# Zebra puzzle

(Redirected from Einstein Logic Puzzle)
Zebra puzzle
You are encouraged to solve this task according to the task description, using any language you may know.

The Zebra puzzle, a.k.a. Einstein's Riddle, is a logic puzzle which is to be solved programmatically.

It has several variants, one of them this:

1.   There are five houses.
2.   The English man lives in the red house.
3.   The Swede has a dog.
4.   The Dane drinks tea.
5.   The green house is immediately to the left of the white house.
6.   They drink coffee in the green house.
7.   The man who smokes Pall Mall has birds.
8.   In the yellow house they smoke Dunhill.
9.   In the middle house they drink milk.
10.   The Norwegian lives in the first house.
11.   The man who smokes Blend lives in the house next to the house with cats.
12.   In a house next to the house where they have a horse, they smoke Dunhill.
13.   The man who smokes Blue Master drinks beer.
14.   The German smokes Prince.
15.   The Norwegian lives next to the blue house.
16.   They drink water in a house next to the house where they smoke Blend.

The question is, who owns the zebra?

Additionally, list the solution for all the houses.
Optionally, show the solution is unique.

Not the prettiest Ada, but it's simple and very fast. Similar to my Dinesman's code; uses enums to keep things readable.

```with Ada.Text_IO; use Ada.Text_IO;
procedure Zebra is
type Content is (Beer, Coffee, Milk, Tea, Water,
Danish, English, German, Norwegian, Swedish,
Blue, Green, Red, White, Yellow,
Blend, BlueMaster, Dunhill, PallMall, Prince,
Bird, Cat, Dog, Horse, Zebra);
type Test is (Drink, Person, Color, Smoke, Pet);
type House is (One, Two, Three, Four, Five);
type Street is array (Test'Range, House'Range) of Content;
type Alley is access all Street;

procedure Print (mat : Alley) is begin
for H in House'Range loop
Put(H'Img&": ");
for T in Test'Range loop
Put(T'Img&"="&mat(T,H)'Img&" ");
end loop; New_Line; end loop;
end Print;

function FinalChecks (mat : Alley) return Boolean is
function Diff (A, B : Content; CA , CB : Test) return Integer is begin
for H1 in House'Range loop for H2 in House'Range loop
if mat(CA,H1) = A and mat(CB,H2) = B then
return House'Pos(H1) - House'Pos(H2);
end if;
end loop; end loop;
end Diff;
begin
if abs(Diff(Norwegian, Blue, Person, Color)) = 1
and Diff(Green, White, Color, Color) = -1
and abs(Diff(Horse, Dunhill, Pet, Smoke)) = 1
and abs(Diff(Water, Blend, Drink, Smoke)) = 1
and abs(Diff(Blend, Cat, Smoke, Pet)) = 1
then return True;
end if;
return False;
end FinalChecks;

function Constrained (mat : Alley; atest : Natural) return Boolean is begin
--  Tests seperated into levels for speed, not strictly necessary
--  As such, the program finishes in around ~0.02s
case Test'Val (atest) is
when Drink => --  Drink
if mat (Drink, Three) /= Milk then return False; end if;
return True;
when Person => --  Drink+Person
for H in House'Range loop
if (mat(Person,H) = Norwegian and H /= One)
or (mat(Person,H) = Danish and mat(Drink,H) /= Tea)
then return False; end if;
end loop;
return True;
when Color => --  Drink+People+Color
for H in House'Range loop
if (mat(Person,H) = English and mat(Color,H) /= Red)
or (mat(Drink,H) = Coffee and mat(Color,H) /= Green)
then return False; end if;
end loop;
return True;
when Smoke => --  Drink+People+Color+Smoke
for H in House'Range loop
if (mat(Color,H) = Yellow and mat(Smoke,H) /= Dunhill)
or (mat(Smoke,H) = BlueMaster and mat(Drink,H) /= Beer)
or (mat(Person,H) = German and mat(Smoke,H) /= Prince)
then return False; end if;
end loop;
return True;
when Pet => --  Drink+People+Color+Smoke+Pet
for H in House'Range loop
if (mat(Person,H) = Swedish and mat(Pet,H) /= Dog)
or (mat(Smoke,H) = PallMall and mat(Pet,H) /= Bird)
then return False; end if;
end loop;
return FinalChecks(mat); --  Do the next-to checks
end case;
end Constrained;

procedure Solve (mat : Alley; t, n : Natural) is
procedure Swap (I, J : Natural) is
temp : constant Content := mat (Test'Val (t), House'Val (J));
begin
mat (Test'Val (t), House'Val (J)) := mat (Test'Val (t), House'Val (I));
mat (Test'Val (t), House'Val (I)) := temp;
end Swap;
begin
if n = 1 and Constrained (mat, t) then --  test t passed
if t < 4 then Solve (mat, t + 1, 5); --  Onto next test
else Print (mat); return; --  Passed and t=4 means a solution
end if;
end if;
for i in 0 .. n - 1 loop --  The permutations part
Solve (mat, t, n - 1);
if n mod 2 = 1 then Swap (0, n - 1);
else Swap (i, n - 1); end if;
end loop;
end Solve;

myStreet : aliased Street;
myAlley : constant Alley := myStreet'Access;
begin
for i in Test'Range loop for j in House'Range loop --  Init Matrix
myStreet (i,j) := Content'Val(Test'Pos(i)*5 + House'Pos(j));
end loop; end loop;
Solve (myAlley, 0, 5); --  start at test 0 with 5 options
end Zebra;
```
Output:
```ONE: DRINK=WATER PERSON=NORWEGIAN COLOR=YELLOW SMOKE=DUNHILL PET=CAT
TWO: DRINK=TEA PERSON=DANISH COLOR=BLUE SMOKE=BLEND PET=HORSE
THREE: DRINK=MILK PERSON=ENGLISH COLOR=RED SMOKE=PALLMALL PET=BIRD
FOUR: DRINK=COFFEE PERSON=GERMAN COLOR=GREEN SMOKE=PRINCE PET=ZEBRA
FIVE: DRINK=BEER PERSON=SWEDISH COLOR=WHITE SMOKE=BLUEMASTER PET=DOG```

## ALGOL 68

Attempts to find solutions using the rules.

```BEGIN
# attempt to solve Einstein's Riddle - the Zebra puzzle                     #
INT unknown   = 0, same    = -1;
INT english   = 1, swede   = 2, dane  = 3, norwegian   = 4, german = 5;
INT dog       = 1, birds   = 2, cats  = 3, horse       = 4, zebra  = 5;
INT red       = 1, green   = 2, white = 3, yellow      = 4, blue   = 5;
INT tea       = 1, coffee  = 2, milk  = 3, beer        = 4, water  = 5;
INT pall mall = 1, dunhill = 2, blend = 3, blue master = 4, prince = 5;
[]STRING nationality = ( "unknown", "english",   "swede",   "dane",   "norwegian",   "german" );
[]STRING animal      = ( "unknown", "dog",       "birds",   "cats",   "horse",       "ZEBRA"  );
[]STRING colour      = ( "unknown", "red",       "green",   "white",  "yellow",      "blue"   );
[]STRING drink       = ( "unknown", "tea",       "coffee",  "milk",   "beer",        "water"  );
[]STRING smoke       = ( "unknown", "pall mall", "dunhill", "blend",  "blue master", "prince" );
MODE HOUSE = STRUCT( INT nationality, animal, colour, drink, smoke );
# returns TRUE if a field in a house could be set to value, FALSE otherwise #
PROC can set = ( INT field, INT value )BOOL: field = unknown OR value = same;
# returns TRUE if the fields of house h could be set to those of            #
#              suggestion s, FALSE otherwise                                #
OP   XOR     = ( HOUSE h, HOUSE s )BOOL:
(   can set( nationality OF h, nationality OF s ) AND can set( animal OF h, animal OF s )
AND can set( colour      OF h, colour      OF s ) AND can set( drink  OF h, drink  OF s )
AND can set( smoke       OF h, smoke       OF s )
) # XOR # ;
# sets a field in a house to value if it is unknown                         #
PROC set     = ( REF INT field, INT value )VOID: IF field = unknown AND value /= same THEN field := value FI;
# sets the unknown fields in house h to the non-same fields of suggestion s #
OP   +:=     = ( REF HOUSE h, HOUSE s )VOID:
( set( nationality OF h, nationality OF s ); set( animal OF h, animal OF s )
; set( colour      OF h, colour      OF s ); set( drink  OF h, drink  OF s )
; set( smoke       OF h, smoke       OF s )
) # +:= # ;
# sets a field in a house to unknown if the value is not same               #
PROC reset   = ( REF INT field, INT value )VOID: IF value /= same THEN field := unknown FI;
# sets fields in house h to unknown if the suggestion s is not same         #
OP   -:=     = ( REF HOUSE h, HOUSE s )VOID:
( reset( nationality OF h, nationality OF s ); reset( animal OF h, animal OF s )
; reset( colour      OF h, colour      OF s ); reset( drink  OF h, drink  OF s )
; reset( smoke       OF h, smoke       OF s )
) # -:= # ;
# attempts a partial solution for the house at pos                          #
PROC try = ( INT pos, HOUSE suggestion, PROC VOID continue )VOID:
IF pos >= LWB house AND pos <= UPB house THEN
IF house[ pos ] XOR suggestion THEN
house[ pos ] +:= suggestion; continue; house[ pos ] -:= suggestion
FI
FI # try # ;
# attempts a partial solution for the neighbours of a house                 #
PROC left or right = ( INT pos, BOOL left, BOOL right, HOUSE neighbour suggestion
, PROC VOID continue )VOID:
( IF left  THEN try( pos - 1, neighbour suggestion, continue ) FI
; IF right THEN try( pos + 1, neighbour suggestion, continue ) FI
) # left or right # ;
# attempts a partial solution for all houses and possibly their neighbours  #
PROC any2 = ( REF INT number, HOUSE suggestion
, BOOL left, BOOL right, HOUSE neighbour suggestion
, PROC VOID continue )VOID:
FOR pos TO UPB house DO
IF house[ pos ] XOR suggestion THEN
number    := pos;
house[ number ] +:= suggestion;
IF NOT left AND NOT right THEN # neighbours not involved       #
continue
ELSE                           # try one or both neighbours    #
left or right( pos, left, right, neighbour suggestion, continue )
FI;
house[ number ] -:= suggestion
FI
OD # any2 # ;
# attempts a partial solution for all houses                                #
PROC any = ( HOUSE suggestion, PROC VOID continue )VOID:
any2( LOC INT, suggestion, FALSE, FALSE, SKIP, continue );
# find solution(s)                                                          #
INT blend pos;
INT solutions := 0;
# There are five houses.                                                    #
[ 1 : 5 ]HOUSE house;
FOR h TO UPB house DO house[ h ] := ( unknown, unknown, unknown, unknown, unknown ) OD;
# In the middle house they drink milk.                                      #
drink       OF house[ 3 ] := milk;
# The Norwegian lives in the first house.                                   #
nationality OF house[ 1 ] := norwegian;
# The Norwegian lives next to the blue house.                               #
colour      OF house[ 2 ] := blue;
# They drink coffee in the green house.                                     #
# The green house is immediately to the left of the white house.            #
any2( LOC INT,     ( same, same, green, coffee, same )
,  FALSE, TRUE, ( same, same, white, same,   same ), VOID:
# In a house next to the house where they have a horse,                   #
# they smoke Dunhill.                                                     #
# In the yellow house they smoke Dunhill.                                 #
any2( LOC INT,    ( same, horse, same,   same, same    )
, TRUE, TRUE, ( same, same,  yellow, same, dunhill ), VOID:
# The English man lives in the red house.                               #
any( ( english, same, red, same, same ), VOID:
# The man who smokes Blend lives in the house next to the             #
# house with cats.                                                    #
any2( blend pos,  ( same, same, same, same, blend )
, TRUE, TRUE, ( same, cats, same, same, same  ), VOID:
# They drink water in a house next to the house where               #
# they smoke Blend.                                                 #
left or right( blend pos, TRUE, TRUE, ( same, same, same, water, same ), VOID:
# The Dane drinks tea.                                            #
any( ( dane, same, same, tea, same ), VOID:
# The man who smokes Blue Master drinks beer.                   #
any( ( same, same, same, beer, blue master ), VOID:
# The Swede has a dog.                                        #
any( ( swede, dog, same, same, same ), VOID:
# The German smokes Prince.                                 #
any( ( german, same, same, same, prince ), VOID:
# The man who smokes Pall Mall has birds.                 #
any( ( same, birds, same, same, pall mall ), VOID:
# if we can place the zebra, we have a solution         #
any( ( same, zebra, same, same, same ), VOID:
( solutions +:= 1;
FOR h TO UPB house DO
print( ( whole( h, 0 )
, " ",  nationality[ 1 + nationality OF house[ h ] ]
, ", ", animal     [ 1 + animal      OF house[ h ] ]
, ", ", colour     [ 1 + colour      OF house[ h ] ]
, ", ", drink      [ 1 + drink       OF house[ h ] ]
, ", ", smoke      [ 1 + smoke       OF house[ h ] ]
, newline
)
)
OD;
print( ( newline ) )
)
) # zebra     #
) # pall mall  #
) # german      #
) # swede        #
) # beer          #
) # dane           #
) # blend L/R       #
) # blend            #
) # red               #
) # horse              #
) # green               # ;
print( ( "solutions: ", whole( solutions, 0 ), newline ) )
END```
Output:
```1 norwegian, cats, yellow, water, dunhill
2 dane, horse, blue, tea, blend
3 english, birds, red, milk, pall mall
4 german, ZEBRA, green, coffee, prince
5 swede, dog, white, beer, blue master

solutions: 1
```

## BBC BASIC

```      REM The names (only used for printing the results):
DIM Drink\$(4), Nation\$(4), Colr\$(4), Smoke\$(4), Animal\$(4)
Drink\$()  = "Beer", "Coffee", "Milk", "Tea", "Water"
Nation\$() = "Denmark", "England", "Germany", "Norway", "Sweden"
Colr\$()   = "Blue", "Green", "Red", "White", "Yellow"
Smoke\$()  = "Blend", "BlueMaster", "Dunhill", "PallMall", "Prince"
Animal\$() = "Birds", "Cats", "Dog", "Horse", "Zebra"

REM Some single-character tags:
a\$ = "A" : b\$ = "B" : c\$ = "C" : d\$ = "D" : e\$ = "E"

REM BBC BASIC Doesn't have enumerations!
Beer\$=a\$    : Coffee\$=b\$     : Milk\$=c\$    : Tea\$=d\$      : Water\$=e\$
Denmark\$=a\$ : England\$=b\$    : Germany\$=c\$ : Norway\$=d\$   : Sweden\$=e\$
Blue\$=a\$    : Green\$=b\$      : Red\$=c\$     : White\$=d\$    : Yellow\$=e\$
Blend\$=a\$   : BlueMaster\$=b\$ : Dunhill\$=c\$ : PallMall\$=d\$ : Prince\$=e\$
Birds\$=a\$   : Cats\$=b\$       : Dog\$=c\$     : Horse\$=d\$    : Zebra\$=e\$

REM Create the 120 permutations of 5 objects:
DIM perm\$(120), x\$(4) : x\$() = a\$, b\$, c\$, d\$, e\$
REPEAT
p% += 1
perm\$(p%) = x\$(0)+x\$(1)+x\$(2)+x\$(3)+x\$(4)
UNTIL NOT FNperm(x\$())

REM Express the statements as conditional expressions:
ex2\$ = "INSTR(Nation\$,England\$) = INSTR(Colr\$,Red\$)"
ex3\$ = "INSTR(Nation\$,Sweden\$) = INSTR(Animal\$,Dog\$)"
ex4\$ = "INSTR(Nation\$,Denmark\$) = INSTR(Drink\$,Tea\$)"
ex5\$ = "INSTR(Colr\$,Green\$+White\$) <> 0"
ex6\$ = "INSTR(Drink\$,Coffee\$) = INSTR(Colr\$,Green\$)"
ex7\$ = "INSTR(Smoke\$,PallMall\$) = INSTR(Animal\$,Birds\$)"
ex8\$ = "INSTR(Smoke\$,Dunhill\$) = INSTR(Colr\$,Yellow\$)"
ex9\$ = "MID\$(Drink\$,3,1) = Milk\$"
ex10\$ = "LEFT\$(Nation\$,1) = Norway\$"
ex11\$ = "ABS(INSTR(Smoke\$,Blend\$)-INSTR(Animal\$,Cats\$)) = 1"
ex12\$ = "ABS(INSTR(Smoke\$,Dunhill\$)-INSTR(Animal\$,Horse\$)) = 1"
ex13\$ = "INSTR(Smoke\$,BlueMaster\$) = INSTR(Drink\$,Beer\$)"
ex14\$ = "INSTR(Nation\$,Germany\$) = INSTR(Smoke\$,Prince\$)"
ex15\$ = "ABS(INSTR(Nation\$,Norway\$)-INSTR(Colr\$,Blue\$)) = 1"
ex16\$ = "ABS(INSTR(Smoke\$,Blend\$)-INSTR(Drink\$,Water\$)) = 1"

REM Solve:
solutions% = 0
TIME = 0
FOR nation% = 1 TO 120
Nation\$ = perm\$(nation%)
IF EVAL(ex10\$) THEN
FOR colr% = 1 TO 120
Colr\$ = perm\$(colr%)
IF EVAL(ex5\$) IF EVAL(ex2\$) IF EVAL(ex15\$) THEN
FOR drink% = 1 TO 120
Drink\$ = perm\$(drink%)
IF EVAL(ex9\$) IF EVAL(ex4\$) IF EVAL(ex6\$) THEN
FOR smoke% = 1 TO 120
Smoke\$ = perm\$(smoke%)
IF EVAL(ex14\$) IF EVAL(ex13\$) IF EVAL(ex16\$) IF EVAL(ex8\$) THEN
FOR animal% = 1 TO 120
Animal\$ = perm\$(animal%)
IF EVAL(ex3\$) IF EVAL(ex7\$) IF EVAL(ex11\$) IF EVAL(ex12\$) THEN
PRINT "House     Drink     Nation    Colour    Smoke     Animal"
FOR house% = 1 TO 5
PRINT ; house% ,;
PRINT Drink\$(ASCMID\$(Drink\$,house%)-65),;
PRINT Nation\$(ASCMID\$(Nation\$,house%)-65),;
PRINT Colr\$(ASCMID\$(Colr\$,house%)-65),;
PRINT Smoke\$(ASCMID\$(Smoke\$,house%)-65),;
PRINT Animal\$(ASCMID\$(Animal\$,house%)-65)
NEXT
solutions% += 1
ENDIF
NEXT animal%
ENDIF
NEXT smoke%
ENDIF
NEXT drink%
ENDIF
NEXT colr%
ENDIF
NEXT nation%
PRINT '"Number of solutions = "; solutions%
PRINT "Solved in " ; TIME/100 " seconds"
END

DEF FNperm(x\$())
LOCAL i%, j%
FOR i% = DIM(x\$(),1)-1 TO 0 STEP -1
IF x\$(i%) < x\$(i%+1) EXIT FOR
NEXT
IF i% < 0 THEN = FALSE
j% = DIM(x\$(),1)
WHILE x\$(j%) <= x\$(i%) j% -= 1 : ENDWHILE
SWAP x\$(i%), x\$(j%)
i% += 1
j% = DIM(x\$(),1)
WHILE i% < j%
SWAP x\$(i%), x\$(j%)
i% += 1
j% -= 1
ENDWHILE
= TRUE
```

Output:

```House     Drink     Nation    Colour    Smoke     Animal
1         Water     Norway    Yellow    Dunhill   Cats
2         Tea       Denmark   Blue      Blend     Horse
3         Milk      England   Red       PallMall  Birds
4         Coffee    Germany   Green     Prince    Zebra
5         Beer      Sweden    White     BlueMasterDog

Number of solutions = 1
Solved in 0.12 seconds
```

## Bracmat

```(     (English Swede Dane Norwegian German,)
(red green white yellow blue,(red.English.))
(dog birds cats horse zebra,(dog.?.Swede.))
( tea coffee milk beer water
, (tea.?.?.Dane.) (coffee.?.green.?.)
)
( "Pall Mall" Dunhill Blend "Blue Master" Prince
,   ("Blue Master".beer.?.?.?.)
("Pall Mall".?.birds.?.?.)
(Dunhill.?.?.yellow.?.)
(Prince.?.?.?.German.)
)
( 1 2 3 4 5
, (3.?.milk.?.?.?.) (1.?.?.?.?.Norwegian.)
)
: ?properties
& ( relations
=   next leftOf
.   ( next
=   a b A B
.   !arg:(?S,?A,?B)
& !S:? (?a.!A) ?:? (?b.!B) ?
& (!a+1:!b|!b+1:!a)
)
& ( leftOf
=   a b A B
.   !arg:(?S,?A,?B)
& !S:? (?a.!A) ?:? (?b.!B) ?
& !a+1:!b
)
&   leftOf
\$ (!arg,(?.?.?.green.?.),(?.?.?.white.?.))
& next\$(!arg,(Blend.?.?.?.?.),(?.?.cats.?.?.))
&   next
\$ (!arg,(?.?.horse.?.?.),(Dunhill.?.?.?.?.))
&   next
\$ (!arg,(?.?.?.?.Norwegian.),(?.?.?.blue.?.))
& next\$(!arg,(?.water.?.?.?.),(Blend.?.?.?.?.))
)
& ( props
=     a constraint constraints house houses
, remainingToDo shavedToDo toDo value values z
.   !arg:(?toDo.?shavedToDo.?house.?houses)
& (   !toDo:(?values,?constraints) ?remainingToDo
&   !values
: (   ?a
( %@?value
&   !constraints
: (   ?
( !value
.   ?constraint
& !house:!constraint
)
?
| ~(   ?
( ?
.   ?constraint
& !house:!constraint
)
?
| ? (!value.?) ?
)
)
)
( ?z
&   props
\$ ( !remainingToDo
. !shavedToDo (!a !z,!constraints)
. (!value.!house)
. !houses
)
)
|
& relations\$!houses
& out\$(Solution !houses)
)
|   !toDo:
& props\$(!shavedToDo...!house !houses)
)
)
& props\$(!properties...)
& done
);```

Output:

