# Cullen and Woodall numbers

Cullen and Woodall numbers
You are encouraged to solve this task according to the task description, using any language you may know.

A Cullen number is a number of the form n × 2n + 1 where n is a natural number.

A Woodall number is very similar. It is a number of the form n × 2n - 1 where n is a natural number.

So for each n the associated Cullen number and Woodall number differ by 2.

Woodall numbers are sometimes referred to as Riesel numbers or Cullen numbers of the second kind.

Cullen primes are Cullen numbers that are prime. Similarly, Woodall primes are Woodall numbers that are prime.

It is common to list the Cullen and Woodall primes by the value of n rather than the full evaluated expression. They tend to get very large very quickly. For example, the third Cullen prime, n == 4713, has 1423 digits when evaluated.

• Write procedures to find Cullen numbers and Woodall numbers.
• Use those procedures to find and show here, on this page the first 20 of each.

Stretch
• Find and show the first 5 Cullen primes in terms of n.
• Find and show the first 12 Woodall primes in terms of n.

## 11l

Translation of: Python
```F cullen(n)
R (n << n) + 1

F woodall(n)
R (n << n) - 1

print(‘First 20 Cullen numbers:’)
L(i) 1..20
print(cullen(i), end' ‘ ’)
print()
print()
print(‘First 20 Woodall numbers:’)
L(i) 1..20
print(woodall(i), end' ‘ ’)
print()```
Output:
```First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
```

## ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32

Uses Algol 68Gs LONG LONG INT for long integers. The number of digits must be specified and appears to affect the run time as larger sies are specified. This sample only shows the first two Cullen primes as the time taken to find the third is rather long.

```BEGIN # find Cullen and Woodall numbers and determine which are prime #
# a Cullen number n is n2^2 + 1, Woodall number is n2^n - 1     #
PR read "primes.incl.a68" PR                  # include prime utilities #
PR precision 800 PR # set number of digits for Algol 68G LONG LONG INT #
# returns the nth Cullen number #
OP CULLEN = ( INT n )LONG LONG INT: n * LONG LONG INT(2)^n + 1;
# returns the nth Woodall number #
OP WOODALL = ( INT n )LONG LONG INT: CULLEN n - 2;

# show the first 20 Cullen numbers #
print( ( "1st 20 Cullen numbers:" ) );
FOR n TO 20 DO
print( ( " ", whole( CULLEN n, 0 ) ) )
OD;
print( ( newline ) );
# show the first 20 Woodall numbers #
print( ( "1st 20 Woodall numbers:" ) );
FOR n TO 20 DO
print( ( " ", whole( WOODALL n, 0 ) ) )
OD;
print( ( newline ) );
BEGIN # first 2 Cullen primes #
print( ( "Index of the 1st 2 Cullen primes:" ) );
LONG LONG INT power of 2 := 1;
INT prime count := 0;
FOR n WHILE prime count < 2 DO
power of 2 *:= 2;
LONG LONG INT c n = ( n * power of 2 ) + 1;
IF is probably prime( c n ) THEN
prime count +:= 1;
print( ( " ", whole( n, 0 ) ) )
FI
OD;
print( ( newline ) )
END;
BEGIN # first 12 Woodall primes #
print( ( "Index of the 1st 12 Woodall primes:" ) );
LONG LONG INT power of 2 := 1;
INT prime count := 0;
FOR n WHILE prime count < 12 DO
power of 2 *:= 2;
LONG LONG INT w n = ( n * power of 2 ) - 1;
IF is probably prime( w n ) THEN
prime count +:= 1;
print( ( " ", whole( n, 0 ) ) )
FI
OD;
print( ( newline ) )
END
END```
Output:
```1st 20 Cullen numbers: 3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
1st 20 Woodall numbers: 1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
Index of the 1st 2 Cullen primes: 1 141
Index of the 1st 12 Woodall primes: 2 3 6 30 75 81 115 123 249 362 384 462
```

## Arturo

```cullen: function [n]->
inc n * 2^n

woodall: function [n]->
dec n * 2^n

print ["First 20 cullen numbers:" join.with:" " to [:string] map 1..20 => cullen]
print ["First 20 woodall numbers:" join.with:" " to [:string] map 1..20 => woodall]
```
Output:
```First 20 cullen numbers: 3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
First 20 woodall numbers: 1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519```

## Asymptote

```int num = 0;

write("First 20 Cullen numbers:");

for(int n = 1; n < 20; ++n) {
num = n * (2^n) + 1;
write(" ", num, suffix=none);
}

write("");
write("First 20 Woodall numbers:");

for(int n = 1; n < 20; ++n) {
num = n * (2^n) - 1;
write(" ", num, suffix=none);
}
```

## AWK

```# syntax: GAWK -f CULLEN_AND_WOODALL_NUMBERS.AWK
BEGIN {
start = 1
stop = 20
printf("Cullen %d-%d:",start,stop)
for (n=start; n<=stop; n++) {
printf(" %d",n*(2^n)+1)
}
printf("\n")
printf("Woodall %d-%d:",start,stop)
for (n=start; n<=stop; n++) {
printf(" %d",n*(2^n)-1)
}
printf("\n")
exit(0)
}
```
Output:
```Cullen 1-20: 3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
Woodall 1-20: 1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
```

## BASIC

### Applesoft BASIC

Works with: Chipmunk Basic
Translation of: Chipmunk Basic
```10 REM Cullen and Woodall numbers
20 HOME : REM  20 CLS for Chipmunk Basic
30 PRINT "First 20 Cullen numbers:"
40 FOR n = 1 TO 20
50 num = n*(2^n)+1
60 PRINT INT(num);" ";
70 NEXT
80 PRINT : PRINT
90 PRINT "First 20 Woodall numbers:"
100 FOR n = 1 TO 20
110 num = n*(2^n)-1
120 PRINT INT(num);" ";
130 NEXT n
140 END
```

### BASIC256

Works with: Run BASIC
Works with: Just BASIC
Works with: Liberty BASIC
Translation of: FreeBASIC
```print "First 20 Cullen numbers:"

for n = 1 to 20
num = n * (2^n)+1
print int(num); " ";
next

print : print
print "First 20 Woodall numbers:"

for n = 1 to 20
num = n * (2^n)-1
print int(num); " ";
next n
end```
Output:
`Igual que la entrada de FreeBASIC.`

