Jump to content

Display a linear combination

From Rosetta Code
Task
Display a linear combination
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Display a finite linear combination in an infinite vector basis .

Write a function that, when given a finite list of scalars ,
creates a string representing the linear combination in an explicit format often used in mathematics, that is:

where



The output must comply to the following rules:

  •   don't show null terms, unless the whole combination is null.
e(1)     is fine,     e(1) + 0*e(3)     or     e(1) + 0     is wrong.
  •   don't show scalars when they are equal to one or minus one.
e(3)     is fine,     1*e(3)     is wrong.
  •   don't prefix by a minus sign if it follows a preceding term.   Instead you use subtraction.
e(4) - e(5)     is fine,     e(4) + -e(5)     is wrong.


Show here output for the following lists of scalars:

 1)    1,  2,  3
 2)    0,  1,  2,  3
 3)    1,  0,  3,  4
 4)    1,  2,  0
 5)    0,  0,  0
 6)    0
 7)    1,  1,  1
 8)   -1, -1, -1
 9)   -1, -2,  0, -3
10)   -1



11l

Translation of: Python
F linear(x)
   V a = enumerate(x).filter2((i, v) -> v != 0).map2((i, v) -> ‘#.e(#.)’.format(I v == -1 {‘-’} E I v == 1 {‘’} E String(v)‘*’, i + 1))
   R (I !a.empty {a} E [String(‘0’)]).join(‘ + ’).replace(‘ + -’, ‘ - ’)

L(x) [[1, 2, 3], [0, 1, 2, 3], [1, 0, 3, 4], [1, 2, 0], [0, 0, 0], [0], [1, 1, 1], [-1, -1, -1], [-1, -2, 0, 3], [-1]]
   print(linear(x))
Output:
e(1) + 2*e(2) + 3*e(3)
e(2) + 2*e(3) + 3*e(4)
e(1) + 3*e(3) + 4*e(4)
e(1) + 2*e(2)
0
0
e(1) + e(2) + e(3)
-e(1) - e(2) - e(3)
-e(1) - 2*e(2) + 3*e(4)
-e(1)

Ada

with Ada.Text_Io;
with Ada.Strings.Unbounded;
with Ada.Strings.Fixed;

procedure Display_Linear is

   subtype Position is Positive;
   type Coefficient is new Integer;
   type Combination is array (Position range <>) of Coefficient;

   function Linear_Combination (Comb : Combination) return String is
      use Ada.Strings.Unbounded;
      use Ada.Strings;
      Accu : Unbounded_String;
   begin
      for Pos in Comb'Range loop
         case Comb (Pos) is
            when Coefficient'First .. -1 =>
               Append (Accu, (if Accu = "" then "-" else " - "));
            when 0 => null;
            when 1 .. Coefficient'Last =>
               Append (Accu, (if Accu /= "" then " + " else ""));
         end case;

         if Comb (Pos) /= 0 then
            declare
               Abs_Coeff   : constant Coefficient := abs Comb (Pos);
               Coeff_Image : constant String := Fixed.Trim (Coefficient'Image (Abs_Coeff), Left);
               Exp_Image   : constant String := Fixed.Trim (Position'Image (Pos), Left);
            begin
               if Abs_Coeff /= 1 then
                  Append (Accu, Coeff_Image & "*");
               end if;
               Append (Accu, "e(" & Exp_Image & ")");
            end;
         end if;
      end loop;

      return (if Accu = "" then "0" else To_String (Accu));
   end Linear_Combination;

   use Ada.Text_Io;
begin
   Put_Line (Linear_Combination ((1, 2, 3)));
   Put_Line (Linear_Combination ((0, 1, 2, 3)));
   Put_Line (Linear_Combination ((1, 0, 3, 4)));
   Put_Line (Linear_Combination ((1, 2, 0)));
   Put_Line (Linear_Combination ((0, 0, 0)));
   Put_Line (Linear_Combination ((1 => 0)));
   Put_Line (Linear_Combination ((1, 1, 1)));
   Put_Line (Linear_Combination ((-1, -1, -1)));
   Put_Line (Linear_Combination ((-1, -2, 0, -3)));
   Put_Line (Linear_Combination ((1 => -1)));
end Display_Linear;
Output:
e(1) + 2*e(2) + 3*e(3)
e(2) + 2*e(3) + 3*e(4)
e(1) + 3*e(3) + 4*e(4)
e(1) + 2*e(2)
0
0
e(1) + e(2) + e(3)
-e(1) - e(2) - e(3)
-e(1) - 2*e(2) - 3*e(4)
-e(1)

ALGOL 68

Using implicit multiplication operators, as in the C and Mathematica samples.

BEGIN # display a string representation of some linear combinations              #
    # returns a string representing the sum of the terms of a linear combination #
    #         whose coefficients are the elements of coeffs                      #
    PROC linear combination = ( []INT coeffs )STRING:
         BEGIN 
            []INT  cf          = coeffs[ AT 1 ]; # ensure the lower bound is 1   #
            STRING result     := "";
            BOOL   first term := TRUE;
            FOR i FROM LWB cf TO UPB cf DO
                IF INT c = cf[ i ];
                   c /= 0
                THEN                                          # non-null element #
                    IF first term THEN
                        # first term - only add the operator if it is "-"        #
                        IF c < 0 THEN result +:= "-" FI;
                        first term := FALSE
                    ELSE
                        # second or subsequent term - separate from the previous #
                        #                            and always add the operator #
                        result +:= " " + IF c < 0 THEN "-" ELSE "+" FI + " "
                    FI;
                    # add the coefficient, unless it is one                      #
                    IF ABS c /= 1 THEN
                        result +:= whole( ABS c, 0 )
                    FI;
                    # add the vector                                             #
                    result +:= "e(" + whole( i, 0 ) + ")"
                FI
            OD;
            IF result = "" THEN "0" ELSE result FI
         END # linear combination # ;

    # test cases #
    [][]INT tests = ( (  1,  2,  3  )
                    , (  0,  1,  2,  3  )
                    , (  1,  0,  3,  4  )
                    , (  1,  2,  0  )
                    , (  0,  0,  0  )
                    , (  0  )
                    , (  1,  1,  1  )
                    , ( -1, -1, -1  )
                    , ( -1, -2,  0, -3  )
                    , ( -1  )
                    );
    FOR i FROM LWB tests TO UPB tests DO
        print( ( linear combination( tests[ i ] ), newline ) )
    OD
END
Output:
e(1) + 2e(2) + 3e(3)
e(2) + 2e(3) + 3e(4)
e(1) + 3e(3) + 4e(4)
e(1) + 2e(2)
0
0
e(1) + e(2) + e(3)
-e(1) - e(2) - e(3)
-e(1) - 2e(2) - 3e(4)
-e(1)

APL

Works with: Dyalog APL
 lincomb{
    fmtco{
        mul(1)/(⍕|),'*'
        mul,'e(',(),')'
    }

    co¨fmtco(0)/(⍳⍴,),¨|
    sgn'-+'[1+(×)/×]
    lc(('+'=⊃)↓⊢)sgn,¨co
    0=⍴lc:'0'  lc
 }
Output:
      ↑lincomb¨(1 2 3)(0 1 2 3)(1 0 3 4)(1 2 0)(0 0 0)(0)(1 1 1)(¯1 1 1)(¯1 2 0 ¯3)(¯1)
e(1)+2*e(2)+3*e(3) 
e(2)+2*e(3)+3*e(4) 
e(1)+3*e(3)+4*e(4) 
e(1)+2*e(2)        
0                  
0                  
e(1)+e(2)+e(3)     
-e(1)+e(2)+e(3)    
-e(1)+2*e(2)-3*e(4)
-e(1)              

Arturo

linearCombination: function [coeffs][
    combo: new []
    loop.with:'i coeffs 'x [
        case [x]
            when? [=0] []
            when? [=1] -> 'combo ++ ~"e(|i+1|)"
            when? [= neg 1] -> 'combo ++ ~"-e(|i+1|)"
            else -> 'combo ++ ~"|x|*e(|i+1|)"
    ]
    join.with: " + " 'combo
    replace 'combo {/\+ -/} "- "
    (empty? combo)? -> "0" -> combo
]

loop @[
    [1 2 3]
    [0 1 2 3]
    [1 0 3 4]
    [1 2 0]
    [0 0 0]
    [0]
    [1 1 1]
    @[neg 1 neg 1 neg 1]
    @[neg 1 neg 2 0 neg 3]
    @[neg 1]
] => [print linearCombination &]
Output:
e(1) + 2*e(2) + 3*e(3)
e(2) + 2*e(3) + 3*e(4)
e(1) + 3*e(3) + 4*e(4)
e(1) + 2*e(2)
0
0
e(1) + e(2) + e(3)
-e(1) - e(2) - e(3)
-e(1) - 2*e(2) - 3*e(4)
-e(1)

BASIC

Applesoft BASIC

Translation of: Chipmunk Basic

The Spanish word "cadena" means "string" in English.

 100  READ UX,UY
 110  DIM SCALARS(UX,UY)
 120  FOR N = 1 TO UX
 130  FOR M = 1 TO UY
 140  READ SCALARS(N,M)
 150  NEXT M,N
 160  DATA10,4
 170  DATA1,2,3,0,0,1,2,3
 180  DATA1,0,3,4,1,2,0,0
 190  DATA0,0,0,0,0,0,0,0
 200  DATA1,1,1,0,-1,-1,-1,0
 210  DATA-1,-2,0,-3,-1,0,0,0
 220  FOR N = 1 TO UX
 230      CADENA$ = ""
 240      FOR M = 1 TO UY
 250          SCALAR = SCALARS(N,M)
 260          IF SCALAR THEN CADENA$ = CADENA$ +  CHR$ (44 -  SGN (SCALAR)) +  MID$ ( STR$ ( ABS (SCALAR)) + "*",1,255 * ( ABS (SCALAR) <  > 1)) + "E" +  STR$ (M)
 270      NEXT M
 280      IF CADENA$ = "" THEN CADENA$ = "0"
 290      IF  LEFT$ (CADENA$,1) = "+" THEN CADENA$ =  RIGHT$ (CADENA$, LEN (CADENA$) - 1)
 300      PRINT CADENA$
 310  NEXT N

Chipmunk Basic

Translation of: FreeBASIC
Works with: Chipmunk Basic version 3.6.4
100 dim scalars(10,4)
110 scalars(1,1) = 1 : scalars(1,2) = 2 : scalars(1,3) = 3
120 scalars(2,1) = 0 : scalars(2,2) = 1 : scalars(2,3) = 2 : scalars(2,4) = 3
130 scalars(3,1) = 1 : scalars(3,2) = 0 : scalars(3,3) = 3 : scalars(3,4) = 4
140 scalars(4,1) = 1 : scalars(4,2) = 2 : scalars(4,3) = 0
150 scalars(5,1) = 0 : scalars(5,2) = 0 : scalars(5,3) = 0
160 scalars(6,1) = 0
170 scalars(7,1) = 1 : scalars(7,2) = 1 : scalars(7,3) = 1
180 scalars(8,1) = -1 : scalars(8,2) = -1 : scalars(8,3) = -1
190 scalars(9,1) = -1 : scalars(9,2) = -2 : scalars(9,3) = 0 : scalars(9,4) = -3
200 scalars(10,1) = -1
210 cls
220 for n = 1 to ubound(scalars)
230   cadena$ = ""
240   scalar = 0
250   for m = 1 to ubound(scalars,2)
260     scalar = scalars(n,m)
270     if scalar <> 0 then
280       if scalar = 1 then
290         cadena$ = cadena$+"+e"+str$(m)
300       else
310       if scalar = -1 then
320        cadena$ = cadena$+"-e"+str$(m)
330       else
340         if scalar > 0 then
350           cadena$ = cadena$+chr$(43)+str$(scalar)+"*e"+str$(m)
360         else
370           cadena$ = cadena$+str$(scalar)+"*e"+str$(m)
380         endif
390        endif
400       endif
410     endif
420   next m
430   if cadena$ = "" then cadena$ = "0"
440   if left$(cadena$,1) = "+" then cadena$ = right$(cadena$,len(cadena$)-1)
450   print cadena$
460 next n
470 end

FreeBASIC

Translation of: Ring
Dim scalars(1 To 10, 1 To 4) As Integer => {{1,  2,  3}, {0,  1,  2,  3}, _
{1,  0,  3,  4}, {1,  2,  0}, {0,  0,  0}, {0}, {1,  1,  1}, {-1, -1, -1}, _
{-1, -2,  0, -3}, {-1}}

For n As Integer = 1 To Ubound(scalars)
    Dim As String cadena = ""
    Dim As Integer scalar
    For m As Integer = 1 To Ubound(scalars,2)
        scalar = scalars(n, m)
        If scalar <> 0 Then
            If scalar = 1 Then
                cadena &= "+e" & m
            Elseif scalar = -1 Then
                cadena &= "-e" & m
            Else
                If scalar > 0 Then
                    cadena &= Chr(43) & scalar & "*e" & m
                Else
                    cadena &= scalar & "*e" & m
                End If
            End If
        End If   
    Next m
    If cadena = "" Then cadena = "0"
    If Left(cadena, 1) = "+" Then cadena = Right(cadena, Len(cadena)-1)
    Print cadena
Next n
Sleep
Output:
Same as Ring entry.