```  Solution
(4.Prince.coffee.zebra.green.German.)
(1.Dunhill.water.cats.yellow.Norwegian.)
(2.Blend.tea.horse.blue.Dane.)
(5.Blue Master.beer.dog.white.Swede.)
(3.Pall Mall.milk.birds.red.English.)
{!} done```

## C

```#include <stdio.h>
#include <string.h>

enum HouseStatus { Invalid, Underfull, Valid };

enum Attrib { C, M, D, A, S };

// Unfilled attributes are represented by -1
enum Colors { Red, Green, White, Yellow, Blue };
enum Mans { English, Swede, Dane, German, Norwegian };
enum Drinks { Tea, Coffee, Milk, Beer, Water };
enum Animals { Dog, Birds, Cats, Horse, Zebra };
enum Smokes { PallMall, Dunhill, Blend, BlueMaster, Prince };

void printHouses(int ha[5][5]) {
const char *color[] =  { "Red", "Green", "White", "Yellow", "Blue" };
const char *man[] =    { "English", "Swede", "Dane", "German", "Norwegian" };
const char *drink[] =  { "Tea", "Coffee", "Milk", "Beer", "Water" };
const char *animal[] = { "Dog", "Birds", "Cats", "Horse", "Zebra" };
const char *smoke[] =  { "PallMall", "Dunhill", "Blend", "BlueMaster", "Prince" };

printf("%-10.10s%-10.10s%-10.10s%-10.10s%-10.10s%-10.10s\n",
"House", "Color", "Man", "Drink", "Animal", "Smoke");

for (int i = 0; i < 5; i++) {
printf("%-10d", i);
if (ha[i][C] >= 0)
printf("%-10.10s", color[ha[i][C]]);
else
printf("%-10.10s", "-");
if (ha[i][M] >= 0)
printf("%-10.10s", man[ha[i][M]]);
else
printf("%-10.10s", "-");
if (ha[i][D] >= 0)
printf("%-10.10s", drink[ha[i][D]]);
else
printf("%-10.10s", "-");
if (ha[i][A] >= 0)
printf("%-10.10s", animal[ha[i][A]]);
else
printf("%-10.10s", "-");
if (ha[i][S] >= 0)
printf("%-10.10s\n", smoke[ha[i][S]]);
else
printf("-\n");
}
}

int checkHouses(int ha[5][5]) {
int c_add = 0, c_or = 0;
int m_add = 0, m_or = 0;
int d_add = 0, d_or = 0;
int a_add = 0, a_or = 0;
int s_add = 0, s_or = 0;

// Cond 9: In the middle house they drink milk.
if (ha[2][D] >= 0 && ha[2][D] != Milk)
return Invalid;

// Cond 10: The Norwegian lives in the first house.
if (ha[0][M] >= 0 && ha[0][M] != Norwegian)
return Invalid;

for (int i = 0; i < 5; i++) {
// Uniqueness tests.
if (ha[i][C] >= 0) {
c_or |= (1 << ha[i][C]);
}
if (ha[i][M] >= 0) {
m_or |= (1 << ha[i][M]);
}
if (ha[i][D] >= 0) {
d_or |= (1 << ha[i][D]);
}
if (ha[i][A] >= 0) {
a_or |= (1 << ha[i][A]);
}
if (ha[i][S] >= 0) {
s_or |= (1 << ha[i][S]);
}

// Cond 2: The English man lives in the red house.
if ((ha[i][M] >= 0 && ha[i][C] >= 0) &&
((ha[i][M] == English && ha[i][C] != Red) || // Checking both
(ha[i][M] != English && ha[i][C] == Red)))  // to make things quicker.
return Invalid;

// Cond 3: The Swede has a dog.
if ((ha[i][M] >= 0 && ha[i][A] >= 0) &&
((ha[i][M] == Swede && ha[i][A] != Dog) ||
(ha[i][M] != Swede && ha[i][A] == Dog)))
return Invalid;

// Cond 4: The Dane drinks tea.
if ((ha[i][M] >= 0 && ha[i][D] >= 0) &&
((ha[i][M] == Dane && ha[i][D] != Tea) ||
(ha[i][M] != Dane && ha[i][D] == Tea)))
return Invalid;

// Cond 5: The green house is immediately to the left of the white house.
if ((i > 0 && ha[i][C] >= 0 /*&& ha[i-1][C] >= 0 */ ) &&
((ha[i - 1][C] == Green && ha[i][C] != White) ||
(ha[i - 1][C] != Green && ha[i][C] == White)))
return Invalid;

// Cond 6: drink coffee in the green house.
if ((ha[i][C] >= 0 && ha[i][D] >= 0) &&
((ha[i][C] == Green && ha[i][D] != Coffee) ||
(ha[i][C] != Green && ha[i][D] == Coffee)))
return Invalid;

// Cond 7: The man who smokes Pall Mall has birds.
if ((ha[i][S] >= 0 && ha[i][A] >= 0) &&
((ha[i][S] == PallMall && ha[i][A] != Birds) ||
(ha[i][S] != PallMall && ha[i][A] == Birds)))
return Invalid;

// Cond 8: In the yellow house they smoke Dunhill.
if ((ha[i][S] >= 0 && ha[i][C] >= 0) &&
((ha[i][S] == Dunhill && ha[i][C] != Yellow) ||
(ha[i][S] != Dunhill && ha[i][C] == Yellow)))
return Invalid;

// Cond 11: The man who smokes Blend lives in the house next to the house with cats.
if (ha[i][S] == Blend) {
if (i == 0 && ha[i + 1][A] >= 0 && ha[i + 1][A] != Cats)
return Invalid;
else if (i == 4 && ha[i - 1][A] != Cats)
return Invalid;
else if (ha[i + 1][A] >= 0 && ha[i + 1][A] != Cats && ha[i - 1][A] != Cats)
return Invalid;
}

// Cond 12: In a house next to the house where they have a horse, they smoke Dunhill.
if (ha[i][S] == Dunhill) {
if (i == 0 && ha[i + 1][A] >= 0 && ha[i + 1][A] != Horse)
return Invalid;
else if (i == 4 && ha[i - 1][A] != Horse)
return Invalid;
else if (ha[i + 1][A] >= 0 && ha[i + 1][A] != Horse && ha[i - 1][A] != Horse)
return Invalid;
}

// Cond 13: The man who smokes Blue Master drinks beer.
if ((ha[i][S] >= 0 && ha[i][D] >= 0) &&
((ha[i][S] == BlueMaster && ha[i][D] != Beer) ||
(ha[i][S] != BlueMaster && ha[i][D] == Beer)))
return Invalid;

// Cond 14: The German smokes Prince
if ((ha[i][M] >= 0 && ha[i][S] >= 0) &&
((ha[i][M] == German && ha[i][S] != Prince) ||
(ha[i][M] != German && ha[i][S] == Prince)))
return Invalid;

// Cond 15: The Norwegian lives next to the blue house.
if (ha[i][M] == Norwegian &&
((i < 4 && ha[i + 1][C] >= 0 && ha[i + 1][C] != Blue) ||
(i > 0 && ha[i - 1][C] != Blue)))
return Invalid;

// Cond 16: They drink water in a house next to the house where they smoke Blend.
if (ha[i][S] == Blend) {
if (i == 0 && ha[i + 1][D] >= 0 && ha[i + 1][D] != Water)
return Invalid;
else if (i == 4 && ha[i - 1][D] != Water)
return Invalid;
else if (ha[i + 1][D] >= 0 && ha[i + 1][D] != Water && ha[i - 1][D] != Water)
return Invalid;
}

}

return Invalid;
}

return Underfull;
}

return Valid;
}

int bruteFill(int ha[5][5], int hno, int attr) {
int stat = checkHouses(ha);
if ((stat == Valid) || (stat == Invalid))
return stat;

int hb[5][5];
memcpy(hb, ha, sizeof(int) * 5 * 5);
for (int i = 0; i < 5; i++) {
hb[hno][attr] = i;
stat = checkHouses(hb);
if (stat != Invalid) {
int nexthno, nextattr;
if (attr < 4) {
nextattr = attr + 1;
nexthno = hno;
} else {
nextattr = 0;
nexthno = hno + 1;
}

stat = bruteFill(hb, nexthno, nextattr);
if (stat != Invalid) {
memcpy(ha, hb, sizeof(int) * 5 * 5);
return stat;
}
}
}

// We only come here if none of the attr values assigned were valid.
return Invalid;
}

int main() {
int ha[5][5] = {{-1, -1, -1, -1, -1}, {-1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1}, {-1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1}};

bruteFill(ha, 0, 0);
printHouses(ha);

return 0;
}
```
Output:
```% gcc -Wall -O3 -std=c99 zebra.c -o zebra && time ./zebra
House     Color     Man       Drink     Animal    Smoke
0         Yellow    Norwegian Water     Cats      Dunhill
1         Blue      Dane      Tea       Horse     Blend
2         Red       English   Milk      Birds     PallMall
3         Green     German    Coffee    Zebra     Prince
4         White     Swede     Beer      Dog       BlueMaster
./zebra  0.00s user 0.00s system 0% cpu 0.002 total```

The execution time is too small to be reliably measured on my machine.

### C Generated from Perl

I'll be the first to admit the following doesn't quite look like a C program. It's in fact in Perl, which outputs a C source, which in turn solves the puzzle. If you think this is long, wait till you see the C it writes.

```#!/usr/bin/perl

use utf8;
no strict;

my (%props, %name, @pre, @conds, @works, \$find_all_solutions);

sub do_consts {
local \$";
for my \$p (keys %props) {
my @s = @{ \$props{\$p} };

\$" = ", ";
print "enum { \${p}_none = 0, @s };\n";

\$" = '", "';
print "const char *string_\$p [] = { \"###\", \"@s\" };\n\n";
}
print "#define FIND_BY(p)	\\
int find_by_##p(int v) {		\\
int i;					\\
for (i = 0; i < N_ITEMS; i++)		\\
if (house[i].p == v) return i;	\\
return -1; }\n";

print "FIND_BY(\$_)" for (keys %props);

local \$" = ", ";
my @k = keys %props;

my \$sl = 0;
for (keys %name) {
if (length > \$sl) { \$sl = length }
}

my \$fmt = ("%".(\$sl + 1)."s ") x @k;
my @arg = map { "string_\$_"."[house[i].\$_]" } @k;
print << "SNIPPET";
int work0(void) {
int i;
for (i = 0; i < N_ITEMS; i++)
printf("%d \$fmt\\n", i, @arg);
puts(\"\");
return 1;
}
SNIPPET

}

sub setprops {
%props = @_;
my \$l = 0;
my @k = keys %props;
for my \$p (@k) {
my @s = @{ \$props{\$p} };

if (\$l && \$l != @s) {
}
\$l = @s;
\$name{\$_} = \$p for @s;
}
local \$" = ", ";
print "#include <stdio.h>
#define N_ITEMS \$l
struct item_t { int @k; } house[N_ITEMS] = {{0}};\n";
}

sub pair {NB.   h =.~.&> compose&.>~/y,<h

my (\$c1, \$c2, \$diff) = @_;
\$diff //= [0];
\$diff = [\$diff] unless ref \$diff;

push @conds, [\$c1, \$c2, \$diff];
}

sub make_conditions {
my \$idx = 0;
my \$return1 = \$find_all_solutions ? "" : "return 1";
print "
#define TRY(a, b, c, d, p, n)		\\
if ((b = a d) >= 0 && b < N_ITEMS) {	\\
if (!house[b].p) {		\\
house[b].p = c;		\\
if (n()) \$return1;	\\
house[b].p = 0;		\\
}}
";

while (@conds) {
my (\$c1, \$c2, \$diff) = @{ pop @conds };
my \$p2 = \$name{\$c2} or die "bad prop \$c2";

if (\$c1 =~ /^\d+\$/) {
push @pre, "house[\$c1].\$p2 = \$c2;";
next;
}

my \$p1 = \$name{\$c1} or die "bad prop \$c1";
my \$next = "work\$idx";
my \$this = "work".++\$idx;

print "
/* condition pair(\$c1, \$c2, [@\$diff]) */
int \$this(void) {
int a = find_by_\$p1(\$c1);
int b = find_by_\$p2(\$c2);
if (a != -1 && b != -1) {
switch(b - a) {
";
print "case \$_: " for @\$diff;
print "return \$next(); default: return 0; }\n } if (a != -1) {";
print "TRY(a, b, \$c2, +(\$_), \$p2, \$next);" for @\$diff;
print " return 0; } if (b != -1) {";
print "TRY(b, a, \$c1, -(\$_), \$p1, \$next);" for @\$diff;
print "
return 0; }
/* neither condition is set; try all possibles */
for (a = 0; a < N_ITEMS; a++) {
if (house[a].\$p1) continue;
house[a].\$p1 = \$c1;
";

print "TRY(a, b, \$c2, +(\$_), \$p2, \$next);" for @\$diff;
print " house[a].\$p1 = 0; } return 0; }";
}

print "int main() { @pre return !work\$idx(); }";
}

sub make_c {
do_consts;
make_conditions;
}

# ---- above should be generic for all similar puzzles ---- #

# ---- below: per puzzle setup ---- #
# property names and values
setprops (
'nationality'	# Svensk n. a Swede, not a swede (kålrot).
# AEnglisk (from middle Viking "Æŋløsåksen") n. a Brit.
=> [ qw(Deutsch Svensk Norske Danske AEnglisk) ],
'pet'	=> [ qw(birds dog horse zebra cats) ],
'drink'	=> [ qw(water tea milk beer coffee) ],
'smoke'	=> [ qw(dunhill blue_master prince blend pall_mall) ],
'color'	=> [ qw(red green yellow white blue) ]
);

# constraints
pair(AEnglisk, red);
pair(Svensk, dog);
pair(Danske, tea);
pair(green, white, 1);	# "to the left of" can mean either 1 or -1: ambiguous
pair(coffee, green);
pair(pall_mall, birds);
pair(yellow, dunhill);
pair(2, milk);
pair(0, Norske);
pair(blend, cats, [-1, 1]);
pair(horse, dunhill, [-1, 1]);
pair(blue_master, beer);	# Nicht das Deutsche Bier trinken? Huh.
pair(Deutsch, prince);
pair(Norske, blue, [-1, 1]);
pair(water, blend, [-1, 1]);

# "zebra lives *somewhere* relative to the Brit".  It has no effect on
# the logic.  It's here just to make sure the code will insert a zebra
# somewhere in the table (after all other conditions are met) so the
# final print-out shows it. (the C code can be better structured, but
# meh, I ain't reading it, so who cares).
pair(zebra, AEnglisk, [ -4 .. 4 ]);

# write C code.  If it's ugly to you: I didn't write; Perl did.
make_c;
```
output (ran as `perl test.pl | gcc -Wall -x c -; ./a.out`):
```0      dunhill         cats       yellow        water       Norske
1        blend        horse         blue          tea       Danske
2    pall_mall        birds          red         milk     AEnglisk
3       prince        zebra        green       coffee      Deutsch
4  blue_master          dog        white         beer       Svensk
```

## C#

### "Manual" solution (Norvig-style)

Works with: C# version 7+ (but easy to adapt to lower versions)

This is adapted from a solution to a similar problem by Peter Norvig in his Udacity course CS212, originally written in Python. This is translated from example python solution on exercism. This is a Generate-and-Prune Constraint Programming algorithm written with Linq. (See Benchmarks below)

```using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using static System.Console;

public enum Colour { Red, Green, White, Yellow, Blue }
public enum Nationality { Englishman, Swede, Dane, Norwegian,German }
public enum Pet { Dog, Birds, Cats, Horse, Zebra }
public enum Drink { Coffee, Tea, Milk, Beer, Water }
public enum Smoke { PallMall, Dunhill, Blend, BlueMaster, Prince}

public static class ZebraPuzzle
{
private static (Colour[] colours, Drink[] drinks, Smoke[] smokes, Pet[] pets, Nationality[] nations) _solved;

static ZebraPuzzle()
{
var solve = from colours in Permute<Colour>()  //r1 5 range
where (colours,Colour.White).IsRightOf(colours, Colour.Green) // r5
from nations in Permute<Nationality>()
where nations[0] == Nationality.Norwegian // r10
where (nations, Nationality.Englishman).IsSameIndex(colours, Colour.Red) //r2
where (nations,Nationality.Norwegian).IsNextTo(colours,Colour.Blue) // r15
from drinks in Permute<Drink>()
where drinks[2] == Drink.Milk //r9
where (drinks, Drink.Coffee).IsSameIndex(colours, Colour.Green) // r6
where (drinks, Drink.Tea).IsSameIndex(nations, Nationality.Dane) //r4
from pets in Permute<Pet>()
where (pets, Pet.Dog).IsSameIndex(nations, Nationality.Swede) // r3
from smokes in Permute<Smoke>()
where (smokes, Smoke.PallMall).IsSameIndex(pets, Pet.Birds) // r7
where (smokes, Smoke.Dunhill).IsSameIndex(colours, Colour.Yellow) // r8
where (smokes, Smoke.Blend).IsNextTo(pets, Pet.Cats) // r11
where (smokes, Smoke.Dunhill).IsNextTo(pets, Pet.Horse) //r12
where (smokes, Smoke.BlueMaster).IsSameIndex(drinks, Drink.Beer) //r13
where (smokes, Smoke.Prince).IsSameIndex(nations, Nationality.German) // r14
where (drinks,Drink.Water).IsNextTo(smokes,Smoke.Blend) // r16
select (colours, drinks, smokes, pets, nations);

_solved = solve.First();
}

private static int IndexOf<T>(this T[] arr, T obj) => Array.IndexOf(arr, obj);

private static bool IsRightOf<T, U>(this (T[] a, T v) right, U[] a, U v) => right.a.IndexOf(right.v) == a.IndexOf(v) + 1;

private static bool IsSameIndex<T, U>(this (T[] a, T v)x, U[] a, U v) => x.a.IndexOf(x.v) == a.IndexOf(v);

private static bool IsNextTo<T, U>(this (T[] a, T v)x, U[] a,  U v) => (x.a,x.v).IsRightOf(a, v) || (a,v).IsRightOf(x.a,x.v);

// made more generic from https://codereview.stackexchange.com/questions/91808/permutations-in-c
public static IEnumerable<IEnumerable<T>> Permutations<T>(this IEnumerable<T> values)
{
if (values.Count() == 1)
return values.ToSingleton();

return values.SelectMany(v => Permutations(values.Except(v.ToSingleton())),(v, p) => p.Prepend(v));
}

public static IEnumerable<T[]> Permute<T>() => ToEnumerable<T>().Permutations().Select(p=>p.ToArray());

private static IEnumerable<T> ToSingleton<T>(this T item){ yield return item; }

private static IEnumerable<T> ToEnumerable<T>() => Enum.GetValues(typeof(T)).Cast<T>();

public static new String ToString()
{
var sb = new StringBuilder();
sb.AppendLine("House Colour Drink    Nationality Smokes     Pet");
sb.AppendLine("───── ────── ──────── ─────────── ────────── ─────");
var (colours, drinks, smokes, pets, nations) = _solved;
for (var i = 0; i < 5; i++)
sb.AppendLine(\$"{i+1,5} {colours[i],-6} {drinks[i],-8} {nations[i],-11} {smokes[i],-10} {pets[i],-10}");
return sb.ToString();
}

public static void Main(string[] arguments)
{
var owner = _solved.nations[_solved.pets.IndexOf(Pet.Zebra)];
WriteLine(\$"The zebra owner is {owner}");
Write(ToString());
}
}
```

Produces:

```The zebra owner is German
House Colour Drink    Nationality Smokes     Pet
───── ────── ──────── ─────────── ────────── ─────
1 Yellow Water    Norwegian   Dunhill    Cats
2 Blue   Tea      Dane        Blend      Horse
3 Red    Milk     Englishman  PallMall   Birds
4 Green  Coffee   German      Prince     Zebra
5 White  Beer     Swede       BlueMaster Dog
```

### "Manual" solution (Combining Houses)

Works with: C# version 7+
Translation of: Scala

This is similar to the Scala solution although there are differences in how the rules are calculated and it keeps all the original constraints/rules rather than does any simplification of them.

This is a different type of generate-and-prune compared to Norvig. The Norvig solution generates each attribute for 5 houses, then prunes and repeats with the next attribute. Here all houses with possible attributes are first generated and pruned to 78 candidates. The second phase proceeds over the combination of 5 houses from that 78, generating and pruning 1 house at a time. (See Benchmarks below)

```using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using static System.Console;

namespace ZebraPuzzleSolver
{
public enum Colour { Red, Green, White, Yellow, Blue }
public enum Nationality { Englishman, Swede, Dane, Norwegian, German }
public enum Pet { Dog, Birds, Cats, Horse, Zebra }
public enum Drink { Coffee, Tea, Milk, Beer, Water }
public enum Smoke { PallMall, Dunhill, Blend, BlueMaster, Prince }

public struct House
{
public Drink D { get; }
public Colour C { get; }
public Pet P { get; }
public Nationality N { get; }
public Smoke S { get; }

