativeUint;

Begin

 For i := Low(helptext) to High(helptext) do
   writeln(helptext[i]);
 writeln;

end;

function GetNumber(const s: string;var n:NativeUint):boolean; var

 ErrCode: Word;

Begin

 val(s,n,Errcode);
 result := ErrCode = 0;

end;

procedure RvsStr(var s: AnsiString); var

 i, j: NativeUint;
 swapChar : Ansichar;

Begin

 i := 1;
 j := Length(s);
 While j>i do Begin
   swapChar:= s[i];s[i] := s[j];s[j] := swapChar;
   inc(i);dec(j) end;

end;

function RvsNumL(var n: NativeUint):NativeUint; //reverse and last digit var

 q, c: NativeUint;

Begin

 result := n;
 q := 0;
 repeat
   c:= result div Base;
   q := q*Base+(result-c*Base);
   result := c;
 until result < Base;
 n := q*Base+result;

end;

procedure InitP(var p: NativeUint); Begin

 powLen := 2;
 pow := Base;
 InitPrime;
 repeat p :=NextPrime until p >= 11;

end;

function isEmirp(p: NativeUint):boolean; var

 rvsp: NativeUint;

Begin

 s := IntToStr(p);
 result := StepToNextPrimeEnd[Ord(s[1])-48] = 0;
 IF result then
 Begin
   RvsStr(s);
   rvsp := StrToInt(s);
   result := false;
   IF rvsp<>p then
     result := isPrime(rvsp);
 end;

end;

function NextEmirp:NativeUint; var

r,Ldgt: NativeUint;

Begin

 result:= NextPrime;
 repeat
   r := result;
   //reverse
   Ldgt := RvsNumL(r);
   Ldgt := StepToNextPrimeEnd[Ldgt];
   IF Ldgt = 0 then
   Begin
     IF r<>result then
       IF isPrime(r) then
         EXIT;
     result:= NextPrime;
   end
   else
   Begin
     while actPrime > pow*Base do
     Begin
       inc(PowLen);
       pow := pow*base;
     end;
     result := Ldgt*pow;
     result := PrimeGELimit(result);
   end;
 until false;

end;

function GetIthEmirp(i: NativeUint):NativeUint; var

 p : NativeUint;

Begin

 InitP(p);
 Repeat
   dec(i);
   p:= NextEmirp;
 until i = 0;
 result := p;

end;

procedure nFirstEmirp(n: NativeUint); var

 p : NativeUint;

Begin

 InitP(p);
 Writeln('the first ',n,' Emirp primE: ');
 Repeat
   dec(n);
   p:= NextEmirp;
   write(p,' ');
 until n = 0;
 Writeln;

end;

function CntToLimit(n: NativeUint):NativeUint; var

 p,cnt : NativeUint;

Begin

 cnt := 0;
 InitP(p);
 p:= NextEmirp;
 While p <= n do
 Begin
   inc(cnt);
   p:= NextEmirp;
 end;
 result := cnt;

end;

procedure InRange(l,u:NativeUint); var

 p : NativeUint;
 b : boolean;

Begin

 InitP(p);
 IF l > u then Begin p:=l;l:=u;u:=p end;
 Writeln('Emirp primes between ',l,' and ',u,' : ');
 p := PrimeGELimit(l);
 b := IsEmirp(p);
 if b then
   write(p,' ');
 p:= NextEmirp;
 IF (p> u) AND NOT b  then
   Writeln('none')
 else
 Begin
   while p < u do
     Begin
     write(p,' ');
     p:= NextEmirp;
   end;
   Writeln;
 end;

end;

var

 i,u: NativeUint;
 select : char;

Begin

 IF paramcount >= 1 then
   select := Lowercase(paramstr(1)[1]);
 case paramcount of
 1: Begin
      if select='t' then
      Begin
        nFirstEmirp(20);
        InRange(7700,8000);
        Writeln('the ',10000,'.th Emirp prime: ',GetIthEmirp(10000));
        writeln(CntToLimit(9999),' Emirp primes up to ',9999);
        // as a gag
        InRange(400000000,700000000);
      end
      else
        IF GetNumber(paramstr(1),i) then
          Writeln('the ',i,'.th Emirp prime: ',GetIthEmirp(i))
        else
          OutPutHelp;
    end;
 2: Begin
      case select of
      'c': If GetNumber(paramstr(2),i) then
             writeln(CntToLimit(i),' Eemirp primes up to ',i)
           else
             OutPutHelp;
      'f': If GetNumber(paramstr(2),i) then
             nFirstEmirp(i)
           else
             OutPutHelp;
       else
         OutPutHelp;
       end;
    end;
 3: IF (select ='b') AND
       GetNumber(paramstr(2),i) AND GetNumber(paramstr(3),u) Then
      InRange(i,u)
    else
       OutPutHelp;
 else
   OutPutHelp;
 end;

End.</lang>

output
./Emirp t
the first 20 Emirp primE:
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389
Emirp primes between 7700 and 8000 :
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963
the 10000.th Emirp prime: 948349
240 Emirp primes up to 9999
Emirp primes between 400000000 and 700000000 :
none

real    0m0.033s
...
a little "stress test"
Emirp primes between 300000000 and 400000000 :
   1058667
rumtime for this: 2m 3 secs  

Using static sieve

is much faster. Only Counting Emirps. http://rosettacode.org/wiki/Extensible_prime_generator#Pascal It would be nice, if someone could check the results.Like F# today did

output
Count Emirps
               Emirp         Total
Decimals       Count         Count
       2           8             8
       3          28            36
       4         204           240
       5        1406          1646
       6        9538         11184
       7       70474         81658
       8      535578        617236
       9     4192024       4809260
      10    33619380      38428640
      11   274890232     313318872

Perl

Library: ntheory

<lang perl>use feature 'say'; use ntheory qw(forprimes is_prime);

  1. Return the first $count emirps using expanding segments.
  2. Can efficiently generate millions of emirps.

sub emirp_list {

 my $count = shift;
 my($i, $inc, @n) = (13, 100+10*$count);
 while (@n < $count) {
   forprimes {
     push @n, $_ if is_prime(reverse $_) && $_ ne reverse($_);
   } $i, $i+$inc-1;
   ($i, $inc) = ($i+$inc, int($inc * 1.03) + 1000);
 }
 splice @n, $count;  # Trim off excess emirps
 @n;

}

say "First 20: ", join " ", emirp_list(20); print "Between 7700 and 8000:"; forprimes { print " $_" if is_prime(reverse $_) && $_ ne reverse($_) } 7700,8000; print "\n"; say "The 10_000'th emirp: ", (emirp_list(10000))[-1];</lang>

Output:
First 20: 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389
Between 7700 and 8000: 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963
The 10_000'th emirp: 948349