GW-BASIC

Works with: PC-BASIC version any
Works with: BASICA
Works with: Chipmunk Basic
Works with: QBasic
Works with: MSX BASIC
100 DIM SKLS(10, 4)
110 SKLS(1, 1) = 1: SKLS(1, 2) = 2: SKLS(1, 3) = 3
120 SKLS(2, 1) = 0: SKLS(2, 2) = 1: SKLS(2, 3) = 2: SKLS(2, 4) = 3
130 SKLS(3, 1) = 1: SKLS(3, 2) = 0: SKLS(3, 3) = 3: SKLS(3, 4) = 4
140 SKLS(4, 1) = 1: SKLS(4, 2) = 2: SKLS(4, 3) = 0
150 SKLS(5, 1) = 0: SKLS(5, 2) = 0: SKLS(5, 3) = 0
160 SKLS(6, 1) = 0
170 SKLS(7, 1) = 1: SKLS(7, 2) = 1: SKLS(7, 3) = 1
180 SKLS(8, 1) = -1: SKLS(8, 2) = -1: SKLS(8, 3) = -1
190 SKLS(9, 1) = -1: SKLS(9, 2) = -2: SKLS(9, 3) = 0: SKLS(9, 4) = -3
200 SKLS(10, 1) = -1
210 CLS
220 FOR N = 1 TO 10
230  CAD$ = ""
240  SCL = 0
250  FOR M = 1 TO 4
260   SCL = SKLS(N, M)
270   IF SCL <> 0 THEN IF SCL = 1 THEN CAD$ = CAD$ + "+e" + STR$(M) ELSE IF SCL = -1 THEN CAD$ = CAD$ + "-e" + STR$(M) ELSE IF SCL > 0 THEN CAD$ = CAD$ + CHR$(43) + STR$(SCL) + "*e" + STR$(M) ELSE CAD$ = CAD$ + STR$(SCL) + "*e" + STR$(M)
280  NEXT M
290  IF CAD$ = "" THEN CAD$ = "0"
300  IF LEFT$(CAD$, 1) = "+" THEN CAD$ = RIGHT$(CAD$, LEN(CAD$) - 1)
310  PRINT CAD$
320 NEXT N
330 END

MSX Basic

Works with: MSX BASIC version any

The GW-BASIC solution works without any changes.ht>

QBasic

Translation of: FreeBASIC
Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
Works with: QB64
DIM scalars(1 TO 10, 1 TO 4)
scalars(1, 1) = 1: scalars(1, 2) = 2: scalars(1, 3) = 3
scalars(2, 1) = 0: scalars(2, 2) = 1: scalars(2, 3) = 2: scalars(2, 4) = 3
scalars(3, 1) = 1: scalars(3, 2) = 0: scalars(3, 3) = 3: scalars(3, 4) = 4
scalars(4, 1) = 1: scalars(4, 2) = 2: scalars(4, 3) = 0
scalars(5, 1) = 0: scalars(5, 2) = 0: scalars(5, 3) = 0
scalars(6, 1) = 0
scalars(7, 1) = 1: scalars(7, 2) = 1: scalars(7, 3) = 1
scalars(8, 1) = -1: scalars(8, 2) = -1: scalars(8, 3) = -1
scalars(9, 1) = -1: scalars(9, 2) = -2: scalars(9, 3) = 0: scalars(9, 4) = -3
scalars(10, 1) = -1

CLS
FOR n = 1 TO UBOUND(scalars)
    cadena$ = ""
    scalar = 0
    FOR m = 1 TO UBOUND(scalars, 2)
        scalar = scalars(n, m)
        IF scalar <> 0 THEN
            IF scalar = 1 THEN
                cadena$ = cadena$ + "+e" + STR$(m)
            ELSEIF scalar = -1 THEN
               cadena$ = cadena$ + "-e" + STR$(m)
            ELSE
                IF scalar > 0 THEN
                    cadena$ = cadena$ + CHR$(43) + STR$(scalar) + "*e" + STR$(m)
                ELSE
                    cadena$ = cadena$ + STR$(scalar) + "*e" + STR$(m)
                END IF
            END IF
        END IF
    NEXT m
    IF cadena$ = "" THEN cadena$ = "0"
    IF LEFT$(cadena$, 1) = "+" THEN cadena$ = RIGHT$(cadena$, LEN(cadena$) - 1)
    PRINT cadena$
NEXT n
END

Yabasic

Translation of: FreeBASIC
dim scalars(10,4) 
scalars(1,1) = 1: scalars(1,2) = 2: scalars(1,3) = 3
scalars(2,1) = 0: scalars(2,2) = 1: scalars(2,3) = 2: scalars(2,4) = 3
scalars(3,1) = 1: scalars(3,2) = 0: scalars(3,3) = 3: scalars(3,4) = 4
scalars(4,1) = 1: scalars(4,2) = 2: scalars(4,3) = 0
scalars(5,1) = 0: scalars(5,2) = 0: scalars(5,3) = 0
scalars(6,1) = 0
scalars(7,1) = 1: scalars(7,2) = 1: scalars(7,3) = 1
scalars(8,1) = -1: scalars(8,2) = -1: scalars(8,3) = -1
scalars(9,1) = -1: scalars(9,2) = -2: scalars(9,3) = 0: scalars(9,4) = -3
scalars(10,1) = -1

for n = 1 to arraysize(scalars(),1)
    cadena$ = ""
    
    for m = 1 to arraysize(scalars(),2)
        scalar = scalars(n, m)
        if scalar <> 0 then
            if scalar = 1 then
                cadena$ = cadena$ + "+e" + str$(m)
            else 
                if scalar = -1 then
                    cadena$ = cadena$ + "-e" + str$(m)
                else
                    if scalar > 0 then
                        cadena$ = cadena$ + chr$(43) + str$(scalar) + "*e" + str$(m)
                    else
                        cadena$ = cadena$ + str$(scalar) + "*e" + str$(m)
                    fi
                fi
            fi
        fi   
    next m
    if cadena$ = ""  cadena$ = "0"
    if left$(cadena$, 1) = "+"  cadena$ = right$(cadena$, len(cadena$)-1)
    print cadena$
next n
end

C

Accepts vector coefficients from the command line, prints usage syntax if invoked with no arguments. This implementation can handle floating point values but displays integer values as integers. All test case results shown with invocation. A multiplication sign is not shown between a coefficient and the unit vector when a vector is written out by hand ( i.e. human readable) and is thus not shown here as well.

#include<stdlib.h>
#include<stdio.h>
#include<math.h> /*Optional, but better if included as fabs, labs and abs functions are being used. */

int main(int argC, char* argV[])
{
	
	int i,zeroCount= 0,firstNonZero = -1;
	double* vector;
	
	if(argC == 1){
		printf("Usage : %s <Vector component coefficients seperated by single space>",argV[0]);
	}
	
	else{
		
		printf("Vector for [");
		for(i=1;i<argC;i++){
			printf("%s,",argV[i]);
		}
		printf("\b] -> ");
		
		
		vector = (double*)malloc((argC-1)*sizeof(double));
		
		for(i=1;i<=argC;i++){
			vector[i-1] = atof(argV[i]);
			if(vector[i-1]==0.0)
				zeroCount++;
			if(vector[i-1]!=0.0 && firstNonZero==-1)
				firstNonZero = i-1;
		}

		if(zeroCount == argC){
			printf("0");
		}
		
		else{
			for(i=0;i<argC;i++){
				if(i==firstNonZero && vector[i]==1)
					printf("e%d ",i+1);
				else if(i==firstNonZero && vector[i]==-1)
					printf("- e%d ",i+1);
				else if(i==firstNonZero && vector[i]<0 && fabs(vector[i])-abs(vector[i])>0.0)
					printf("- %lf e%d ",fabs(vector[i]),i+1);
				else if(i==firstNonZero && vector[i]<0 && fabs(vector[i])-abs(vector[i])==0.0)
					printf("- %ld e%d ",labs(vector[i]),i+1);
				else if(i==firstNonZero && vector[i]>0 && fabs(vector[i])-abs(vector[i])>0.0)
					printf("%lf e%d ",vector[i],i+1);
				else if(i==firstNonZero && vector[i]>0 && fabs(vector[i])-abs(vector[i])==0.0)
					printf("%ld e%d ",vector[i],i+1);
				else if(fabs(vector[i])==1.0 && i!=0)
					printf("%c e%d ",(vector[i]==-1)?'-':'+',i+1);
				else if(i!=0 && vector[i]!=0 && fabs(vector[i])-abs(vector[i])>0.0)
					printf("%c %lf e%d ",(vector[i]<0)?'-':'+',fabs(vector[i]),i+1);
				else if(i!=0 && vector[i]!=0 && fabs(vector[i])-abs(vector[i])==0.0)
					printf("%c %ld e%d ",(vector[i]<0)?'-':'+',labs(vector[i]),i+1);				
			}
		}
	}
	
	free(vector);
	
	return 0;
}
Output:
C:\rossetaCode>vectorDisplay.exe 1 2 3
Vector for [1,2,3] -> e1 + 2 e2 + 3 e3
C:\rossetaCode>vectorDisplay.exe 0 0 0
Vector for [0,0,0] -> 0
C:\rossetaCode>vectorDisplay.exe 0 1 2 3
Vector for [0,1,2,3] -> e2 + 2 e3 + 3 e4
C:\rossetaCode>vectorDisplay.exe 1 0 3 4
Vector for [1,0,3,4] -> e1 + 3 e3 + 4 e4
C:\rossetaCode>vectorDisplay.exe 1 2 0
Vector for [1,2,0] -> e1 + 2 e2
C:\rossetaCode>vectorDisplay.exe 0 0 0
Vector for [0,0,0] -> 0
C:\rossetaCode>vectorDisplay.exe 0
Vector for [0] -> 0
C:\rossetaCode>vectorDisplay.exe 1 1 1
Vector for [1,1,1] -> e1 + e2 + e3
C:\rossetaCode>vectorDisplay.exe -1 -1 -1
Vector for [-1,-1,-1] -> - e1 - e2 - e3
C:\rossetaCode>vectorDisplay.exe -1 -2 0 -3
Vector for [-1,-2,0,-3] -> - e1 - 2 e2 - 3 e4
C:\rossetaCode>vectorDisplay.exe -1
Vector for [-1] -> - e1