House(Drink d, Colour c, Pet p, Nationality n, Smoke s) => (D, C, P, N, S) = (d, c, p, n, s);

public static House Create(Drink d, Colour c, Pet p, Nationality n, Smoke s) => new House(d, c, p, n, s);

public bool AllUnequal(House other) => D != other.D && C != other.C && P != other.P && N != other.N && S != other.S;

public override string ToString() =>\$"{C,-6} {D,-8} {N,-11} {S,-10} {P,-10}";
}

public static class LinqNoPerm
{
public static IEnumerable<T> ToEnumerable<T>() => Enum.GetValues(typeof(T)).Cast<T>();

public static IEnumerable<House> FreeCandidates(this IEnumerable<House> houses, IEnumerable<House> picked) =>
houses.Where(house => picked.All(house.AllUnequal));

static Dictionary<Type, Func<House, dynamic, bool>> _eFn = new Dictionary<Type, Func<House, dynamic, bool>>
{ {typeof(Drink),(h,e)=>h.D==e},
{typeof(Nationality),(h,e)=>h.N==e},
{typeof(Colour),(h,e)=>h.C==e},
{typeof(Pet),(h,e)=>h.P==e},
{typeof(Smoke),(h, e)=>h.S==e}
};

public static bool IsNextTo<T, U>(this IEnumerable<House> hs,T t, U u) => hs.IsLeftOf(t,u) || hs.IsLeftOf(u, t);

public static bool IsLeftOf<T, U>(this IEnumerable<House> hs, T left, U right) =>
hs.Zip(hs.Skip(1), (l, r) => (_eFn[left.GetType()](l, left) && _eFn[right.GetType()](r, right))).Any(l => l);

static House[] _solved;

static LinqNoPerm()
{
var candidates =
from colours in ToEnumerable<Colour>()
from nations in ToEnumerable<Nationality>()
from drinks in ToEnumerable<Drink>()
from pets in ToEnumerable<Pet>()
from smokes in ToEnumerable<Smoke>()
where (colours == Colour.Red) == (nations == Nationality.Englishman) //r2
where (nations == Nationality.Swede) == (pets == Pet.Dog) //r3
where (nations == Nationality.Dane) == (drinks == Drink.Tea) //r4
where (colours == Colour.Green) == (drinks == Drink.Coffee) //r6
where (smokes == Smoke.PallMall) == (pets == Pet.Birds) //r7
where (smokes == Smoke.Dunhill) == (colours == Colour.Yellow) // r8
where (smokes == Smoke.BlueMaster) == (drinks == Drink.Beer) //r13
where (smokes == Smoke.Prince) == (nations == Nationality.German) // r14
select House.Create(drinks,colours,pets,nations, smokes);
var members =
from h1 in candidates
where h1.N == Nationality.Norwegian //r10
from h3 in candidates.FreeCandidates(new[] { h1 })
where h3.D == Drink.Milk //r9
from h2 in candidates.FreeCandidates(new[] { h1, h3 })
let h123 = new[] { h1, h2, h3 }
where h123.IsNextTo(Nationality.Norwegian, Colour.Blue) //r15
where h123.IsNextTo(Smoke.Blend, Pet.Cats)//r11
where h123.IsNextTo(Smoke.Dunhill, Pet.Horse) //r12
from h4 in candidates.FreeCandidates(h123)
from h5 in candidates.FreeCandidates(new[] { h1, h3, h2, h4 })
let houses = new[] { h1, h2, h3, h4, h5 }
where houses.IsLeftOf(Colour.Green, Colour.White) //r5
select houses;
_solved = members.First();
}

public static new String ToString()
{
var sb = new StringBuilder();

sb.AppendLine("House Colour Drink    Nationality Smokes     Pet");
sb.AppendLine("───── ────── ──────── ─────────── ────────── ─────");
for (var i = 0; i < 5; i++)
sb.AppendLine(\$"{i + 1,5} {_solved[i].ToString()}");
return sb.ToString();
}

public static void Main(string[] arguments)
{
var owner = _solved.Where(h=>h.P==Pet.Zebra).Single().N;
WriteLine(\$"The zebra owner is {owner}");
Write(ToString());
}
}
}
```

Produces

```The zebra owner is German
House Colour Drink    Nationality Smokes     Pet
───── ────── ──────── ─────────── ────────── ─────
1 Yellow Water    Norwegian   Dunhill    Cats
2 Blue   Tea      Dane        Blend      Horse
3 Red    Milk     Englishman  PallMall   Birds
4 Green  Coffee   German      Prince     Zebra
5 White  Beer     Swede       BlueMaster Dog
```

### "Amb" solution

This uses the second version of the Amb C# class in the Amb challenge

Works with: C# version 7.1
```using Amb;
using System;
using System.Collections.Generic;
using System.Linq;
using static System.Console;

static class ZebraProgram
{
public static void Main()
{
var amb = new Amb.Amb();

var domain = new[] { 1, 2, 3, 4, 5 };
var terms = new Dictionary<IValue<int>, string>();
IValue<int> Term(string name)
{
var x = amb.Choose(domain);
return x;
};

void IsUnequal(params IValue<int>[] values) =>amb.Require(() => values.Select(v => v.Value).Distinct().Count() == 5);
void IsSame(IValue<int> left, IValue<int> right) => amb.Require(() => left.Value == right.Value);
void IsLeftOf(IValue<int> left, IValue<int> right) => amb.Require(() => right.Value - left.Value == 1);
void IsIn(IValue<int> attrib, int house) => amb.Require(() => attrib.Value == house);
void IsNextTo(IValue<int> left, IValue<int> right) => amb.Require(() => Math.Abs(left.Value - right.Value) == 1);

IValue<int> english = Term("Englishman"), swede = Term("Swede"), dane = Term("Dane"), norwegian = Term("Norwegian"), german = Term("German");
IsIn(norwegian, 1);
IsUnequal(english, swede, german, dane, norwegian);

IValue<int> red = Term("red"), green = Term("green"), white = Term("white"), blue = Term("blue"), yellow = Term("yellow");
IsUnequal(red, green, white, blue, yellow);
IsNextTo(norwegian, blue);
IsLeftOf(green, white);
IsSame(english, red);

IValue<int> tea = Term("tea"), coffee = Term("coffee"), milk = Term("milk"), beer = Term("beer"), water = Term("water");
IsIn(milk, 3);
IsUnequal(tea, coffee, milk, beer, water);
IsSame(dane, tea);
IsSame(green, coffee);

IValue<int> dog = Term("dog"), birds = Term("birds"), cats = Term("cats"), horse = Term("horse"), zebra = Term("zebra");
IsUnequal(dog, cats, birds, horse, zebra);
IsSame(swede, dog);

IValue<int> pallmall = Term("pallmall"), dunhill = Term("dunhill"), blend = Term("blend"), bluemaster = Term("bluemaster"),prince = Term("prince");
IsUnequal(pallmall, dunhill, bluemaster, prince, blend);
IsSame(pallmall, birds);
IsSame(dunhill, yellow);
IsNextTo(blend, cats);
IsNextTo(horse, dunhill);
IsSame(bluemaster, beer);
IsSame(german, prince);
IsNextTo(water, blend);

if (!amb.Disambiguate())
{
WriteLine("No solution found.");
return;
}

var h = new List<string>[5];
for (int i = 0; i < 5; i++)
h[i] = new List<string>();

foreach (var (key, value) in terms.Select(kvp => (kvp.Key, kvp.Value)))
{
}

var owner = String.Concat(h.Where(l => l.Contains("zebra")).Select(l => l[0]));
WriteLine(\$"The {owner} owns the zebra");

foreach (var house in h)
{
Write("|");
foreach (var attrib in house)
Write(\$"{attrib,-10}|");
Write("\n");
}
}
}
```

Produces

```The zebra owner is German
House Colour Drink    Nationality Smokes     Pet
───── ────── ──────── ─────────── ────────── ─────
1 Yellow Water    Norwegian   Dunhill    Cats
2 Blue   Tea      Dane        Blend      Horse
3 Red    Milk     Englishman  PallMall   Birds
4 Green  Coffee   German      Prince     Zebra
5 White  Beer     Swede       BlueMaster Dog
```

### "Automatic" solution

Works with: C# version 7
```using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.SolverFoundation.Solvers;

using static System.Console;

static class ZebraProgram
{
static ConstraintSystem _solver;

static CspTerm IsLeftOf(this CspTerm left, CspTerm right) => _solver.Equal(1, right - left);
static CspTerm IsInSameHouseAs(this CspTerm left, CspTerm right) => _solver.Equal(left, right);
static CspTerm IsNextTo(this CspTerm left, CspTerm right) => _solver.Equal(1,_solver.Abs(left-right));
static CspTerm IsInHouse(this CspTerm @this, int i) => _solver.Equal(i, @this);

static (ConstraintSystem, Dictionary<CspTerm, string>) BuildSolver()
{
var solver = ConstraintSystem.CreateSolver();
_solver = solver;
var terms = new Dictionary<CspTerm, string>();

CspTerm Term(string name)
{
CspTerm x = solver.CreateVariable(solver.CreateIntegerInterval(1, 5), name);
return x;
};

CspTerm red = Term("red"), green = Term("green"), white = Term("white"), blue = Term("blue"), yellow = Term("yellow");
CspTerm tea = Term("tea"), coffee = Term("coffee"), milk = Term("milk"), beer = Term("beer"), water = Term("water");
CspTerm english = Term("Englishman"), swede = Term("Swede"), dane = Term("Dane"), norwegian = Term("Norwegian"),
german = Term("German");
CspTerm dog = Term("dog"), birds = Term("birds"), cats = Term("cats"), horse = Term("horse"), zebra = Term("zebra");
CspTerm pallmall = Term("pallmall"), dunhill = Term("dunhill"), blend = Term("blend"), bluemaster = Term("bluemaster"),
prince = Term("prince");

solver.Unequal(english, swede, german, dane, norwegian),
solver.Unequal(red, green, white, blue, yellow),
solver.Unequal(dog, cats, birds, horse, zebra),
solver.Unequal(pallmall, dunhill, bluemaster, prince, blend),
solver.Unequal(tea, coffee, milk, beer, water),

english.IsInSameHouseAs(red), //r2
swede.IsInSameHouseAs(dog), //r3
dane.IsInSameHouseAs(tea), //r4
green.IsLeftOf(white), //r5
green.IsInSameHouseAs(coffee), //r6
pallmall.IsInSameHouseAs(birds), //r7
dunhill.IsInSameHouseAs(yellow), //r8
milk.IsInHouse(3), //r9
norwegian.IsInHouse(1), //r10
blend.IsNextTo(cats), //r11
horse.IsNextTo(dunhill),// r12
bluemaster.IsInSameHouseAs(beer), // r13
german.IsInSameHouseAs(prince), // r14
norwegian.IsNextTo(blue), //r15
water.IsNextTo(blend) //r16
);
return (solver, terms);
}

static List<string>[] TermsToString(ConstraintSolverSolution solved, Dictionary<CspTerm, string> terms)
{
var h = new List<string>[5];
for (int i = 0; i < 5; i++)
h[i] = new List<string>();

foreach (var (key, value) in terms.Select(kvp => (kvp.Key, kvp.Value)))
{
if (!solved.TryGetValue(key, out object house))
throw new InvalidProgramException("Can't find a term - {value} - in the solution");
}

return h;
}

static new string ToString(List<string>[] houses)
{
var sb = new StringBuilder();
foreach (var house in houses)
{
sb.Append("|");
foreach (var attrib in house)
sb.Append(\$"{attrib,-10}|");
sb.Append("\n");
}
return sb.ToString();
}

public static void Main()
{
var (solver, terms) = BuildSolver();

var solved = solver.Solve();

if (solved.HasFoundSolution)
{
var h = TermsToString(solved, terms);

var owner = String.Concat(h.Where(l => l.Contains("zebra")).Select(l => l[2]));
WriteLine(\$"The {owner} owns the zebra");
WriteLine();
Write(ToString(h));
}
else
WriteLine("No solution found.");
}
}
```

Produces:

```The German owns the zebra

|yellow    |water     |Norwegian |cats      |dunhill   |
|blue      |tea       |Dane      |horse     |blend     |
|red       |milk      |Englishman|birds     |pallmall  |
|green     |coffee    |German    |zebra     |prince    |
|white     |beer      |Swede     |dog       |bluemaster|
```

### Benchmarking the 3 solutions:

```BenchmarkDotNet=v0.10.12, OS=Windows 10 Redstone 3 [1709, Fall Creators Update] (10.0.16299.192)
Intel Core i7-7500U CPU 2.70GHz (Kaby Lake), 1 CPU, 4 logical cores and 2 physical cores
Frequency=2835943 Hz, Resolution=352.6164 ns, Timer=TSC
DefaultJob : .NET Framework 4.6.1 (CLR 4.0.30319.42000), 64bit RyuJIT-v4.7.2600.0

Method	Mean	Error	StdDev
Norvig	65.32 ms	1.241 ms	1.328 ms
Combin	93.62 ms	1.792 ms	1.918 ms
Solver  148.7 us	2.962 us	6.248 us
```

I think that it is Enums (not the use of dynamic in a dictionary, which is only called 8 times in Combine), and Linq query comprehensions (versus for loops) slow down the 2 non_solver solutions. A non-type-safe non-Enum int version of Combine (not posted here) runs at ~21ms, which is a nearly 5x speed up for that algo. (Not tried with Norvig). Regardless, learning and using the Solver class (and that solution already uses ints rather than enums) provides a dramatic x 100 + performance increase compared to the best manual solutions.

## C++

This is a modification of the C submission that uses rule classes and reduces the number of permutations evaluated.

```#include <stdio.h>
#include <string.h>

#define defenum(name, val0, val1, val2, val3, val4) \
enum name { val0, val1, val2, val3, val4 }; \
const char *name ## _str[] = { # val0, # val1, # val2, # val3, # val4 }

defenum( Attrib,    Color, Man, Drink, Animal, Smoke );
defenum( Colors,    Red, Green, White, Yellow, Blue );
defenum( Mans,      English, Swede, Dane, German, Norwegian );
defenum( Drinks,    Tea, Coffee, Milk, Beer, Water );
defenum( Animals,   Dog, Birds, Cats, Horse, Zebra );
defenum( Smokes,    PallMall, Dunhill, Blend, BlueMaster, Prince );

void printHouses(int ha[5][5]) {
const char **attr_names[5] = {Colors_str, Mans_str, Drinks_str, Animals_str, Smokes_str};

printf("%-10s", "House");
for (const char *name : Attrib_str) printf("%-10s", name);
printf("\n");

for (int i = 0; i < 5; i++) {
printf("%-10d", i);
for (int j = 0; j < 5; j++) printf("%-10s", attr_names[j][ha[i][j]]);
printf("\n");
}
}

struct HouseNoRule {
int houseno;
Attrib a; int v;
} housenos[] = {
{2, Drink, Milk},     // Cond 9: In the middle house they drink milk.
{0, Man, Norwegian}   // Cond 10: The Norwegian lives in the first house.
};

struct AttrPairRule {
Attrib a1; int v1;
Attrib a2; int v2;

bool invalid(int ha[5][5], int i) {
return (ha[i][a1] >= 0 && ha[i][a2] >= 0) &&
((ha[i][a1] == v1 && ha[i][a2] != v2) ||
(ha[i][a1] != v1 && ha[i][a2] == v2));
}
} pairs[] = {
{Man, English,      Color, Red},     // Cond 2: The English man lives in the red house.
{Man, Swede,        Animal, Dog},    // Cond 3: The Swede has a dog.
{Man, Dane,         Drink, Tea},     // Cond 4: The Dane drinks tea.
{Color, Green,      Drink, Coffee},  // Cond 6: drink coffee in the green house.
{Smoke, PallMall,   Animal, Birds},  // Cond 7: The man who smokes Pall Mall has birds.
{Smoke, Dunhill,    Color, Yellow},  // Cond 8: In the yellow house they smoke Dunhill.
{Smoke, BlueMaster, Drink, Beer},    // Cond 13: The man who smokes Blue Master drinks beer.
{Man, German,       Smoke, Prince}    // Cond 14: The German smokes Prince
};

struct NextToRule {
Attrib a1; int v1;
Attrib a2; int v2;

bool invalid(int ha[5][5], int i) {
return (ha[i][a1] == v1) &&
((i == 0 && ha[i + 1][a2] >= 0 && ha[i + 1][a2] != v2) ||
(i == 4 && ha[i - 1][a2] != v2) ||
(ha[i + 1][a2] >= 0 && ha[i + 1][a2] != v2 && ha[i - 1][a2] != v2));
}
} nexttos[] = {
{Smoke, Blend,      Animal, Cats},    // Cond 11: The man who smokes Blend lives in the house next to the house with cats.
{Smoke, Dunhill,    Animal, Horse},   // Cond 12: In a house next to the house where they have a horse, they smoke Dunhill.
{Man, Norwegian,    Color, Blue},     // Cond 15: The Norwegian lives next to the blue house.
{Smoke, Blend,      Drink, Water}     // Cond 16: They drink water in a house next to the house where they smoke Blend.
};

struct LeftOfRule {
Attrib a1; int v1;
Attrib a2; int v2;

bool invalid(int ha[5][5]) {
return (ha[0][a2] == v2) || (ha[4][a1] == v1);
}

bool invalid(int ha[5][5], int i) {
return ((i > 0 && ha[i][a1] >= 0) &&
((ha[i - 1][a1] == v1 && ha[i][a2] != v2) ||
(ha[i - 1][a1] != v1 && ha[i][a2] == v2)));
}
} leftofs[] = {
{Color, Green,  Color, White}     // Cond 5: The green house is immediately to the left of the white house.
};

bool invalid(int ha[5][5]) {
for (auto &rule : leftofs) if (rule.invalid(ha)) return true;

for (int i = 0; i < 5; i++) {
#define eval_rules(rules) for (auto &rule : rules) if (rule.invalid(ha, i)) return true;
eval_rules(pairs);
eval_rules(nexttos);
eval_rules(leftofs);
}
return false;
}

void search(bool used[5][5], int ha[5][5], const int hno, const int attr) {
int nexthno, nextattr;
if (attr < 4) {
nextattr = attr + 1;
nexthno = hno;
} else {
nextattr = 0;
nexthno = hno + 1;
}

if (ha[hno][attr] != -1) {
search(used, ha, nexthno, nextattr);
} else {
for (int i = 0; i < 5; i++) {
if (used[attr][i]) continue;
used[attr][i] = true;
ha[hno][attr] = i;

if (!invalid(ha)) {
if ((hno == 4) && (attr == 4)) {
printHouses(ha);
} else {
search(used, ha, nexthno, nextattr);
}
}

used[attr][i] = false;
}
ha[hno][attr] = -1;
}
}

int main() {
bool used[5][5] = {};
int ha[5][5]; memset(ha, -1, sizeof(ha));

for (auto &rule : housenos) {
ha[rule.houseno][rule.a] = rule.v;
used[rule.a][rule.v] = true;
}

search(used, ha, 0, 0);

return 0;
}
```
Output:
```\$ g++ -O3 -std=c++11 zebra.cpp -o zebracpp && time ./zebracpp
House     Color     Man       Drink     Animal    Smoke
0         Yellow    Norwegian Water     Cats      Dunhill
1         Blue      Dane      Tea       Horse     Blend
2         Red       English   Milk      Birds     PallMall
3         Green     German    Coffee    Zebra     Prince
4         White     Swede     Beer      Dog       BlueMaster

real	0m0.003s
user	0m0.000s
sys	0m0.000s
```

My measured time is slower than that posted for the original C code, but on my machine this C++ code is faster than the original C code.

## Clojure

This solution uses the contributed package clojure.core.logic (with clojure.tools.macro), a mini-Kanren based logic solver. The solution is basically the one in Swannodette's logic tutorial, adapted to the problem statement here.

```(ns zebra.core
(:refer-clojure :exclude [==])
(:use [clojure.core.logic]
[clojure.tools.macro :as macro]))

(defne lefto [x y l]
([_ _ [x y . ?r]])
([_ _ [_ . ?r]] (lefto x y ?r)))

(defn nexto [x y l]
(conde
((lefto x y l))
((lefto y x l))))

(defn zebrao [hs]
(macro/symbol-macrolet [_ (lvar)]
(all
(== [_ _ _ _ _] hs)
(membero ['englishman _ _ _ 'red] hs)
(membero ['swede _ _ 'dog _] hs)
(membero ['dane _ 'tea _ _] hs)
(lefto [_ _ _ _ 'green] [_ _ _ _ 'white] hs)
(membero [_ _ 'coffee _ 'green] hs)
(membero [_ 'pallmall _ 'birds _] hs)
(membero [_ 'dunhill _ _ 'yellow] hs)
(== [_ _ [_ _ 'milk _ _] _ _ ] hs)
(firsto hs ['norwegian _ _ _ _])
(nexto [_ 'blend _ _ _] [_ _ _ 'cats _ ] hs)
(nexto [_ _ _ 'horse _] [_ 'dunhill _ _ _] hs)
(membero [_ 'bluemaster 'beer _ _] hs)
(membero ['german 'prince _ _ _] hs)
(nexto ['norwegian _ _ _ _] [_ _ _ _ 'blue] hs)
(nexto [_ _ 'water _ _] [_ 'blend _ _ _] hs)
(membero [_ _ _ 'zebra _] hs))))

(let [solns (run* [q] (zebrao q))
soln (first solns)
zebra-owner (->> soln (filter #(= 'zebra (% 3))) first (#(% 0)))]
(println "solution count:" (count solns))
(println "zebra owner is the" zebra-owner)
(println "full solution (in house order):")
(doseq [h soln] (println " " h)))
```
Output:
```solution count: 1
zebra owner is the german
full solution (in house order):
[norwegian dunhill water cats yellow]
[dane blend tea horse blue]
[englishman pallmall milk birds red]
[german prince coffee zebra green]
[swede bluemaster beer dog white]
```

### Alternate solution (Norvig-style)

This is adapted from a solution to a similar problem by Peter Norvig in his Udacity course CS212, originally written in Python but equally applicable in any language with for-comprehensions.