Phix

Does not assume anywhere that some pre-guessed value will be enough. <lang Phix>sequence emirps = {}

function rev(integer n) integer res = 0

   while n do
       res = res*10+remainder(n,10)
       n = floor(n/10)
   end while
   return res

end function

function emirp(integer n)

   if is_prime(n) then
       integer r = rev(n)
       if r!=n and is_prime(r) then
           return true
       end if
   end if
   return false

end function

procedure usage()

   printf(1,"use a single command line argument, with no spaces, eg \"1-20\" (first 20), \n")
   printf(1,"\"7700..8000\" (between 7700 and 8000), or \"10000\" (the 10,000th).\n")
   {} = wait_key()
   abort(0)

end procedure

procedure main(string arg3) sequence args integer n,m

   if find('-',arg3) then      -- nth to mth emirp range
       args = scanf(arg3,"%d-%d")
       if length(args)!=1 then usage() end if
       Template:N,m = args
       integer k = 1
       while length(emirps)<m do
           if emirp(k) then emirps &= k end if
           k += 1
       end while
       printf(1,"emirps %d to %d: %v\n",{n,m,emirps[n..m]})
   elsif match("..",arg3) then -- emirps between n amd m
       args = scanf(arg3,"%d..%d")
       if length(args)!=1 then usage() end if
       Template:N,m = args
       integer k = 1
       while length(emirps)=0 or emirps[$]<m do
           if emirp(k) then emirps &= k end if
           k += 1
       end while
       sequence s = {}
       for i=1 to length(emirps) do
           if emirps[i]>n then
               for j=i to length(emirps) do
                   if emirps[j]>m then
                       printf(1,"emirps between %d and %d: %v\n",{n,m,emirps[i..j-1]})
                       exit
                   end if
               end for
               exit
           end if
       end for
   else                        -- nth emirp
       args = scanf(arg3,"%d")
       if length(args)!=1 then usage() end if
       Template:N = args
       integer k = 1
       while length(emirps)<n do
           if emirp(k) then emirps &= k end if
           k += 1
       end while
       printf(1,"emirp %d: %d\n",{n,emirps[n]})
   end if

end procedure

sequence cl = command_line() if length(cl)=2 then

   main("1-20")
   main("7700..8000")
   main("10000")

elsif length(cl)=3 then

   main(cl[3])

else

   usage()

end if</lang>

Output:
emirps 1 to 20: {13,17,31,37,71,73,79,97,107,113,149,157,167,179,199,311,337,347,359,389}
emirps between 7700 and 8000: {7717,7757,7817,7841,7867,7879,7901,7927,7949,7951,7963}
emirp 10000: 938033

PHP

<lang PHP><?php

function is_prime($n) {

   if ($n <= 3) {
       return $n > 1;
   } elseif (($n % 2 == 0) or ($n % 3 == 0)) {
       return false;
   }
   $i = 5;
   while ($i * $i <= $n) {
       if ($n % $i == 0) {
           return false;
       }
       $i += 2;
       if ($n % $i == 0) {
           return false;
       }
       $i += 4;
   }
   return true;

}

function is_emirp($n) {

   $r = (int) strrev((string) $n);
   return (($r != $n) and is_prime($r) and is_prime($n));

}

$c = $x = 0; $first20 = $between = ; do {

   $x++;
   if (is_emirp($x)) {
       $c++;
       if ($c <= 20) {
           $first20 .= $x . ' ';
       }
       if (7700 <= $x and $x <= 8000) {
           $between .= $x . ' ';
       }
   }

} while ($c < 10000);

echo

   'First twenty emirps :', PHP_EOL, $first20, PHP_EOL,
   'Emirps between 7,700 and 8,000 :', PHP_EOL, $between, PHP_EOL,
   'The 10,000th emirp :', PHP_EOL, $x, PHP_EOL;</lang>
Output:
First twenty emirps :
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389 
Emirps between 7,700 and 8,000 :
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963 
The 10,000th emirp :
948349

PicoLisp

<lang PicoLisp>(de prime? (N)

  (and
     (bit? 1 N)
     (let S (sqrt N)
        (for (D 3  T  (+ D 2))
           (T (> D S) N)
           (T (=0 (% N D)) NIL) ) ) ) )

(de palindr? (A)

  (and
     (<>
        (setq A (chop A))
        (setq @@ (reverse A)) )
     (format @@) ) )

(de emirp? (N)

  (and (palindr? N) (prime? @) (prime? N)) )

(de take1 (N)

  (let I 11
     (make
        (for (X 1 (>= 20 X))
           (and
              (emirp? (inc 'I 2))
              (link @)
              (inc 'X) ) ) ) ) )

(de take2 (NIL)

  (make
     (for (I 7701 (> 8000 I) (+ I 2))
        (and (emirp? I) (link @)) ) ) )

(de take3 (NIL)

  (let I 11
     (for (X 1 (>= 10000 X))
        (and (emirp? (inc 'I 2)) (inc 'X)) )
     I ) )

(println (take1 20)) (println (take2)) (println (take3))</lang>

Output:
(13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389)
(7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963)
948349

PL/I

<lang pli>*process or(!);

pt1: Proc(run) Options(main);
/*********************************************************************
* 25.03.2014 Walter Pachl
* Note: Prime number computations are extended as needed
*********************************************************************/
Dcl debug Bit(1) Init('0'b);
Dcl run Char(100) Var;
Dcl primes(200000) Bin Fixed(31) Init(2,3,5,7,11,13,17,(200000-7)0);
Dcl nn Bin Fixed(31) Init(0);
Dcl np Bin Fixed(31) Init(7);
Dcl hp Bin Fixed(31) Init(17);
Dcl ip Bin Fixed(31);
Dcl (p,r) Bin Fixed(31);
Put Edit('run=',run,'<')(Skip,a,a,a);
np=7;
call cprimes(20,1,'A');
main_loop:
Do ip=1 To 100000;                    /* loop over all primes       */
  p=primes(ip);                       /* candidate                  */
  If p=0 Then
    call cprimes(20,hp+1,'.');
  p=primes(ip);                       /* candidate                  */
  r=rev(p);                           /* reversed candidate         */
  If p=r Then;                        /* skip palindromic prime     */
  Else Do;                            /* p is eligible              */
    If is_prime(r) Then Do;           /* reversed p is a prime      */
      nn=nn+1;                        /* increment number of hits   */
      Select;
        When(run<='1') Do;
          If nn<21 Then Call show_1;  /* call appropriate output    */
          If nn=20 Then
            Leave main_loop;
          End;
        When(run='2') Do;
          If hp<8000 Then
            Call cprimes(1,8000,'B');
          If 7700<p & p<8000 Then Call show_2;
          If p>8000 Then
            Leave main_loop;
          End;
        When(run='3') Do;
          If np<10000 Then
            Call cprimes(10000,1,'C');
          If nn=10000 Then Do;
            Call show_3;
            Leave main_loop;
            End;
          End;
        Otherwise Do;
          Put skip list('Invoke as pt1 1/2/3');
          Return;
          End;
        End;
      End;
    End;
  End;
show_1: Proc;
Dcl first Bit(1) Static Init('1'b);
If first Then Do;
  Put Edit('the first 20 emirps:')(Skip,a);
  first='0'b;
  Put Skip;
  End;
If nn=11 Then
  Put Skip;
Put Edit(p)(F(4));
End;
show_2: Proc;
Dcl first Bit(1) Static Init('1'b);
If first Then Do;
  Put Edit('emirps between 7700 and 8000:')(Skip,a);
  first='0'b;
  Put Skip;
  End;
Put Edit(p)(F(5));
End;
show_3: Proc;
Dcl first Bit(1) Static Init('1'b);
If first Then Do;
  Put Edit('the 10000th emirp:')(Skip,a);
  first='0'b;
  Put Skip;
  End;
Put Edit(p)(F(6));
End;
cprimes: Proc(num,mp,s);
/*********************************************************************
* Fill the array primes with prime numbers
* so that it contains at least num primes and all primes<=mp
*********************************************************************/
dcl o Char(60) Var;
If debug Then
  Put String(o) Edit('cprimes: ',s,np,hp)(a,a,2(f(6)));
Dcl num Bin Fixed(31);                /* number of primes needed    */
Dcl mp  Bin Fixed(31);                /* max prime must be > mp     */
Dcl p   Bin Fixed(31);                /* candidate for next prime   */
Dcl s   Char(1);                      /* place of invocation        */
loop:
Do p=hp+2 By 2 Until(np>=num & hp>mp); /* only odd numbers are elig.*/
  If mod(p, 3)=0 Then Iterate;
  If mod(p, 5)=0 Then Iterate;
  If mod(p, 7)=0 Then Iterate;
  If mod(p,11)=0 Then Iterate;
  If mod(p,13)=0 Then Iterate;
  Do k=7 By 1 While(primes(k)**2<=p);
    If mod(p,primes(k))=0 Then
      Iterate loop;
    End;
  np=np+1;
  primes(np)=p;
  hp=p;
  End;
 If debug Then
   Put Edit(o,' -> ',np,hp)(Skip,a,a,2(f(6)));
 End;
rev: Proc(x) Returns(Bin Fixed(31));
/*********************************************************************
* reverse the given number
*********************************************************************/
Dcl x Bin Fixed(31);
Dcl p Pic'ZZZZZZ9';
Dcl qq Char(7) Init();
Dcl q Pic'ZZZZZZ9' based(addr(qq));
Dcl v Char(8) Var;
p=x;
v=trim(p);
v=reverse(v);
substr(qq,8-length(v))=v;
Return(q);
End;
is_prime: Proc(x) Returns(Bit(1));
/*********************************************************************
* check if x is a prime number (binary search in primes)
*********************************************************************/
Dcl x  Bin Fixed(31);
Dcl lo Bin Fixed(31) Init(1);
Dcl hi Bin Fixed(31);
Dcl m  Bin Fixed(31);
If x>hp Then Do;                 /* x is outside of range in primes */
  If debug Then
    Put Edit('is_prime x=',x,'hp=',hp)(Skip,2(a,f(8),x(1)));
  Call cprimes(1,x,'D');         /* extend range of primes          */
  End;
hi=np;
Do While(lo<=hi);                /* lookup                          */
  m=(lo+hi)/2;
  Select;
    When        (x=primes(m))   Return('1'b); /* x is a prime number*/
    When        (x<primes(m))   hi=m-1;
    Otherwise /* x>primes(m) */ lo=m+1;
    End;
  End;
Return('0'b);                    /* x is not a prime number         */
End;
End;</lang>
Output:
run=1 <
the first 20 emirps:
  13  17  31  37  71  73  79  97 107 113
 149 157 167 179 199 311 337 347 359 389