C#

Translation of: D
using System;
using System.Collections.Generic;
using System.Text;

namespace DisplayLinearCombination {
    class Program {
        static string LinearCombo(List<int> c) {
            StringBuilder sb = new StringBuilder();
            for (int i = 0; i < c.Count; i++) {
                int n = c[i];
                if (n < 0) {
                    if (sb.Length == 0) {
                        sb.Append('-');
                    } else {
                        sb.Append(" - ");
                    }
                } else if (n > 0) {
                    if (sb.Length != 0) {
                        sb.Append(" + ");
                    }
                } else {
                    continue;
                }

                int av = Math.Abs(n);
                if (av != 1) {
                    sb.AppendFormat("{0}*", av);
                }
                sb.AppendFormat("e({0})", i + 1);
            }
            if (sb.Length == 0) {
                sb.Append('0');
            }
            return sb.ToString();
        }

        static void Main(string[] args) {
            List<List<int>> combos = new List<List<int>>{
                new List<int> { 1, 2, 3},
                new List<int> { 0, 1, 2, 3},
                new List<int> { 1, 0, 3, 4},
                new List<int> { 1, 2, 0},
                new List<int> { 0, 0, 0},
                new List<int> { 0},
                new List<int> { 1, 1, 1},
                new List<int> { -1, -1, -1},
                new List<int> { -1, -2, 0, -3},
                new List<int> { -1},
            };

            foreach (List<int> c in combos) {
                var arr = "[" + string.Join(", ", c) + "]";
                Console.WriteLine("{0,15} -> {1}", arr, LinearCombo(c));
            }
        }
    }
}
Output:
      [1, 2, 3] -> e(1) + 2*e(2) + 3*e(3)
   [0, 1, 2, 3] -> e(2) + 2*e(3) + 3*e(4)
   [1, 0, 3, 4] -> e(1) + 3*e(3) + 4*e(4)
      [1, 2, 0] -> e(1) + 2*e(2)
      [0, 0, 0] -> 0
            [0] -> 0
      [1, 1, 1] -> e(1) + e(2) + e(3)
   [-1, -1, -1] -> -e(1) - e(2) - e(3)
[-1, -2, 0, -3] -> -e(1) - 2*e(2) - 3*e(4)
           [-1] -> -e(1)

C++

Translation of: D
#include <iomanip>
#include <iostream>
#include <sstream>
#include <vector>

template<typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
    auto it = v.cbegin();
    auto end = v.cend();

    os << '[';
    if (it != end) {
        os << *it;
        it = std::next(it);
    }
    while (it != end) {
        os << ", " << *it;
        it = std::next(it);
    }
    return os << ']';
}

std::ostream& operator<<(std::ostream& os, const std::string& s) {
    return os << s.c_str();
}

std::string linearCombo(const std::vector<int>& c) {
    std::stringstream ss;
    for (size_t i = 0; i < c.size(); i++) {
        int n = c[i];
        if (n < 0) {
            if (ss.tellp() == 0) {
                ss << '-';
            } else {
                ss << " - ";
            }
        } else if (n > 0) {
            if (ss.tellp() != 0) {
                ss << " + ";
            }
        } else {
            continue;
        }

        int av = abs(n);
        if (av != 1) {
            ss << av << '*';
        }
        ss << "e(" << i + 1 << ')';
    }
    if (ss.tellp() == 0) {
        return "0";
    }
    return ss.str();
}

int main() {
    using namespace std;

    vector<vector<int>> combos{
        {1, 2, 3},
        {0, 1, 2, 3},
        {1, 0, 3, 4},
        {1, 2, 0},
        {0, 0, 0},
        {0},
        {1, 1, 1},
        {-1, -1, -1},
        {-1, -2, 0, -3},
        {-1},
    };

    for (auto& c : combos) {
        stringstream ss;
        ss << c;
        cout << setw(15) << ss.str() << " -> ";
        cout << linearCombo(c) << '\n';
    }

    return 0;
}
Output:
      [1, 2, 3] -> e(1) + 2*e(2) + 3*e(3)
   [0, 1, 2, 3] -> e(2) + 2*e(3) + 3*e(4)
   [1, 0, 3, 4] -> e(1) + 3*e(3) + 4*e(4)
      [1, 2, 0] -> e(1) + 2*e(2)
      [0, 0, 0] -> 0
            [0] -> 0
      [1, 1, 1] -> e(1) + e(2) + e(3)
   [-1, -1, -1] -> -e(1) - e(2) - e(3)
[-1, -2, 0, -3] -> -e(1) - 2*e(2) - 3*e(4)
           [-1] -> -e(1)

Cowgol

include "cowgol.coh";

sub abs(n: int32): (r: uint32) is
    if n < 0
        then r := (-n) as uint32;
        else r := n as uint32;
    end if;
end sub;

sub lincomb(scalar: [int32], size: intptr) is
    var first: uint8 := 1;
    var item: uint8 := 1;

    sub print_sign() is
        if first == 1 then
            if [scalar] < 0 then print("-"); end if;
        else
            if [scalar] < 0
                then print(" - ");
                else print(" + ");
            end if;
        end if;
    end sub;

    sub print_term() is
        if [scalar] == 0 then return; end if;
        print_sign();
        if abs([scalar]) > 1 then
            print_i32(abs([scalar]));
            print("*");
        end if;
        print("e(");
        print_i8(item);
        print(")");
        first := 0;
    end sub;

    while size > 0 loop
        print_term();
        scalar := @next scalar;
        size := size - 1;
        item := item + 1;
    end loop;

    if first == 1 then
        print("0");
    end if;
    print_nl();
end sub;

var a1: int32[] := {1, 2, 3}; lincomb(&a1[0], @sizeof a1);
var a2: int32[] := {0, 1, 2, 3}; lincomb(&a2[0], @sizeof a2);
var a3: int32[] := {1, 0, 3, 4}; lincomb(&a3[0], @sizeof a3);
var a4: int32[] := {1, 2, 0}; lincomb(&a4[0], @sizeof a4);
var a5: int32[] := {0, 0, 0}; lincomb(&a5[0], @sizeof a5);
var a6: int32[] := {0}; lincomb(&a6[0], @sizeof a6);
var a7: int32[] := {1, 1, 1}; lincomb(&a7[0], @sizeof a7);
var a8: int32[] := {-1, -1, -1}; lincomb(&a8[0], @sizeof a8);
var a9: int32[] := {-1, -2, 0, 3}; lincomb(&a9[0], @sizeof a9);
var a10: int32[] := {-1}; lincomb(&a10[0], @sizeof a10);
Output:
e(1) + 2*e(2) + 3*e(3)
e(2) + 2*e(3) + 3*e(4)
e(1) + 3*e(3) + 4*e(4)
e(1) + 2*e(2)
0
0
e(1) + e(2) + e(3)
-e(1) - e(2) - e(3)
-e(1) - 2*e(2) + 3*e(4)
-e(1)

D

Translation of: Kotlin
import std.array;
import std.conv;
import std.format;
import std.math;
import std.stdio;

string linearCombo(int[] c) {
    auto sb = appender!string;
    foreach (i, n; c) {
        if (n==0) continue;
        string op;
        if (n < 0) {
            if (sb.data.empty) {
                op = "-";
            } else {
                op = " - ";
            }
        } else if (n > 0) {
            if (!sb.data.empty) {
                op = " + ";
            }
        }
        auto av = abs(n);
        string coeff;
        if (av != 1) {
            coeff = to!string(av) ~ "*";
        }
        sb.formattedWrite("%s%se(%d)", op, coeff, i+1);
    }
    if (sb.data.empty) {
        return "0";
    }
    return sb.data;
}

void main() {
    auto combos = [
        [1, 2, 3],
        [0, 1, 2, 3],
        [1, 0, 3, 4],
        [1, 2, 0],
        [0, 0, 0],
        [0],
        [1, 1, 1],
        [-1, -1, -1],
        [-1, -2, 0, -3],
        [-1],
    ];
    foreach (c; combos) {
        auto arr = c.format!"%s";
        writefln("%-15s  ->  %s", arr, linearCombo(c));
    }
}
Output:
[1, 2, 3]        ->  e(1) + 2*e(2) + 3*e(3)
[0, 1, 2, 3]     ->  e(2) + 2*e(3) + 3*e(4)
[1, 0, 3, 4]     ->  e(1) + 3*e(3) + 4*e(4)
[1, 2, 0]        ->  e(1) + 2*e(2)
[0, 0, 0]        ->  0
[0]              ->  0
[1, 1, 1]        ->  e(1) + e(2) + e(3)
[-1, -1, -1]     ->  -e(1) - e(2) - e(3)
[-1, -2, 0, -3]  ->  -e(1) - 2*e(2) - 3*e(4)
[-1]             ->  -e(1)

Draco

proc abs(int n) int: if n<0 then -n else n fi corp

proc write_term(word index; int scalar; bool first) void:
    if first then
        if scalar<0 then write("-") fi
    else
        write(if scalar<0 then " - " else " + " fi)
    fi;
    if abs(scalar)>1 then
        write(abs(scalar), '*')
    fi;
    write("e(",index,")")
corp

proc lincomb([*]int terms) void:
    bool first;
    word index;
    first := true;

    for index from 0 upto dim(terms,1)-1 do
        if terms[index] /= 0 then
            write_term(index+1, terms[index], first);
            first := false
        fi
    od;

    writeln(if first then "0" else "" fi)
corp

proc main() void:
    [3]int a1 = (1,2,3);
    [4]int a2 = (0,1,2,3);
    [4]int a3 = (1,0,3,4);
    [3]int a4 = (1,2,0);
    [3]int a5 = (0,0,0);
    [1]int a6 = (0);
    [3]int a7 = (1,1,1);
    [3]int a8 = (-1,-1,-1);
    [4]int a9 = (-1,-2,0,3);
    [1]int a10 = (-1);
    lincomb(a1); lincomb(a2); lincomb(a3); lincomb(a4);
    lincomb(a5); lincomb(a6); lincomb(a7); lincomb(a8);
    lincomb(a9); lincomb(a10)
corp
Output:
e(1) + 2*e(2) + 3*e(3)
e(2) + 2*e(3) + 3*e(4)
e(1) + 3*e(3) + 4*e(4)
e(1) + 2*e(2)
0
0
e(1) + e(2) + e(3)
-e(1) - e(2) - e(3)
-e(1) - 2*e(2) + 3*e(4)
-e(1)

EasyLang

Translation of: Ring
scalars[][] = [ [ 1 2 3 ] [ 0 1 2 3 ] [ 1 0 3 4 ] [ 1 2 0 ] [ 0 0 0 ] [ 0 ] [ 1 1 1 ] [ -1 -1 -1 ] [ -1 -2 0 -3 ] [ -1 ] ]
for n = 1 to len scalars[][]
   str$ = ""
   for m = 1 to len scalars[n][]
      scalar = scalars[n][m]
      if scalar <> 0
         if scalar = 1
            str$ &= "+e" & m
         elif scalar = -1
            str$ &= "-e" & m
         else
            if scalar > 0
               str$ &= strchar 43 & scalar & "*e" & m
            else
               str$ = scalar & "*e" & m
            .
         .
      .
   .
   if str$ = ""
      str$ = 0
   .
   if substr str$ 1 1 = "+"
      str$ = substr str$ 2 (len str$ - 1)
   .
   print str$
.
Output:
e1+2*e2+3*e3
e2+2*e3+3*e4
e1+3*e3+4*e4
e1+2*e2
0
0
e1+e2+e3
-e1-e2-e3
-3*e4
-e1