### Chipmunk Basic

Works with: Chipmunk Basic version 3.6.4
Works with: Applesoft BASIC
Works with: MSX_BASIC
Works with: PC-BASIC version any
Works with: QBasic
Translation of: FreeBASIC
```10 REM Cullen and Woodall numbers
20 CLS : REM  20 HOME for Applesoft BASIC
30 PRINT "First 20 Cullen numbers:"
40 FOR n = 1 TO 20
50 num = n*(2^n)+1
60 PRINT INT(num);" ";
70 NEXT
80 PRINT : PRINT
90 PRINT "First 20 Woodall numbers:"
100 FOR n = 1 TO 20
110 num = n*(2^n)-1
120 PRINT INT(num);" ";
130 NEXT n
140 END
```
Output:
`Same as FreeBASIC entry.`

### FreeBASIC

```Dim As Uinteger n, num
Print "First 20 Cullen numbers:"

For n = 1 To 20
num = n * (2^n)+1
Print num; " ";
Next

Print !"\n\nFirst 20 Woodall numbers:"

For n = 1 To 20
num = n * (2^n)-1
Print num; " ";
Next n
Sleep```
Output:
```First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519```

### Gambas

```Public Sub Main()

Dim n, num As Integer

Print "First 20 Cullen numbers:"

For n = 1 To 20
num = n * (2 ^ n) + 1
Print num; " ";
Next

Print "\n\nFirst 20 Woodall numbers:"

For n = 1 To 20
num = n * (2 ^ n) - 1
Print num; " ";
Next

End
```
Output:
`Same as FreeBASIC entry.`

### GW-BASIC

The Chipmunk Basic solution works without any changes.

### PureBasic

```OpenConsole()
PrintN("First 20 Cullen numbers:")

For n.i = 1 To 20
num = n * Pow(2, n)+1
Print(Str(num) + " ")
Next

PrintN(#CRLF\$ + "First 20 Woodall numbers:")

For n.i = 1 To 20
num = n * Pow(2, n)-1
Print(Str(num) + " ")
Next n

PrintN(#CRLF\$ + "--- terminado, pulsa RETURN---"): Input()
CloseConsole()```
Output:
`Igual que la entrada de FreeBASIC.`

### QBasic

Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
Works with: True BASIC
Translation of: FreeBASIC
```DIM num AS LONG ''comment this line for True BASIC
PRINT "First 20 Cullen numbers:"

FOR n = 1 TO 20
LET num = n * (2 ^ n) + 1
PRINT num;
NEXT n

PRINT
PRINT
PRINT "First 20 Woodall numbers:"

FOR n = 1 TO 20
LET num = n * (2 ^ n) - 1
PRINT num;
NEXT n
END
```
Output:
`Igual que la entrada de FreeBASIC.`

### Run BASIC

Works with: BASIC256
Works with: Just BASIC
Works with: Liberty BASIC
```print "First 20 Cullen numbers:"

for n = 1 to 20
num = n * (2^n)+1
print int(num); " ";
next

print : print
print "First 20 Woodall numbers:"

for n = 1 to 20
num = n * (2^n)-1
print int(num); " ";
next n
end```
Output:
`Same as FreeBASIC entry.`

### Tiny BASIC

```REM Rosetta Code problem: https://rosettacode.org/wiki/Cullen_and_Woodall_numbers
REM by Jjuanhdez, 03/2023

REM TinyBasic does not support values greater than 32767

PRINT "First 11 Cullen numbers:"
LET N = 0
LET I = 1
10 IF I = 12 THEN GOTO 20
GOSUB 50
LET N = (I*R) +1
PRINT N, " "
LET I = I+1
GOTO 10
20 PRINT ""
PRINT "First 11 Woodall numbers:"
LET I = 1
30 IF I = 12 THEN GOTO 40
GOSUB 50
LET N = (I*R) -1
PRINT N, " "
LET I = I+1
GOTO 30
40 END

50 REM Exponent calculation
LET A = 2
LET B = I
LET X = 1
LET R = 2
60 IF X >= B THEN RETURN
LET T = R
IF R < A THEN LET R = A*A
IF T < A THEN GOTO 70
IF R >= A THEN LET R = R*A
70 LET X = X+1
GOTO 60
```
Output:
```First 11 Cullen numbers:
3
9
25
65
161
385
897
2049
4609
10241
22529

First 11 Woodall numbers:
1
7
23
63
159
383
895
2047
4607
10239
22527```

### True BASIC

Works with: QBasic
Translation of: FreeBASIC
```REM DIM num AS LONG               !uncomment this line for QBasic
PRINT "First 20 Cullen numbers:"

FOR n = 1 TO 20
LET num = n * (2 ^ n) + 1
PRINT num;
NEXT n

PRINT
PRINT
PRINT "First 20 Woodall numbers:"

FOR n = 1 TO 20
LET num = n * (2 ^ n) - 1
PRINT num;
NEXT n
END
```
Output:
`Igual que la entrada de FreeBASIC.`

### MSX Basic

The Chipmunk Basic solution works without any changes.

### XBasic

Works with: Windows XBasic
```PROGRAM	"progname"
VERSION	"0.0000"