run=2 <
emirps between 7700 and 8000:
 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963

run=3 <
the 10000th emirp:
948349

Python

This uses Prime_decomposition#Python:_Using_Croft_Spiral_sieve and so the prime number generator self-extends to generate ever larger primes automatically.

There is no explicit hard-coded ceiling added to the code for the prime generator, which is the reason given for the need to invoke a program three times in the task description. <lang python>from __future__ import print_function from prime_decomposition import primes, is_prime from heapq import * from itertools import islice

def emirp():

   largest = set()
   emirps = []
   heapify(emirps)
   for pr in primes():
       while emirps and pr > emirps[0]:
           yield heappop(emirps)
       if pr in largest:
           yield pr
       else:
           rp = int(str(pr)[::-1])
           if rp > pr and is_prime(rp):
               heappush(emirps, pr)
               largest.add(rp)

print('First 20:\n ', list(islice(emirp(), 20))) print('Between 7700 and 8000:\n [', end=) for pr in emirp():

   if pr >= 8000: break
   if pr >= 7700: print(pr, end=', ')

print(']') print('10000th:\n ', list(islice(emirp(), 10000-1, 10000)))</lang>

Output:
First 20:
   [13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389]
Between 7700 and 8000:
  [7717, 7757, 7817, 7841, 7867, 7879, 7901, 7927, 7949, 7951, 7963, ]
10000th:
   [948349]

Quackery

eratosthenes and isprime are defined at Sieve of Eratosthenes#Quackery.

<lang Quackery> 1000000 eratosthenes

 [ [] swap
   [ dup 0 != while 
     10 /mod 
     rot swap join swap 
     again ] 
   swap
   witheach 
     [ dip [ 10 * ] + ] ] is revnum ( n --> n )
   
 [ dup isprime not iff
     [ drop false ] done
   dup revnum tuck = iff
     [ drop false ] done
   isprime ]              is emirp  ( n --> b )
   
 [] 0
 [ 1+ dup emirp if
     [ tuck join swap ]
   over size 20 = until ]  
 drop
 echo cr
 [] 7700
   [ 1+ dup emirp if
     [ tuck join swap ]
   dup 8000 = until ]  
 drop
 echo cr
 0 0
 [ 1+ dup emirp if
     [ dip 1+ ]
   over 10000 = until ]
 nip echo cr</lang>
Output:
[ 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389 ]
[ 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963 ]
948349

R

<lang rsplus> library(gmp)

emirp <- function(start = 1, end = Inf, howmany = Inf, ignore = 0) { count <- 0 p <- start

while (count<howmany+ignore && p <= end) { p <- nextprime(p) p_reverse <- as.bigz(paste0(rev(unlist(strsplit(as.character(p), ""))), collapse = "")) if (p != p_reverse && isprime(p_reverse) > 0) { if (count >= ignore) cat(as.character(p)," ",sep="") count <- count + 1 } } cat("\n") } cat("First 20 emirps: ") emirp(howmany = 20)

cat("Emirps between 7700 and 8000: ") emirp(start = 7700, end = 8000)

cat("The 10000th emirp: ") emirp(ignore = 9999, howmany = 1) </lang>

Output:
First 20 emirps: 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389 
Emirps between 7700 and 8000: 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963 
The 10000th emirp: 948349 

Racket

This implementation seems to have exploded somewhat due to

  • the need to "account" for the greatest tested prime
  • the need to reset memory between runs
  • the need for a main (to support the above)
  • and a (possibly misguided) thought that performance might be a consideration
 (my naive version finds the 10,0000th in ... ms)

So there are two versions presented below. The first is minimalist, providing basic functions, unburdened by accounting or (too many) performance considerations (please don't mark this as needing attention... I know it falls short of <lang racket>#lang racket (require math/number-theory)

(define (stigid n)

 (define (inr n a) (if (= 0 n) a (inr (quotient n 10) (+ (* 10 a) (modulo n 10)))))
 (inr n 0))

(define (emirp-prime? n)

 (define u (stigid n))
 (and (not (= u n)) (prime? n) (prime? u)))

(printf "\"show the first twenty emirps.\"~%") (for/list ((n (sequence-filter emirp-prime? (in-range 11 +Inf.0 2))) (_ (in-range 20))) n)

(printf "\"show all emirps between 7,700 and 8,000\"~%") (for/list ((n (sequence-filter emirp-prime? (in-range 7701 8000 2)))) n)

(printf "\"show the 10,000th emirp\"~%") (let loop ((i 10000) (p 9))

 (define p+2 (+ p 2))
 (cond [(not (emirp-prime? p+2)) (loop i p+2)] [(= i 1) p+2] [else (loop (- i 1) p+2)]))</lang>

The second is somewhat larger and seems to be a playground for all sorts of code. <lang racket>#lang racket

---------------------------------------------------------------------------------------------------
There are two distinct requirements here...
1. to test for emirp-primality - this can be done as easily as testing for primality.
We use math/number-theory's "prime?" for this, which has no bounds
2. to find the nth emirp-prime. Even when were doing this with normal primes, we wouldn't test
each number; rather sieve them. Prime sieves by their very nature are at least memory bound...
so I'm happy in this case that they are kept within the bounds of "fixnum" integers. Once we
accept that, we can use the unsafe-ops on fixnums which allow for a performance boost. The
fixnum / sieve code is after this simpler stuff.
---------------------------------------------------------------------------------------------------

(require math/number-theory)

this slows things down, having to unbox, test and rebox the m.p.g -- but the task asks for some
accounting to be performed, so account we do!