```(ns zebra
(:require [clojure.math.combinatorics :as c]))

(defn solve []
(let [arrangements (c/permutations (range 5))
before? #(= (inc %1) %2)
after? #(= (dec %1) %2)
next-to? #(or (before? %1 %2) (after? %1 %2))]
(for [[english swede dane norwegian german :as persons] arrangements
:when (zero? norwegian)
[red green white yellow blue :as colors] arrangements
:when (before? green white)
:when (= english red)
:when (after? blue norwegian)
[tea coffee milk beer water :as drinks] arrangements
:when (= 2 milk)
:when (= dane tea)
:when (= coffee green)
[pall-mall dunhill blend blue-master prince :as cigs] arrangements
:when (= german prince)
:when (= yellow dunhill)
:when (= blue-master beer)
:when (after? blend water)
[dog birds cats horse zebra :as pets] arrangements
:when (= swede dog)
:when (= pall-mall birds)
:when (next-to? blend cats)
:when (after? horse dunhill)]
(->> [[:english :swede :dane :norwegian :german]
[:red :green :white :yellow :blue]
[:tea :coffee :milk :beer :water]
[:pall-mall :dunhill :blend :blue-master :prince]
[:dog :birds :cats :horse :zebra]]
(map zipmap [persons colors drinks cigs pets])))))

(defn -main [& _]
(doseq [[[persons _ _ _ pets :as solution] i]
(map vector (solve) (iterate inc 1))
:let [zebra-house (some #(when (= :zebra (val %)) (key %)) pets)]]
(println "solution" i)
(println "The" (persons zebra-house) "owns the zebra.")
(println "house nationality color   drink   cig          pet")
(println "----- ----------- ------- ------- ------------ ------")
(dotimes [i 5]
(println (apply format "%5s %-11s %-7s %-7s %-12s %-6s"
(map #(% i) (cons inc solution)))))))
```
Output:
```user=> (time (zebra/-main))
solution 1
The :german owns the zebra.
house nationality color   drink   cig          pet
----- ----------- ------- ------- ------------ ------
1 :norwegian  :yellow :water  :dunhill     :cats
2 :dane       :blue   :tea    :blend       :horse
3 :english    :red    :milk   :pall-mall   :birds
4 :german     :green  :coffee :prince      :zebra
5 :swede      :white  :beer   :blue-master :dog
"Elapsed time: 10.555482 msecs"
nil
```

## Crystal

Translation of: Ruby
```CONTENT = {House:       [""],
Nationality: %i[English Swedish Danish Norwegian German],
Colour:      %i[Red Green White Blue Yellow],
Pet:         %i[Dog Birds Cats Horse Zebra],
Drink:       %i[Tea Coffee Milk Beer Water],
Smoke:       %i[PallMall Dunhill BlueMaster Prince Blend]}

(0..3).any? { |x| (n[x] == i && g[x + 1] == e) || (n[x + 1] == i && g[x] == e) }
end

def leftof?(n, i, g, e)
(0..3).any? { |x| n[x] == i && g[x + 1] == e }
end

def coincident?(n, i, g, e)
n.each_index.any? { |x| n[x] == i && g[x] == e }
end

def solve_zebra_puzzle
CONTENT[:Nationality].each_permutation { |nation|
next unless nation.first == :Norwegian # 10
CONTENT[:Colour].each_permutation { |colour|
next unless leftof?(colour, :Green, colour, :White)      # 5
next unless coincident?(nation, :English, colour, :Red)  # 2
next unless adjacent?(nation, :Norwegian, colour, :Blue) # 15
CONTENT[:Pet].each_permutation { |pet|
next unless coincident?(nation, :Swedish, pet, :Dog) # 3
CONTENT[:Drink].each_permutation { |drink|
next unless drink[2] == :Milk                           # 9
next unless coincident?(nation, :Danish, drink, :Tea)   # 4
next unless coincident?(colour, :Green, drink, :Coffee) # 6
CONTENT[:Smoke].each_permutation { |smoke|
next unless coincident?(smoke, :PallMall, pet, :Birds)    # 7
next unless coincident?(smoke, :Dunhill, colour, :Yellow) # 8
next unless coincident?(smoke, :BlueMaster, drink, :Beer) # 13
next unless coincident?(smoke, :Prince, nation, :German)  # 14
next unless adjacent?(smoke, :Blend, pet, :Cats)          # 11
next unless adjacent?(smoke, :Blend, drink, :Water)       # 16
next unless adjacent?(smoke, :Dunhill, pet, :Horse)       # 12
print_out(nation, colour, pet, drink, smoke)
}
}
}
}
}
end

def print_out(nation, colour, pet, drink, smoke)
width = CONTENT.map { |k, v| {k.to_s.size, v.max_of { |y| y.to_s.size }}.max }
fmt = width.map { |w| "%-#{w}s" }.join(" ")
national = nation[pet.index(:Zebra).not_nil!]
puts "The Zebra is owned by the man who is #{national}", ""
puts fmt % CONTENT.keys, fmt % width.map { |w| "-" * w }
[nation, colour, pet, drink, smoke].transpose.each.with_index(1) { |x, n| puts fmt % ([n] + x) }
end

solve_zebra_puzzle
```

## Curry

Works with: PAKCS
```import Constraint (allC, anyC)
import Findall (findall)

data House  =  H Color Man Pet Drink Smoke

data Color  =  Red    | Green | Blue  | Yellow | White
data Man    =  Eng    | Swe   | Dan   | Nor    | Ger
data Pet    =  Dog    | Birds | Cats  | Horse  | Zebra
data Drink  =  Coffee | Tea   | Milk  | Beer   | Water
data Smoke  =  PM     | DH    | Blend | BM     | Prince

houses :: [House] -> Success
houses hs@[H1,_,H3,_,_] =                         --  1
H  _ _ _ Milk _  =:=  H3                      --  9
& H  _ Nor _ _ _   =:=  H1                      -- 10
& allC (`member` hs)
[ H  Red Eng _ _ _                              --  2
, H  _ Swe Dog _ _                              --  3
, H  _ Dan _ Tea _                              --  4
, H  Green _ _ Coffee _                         --  6
, H  _ _ Birds _ PM                             --  7
, H  Yellow _ _ _ DH                            --  8
, H  _ _ _ Beer BM                              -- 13
, H  _ Ger _ _ Prince                           -- 14
]
& H  Green _ _ _ _  `leftTo`  H  White _ _ _ _  --  5
& H  _ _ _ _ Blend  `nextTo`  H  _ _ Cats _ _   -- 11
& H  _ _ Horse _ _  `nextTo`  H  _ _ _ _ DH     -- 12
& H  _ Nor _ _ _    `nextTo`  H  Blue _ _ _ _   -- 15
& H  _ _ _ Water _  `nextTo`  H  _ _ _ _ Blend  -- 16
where
x `leftTo` y = _ ++ [x,y] ++ _ =:= hs
x `nextTo` y = x `leftTo` y
? y `leftTo` x

member :: a -> [a] -> Success
member = anyC . (=:=)

main = findall \$ \(hs,who) -> houses hs & H _ who Zebra _ _ `member` hs```
Output:
Using web interface.
```Execution time: 180 msec. / elapsed: 180 msec.
[([H Yellow Nor Cats Water DH,H Blue Dan Horse Tea Blend,H Red Eng Birds Milk PM,H Green Ger Zebra Coffee Prince,H White Swe Dog Beer BM],Ger)]```

## D

Most foreach loops in this program are static.

```import std.stdio, std.traits, std.algorithm, std.math;

enum Content { Beer, Coffee, Milk, Tea, Water,
Danish, English, German, Norwegian, Swedish,
Blue, Green, Red, White, Yellow,
Blend, BlueMaster, Dunhill, PallMall, Prince,
Bird, Cat, Dog, Horse, Zebra }
enum Test { Drink, Person, Color, Smoke, Pet }
enum House { One, Two, Three, Four, Five }

alias TM = Content[EnumMembers!Test.length][EnumMembers!House.length];

bool finalChecks(in ref TM M) pure nothrow @safe @nogc {
int diff(in Content a, in Content b, in Test ca, in Test cb)
nothrow @safe @nogc {
foreach (immutable h1; EnumMembers!House)
foreach (immutable h2; EnumMembers!House)
if (M[ca][h1] == a && M[cb][h2] == b)
return h1 - h2;
assert(0); // Useless but required.
}

with (Content) with (Test)
return abs(diff(Norwegian, Blue, Person, Color)) == 1 &&
diff(Green, White, Color, Color) == -1 &&
abs(diff(Horse, Dunhill, Pet, Smoke)) == 1 &&
abs(diff(Water, Blend, Drink, Smoke)) == 1 &&
abs(diff(Blend, Cat, Smoke, Pet)) == 1;
}

bool constrained(in ref TM M, in Test atest) pure nothrow @safe @nogc {
with (Content) with (Test) with (House)
final switch (atest) {
case Drink:
return M[Drink][Three] == Milk;
case Person:
foreach (immutable h; EnumMembers!House)
if ((M[Person][h] == Norwegian && h != One) ||
(M[Person][h] == Danish && M[Drink][h] != Tea))
return false;
return true;
case Color:
foreach (immutable h; EnumMembers!House)
if ((M[Person][h] == English && M[Color][h] != Red) ||
(M[Drink][h] == Coffee && M[Color][h] != Green))
return false;
return true;
case Smoke:
foreach (immutable h; EnumMembers!House)
if ((M[Color][h] == Yellow && M[Smoke][h] != Dunhill) ||
(M[Smoke][h] == BlueMaster && M[Drink][h] != Beer) ||
(M[Person][h] == German && M[Smoke][h] != Prince))
return false;
return true;
case Pet:
foreach (immutable h; EnumMembers!House)
if ((M[Person][h] == Swedish && M[Pet][h] != Dog) ||
(M[Smoke][h] == PallMall && M[Pet][h] != Bird))
return false;
return finalChecks(M);
}
}

void show(in ref TM M) {
foreach (h; EnumMembers!House) {
writef("%5s: ", h);
foreach (immutable t; EnumMembers!Test)
writef("%10s ", M[t][h]);
writeln;
}
}

void solve(ref TM M, in Test t, in size_t n) {
if (n == 1 && constrained(M, t)) {
if (t < 4) {
solve(M, [EnumMembers!Test][t + 1], 5);
} else {
show(M);
return;
}
}
foreach (immutable i; 0 .. n) {
solve(M, t, n - 1);
swap(M[t][n % 2 ? 0 : i], M[t][n - 1]);
}
}

void main() {
TM M;
foreach (immutable t; EnumMembers!Test)
foreach (immutable h; EnumMembers!House)
M[t][h] = EnumMembers!Content[t * 5 + h];

solve(M, Test.Drink, 5);
}
```
Output:
```  One:      Water  Norwegian     Yellow    Dunhill        Cat
Two:        Tea     Danish       Blue      Blend      Horse
Three:       Milk    English        Red   PallMall       Bird
Four:     Coffee     German      Green     Prince      Zebra
Five:       Beer    Swedish      White BlueMaster        Dog ```

### Alternative Version

Translation of: Python

This requires the module of the first D entry from the Permutations Task.

```import std.stdio, std.math, std.traits, std.typecons, std.typetuple, permutations1;

uint factorial(in uint n) pure nothrow @nogc @safe
in {
assert(n <= 12);
} body {
uint result = 1;
foreach (immutable i; 1 .. n + 1)
result *= i;
return result;
}

enum Number { One,      Two,     Three,  Four,       Five   }
enum Color  { Red,      Green,   Blue,   White,      Yellow }
enum Drink  { Milk,     Coffee,  Water,  Beer,       Tea    }
enum Smoke  { PallMall, Dunhill, Blend,  BlueMaster, Prince }
enum Pet    { Dog,      Cat,     Zebra,  Horse,      Bird   }
enum Nation { British,  Swedish, Danish, Norvegian,  German }

enum size_t M = EnumMembers!Number.length;

auto nullableRef(T)(ref T item) pure nothrow @nogc {
return NullableRef!T(&item);
}

bool isPossible(NullableRef!(immutable Number[M]) number,
NullableRef!(immutable Color[M])  color=null,
NullableRef!(immutable Drink[M])  drink=null,
NullableRef!(immutable Smoke[M])  smoke=null,
NullableRef!(immutable Pet[M])    pet=null) pure nothrow @safe @nogc {
if ((!number.isNull && number[Nation.Norvegian] != Number.One) ||
(!color.isNull  && color[Nation.British]    != Color.Red) ||
(!drink.isNull  && drink[Nation.Danish]     != Drink.Tea) ||
(!smoke.isNull  && smoke[Nation.German]     != Smoke.Prince) ||
(!pet.isNull    && pet[Nation.Swedish]      != Pet.Dog))
return false;

if (number.isNull || color.isNull || drink.isNull || smoke.isNull ||
pet.isNull)
return true;

foreach (immutable i; 0 .. M) {
if ((color[i]  == Color.Green      && drink[i]  != Drink.Coffee) ||
(smoke[i]  == Smoke.PallMall   && pet[i]    != Pet.Bird) ||
(color[i]  == Color.Yellow     && smoke[i]  != Smoke.Dunhill) ||
(number[i] == Number.Three     && drink[i]  != Drink.Milk) ||
(smoke[i]  == Smoke.BlueMaster && drink[i]  != Drink.Beer)||
(color[i]  == Color.Blue       && number[i] != Number.Two))
return false;

foreach (immutable j; 0 .. M) {
if (color[i] == Color.Green && color[j] == Color.White &&
number[j] - number[i] != 1)
return false;

immutable diff = abs(number[i] - number[j]);
if ((smoke[i] == Smoke.Blend && pet[j]   == Pet.Cat       && diff != 1) ||
(pet[i]   == Pet.Horse   && smoke[j] == Smoke.Dunhill && diff != 1) ||
(smoke[i] == Smoke.Blend && drink[j] == Drink.Water   && diff != 1))
return false;
}
}

return true;
}

alias N = nullableRef; // At module level scope to be used with UFCS.

void main() {
enum size_t FM = M.factorial;

static immutable Number[M][FM] numberPerms = [EnumMembers!Number].permutations;
static immutable Color[M][FM]  colorPerms =  [EnumMembers!Color].permutations;
static immutable Drink[M][FM]  drinkPerms =  [EnumMembers!Drink].permutations;
static immutable Smoke[M][FM]  smokePerms =  [EnumMembers!Smoke].permutations;
static immutable Pet[M][FM]    petPerms =    [EnumMembers!Pet].permutations;

// You can reduce the compile-time computations using four casts like this:
// static colorPerms = cast(immutable Color[M][FM])numberPerms;

static immutable Nation[M] nation = [EnumMembers!Nation];

foreach (immutable ref number; numberPerms)
if (isPossible(number.N))
foreach (immutable ref color; colorPerms)
if (isPossible(number.N, color.N))
foreach (immutable ref drink; drinkPerms)
if (isPossible(number.N, color.N, drink.N))
foreach (immutable ref smoke; smokePerms)
if (isPossible(number.N, color.N, drink.N, smoke.N))
foreach (immutable ref pet; petPerms)
if (isPossible(number.N, color.N, drink.N, smoke.N, pet.N)) {
writeln("Found a solution:");
foreach (x; TypeTuple!(nation, number, color, drink, smoke, pet))
writefln("%6s: %12s%12s%12s%12s%12s",
(Unqual!(typeof(x[0]))).stringof,
x[0], x[1], x[2], x[3], x[4]);
writeln;
}
}
```
Output:
```Found a solution:
Nation:      British     Swedish      Danish   Norvegian      German
Number:        Three        Five         Two         One        Four
Color:          Red       White        Blue      Yellow       Green
Drink:         Milk        Beer         Tea       Water      Coffee
Smoke:     PallMall  BlueMaster       Blend     Dunhill      Prince
Pet:         Bird         Dog       Horse         Cat       Zebra
```

Run-time about 0.76 seconds with the dmd compiler.

### Short Version

Translation of: PicoLisp

This requires the module of the second D entry from the Permutations Task.

```void main() {
import std.stdio, std.algorithm, permutations2;

enum E { Red,      Green,   Blue,   White,      Yellow,
Milk,     Coffee,  Water,  Beer,       Tea,
PallMall, Dunhill, Blend,  BlueMaster, Prince,
Dog,      Cat,     Zebra,  Horse,      Birds,
British,  Swedish, Danish, Norvegian,  German }

enum has =    (E[] a, E x,  E[] b, E y) => a.countUntil(x) == b.countUntil(y);
enum leftOf = (E[] a, E x,  E[] b, E y) => a.countUntil(x) == b.countUntil(y) + 1;
enum nextTo = (E[] a, E x,  E[] b, E y) => leftOf(a, x, b, y) || leftOf(b, y, a, x);

with (E) foreach (houses; [Red, Blue, Green, Yellow, White].permutations)
if (leftOf(houses, White, houses, Green))
foreach (persons; [Norvegian, British, Swedish, German, Danish].permutations)
if (has(persons, British, houses, Red) && persons[0] == Norvegian &&
nextTo(persons, Norvegian, houses, Blue))
foreach (drinks; [Tea, Coffee, Milk, Beer, Water].permutations)
if (has(drinks, Tea, persons, Danish) &&
has(drinks, Coffee, houses, Green) && drinks[\$ / 2] == Milk)
foreach (pets; [Dog, Birds, Cat, Horse, Zebra].permutations)
if (has(pets, Dog, persons, Swedish))
foreach (smokes; [PallMall, Dunhill, Blend, BlueMaster, Prince].permutations)
if (has(smokes, PallMall, pets, Birds) &&
has(smokes, Dunhill, houses, Yellow) &&
nextTo(smokes, Blend, pets, Cat) &&
nextTo(smokes, Dunhill, pets, Horse) &&
has(smokes, BlueMaster, drinks, Beer) &&
has(smokes, Prince, persons, German) &&
nextTo(drinks, Water, smokes, Blend))
writefln("%(%10s\n%)\n", [houses, persons, drinks, pets, smokes]);
}
```
Output:
```[    Yellow,       Blue,        Red,      Green,      White]
[ Norvegian,     Danish,    British,     German,    Swedish]
[     Water,        Tea,       Milk,     Coffee,       Beer]
[       Cat,      Horse,      Birds,      Zebra,        Dog]
[   Dunhill,      Blend,   PallMall,     Prince, BlueMaster]```

The run-time is 0.03 seconds or less.

## EchoLisp

We use the amb library to solve the puzzle. The number of tries - calls to zebra-puzzle - is only 1900, before finding all solutions. Note that there are no declarations for things (cats, tea, ..) or categories (animals, drinks, ..) which are discovered when reading the constraints.

```(lib 'hash)
(lib 'amb)

;; return #f or house# for thing/category
;; houses := (0 1 2 3 4)
(define (house-get H  category thing houses)
(for/or ((i houses)) #:continue (!equal? (hash-ref (vector-ref H i) category) thing)
i))

;; return house # for thing (eg cat) in category (eq animals)
(define-syntax-rule (house-set thing category)
(or
(house-get H 'category 'thing houses)
(dispatch H 'category 'thing context houses )))

;; we know that thing/category is in a given house
(define-syntax-rule (house-force thing category house)
(dispatch H 'category 'thing context houses  house))

;; return house# or fail if impossible
(define (dispatch H category thing  context houses  (forced #f))
(define house (or forced  (amb context houses))) ;; get a house number
(when (hash-ref (vector-ref H house) category) (amb-fail)) ;; fail if occupied
(hash-set (vector-ref H house) category thing) ;; else remember house contents
house)

(define (house-next h1 h2)
(amb-require (or (= h1 (1+ h2)) (= h1 (1- h2)))))

(define (zebra-puzzle context houses  )
(define H (build-vector 5 make-hash)) ;; house[i] :=  hash(category) -> thing
; In the middle house they drink milk.
(house-force milk drinks 2)
;The Norwegian lives in the first house.
(house-force norvegian people 0)
;  The English man lives in the red house.
(house-force red colors(house-set english people))
; The Swede has a dog.
(house-force dog animals (house-set swede people))
;  The Dane drinks tea.
(house-force tea drinks (house-set dane people))
;  The green house is immediately to the left of the white house.
(amb-require (=   (house-set green colors) (1- (house-set white colors))))
;  They drink coffee in the green house.
(house-force coffee drinks (house-set green colors))
;  The man who smokes Pall Mall has birds.
(house-force birds  animals (house-set pallmall smoke))
;  In the yellow house they smoke Dunhill.
(house-force dunhill smoke (house-set yellow colors))
;  The Norwegian lives next to the blue house.
(house-next (house-set norvegian people) (house-set blue colors))
;  The man who smokes Blend lives in the house next to the house with cats.
(house-next (house-set blend smoke) (house-set cats  animals))
; In a house next to the house where they have a horse, they smoke Dunhill.
(house-next (house-set horse animals) (house-set dunhill smoke))
; The man who smokes Blue Master drinks beer.
(house-force beer drinks (house-set bluemaster smoke))
; The German smokes Prince.
(house-force prince smoke (house-set german people))
; They drink water in a house next to the house where they smoke Blend.
(house-next (house-set water drinks) (house-set blend smoke))

;; Finally .... the zebra 🐴
(house-set 🐴 animals)

(for ((i houses))
(writeln i (hash-values (vector-ref H i))))
(writeln '----------)

(amb-fail) ;; will ensure ALL solutions are printed
)
```
Output:
```(define (task)
(amb-run zebra-puzzle  (amb-make-context) (iota 5)))

→
0     (norvegian yellow dunhill cats water)
1     (dane tea blue blend horse)
2     (milk english red pallmall birds)
3     (green coffee german prince 🐴)
4     (swede dog white bluemaster beer)
----------
→ #f
```

## Elixir

Translation of: Ruby
```defmodule ZebraPuzzle do
Enum.any?(0..3, fn x ->
(Enum.at(n,x)==i and Enum.at(g,x+1)==e) or (Enum.at(n,x+1)==i and Enum.at(g,x)==e)
end)
end

defp leftof?(n,i,g,e) do
Enum.any?(0..3, fn x -> Enum.at(n,x)==i and Enum.at(g,x+1)==e end)
end

defp coincident?(n,i,g,e) do
Enum.with_index(n) |> Enum.any?(fn {x,idx} -> x==i and Enum.at(g,idx)==e end)
end

def solve(content) do
colours = permutation(content[:Colour])
pets    = permutation(content[:Pet])
drinks  = permutation(content[:Drink])
smokes  = permutation(content[:Smoke])
Enum.each(permutation(content[:Nationality]), fn nation ->
if hd(nation) == :Norwegian, do:                                      # 10
Enum.each(colours, fn colour ->
if leftof?(colour, :Green, colour, :White)      and               # 5
coincident?(nation, :English, colour, :Red)  and               # 2
adjacent?(nation, :Norwegian, colour, :Blue), do:              # 15
Enum.each(pets, fn pet ->
if coincident?(nation, :Swedish, pet, :Dog), do:              # 3
Enum.each(drinks, fn drink ->
if Enum.at(drink,2) == :Milk                   and        # 9
coincident?(nation, :Danish, drink, :Tea)   and        # 4
coincident?(colour, :Green, drink, :Coffee), do:       # 6
Enum.each(smokes, fn smoke ->
if coincident?(smoke, :PallMall, pet, :Birds)    and  # 7
coincident?(smoke, :Dunhill, colour, :Yellow) and  # 8
coincident?(smoke, :BlueMaster, drink, :Beer) and  # 13
coincident?(smoke, :Prince, nation, :German)  and  # 14
adjacent?(smoke, :Blend, pet, :Cats)          and  # 11
adjacent?(smoke, :Blend, drink, :Water)       and  # 16
adjacent?(smoke, :Dunhill, pet, :Horse), do:       # 12
print_out(content, transpose([nation, colour, pet, drink, smoke]))
end)end)end)end)end)
end

defp permutation([]), do: [[]]
defp permutation(list) do
for x <- list, y <- permutation(list -- [x]), do: [x|y]
end

defp transpose(lists) do
List.zip(lists) |> Enum.map(&Tuple.to_list/1)
end

defp print_out(content, result) do
width = for {k,v}<-content, do: Enum.map([k|v], &length(to_char_list &1)) |> Enum.max
fmt = Enum.map_join(width, " ", fn w -> "~-#{w}s" end) <> "~n"
nation = Enum.find(result, fn x -> :Zebra in x end) |> hd
IO.puts "The Zebra is owned by the man who is #{nation}\n"
:io.format fmt, Keyword.keys(content)
:io.format fmt, Enum.map(width, fn w -> String.duplicate("-", w) end)
fmt2 = String.replace(fmt, "s", "w", global: false)
Enum.with_index(result)
|> Enum.each(fn {x,i} -> :io.format fmt2, [i+1 | x] end)
end
end

content = [ House:       '',
Nationality: ~w[English Swedish Danish Norwegian German]a,
Colour:      ~w[Red Green White Blue Yellow]a,
Pet:         ~w[Dog Birds Cats Horse Zebra]a,
Drink:       ~w[Tea Coffee Milk Beer Water]a,
Smoke:       ~w[PallMall Dunhill BlueMaster Prince Blend]a ]

ZebraPuzzle.solve(content)
```
Output:
```The Zebra is owned by the man who is German

House Nationality Colour Pet   Drink  Smoke
----- ----------- ------ ----- ------ ----------
1     Norwegian   Yellow Cats  Water  Dunhill
2     Danish      Blue   Horse Tea    Blend
3     English     Red    Birds Milk   PallMall
4     German      Green  Zebra Coffee Prince
5     Swedish     White  Dog   Beer   BlueMaster
```

## Erlang

This solution generates all houses that fits the rules for single houses, then it checks multi-house rules. It would be faster to check multi-house rules while generating the houses. I have not added this complexity since the current program takes just a few seconds.