EchoLisp

;; build an html string from list of coeffs

(define (linear->html coeffs)
    (define plus #f) 
    (or* 
    (for/fold (html "") ((a coeffs) (i (in-naturals 1)))
      (unless (zero? a)
 		(set! plus (if plus "+" "")))
      (string-append html
	 (cond 
	  ((= a 1)  (format "%a e<sub>%d</sub> " plus i))
	  ((= a -1) (format "- e<sub>%d</sub> " i))
	  ((> a 0)  (format "%a %d*e<sub>%d</sub> " plus a i))
	  ((< a 0)  (format "- %d*e<sub>%d</sub> " (abs a) i))
	  (else ""))))
     "0"))
	
(define linears '((1 2 3)
   (0 1 2 3)
   (1 0 3 4)
   (1 2 0)
   (0 0 0)
   (0)
   (1 1 1)
   (-1 -1 -1)
   (-1 -2 0 -3)
   (-1)))
   
(define (task linears)
    (html-print ;; send string to stdout
    (for/string ((linear linears))
      (format "%a -> <span style='color:blue'>%a</span> <br>" linear (linear->html linear)))))
Output:

(1 2 3) -> e1 + 2*e2 + 3*e3
(0 1 2 3) -> e2 + 2*e3 + 3*e4
(1 0 3 4) -> e1 + 3*e3 + 4*e4
(1 2 0) -> e1 + 2*e2
(0 0 0) -> 0
(0) -> 0
(1 1 1) -> e1 + e2 + e3
(-1 -1 -1) -> - e1 - e2 - e3
(-1 -2 0 -3) -> - e1 - 2*e2 - 3*e4
(-1) -> - e1

Elixir

Works with: Elixir version 1.3
defmodule Linear_combination do
  def display(coeff) do
    Enum.with_index(coeff)
    |> Enum.map_join(fn {n,i} ->
         {m,s} = if n<0, do: {-n,"-"}, else: {n,"+"}
         case {m,i} do
           {0,_} -> ""
           {1,i} -> "#{s}e(#{i+1})"
           {n,i} -> "#{s}#{n}*e(#{i+1})"
         end
       end)
    |> String.trim_leading("+")
    |> case do
         ""  -> IO.puts "0"
         str -> IO.puts str
       end
  end
end

coeffs = 
  [ [1, 2, 3],
    [0, 1, 2, 3],
    [1, 0, 3, 4],
    [1, 2, 0],
    [0, 0, 0],
    [0],
    [1, 1, 1],
    [-1, -1, -1],
    [-1, -2, 0, -3],
    [-1]
  ]
Enum.each(coeffs, &Linear_combination.display(&1))
Output:
e(1)+2*e(2)+3*e(3)
e(2)+2*e(3)+3*e(4)
e(1)+3*e(3)+4*e(4)
e(1)+2*e(2)
0
0
e(1)+e(2)+e(3)
-e(1)-e(2)-e(3)
-e(1)-2*e(2)-3*e(4)
-e(1)

F#

The function

// Display a linear combination. Nigel Galloway: March 28th., 2018
let fN g =
  let rec fG n g=match g with
                 |0::g    ->                        fG (n+1) g
                 |1::g    -> printf "+e(%d)" n;     fG (n+1) g
                 |(-1)::g -> printf "-e(%d)" n;     fG (n+1) g
                 |i::g    -> printf "%+de(%d)" i n; fG (n+1) g
                 |_       -> printfn ""
  let rec fN n g=match g with
                 |0::g    ->                        fN (n+1) g
                 |1::g    -> printf "e(%d)" n;      fG (n+1) g
                 |(-1)::g -> printf "-e(%d)" n;     fG (n+1) g
                 |i::g    -> printf "%de(%d)" i n;  fG (n+1) g
                 |_       -> printfn "0"
  fN 1 g

The Task

fN [1;2;3]
Output:
e(1)+2e(2)+3e(3)
fN [0;1;2;3]
Output:
e(2)+2e(3)+3e(4)
fN[1;0;3;4]
Output:
e(1)+3e(3)+4e(4)
fN[1;2;0]
Output:
e(1)+2e(2)
fN[0;0;0]
Output:
0
fN[0]
Output:
0
fN[1;1;1]
Output:
e(1)+e(2)+e(3)
fN[-1;-1;-1]
Output:
-e(1)-e(2)-e(3)
fN[-1;-2;0;-3]
Output:
-e(1)-2e(2)-3e(4)
fN[1]
Output:
e(1)

Factor

USING: formatting kernel match math pair-rocket regexp sequences ;

MATCH-VARS: ?a ?b ;

: choose-term ( coeff i -- str )
    1 + { } 2sequence {
        {  0  _ } => [       ""                 ]
        {  1 ?a } => [ ?a    "e(%d)"    sprintf ]
        { -1 ?a } => [ ?a    "-e(%d)"   sprintf ]
        { ?a ?b } => [ ?a ?b "%d*e(%d)" sprintf ]
    } match-cond ;
    
: linear-combo ( seq -- str )
    [ choose-term ] map-index harvest " + " join
    R/ \+ -/ "- " re-replace [ "0" ] when-empty ;
    
{ { 1 2 3 } { 0 1 2 3 } { 1 0 3 4 } { 1 2 0 } { 0 0 0 } { 0 }
  { 1 1 1 } { -1 -1 -1 } { -1 -2 0 -3 } { -1 } }
[ dup linear-combo "%-14u  ->  %s\n" printf ] each
Output:
{ 1 2 3 }       ->  e(1) + 2*e(2) + 3*e(3)
{ 0 1 2 3 }     ->  e(2) + 2*e(3) + 3*e(4)
{ 1 0 3 4 }     ->  e(1) + 3*e(3) + 4*e(4)
{ 1 2 0 }       ->  e(1) + 2*e(2)
{ 0 0 0 }       ->  0
{ 0 }           ->  0
{ 1 1 1 }       ->  e(1) + e(2) + e(3)
{ -1 -1 -1 }    ->  -e(1) - e(2) - e(3)
{ -1 -2 0 -3 }  ->  -e(1) - 2*e(2) - 3*e(4)
{ -1 }          ->  -e(1)

Go

Translation of: Kotlin
package main

import (
    "fmt"
    "strings"
)

func linearCombo(c []int) string {
    var sb strings.Builder
    for i, n := range c {
        if n == 0 {
            continue
        }
        var op string
        switch {
        case n < 0 && sb.Len() == 0:
            op = "-"
        case n < 0:
            op = " - "
        case n > 0 && sb.Len() == 0:
            op = ""
        default:
            op = " + "
        }
        av := n
        if av < 0 {
            av = -av
        }
        coeff := fmt.Sprintf("%d*", av)
        if av == 1 {
            coeff = ""
        }
        sb.WriteString(fmt.Sprintf("%s%se(%d)", op, coeff, i+1))
    }
    if sb.Len() == 0 {
        return "0"
    } else {
        return sb.String()
    }
}

func main() {
    combos := [][]int{
        {1, 2, 3},
        {0, 1, 2, 3},
        {1, 0, 3, 4},
        {1, 2, 0},
        {0, 0, 0},
        {0},
        {1, 1, 1},
        {-1, -1, -1},
        {-1, -2, 0, -3},
        {-1},
    }
    for _, c := range combos {
        t := strings.Replace(fmt.Sprint(c), " ", ", ", -1)
        fmt.Printf("%-15s  ->  %s\n", t, linearCombo(c))
    }
}
Output:
[1, 2, 3]        ->  e(1) + 2*e(2) + 3*e(3)
[0, 1, 2, 3]     ->  e(2) + 2*e(3) + 3*e(4)
[1, 0, 3, 4]     ->  e(1) + 3*e(3) + 4*e(4)
[1, 2, 0]        ->  e(1) + 2*e(2)
[0, 0, 0]        ->  0
[0]              ->  0
[1, 1, 1]        ->  e(1) + e(2) + e(3)
[-1, -1, -1]     ->  -e(1) - e(2) - e(3)
[-1, -2, 0, -3]  ->  -e(1) - 2*e(2) - 3*e(4)
[-1]             ->  -e(1)

Groovy

Translation of: Java
class LinearCombination {
    private static String linearCombo(int[] c) {
        StringBuilder sb = new StringBuilder()
        for (int i = 0; i < c.length; ++i) {
            if (c[i] == 0) continue
            String op
            if (c[i] < 0 && sb.length() == 0) {
                op = "-"
            } else if (c[i] < 0) {
                op = " - "
            } else if (c[i] > 0 && sb.length() == 0) {
                op = ""
            } else {
                op = " + "
            }
            int av = Math.abs(c[i])
            String coeff = av == 1 ? "" : "" + av + "*"
            sb.append(op).append(coeff).append("e(").append(i + 1).append(')')
        }
        if (sb.length() == 0) {
            return "0"
        }
        return sb.toString()
    }

    static void main(String[] args) {
        int[][] combos = [
                [1, 2, 3],
                [0, 1, 2, 3],
                [1, 0, 3, 4],
                [1, 2, 0],
                [0, 0, 0],
                [0],
                [1, 1, 1],
                [-1, -1, -1],
                [-1, -2, 0, -3],
                [-1]
        ]

        for (int[] c : combos) {
            printf("%-15s  ->  %s\n", Arrays.toString(c), linearCombo(c))
        }
    }
}
Output:
[1, 2, 3]        ->  e(1) + 2*e(2) + 3*e(3)
[0, 1, 2, 3]     ->  e(2) + 2*e(3) + 3*e(4)
[1, 0, 3, 4]     ->  e(1) + 3*e(3) + 4*e(4)
[1, 2, 0]        ->  e(1) + 2*e(2)
[0, 0, 0]        ->  0
[0]              ->  0
[1, 1, 1]        ->  e(1) + e(2) + e(3)
[-1, -1, -1]     ->  -e(1) - e(2) - e(3)
[-1, -2, 0, -3]  ->  -e(1) - 2*e(2) - 3*e(4)
[-1]             ->  -e(1)

Haskell

import Text.Printf (printf)

linearForm :: [Int] -> String
linearForm = strip . concat . zipWith term [1..]
  where
    term :: Int -> Int -> String
    term i c = case c of
      0  -> mempty
      1  -> printf "+e(%d)" i
      -1 -> printf "-e(%d)" i
      c  -> printf "%+d*e(%d)" c i

    strip str = case str of
      '+':s -> s
      ""    -> "0"
      s     -> s

Testing

coeffs :: [[Int]]
coeffs = [ [1, 2, 3]
         , [0, 1, 2, 3]
         , [1, 0, 3, 4]
         , [1, 2, 0]
         , [0, 0, 0]
         , [0]
         , [1, 1, 1]
         , [-1, -1, -1]
         , [-1, -2, 0, -3]
         , [-1] ]
λ> mapM_ (print . linearForm) coeffs
"e(1)+2*e(2)+3*e(3)"
"e(2)+2*e(3)+3*e(4)"
"e(1)+3*e(3)+4*e(4)"
"e(1)+2*e(2)"
"0"
"0"
"e(1)+e(2)+e(3)"
"-e(1)-e(2)-e(3)"
"-e(1)-2*e(2)-3*e(4)"
"-e(1)"

J

Implementation:

fourbanger=:3 :0
  e=. ('e(',')',~])@":&.> 1+i.#y
  firstpos=. 0< {.y-.0
  if. */0=y do. '0' else. firstpos}.;y gluedto e end.
)

gluedto=:4 :0 each
  pfx=. '+-' {~ x<0
  select. |x
    case. 0 do. ''
    case. 1 do. pfx,y
    case.   do. pfx,(":|x),'*',y
  end.
)