(define max-prime-tested (box 0))

(define (report-mpg)

 (printf "Max prime tested (using math/number-theory): ~a~%" (unbox max-prime-tested)))

(define (prime?/remember-max n)

 (define rv (prime? n))
 (when (and rv (> n (unbox max-prime-tested))) (set-box! max-prime-tested n))
 rv)

(define (stigid n)

 (define (inner-stigid n a) (if (= 0 n) a (inner-stigid (quotient n 10) (+ (* 10 a) (modulo n 10)))))
 (inner-stigid n 0))

(define (emirp-prime? n)

 (define u (stigid n))
 (and (not (= u n)) (prime?/remember-max n) (prime?/remember-max u)))
---------------------------------------------------------------------------------------------------

(require

 racket/require
 (except-in
  (filtered-in (lambda (n) (regexp-replace #rx"unsafe-" n "")) racket/unsafe/ops) unbox set-box!))
NB using fixnum below limits stigid to "fixnum" (about 2^60) range of numbers
but, unleashed, unsafe-fx... are fast

(define (fxstigid n)

 (define (inner-fxstigid n a)
   (if (fx= 0 n) a (inner-fxstigid (fxquotient n 10) (fx+ (fx* 10 a) (fxmodulo n 10)))))
 (inner-fxstigid n 0))
Grows the sieve to n (so n is included in the sieve)
Values in the sieve are
= 0 - known non-prime
> 0 - known prime
The new sieve does not alter non-zero values in the old sieve; to preserve cachceing of e.g. emirps
Always returns a copy (so it is caller responsibility to determine the necessity of this function)

(define (extend-prime-sieve sieve n)

 (define sieve-size (bytes-length sieve))
 (define sieve-size+ (fx+ 1 n))
 (define new-sieve (make-bytes sieve-size+ 1))
 (bytes-copy! new-sieve 0 sieve 0 (fxmin sieve-size+ sieve-size))
 (for* ((f (in-range 2 (add1 (integer-sqrt sieve-size+))))
        #:unless (fx= (bytes-ref new-sieve f) 0) ; the only case of non-prime
        (f+ (in-range (fx* f (fxmax 2 (fxquotient sieve-size f))) sieve-size+ f)))
   (bytes-set! new-sieve f+ 0))
 (values sieve-size+ new-sieve))
task three *needs* a sieve to operate sub-second
values in sieve are
0 - known non-prime
1 - known prime, unknown emirp-ality (freshly generated from extend-prime-sieve)
2 - known prime, known non-emirp -- needed for sieve extension
3 - known emirp (and .
known prime)

(define-values

 (emirp-prime?/sieve reset-sieve! report-mpg/sieved extend-sieve!)
 (let [(sieve-size 2) (the-sieve (bytes 0 0))]
   (define (extend-sieve! n)
     (when (fx>= n sieve-size)
       (define-values (sieve-size+ new-sieve) (extend-prime-sieve the-sieve n))
       (set! the-sieve new-sieve) (set! sieve-size sieve-size+)))
   (values
    (lambda (n)
      (extend-sieve! n)
      (case (bytes-ref the-sieve n)
        [(0) #f] ; it's not even prime
        [(1) ; it's a prime... but is is emirp?
         (define u (fxstigid n))
         (define new-sieve-n
           (cond
             [(fx= u n) 2]
             [(fx> u n) (if (emirp-prime?/sieve u) 3 2)]
             [(fx= (bytes-ref the-sieve u) 1) 3]
             [else 2]))
         (bytes-set! the-sieve n new-sieve-n)
         (fx= new-sieve-n 3)]
        [(2) #f] ; we know it's not emirp
        [(3) #t])) ; we already knew it's an emirp
    (lambda () (set! sieve-size 2) (set! the-sieve (bytes 0 0)))
    (lambda () (printf "Sieve size: ~a~%Max prime generated (sieve): ~a~%" sieve-size
                       (for/last ((n the-sieve) (p (in-naturals)) #:unless (fx= 0 n)) p)))          
    extend-sieve!)))
---------------------------------------------------------------------------------------------------
testing *-primality is a lot cheaper than generating, and we'll use math/number-theory to do
this... it's fast enough. Because they cannot be palindromic and because 2 is the only even prime
(and is palindromic), all emirps are odd - hence our sequences starting with an odd (>= 11),
stepping by 2.

(define (task1 (emirp?-test emirp-prime?))

 (printf "\"show the first twenty emirps.\" [~s]~%" emirp?-test)
 (for/list ((n (sequence-filter emirp?-test (in-range 11 +Inf.0 2))) (_ (in-range 20))) n))

(define (task2 (emirp?-test emirp-prime?))

 (printf "\"show all emirps between 7,700 and 8,000\" [~s]~%" emirp?-test)
 (for/list ((n (sequence-filter emirp?-test (in-range 7701 8000 2)))) n))

(define (task3 (emirp?-test emirp-prime?) (extend-sieve-fn #f))

 (printf "\"show the 10,000th emirp\" [~s]~%" emirp?-test)
 (when extend-sieve-fn
   (extend-sieve-fn (nth-prime 10000))) ; at a guess, the 10000th emirp will be > the 10000th prime
 (let loop ((i 10000) (p 9))
   (define p+2 (fx+ p 2))
   (cond [(not (emirp?-test p+2)) (loop i p+2)] [(fx= i 1) p+2] [else (loop (fx- i 1) p+2)])))
-| MAIN |------------------------------------------------------------------------------------------

(provide main) (define (main task)

 ;; to avoid the *necessity* of calling from the command line multiple times, we reset the sieve on
 ;; each invocation of main
 (reset-sieve!)
 (set-box! max-prime-tested 0)
 (match task
   ["1" (displayln (task1)) (report-mpg)]
   ["2" (displayln (task2)) (report-mpg)]
   ["3" (displayln (task3 emirp-prime?/sieve extend-sieve!)) (report-mpg/sieved)]))
-| TESTS |-----------------------------------------------------------------------------------------

(module+ test

 (require rackunit)
 (check-false (emirp-prime?/sieve 12))
 (check-false (emirp-prime?/sieve 23))
 (check-true (emirp-prime?/sieve 13))
 (check-equal?
  (for/list
      ((n (sequence-filter emirp-prime?/sieve (in-range 11 100000 2)))
       (_ (in-range 3))) n)
  '(13 17 31))
 (check-equal? (time (task1 emirp-prime?/sieve)) (time (task1)))
 (check-equal? (time (task2 emirp-prime?/sieve)) (time (task2)))
 (check-equal? (time (task3 emirp-prime?/sieve extend-sieve!)) (time (task3))))

</lang>

Output:
"show the first twenty emirps."
'(13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389)
"show all emirps between 7,700 and 8,000"
'(7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963)
"show the 10,000th emirp"
948349

Second program, run from Linux bash shell:

$ for i in 1 2 3; do racket -t Emirp-primes.rkt -m $i; echo; done
"show the first twenty emirps." [#<procedure:emirp-prime?>]
(13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389)
Max prime tested (using math/number-theory): 991

"show all emirps between 7,700 and 8,000" [#<procedure:emirp-prime?>]
(7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963)
Max prime tested (using math/number-theory): 9787

"show the 10,000th emirp" [#<procedure:...Emirp-primes.rkt:77:5>]
948349
Sieve size: 999998

Raku

(formerly Perl 6)

Works with: Rakudo version 2018.10

For better performance, build the lazy list using module Math::Primesieve, not the built-in, then display results based on parameters passed in. The default is to display an array slice starting and stopping at the given indices. Alternately, ask for all values between two endpoints.