```-module( zebra_puzzle ).

-record( house, {colour, drink, nationality, number, pet, smoke} ).
-record( sorted_houses, {house_1s=[], house_2s=[], house_3s=[], house_4s=[], house_5s=[]} ).

Houses = [#house{colour=C, drink=D, nationality=N, number=Nr, pet=P, smoke=S} || C <- all_colours(), D <- all_drinks(), N <- all_nationalities(), Nr <- all_numbers(), P <- all_pets(), S <- all_smokes(), is_all_single_house_rules_ok(C, D, N, Nr, P, S)],
Sorted_houses = lists:foldl( fun house_number_sort/2, #sorted_houses{}, Houses ),
Streets = [[H1, H2, H3, H4, H5] || H1 <- Sorted_houses#sorted_houses.house_1s, H2 <- Sorted_houses#sorted_houses.house_2s, H3 <- Sorted_houses#sorted_houses.house_3s, H4 <- Sorted_houses#sorted_houses.house_4s, H5 <- Sorted_houses#sorted_houses.house_5s, is_all_multi_house_rules_ok(H1, H2, H3, H4, H5)],
[Nationality] = [N || #house{nationality=N, pet=zebra} <- lists:flatten(Streets)],
io:fwrite( "~p owns the zebra~n", [Nationality] ),
io:fwrite( "All solutions ~p~n", [Streets] ),
io:fwrite( "Number of solutions ~p~n", [erlang:length(Streets)] ).

all_colours() -> [blue, green, red, white, yellow].

all_drinks() -> [beer, coffe, milk, tea, water].

all_nationalities() -> [danish, english, german, norveigan, swedish].

all_numbers() -> [1, 2, 3, 4, 5].

all_pets() -> [birds, cats, dog, horse, zebra].

all_smokes() -> [blend, 'blue master', dunhill, 'pall mall', prince].

house_number_sort( #house{number=1}=House, #sorted_houses{house_1s=Houses_1s}=Sorted_houses ) -> Sorted_houses#sorted_houses{house_1s=[House | Houses_1s]};
house_number_sort( #house{number=2}=House, #sorted_houses{house_2s=Houses_2s}=Sorted_houses ) -> Sorted_houses#sorted_houses{house_2s=[House | Houses_2s]};
house_number_sort( #house{number=3}=House, #sorted_houses{house_3s=Houses_3s}=Sorted_houses ) -> Sorted_houses#sorted_houses{house_3s=[House | Houses_3s]};
house_number_sort( #house{number=4}=House, #sorted_houses{house_4s=Houses_4s}=Sorted_houses ) -> Sorted_houses#sorted_houses{house_4s=[House | Houses_4s]};
house_number_sort( #house{number=5}=House, #sorted_houses{house_5s=Houses_5s}=Sorted_houses ) -> Sorted_houses#sorted_houses{house_5s=[House | Houses_5s]}.

is_all_different( [_H] ) -> true;
is_all_different( [H | T] ) -> not lists:member( H, T ) andalso is_all_different( T ).

is_all_multi_house_rules_ok( House1, House2, House3, House4, House5 ) ->
is_rule_1_ok( House1, House2, House3, House4, House5 )
andalso is_rule_5_ok( House1, House2, House3, House4, House5 )
andalso is_rule_11_ok( House1, House2, House3, House4, House5 )
andalso is_rule_12_ok( House1, House2, House3, House4, House5 )
andalso is_rule_15_ok( House1, House2, House3, House4, House5 )
andalso is_rule_16_ok( House1, House2, House3, House4, House5 ).

is_all_single_house_rules_ok( Colour, Drink, Nationality, Number, Pet, Smoke ) ->
is_rule_ok( {rule_number, 2}, {Nationality, english}, {Colour, red})
andalso is_rule_ok( {rule_number, 3}, {Nationality, swedish}, {Pet, dog})
andalso is_rule_ok( {rule_number, 4}, {Nationality, danish}, {Drink, tea})
andalso is_rule_ok( {rule_number, 6}, {Drink, coffe}, {Colour, green})
andalso is_rule_ok( {rule_number, 7}, {Smoke, 'pall mall'}, {Pet, birds})
andalso is_rule_ok( {rule_number, 8}, {Colour, yellow}, {Smoke, dunhill})
andalso is_rule_ok( {rule_number, 9}, {Number, 3}, {Drink, milk})
andalso is_rule_ok( {rule_number, 10}, {Nationality, norveigan}, {Number, 1})
andalso is_rule_ok( {rule_number, 13}, {Smoke, 'blue master'}, {Drink, beer})
andalso is_rule_ok( {rule_number, 14}, {Nationality, german}, {Smoke, prince}).

is_rule_ok( _Rule_number, {A, A}, {B, B} ) -> true;
is_rule_ok( _Rule_number, _A, {B, B} ) -> false;
is_rule_ok( _Rule_number, {A, A}, _B ) -> false;
is_rule_ok( _Rule_number, _A, _B ) -> true.

is_rule_1_ok( #house{number=1}=H1,  #house{number=2}=H2,  #house{number=3}=H3,  #house{number=4}=H4,  #house{number=5}=H5  ) ->
is_all_different( [H1#house.colour, H2#house.colour, H3#house.colour, H4#house.colour, H5#house.colour] )
andalso is_all_different( [H1#house.drink, H2#house.drink, H3#house.drink, H4#house.drink, H5#house.drink] )
andalso is_all_different( [H1#house.nationality, H2#house.nationality, H3#house.nationality, H4#house.nationality, H5#house.nationality] )
andalso is_all_different( [H1#house.pet, H2#house.pet, H3#house.pet, H4#house.pet, H5#house.pet] )
andalso is_all_different( [H1#house.smoke, H2#house.smoke, H3#house.smoke, H4#house.smoke, H5#house.smoke] );
is_rule_1_ok( _House1,  _House2,  _House3,  _House4,  _House5  ) -> false.

is_rule_5_ok( #house{colour=green},  #house{colour=white},  _House3,  _House4,  _House5  ) -> true;
is_rule_5_ok( _House1,  #house{colour=green},  #house{colour=white},  _House4,  _House5  ) -> true;
is_rule_5_ok( _House1,  _House2,  #house{colour=green},  #house{colour=white},  _House5  ) -> true;
is_rule_5_ok( _House1,  _House2,  _House3,  #house{colour=green},  #house{colour=white}  ) -> true;
is_rule_5_ok( _House1,  _House2,  _House3,  _House4,  _House5  ) -> false.

is_rule_11_ok( #house{smoke=blend},  #house{pet=cats},  _House3,  _House4,  _House5  ) -> true;
is_rule_11_ok( _House1,  #house{smoke=blend},  #house{pet=cats},  _House4,  _House5  ) -> true;
is_rule_11_ok( _House1,  _House2,  #house{smoke=blend},  #house{pet=cats},  _House5  ) -> true;
is_rule_11_ok( _House1,  _House2,  _House3,  #house{smoke=blend},  #house{pet=cats}  ) -> true;
is_rule_11_ok( #house{pet=cats},  #house{smoke=blend},  _House3,  _House4,  _House5  ) -> true;
is_rule_11_ok( _House1,  #house{pet=cats},  #house{smoke=blend},  _House4,  _House5  ) -> true;
is_rule_11_ok( _House1,  _House2,  #house{pet=cats},  #house{smoke=blend},  _House5  ) -> true;
is_rule_11_ok( _House1,  _House2,  _House3,  #house{pet=cats},  #house{smoke=blend}  ) -> true;
is_rule_11_ok( _House1,  _House2,  _House3,  _House4,  _House5  ) -> false.

is_rule_12_ok( #house{smoke=dunhill},  #house{pet=horse},  _House3,  _House4,  _House5  ) -> true;
is_rule_12_ok( _House1,  #house{smoke=dunhill},  #house{pet=horse},  _House4,  _House5  ) -> true;
is_rule_12_ok( _House1,  _House2,  #house{smoke=dunhill},  #house{pet=horse},  _House5  ) -> true;
is_rule_12_ok( _House1,  _House2,  _House3,  #house{smoke=dunhill},  #house{pet=horse}  ) -> true;
is_rule_12_ok( #house{pet=horse},  #house{smoke=dunhill},  _House3,  _House4,  _House5  ) -> true;
is_rule_12_ok( _House1,  #house{pet=horse},  #house{smoke=dunhill},  _House4,  _House5  ) -> true;
is_rule_12_ok( _House1,  _House2,  #house{pet=horse},  #house{smoke=dunhill},  _House5  ) -> true;
is_rule_12_ok( _House1,  _House2,  _House3,  #house{pet=horse},  #house{smoke=dunhill}  ) -> true;
is_rule_12_ok( _House1,  _House2,  _House3,  _House4,  _House5  ) -> false.

is_rule_15_ok( #house{nationality=norveigan},  #house{colour=blue},  _House3,  _House4,  _House5  ) -> true;
is_rule_15_ok( _House1,  #house{nationality=norveigan},  #house{colour=blue},  _House4,  _House5  ) -> true;
is_rule_15_ok( _House1,  _House2,  #house{nationality=norveigan},  #house{colour=blue},  _House5  ) -> true;
is_rule_15_ok( _House1,  _House2,  _House3,  #house{nationality=norveigan},  #house{colour=blue}  ) -> true;
is_rule_15_ok( #house{colour=blue},  #house{nationality=norveigan},  _House3,  _House4,  _House5  ) -> true;
is_rule_15_ok( _House1,  #house{colour=blue},  #house{nationality=norveigan},  _House4,  _House5  ) -> true;
is_rule_15_ok( _House1,  _House2,  #house{drink=water},  #house{nationality=norveigan},  _House5  ) -> true;
is_rule_15_ok( _House1,  _House2,  _House3,  #house{drink=water},  #house{nationality=norveigan}  ) -> true;
is_rule_15_ok( _House1,  _House2,  _House3,  _House4,  _House5  ) -> false.

is_rule_16_ok( #house{smoke=blend},  #house{drink=water},  _House3,  _House4,  _House5  ) -> true;
is_rule_16_ok( _House1,  #house{smoke=blend},  #house{drink=water},  _House4,  _House5  ) -> true;
is_rule_16_ok( _House1,  _House2,  #house{smoke=blend},  #house{drink=water},  _House5  ) -> true;
is_rule_16_ok( _House1,  _House2,  _House3,  #house{smoke=blend},  #house{drink=water}  ) -> true;
is_rule_16_ok( #house{drink=water},  #house{smoke=blend},  _House3,  _House4,  _House5  ) -> true;
is_rule_16_ok( _House1,  #house{drink=water},  #house{smoke=blend},  _House4,  _House5  ) -> true;
is_rule_16_ok( _House1,  _House2,  #house{drink=water},  #house{smoke=blend},  _House5  ) -> true;
is_rule_16_ok( _House1,  _House2,  _House3,  #house{drink=water},  #house{smoke=blend}  ) -> true;
is_rule_16_ok( _House1,  _House2,  _House3,  _House4,  _House5  ) -> false.
```
Output:
```10> zebra_puzzle:task().
german owns the zebra
All solutions [[{house,yellow,water,norveigan,1,cats,dunhill},
{house,blue,tea,danish,2,horse,blend},
{house,red,milk,english,3,birds,'pall mall'},
{house,green,coffe,german,4,zebra,prince},
{house,white,beer,swedish,5,dog,'blue master'}]]
Number of solutions: 1
```

## ERRE

```PROGRAM ZEBRA_PUZZLE

DIM DRINK\$[4],NATION\$[4],COLR\$[4],SMOKE\$[4],ANIMAL\$[4]
DIM PERM\$[120],X\$[4]

PROCEDURE PERMUTATION(X\$[]->X\$[],OK)
LOCAL I%,J%
FOR I%=UBOUND(X\$,1)-1 TO 0 STEP -1 DO
EXIT IF X\$[I%]<X\$[I%+1]
END FOR
IF I%<0 THEN OK=FALSE  EXIT PROCEDURE END IF
J%=UBOUND(X\$,1)
WHILE X\$[J%]<=X\$[I%] DO
J%=J%-1
END WHILE
SWAP(X\$[I%],X\$[J%])
I%=I%+1
J%=UBOUND(X\$,1)
WHILE I%<J% DO
SWAP(X\$[I%],X\$[J%])
I%=I%+1
J%=J%-1
END WHILE
OK=TRUE
END PROCEDURE

BEGIN

! The names (only used for printing the results)

DATA("Beer","Coffee","Milk","Tea","Water")
DATA("Denmark","England","Germany","Norway","Sweden")
DATA("Blue","Green","Red","White","Yellow")
DATA("Blend","BlueMaster","Dunhill","PallMall","Prince")
DATA("Birds","Cats","Dog","Horse","Zebra")

FOR I%=0 TO 4 DO READ(DRINK\$[I%])   END FOR
FOR I%=0 TO 4 DO READ(NATION\$[I%])  END FOR
FOR I%=0 TO 4 DO READ(COLR\$[I%])    END FOR
FOR I%=0 TO 4 DO READ(SMOKE\$[I%])   END FOR
FOR I%=0 TO 4 DO READ(ANIMAL\$[I%])  END FOR

! Some single-character tags:
A\$="A"  B\$="B"  c\$="C"  d\$="D"  e\$="E"

! ERRE doesn't have enumerations!
Beer\$=A\$  Coffee\$=B\$  Milk\$=c\$  TeA\$=d\$  Water\$=e\$
Denmark\$=A\$  England\$=B\$  Germany\$=c\$  Norway\$=d\$  Sweden\$=e\$
Blue\$=A\$  Green\$=B\$  Red\$=c\$  White\$=d\$  Yellow\$=e\$
Blend\$=A\$  BlueMaster\$=B\$  Dunhill\$=c\$  PallMall\$=d\$  Prince\$=e\$
Birds\$=A\$  Cats\$=B\$  Dog\$=c\$  Horse\$=d\$  ZebrA\$=e\$

PRINT(CHR\$(12);)

! Create the 120 permutations of 5 objects:

X\$[0]=A\$  X\$[1]=B\$  X\$[2]=C\$  X\$[3]=D\$  X\$[4]=E\$

REPEAT
P%=P%+1
PERM\$[P%]=X\$[0]+X\$[1]+X\$[2]+X\$[3]+X\$[4]
PERMUTATION(X\$[]->X\$[],OK)
UNTIL NOT OK

! Solve:
SOLUTIONS%=0
T1=TIMER
FOR NATION%=1 TO 120 DO
NATION\$=PERM\$[NATION%]
IF LEFT\$(NATION\$,1)=Norway\$ THEN
FOR COLR%=1 TO 120 DO
COLR\$=PERM\$[COLR%]
IF INSTR(COLR\$,Green\$+White\$)<>0 AND INSTR(NATION\$,England\$)=INSTR(COLR\$,Red\$) AND ABS(INSTR(NATION\$,Norway\$)-INSTR(COLR\$,Blue\$))=1 THEN
FOR DRINK%=1 TO 120 DO
DRINK\$=PERM\$[DRINK%]
IF MID\$(DRINK\$,3,1)=Milk\$ AND INSTR(NATION\$,Denmark\$)=INSTR(DRINK\$,TeA\$) AND INSTR(DRINK\$,Coffee\$)=INSTR(COLR\$,Green\$) THEN
FOR SmOKe%=1 TO 120 DO
SmOKe\$=PERM\$[SMOKE%]
IF INSTR(NATION\$,Germany\$)=INSTR(SmOKe\$,Prince\$) AND INSTR(SmOKe\$,BlueMaster\$)=INSTR(DRINK\$,Beer\$) AND ABS(INSTR(SmOKe\$,Blend\$)-INSTR(DRINK\$,Water\$))=1 AND INSTR(SmOKe\$,Dunhill\$)=INSTR(COLR\$,Yellow\$) THEN
FOR ANIMAL%=1 TO 120 DO
ANIMAL\$=PERM\$[ANIMAL%]
IF INSTR(NATION\$,Sweden\$)=INSTR(ANIMAL\$,Dog\$) AND INSTR(SmOKe\$,PallMall\$)=INSTR(ANIMAL\$,Birds\$) AND ABS(INSTR(SmOKe\$,Blend\$)-INSTR(ANIMAL\$,Cats\$))=1 AND ABS(INSTR(SmOKe\$,Dunhill\$)-INSTR(ANIMAL\$,Horse\$))=1 THEN
PRINT("House    Drink  Nation Colour Smoke  Animal")
PRINT("---------------------------------------------------------------------------")
FOR house%=1 TO 5 DO
PRINT(house%;)
PRINT(TAB(10);DRINK\$[ASC(MID\$(DRINK\$,house%))-65];)
PRINT(TAB(25);NATION\$[ASC(MID\$(NATION\$,house%))-65];)
PRINT(TAB(40);COLR\$[ASC(MID\$(COLR\$,house%))-65];)
PRINT(TAB(55);SMOKE\$[ASC(MID\$(SmOKe\$,house%))-65];)
PRINT(TAB(70);ANIMAL\$[ASC(MID\$(ANIMAL\$,house%))-65])
END FOR
SOLUTIONS%=SOLUTIONS%+1
END IF
END FOR ! ANIMAL%
END IF
END FOR ! SmOKe%
END IF
END FOR ! DRINK%
END IF
END FOR ! COLR%
END IF
END FOR ! NATION%
PRINT("Number of solutions=";SOLUTIONS%)
PRINT("Solved in ";TIMER-T1;" seconds")
END PROGRAM```
Output:
```House    Drink  Nation Colour Smoke  Animal
---------------------------------------------------------------------------
1       Water          Norway         Yellow         Dunhill        Cats
2       Tea            Denmark        Blue           Blend          Horse
3       Milk           England        Red            PallMall       Birds
4       Coffee         Germany        Green          Prince         Zebra
5       Beer           Sweden         White          BlueMaster     Dog
Number of solutions= 1
Solved in  .109375  seconds```

## F#

```(*Here I solve the Zebra puzzle using Plain Changes, definitely a challenge to some campanoligist to solve it using Grandsire Doubles.
Nigel Galloway: January 27th., 2017 *)
type N = |English=0 |Swedish=1|Danish=2    |German=3|Norwegian=4
type I = |Tea=0     |Coffee=1 |Milk=2      |Beer=3  |Water=4
type G = |Dog=0     |Birds=1  |Cats=2      |Horse=3 |Zebra=4
type E = |Red=0     |Green=1  |White=2     |Blue=3  |Yellow=4
type L = |PallMall=0|Dunhill=1|BlueMaster=2|Prince=3|Blend=4
type NIGELz={Nz:N[];Iz:I[];Gz:G[];Ez:E[];Lz:L[]}
let fn (i:'n[]) g (e:'g[]) l =                            //coincident?
let rec _fn = function
|5                                -> false
|ig when (i.[ig]=g && e.[ig]=l)   -> true
|ig                               -> _fn (ig+1)
_fn 0
let fi (i:'n[]) g (e:'g[]) l =                            //leftof?
let rec _fn = function
|4                                -> false
|ig when (i.[ig]=g && e.[ig+1]=l) -> true
|ig                               -> _fn (ig+1)
_fn 0
let fg (i:'n[]) g (e:'g[]) l = (fi i g e l || fi e l i g) //adjacent?
let  n = Ring.PlainChanges [|for n in System.Enum.GetValues(typeof<N>)->n:?>N|]|>Seq.filter(fun n->n.[0]=N.Norwegian)         //#10
let  i = Ring.PlainChanges [|for n in System.Enum.GetValues(typeof<I>)->n:?>I|]|>Seq.filter(fun n->n.[2]=I.Milk)              //# 9
let  g = Ring.PlainChanges [|for n in System.Enum.GetValues(typeof<G>)->n:?>G|]
let  e = Ring.PlainChanges [|for n in System.Enum.GetValues(typeof<E>)->n:?>E|]|>Seq.filter(fun n->fi n E.Green n E.White)    //# 5
let  l = Ring.PlainChanges [|for n in System.Enum.GetValues(typeof<L>)->n:?>L|]
match n|>Seq.map(fun n->{Nz=n;Iz=[||];Gz=[||];Ez=[||];Lz=[||]})
|>Seq.collect(fun n->i|>Seq.map(fun i->{n with Iz=i}))|>Seq.filter(fun n-> fn n.Nz N.Danish    n.Iz I.Tea)             //# 4
|>Seq.collect(fun n->g|>Seq.map(fun i->{n with Gz=i}))|>Seq.filter(fun n-> fn n.Nz N.Swedish   n.Gz G.Dog)             //# 3
|>Seq.collect(fun n->e|>Seq.map(fun i->{n with Ez=i}))|>Seq.filter(fun n-> fn n.Nz N.English   n.Ez E.Red   &&         //# 2
fn n.Ez E.Green     n.Iz I.Coffee&&         //# 6
fg n.Nz N.Norwegian n.Ez E.Blue)            //#15
|>Seq.collect(fun n->l|>Seq.map(fun i->{n with Lz=i}))|>Seq.tryFind(fun n->fn n.Lz L.PallMall  n.Gz G.Birds &&         //# 7
fg n.Lz L.Blend     n.Gz G.Cats  &&         //#11
fn n.Lz L.Prince    n.Nz N.German&&         //#14
fg n.Lz L.Blend     n.Iz I.Water &&         //#16
fg n.Lz L.Dunhill   n.Gz G.Horse &&         //#12
fn n.Lz L.Dunhill   n.Ez E.Yellow&&         //# 8
fn n.Iz I.Beer      n.Lz L.BlueMaster) with //#13
|Some(nn) -> nn.Gz |> Array.iteri(fun n g -> if (g = G.Zebra) then printfn "\nThe man who owns a zebra is %A\n" nn.Nz.[n]); printfn "%A" nn
|None    -> printfn "No solution found"
```
Output:
```The man who owns a zebra is German

{Nz = [|Norwegian; Danish; English; German; Swedish|];
Iz = [|Water; Tea; Milk; Coffee; Beer|];
Gz = [|Cats; Horse; Birds; Zebra; Dog|];
Ez = [|Yellow; Blue; Red; Green; White|];
Lz = [|Dunhill; Blend; PallMall; Prince; BlueMaster|];}
```

## FormulaOne

```// First, let's give some type-variables some values:
Nationality = Englishman | Swede   | Dane       | Norwegian | German
Colour      = Red        | Green   | Yellow     | Blue      | White
Cigarette   = PallMall   | Dunhill | BlueMaster | Blend     | Prince
Domestic    = Dog        | Bird    | Cat        | Zebra     | Horse
Beverage    = Tea        | Coffee  | Milk       | Beer      | Water
HouseRow    = First      | Second  | Third      | Fourth    | Fifth

{
We use injections to make the array-elements unique.
Example: 'Pet' is an array of unique elements of type 'Domestic', indexed by 'Nationality'.
In the predicate 'Zebra', we use this injection 'Pet' to define the array-variable 'pet'
as a parameter of the 'Zebra'-predicate.
The symbol used is the '->>'. 'Nationality->>Domestic' can be read as 'Domestic(Nationality)'
in "plain array-speak";
the difference being that the elements are by definition unique (cf. 'injective function').