IMPORT "xma"

DECLARE FUNCTION Entry ()

FUNCTION Entry ()

PRINT "First 20 Cullen numbers:"

FOR n = 1 TO 20
num! = n * POWER (2, n) + 1
PRINT num!;
NEXT n

PRINT
PRINT
PRINT "First 20 Woodall numbers:"

FOR n = 1 TO 20
num! = n * POWER (2, n) - 1
PRINT num!;
NEXT n

END FUNCTION
END PROGRAM
```

### Yabasic

```print "First 20 Cullen numbers:"

for n = 1 to 20
num = n * (2^n)+1
print num, " ";
next

print "\n\nFirst 20 Woodall numbers:"

for n = 1 to 20
num = n * (2^n)-1
print num, " ";
next n
print
end
```
Output:
`Igual que la entrada de FreeBASIC.`

## C++

```#include <cstdint>
#include <iostream>
#include <string>

uint32_t number, power;

void number_initialise() {
number = 0;
power = 1;
}

enum NumberType { Cullen, Woodhall };

uint32_t next_number(const NumberType& number_type) {
number += 1;
power <<= 1;
switch ( number_type ) {
case Cullen:   return number * power + 1;
case Woodhall: return number * power - 1;
};
return 0;
}

void number_sequence(const uint32_t& count, const NumberType& number_type) {
std::string type = ( number_type == Cullen ) ? "Cullen" : "Woodhall";
std::cout << "The first " << count << " " << type << " numbers are:" << std::endl;
number_initialise();
for ( uint32_t index = 1; index <= count; ++index ) {
std::cout << next_number(number_type) << " ";
}
std::cout << std::endl << std::endl;
}

int main() {
number_sequence(20, Cullen);
number_sequence(20, Woodhall);
}
```
Output:
```The first 20 Cullen numbers are:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

The first 20 Woodhall numbers are:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
```

## Delphi

Works with: Delphi version 6.0

```uses SysUtils,StdCtrls;

procedure CullenWoodallTest(Memo: TMemo);

implementation

procedure FindCullenNumbers(Memo: TMemo);
var N,R: integer;
var S: string;
begin
S:='';
for N:=1 to 20 do
begin
R:=N * (1 shl N) + 1;
S:=S+IntToStr(R)+' ';
end;
end;

procedure FindWoodallNumbers(Memo: TMemo);
var N,R: integer;
var S: string;
begin
S:='';
for N:=1 to 20 do
begin
R:=N * (1 shl N) - 1;
S:=S+IntToStr(R)+' ';
end;
end;

procedure CullenWoodallTest(Memo: TMemo);
begin
FindCullenNumbers(Memo);
FindWoodallNumbers(Memo);
end;
```
Output:
```First 20 Cullen Numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
First 20 Woodall  Numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
```

## EasyLang

```for n = 1 to 20
write n * pow 2 n + 1 & " "
.
print ""
for n = 1 to 20
write n * pow 2 n - 1 & " "
.
print ""```

## F#

```// Cullen and Woodall numbers. Nigel Galloway: January 14th., 2022
let Cullen,Woodall=let fG n (g:int)=(bigint g)*2I**g+n in fG 1I, fG -1I
Seq.initInfinite((+)1>>Cullen)|>Seq.take 20|>Seq.iter(printf "%A "); printfn ""
Seq.initInfinite((+)1>>Woodall)|>Seq.take 20|>Seq.iter(printf "%A "); printfn ""
Seq.initInfinite((+)1)|>Seq.filter(fun n->let mutable  n=Woodall n in Open.Numeric.Primes.MillerRabin.IsProbablePrime &n)|>Seq.take 12|>Seq.iter(printf "%A "); printfn ""
Seq.initInfinite((+)1)|>Seq.filter(fun n->let mutable  n=Cullen n in Open.Numeric.Primes.MillerRabin.IsProbablePrime &n)|>Seq.take 5|>Seq.iter(printf "%A "); printfn ""
```
Output:
```3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
2 3 6 30 75 81 115 123 249 362 384 462
1 141 4713 5795 6611
```

## Factor

Works with: Factor version 0.99 2022-04-03
```USING: arrays kernel math math.vectors prettyprint ranges
sequences ;

20 [1..b] [ dup 2^ * 1 + ] map dup 2 v-n 2array simple-table.
```
Output:
```3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
```

## FutureBasic

```local fn CullenAndWoodall( limit as long )
NSUInteger i, cullen, woodall

printf @"%13s %9s", fn StringUTF8String( @"Cullen" ), fn StringUTF8String( @"Woodall" )
for i = 1 to limit
cullen  = i * ( 2^i ) + 1
woodall = i * ( 2^i ) - 1
printf @"%3lu %9lu %9lu", i, cullen, woodall
next
end fn

fn CullenAndWoodall( 20 )

HandleEvents```
Output:
```       Cullen   Woodall
1         3         1
2         9         7
3        25        23
4        65        63
5       161       159
6       385       383
7       897       895
8      2049      2047
9      4609      4607
10     10241     10239
11     22529     22527
12     49153     49151
13    106497    106495
14    229377    229375
15    491521    491519
16   1048577   1048575
17   2228225   2228223
18   4718593   4718591
19   9961473   9961471
20  20971521  20971519
```

## Go