<lang perl6>use Math::Primesieve;

sub prime-hash (Int $max) {

   my $sieve = Math::Primesieve.new;
   my @primes = $sieve.primes($max);
   @primes.Set;

}

sub MAIN ($start, $stop = Nil, $display = <slice>) {

   my $end = $stop // $start;
   my %primes = prime-hash(100*$end);
   my @emirps = lazy gather for 1 .. * -> $n {
       take $n if %primes{$n} and %primes{$n.flip} and $n != $n.flip
   }
   given $display {
       when 'slice'  { return @emirps[$start-1 .. $end-1] };
       when 'values' {
           my @values = gather for @emirps {
               .take if $start < $_ < $end;
               last if $_> $end
           }
           return @values
       }
   }

}</lang>

Output:

Run with passed parameters: 1 20

('slice' is the default. you could pass it in, but it isn't necessary.)

13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389

Run with passed parameters: 7700 8000 values

7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963

Run with passed parameter: 10000

948349

REXX

version 1

Specifications of arguments note:   The following REXX program accepts:

  •   a single number       N,   indicates to display the   Nth   emirp prime
  •   two numbers     N     M,   indicates to display the   Nth   ──►   Mth   emirp primes.
  •   two numbers     N   -M,   indicates to display the emirp primes between   N   and  M   (inclusive).


Programming note:   the trial division method of generating (regular) primes is a bit on the slow side, so some
memoization was added (assisting with the  j ),   and some of the trial divisions were hard-coded to minimize
the CPU time a bit. <lang rexx>/*REXX program finds emirp primes (base 10): when a prime reversed, is another prime.*/ parse arg x y . /*obtain optional arguments from the CL*/ if x== | x=="," then do; x=1; y=20; end /*Not specified? Then use the default.*/ if y== then y=x /* " " " " " " */ r=y<0; y=abs(y) /*display a range of emirp primes ? */ rly=length(y) + \r /*adjusted length of the Y value. */ !.=0; c=0; _=2 3 5 7 11 13 17; $= /*isP; emirp count; low primes; emirps.*/

   do #=1  for words(_);   p=word(_,#);   @.#=p;    !.p=1;    end  /*#*/
  1. =#-1; ip=#; s.#=@.#**2 /*adjust # (for the DO loop); last P².*/
                           /*▒▒▒▒▒▒▒▒▒▒▒▒▒▒ [↓]   generate more primes within range.   */
   do j=@.#+2  by 2                             /*only find  odd  primes from here on. */
   if length(#)>rly  then leave                 /*have we enough primes for emirps?    */
   if j//3      ==0  then iterate               /*is  J  divisible by three?           */
   if right(j,1)==5  then iterate               /*is the right-most digit a "5" ?      */
   if j//7      ==0  then iterate               /*is  J  divisible by seven?           */
   if j//11     ==0  then iterate               /*is  J  divisible by eleven?          */
   if j//13     ==0  then iterate               /*is  J  divisible by thirteen?        */
                                                /*[↑]  the above five lines saves time.*/
         do k=ip  while  s.k<=j                 /*divide by the known  odd  primes.    */
         if j//@.k==0  then iterate j           /*J divisible by X?  Then ¬prime.   ___*/
         end   /*k*/                            /* [↑]  divide by odd primes up to √ j */
   #=#+1                                        /*bump the number of primes found.     */
   @.#=j;      s.#=j*j;     !.j=1               /*assign to sparse array; prime²; prime*/
   end         /*j*/                            /* [↑]  keep generating until enough.  */
                           /*▒▒▒▒▒▒▒▒▒▒▒▒▒▒ [↓]    filter  emirps  for the display.    */
   do j=6  to @.#;   _=@.j                      /*traipse through the regular primes.  */
   if (r&_>y) | (\r&c==y)  then leave           /*is the prime not within the range?   */
   __=reverse(_)                                /*reverse (digits) of the regular prime*/
   if \!.__   | _==__    then iterate           /*is the  reverse  a different prime ? */
   c=c+1                                        /*bump the emirp prime counter.        */
   if (r&_<x) | (\r&c<x) then iterate           /*is  emirp  not within allowed range? */
   $=$ _                                        /*append prime to the emirpPrime list. */
   end   /*j*/                                  /* [↑]  list:  by value  or  by range. */
                                                /* [↓]  display the emirp list.        */

say strip($); say; n=words($);  ?=(n\==1) /*display the emirp primes wanted. */ if ? then say n 'emirp primes shown.' /*stick a fork in it, we're all done. */</lang> output   when using the following for input:   1   20

13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389

20 emirp primes shown.

output   when using the following for input:   7700   -8000

7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963

11 emirp primes shown.

output   when using the following for input:   10000

948349

version 2

<lang rexx> /*********************************************************************

* 27.03.2014 Walter Pachl
*********************************************************************/
Parse Arg run
first.=1
nn=0
ol=
lb='00'x
If run= Then run=1
call cprimes 20,20,'A'
main_loop:
Do ip=1 To 1000000                    /* loop over all primes       */
  p=primes.ip                         /* candidate                  */
  If p=0 Then
    call cprimes 20,hp+1,'B'
  p=primes.ip                        /* candidate                  */
  r=reverse(p)                       /* reversed candidate         */
  If p<>r Then Do                    /* not a palindromic prime    */
    If is_prime(r) Then Do           /* reversed p is a prime      */
      nn=nn+1                        /* increment number of hits   */
      Select
        When run<='1' Then Do
          If nn<21 Then Call show 1,'the first 20 emirps:',4
          If nn=20 Then
            Leave
          End
        When(run='2') Then Do
          If hp<8000 Then
            Call cprimes 1,8000,'C'
          If 7700<p & p<8000 Then Call show 2,'emirps between 7700 and 8000:',5
          If p>8000 Then
            Leave
          End
        When(run='3') Then Do
          If nn=10000 Then Do
            Call show 3,'the 10.000th emirp:',6
            Leave
            End
          End
        When(run='4') Then Do
          Call cprimes 1,999999    /* dirty trick to speed thins up */
          If nn=10000 Then Do
            Call show 4,'the 10.000th emirp (alternate version):',6
            Leave
            End
          End
        Otherwise Do
          Say 'Invoke as ptx 1/2/3'
          Exit
          End
        End
      End
    End
 End
Call oo
Say 'largest prime:' hp
Exit
show:
Parse Arg task,header,nl
If first.task Then Do
  Call o header||lb
  first.task=0
  End
Call o right(p,nl)
If nn=10 Then
  Call o lb
Return

cprimes: Procedure Expose primes. psquare. is_prime. nprimes hp /*********************************************************************