So, in FormulaOne we use a formula like: 'pet(Swede) = Dog', which simply means that the 'Swede'
(type 'Nationality') has a 'pet' (type 'Pet', of type 'Domestic', indexed by 'Nationality'),
which appears to be a 'Dog' (type 'Domestic').
Or, one could say that the 'Swede' has been mapped to the 'Dog' (Oh, well...).
}

Pet          = Nationality->>Domestic
Drink        = Nationality->>Beverage
HouseColour  = Nationality->>Colour
Smoke        = Nationality->>Cigarette
HouseOrder   = HouseRow->>Nationality

pred Zebra(house_olour::HouseColour, pet::Pet, smoke::Smoke, drink::Drink, house_order::HouseOrder) iff

// For convenience sake, some temporary place_holder variables are used.
// An underscore distinguishes them:

house_colour(green_house)     = Green      &
house_colour(white_house)     = White      &
house_colour(yellow_house)    = Yellow     &
smoke(pallmall_smoker)        = PallMall   &
smoke(blend_smoker)           = Blend      &
smoke(dunhill_smoker)         = Dunhill    &
smoke(bluemaster_smoker)      = BlueMaster &
pet(cat_keeper)               = Cat        &
pet(neighbour_dunhill_smoker) = Horse      &

{ 2. The English man lives in the red house: }
house_colour(Englishman) = Red &

{ 3. The Swede has a dog: }
pet(Swede) = Dog &

{ 4. The Dane drinks tea: }
drink(Dane) = Tea &

{ 'smoke' and 'drink' are both nouns, like the other variables.
One could read the formulas like: 'the colour of the Englishman's house is Red' ->
'the Swede's pet is a dog' -> 'the Dane's drink is tea'.
}

{ 5. The green house is immediately to the left of the white house.
The local predicate 'LeftOf' (see below) determines the house order: }
LeftOf(green_house, white_house, house_order) &

{ 6. They drink coffee in the green house: }
drink(green_house) = Coffee &

{ 7. The man who smokes Pall Mall has birds: }
pet(pallmall_smoker) = Bird &

{ 8. In the yellow house they smoke Dunhill: }
smoke(yellow_house) = Dunhill &

{ 9. In the middle house (third in the row) they drink milk: }
drink(house_order(Third)) = Milk &

{10. The Norwegian lives in the first house: }
house_order(First) = Norwegian &

{11. The man who smokes Blend lives in the house next to the house with cats.
Another local predicate 'Neighbour' makes them neighbours: }
Neighbour(blend_smoker, cat_keeper, house_order) &

{12. In a house next to the house where they have a horse, they smoke Dunhill: }
Neighbour(dunhill_smoker, neighbour_dunhill_smoker, house_order) &

{13. The man who smokes Blue Master drinks beer: }
drink(bluemaster_smoker) = Beer &

{14. The German smokes Prince: }
smoke(German) = Prince &

{15. The Norwegian lives next to the blue house
Cf. 10. "The Norwegian lives in the first house", so the blue house is the second house: }
house_colour(house_order(Second)) = Blue &

{16. They drink water in a house next to the house where they smoke Blend: }
drink(neighbour_blend_smoker) = Water &
Neighbour(blend_smoker, neighbour_blend_smoker, house_order)

{  A simplified solution would number the houses 1, 2, 3, 4, 5
which makes it easier to order the houses.
'right in the center' would become 3; 'in the first house', 1
But we stick to the original puzzle and use some local predicates.
}

local pred Neighbour(neighbour1::Nationality, neighbour2::Nationality, house_order::HouseOrder)iff
neighbour1 <> neighbour2 &
house_order(house1) = neighbour1 &
house_order(house2) = neighbour2 &
( house1 = house2 + 1 |
house1 = house2 - 1 )

local pred LeftOf(neighbour1::Nationality, neighbour2::Nationality, house_order::HouseOrder) iff
neighbour1 <> neighbour2 &
house_order(house1) = neighbour1 &
house_order(house2) = neighbour2 &
house1 = house2 - 1

{
The 'all'-query in FormulaOne:
all Zebra(house_colour, pet, smokes, drinks, house_order)
gives, of course, only one solution, so it can be replaced by:
one Zebra(house_colour, pet, smokes, drinks, house_order)
}

// The compacted version:

Nationality = Englishman | Swede   | Dane       | Norwegian | German
Colour      = Red        | Green   | Yellow     | Blue      | White
Cigarette   = PallMall   | Dunhill | BlueMaster | Blend     | Prince
Domestic    = Dog        | Bird    | Cat        | Zebra     | Horse
Beverage    = Tea        | Coffee  | Milk       | Beer      | Water
HouseRow    = First      | Second  | Third      | Fourth    | Fifth

Pet          = Nationality->>Domestic
Drink        = Nationality->>Beverage
HouseColour  = Nationality->>Colour
Smoke        = Nationality->>Cigarette
HouseOrder   = HouseRow->>Nationality

pred Zebra(house_colour::HouseColour, pet::Pet, smoke::Smoke, drink::Drink, house_order::HouseOrder) iff

house-colour(green_house) = Green &
house-colour(white_house) = White &
house-colour(yellow_house) = Yellow &
smoke(pallmall_smoker) = PallMall &
smoke(blend_smoker) = Blend &
smoke(dunhill_smoker) = Dunhill &
smoke(bluemaster_smoker) = BlueMaster &
pet(cat_keeper) = Cat &
pet(neighbour_dunhill_smoker) = Horse &
house_colour(Englishman) = Red &
pet(Swede) = Dog &
drink(Dane) = Tea &
LeftOf(green_house, white_house, house_order) &
drink(green_house) = Coffee &
pet(pallmall_smoker) = Bird &
smoke(yellow_house) = Dunhill &
drink(house_order(Third)) = Milk &
house_order(First) = Norwegian &
Neighbour(blend_smoker, cat_keeper, house_order) &
Neighbour(dunhill_smoker, neighbour_dunhill_smoker, house_order) &
drink(bluemaster_smoker) = Beer &
smoke(German) = Prince &
house_colour(house_order(Second)) = Blue &
drink(neighbour_blend_smoker) = Water &
Neighbour(blend_smoker, neighbour_blend_smoker, house_order)

local pred Neighbour(neighbour1::Nationality, neighbour2::Nationality, house_order::HouseOrder)iff
neighbour1 <> neighbour2 &
house_order(house1) = neighbour1 & house_order(house2) = neighbour2 &
( house1 = house2 + 1 | house1 = house2 - 1 )

local pred LeftOf(neighbour1::Nationality, neighbour2::Nationality, house_::HouseOrder) iff
neighbour1 <> neighbour2 &
house_order(house1) = neighbour1 & house_order(house2) = neighbour2 &
house1 = house2 - 1```
Output:
```house_colour = [ {Englishman} Red, {Swede} White, {Dane} Blue, {Norwegian} Yellow, {German} Green ]
pet = [ {Englishman} Birds, {Swede} Dog, {Dane} Horse, {Norwegian} Cats, {German} Zebra ]
smokes = [ {Englishman} PallMall, {Swede} BlueMaster, {Dane} Blend, {Norwegian} Dunhill, {German} Prince ]
drinks = [ {Englishman} Milk, {Swede} Beer, {Dane} Tea, {Norwegian} Water, {German} Coffee ]
house_order = [ {First} Norwegian, {Second} Dane, {Third} Englishman, {Fourth} German, {Fifth}, Swede ]
```

## GAP

```leftOf  :=function(setA, vA, setB, vB)
local i;
for i in [1..4] do
if ( setA[i] = vA) and  (setB[i+1] = vB) then return true ;fi;
od;
return false;
end;

nextTo  :=function(setA, vA, setB, vB)
local i;
for i in [1..4] do
if ( setA[i] = vA) and  (setB[i+1] = vB) then return true ;fi;
if ( setB[i] = vB) and  (setA[i+1] = vA) then return true ;fi;
od;
return false;
end;

requires := function(setA, vA, setB, vB)
local i;
for i in [1..5] do
if ( setA[i] = vA) and  (setB[i] = vB) then return true ;fi;
od;
return false;
end;

pcolors :=PermutationsList(["white" ,"yellow" ,"blue" ,"red" ,"green"]);
pcigars :=PermutationsList(["blends", "pall_mall", "prince", "bluemasters", "dunhill"]);
pnats:=PermutationsList(["german", "swedish", "british", "norwegian", "danish"]);
pdrinks :=PermutationsList(["beer", "water", "tea", "milk", "coffee"]);
ppets  :=PermutationsList(["birds", "cats", "horses", "fish", "dogs"]);

for colors in pcolors do
if not (leftOf(colors,"green",colors,"white")) then continue ;fi;
for nats in pnats do
if not (requires(nats,"british",colors,"red")) then  continue ;fi;
if not (nats[1]="norwegian") then continue ;fi;
if not (nextTo(nats,"norwegian",colors,"blue")) then continue ;fi;
for pets in ppets do
if not (requires(nats,"swedish",pets,"dogs")) then  continue ;fi;
for drinks in pdrinks do
if not (drinks[3]="milk") then continue ;fi;
if not (requires(colors,"green",drinks,"coffee")) then continue ;fi;
if not (requires(nats,"danish",drinks,"tea")) then  continue ;fi;
for cigars in pcigars do
if not (nextTo(pets,"horses",cigars,"dunhill")) then continue ;fi;
if not (requires(cigars,"pall_mall",pets,"birds")) then  continue ;fi;
if not (nextTo(cigars,"blends",drinks,"water")) then  continue ;fi;
if not (nextTo(cigars,"blends",pets,"cats")) then  continue ;fi;
if not (requires(nats,"german",cigars,"prince")) then  continue ;fi;
if not (requires(colors,"yellow",cigars,"dunhill")) then continue ;fi;
if not (requires(cigars,"bluemasters",drinks,"beer")) then  continue ;fi;
Print(colors,"\n");
Print(nats,"\n");
Print(drinks,"\n");
Print(pets,"\n");
Print(cigars,"\n");
od;od;od;od;od;
```

## Go

```package main

import (
"fmt"
"log"
"strings"
)

// Define some types

type HouseSet [5]*House
type House struct {
n Nationality
c Colour
a Animal
d Drink
s Smoke
}
type Nationality int8
type Colour int8
type Animal int8
type Drink int8
type Smoke int8

// Define the possible values

const (
English Nationality = iota
Swede
Dane
Norwegian
German
)
const (
Red Colour = iota
Green
White
Yellow
Blue
)
const (
Dog Animal = iota
Birds
Cats
Horse
Zebra
)
const (
Tea Drink = iota
Coffee
Milk
Beer
Water
)
const (
PallMall Smoke = iota
Dunhill
Blend
BlueMaster
Prince
)

// And how to print them

var nationalities = [...]string{"English", "Swede", "Dane", "Norwegian", "German"}
var colours = [...]string{"red", "green", "white", "yellow", "blue"}
var animals = [...]string{"dog", "birds", "cats", "horse", "zebra"}
var drinks = [...]string{"tea", "coffee", "milk", "beer", "water"}
var smokes = [...]string{"Pall Mall", "Dunhill", "Blend", "Blue Master", "Prince"}

func (n Nationality) String() string { return nationalities[n] }
func (c Colour) String() string      { return colours[c] }
func (a Animal) String() string      { return animals[a] }
func (d Drink) String() string       { return drinks[d] }
func (s Smoke) String() string       { return smokes[s] }
func (h House) String() string {
return fmt.Sprintf("%-9s  %-6s  %-5s  %-6s  %s", h.n, h.c, h.a, h.d, h.s)
}
func (hs HouseSet) String() string {
lines := make([]string, 0, len(hs))
for i, h := range hs {
s := fmt.Sprintf("%d  %s", i, h)
lines = append(lines, s)
}
return strings.Join(lines, "\n")
}

// Simple brute force solution

func simpleBruteForce() (int, HouseSet) {
var v []House
for n := range nationalities {
for c := range colours {
for a := range animals {
for d := range drinks {
for s := range smokes {
h := House{
n: Nationality(n),
c: Colour(c),
a: Animal(a),
d: Drink(d),
s: Smoke(s),
}
if !h.Valid() {
continue
}
v = append(v, h)
}
}
}
}
}
n := len(v)
log.Println("Generated", n, "valid houses")

combos := 0
first := 0
valid := 0
var validSet HouseSet
for a := 0; a < n; a++ {
if v[a].n != Norwegian { // Condition 10:
continue
}
for b := 0; b < n; b++ {
if b == a {
continue
}
if v[b].anyDups(&v[a]) {
continue
}
for c := 0; c < n; c++ {
if c == b || c == a {
continue
}
if v[c].d != Milk { // Condition 9:
continue
}
if v[c].anyDups(&v[b], &v[a]) {
continue
}
for d := 0; d < n; d++ {
if d == c || d == b || d == a {
continue
}
if v[d].anyDups(&v[c], &v[b], &v[a]) {
continue
}
for e := 0; e < n; e++ {
if e == d || e == c || e == b || e == a {
continue
}
if v[e].anyDups(&v[d], &v[c], &v[b], &v[a]) {
continue
}
combos++
set := HouseSet{&v[a], &v[b], &v[c], &v[d], &v[e]}
if set.Valid() {
valid++
if valid == 1 {
first = combos
}
validSet = set
//return set
}
}
}
}
}
}
log.Println("Tested", first, "different combinations of valid houses before finding solution")
log.Println("Tested", combos, "different combinations of valid houses in total")
return valid, validSet
}

// anyDups returns true if h as any duplicate attributes with any of the specified houses
func (h *House) anyDups(list ...*House) bool {
for _, b := range list {
if h.n == b.n || h.c == b.c || h.a == b.a || h.d == b.d || h.s == b.s {
return true
}
}
return false
}

func (h *House) Valid() bool {
// Condition 2:
if h.n == English && h.c != Red || h.n != English && h.c == Red {
return false
}
// Condition 3:
if h.n == Swede && h.a != Dog || h.n != Swede && h.a == Dog {
return false
}
// Condition 4:
if h.n == Dane && h.d != Tea || h.n != Dane && h.d == Tea {
return false
}
// Condition 6:
if h.c == Green && h.d != Coffee || h.c != Green && h.d == Coffee {
return false
}
// Condition 7:
if h.a == Birds && h.s != PallMall || h.a != Birds && h.s == PallMall {
return false
}
// Condition 8:
if h.c == Yellow && h.s != Dunhill || h.c != Yellow && h.s == Dunhill {
return false
}
// Condition 11:
if h.a == Cats && h.s == Blend {
return false
}
// Condition 12:
if h.a == Horse && h.s == Dunhill {
return false
}
// Condition 13:
if h.d == Beer && h.s != BlueMaster || h.d != Beer && h.s == BlueMaster {
return false
}
// Condition 14:
if h.n == German && h.s != Prince || h.n != German && h.s == Prince {
return false
}
// Condition 15:
if h.n == Norwegian && h.c == Blue {
return false
}
// Condition 16:
if h.d == Water && h.s == Blend {
return false
}
return true
}

func (hs *HouseSet) Valid() bool {
ni := make(map[Nationality]int, 5)
ci := make(map[Colour]int, 5)
ai := make(map[Animal]int, 5)
di := make(map[Drink]int, 5)
si := make(map[Smoke]int, 5)
for i, h := range hs {
ni[h.n] = i
ci[h.c] = i
ai[h.a] = i
di[h.d] = i
si[h.s] = i
}
// Condition 5:
if ci[Green]+1 != ci[White] {
return false
}
// Condition 11:
if dist(ai[Cats], si[Blend]) != 1 {
return false
}
// Condition 12:
if dist(ai[Horse], si[Dunhill]) != 1 {
return false
}
// Condition 15:
if dist(ni[Norwegian], ci[Blue]) != 1 {
return false
}
// Condition 16:
if dist(di[Water], si[Blend]) != 1 {
return false
}

// Condition 9: (already tested elsewhere)
if hs[2].d != Milk {
return false
}
// Condition 10: (already tested elsewhere)
if hs[0].n != Norwegian {
return false
}
return true
}

func dist(a, b int) int {
if a > b {
return a - b
}
return b - a
}

func main() {
log.SetFlags(0)
n, sol := simpleBruteForce()
fmt.Println(n, "solution found")
fmt.Println(sol)
}
```
Output:
```Generated 51 valid houses
Tested 652 different combinations of valid houses before finding solution
Tested 750 different combinations of valid houses in total
1 solution found
0  Norwegian  yellow  cats   water   Dunhill
1  Dane       blue    horse  tea     Blend
2  English    red     birds  milk    Pall Mall
3  German     green   zebra  coffee  Prince
4  Swede      white   dog    beer    Blue Master
```

Benchmark (not included but just calling simpleBruteForce):

```BenchmarkBruteForce         1000           2687946 ns/op          550568 B/op       7560 allocs/op
```

```module Main where

import Control.Applicative ((<\$>), (<*>))
import Data.List ((\\))

-- types
data House = House
{ color :: Color      -- <trait> :: House -> <Trait>
, man   :: Man
, pet   :: Pet
, drink :: Drink
, smoke :: Smoke
}
deriving (Eq, Show)

data Color = Red | Green | Blue | Yellow | White
deriving (Eq, Show, Enum, Bounded)

data Man = Eng | Swe | Dan | Nor | Ger
deriving (Eq, Show, Enum, Bounded)

data Pet = Dog | Birds | Cats | Horse | Zebra
deriving (Eq, Show, Enum, Bounded)

data Drink = Coffee | Tea | Milk | Beer | Water
deriving (Eq, Show, Enum, Bounded)

data Smoke = PallMall | Dunhill | Blend | BlueMaster | Prince
deriving (Eq, Show, Enum, Bounded)

type Solution = [House]

main :: IO ()
main = do
forM_ solutions \$ \sol -> mapM_ print sol
>> putStrLn "----"
putStrLn "No More Solutions"

solutions :: [Solution]
solutions = filter finalCheck . map reverse \$ foldM next [] [1..5]
where
-- NOTE: list of houses is generated in reversed order
next :: Solution -> Int -> [Solution]
next sol pos = [h:sol | h <- newHouses sol, consistent h pos]

newHouses :: Solution -> Solution
newHouses sol =    -- all combinations of traits not yet used
House <\$> new color <*> new man <*> new pet <*> new drink <*> new smoke
where
new trait = [minBound ..] \\ map trait sol  -- :: [<Trait>]

consistent :: House -> Int -> Bool
consistent house pos = and                  -- consistent with the rules:
[ man   `is` Eng     <=>   color `is` Red              --  2
, man   `is` Swe     <=>   pet   `is` Dog              --  3
, man   `is` Dan     <=>   drink `is` Tea              --  4
, color `is` Green   <=>   drink `is` Coffee           --  6
, pet   `is` Birds   <=>   smoke `is` PallMall         --  7
, color `is` Yellow  <=>   smoke `is` Dunhill          --  8
, const (pos == 3)   <=>   drink `is` Milk             --  9
, const (pos == 1)   <=>   man   `is` Nor              -- 10
, drink `is` Beer    <=>   smoke `is` BlueMaster       -- 13
, man   `is` Ger     <=>   smoke `is` Prince           -- 14
]
where
infix 4 <=>
p <=> q  =  p house == q house   -- both True or both False

is :: Eq a => (House -> a) -> a -> House -> Bool
(trait `is` value) house  =  trait house == value

finalCheck :: [House] -> Bool
finalCheck solution = and                    -- fulfills the rules:
[ (color `is` Green)   `leftOf` (color `is` White)  --  5
, (smoke `is` Blend  ) `nextTo` (pet   `is` Cats )  -- 11
, (smoke `is` Dunhill) `nextTo` (pet   `is` Horse)  -- 12
, (color `is` Blue   ) `nextTo` (man   `is` Nor  )  -- 15
, (smoke `is` Blend  ) `nextTo` (drink `is` Water)  -- 16
]
where
nextTo :: (House -> Bool) -> (House -> Bool) -> Bool
nextTo p q = leftOf p q || leftOf q p
leftOf p q
| (_:h:_) <- dropWhile (not . p) solution = q h
| otherwise                               = False
```
Output:
```House {color = Yellow, man = Nor, pet = Cats, drink = Water, smoke = Dunhill}
House {color = Blue, man = Dan, pet = Horse, drink = Tea, smoke = Blend}
House {color = Red, man = Eng, pet = Birds, drink = Milk, smoke = PallMall}
House {color = Green, man = Ger, pet = Zebra, drink = Coffee, smoke = Prince}
House {color = White, man = Swe, pet = Dog, drink = Beer, smoke = BlueMaster}
----
No More Solutions```

### LP-like version

(a little faster version)