```package main

import (
"fmt"
big "github.com/ncw/gmp"
)

func cullen(n uint) *big.Int {
one := big.NewInt(1)
bn := big.NewInt(int64(n))
res := new(big.Int).Lsh(one, n)
res.Mul(res, bn)
}

func woodall(n uint) *big.Int {
res := cullen(n)
return res.Sub(res, big.NewInt(2))
}

func main() {
fmt.Println("First 20 Cullen numbers (n * 2^n + 1):")
for n := uint(1); n <= 20; n++ {
fmt.Printf("%d ", cullen(n))
}

fmt.Println("\n\nFirst 20 Woodall numbers (n * 2^n - 1):")
for n := uint(1); n <= 20; n++ {
fmt.Printf("%d ", woodall(n))
}

fmt.Println("\n\nFirst 5 Cullen primes (in terms of n):")
count := 0
for n := uint(1); count < 5; n++ {
cn := cullen(n)
if cn.ProbablyPrime(15) {
fmt.Printf("%d ", n)
count++
}
}

fmt.Println("\n\nFirst 12 Woodall primes (in terms of n):")
count = 0
for n := uint(1); count < 12; n++ {
cn := woodall(n)
if cn.ProbablyPrime(15) {
fmt.Printf("%d ", n)
count++
}
}
fmt.Println()
}
```
Output:
```First 20 Cullen numbers (n * 2^n + 1):
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers (n * 2^n - 1):
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

First 5 Cullen primes (in terms of n):
1 141 4713 5795 6611

First 12 Woodall primes (in terms of n):
2 3 6 30 75 81 115 123 249 362 384 462
```

```findCullen :: Int -> Integer
findCullen n = toInteger ( n * 2 ^ n + 1 )

cullens :: [Integer]
cullens = map findCullen [1 .. 20]

woodalls :: [Integer]
woodalls = map (\i -> i - 2 ) cullens

main :: IO ( )
main = do
putStrLn "First 20 Cullen numbers:"
print cullens
putStrLn "First 20 Woodall numbers:"
print woodalls
```
Output:
```First 20 Cullen numbers:
[3,9,25,65,161,385,897,2049,4609,10241,22529,49153,106497,229377,491521,1048577,2228225,4718593,9961473,20971521]
First 20 Woodall numbers:
[1,7,23,63,159,383,895,2047,4607,10239,22527,49151,106495,229375,491519,1048575,2228223,4718591,9961471,20971519]
```

## J

```cullen=:  {{ y* 1+2x^y }}
woodall=: {{ y*_1+2x^y }}
```

```   cullen 1+i.20
3 10 27 68 165 390 903 2056 4617 10250 22539 49164 106509 229390 491535 1048592 2228241 4718610 9961491 20971540
woodall 1+i.20
1 6 21 60 155 378 889 2040 4599 10230 22517 49140 106483 229362 491505 1048560 2228207 4718574 9961453 20971500
```

## Java

```import java.math.BigInteger;

public final  class CullenAndWoodhall {

public static void main(String[] aArgs) {
numberSequence(20, NumberType.Cullen);

numberSequence(20, NumberType.Woodhall);

primeSequence(5, NumberType.Cullen);

primeSequence(12, NumberType.Woodhall);
}

private enum NumberType { Cullen, Woodhall }

private static void numberSequence(int aCount, NumberType aNumberType) {
System.out.println();
System.out.println("The first " + aCount + " " + aNumberType + " numbers are:");
numberInitialise();
for ( int index = 1; index <= aCount; index++ ) {
System.out.print(nextNumber(aNumberType) + " ");
}
System.out.println();
}

private static void primeSequence(int aCount, NumberType aNumberType) {
System.out.println();
System.out.println("The indexes of the first " + aCount + " " + aNumberType + " primes are:");
primeInitialise();

while ( count < aCount ) {
if ( nextNumber(aNumberType).isProbablePrime(CERTAINTY) ) {
System.out.print(primeIndex + " ");
count += 1;
}

primeIndex += 1;
}
System.out.println();
}

private static BigInteger nextNumber(NumberType aNumberType) {
power = power.shiftLeft(1);
return switch ( aNumberType ) {
case Woodhall -> number.multiply(power).subtract(BigInteger.ONE);
};
}

private static void numberInitialise() {
number = BigInteger.ZERO;
power = BigInteger.ONE;
}

private static void primeInitialise() {
count = 0;
primeIndex = 1;
numberInitialise();
}

private static BigInteger number;
private static BigInteger power;
private static int count;
private static int primeIndex;

private static final int CERTAINTY = 20;

}
```
Output:
```
The first 20 Cullen numbers are:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

The first 20 Woodhall numbers are:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

The indexes of the first 5 Cullen primes are:
1 141 4713 5794 6611

The indexes of the first 12 Woodhall primes are:
2 3 6 30 75 81 115 123 249 362 384 462
```

## jq

Works with jq and gojq, the C and Go implementations of jq

The algorithm for checking whether a number is prime is too slow for finding more than the first Cullen prime, or more than the first four Woodall primes.

```def is_prime:
. as \$n
| if (\$n < 2)         then false
elif (\$n % 2 == 0)  then \$n == 2
elif (\$n % 3 == 0)  then \$n == 3
elif (\$n % 5 == 0)  then \$n == 5
elif (\$n % 7 == 0)  then \$n == 7
elif (\$n % 11 == 0) then \$n == 11
elif (\$n % 13 == 0) then \$n == 13
elif (\$n % 17 == 0) then \$n == 17
elif (\$n % 19 == 0) then \$n == 19
else
(\$n | sqrt) as \$rt
| 23
| until( . > \$rt or (\$n % . == 0); .+2)
| . > \$rt
end;

def ipow(\$m; \$n): reduce range(0;\$n) as \$i (1; \$m * .);

def cullen: ipow(2;.) * . + 1;

def woodall: cullen - 2;

"First 20 Cullen numbers (n * 2^n + 1):",
(range(1; 21) | cullen),
"\n\nFirst 20 Woodall numbers (n * 2^n - 1):",
(range(1; 21) | woodall),