  • adapted for my needs from REXX's Extensible prime generation
  • Fill the array primes with prime numbers
  • so that it contains at least num primes and all primes<=mp
                                                                                                                                          • /
 Parse Arg num,mp
 If symbol('primes.0')=='LIT' Then Do  /* 1st time here? Initialize */
   primes.=0                           /* prime numbers             */
   is_prime.=0                         /* is_prime.x -> x is prime  */
   psquare.=0                          /* psquare.x = square of     */
   plist='2 3 5 7 11 13 17 19 23'      /* knows low primes.         */
   Do i=1 For words(plist)
     p=word(plist,i)
     primes.i=p
     is_prime.p=1
     End
   nprimes=i-1
   primes.0=nprimes+1
   psquare.nprimes=primes.nprimes**2   /* square of this prime      */
   End                             /* [?]  done with building low Ps */
 Do j=primes.nprimes+2 By 2 While nprimes<num | primes.nprimes<mp
   If j//3==0 Then       Iterate
   If right(j,1)==5 Then Iterate
   If j//7==0 Then       Iterate
   If j//11==0 Then      Iterate
   If j//13==0 Then      Iterate
   If j//17==0 Then      Iterate
   If j//19==0 Then      Iterate
   If j//23==0 Then      Iterate
   Do k=primes.0-1 While psquare.k<=j  /* check for other known primes */
     If j//primes.k==0 Then      /* J is divisible by k-th prime    */
       Iterate j                 /* j is not prime                  */
     End
   nprimes=nprimes+1             /* bump number of primes found.    */
   primes.nprimes=j
   psquare.nprimes=j*j
   is_prime.j=1
   hp=j
   End
 Return
is_prime: Procedure Expose primes. psquare. is_prime. nprimes hp
/*********************************************************************
* check if x is a prime number
*********************************************************************/
Parse Arg x
If x>hp Then
  Call cprimes 1,x
Return is_prime.x

o: ol=ol||arg(1)

  Return

oo: Do While ol<>

     Parse Var ol l (lb) ol
     Say l
     End
   Return</lang>

output

rexx ptz 1
the first 20 emirps:
  13  17  31  37  71  73  79  97 107 113
 149 157 167 179 199 311 337 347 359 389
largest prime: 991

rexx ptz 2
emirps between 7700 and 8000:
 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963
largest prime: 10007

rexx ptz 3
the 10.000th emirp:
948349
largest prime: 1000003

rexx ptz 4 (slightly faster that rexx ptz 3)
the 10.000th emirp (alternate version):
948349
largest prime: 1000003

Ring

<lang ring> nr = 1 m = 2 see "first 20 :" + nl while nr < 21

     emirp = isEmirp(m)
     if emirp = 1 see m see " "
        nr++ ok
     m++

end see nl + nl

nr = 1 m = 7701 see "between 7700 8000 :" + nl while m > 7700 and m < 8000

     emirp = isEmirp(m)
     if emirp = 1 see m see " " nr++ ok
     m++

end see nl + nl

nr = 1 m = 2 see "Nth 10000 :" + nl while nr > 0 and nr < 101

     emirp = isEmirp(m)
     if emirp = 1 nr++ ok
     m++

end see m + nl

func isEmirp n

    if not isPrime(n) return false ok
    cStr = string(n)  
    cstr2 = ""
    for x = len(cStr) to 1 step -1 cStr2 += cStr[x] next
    rev = number(cstr2)
    if rev = n return false ok
    return isPrime(rev)

func isPrime n

    if n < 2 return false ok
    if n < 4 return true ok
    if n % 2 = 0 return false ok
    for d = 3 to sqrt(n) step 2 
        if n % d = 0 return false ok
    next
    return true

</lang>

Ruby

<lang ruby>require 'prime'

emirp = Enumerator.new do |y|

 Prime.each do |prime|
   rev = prime.to_s.reverse.to_i
   y << prime  if rev.prime? and rev != prime
 end

end

puts "First 20 emirps:", emirp.first(20).join(" ") puts "Emirps between 7,700 and 8,000:" emirp.with_index(1) do |prime,i|

 print "#{prime} "  if (7700..8000).cover?(prime)
 if i==10000
   puts "", "10,000th emirp:", prime
   break
 end

end</lang>

Output:
First 20 emirps:
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389
Emirps between 7,700 and 8,000:
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963 
10,000th emirp:
948349

Rust

<lang>#![feature(iterator_step_by)]

extern crate primal;

fn is_prime(n: u64) -> bool {

   if n == 2 || n == 3 || n == 5 || n == 7 || n == 11 || n == 13 { return true; }
   if n % 2 == 0 || n % 3 == 0 || n % 5 == 0 || n % 7 == 0 || n % 11 == 0 || n % 13 == 0 { return false; }
   let root = (n as f64).sqrt() as u64 + 1;
   (17..root).step_by(2).all(|i| n % i != 0)

}

fn is_emirp(n: u64) -> bool {

   let mut aux = n;
   let mut rev_prime = 0;
   while aux > 0 {
       rev_prime = rev_prime * 10 + aux  % 10;
       aux /= 10;
   }
   if n == rev_prime { return false; }
   is_prime(rev_prime)

}

fn calculate() -> (Vec<usize>, Vec<usize>, usize) {

   let mut count = 1;
   let mut vec1 = Vec::new();
   let mut vec2 = Vec::new();
   let mut emirp_10_000 = 0;
   for i in primal::Primes::all() {
       if is_emirp(i as u64) {
           if count < 21 { vec1.push(i) }
           if i > 7_700 && i < 8_000 { vec2.push(i) }
           if count == 10_000 {
               emirp_10_000 = i;
               break;
           }
           count += 1;
       }
   }
   (vec1, vec2, emirp_10_000)

}

fn main() {

   let (vec1, vec2, emirp_10_000) = calculate();
   println!("First 20 emirp-s : {:?}", vec1);
   println!("Emirps-s between 7700 and 8000 : {:?}", vec2);
   println!("10.000-th emirp : {}", emirp_10_000);

}</lang>

Output:
First 20 primes : [13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389]
Emirps-s between 7700 and 8000 : [7717, 7757, 7817, 7841, 7867, 7879, 7901, 7927, 7949, 7951, 7963]
10.000-th emirp : 948349

real	0m0.040s
user	0m0.036s
sys	0m0.003s

Scala

Using BigInt's isProbablePrime()

The isProbablePrime() method performs a Miller-Rabin primality test to within a given certainty. <lang scala>def isEmirp( v:Long ) : Boolean = {

val b = BigInt(v.toLong)
val r = BigInt(v.toString.reverse.toLong)
b != r && b.isProbablePrime(16) && r.isProbablePrime(16)

}

// Generate the output {

 val (a,b1,b2,c) = (20,7700,8000,10000)
 println( "%32s".format(          "First %d emirps: ".format( a )) + Stream.from(2).filter( isEmirp(_) ).take(a).toList.mkString(",") )
 println( "%32s".format( "Emirps between %d and %d: ".format( b1, b2 )) + {for( i <- b1 to b2 if( isEmirp(i) ) ) yield i}.mkString(",") )
 println( "%32s".format(                "%,d emirp: ".format( c )) + Iterator.from(2).filter( isEmirp(_) ).drop(c-1).next )

}</lang>

Output:
               First 20 emirps: 13,17,31,37,71,73,79,97,107,113,149,157,167,179,199,311,337,347,359,389
  Emirps between 7700 and 8000: 7717,7757,7817,7841,7867,7879,7901,7927,7949,7951,7963
                  10,000 emirp: 948349

Sidef

Translation of: Perl

<lang ruby>func forprimes(a, b, callback) {

   for (var p = a.dec.next_prime; p <= b; p.next_prime!) {
       callback(p)
   }

}

func is_emirp(p) {

   var str = Str(p)
   var rev = str.reverse
   (str != rev) && is_prime(Num(rev))

}

func emirp_list(count) {

   var i = 13
   var inc = (100 + 10*count)
   var n = []
   while (n.len < count) {
       forprimes(i, i+inc - 1, {|p|
           is_emirp(p) && (n << p)
       })
       (i, inc) = (i+inc, int(inc * 1.03) + 1000)
   }
   n.splice(count)
   return n

}

say ("First 20: ", emirp_list(20).join(' ')) say ("Between 7700 and 8000: ", gather {

       forprimes(7700, 8000, {|p| is_emirp(p) && take(p) })
   }.join(' '))

say ("The 10,000'th emirp: ", emirp_list(10000)[-1])</lang>

Output:
First 20: 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389
Between 7700 and 8000: 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963
The 10,000'th emirp: 948349

Smalltalk

Works with Smalltalk/X

This uses a builtin class called LazyCons, which is useful to implement infinite lists. The code is functional, looking somewhat Scheme'isch (that's what blocks are for).