Example use:

   fourbanger 1 2 3
e(1)+2*e(2)+3*e(3)
   fourbanger 0 1 2 3
e(2)+2*e(3)+3*e(4)
   fourbanger 1 0 3 4
e(1)+3*e(3)+4*e(4)
   fourbanger 0 0 0
0
   fourbanger 0
0
   fourbanger 1 1 1
e(1)+e(2)+e(3)
   fourbanger _1 _1 _1
-e(1)-e(2)-e(3)
   fourbanger _1 _2 0 _3
-e(1)-2*e(2)-3*e(4)
   fourbanger _1
-e(1)

Java

Translation of: Kotlin
import java.util.Arrays;

public class LinearCombination {
    private static String linearCombo(int[] c) {
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < c.length; ++i) {
            if (c[i] == 0) continue;
            String op;
            if (c[i] < 0 && sb.length() == 0) {
                op = "-";
            } else if (c[i] < 0) {
                op = " - ";
            } else if (c[i] > 0 && sb.length() == 0) {
                op = "";
            } else {
                op = " + ";
            }
            int av = Math.abs(c[i]);
            String coeff = av == 1 ? "" : "" + av + "*";
            sb.append(op).append(coeff).append("e(").append(i + 1).append(')');
        }
        if (sb.length() == 0) {
            return "0";
        }
        return sb.toString();
    }

    public static void main(String[] args) {
        int[][] combos = new int[][]{
            new int[]{1, 2, 3},
            new int[]{0, 1, 2, 3},
            new int[]{1, 0, 3, 4},
            new int[]{1, 2, 0},
            new int[]{0, 0, 0},
            new int[]{0},
            new int[]{1, 1, 1},
            new int[]{-1, -1, -1},
            new int[]{-1, -2, 0, -3},
            new int[]{-1},
        };
        for (int[] c : combos) {
            System.out.printf("%-15s  ->  %s\n", Arrays.toString(c), linearCombo(c));
        }
    }
}
Output:
[1, 2, 3]        ->  e(1) + 2*e(2) + 3*e(3)
[0, 1, 2, 3]     ->  e(2) + 2*e(3) + 3*e(4)
[1, 0, 3, 4]     ->  e(1) + 3*e(3) + 4*e(4)
[1, 2, 0]        ->  e(1) + 2*e(2)
[0, 0, 0]        ->  0
[0]              ->  0
[1, 1, 1]        ->  e(1) + e(2) + e(3)
[-1, -1, -1]     ->  -e(1) - e(2) - e(3)
[-1, -2, 0, -3]  ->  -e(1) - 2*e(2) - 3*e(4)
[-1]             ->  -e(1)

jq

def linearCombo:
  reduce to_entries[] as {key: $k,value: $v} ("";
     if $v == 0 then .
     else
        (if $v < 0 and length==0 then   "-"
         elif $v < 0 then               " - "
         elif $v > 0 and length==0 then ""
         else                           " + "
         end) as $sign
        | ($v|fabs) as $av
        | (if ($av == 1) then "" else "\($av)*" end) as $coeff
        | .  + "\($sign)\($coeff)e\($k)"
     end)
  | if length==0 then "0" else . end ;

# The exercise
def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;

[1, 2, 3],
[0, 1, 2, 3],
[1, 0, 3, 4],
[1, 2, 0],
[0, 0, 0],
[0],
[1, 1, 1],
[-1, -1, -1],
[-1, -2, 0, -3],
[-1]
| "\(lpad(15)) => \(linearCombo)"
Output:
        [1,2,3] => e0 + 2*e1 + 3*e2
      [0,1,2,3] => e1 + 2*e2 + 3*e3
      [1,0,3,4] => e0 + 3*e2 + 4*e3
        [1,2,0] => e0 + 2*e1
        [0,0,0] => 0
            [0] => 0
        [1,1,1] => e0 + e1 + e2
     [-1,-1,-1] => -e0 - e1 - e2
   [-1,-2,0,-3] => -e0 - 2*e1 - 3*e3
           [-1] => -e0

Julia

# v0.6

linearcombination(coef::Array) = join(collect("$c * e($i)" for (i, c) in enumerate(coef) if c != 0), " + ")

for c in [[1, 2, 3], [0, 1, 2, 3], [1, 0, 3, 4], [1, 2, 0], [0, 0, 0], [0], [1, 1, 1],
    [-1, -1, -1], [-1, -2, 0, -3], [-1]]
    @printf("%20s -> %s\n", c, linearcombination(c))
end
Output:
           [1, 2, 3] -> 1 * e(1) + 2 * e(2) + 3 * e(3)
        [0, 1, 2, 3] -> 1 * e(2) + 2 * e(3) + 3 * e(4)
        [1, 0, 3, 4] -> 1 * e(1) + 3 * e(3) + 4 * e(4)
           [1, 2, 0] -> 1 * e(1) + 2 * e(2)
           [0, 0, 0] -> 
                 [0] -> 
           [1, 1, 1] -> 1 * e(1) + 1 * e(2) + 1 * e(3)
        [-1, -1, -1] -> -1 * e(1) + -1 * e(2) + -1 * e(3)
     [-1, -2, 0, -3] -> -1 * e(1) + -2 * e(2) + -3 * e(4)
                [-1] -> -1 * e(1)

Kotlin

// version 1.1.2

fun linearCombo(c: IntArray): String { 
    val sb = StringBuilder()
    for ((i, n) in c.withIndex()) {
        if (n == 0) continue
        val op = when {
            n < 0 && sb.isEmpty() -> "-"
            n < 0                 -> " - "
            n > 0 && sb.isEmpty() -> ""
            else                  -> " + "
        }
        val av = Math.abs(n)
        val coeff = if (av == 1) "" else "$av*"
        sb.append("$op${coeff}e(${i + 1})")
    }
    return if(sb.isEmpty()) "0" else sb.toString()
}

fun main(args: Array<String>) { 
    val combos = arrayOf(
        intArrayOf(1, 2, 3),
        intArrayOf(0, 1, 2, 3),
        intArrayOf(1, 0, 3, 4),
        intArrayOf(1, 2, 0),
        intArrayOf(0, 0, 0),
        intArrayOf(0),
        intArrayOf(1, 1, 1),
        intArrayOf(-1, -1, -1),
        intArrayOf(-1, -2, 0, -3),
        intArrayOf(-1)
    )
    for (c in combos) {
        println("${c.contentToString().padEnd(15)}  ->  ${linearCombo(c)}")
    }
}
Output:
[1, 2, 3]        ->  e(1) + 2*e(2) + 3*e(3)
[0, 1, 2, 3]     ->  e(2) + 2*e(3) + 3*e(4)
[1, 0, 3, 4]     ->  e(1) + 3*e(3) + 4*e(4)
[1, 2, 0]        ->  e(1) + 2*e(2)
[0, 0, 0]        ->  0
[0]              ->  0
[1, 1, 1]        ->  e(1) + e(2) + e(3)
[-1, -1, -1]     ->  -e(1) - e(2) - e(3)
[-1, -2, 0, -3]  ->  -e(1) - 2*e(2) - 3*e(4)
[-1]             ->  -e(1)

Lambdatalk

{def linearcomb
 {def linearcomb.r
  {lambda {:a :n :i}
   {if {= :i :n}
    then 
    else {let { {:e e({+ :i 1})}
                {:v {abs {A.get :i :a}}}
                {:s {if {< {A.get :i :a} 0} then - else +}}
              } {if {= :v 0} then  else
                {if {= :v 1} then :s :e else :s :v*:e}}}
         {linearcomb.r :a :n {+ :i 1}} }}}
 {lambda {:a}
  {S.replace _LAMB_[^\s]+ by 0 in
   {let { {:r {linearcomb.r {A.new :a} {S.length :a} 0}}
        } {if {W.equal? {S.first :r} +} then {S.rest :r} else :r} }}}}
-> linearcomb

{linearcomb 1 2 3}      -> e(1) + 2*e(2) + 3*e(3)
{linearcomb -1 -2 0 -3} -> - e(1) - 2*e(2) - 3*e(4) 
{linearcomb 0 1 2 3}    -> e(2) + 2*e(3) + 3*e(4) 
{linearcomb 1 0 3 4}    -> e(1) + 3*e(3) + 4*e(4)
{linearcomb 1 2 0}      -> e(1) + 2*e(2) 
{linearcomb 0 0 0}      -> 0
{linearcomb 0}          -> 0 
{linearcomb 1 1 1}      -> e(1) + e(2) + e(3)  
{linearcomb -1 -1 -1}   -> - e(1) - e(2) - e(3)
{linearcomb -1}         -> - e(1)

Lua

Translation of: C#
function t2s(t)
    local s = "["
    for i,v in pairs(t) do
        if i > 1 then
            s = s .. ", " .. v
        else
            s = s .. v
        end
    end
    return s .. "]"
end

function linearCombo(c)
    local sb = ""
    for i,n in pairs(c) do
        local skip = false

        if n < 0 then
            if sb:len() == 0 then
                sb = sb .. "-"
            else
                sb = sb .. " - "
            end
        elseif n > 0 then
            if sb:len() ~= 0 then
                sb = sb .. " + "
            end
        else
            skip = true
        end

        if not skip then
            local av = math.abs(n)
            if av ~= 1 then
                sb = sb .. av .. "*"
            end
            sb = sb .. "e(" .. i .. ")"
        end
    end
    if sb:len() == 0 then
        sb = "0"
    end
    return sb
end

function main()
    local combos = {
        {  1,  2,  3},
        {  0,  1,  2,  3 },
        {  1,  0,  3,  4 },
        {  1,  2,  0 },
        {  0,  0,  0 },
        {  0 },
        {  1,  1,  1 },
        { -1, -1, -1 },
        { -1, -2, 0, -3 },
        { -1 }
    }

    for i,c in pairs(combos) do
        local arr = t2s(c)
        print(string.format("%15s -> %s", arr, linearCombo(c)))
    end
end

main()
Output:
      [1, 2, 3] -> e(1) + 2*e(2) + 3*e(3)
   [0, 1, 2, 3] -> e(2) + 2*e(3) + 3*e(4)
   [1, 0, 3, 4] -> e(1) + 3*e(3) + 4*e(4)
      [1, 2, 0] -> e(1) + 2*e(2)
      [0, 0, 0] -> 0
            [0] -> 0
      [1, 1, 1] -> e(1) + e(2) + e(3)
   [-1, -1, -1] -> -e(1) - e(2) - e(3)
[-1, -2, 0, -3] -> -e(1) - 2*e(2) - 3*e(4)
           [-1] -> -e(1)


Mathematica / Wolfram Language

tests = {{1, 2, 3}, {0, 1, 2, 3}, {1, 0, 3, 4}, {1, 2, 0}, {0, 0, 0}, {0}, {1, 1, 1}, {-1, -1, -1}, {-1, -2, 0, -3}, {-1}};
Column[TraditionalForm[Total[MapIndexed[#1 e[#2[[1]]] &, #]]] & /@ tests]
Output:
e(1)+2e(2)+3e(3)
e(2)+2e(3)+3e(4)
e(1)+3e(3)+4e(4)
e(1)+2e(2)
0
0
e(1)+e(2)+e(3)
-e(1)-e(2)-e(3)
-e(1)-2e(2)-3e(4)
-e(1)

Modula-2

MODULE Linear;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;

PROCEDURE WriteInt(n : INTEGER);
VAR buf : ARRAY[0..15] OF CHAR;
BEGIN
    FormatString("%i", buf, n);
    WriteString(buf)
END WriteInt;

PROCEDURE WriteLinear(c : ARRAY OF INTEGER);
VAR
    buf : ARRAY[0..15] OF CHAR;
    i,j : CARDINAL;
    b : BOOLEAN;
BEGIN
    b := TRUE;
    j := 0;

    FOR i:=0 TO HIGH(c) DO
        IF c[i]=0 THEN CONTINUE END;

        IF c[i]<0 THEN
            IF b THEN WriteString("-")
            ELSE      WriteString(" - ") END;
        ELSIF c[i]>0 THEN
            IF NOT b THEN WriteString(" + ") END;
        END;

        IF c[i] > 1 THEN
            WriteInt(c[i]);
            WriteString("*")
        ELSIF c[i] < -1 THEN
            WriteInt(-c[i]);
            WriteString("*")
        END;

        FormatString("e(%i)", buf, i+1);
        WriteString(buf);

        b := FALSE;
        INC(j)
    END;

    IF j=0 THEN WriteString("0") END;
    WriteLn
END WriteLinear;

TYPE
    Array1 = ARRAY[0..0] OF INTEGER;
    Array3 = ARRAY[0..2] OF INTEGER;
    Array4 = ARRAY[0..3] OF INTEGER;
BEGIN
    WriteLinear(Array3{1,2,3});
    WriteLinear(Array4{0,1,2,3});
    WriteLinear(Array4{1,0,3,4});
    WriteLinear(Array3{1,2,0});
    WriteLinear(Array3{0,0,0});
    WriteLinear(Array1{0});
    WriteLinear(Array3{1,1,1});
    WriteLinear(Array3{-1,-1,-1});
    WriteLinear(Array4{-1,-2,0,-3});
    WriteLinear(Array1{-1});

    ReadChar
END Linear.