"\n\nFirst Cullen primes (in terms of n):",
limit(1;
range(1; infinite)
| select(cullen|is_prime) ),

"\n\nFirst 4 Woodall primes (in terms of n):",
limit(4;
range(0; infinite)
| select(woodall|is_prime) ) ;

Output:
```First 20 Cullen numbers (n * 2^n + 1):
3
9
25
65
161
385
897
2049
4609
10241
22529
49153
106497
229377
491521
1048577
2228225
4718593
9961473
20971521

First 20 Woodall numbers (n * 2^n - 1):
1
7
23
63
159
383
895
2047
4607
10239
22527
49151
106495
229375
491519
1048575
2228223
4718591
9961471
20971519

First Cullen primes (in terms of n):
1

First 4 Woodall primes (in terms of n):
2
3
6
30
```

## Julia

Translation of: Raku
```using Lazy
using Primes

cullen(n, two = BigInt(2)) = n * two^n + 1
woodall(n, two = BigInt(2)) = n * two^n - 1
primecullens = @>> Lazy.range() filter(n -> isprime(cullen(n)))
primewoodalls = @>> Lazy.range() filter(n -> isprime(woodall(n)))

println("First 20 Cullen numbers: ( n × 2**n + 1)\n", [cullen(n, 2) for n in 1:20]) # A002064
println("First 20 Woodall numbers: ( n × 2**n - 1)\n", [woodall(n, 2) for n in 1:20]) # A003261
println("\nFirst 5 Cullen primes: (in terms of n)\n",  take(5, primecullens))  # A005849
println("\nFirst 12 Woodall primes: (in terms of n)\n", Int.(collect(take(12, primewoodalls)))) # A002234
```
Output:
```First 20 Cullen numbers: ( n × 2**n + 1)
[3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521]
First 20 Woodall numbers: ( n × 2**n - 1)
[1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, 106495, 229375, 491519, 1048575, 2228223, 4718591, 9961471, 20971519]

First 5 Cullen primes: (in terms of n)
List: (1 141 4713 5795 6611)

First 12 Woodall primes: (in terms of n)
[2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462]
```

## Lua

```function T(t) return setmetatable(t, {__index=table}) end
table.range = function(t,n) local s=T{} for i=1,n do s[i]=i end return s end
table.map = function(t,f) local s=T{} for i=1,#t do s[i]=f(t[i]) end return s end

function cullen(n) return (n<<n)+1 end
print("First 20 Cullen numbers:")
print(T{}:range(20):map(cullen):concat(" "))

function woodall(n) return (n<<n)-1 end
print("First 20 Woodall numbers:")
print(T{}:range(20):map(woodall):concat(" "))
```
Output:
```First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519```

## Mathematica/Wolfram Language

```ClearAll[CullenNumber, WoodallNumber]
SetAttributes[{CullenNumber, WoodallNumber}, Listable]
CullenNumber[n_Integer] := n 2^n + 1
WoodallNumber[n_Integer] := n 2^n - 1

CullenNumber[Range[20]]
WoodallNumber[Range[20]]

cps = {};
Do[
If[PrimeQ[CullenNumber[i]],
AppendTo[cps, i];
If[Length[cps] >= 5, Break[]]
]
,
{i, 1, \[Infinity]}
]
cps

wps = {};
Do[
If[PrimeQ[WoodallNumber[i]],
AppendTo[wps, i];
If[Length[wps] >= 12, Break[]]
]
,
{i, 1, \[Infinity]}
];
wps
```
Output:
```{3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521}
{1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, 106495, 229375, 491519, 1048575, 2228223, 4718591, 9961471, 20971519}
{1, 141, 4713, 5795, 6611}
{2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462}```

## Maxima

```/* Functions */
cullen(n):=(n*2^n)+1\$
woodall(n):=(n*2^n)-1\$

/* Test cases */
makelist(cullen(i),i,20);
makelist(woodall(i),i,20);
```
Output:
```[3,9,25,65,161,385,897,2049,4609,10241,22529,49153,106497,229377,491521,1048577,2228225,4718593,9961473,20971521]

[1,7,23,63,159,383,895,2047,4607,10239,22527,49151,106495,229375,491519,1048575,2228223,4718591,9961471,20971519]
```

## Nim

Library: Integers
```import std/strformat
import integers

iterator cullenNumbers(): (int, Integer) =
var n = 1
var p = newInteger(2)
while true:
yield (n , n * p + 1)
inc n
p = p shl 1

iterator woodallNumbers(): (int, Integer) =
var n = 1
var p = newInteger(2)
while true:
yield (n , n * p - 1)
inc n
p = p shl 1

echo "First 20 Cullen numbers:"
for (n, cn) in cullenNumbers():
stdout.write &"{cn:>9}"
if n mod 5 == 0: echo()
if n == 20: break

echo "\nFirst 20 Woodall numbers:"
for (n, wn) in woodallNumbers():
stdout.write &"{wn:>9}"
if n mod 5 == 0: echo()
if n == 20: break

echo "\nFirst 5 Cullen primes (in terms of n):"
var count = 0
for (n, cn) in cullenNumbers():
if cn.isPrime:
stdout.write ' ', n
inc count
if count == 5: break
echo()

echo "\nFirst 12 Woodall primes (in terms of n):"
count = 0
for (n, wn) in woodallNumbers():
if wn.isPrime:
stdout.write ' ', n
inc count
if count == 12: break
echo()
```
Output:
```First 20 Cullen numbers:
3        9       25       65      161
385      897     2049     4609    10241
22529    49153   106497   229377   491521
1048577  2228225  4718593  9961473 20971521

First 20 Woodall numbers:
1        7       23       63      159
383      895     2047     4607    10239
22527    49151   106495   229375   491519
1048575  2228223  4718591  9961471 20971519

First 5 Cullen primes (in terms of n):
1 141 4713 5795 6611

First 12 Woodall primes (in terms of n):
2 3 6 30 75 81 115 123 249 362 384 462
```