First an emirp checker: <lang smalltalk>isEmirp :=

   [:p | |e| 
       (e := p asString reversed asNumber) isPrime
       and:[ e ~= p ]
   ].</lang>

an infinite list of primes: <lang smalltalk>primeGen :=

   [:n | 
       LazyCons car:n cdr:[primeGen value:(n nextPrime)]
   ].</lang>

an infinite list of emirps, taking an infinite list of primes as arg: <lang smalltalk>emirpGen :=

   [:l | |rest el|
       rest := l.
       [ el := rest car. rest := rest cdr. isEmirp value:el ] whileFalse.
       LazyCons car:el cdr:[emirpGen value:rest]
   ].</lang>

two infinite lists: <lang smalltalk>listOfPrimes := primeGen value:2. listOfEmirps := emirpGen value:listOfPrimes.</lang> generating output: <lang smalltalk>Transcript

   show:'first 20 emirps: '; 
   showCR:(listOfEmirps take:20) asArray.

Transcript

   show:'emirps between 7700 and 8000 are: '; 
   showCR:((7700 to:8000) select:[:n | n isPrime and:[isEmirp value:n]]).

Transcript

   show:'10000th emirp: '; 
   showCR:(listOfEmirps nth:10000).</lang>

Generates:

first 20 emirps: #(13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389)
emirps between 7700 and 8000 are: OrderedCollection(7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963)
10000'th emirp: 948349

LazyCons is easily defined as: <lang smalltalk>Object subclass: #Cons

   instancevariableNames:'car cdr'.

car:newCar cdr:newCdr

   car := newCar. cdr := newCdr

car

   ^car

cdr

   ^cdr

Cons subclass:#LazyCons

cdr

   cdr := cdr value.
   self changeClassTo:Cons.
   ^cdr</lang>

Stata

<lang stata>emirp 1000 list in 1/20, noobs noh

 +-----+
 |  13 |
 |  17 |
 |  31 |
 |  37 |
 |  71 |
 |-----|
 |  73 |
 |  79 |
 |  97 |
 | 107 |
 | 113 |
 |-----|
 | 149 |
 | 157 |
 | 167 |
 | 179 |
 | 199 |
 |-----|
 | 311 |
 | 337 |
 | 347 |
 | 359 |
 | 389 |
 +-----+

emirp 10000 list if 7700<p & p<8000, noobs noh

 +------+
 | 7717 |
 | 7757 |
 | 7817 |
 | 7841 |
 | 7867 |
 |------|
 | 7879 |
 | 7901 |
 | 7927 |
 | 7949 |
 | 7951 |
 |------|
 | 7963 |
 +------+

emirp 1000000 list if _n==10000, noobs noh

 +--------+
 | 948349 |
 +--------+</lang>

Now the definition of emirp.ado:

<lang stata>program emirp args n qui clear qui mata: build(`n') qui save temp, replace qui replace p=real(strreverse(strofreal(p))) qui merge 1:1 p using temp, keep(3) nogen qui drop if real(strreverse(strofreal(p)))==p end

mata real colvector sieve(real scalar n) { real colvector a real scalar i,j if (n<2) return(J(0,1,.)) a=J(n,1,1) a[1]=0 for (i=1; i<=n; i++) { if (a[i]) { j=i*i if (j>n) return(select(1::n,a)) for (; j<=n; j=j+i) a[j]=0 } } }

function build(n) { a=sieve(n) st_addobs(rows(a)) st_addvar("long","p") st_store(.,1,a) } end</lang>

Swift

<lang swift>import Foundation

extension BinaryInteger {

 var isPrime: Bool {
   if self == 0 || self == 1 {
     return false
   } else if self == 2 {
     return true
   }
   let max = Self(ceil((Double(self).squareRoot())))
   for i in stride(from: 2, through: max, by: 1) where self % i == 0  {
     return false
   }
   return true
 }

}

func isEmirp<T: BinaryInteger>(n: T) -> Bool {

 guard n.isPrime else {
   return false
 }
 var aux = n
 var revPrime = T(0)
 while aux > 0 {
   revPrime = revPrime * 10 + aux % 10
   aux /= 10
 }
 guard n != revPrime else {
   return false
 }
 return revPrime.isPrime

}

let lots = (2...).lazy.filter(isEmirp).prefix(10000) let rang = (7700...8000).filter(isEmirp)

print("First 20 emirps: \(Array(lots.prefix(20)))") print("Emirps between 7700 and 8000: \(rang)") print("10,000th emirp: \(Array(lots).last!)")</lang>

Output:
First 20 emirps: [13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389]
Emirps between 7700 and 8000: [7717, 7757, 7817, 7841, 7867, 7879, 7901, 7927, 7949, 7951, 7963]
10,000th emirp: 948349

Tcl

Library: Tcllib (Package: math::numtheory)

<lang tcl>package require math::numtheory

  1. Import only to keep line lengths down

namespace import math::numtheory::isprime proc emirp? {n} {

   set r [string reverse $n]
   expr {$n != $r && [isprime $n] && [isprime $r]}

}

  1. Generate the various emirps

for {set n 2;set emirps {}} {[llength $emirps] < 20} {incr n} {

   if {[emirp? $n]} {lappend emirps $n}

} puts "first20: $emirps"

for {set n 7700;set emirps {}} {$n <= 8000} {incr n} {

   if {[emirp? $n]} {lappend emirps $n}

} puts "7700-8000: $emirps"

for {set n 2;set ne 0} true {incr n} {

   if {[emirp? $n] && [incr ne] == 10000} break

} puts "10,000: $n"</lang>

Output:
first20: 13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389
7700-8000: 7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963
10,000: 948349

VBA

<lang vb>Option Explicit

Private Const MAX As Long = 5000000 Private Emirps As New Collection Private CollTemp As New Collection

Sub Main() Dim t t = Timer

   FillCollectionOfEmirps
   Debug.Print "At this point : Execution time = " & Timer - t & " seconds."
   Debug.Print "We have a Collection of the " & Emirps.Count & " first Emirps."
   Debug.Print "---------------------------"
   'show the first   twenty   emirps
   Debug.Print "the first 20 emirps: "; ExtractEmirps(1, 20)
   'show all emirps between 7,700 and 8,000
   Debug.Print "all emirps between 7,700 and 8,000: "; ExtractEmirps(7700, 8000, True)
   'show the   10,000th   emirp
   Debug.Print "the 10,000th emirp: "; ExtractEmirps(10000, 10000)
 End Sub

Private Function ExtractEmirps(First As Long, Last As Long, Optional Value = False) As String Dim temp$, i As Long, e

   If First = Last Then
       ExtractEmirps = Emirps(First)
   Else
       If Not Value Then
           For i = First To Last
               temp = temp & ", " & Emirps(i)
           Next
       Else
           For Each e In Emirps
               If e > First And e < Last Then
                   temp = temp & ", " & e
               End If
               If e = Last Then Exit For
           Next e
       End If
       ExtractEmirps = Mid(temp, 3)
   End If