Nim

Translation of: Kotlin
import strformat

proc linearCombo(c: openArray[int]): string =

  for i, n in c:
    if n == 0: continue
    let op = if n < 0:
               if result.len == 0: "-" else: " - "
             else:
               if n > 0 and result.len == 0: "" else: " + "
    let av = abs(n)
    let coeff = if av == 1: "" else: $av & '*'
    result &= fmt"{op}{coeff}e({i + 1})"
  if result.len == 0:
    result = "0"

const Combos = [@[1, 2, 3],
                @[0, 1, 2, 3],
                @[1, 0, 3, 4],
                @[1, 2, 0],
                @[0, 0, 0],
                @[0],
                @[1, 1, 1],
                @[-1, -1, -1],
                @[-1, -2, 0, -3],
                @[-1]]

for c in Combos:
  echo fmt"{($c)[1..^1]:15}  →  {linearCombo(c)}"
Output:
[1, 2, 3]        →  e(1) + 2*e(2) + 3*e(3)
[0, 1, 2, 3]     →  e(2) + 2*e(3) + 3*e(4)
[1, 0, 3, 4]     →  e(1) + 3*e(3) + 4*e(4)
[1, 2, 0]        →  e(1) + 2*e(2)
[0, 0, 0]        →  0
[0]              →  0
[1, 1, 1]        →  e(1) + e(2) + e(3)
[-1, -1, -1]     →  -e(1) - e(2) - e(3)
[-1, -2, 0, -3]  →  -e(1) - 2*e(2) - 3*e(4)
[-1]             →  -e(1)

OCaml

let fmt_linear_comb =
  let rec head e = function
    | 0 :: t -> head (succ e) t
    | 1 :: t -> Printf.sprintf "e(%u)%s" e (tail (succ e) t)
    | -1 :: t -> Printf.sprintf "-e(%u)%s" e (tail (succ e) t)
    | a :: t -> Printf.sprintf "%d*e(%u)%s" a e (tail (succ e) t)
    | _ -> "0"
  and tail e = function
    | 0 :: t -> tail (succ e) t
    | 1 :: t -> Printf.sprintf " + e(%u)%s" e (tail (succ e) t)
    | -1 :: t -> Printf.sprintf " - e(%u)%s" e (tail (succ e) t)
    | a :: t when a < 0 -> Printf.sprintf " - %u*e(%u)%s" (-a) e (tail (succ e) t)
    | a :: t -> Printf.sprintf " + %u*e(%u)%s" a e (tail (succ e) t)
    | _ -> ""
  in
  head 1

let () =
  List.iter (fun v -> print_endline (fmt_linear_comb v)) [
    [1; 2; 3];
    [0; 1; 2; 3];
    [1; 0; 3; 4];
    [1; 2; 0];
    [0; 0; 0];
    [0];
    [1; 1; 1];
    [-1; -1; -1];
    [-1; -2; 0; -3];
    [-1]]
Output:
e(1) + 2*e(2) + 3*e(3)
e(2) + 2*e(3) + 3*e(4)
e(1) + 3*e(3) + 4*e(4)
e(1) + 2*e(2)
0
0
e(1) + e(2) + e(3)
-e(1) - e(2) - e(3)
-e(1) - 2*e(2) - 3*e(4)
-e(1)

Perl

use strict;
use warnings;
use feature 'say';

sub linear_combination {
    my(@coef) = @$_;
    my $e = '';
    for my $c (1..+@coef) { $e .= "$coef[$c-1]*e($c) + " if $coef[$c-1] }
    $e =~ s/ \+ $//;
    $e =~ s/1\*//g;
    $e =~ s/\+ -/- /g;
    $e or 0;
}

say linear_combination($_) for
  [1, 2, 3], [0, 1, 2, 3], [1, 0, 3, 4], [1, 2, 0], [0, 0, 0], [0], [1, 1, 1], [-1, -1, -1], [-1, -2, 0, -3], [-1 ]
Output:
e(1) + 2*e(2) + 3*e(3)
e(2) + 2*e(3) + 3*e(4)
e(1) + 3*e(3) + 4*e(4)
e(1) + 2*e(2)
0
0
e(1) + e(2) + e(3)
-e(1) - e(2) - e(3)
-e(1) - 2*e(2) - 3*e(4)
-e(1)

Phix

Translation of: Tcl
with javascript_semantics
function linear_combination(sequence f)
    string res = ""
    for e=1 to length(f) do
        integer fe = f[e]
        if fe!=0 then
            if fe=1 then
                if length(res) then res &= "+" end if
            elsif fe=-1 then
                res &= "-"
            elsif fe>0 and length(res) then
                res &= sprintf("+%d*",fe)
            else
                res &= sprintf("%d*",fe)
            end if
            res &= sprintf("e(%d)",e)
        end if
    end for
    if res="" then res = "0" end if
    return res
end function
 
constant tests = {{1,2,3},
                  {0,1,2,3},
                  {1,0,3,4},
                  {1,2,0},
                  {0,0,0},
                  {0},
                  {1,1,1},
                  {-1,-1,-1},
                  {-1,-2,0,-3},
                  {-1}}
for i=1 to length(tests) do
    sequence ti = tests[i]
    printf(1,"%12s -> %s\n",{sprint(ti), linear_combination(ti)})
end for
Output:
     {1,2,3} -> e(1)+2*e(2)+3*e(3)
   {0,1,2,3} -> e(2)+2*e(3)+3*e(4)
   {1,0,3,4} -> e(1)+3*e(3)+4*e(4)
     {1,2,0} -> e(1)+2*e(2)
     {0,0,0} -> 0
         {0} -> 0
     {1,1,1} -> e(1)+e(2)+e(3)
  {-1,-1,-1} -> -e(1)-e(2)-e(3)
{-1,-2,0,-3} -> -e(1)-2*e(2)-3*e(4)
        {-1} -> -e(1)

PureBasic

; Process and output values.
Procedure WriteLinear(Array c.i(1))
  Define buf$,
         i.i, j.i, b,i
  
  b = #True
  j = 0
  
  For i = 0 To ArraySize(c(), 1) 
    If c(i) = 0 : Continue : EndIf
    
    If c(i) < 0
      If b : Print("-") : Else : Print(" - ") : EndIf
    ElseIf c(i) > 0
      If Not b : Print(" + ") : EndIf
    EndIf
    
    If c(i) > 1
      Print(Str(c(i))+"*")
    ElseIf c(i) < -1
      Print(Str(-c(i))+"*")
    EndIf
    
    Print("e("+Str(i+1)+")")
    
    b = #False
    j+1
  Next
  
  If j = 0 : Print("0") : EndIf
  PrintN("")
EndProcedure


Macro VectorHdl(Adr_Start, Adr_Stop)
  ; 1. Output of the input values  
  Define buf$ = "[", *adr_ptr
  For *adr_ptr = Adr_Start To Adr_Stop - SizeOf(Integer) Step SizeOf(Integer)
    buf$ + Str(PeekI(*adr_ptr))
    If *adr_ptr >= Adr_Stop - SizeOf(Integer)
      buf$ + "]  ->  "
    Else
      buf$ + ", "
    EndIf    
  Next
  buf$ =  RSet(buf$, 25)
  Print(buf$)  
  
  ; 2. Reserve memory, pass and process values.
  Dim a.i((Adr_Stop - Adr_Start) / SizeOf(Integer) -1)
  CopyMemory(Adr_Start, @a(0), Adr_Stop - Adr_Start)
  WriteLinear(a())
EndMacro


If OpenConsole("")
  ; Pass memory addresses of the data.
  VectorHdl(?V1, ?_V1)
  VectorHdl(?V2, ?_V2)
  VectorHdl(?V3, ?_V3)
  VectorHdl(?V4, ?_V4)
  VectorHdl(?V5, ?_V5)
  VectorHdl(?V6, ?_V6)
  VectorHdl(?V7, ?_V7)
  VectorHdl(?V8, ?_V8)
  VectorHdl(?V9, ?_V9)
  VectorHdl(?V10, ?_V10)    
  
  Input()
EndIf

End 0
      
    
DataSection
  V1:
  Data.i 1,2,3
  _V1:
  V2:
  Data.i 0,1,2,3
  _V2:
  V3:
  Data.i 1,0,3,4
  _V3:
  V4:
  Data.i 1,2,0
  _V4:
  V5:
  Data.i 0,0,0
  _V5:
  V6:
  Data.i 0
  _V6:
  V7:
  Data.i 1,1,1
  _V7:
  V8:
  Data.i -1,-1,-1
  _V8:
  V9:
  Data.i -1,-2,0,-3
  _V9:
  V10:
  Data.i -1
  _V10:  
EndDataSection
Output:
          [1, 2, 3]  ->  e(1) + 2*e(2) + 3*e(3)
       [0, 1, 2, 3]  ->  e(2) + 2*e(3) + 3*e(4)
       [1, 0, 3, 4]  ->  e(1) + 3*e(3) + 4*e(4)
          [1, 2, 0]  ->  e(1) + 2*e(2)
          [0, 0, 0]  ->  0
                [0]  ->  0
          [1, 1, 1]  ->  e(1) + e(2) + e(3)
       [-1, -1, -1]  ->  -e(1) - e(2) - e(3)
    [-1, -2, 0, -3]  ->  -e(1) - 2*e(2) - 3*e(4)
               [-1]  ->  -e(1)

Python

def linear(x):
    return ' + '.join(['{}e({})'.format('-' if v == -1 else '' if v == 1 else str(v) + '*', i + 1)
        for i, v in enumerate(x) if v] or ['0']).replace(' + -', ' - ')

list(map(lambda x: print(linear(x)), [[1, 2, 3], [0, 1, 2, 3], [1, 0, 3, 4], [1, 2, 0],
        [0, 0, 0], [0], [1, 1, 1], [-1, -1, -1], [-1, -2, 0, 3], [-1]]))
Output:
e(1) + 2*e(2) + 3*e(3)
e(2) + 2*e(3) + 3*e(4)
e(1) + 3*e(3) + 4*e(4)
e(1) + 2*e(2)
0
0
e(1) + e(2) + e(3)
-e(1) - e(2) - e(3)
-e(1) - 2*e(2) + 3*e(4)
-e(1)

Racket

#lang racket/base
(require racket/match racket/string)