```import Control.Monad
import Data.List

values :: (Bounded a, Enum a) => [[a]]
values = permutations [minBound..maxBound]

data Nation = English   | Swede     | Dane  | Norwegian     | German
deriving (Bounded, Enum, Eq, Show)
data Color  = Red       | Green     | White | Yellow        | Blue
deriving (Bounded, Enum, Eq, Show)
data Pet    = Dog       | Birds     | Cats  | Horse         | Zebra
deriving (Bounded, Enum, Eq, Show)
data Drink  = Tea       | Coffee    | Milk  | Beer          | Water
deriving (Bounded, Enum, Eq, Show)
data Smoke  = PallMall  | Dunhill   | Blend | BlueMaster    | Prince
deriving (Bounded, Enum, Eq, Show)

color <- values
leftOf  color  Green       color White    -- 5

nation <- values
first   nation Norwegian                  -- 10
same    nation English     color Red      -- 2
nextTo  nation Norwegian   color Blue     -- 15

drink <- values
middle  drink  Milk                       -- 9
same    nation Dane        drink Tea      -- 4
same    drink  Coffee      color Green    -- 6

pet <- values
same    nation Swede       pet   Dog      -- 3

smoke <- values
same    smoke  PallMall    pet   Birds    -- 7
same    color  Yellow      smoke Dunhill  -- 8
nextTo  smoke  Blend       pet   Cats     -- 11
nextTo  pet    Horse       smoke Dunhill  -- 12
same    nation German      smoke Prince   -- 14
same    smoke  BlueMaster  drink Beer     -- 13
nextTo  drink  Water       smoke Blend    -- 16

return \$ zip5 nation color pet drink smoke

where
same    xs x  ys y  =  guard \$ (x, y) `elem` zip xs ys
leftOf  xs x  ys y  =  same  xs x  (tail ys) y
nextTo  xs x  ys y  =  leftOf  xs x  ys y  `mplus`
leftOf  ys y  xs x
middle  xs x        =  guard \$ xs !! 2 == x
first   xs x        =  guard \$ head xs == x

main = do
do
print [nation | (nation, _, Zebra, _, _) <- answer]
putStrLn "" )
putStrLn "No more solutions!"
```

Output:

```(Norwegian,Yellow,Cats,Water,Dunhill)
(Dane,Blue,Horse,Tea,Blend)
(English,Red,Birds,Milk,PallMall)
(German,Green,Zebra,Coffee,Prince)
(Swede,White,Dog,Beer,BlueMaster)
[German]

No more solutions!```

## J

Propositions 1 .. 16 without 9,10 and15

```ehs=: 5\$a:

cr=: (('English';'red') 0 3} ehs);<('Dane';'tea') 0 2}ehs
cr=: cr, (('German';'Prince') 0 4}ehs);<('Swede';'dog') 0 1 }ehs

cs=: <('PallMall';'birds') 4 1}ehs
cs=: cs, (('yellow';'Dunhill') 3 4}ehs);<('BlueMaster';'beer') 4 2}ehs

lof=: (('coffee';'green')2 3}ehs);<(<'white')3}ehs

next=: <((<'Blend') 4 }ehs);<(<'water')2}ehs
next=: next,<((<'Blend') 4 }ehs);<(<'cats')1}ehs
next=: next,<((<'Dunhill') 4}ehs);<(<'horse')1}ehs
```

Example

```   lof
┌─────────────────┬───────────┐
│┌┬┬──────┬─────┬┐│┌┬┬┬─────┬┐│
││││coffee│green│││││││white│││
│└┴┴──────┴─────┴┘│└┴┴┴─────┴┘│
└─────────────────┴───────────┘
```

Collections of all variants of the propositions:

```hcr=: (<ehs),. (A.~i.@!@#)cr
hcs=:~. (A.~i.@!@#)cs,2\$<ehs
hlof=:(-i.4) |."0 1 lof,3\$<ehs
hnext=: ,/((i.4) |."0 1 (3\$<ehs)&,)"1 ;(,,:|.)&.> next
```

We start the row of houses with fixed properties 9, 10 and 15.

```houses=: ((<'Norwegian') 0}ehs);((<'blue') 3 }ehs);((<'milk') 2}ehs);ehs;<ehs
```
Output:
```   houses
┌───────────────┬──────────┬──────────┬──────┬──────┐
│┌─────────┬┬┬┬┐│┌┬┬┬────┬┐│┌┬┬────┬┬┐│┌┬┬┬┬┐│┌┬┬┬┬┐│
││Norwegian││││││││││blue││││││milk││││││││││││││││││
│└─────────┴┴┴┴┘│└┴┴┴────┴┘│└┴┴────┴┴┘│└┴┴┴┴┘│└┴┴┴┴┘│
└───────────────┴──────────┴──────────┴──────┴──────┘
```

Set of proposition variants:

```constraints=: hcr;hcs;hlof;<hnext
```

The worker and its helper verbs

```select=: ~.@(,: #~ ,&(0~:#))
filter=: #~*./@:(2>#S:0)"1
compose=: [: filter f. [: ,/ select f. L:0"1"1 _

solve=: 4 :0
h=. ,:x
whilst. 0=# z do.
for_e. y do. h=. h compose > e end.
z=.(#~1=[:+/"1 (0=#)S:0"1) h=.~. h
end.
)
```
Output:
```   >"0 houses solve constraints
┌─────────┬─────┬──────┬──────┬──────────┐
│Norwegian│cats │water │yellow│Dunhill   │
├─────────┼─────┼──────┼──────┼──────────┤
│Dane     │horse│tea   │blue  │Blend     │
├─────────┼─────┼──────┼──────┼──────────┤
│English  │birds│milk  │red   │PallMall  │
├─────────┼─────┼──────┼──────┼──────────┤
│German   │     │coffee│green │Prince    │
├─────────┼─────┼──────┼──────┼──────────┤
│Swede    │dog  │beer  │white │BlueMaster│
└─────────┴─────┴──────┴──────┴──────────┘
```

So, the German owns the zebra.

Alternative
A longer running solver by adding the zebra variants.

```zebra=: (-i.5)|."0 1 (<(<'zebra') 1}ehs),4\$<ehs

solve3=: 4 :0
p=. *./@:((0~:#)S:0)
f=. [:~.&.> [: compose&.>~/y&, f.
z=. f^:(3>[:#(#~p"1)&>)^:_ <,:x
>"0 (#~([:*./[:;[:<@({.~:}.)\.;)"1)(#~p"1); z
)
```
Output:
```   houses solve3 constraints,<zebra
┌─────────┬─────┬──────┬──────┬──────────┐
│Norwegian│cats │water │yellow│Dunhill   │
├─────────┼─────┼──────┼──────┼──────────┤
│Dane     │horse│tea   │blue  │Blend     │
├─────────┼─────┼──────┼──────┼──────────┤
│English  │birds│milk  │red   │PallMall  │
├─────────┼─────┼──────┼──────┼──────────┤
│German   │zebra│coffee│green │Prince    │
├─────────┼─────┼──────┼──────┼──────────┤
│Swede    │dog  │beer  │white │BlueMaster│
└─────────┴─────┴──────┴──────┴──────────┘
```

## Java

This Java solution includes 4 classes:

• The outer class Zebra
• A PossibleLine
• A set of PossibleLines
• The Solver
```package org.rosettacode.zebra;

import java.util.Arrays;
import java.util.Iterator;
import java.util.Objects;
import java.util.Set;

public class Zebra {

private static final int[] orders = {1, 2, 3, 4, 5};
private static final String[] nations = {"English", "Danish", "German", "Swedish", "Norwegian"};
private static final String[] animals = {"Zebra", "Horse", "Birds", "Dog", "Cats"};
private static final String[] drinks = {"Coffee", "Tea", "Beer", "Water", "Milk"};
private static final String[] cigarettes = {"Pall Mall", "Blend", "Blue Master", "Prince", "Dunhill"};
private static final String[] colors = {"Red", "Green", "White", "Blue", "Yellow"};

static class Solver {
private final PossibleLines puzzleTable = new PossibleLines();

void solve() {
PossibleLines constraints = new PossibleLines();
constraints.add(new PossibleLine(null, "English", "Red", null, null, null));
constraints.add(new PossibleLine(null, "Swedish", null, "Dog", null, null));
constraints.add(new PossibleLine(null, "Danish", null, null, "Tea", null));
constraints.add(new PossibleLine(null, null, "Green", null, "Coffee", null));
constraints.add(new PossibleLine(null, null, null, "Birds", null, "Pall Mall"));
constraints.add(new PossibleLine(null, null, "Yellow", null, null, "Dunhill"));
constraints.add(new PossibleLine(3, null, null, null, "Milk", null));
constraints.add(new PossibleLine(1, "Norwegian", null, null, null, null));
constraints.add(new PossibleLine(null, null, null, null, "Beer", "Blue Master"));
constraints.add(new PossibleLine(null, "German", null, null, null, "Prince"));
constraints.add(new PossibleLine(2, null, "Blue", null, null, null));

//Creating all possible combination of a puzzle line.
//The maximum number of lines is 5^^6 (15625).
//Each combination line is checked against a set of knowing facts, thus
//only a small number of line result at the end.
for (Integer orderId : Zebra.orders) {
for (String nation : Zebra.nations) {
for (String color : Zebra.colors) {
for (String animal : Zebra.animals) {
for (String drink : Zebra.drinks) {
for (String cigarette : Zebra.cigarettes) {
addPossibleNeighbors(constraints, orderId, nation, color, animal, drink, cigarette);
}
}
}
}
}
}

System.out.println("After general rule set validation, remains " +
puzzleTable.size() + " lines.");

for (Iterator<PossibleLine> it = puzzleTable.iterator(); it.hasNext(); ) {
boolean validLine = true;

PossibleLine possibleLine = it.next();

if (possibleLine.leftNeighbor != null) {
PossibleLine neighbor = possibleLine.leftNeighbor;
if (neighbor.order < 1 || neighbor.order > 5) {
validLine = false;
it.remove();
}
}
if (validLine && possibleLine.rightNeighbor != null) {
PossibleLine neighbor = possibleLine.rightNeighbor;
if (neighbor.order < 1 || neighbor.order > 5) {
it.remove();
}
}
}

System.out.println("After removing out of bound neighbors, remains " +
puzzleTable.size() + " lines.");

//Setting left and right neighbors
for (PossibleLine puzzleLine : puzzleTable) {
for (PossibleLine leftNeighbor : puzzleLine.neighbors) {
PossibleLine rightNeighbor = leftNeighbor.copy();

//make it left neighbor
leftNeighbor.order = puzzleLine.order - 1;
if (puzzleTable.contains(leftNeighbor)) {
if (puzzleLine.leftNeighbor != null)
puzzleLine.leftNeighbor.merge(leftNeighbor);
else
puzzleLine.setLeftNeighbor(leftNeighbor);
}
rightNeighbor.order = puzzleLine.order + 1;
if (puzzleTable.contains(rightNeighbor)) {
if (puzzleLine.rightNeighbor != null)
puzzleLine.rightNeighbor.merge(rightNeighbor);
else
puzzleLine.setRightNeighbor(rightNeighbor);
}
}
}

int iteration = 1;
int lastSize = 0;

//Recursively validate against neighbor rules
while (puzzleTable.size() > 5 && lastSize != puzzleTable.size()) {
lastSize = puzzleTable.size();
puzzleTable.clearLineCountFlags();

recursiveSearch(null, puzzleTable, -1);

constraints.clear();
// Assuming we'll get at leas one valid line each iteration, we create
// a set of new rules with lines which have no more then one instance of same OrderId.
for (int i = 1; i < 6; i++) {
if (puzzleTable.getLineCountByOrderId(i) == 1)
constraints.addAll(puzzleTable.getSimilarLines(new PossibleLine(i, null, null, null, null,
null)));
}

puzzleTable.removeIf(puzzleLine -> !constraints.accepts(puzzleLine));

System.out.println("After " + iteration + " recursive iteration, remains "
+ puzzleTable.size() + " lines");
iteration++;
}

// Print the results
System.out.println("-------------------------------------------");
if (puzzleTable.size() == 5) {
for (PossibleLine puzzleLine : puzzleTable) {
System.out.println(puzzleLine.getWholeLine());
}
} else
}

PossibleLines constraints, Integer orderId, String nation,
String color, String animal, String drink, String cigarette) {
boolean validLine = true;
PossibleLine pzlLine = new PossibleLine(orderId,
nation,
color,
animal,
drink,
cigarette);
// Checking against a set of knowing facts
if (constraints.accepts(pzlLine)) {
if (cigarette.equals("Blend")
&& (animal.equals("Cats") || drink.equals("Water")))
validLine = false;

if (cigarette.equals("Dunhill")
&& animal.equals("Horse"))
validLine = false;

if (validLine) {

//set neighbors constraints
if (color.equals("Green")) {
pzlLine.setRightNeighbor(
new PossibleLine(null, null, "White", null, null, null));
}
if (color.equals("White")) {
pzlLine.setLeftNeighbor(
new PossibleLine(null, null, "Green", null, null, null));
}
//
if (animal.equals("Cats") && !cigarette.equals("Blend")) {
pzlLine.neighbors.add(new PossibleLine(null, null, null, null, null,
"Blend"));
}
if (cigarette.equals("Blend") && !animal.equals("Cats")) {
pzlLine.neighbors.add(new PossibleLine(null, null, null, "Cats", null
, null));
}
//
if (drink.equals("Water")
&& !animal.equals("Cats")
&& !cigarette.equals("Blend")) {
pzlLine.neighbors.add(new PossibleLine(null, null, null, null, null,
"Blend"));
}

if (cigarette.equals("Blend") && !drink.equals("Water")) {
pzlLine.neighbors.add(new PossibleLine(null, null, null, null, "Water"
, null));
}
//
if (animal.equals("Horse") && !cigarette.equals("Dunhill")) {
pzlLine.neighbors.add(new PossibleLine(null, null, null, null, null,
"Dunhill"));
}
if (cigarette.equals("Dunhill") && !animal.equals("Horse")) {
null, null));
}
}
}
}

// Recursively checks the input set to ensure each line has right neighbor.
// Neighbors can be of three type, left, right or undefined.
// Direction: -1 left, 0 undefined, 1 right
private boolean recursiveSearch(PossibleLine pzzlNodeLine,
PossibleLines possibleLines, int direction) {
boolean validLeaf = false;
boolean hasNeighbor;
PossibleLines puzzleSubSet;

for (Iterator<PossibleLine> it = possibleLines.iterator(); it.hasNext(); ) {
PossibleLine pzzlLeafLine = it.next();
validLeaf = false;

hasNeighbor = pzzlLeafLine.hasNeighbor(direction);

if (hasNeighbor) {
puzzleSubSet = puzzleTable.getSimilarLines(pzzlLeafLine.getNeighbor(direction));
if (puzzleSubSet != null) {
if (pzzlNodeLine != null)
validLeaf = puzzleSubSet.contains(pzzlNodeLine);
else
validLeaf = recursiveSearch(pzzlLeafLine, puzzleSubSet, -1 * direction);
}
}

if (!validLeaf && pzzlLeafLine.hasNeighbor(-1 * direction)) {
hasNeighbor = true;
puzzleSubSet = puzzleTable.getSimilarLines(pzzlLeafLine.getNeighbor(-1 * direction));
if (puzzleSubSet != null) {
if (pzzlNodeLine != null)
validLeaf = puzzleSubSet.contains(pzzlNodeLine);
else
validLeaf = recursiveSearch(pzzlLeafLine, puzzleSubSet, direction);
}
}

if (pzzlNodeLine != null && validLeaf)
return true;

if (pzzlNodeLine == null && hasNeighbor && !validLeaf) {
it.remove();
}

if (pzzlNodeLine == null) {
if (hasNeighbor && validLeaf) {
possibleLines.riseLineCountFlags(pzzlLeafLine.order);
}
if (!hasNeighbor) {
possibleLines.riseLineCountFlags(pzzlLeafLine.order);
}
}
}
return validLeaf;
}
}

public static void main(String[] args) {

Solver solver = new Solver();
solver.solve();
}

static class PossibleLines extends LinkedHashSet<PossibleLine> {

private final int[] count = new int[5];

public PossibleLine get(int index) {
return ((PossibleLine) toArray()[index]);
}

public PossibleLines getSimilarLines(PossibleLine searchLine) {
PossibleLines puzzleSubSet = new PossibleLines();
for (PossibleLine possibleLine : this) {
if (possibleLine.getCommonFactsCount(searchLine) == searchLine.getFactsCount())
}
if (puzzleSubSet.isEmpty())
return null;

return puzzleSubSet;
}

public boolean contains(PossibleLine searchLine) {
for (PossibleLine puzzleLine : this) {
if (puzzleLine.getCommonFactsCount(searchLine) == searchLine.getFactsCount())
return true;
}
return false;
}

public boolean accepts(PossibleLine searchLine) {
int passed = 0;
int notpassed = 0;

for (PossibleLine puzzleSetLine : this) {
int lineFactsCnt = puzzleSetLine.getFactsCount();
int comnFactsCnt = puzzleSetLine.getCommonFactsCount(searchLine);

if (lineFactsCnt != comnFactsCnt && lineFactsCnt != 0 && comnFactsCnt != 0) {
notpassed++;
}

if (lineFactsCnt == comnFactsCnt)
passed++;
}
return passed >= 0 && notpassed == 0;
}

public void riseLineCountFlags(int lineOrderId) {
count[lineOrderId - 1]++;
}

public void clearLineCountFlags() {
Arrays.fill(count, 0);
}

public int getLineCountByOrderId(int lineOrderId) {
return count[lineOrderId - 1];
}
}

static class PossibleLine {

Integer order;
String nation;
String color;
String animal;
String drink;
String cigarette;

PossibleLine rightNeighbor;
PossibleLine leftNeighbor;

public PossibleLine(Integer order, String nation, String color,
String animal, String drink, String cigarette) {
this.animal = animal;
this.cigarette = cigarette;
this.color = color;
this.drink = drink;
this.nation = nation;
this.order = order;
}

@Override
public boolean equals(Object obj) {
return obj instanceof PossibleLine
&& getWholeLine().equals(((PossibleLine) obj).getWholeLine());
}

public int getFactsCount() {
int facts = 0;
facts += order != null ? 1 : 0;
facts += nation != null ? 1 : 0;
facts += color != null ? 1 : 0;
facts += animal != null ? 1 : 0;
facts += cigarette != null ? 1 : 0;
facts += drink != null ? 1 : 0;
return facts;
}

private static int common(Object a, Object b) {
return a != null && Objects.equals(a, b) ? 1 : 0;
}

public int getCommonFactsCount(PossibleLine facts) {
return common(order, facts.order)
+ common(nation, facts.nation)
+ common(color, facts.color)
+ common(animal, facts.animal)
+ common(cigarette, facts.cigarette)
+ common(drink, facts.drink);
}

public void setLeftNeighbor(PossibleLine leftNeighbor) {
this.leftNeighbor = leftNeighbor;
this.leftNeighbor.order = order - 1;
}

public void setRightNeighbor(PossibleLine rightNeighbor) {
this.rightNeighbor = rightNeighbor;
this.rightNeighbor.order = order + 1;
}

public boolean hasNeighbor(int direction) {
return getNeighbor(direction) != null;
}

public PossibleLine getNeighbor(int direction) {
if (direction < 0)
return leftNeighbor;
else
return rightNeighbor;
}

public String getWholeLine() {
return order + " - " +
nation + " - " +
color + " - " +
animal + " - " +
drink + " - " +
cigarette;
}

@Override
public int hashCode() {
return Objects.hash(order, nation, color, animal, drink, cigarette);
}

public void merge(PossibleLine mergedLine) {
if (order == null) order = mergedLine.order;
if (nation == null) nation = mergedLine.nation;
if (color == null) color = mergedLine.color;
if (animal == null) animal = mergedLine.animal;
if (drink == null) drink = mergedLine.drink;
if (cigarette == null) cigarette = mergedLine.cigarette;
}

public PossibleLine copy() {
PossibleLine clone = new PossibleLine(order, nation, color, animal, drink, cigarette);
clone.leftNeighbor = leftNeighbor;
clone.rightNeighbor = rightNeighbor;
clone.neighbors = neighbors; // shallow copy
return clone;
}
}
}
```
Output:
```After general rule set validation, remains 60 lines.
After removing out of bound neighbors, remains 52 lines.
After 1 recursive iteration, remains 17 lines
After 2 recursive iteration, remains 6 lines
After 3 recursive iteration, remains 5 lines
-------------------------------------------
1 - Norwegian - Yellow - Cats - Water - Dunhill
2 - Danish - Blue - Horse - Tea - Blend
3 - English - Red - Birds - Milk - Pall Mall
4 - German - Green - Zebra - Coffee - Prince
5 - Swedesh - White - Dog - Beer - Blue Master
```

--VValache (talk) 14:14, 3 October 2014 (UTC)

## jq

Works with: jq version 1.4

The main function presented here, zebra, generates all possible solutions. By letting it run to completion, we can see that there is only one solution to the puzzle. The program is fast because pruning takes place. That is, the program implements a "generate-and-prune" strategy.