## PARI/GP

```/* Define the Cullen and Woodall number functions */
cullen(n) = n * 2^n + 1;
woodall(n) = n * 2^n - 1;

{
/* Generate the first 20 Cullen and Woodall numbers */
print(vector(20, n, cullen(n)));
print(vector(20, n, woodall(n)));

/* Find the first 5 Cullen prime numbers */
cps = [];
for(i = 1, +oo,
if(isprime(cullen(i)),
cps = concat(cps, i);
if(#cps >= 5, break);
);
);
print(cps);

/* Find the first 12 Woodall prime numbers */
wps = [];
for(i = 1, +oo,
if(isprime(woodall(i)),
wps = concat(wps, i);
if(#wps >= 12, break);
);
);
print(wps);
}```
Output:
```[3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521]
[1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, 106495, 229375, 491519, 1048575, 2228223, 4718591, 9961471, 20971519]
[1, 141, 4713, 5795, 6611]
[2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462]

```

## Perl

Library: ntheory
```use strict;
use warnings;
use bigint;
use ntheory 'is_prime';
use constant Inf  => 1e10;

sub cullen {
my(\$n,\$c) = @_;
(\$n * 2**\$n) + \$c;
}

my(\$m,\$n);

(\$m,\$n) = (20,0);
print "First \$m Cullen numbers:\n";
print do { \$n < \$m ? (++\$n and cullen(\$_,1) . ' ') : last } for 1 .. Inf;

(\$m,\$n) = (20,0);
print "\n\nFirst \$m Woodall numbers:\n";
print do { \$n < \$m ? (++\$n and cullen(\$_,-1) . ' ') : last } for 1 .. Inf;

(\$m,\$n) = (5,0);
print "\n\nFirst \$m Cullen primes: (in terms of n)\n";
print do { \$n < \$m ? (!!is_prime(cullen \$_,1) and ++\$n and "\$_ ") : last } for 1 .. Inf;

(\$m,\$n) = (12,0);
print "\n\nFirst \$m Woodall primes: (in terms of n)\n";
print do { \$n < \$m ? (!!is_prime(cullen \$_,-1) and ++\$n and "\$_ ") : last } for 1 .. Inf;
```
Output:
```First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

First 5 Cullen primes: (in terms of n)
1 141 4713 5795 6611

First 12 Woodall primes: (in terms of n)
2 3 6 30 75 81 115 123 249 362 384 462```

## Phix

```with javascript_semantics
atom t0 = time()
include mpfr.e

procedure cullen(mpz r, integer n)
mpz_ui_pow_ui(r,2,n)
mpz_mul_si(r,r,n)
end procedure

procedure woodall(mpz r, integer n)
cullen(r,n)
mpz_sub_si(r,r,2)
end procedure

sequence c = {}, w = {}
mpz z = mpz_init()
for i=1 to 20 do
cullen(z,i)
c = append(c,mpz_get_str(z))
mpz_sub_si(z,z,2)
w = append(w,mpz_get_str(z))
end for
printf(1," Cullen[1..20]:%s\nWoodall[1..20]:%s\n",{join(c),join(w)})

atom t1 = time()+1
c = {}
integer n = 1
while length(c)<iff(platform()=JS?2:5) do
cullen(z,n)
if mpz_prime(z) then c = append(c,sprint(n)) end if
n += 1
if time()>t1 and platform()!=JS then
progress("c(%d) [needs to get to 6611], %d found\r",{n,length(c)})
t1 = time()+2
end if
end while
if platform()!=JS then progress("") end if
printf(1,"First 5 Cullen primes (in terms of n):%s\n",{join(c)})
w = {}
n = 1
while length(w)<12 do
woodall(z,n)
if mpz_prime(z) then w = append(w,sprint(n)) end if
n += 1
end while
printf(1,"First 12 Woodall primes (in terms of n):%s\n",{join(w)})
?elapsed(time()-t0)
```
Output:
``` Cullen[1..20]:3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
Woodall[1..20]:1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
First 5 Cullen primes (in terms of n):1 141 4713 5795 6611
First 12 Woodall primes (in terms of n):2 3 6 30 75 81 115 123 249 362 384 462
"34.4s"
```

Note the time given is for desktop/Phix 64bit, for comparison the Julia entry took about 20s on the same box. On 32-bit it is nearly 5 times slower (2 minutes and 38s) and hence under pwa/p2js in a browser (which is inherently 32bit) it is limited to the first 2 cullen primes only, but manages that in 0.4s.

## Python

```print("working...")
print("First 20 Cullen numbers:")

for n in range(1,21):
num = n*pow(2,n)+1
print(str(num),end= " ")

print()
print("First 20 Woodall numbers:")

for n in range(1,21):
num = n*pow(2,n)-1
print(str(num),end=" ")

print()
print("done...")
```
Output:
```working...
First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
done...
```

### Bit Shift

Translation of: Quackery
```def cullen(n): return((n<<n)+1)

def woodall(n): return((n<<n)-1)

print("First 20 Cullen numbers:")
for i in range(1,21):
print(cullen(i),end=" ")
print()
print()
print("First 20 Woodall numbers:")
for i in range(1,21):
print(woodall(i),end=" ")
print()
```
Output:

Same as Quackery.