(define (linear-combination->string es)
  (let inr ((es es) (i 1) (rv ""))
    (match* (es rv)
      [((list) "") "0"]
      [((list) rv) rv]
      [((list (? zero?) t ...) rv)
       (inr t (add1 i) rv)]
      [((list n t ...) rv)
       (define ±n
         (match* (n rv)
           ;; zero is handled above
           [(1 "") ""]
           [(1 _) "+"]
           [(-1 _) "-"]
           [((? positive? n) (not "")) (format "+~a*" n)]
           [(n _) (format "~a*" n)]))
       (inr t (add1 i) (string-append rv ±n "e("(number->string i)")"))])))

(for-each
 (compose displayln linear-combination->string)
 '((1 2 3)
   (0 1 2 3)
   (1 0 3 4)
   (1 2 0)
   (0 0 0)
   (0)
   (1 1 1)
   (-1 -1 -1)
   (-1 -2 0 -3)
   (-1)))
Output:
e(1)+2*e(2)+3*e(3)
e(2)+2*e(3)+3*e(4)
e(1)+3*e(3)+4*e(4)
e(1)+2*e(2)
0
0
e(1)+e(2)+e(3)
-e(1)-e(2)-e(3)
-e(1)-2*e(2)-3*e(4)
-e(1)

Raku

(formerly Perl 6)

sub linear-combination(@coeff) {
    (@coeff Z=> map { "e($_)" }, 1 .. *)
    .grep(+*.key)
    .map({ .key ~ '*' ~ .value })
    .join(' + ')
    .subst('+ -', '- ', :g)
    .subst(/<|w>1\*/, '', :g)
        || '0'
}
 
say linear-combination($_) for 
[1, 2, 3],
[0, 1, 2, 3],
[1, 0, 3, 4],
[1, 2, 0],
[0, 0, 0],
[0],
[1, 1, 1],
[-1, -1, -1],
[-1, -2, 0, -3],
[-1 ]
;
Output:
e(1) + 2*e(2) + 3*e(3)
e(2) + 2*e(3) + 3*e(4)
e(1) + 3*e(3) + 4*e(4)
e(1) + 2*e(2)
0
0
e(1) + e(2) + e(3)
-e(1) - e(2) - e(3)
-e(1) - 2*e(2) - 3*e(4)
-e(1)

REXX

/*REXX program displays a   finite liner combination   in an   infinite vector basis.   */
@.= .;           @.1  =    '  1,  2,  3     '    /*define a specific test case for build*/
                 @.2  =    '  0,  1,  2,  3 '    /*   "   "     "      "    "   "    "  */
                 @.3  =    '  1,  0,  3,  4 '    /*   "   "     "      "    "   "    "  */
                 @.4  =    '  1,  2,  0     '    /*   "   "     "      "    "   "    "  */
                 @.5  =    '  0,  0,  0     '    /*   "   "     "      "    "   "    "  */
                 @.6  =       0                  /*   "   "     "      "    "   "    "  */
                 @.7  =    '  1,  1,  1     '    /*   "   "     "      "    "   "    "  */
                 @.8  =    ' -1, -1, -1     '    /*   "   "     "      "    "   "    "  */
                 @.9  =    ' -1, -2,  0, -3 '    /*   "   "     "      "    "   "    "  */
                 @.10 =      -1                  /*   "   "     "      "    "   "    "  */
  do j=1  while  @.j\==.;        n= 0            /*process each vector; zero element cnt*/
  y= space( translate(@.j, ,',') )               /*elide commas and superfluous blanks. */
  $=                                             /*nullify  output  (liner combination).*/
       do k=1  for words(y);     #= word(y, k)   /* ◄───── process each of the elements.*/
       if #=0  then iterate;     a= abs(# / 1)   /*if the value is zero, then ignore it.*/
       if #<0  then s= '- '                      /*define the sign:   minus (-).        */
               else s= '+ '                      /*   "    "    "     plus  (+).        */
       n= n + 1                                  /*bump the number of elements in vector*/
       if n==1  then s= strip(s)                 /*if the 1st element used, remove blank*/
       if a\==1    then s= s  ||  a'*'           /*if multiplier is unity, then ignore #*/
       $= $  s'e('k")"                           /*construct a liner combination element*/
       end   /*k*/
  $= strip( strip($), 'L', "+")                  /*strip leading plus sign (1st element)*/
  if $==''  then $= 0                            /*handle special case of no elements.  */
  say right( space(@.j), 20)  ' ──► '   strip($) /*align the output for presentation.   */
  end       /*j*/                                /*stick a fork in it,  we're all done. */
output   when using the default inputs:
             1, 2, 3  ──►  e(1) + 2*e(2) + 3*e(3)
          0, 1, 2, 3  ──►  e(2) + 2*e(3) + 3*e(4)
          1, 0, 3, 4  ──►  e(1) + 3*e(3) + 4*e(4)
             1, 2, 0  ──►  e(1) + 2*e(2)
             0, 0, 0  ──►  0
                   0  ──►  0
             1, 1, 1  ──►  e(1) + e(2) + e(3)
          -1, -1, -1  ──►  -e(1) - e(2) - e(3)
       -1, -2, 0, -3  ──►  -e(1) - 2*e(2) - 3*e(4)
                  -1  ──►  -e(1)

Ring

# Project : Display a linear combination

scalars = [[1,  2,  3], [0,  1,  2,  3], [1,  0,  3,  4], [1,  2,  0], [0,  0,  0], [0], [1,  1,  1], [-1, -1, -1], [-1, -2,  0, -3], [-1]]
for n=1 to len(scalars)
    str = ""
    for m=1 to len(scalars[n])
        scalar = scalars[n] [m]
        if scalar != "0"
           if scalar = 1
              str = str + "+e" + m
           elseif  scalar = -1
              str = str + "" + "-e" + m
           else
              if scalar > 0
                 str = str + char(43) + scalar + "*e" + m
              else
                 str = str + "" + scalar + "*e" + m
              ok
           ok
        ok   
    next
    if str = ""
       str = "0"
    ok
    if left(str, 1) = "+"
       str = right(str, len(str)-1)
    ok
    see str + nl
next

Output:

e1+2*e2+3*e3
e2+2*e3+3*e4
e1+3*e3+4*e4
e1+2*e2
0
0
e1+e2+e3
-e1-e2-e3
-e1-2*e2-3*e4
-e1

RPL

RPL can handle both stack-based program flows and algebraic expressions, which is quite useful for tasks such as this one.

Works with: Halcyon Calc version 4.2.7

Straightforward approach

This version has the disadvantage of sometimes interchanging some terms when simplifying the expression by the COLCT function.

≪ → scalars 
  ≪  '0' 1 scalars SIZE FOR j
         scalars j GET
         "e" j →STR + STR→ * +
      NEXT
      COLCT COLCT
≫  ≫
'COMB→' STO

Full-compliant version

The constant π is here simply used to facilitate the construction of the algebraic expression; it is then eliminated during the conversion into a string.

≪ → scalars 
  ≪ "" 1 scalars SIZE FOR j
        'π' scalars j GET "e" j →STR + STR→ * + →STR 
        OVER SIZE NOT OVER 3 3 SUB "+" AND 4 3 IFTE 
        OVER SIZE 1 - SUB + 
     NEXT 
 ≫
 IF DUP "" == THEN DROP "0" END 
≫
'COMB→' STO
 ≪ { { 1 2 3 } { 0 1 2 3 } { 1 0 3 4 } { 1 2 0 } {0 0 0 } { 0 } { 1 1 1 } { -1 -1 -1} { -1 -2 0 -3} { -1 } }
  { } 1 3 PICK SIZE FOR j
     OVER j GET COMB→ +
  NEXT
  SWAP DROP
≫ EVAL
Output:
1: { "e1+2*e2+3*e3" "e2+2*e3+3*e4" "e1+3*e3+4*e4" "e1+2*e2" "0" "0" "e1+e2+e3" "-e1-e2-e3" "-e1-2*e2-3*e4" "-e1" }

Ruby

Translation of: D
def linearCombo(c)
    sb = ""
    c.each_with_index { |n, i|
        if n == 0 then
            next
        end
        if n < 0 then
            if sb.length == 0 then
                op = "-"
            else
                op = " - "
            end
        elsif n > 0 then
            if sb.length > 0 then
                op = " + "
            else
                op = ""
            end
        else
            op = ""
        end
        av = n.abs()
        if av != 1 then
            coeff = "%d*" % [av]
        else
            coeff = ""
        end
        sb = sb + "%s%se(%d)" % [op, coeff, i + 1]
    }
    if sb.length == 0 then
        return "0"
    end
    return sb
end

def main
    combos = [
        [1, 2, 3],
        [0, 1, 2, 3],
        [1, 0, 3, 4],
        [1, 2, 0],
        [0, 0, 0],
        [0],
        [1, 1, 1],
        [-1, -1, -1],
        [-1, -2, 0, -3],
        [-1],
    ]

    for c in combos do
        print "%-15s  ->  %s\n" % [c, linearCombo(c)]
    end
end

main()
Output:
[1, 2, 3]        ->  e(1) + 2*e(2) + 3*e(3)
[0, 1, 2, 3]     ->  e(2) + 2*e(3) + 3*e(4)
[1, 0, 3, 4]     ->  e(1) + 3*e(3) + 4*e(4)
[1, 2, 0]        ->  e(1) + 2*e(2)
[0, 0, 0]        ->  0
[0]              ->  0
[1, 1, 1]        ->  e(1) + e(2) + e(3)
[-1, -1, -1]     ->  -e(1) - e(2) - e(3)
[-1, -2, 0, -3]  ->  -e(1) - 2*e(2) - 3*e(4)
[-1]             ->  -e(1)

Rust

use std::fmt::{Display, Formatter, Result};
use std::process::exit;

struct Coefficient(usize, f64);

impl Display for Coefficient {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
        let i = self.0;
        let c = self.1;

        if c == 0. {
            return Ok(());
        }

        write!(
            f,
            " {} {}e({})",
            if c < 0. {
                "-"
            } else if f.alternate() {
                " "
            } else {
                "+"
            },
            if (c.abs() - 1.).abs() < f64::EPSILON {
                "".to_string()
            } else {
                c.abs().to_string() + "*"
            },
            i + 1
        )
    }
}

fn usage() {
    println!("Usage: display-linear-combination a1 [a2 a3 ...]");
}

fn linear_combination(coefficients: &[f64]) -> String {
    let mut string = String::new();

    let mut iter = coefficients.iter().enumerate();

    // find first nonzero argument
    loop {
        match iter.next() {
            Some((_, &c)) if c == 0. => {
                continue;
            }
            Some((i, &c)) => {
                string.push_str(format!("{:#}", Coefficient(i, c)).as_str());
                break;
            }
            None => {
                string.push('0');
                return string;
            }
        }
    }

    // print subsequent arguments
    for (i, &c) in iter {
        string.push_str(format!("{}", Coefficient(i, c)).as_str());
    }

    string
}

fn main() {
    let mut coefficients = Vec::new();
    let mut args = std::env::args();

    args.next(); // drop first argument

    // parse arguments into floats
    for arg in args {
        let c = arg.parse::<f64>().unwrap_or_else(|e| {
            eprintln!("Failed to parse argument \"{}\": {}", arg, e);
            exit(-1);
        });
        coefficients.push(c);
    }

    // no arguments, print usage and exit
    if coefficients.is_empty() {
        usage();
        return;
    }

    println!("{}", linear_combination(&coefficients));
}
Output:
1 2 3 -> e(1) + 2*e(2) + 3*e(3)