Part 1: Generic filters for unification and matching

```# Attempt to unify the input object with the specified object
def unify( object ):
# Attempt to unify the input object with the specified tag:value
def unify2(tag; value):
if . == null then null
elif .[tag] == value then .
elif .[tag] == null then .[tag] = value
else null
end;
reduce (object|keys[]) as \$key
(.; unify2(\$key; object[\$key]) );

# Input: an array
# Output: if the i-th element can be made to satisfy the condition,
# then the updated array, otherwise empty.
def enforce(i; cond):
if 0 <= i and i < length
then
(.[i] | cond) as \$ans
| if \$ans then .[i] = \$ans else empty end
else empty
end ;```

Part 2: Zebra Puzzle

```# Each house is a JSON object of the form:
# { "number": _, "nation": _, "owns": _, "color": _, "drinks": _, "smokes": _}

# The list of houses is represented by an array of five such objects.

# Input: an array of objects representing houses.
# Output: [i, solution] where i is the entity unified with obj
# and solution is the updated array
def solve_with_index( obj ):
. as \$Houses
| range(0; length) as \$i
| (\$Houses[\$i] | unify(obj)) as \$H
| if \$H then \$Houses[\$i] = \$H else empty end
| [ \$i, .] ;

def solve( object ):
solve_with_index( object )[1];

solve_with_index(obj1) as \$H
| \$H[1]
| (enforce(  \$H[0] - 1; unify(obj2) ),
enforce(  \$H[0] + 1; unify(obj2) )) ;

def left_right( obj1; obj2 ):
solve_with_index(obj1) as \$H
| \$H[1]
| enforce(  \$H[0] + 1; unify(obj2) ) ;

# All solutions by generate-and-test
def zebra:
[range(0;5)] | map({"number": .})                        # Five houses

| enforce( 0; unify( {"nation": "norwegian"} ) )
| enforce( 2; unify( {"drinks": "milk"} ) )

| solve( {"nation": "englishman",  "color": "red"} )
| solve( {"nation": "swede", "owns": "dog"} )
| solve( {"nation": "dane", "drinks": "tea"} )

| left_right( {"color": "green"}; {"color": "white"})

| solve( {"drinks": "coffee", "color": "green"} )
| solve( {"smokes": "Pall Mall", "owns": "birds"} )
| solve( {"color": "yellow", "smokes":  "Dunhill"} )

| adjacent( {"smokes": "Blend" }; {"owns": "cats"} )
| adjacent( {"owns": "horse"}; {"smokes": "Dunhill"})

| solve( {"drinks": "beer", "smokes": "Blue Master"} )
| solve( {"nation": "german", "smokes": "Prince"})

| adjacent( {"nation": "norwegian"}; {"color": "blue"})
| adjacent( {"drinks": "water"}; {"smokes": "Blend"})

| solve( {"owns": "zebra"} )
;

zebra```
Output:
```\$ time jq -n -f zebra.jq
[
{
"number": 0,
"nation": "norwegian",
"color": "yellow",
"smokes": "Dunhill",
"owns": "cats",
"drinks": "water"
},
{
"number": 1,
"drinks": "tea",
"nation": "dane",
"smokes": "Blend",
"owns": "horse",
"color": "blue"
},
{
"number": 2,
"drinks": "milk",
"color": "red",
"nation": "englishman",
"owns": "birds",
"smokes": "Pall Mall"
},
{
"number": 3,
"color": "green",
"drinks": "coffee",
"nation": "german",
"smokes": "Prince",
"owns": "zebra"
},
{
"number": 4,
"nation": "swede",
"owns": "dog",
"color": "white",
"drinks": "beer",
"smokes": "Blue Master"
}
]

# Times include compilation:
real	0m0.284s
user	0m0.260s
sys	0m0.005s
```

## Julia

```# Julia 1.0
using Combinatorics
function make(str, test )
filter(test, collect( permutations(split(str))) )
end

men = make("danish english german norwegian swedish",
x -> "norwegian" == x[1])

drinks = make("beer coffee milk tea water", x -> "milk" == x[3])

#Julia 1.0 compatible
colors = make("blue green red white yellow",
x -> 1 == findfirst(c -> c == "white", x) - findfirst(c -> c == "green",x))

pets = make("birds cats dog horse zebra")

smokes = make("blend blue-master dunhill pall-mall prince")

function eq(x, xs, y, ys)
findfirst(xs, x) == findfirst(ys, y)
end

1 == abs(findfirst(xs, x) - findfirst(ys, y))
end

function print_houses(n, pet, nationality, colors, drink, smokes)
println("\$n, \$pet,    \$nationality       \$colors       \$drink    \$smokes")
end

for m = men, c = colors
if eq("red",c, "english",m) && adj("norwegian",m, "blue",c)
for d = drinks
if eq("danish",m, "tea",d) && eq("coffee",d,"green",c)
for s = smokes
if eq("yellow",c,"dunhill",s) &&
eq("blue-master",s,"beer",d) &&
eq("german",m,"prince",s)
for p = pets
if eq("birds",p,"pall-mall",s) &&
eq("swedish",m,"dog",p) &&
println("Zebra is owned by ", m[findfirst(c -> c == "zebra", p)])
println("Houses:")
for house_num in 1:5
print_houses(house_num,p[house_num],m[house_num],c[house_num],d[house_num],s[house_num])
end
end
end
end
end
end
end
end
end
```
Output:
```Zebra is owned by german
Houses:
1, cats,    norwegian       yellow       water    dunhill
2, horse,    danish       blue       tea    blend
3, birds,    english       red       milk    pall-mall
4, zebra,    german       green       coffee    prince
5, dog,    swedish       white       beer    blue-master
```

### Constraint Programming Version

Using the rules from https://github.com/SWI-Prolog/bench/blob/master/zebra.pl

```# Julia 1.4
using JuMP
using GLPK

c = Dict(s => i for (i, s) in enumerate(split("blue green ivory red yellow")))
n = Dict(s => i for (i, s) in enumerate(split("english japanese norwegian spanish ukrainian")))
p = Dict(s => i for (i, s) in enumerate(split("dog fox horse snails zebra")))
d = Dict(s => i for (i, s) in enumerate(split("coffee milk orangejuice tea water")))
s = Dict(s => i for (i, s) in enumerate(split("chesterfields kools luckystrikes parliaments winstons")))

model = Model(GLPK.Optimizer)

@variable(model, colors[1:5, 1:5], Bin)
@constraints(model, begin
[h in 1:5], sum(colors[h, :]) == 1
[c in 1:5], sum(colors[:, c]) == 1
end)

@variable(model, nations[1:5, 1:5], Bin)
@constraints(model, begin
[h in 1:5], sum(nations[h, :]) == 1
[n in 1:5], sum(nations[:, n]) == 1
end)

@variable(model, pets[1:5, 1:5], Bin)
@constraints(model, begin
[h in 1:5], sum(pets[h, :]) == 1
[p in 1:5], sum(pets[:, p]) == 1
end)

@variable(model, drinks[1:5, 1:5], Bin)
@constraints(model, begin
[h in 1:5], sum(drinks[h, :]) == 1
[d in 1:5], sum(drinks[:, d]) == 1
end)

@variable(model, smokes[1:5, 1:5], Bin)
@constraints(model, begin
[h in 1:5], sum(smokes[h, :]) == 1
[s in 1:5], sum(smokes[:, s]) == 1
end)

@constraint(model, [h=1:5], colors[h, c["red"]] == nations[h, n["english"]])
@constraint(model, [h=1:5], nations[h, n["spanish"]] == pets[h, p["dog"]])
@constraint(model, [h=1:5], colors[h, c["green"]] == drinks[h, d["coffee"]])
@constraint(model, [h=1:5], nations[h, n["ukrainian"]] == drinks[h, d["tea"]])
@constraint(model, [h=1:5], colors[h, c["ivory"]] == get(colors, (h+1, c["green"]), 0))
@constraint(model, [h=1:5], pets[h, p["snails"]] == smokes[h, s["winstons"]])
@constraint(model, [h=1:5], colors[h, c["yellow"]] == smokes[h, s["kools"]])
@constraint(model, drinks[3, d["milk"]] == 1)
@constraint(model, nations[1, n["norwegian"]] == 1)
@constraint(model, [h=1:5], (1-pets[h, p["fox"]]) + get(smokes,(h-1, s["chesterfields"]), 0) + get(smokes, (h+1, s["chesterfields"]), 0) >= 1)
@constraint(model, [h=1:5], (1-pets[h, p["horse"]]) + get(smokes,(h-1, s["kools"]), 0) + get(smokes, (h+1, s["kools"]), 0) >= 1)
@constraint(model, [h=1:5], drinks[h, d["orangejuice"]] == smokes[h, s["luckystrikes"]])
@constraint(model, [h=1:5], nations[h, n["japanese"]] == smokes[h, s["parliaments"]])
@constraint(model, [h=1:5], (1-nations[h, n["norwegian"]]) + get(colors, (h-1, c["blue"]), 0) + get(colors, (h+1, c["blue"]), 0) >= 1)

optimize!(model)

if termination_status(model) == MOI.OPTIMAL && primal_status(model) == MOI.FEASIBLE_POINT
m = map(1:5) do h
[Dict(values(c) .=> keys(c))[findfirst(value.(colors)[h, :] .≈ 1.0)],
Dict(values(n) .=> keys(n))[findfirst(value.(nations)[h, :] .≈ 1.0)],
Dict(values(p) .=> keys(p))[findfirst(value.(pets)[h, :] .≈ 1.0)],
Dict(values(d) .=> keys(d))[findfirst(value.(drinks)[h, :] .≈ 1.0)],
Dict(values(s) .=> keys(s))[findfirst(value.(smokes)[h, :] .≈ 1.0)]]
end
end

using DataFrames
DataFrame(colors=getindex.(m, 1),
nations=getindex.(m, 2),
pets=getindex.(m, 3),
drinks=getindex.(m, 4),
smokes=getindex.(m, 5))
```
Output:
```: 5×5 DataFrame
: │ Row │ colors   │ nations   │ pets     │ drinks      │ smokes        │
: ├─────┼──────────┼───────────┼──────────┼─────────────┼───────────────┤
: │ 1   │ yellow   │ norwegian │ fox      │ water       │ kools         │
: │ 2   │ blue     │ ukrainian │ horse    │ tea         │ chesterfields │
: │ 3   │ red      │ english   │ snails   │ milk        │ winstons      │
: │ 4   │ ivory    │ spanish   │ dog      │ orangejuice │ luckystrikes  │
: │ 5   │ green    │ japanese  │ zebra    │ coffee      │ parliaments   │
```

## Kotlin

```// version 1.1.3

fun nextPerm(perm: IntArray): Boolean {
val size = perm.size
var k = -1
for (i in size - 2 downTo 0) {
if (perm[i] < perm[i + 1]) {
k = i
break
}
}
if (k == -1) return false  // last permutation
for (l in size - 1 downTo k) {
if (perm[k] < perm[l]) {
val temp = perm[k]
perm[k] = perm[l]
perm[l] = temp
var m = k + 1
var n = size - 1
while (m < n) {
val temp2 = perm[m]
perm[m++] = perm[n]
perm[n--] = temp2
}
break
}
}
return true
}

fun check(a1: Int, a2: Int, v1: Int, v2: Int): Boolean {
for (i in 0..4)
if (p[a1][i] == v1) return p[a2][i] == v2
return false
}

fun checkLeft(a1: Int, a2: Int, v1: Int, v2: Int): Boolean {
for (i in 0..3)
if (p[a1][i] == v1) return p[a2][i + 1] == v2
return false
}

fun checkRight(a1: Int, a2: Int, v1: Int, v2: Int): Boolean {
for (i in 1..4)
if (p[a1][i] == v1) return p[a2][i - 1] == v2
return false
}

fun checkAdjacent(a1: Int, a2: Int, v1: Int, v2: Int): Boolean {
return checkLeft(a1, a2, v1, v2) || checkRight(a1, a2, v1, v2)
}

val colors  = listOf("Red", "Green", "White", "Yellow", "Blue")
val nations = listOf("English", "Swede", "Danish", "Norwegian", "German")
val animals = listOf("Dog", "Birds", "Cats", "Horse", "Zebra")
val drinks  = listOf("Tea", "Coffee", "Milk", "Beer", "Water")
val smokes  = listOf("Pall Mall", "Dunhill", "Blend", "Blue Master", "Prince")

val p = Array(120) { IntArray(5) { -1 } } //  stores all permutations of numbers 0..4

fun fillHouses(): Int {
var solutions = 0
for (c in 0..119) {
if (!checkLeft(c, c, 1, 2)) continue                      // C5 : Green left of white
for (n in 0..119) {
if (p[n][0] != 3) continue                            // C10: Norwegian in First
if (!check(n, c, 0, 0)) continue                      // C2 : English in Red
if (!checkAdjacent(n, c, 3, 4)) continue              // C15: Norwegian next to Blue
for (a in 0..119) {
if (!check(a, n, 0, 1)) continue                  // C3 : Swede has Dog
for (d in 0..119) {
if (p[d][2] != 2) continue                    // C9 : Middle drinks Milk
if (!check(d, n, 0, 2)) continue              // C4 : Dane drinks Tea
if (!check(d, c, 1, 1)) continue              // C6 : Green drinks Coffee
for (s in 0..119) {
if (!check(s, a, 0, 1)) continue          // C7 : Pall Mall has Birds
if (!check(s, c, 1, 3)) continue          // C8 : Yellow smokes Dunhill
if (!check(s, d, 3, 3)) continue          // C13: Blue Master drinks Beer
if (!check(s, n, 4, 4)) continue          // C14: German smokes Prince
if (!checkAdjacent(s, a, 2, 2)) continue  // C11: Blend next to Cats
if (!checkAdjacent(s, a, 1, 3)) continue  // C12: Dunhill next to Horse
if (!checkAdjacent(s, d, 2, 4)) continue  // C16: Blend next to Water
solutions++
printHouses(c, n, a, d, s)
}
}
}
}
}
return solutions
}

fun printHouses(c: Int, n: Int, a: Int, d: Int, s: Int) {
var owner: String = ""
println("House  Color   Nation     Animal  Drink   Smokes")
println("=====  ======  =========  ======  ======  ===========")
for (i in 0..4) {
val f = "%3d    %-6s  %-9s  %-6s  %-6s  %-11s\n"
System.out.printf(f, i + 1, colors[p[c][i]], nations[p[n][i]], animals[p[a][i]], drinks[p[d][i]], smokes[p[s][i]])
if (animals[p[a][i]] == "Zebra") owner = nations[p[n][i]]
}
println("\nThe \$owner owns the Zebra\n")
}

fun main(args: Array<String>) {
val perm = IntArray(5) { it }
for (i in 0..119) {
for (j in 0..4) p[i][j] = perm[j]
nextPerm(perm)
}
val solutions = fillHouses()
val plural = if (solutions == 1) "" else "s"
println("\$solutions solution\$plural found")
}
```
Output:
```House  Color   Nation     Animal  Drink   Smokes
=====  ======  =========  ======  ======  ===========
1    Yellow  Norwegian  Cats    Water   Dunhill
2    Blue    Danish     Horse   Tea     Blend
3    Red     English    Birds   Milk    Pall Mall
4    Green   German     Zebra   Coffee  Prince
5    White   Swede      Dog     Beer    Blue Master

The German owns the Zebra

1 solution found
```

## Logtalk

The Logtalk distribution includes a solution for a variant of this puzzle (here reproduced with permission):

```/* Houses logical puzzle: who owns the zebra and who drinks water?

1) Five colored houses in a row, each with an owner, a pet, cigarettes, and a drink.
2) The English lives in the red house.
3) The Spanish has a dog.
4) They drink coffee in the green house.
5) The Ukrainian drinks tea.
6) The green house is next to the white house.
7) The Winston smoker has a serpent.
8) In the yellow house they smoke Kool.
9) In the middle house they drink milk.
10) The Norwegian lives in the first house from the left.
11) The Chesterfield smoker lives near the man with the fox.
12) In the house near the house with the horse they smoke Kool.
13) The Lucky Strike smoker drinks juice.
14) The Japanese smokes Kent.
15) The Norwegian lives near the blue house.

Who owns the zebra and who drinks water?
*/

:- object(houses).

:- public(houses/1).
:- mode(houses(-list), one).
:- info(houses/1, [
comment is 'Solution to the puzzle.',
argnames is ['Solution']
]).

:- public(print/1).
:- mode(print(+list), one).
:- info(print/1, [
comment is 'Pretty print solution to the puzzle.',
argnames is ['Solution']
]).

houses(Solution) :-
template(Solution),                                                 %  1
member(h(english, _, _, _, red), Solution),                         %  2
member(h(spanish, dog, _, _, _), Solution),                         %  3
member(h(_, _, _, coffee, green), Solution),                        %  4
member(h(ukrainian, _, _, tea, _), Solution),                       %  5
next(h(_, _, _, _, green), h(_, _, _, _, white), Solution),         %  6
member(h(_, snake, winston, _, _), Solution),                       %  7
member(h(_, _, kool, _, yellow), Solution),                         %  8
Solution = [_, _, h(_, _, _, milk, _), _, _],                       %  9
Solution = [h(norwegian, _, _, _, _)| _],                           % 10
next(h(_, fox, _, _, _), h(_, _, chesterfield, _, _), Solution),    % 11
next(h(_, _, kool, _, _), h(_, horse, _, _, _), Solution),          % 12
member(h(_, _, lucky, juice, _), Solution),                         % 13
member(h(japonese, _, kent, _, _), Solution),                       % 14
next(h(norwegian, _, _, _, _), h(_, _, _, _, blue), Solution),      % 15
member(h(_, _, _, water, _), Solution),      % one of them drinks water
member(h(_, zebra, _, _, _), Solution).      % one of them owns a zebra

print([]).
print([House| Houses]) :-
write(House), nl,
print(Houses).

% h(Nationality, Pet, Cigarette, Drink, Color)
template([h(_, _, _, _, _), h(_, _, _, _, _), h(_, _, _, _, _), h(_, _, _, _, _), h(_, _, _, _, _)]).

member(A, [A, _, _, _, _]).
member(B, [_, B, _, _, _]).
member(C, [_, _, C, _, _]).
member(D, [_, _, _, D, _]).
member(E, [_, _, _, _, E]).

next(A, B, [A, B, _, _, _]).
next(B, C, [_, B, C, _, _]).
next(C, D, [_, _, C, D, _]).
next(D, E, [_, _, _, D, E]).

:- end_object.
```

Sample query:

```| ?- houses::(houses(S), print(S)).
h(norwegian,fox,kool,water,yellow)
h(ukrainian,horse,chesterfield,tea,blue)
h(english,snake,winston,milk,red)
h(japonese,zebra,kent,coffee,green)
h(spanish,dog,lucky,juice,white)

S = [h(norwegian,fox,kool,water,yellow),h(ukrainian,horse,chesterfield,tea,blue),h(english,snake,winston,milk,red),h(japonese,zebra,kent,coffee,green),h(spanish,dog,lucky,juice,white)]
```

## Mathematica/Wolfram Language

This creates a table that has 5 columns, and 25 rows. We fill the table; each column is the same and equal to all the options joined together in blocks of 5:

``` 		1		2		3		4		5
colors		Blue		Blue		Blue		Blue		Blue
colors		Green		Green		Green		Green		Green
colors		Red		Red		Red		Red		Red
colors		White		White		White		White		White
colors		Yellow		Yellow		Yellow		Yellow		Yellow
nationality	Dane		Dane		Dane		Dane		Dane
nationality	English		English		English		English		English
nationality	German		German		German		German		German
nationality	Norwegian	Norwegian	Norwegian	Norwegian	Norwegian
nationality	Swede		Swede		Swede		Swede		Swede
beverage	Beer		Beer		Beer		Beer		Beer
beverage	Coffee		Coffee		Coffee		Coffee		Coffee
beverage	Milk		Milk		Milk		Milk		Milk
beverage	Tea		Tea		Tea		Tea		Tea
beverage	Water		Water		Water		Water		Water
animal		Birds		Birds		Birds		Birds		Birds
animal		Cats		Cats		Cats		Cats		Cats
animal		Dog		Dog		Dog		Dog		Dog
animal		Horse		Horse		Horse		Horse		Horse
animal		Zebra		Zebra		Zebra		Zebra		Zebra
smoke		Blend		Blend		Blend		Blend		Blend
smoke		Blue Master	Blue Master	Blue Master	Blue Master	Blue Master
smoke		Dunhill		Dunhill		Dunhill		Dunhill		Dunhill
smoke		Pall Mall	Pall Mall	Pall Mall	Pall Mall	Pall Mall
smoke		Prince		Prince		Prince		Prince		Prince```

This should be read as follows: Each column shows (in blocks of 5) the possible candidates of each kind (beverage, animal, smoke...) We solve it now in a 'sudoku' way: We remove candidates iteratively until we are left with 1 candidate of each kind for each house.

```ClearAll[EliminatePoss, FilterPuzzle]
EliminatePoss[ct_, key1_, key2_] := Module[{t = ct, poss1, poss2, poss, notposs},
poss1 = Position[t, key1];
poss2 = Position[t, key2];
poss = Intersection[Last /@ poss1, Last /@ poss2];
notposs = Complement[Range[5], poss];
poss1 = Select[poss1, MemberQ[notposs, Last[#]] &];
poss2 = Select[poss2, MemberQ[notposs, Last[#]] &];
t = ReplacePart[t, poss1 -> Null];
t = ReplacePart[t, poss2 -> Null];
t</```