End Function

Private Sub FillCollectionOfEmirps() Dim Primes() As Long, e, i As Long

   Primes = Atkin
   For i = LBound(Primes) To UBound(Primes)
       CollTemp.Add Primes(i), CStr(Primes(i))
   Next i
   For Each e In CollTemp
       If IsEmirp(e) Then Emirps.Add e
   Next

End Sub

Private Function Atkin() As Long() Dim MyBool() As Boolean Dim SQRT_MAX As Long, i&, j&, N&, cpt&, MAX_TEMP As Long, temp() As Long

   ReDim MyBool(MAX)
   SQRT_MAX = Sqr(MAX) + 1
   MAX_TEMP = Sqr(MAX / 4) + 1
   For i = 1 To MAX_TEMP
       For j = 1 To SQRT_MAX
           N = 4 * i * i + j * j
           If N <= MAX And (N Mod 12 = 1 Or N Mod 12 = 5) Then
               MyBool(N) = True
           End If
       Next j
   Next i
   MAX_TEMP = Sqr(MAX / 3) + 1
   For i = 1 To MAX_TEMP
       For j = 1 To SQRT_MAX
           N = 3 * i * i + j * j
           If N <= MAX And N Mod 12 = 7 Then
               MyBool(N) = True
           End If
       Next j
   Next i
   For i = 1 To SQRT_MAX
       For j = 1 To SQRT_MAX
           N = 3 * i * i - j * j
           If i > j And N <= MAX And N Mod 12 = 11 Then
               MyBool(N) = True
           End If
       Next j
   Next i
   For i = 5 To SQRT_MAX Step 2
       If MyBool(i) Then
           For j = i * i To MAX Step i
               MyBool(j) = False
           Next
       End If
   Next
   ReDim temp(MAX / 2)
   temp(0) = 2: temp(1) = 3: cpt = 2
   For i = 5 To MAX Step 2
       If MyBool(i) Then temp(cpt) = i: cpt = cpt + 1
   Next
   ReDim Preserve temp(cpt - 1)
   Atkin = temp

End Function

Private Function IsEmirp(N) As Boolean Dim a As String, b As String

   a = StrReverse(CStr(N)): b = CStr(N)
   If a <> b Then
       On Error Resume Next
       CollTemp.Add a, a
       If Err.Number > 0 Then
           IsEmirp = True
       Else
           CollTemp.Remove a
       End If
       On Error GoTo 0
   End If

End Function</lang>

Output:
At this point : Execution time = 13,23047 seconds.
We have a Collection of the 29952 first Emirps.
---------------------------
the first 20 emirps: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389
all emirps between 7,700 and 8,000: 7717, 7757, 7817, 7841, 7867, 7879, 7901, 7927, 7949, 7951, 7963
the 10,000th emirp: 948349

Visual Basic .NET

Translation of: C#

<lang vbnet>Imports System.Runtime.CompilerServices

Module Module1

   <Extension()>
   Function ToHashSet(Of T)(source As IEnumerable(Of T)) As HashSet(Of T)
       Return New HashSet(Of T)(source)
   End Function
   <Extension()>
   Function Reverse(number As Integer) As Integer
       If number < 0 Then
           Return -Reverse(-number)
       End If
       If number < 10 Then
           Return number
       End If
       Dim rev = 0
       While number > 0
           rev = rev * 10 + number Mod 10
           number = number \ 10
       End While
       Return rev
   End Function
   <Extension()>
   Function Delimit(Of T)(source As IEnumerable(Of T), Optional seperator As String = " ") As String
       Return String.Join(If(seperator, " "), source)
   End Function
   Iterator Function Primes(bound As Integer) As IEnumerable(Of Integer)
       If bound < 2 Then
           Return
       End If
       Yield 2
       Dim composite As New BitArray((bound - 1) / 2)
       Dim limit As Integer = Int((Int(Math.Sqrt(bound)) - 1) / 2)
       For i = 0 To limit - 1
           If composite(i) Then
               Continue For
           End If
           Dim prime = 2 * i + 3
           Yield prime
           For j As Integer = Int((prime * prime - 2) / 2) To composite.Count - 1 Step prime
               composite(j) = True
           Next
       Next
       For i = limit To composite.Count - 1
           If Not composite(i) Then
               Yield 2 * i + 3
           End If
       Next
   End Function
   Iterator Function FindEmirpPrimes(limit As Integer) As IEnumerable(Of Integer)
       Dim ps = Primes(limit).ToHashSet()
       For Each p In ps
           Dim rev = p.Reverse()
           If rev <> p AndAlso ps.Contains(rev) Then
               Yield p
           End If
       Next
   End Function
   Sub Main()
       Dim limit = 1_000_000
       Console.WriteLine("First 20:")
       Console.WriteLine(FindEmirpPrimes(limit).Take(20).Delimit())
       Console.WriteLine()
       Console.WriteLine("Between 7700 and 8000:")
       Console.WriteLine(FindEmirpPrimes(limit).SkipWhile(Function(p) p < 7700).TakeWhile(Function(p) p < 8000).Delimit())
       Console.WriteLine()
       Console.WriteLine("10000th:")
       Console.WriteLine(FindEmirpPrimes(limit).ElementAt(9999))
   End Sub

End Module</lang>

Output:
First 20:
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389

Between 7700 and 8000:
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963

10000th:
948349

Wren

Library: Wren-math

<lang ecmascript>import "/math" for Int

var isEmirp = Fn.new{ |n|

   if (!Int.isPrime(n)) return false
   var ns = "%(n)"
   var rs = ns[-1..0]
   var r = Num.fromString(rs)
   if (r == n) return false
   if (Int.isPrime(r)) return true
   return false

}

System.print("The first 20 emirps are:") var count = 0 var i = 3 while (count < 20) {

   if (isEmirp.call(i)) {
       count = count + 1
       System.write("%(i) ")
   }
   i = i + 2

}

System.print("\n\nThe emirps between 7700 and 8000 are:") i = 7701 while (i < 8000) {

   if (isEmirp.call(i)) System.write("%(i) ")
   i = i + 2

}

System.write("\n\nThe 10,000th emirp is ") count = 0 i = 1 while (count < 10000) {

   i = i + 2
   if (isEmirp.call(i)) {
       count = count + 1
   }

} System.print(i)</lang>

Output:
The first 20 emirps are:
13 17 31 37 71 73 79 97 107 113 149 157 167 179 199 311 337 347 359 389 

The emirps between 7700 and 8000 are:
7717 7757 7817 7841 7867 7879 7901 7927 7949 7951 7963 

The 10,000th emirp is 948349

zkl

Uses the solution from task Extensible prime generator#zkl. Saves the primes to a list, which gets pretty big. <lang zkl>var PS=Import("Src/ZenKinetic/sieve").postponed_sieve; var ps=Utils.Generator(PS), plist=ps.walk(10).copy();

fcn isEmirp(p){ rp:=p.toString().reverse().toInt();

  if(p==rp) return(False);
  if(plist.holds(rp)) return(True);
  tp:=p; mp:=p.max(rp); while(tp<mp) { plist.append(tp=ps.next()) }
  return(tp==rp);

}

Utils.Generator(PS).filter(20,isEmirp);

Utils.Generator(PS).filter(fcn(p){if(p>8000)return(Void.Stop); p>7700 and isEmirp(p)});

Utils.Generator(PS).reduce(fcn(N,p){N+=isEmirp(p); (N==10000) and T(Void.Stop,p) or N },0);</lang>

Output:
L(13,17,31,37,71,73,79,97,107,113,149,157,167,179,199,311,337,347,359,389)
L(7817,7841,7867,7879,7901,7927,7949,7951,7963)
948349