## Quackery

```  [ dup << 1+ ]  is cullen  ( n --> n )

[ dup << 1 - ] is woodall ( n --> n )

say "First 20 Cullen numbers:" cr
20 times [ i^ 1+ cullen echo sp ] cr
cr
say "First 20 Woodall numbers:" cr
20 times [ i^ 1+ woodall echo sp ] cr```
Output:
```First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
```

## Raku

```my @cullen  = ^∞ .map: { \$_ × 1 +< \$_ + 1 };
my @woodall = ^∞ .map: { \$_ × 1 +< \$_ - 1 };

put "First 20 Cullen numbers: ( n × 2**n + 1)\n",     @cullen[1..20]; # A002064
put "\nFirst 20 Woodall numbers: ( n × 2**n - 1)\n", @woodall[1..20]; # A003261
put "\nFirst 5 Cullen primes: (in terms of n)\n",     @cullen.grep( &is-prime, :k )[^5];  # A005849
put "\nFirst 12 Woodall primes:  (in terms of n)\n", @woodall.grep( &is-prime, :k )[^12]; # A002234
```
Output:
```First 20 Cullen numbers: ( n × 2**n + 1)
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers: ( n × 2**n - 1)
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

First 5 Cullen primes: (in terms of n)
1 141 4713 5795 6611

First 12 Woodall primes:  (in terms of n)
2 3 6 30 75 81 115 123 249 362 384 462```

## Ring

```load "stdlib.ring"

see "working..." + nl
see "First 20 Cullen numbers:" + nl

for n = 1 to 20
num = n*pow(2,n)+1
see "" + num + " "
next

see nl + nl + "First 20 Woodall numbers:" + nl

for n = 1 to 20
num = n*pow(2,n)-1
see "" + num + " "
next

see nl + "done..." + nl```
Output:
```working...
First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
done...
```

## RPL

```≪ DUP R→B
1 ROT START SL NEXT
1 + B→R
≫ 'CULLIN' STO

≪ CULLIN 2 -
≫ 'WDHAL' STO
```
```≪ {} 1 20 FOR n n CULLIN + NEXT ≫ EVAL
≪ {} 1 20 FOR n n WDHAL + NEXT ≫ EVAL
```
Output:
```2: { 3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 }
1: { 1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519 }
```

## Ruby

The OpenSSL prime? methods is faster than the standard one. It still takes 1-2 minutes to calculate the first 5 Cullen primes.

```require 'openssl'

cullen  = Enumerator.new{|y| (1..).each{|n| y << (n*(1<<n) + 1)} }
woodall = Enumerator.new{|y| (1..).each{|n| y << (n*(1<<n) - 1)} }
cullen_primes  = Enumerator.new{|y| (1..).each {|i|y << i if OpenSSL::BN.new(cullen.next).prime?}}
woodall_primes = Enumerator.new{|y| (1..).each{|i|y << i if OpenSSL::BN.new(woodall.next).prime?}}

num = 20
puts "First #{num} Cullen numbers:\n#{cullen.first(num).join(" ")}"
puts "First #{num} Woodal numbers:\n#{woodall.first(num).join(" ")}"
puts "First 5 Cullen primes:\n#{cullen_primes.first(5).join(", ")}"
puts "First 12 Woodall primes:\n#{woodall_primes.first(12).join(", ")}"
```
Output:
```First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
First 20 Woodal numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
First 5 Cullen primes:
1, 141, 4713, 5795, 6611
First 12 Woodall primes:
2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462
```

## Rust

```// [dependencies]
// rug = "1.15.0"

use rug::integer::IsPrime;
use rug::Integer;

fn cullen_number(n: u32) -> Integer {
let num = Integer::from(n);
(num << n) + 1
}

fn woodall_number(n: u32) -> Integer {
let num = Integer::from(n);
(num << n) - 1
}

fn main() {
println!("First 20 Cullen numbers:");
let cullen: Vec<String> = (1..21).map(|x| cullen_number(x).to_string()).collect();
println!("{}", cullen.join(" "));

println!("\nFirst 20 Woodall numbers:");
let woodall: Vec<String> = (1..21).map(|x| woodall_number(x).to_string()).collect();
println!("{}", woodall.join(" "));

println!("\nFirst 5 Cullen primes in terms of n:");
let cullen_primes: Vec<String> = (1..)
.filter_map(|x| match cullen_number(x).is_probably_prime(25) {
IsPrime::No => None,
_ => Some(x.to_string()),
})
.take(5)
.collect();
println!("{}", cullen_primes.join(" "));

println!("\nFirst 12 Woodall primes in terms of n:");
let woodall_primes: Vec<String> = (1..)
.filter_map(|x| match woodall_number(x).is_probably_prime(25) {
IsPrime::No => None,
_ => Some(x.to_string()),
})
.take(12)
.collect();
println!("{}", woodall_primes.join(" "));
}
```
Output:
```First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

First 5 Cullen primes in terms of n:
1 141 4713 5795 6611

First 12 Woodall primes in terms of n:
2 3 6 30 75 81 115 123 249 362 384 462
```

## Scala

Translation of: Java
```import java.math.BigInteger
import scala.annotation.tailrec

object CullenAndWoodhall extends App {

val Certainty = 20
var number: BigInteger = _
var power: BigInteger = _
var count: Int = _
var primeIndex: Int = _

sealed trait NumberType
case object Cullen extends NumberType
case object Woodhall extends NumberType

numberSequence(20, Cullen)
numberSequence(20, Woodhall)
primeSequence(5, Cullen)
primeSequence(12, Woodhall)

def numberSequence(aCount: Int, aNumberType: NumberType): Unit = {
println(s"\nThe first \$aCount \$aNumberType numbers are:")
numberInitialise()
(1 to aCount).foreach { _ =>
print(nextNumber(aNumberType).toString + " ")
}
println()
}

def primeSequence(aCount: Int, aNumberType: NumberType): Unit = {
println(s"\nThe indexes of the first \$aCount \$aNumberType primes are:")
primeInitialise()

