Cullen and Woodall numbers

From Rosetta Code
Task
Cullen and Woodall numbers
You are encouraged to solve this task according to the task description, using any language you may know.

A Cullen number is a number of the form n × 2n + 1 where n is a natural number.

A Woodall number is very similar. It is a number of the form n × 2n - 1 where n is a natural number.

So for each n the associated Cullen number and Woodall number differ by 2.

Woodall numbers are sometimes referred to as Riesel numbers or Cullen numbers of the second kind.


Cullen primes are Cullen numbers that are prime. Similarly, Woodall primes are Woodall numbers that are prime.

It is common to list the Cullen and Woodall primes by the value of n rather than the full evaluated expression. They tend to get very large very quickly. For example, the third Cullen prime, n == 4713, has 1423 digits when evaluated.


Task
  • Write procedures to find Cullen numbers and Woodall numbers.
  • Use those procedures to find and show here, on this page the first 20 of each.


Stretch
  • Find and show the first 5 Cullen primes in terms of n.
  • Find and show the first 12 Woodall primes in terms of n.


See also


11l

Translation of: Python
F cullen(n)
   R (n << n) + 1

F woodall(n)
   R (n << n) - 1

print(‘First 20 Cullen numbers:’)
L(i) 1..20
   print(cullen(i), end' ‘ ’)
print()
print()
print(‘First 20 Woodall numbers:’)
L(i) 1..20
   print(woodall(i), end' ‘ ’)
print()
Output:
First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519 

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32

Uses Algol 68Gs LONG LONG INT for long integers. The number of digits must be specified and appears to affect the run time as larger sies are specified. This sample only shows the first two Cullen primes as the time taken to find the third is rather long.

BEGIN # find Cullen and Woodall numbers and determine which are prime #
      # a Cullen number n is n2^2 + 1, Woodall number is n2^n - 1     #
    PR read "primes.incl.a68" PR                  # include prime utilities #
    PR precision 800 PR # set number of digits for Algol 68G LONG LONG INT #
    # returns the nth Cullen number #
    OP CULLEN = ( INT n )LONG LONG INT: n * LONG LONG INT(2)^n + 1;
    # returns the nth Woodall number #
    OP WOODALL = ( INT n )LONG LONG INT: CULLEN n - 2;

    # show the first 20 Cullen numbers #
    print( ( "1st 20 Cullen numbers:" ) );
    FOR n TO 20 DO
        print( ( " ", whole( CULLEN n, 0 ) ) )
    OD;
    print( ( newline ) );
    # show the first 20 Woodall numbers #
    print( ( "1st 20 Woodall numbers:" ) );
    FOR n TO 20 DO
        print( ( " ", whole( WOODALL n, 0 ) ) )
    OD;
    print( ( newline ) );
    BEGIN # first 2 Cullen primes #
        print( ( "Index of the 1st 2 Cullen primes:" ) );
        LONG LONG INT power of 2 := 1;
        INT prime count := 0;
        FOR n WHILE prime count < 2 DO
            power of 2 *:= 2;
            LONG LONG INT c n = ( n * power of 2 ) + 1;
            IF is probably prime( c n ) THEN
                prime count +:= 1;
                print( ( " ", whole( n, 0 ) ) )
            FI
        OD;
        print( ( newline ) )
    END;
    BEGIN # first 12 Woodall primes #
        print( ( "Index of the 1st 12 Woodall primes:" ) );
        LONG LONG INT power of 2 := 1;
        INT prime count := 0;
        FOR n WHILE prime count < 12 DO
            power of 2 *:= 2;
            LONG LONG INT w n = ( n * power of 2 ) - 1;
            IF is probably prime( w n ) THEN
                prime count +:= 1;
                print( ( " ", whole( n, 0 ) ) )
            FI
        OD;
        print( ( newline ) )
    END
END
Output:
1st 20 Cullen numbers: 3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
1st 20 Woodall numbers: 1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
Index of the 1st 2 Cullen primes: 1 141
Index of the 1st 12 Woodall primes: 2 3 6 30 75 81 115 123 249 362 384 462

Arturo

cullen: function [n]->
    inc n * 2^n

woodall: function [n]->
    dec n * 2^n

print ["First 20 cullen numbers:" join.with:" " to [:string] map 1..20 => cullen]
print ["First 20 woodall numbers:" join.with:" " to [:string] map 1..20 => woodall]
Output:
First 20 cullen numbers: 3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 
First 20 woodall numbers: 1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