Scala

object LinearCombination extends App {
    val combos = Seq(Seq(1, 2, 3), Seq(0, 1, 2, 3),
      Seq(1, 0, 3, 4), Seq(1, 2, 0), Seq(0, 0, 0), Seq(0),
      Seq(1, 1, 1), Seq(-1, -1, -1), Seq(-1, -2, 0, -3), Seq(-1))

  private def linearCombo(c: Seq[Int]): String = {
    val sb = new StringBuilder
    for {i <- c.indices
         term = c(i)
         if term != 0} {
      val av = math.abs(term)
      def op = if (term < 0 && sb.isEmpty) "-"
      else if (term < 0) " - "
      else if (term > 0 && sb.isEmpty) "" else " + "

      sb.append(op).append(if (av == 1) "" else s"$av*").append("e(").append(i + 1).append(')')
    }
    if (sb.isEmpty) "0" else sb.toString
  }
    for (c <- combos) {
      println(f"${c.mkString("[", ", ", "]")}%-15s  ->  ${linearCombo(c)}%s")
    }
}

Sidef

Translation of: Tcl
func linear_combination(coeffs) {
    var res = ""
    for e,f in (coeffs.kv) {
        given(f) {
            when (1) {
                res += "+e(#{e+1})"
            }
            when (-1) {
                res += "-e(#{e+1})"
            }
            case (.> 0) {
                res += "+#{f}*e(#{e+1})"
            }
            case (.< 0) {
                res += "#{f}*e(#{e+1})"
            }
        }
    }
    res -= /^\+/
    res || 0
}

var tests = [
    %n{1 2 3},
    %n{0 1 2 3},
    %n{1 0 3 4},
    %n{1 2 0},
    %n{0 0 0},
    %n{0},
    %n{1 1 1},
    %n{-1 -1 -1},
    %n{-1 -2 0 -3},
    %n{-1},
]

tests.each { |t|
    printf("%10s -> %-10s\n", t.join(' '), linear_combination(t))
}
Output:
     1 2 3 -> e(1)+2*e(2)+3*e(3)
   0 1 2 3 -> e(2)+2*e(3)+3*e(4)
   1 0 3 4 -> e(1)+3*e(3)+4*e(4)
     1 2 0 -> e(1)+2*e(2)
     0 0 0 -> 0         
         0 -> 0         
     1 1 1 -> e(1)+e(2)+e(3)
  -1 -1 -1 -> -e(1)-e(2)-e(3)
-1 -2 0 -3 -> -e(1)-2*e(2)-3*e(4)
        -1 -> -e(1)     

Tcl

This solution strives for legibility rather than golf.

proc lincom {factors} {
    set exp 0
    set res ""
    foreach f $factors {
        incr exp
        if {$f == 0} {
            continue
        } elseif {$f == 1} {
            append res "+e($exp)"
        } elseif {$f == -1} {
            append res "-e($exp)"
        } elseif {$f > 0} {
            append res "+$f*e($exp)"
        } else {
            append res "$f*e($exp)"
        }
    }
    if {$res eq ""} {set res 0}
    regsub {^\+} $res {} res
    return $res
}

foreach test {
    {1 2 3}
    {0 1 2 3}
    {1 0 3 4}
    {1 2 0}
    {0 0 0}
    {0}
    {1 1 1}
    {-1 -1 -1}
    {-1 -2 0 -3}
    {-1}
} {
    puts [format "%10s -> %-10s" $test [lincom $test]]
}
Output:
     1 2 3 -> e(1)+2*e(2)+3*e(3)
   0 1 2 3 -> e(2)+2*e(3)+3*e(4)
   1 0 3 4 -> e(1)+3*e(3)+4*e(4)
     1 2 0 -> e(1)+2*e(2)
     0 0 0 -> 0         
         0 -> 0         
     1 1 1 -> e(1)+e(2)+e(3)
  -1 -1 -1 -> -e(1)-e(2)-e(3)
-1 -2 0 -3 -> -e(1)-2*e(2)-3*e(4)
        -1 -> -e(1)     

Visual Basic .NET

Translation of: C#
Imports System.Text

Module Module1

    Function LinearCombo(c As List(Of Integer)) As String
        Dim sb As New StringBuilder
        For i = 0 To c.Count - 1
            Dim n = c(i)
            If n < 0 Then
                If sb.Length = 0 Then
                    sb.Append("-")
                Else
                    sb.Append(" - ")
                End If
            ElseIf n > 0 Then
                If sb.Length <> 0 Then
                    sb.Append(" + ")
                End If
            Else
                Continue For
            End If

            Dim av = Math.Abs(n)
            If av <> 1 Then
                sb.AppendFormat("{0}*", av)
            End If
            sb.AppendFormat("e({0})", i + 1)
        Next
        If sb.Length = 0 Then
            sb.Append("0")
        End If
        Return sb.ToString()
    End Function

    Sub Main()
        Dim combos = New List(Of List(Of Integer)) From {
            New List(Of Integer) From {1, 2, 3},
            New List(Of Integer) From {0, 1, 2, 3},
            New List(Of Integer) From {1, 0, 3, 4},
            New List(Of Integer) From {1, 2, 0},
            New List(Of Integer) From {0, 0, 0},
            New List(Of Integer) From {0},
            New List(Of Integer) From {1, 1, 1},
            New List(Of Integer) From {-1, -1, -1},
            New List(Of Integer) From {-1, -2, 0, -3},
            New List(Of Integer) From {-1}
        }

        For Each c In combos
            Dim arr = "[" + String.Join(", ", c) + "]"
            Console.WriteLine("{0,15} -> {1}", arr, LinearCombo(c))
        Next
    End Sub

End Module
Output:
      [1, 2, 3] -> e(1) + 2*e(2) + 3*e(3)
   [0, 1, 2, 3] -> e(2) + 2*e(3) + 3*e(4)
   [1, 0, 3, 4] -> e(1) + 3*e(3) + 4*e(4)
      [1, 2, 0] -> e(1) + 2*e(2)
      [0, 0, 0] -> 0
            [0] -> 0
      [1, 1, 1] -> e(1) + e(2) + e(3)
   [-1, -1, -1] -> -e(1) - e(2) - e(3)
[-1, -2, 0, -3] -> -e(1) - 2*e(2) - 3*e(4)
           [-1] -> -e(1)

V (Vlang)

Translation of: Go
import strings

fn linear_combo(c []int) string {
    mut sb := strings.new_builder(128)
    for i, n in c {
        if n == 0 {
            continue
        }
        mut op := ''
        match true {
        	n < 0 && sb.len == 0 {
            	op = "-"
			}
        	n < 0{
            	op = " - "
			}
        	n > 0 && sb.len == 0 {
            	op = ""
			}
        	else{
            	op = " + "
			}
        }
        mut av := n
        if av < 0 {
            av = -av
        }
        mut coeff := "$av*"
        if av == 1 {
            coeff = ""
        }
        sb.write_string("$op${coeff}e(${i+1})")
    }
    if sb.len == 0 {
        return "0"
    } else {
        return sb.str()
    }
}
 
fn main() {
    combos := [
        [1, 2, 3],
        [0, 1, 2, 3],
        [1, 0, 3, 4],
        [1, 2, 0],
        [0, 0, 0],
        [0],
        [1, 1, 1],
        [-1, -1, -1],
        [-1, -2, 0, -3],
        [-1],
	]
    for c in combos {
        println("${c:-15}  ->  ${linear_combo(c)}")
    }
}
Output:
[1, 2, 3]        ->  e(1) + 2*e(2) + 3*e(3)
[0, 1, 2, 3]     ->  e(2) + 2*e(3) + 3*e(4)
[1, 0, 3, 4]     ->  e(1) + 3*e(3) + 4*e(4)
[1, 2, 0]        ->  e(1) + 2*e(2)
[0, 0, 0]        ->  0
[0]              ->  0
[1, 1, 1]        ->  e(1) + e(2) + e(3)
[-1, -1, -1]     ->  -e(1) - e(2) - e(3)
[-1, -2, 0, -3]  ->  -e(1) - 2*e(2) - 3*e(4)
[-1]             ->  -e(1)

Wren

Translation of: Kotlin
Library: Wren-fmt
import "./fmt" for Fmt

var linearCombo = Fn.new { |c|
    var sb = ""
    var i = 0
    for (n in c) {
        if (n != 0) {
            var op = (n < 0 && sb == "") ? "-"   :
                     (n < 0)             ? " - " :
                     (n > 0 && sb == "") ? ""    : " + "
            var av = n.abs
            var coeff = (av == 1) ? "" : "%(av)*"
            sb = sb + "%(op)%(coeff)e(%(i + 1))"
        }
        i = i + 1
    }
    return (sb == "") ? "0" : sb
}

var combos = [
    [1, 2, 3],
    [0, 1, 2, 3],
    [1, 0, 3, 4],
    [1, 2, 0],
    [0, 0, 0],
    [0],
    [1, 1, 1],
    [-1, -1, -1],
    [-1, -2, 0, -3],
    [-1]
]
for (c in combos) {
    Fmt.print("$-15s  ->  $s", c.toString, linearCombo.call(c))
}
Output:
[1, 2, 3]        ->  e(1) + 2*e(2) + 3*e(3)
[0, 1, 2, 3]     ->  e(2) + 2*e(3) + 3*e(4)
[1, 0, 3, 4]     ->  e(1) + 3*e(3) + 4*e(4)
[1, 2, 0]        ->  e(1) + 2*e(2)
[0, 0, 0]        ->  0
[0]              ->  0
[1, 1, 1]        ->  e(1) + e(2) + e(3)
[-1, -1, -1]     ->  -e(1) - e(2) - e(3)
[-1, -2, 0, -3]  ->  -e(1) - 2*e(2) - 3*e(4)
[-1]             ->  -e(1)

XPL0

func LinearCombo(Combo, Len);   \Display linear combination of Combo
int  Combo, Len;
int  Zero, N, I;
[Zero:= true;
for I:= 0 to Len-1 do
    [N:= Combo(I);
    if N # 0 then
        [    if N < 0 and Zero then Text(0, "-")
        else if N < 0 then Text(0, " - ")
        else if not Zero then Text(0, " + ");
        if abs(N) # 1 then
            [IntOut(0, abs(N));  Text(0, "*")];
        Text(0, "e(");  IntOut(0, I+1);  Text(0, ")");
        Zero:= false;
        ];
    ];
if Zero then Text(0, "0");
CrLf(0);
];

int  Combos, C;
[Combos:= [
    [1, 2, 3],
    [0, 1, 2, 3],
    [1, 0, 3, 4],
    [1, 2, 0],
    [0, 0, 0],
    [0],
    [1, 1, 1],
    [-1, -1, -1],
    [-1, -2, 0, -3],
    [-1],
    [0]         \sentinel provides length of last item (=1)
    ];
for C:= 0 to 10-1 do
    LinearCombo( Combos(C), (Combos(C+1)-Combos(C))/4 ); \4 = SizeOfInt
]
Output:
e(1) + 2*e(2) + 3*e(3)
e(2) + 2*e(3) + 3*e(4)
e(1) + 3*e(3) + 4*e(4)
e(1) + 2*e(2)
0
0
e(1) + e(2) + e(3)
-e(1) - e(2) - e(3)
-e(1) - 2*e(2) - 3*e(4)
-e(1)

zkl

Translation of: Raku
fcn linearCombination(coeffs){
   [1..].zipWith(fcn(n,c){ if(c==0) "" else "%s*e(%s)".fmt(c,n) },coeffs)
      .filter().concat("+").replace("+-","-").replace("1*","")
   or 0
}
T(T(1,2,3),T(0,1,2,3),T(1,0,3,4),T(1,2,0),T(0,0,0),T(0),T(1,1,1),T(-1,-1,-1),
  T(-1,-2,0,-3),T(-1),T)
.pump(Console.println,linearCombination);
Output:
e(1)+2*e(2)+3*e(3)
e(2)+2*e(3)+3*e(4)
e(1)+3*e(3)+4*e(4)
e(1)+2*e(2)
0
0
e(1)+e(2)+e(3)
-e(1)-e(2)-e(3)
-e(1)-2*e(2)-3*e(4)
-e(1)
0
Cookies help us deliver our services. By using our services, you agree to our use of cookies.