@tailrec
def findPrimes(): Unit = {
if (count < aCount) {
if (nextNumber(aNumberType).isProbablePrime(Certainty)) {
print(primeIndex + " ")
count += 1
}
primeIndex += 1
findPrimes()
}
}

findPrimes()
println()
}

def nextNumber(aNumberType: NumberType): BigInteger = {
power = power.shiftLeft(1)
aNumberType match {
case Woodhall => number.multiply(power).subtract(BigInteger.ONE)
}
}

def numberInitialise(): Unit = {
number = BigInteger.ZERO
power = BigInteger.ONE
}

def primeInitialise(): Unit = {
count = 0
primeIndex = 1
numberInitialise()
}
}
```
Output:
```
The first 20 Cullen numbers are:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

The first 20 Woodhall numbers are:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

The indexes of the first 5 Cullen primes are:
1 141 4713 5794 6611

The indexes of the first 12 Woodhall primes are:
2 3 6 30 75 81 115 123 249 362 384 462
```

## Sidef

```func cullen(n)  { n * (1 << n) + 1 }
func woodall(n) { n * (1 << n) - 1 }

say "First 20 Cullen numbers:"
say cullen.map(1..20).join(' ')

say "\nFirst 20 Woodall numbers:"
say woodall.map(1..20).join(' ')

say "\nFirst 5 Cullen primes: (in terms of n)"
say 5.by { cullen(_).is_prime }.join(' ')

say "\nFirst 12 Woodall primes: (in terms of n)"
say 12.by { woodall(_).is_prime }.join(' ')
```
Output:
```First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

First 5 Cullen primes: (in terms of n)
1 141 4713 5795 6611

First 12 Woodall primes: (in terms of n)
2 3 6 30 75 81 115 123 249 362 384 462
```

## Verilog

```module main;
integer n, num;

initial begin
\$display("First 20 Cullen numbers:");
for(n = 1; n <= 20; n=n+1)
begin
num = n * (2 ** n) + 1;
\$write(num, "  ");
end
\$display("");
\$display("First 20 Woodall numbers:");
for(n = 1; n <= 20; n=n+1)
begin
num = n * (2 ** n) - 1;
\$write(num, "  ");
end
\$finish ;
end
endmodule
```

## Wren

### CLI

Library: Wren-big

Cullen primes limited to first 2 as very slow after that.

```import "./big" for BigInt

var cullen = Fn.new { |n| (BigInt.one << n) * n + 1 }

var woodall = Fn.new { |n| cullen.call(n) - 2 }

System.print("First 20 Cullen numbers (n * 2^n + 1):")
for (n in 1..20) System.write("%(cullen.call(n)) ")

System.print("\n\nFirst 20 Woodall numbers (n * 2^n - 1):")
for (n in 1..20) System.write("%(woodall.call(n)) ")

System.print("\n\nFirst 2 Cullen primes (in terms of n):")
var count = 0
var n = 1
while (count < 2) {
var cn = cullen.call(n)
if (cn.isProbablePrime(5)){
System.write("%(n) ")
count = count + 1
}
n = n + 1
}

System.print("\n\nFirst 12 Woodall primes (in terms of n):")
count = 0
n = 1
while (count < 12) {
var wn = woodall.call(n)
if (wn.isProbablePrime(5)){
System.write("%(n) ")
count = count + 1
}
n = n + 1
}
System.print()
```
Output:
```First 20 Cullen numbers (n * 2^n + 1):
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers (n * 2^n - 1):
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

First 2 Cullen primes (in terms of n):
1 141

First 12 Woodall primes (in terms of n):
2 3 6 30 75 81 115 123 249 362 384 462
```

### Embedded

Library: Wren-gmp

Cullen primes still slow to emerge, just over 10 seconds overall.

```/* Cullen_and_woodall_numbers_2.wren */

import "./gmp" for Mpz

var cullen = Fn.new { |n| (Mpz.one << n) * n + 1 }

var woodall = Fn.new { |n| cullen.call(n) - 2 }

System.print("First 20 Cullen numbers (n * 2^n + 1):")
for (n in 1..20) System.write("%(cullen.call(n)) ")

System.print("\n\nFirst 20 Woodall numbers (n * 2^n - 1):")
for (n in 1..20) System.write("%(woodall.call(n)) ")

System.print("\n\nFirst 5 Cullen primes (in terms of n):")
var count = 0
var n = 1
while (count < 5) {
var cn = cullen.call(n)
if (cn.probPrime(15) > 0){
System.write("%(n) ")
count = count + 1
}
n = n + 1
}

System.print("\n\nFirst 12 Woodall primes (in terms of n):")
count = 0
n = 1
while (count < 12) {
var wn = woodall.call(n)
if (wn.probPrime(15) > 0){
System.write("%(n) ")
count = count + 1
}
n = n + 1
}
System.print()
```
Output:
```First 20 Cullen numbers (n * 2^n + 1):
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers (n * 2^n - 1):
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

First 5 Cullen primes (in terms of n):
1 141 4713 5795 6611

First 12 Woodall primes (in terms of n):
2 3 6 30 75 81 115 123 249 362 384 462
```

## XPL0

Translation of: 11l
```func Cullen(N);
int  N;
return N<<N + 1;

func Woodall(N);
int  N;
return N<<N - 1;

int  I;
[Text(0, "First 20 Cullen numbers:^m^j");
for I:= 1 to 20 do
[IntOut(0, Cullen(I));  ChOut(0, ^ )];
CrLf(0);
CrLf(0);
Text(0, "First 20 Woodall numbers:^m^j");
for I:= 1 to 20 do
[IntOut(0, Woodall(I));  ChOut(0, ^ )];
CrLf(0);
]```
Output:
```First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
```