Asymptote

int num = 0;

write("First 20 Cullen numbers:");

for(int n = 1; n < 20; ++n) {
    num = n * (2^n) + 1;
    write(" ", num, suffix=none);
}

write("");
write("First 20 Woodall numbers:");

for(int n = 1; n < 20; ++n) {
    num = n * (2^n) - 1;
    write(" ", num, suffix=none);
}

AWK

# syntax: GAWK -f CULLEN_AND_WOODALL_NUMBERS.AWK
BEGIN {
    start = 1
    stop = 20
    printf("Cullen %d-%d:",start,stop)
    for (n=start; n<=stop; n++) {
      printf(" %d",n*(2^n)+1)
    }
    printf("\n")
    printf("Woodall %d-%d:",start,stop)
    for (n=start; n<=stop; n++) {
      printf(" %d",n*(2^n)-1)
    }
    printf("\n")
    exit(0)
}
Output:
Cullen 1-20: 3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
Woodall 1-20: 1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

BASIC

Applesoft BASIC

Works with: Chipmunk Basic
Translation of: Chipmunk Basic
10 REM Cullen and Woodall numbers
20 HOME : REM  20 CLS for Chipmunk Basic
30 PRINT "First 20 Cullen numbers:"
40 FOR n = 1 TO 20
50 num = n*(2^n)+1
60 PRINT INT(num);" ";
70 NEXT
80 PRINT : PRINT
90 PRINT "First 20 Woodall numbers:"
100 FOR n = 1 TO 20
110 num = n*(2^n)-1
120 PRINT INT(num);" ";
130 NEXT n
140 END

BASIC256

Works with: Run BASIC
Works with: Just BASIC
Works with: Liberty BASIC
Translation of: FreeBASIC
print "First 20 Cullen numbers:"

for n = 1 to 20
	num = n * (2^n)+1
	print int(num); " ";
next

print : print
print "First 20 Woodall numbers:"

for n = 1 to 20
	num = n * (2^n)-1
	print int(num); " ";
next n
end
Output:
Igual que la entrada de FreeBASIC.

Chipmunk Basic

Works with: Chipmunk Basic version 3.6.4
Works with: Applesoft BASIC
Works with: MSX_BASIC
Works with: PC-BASIC version any
Works with: QBasic
Translation of: FreeBASIC
10 REM Cullen and Woodall numbers
20 CLS : REM  20 HOME for Applesoft BASIC
30 PRINT "First 20 Cullen numbers:"
40 FOR n = 1 TO 20
50 num = n*(2^n)+1
60 PRINT INT(num);" ";
70 NEXT
80 PRINT : PRINT
90 PRINT "First 20 Woodall numbers:"
100 FOR n = 1 TO 20
110 num = n*(2^n)-1
120 PRINT INT(num);" ";
130 NEXT n
140 END
Output:
Same as FreeBASIC entry.

FreeBASIC

Dim As Uinteger n, num
Print "First 20 Cullen numbers:"

For n = 1 To 20
    num = n * (2^n)+1
    Print num; " ";
Next

Print !"\n\nFirst 20 Woodall numbers:"

For n = 1 To 20
    num = n * (2^n)-1
    Print num; " ";
Next n
Sleep
Output:
First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

Gambas

Public Sub Main() 
  
  Dim n, num As Integer

  Print "First 20 Cullen numbers:" 
  
  For n = 1 To 20 
    num = n * (2 ^ n) + 1 
    Print num; " "; 
  Next 
  
  Print "\n\nFirst 20 Woodall numbers:" 
  
  For n = 1 To 20 
    num = n * (2 ^ n) - 1 
    Print num; " "; 
  Next
  
End
Output:
Same as FreeBASIC entry.

GW-BASIC

The Chipmunk Basic solution works without any changes.

OxygenBasic

uses console

int n, num
printl "First 20 Cullen numbers:"

for n = 1 to 20
    num = n * (2^n)+1
    print num " ";
next

print cr
printl cr "First 20 Woodall numbers:"

for n = 1 to 20
    num = n * (2^n)-1
    print num " ";
next n

printl cr "Enter ..."
waitkey
Output:
Same as FreeBASIC entry.

PureBasic

OpenConsole()
PrintN("First 20 Cullen numbers:")

For n.i = 1 To 20
  num = n * Pow(2, n)+1
  Print(Str(num) + " ")
Next

PrintN(#CRLF$ + "First 20 Woodall numbers:")

For n.i = 1 To 20
  num = n * Pow(2, n)-1
  Print(Str(num) + " ")
Next n

PrintN(#CRLF$ + "--- terminado, pulsa RETURN---"): Input()
CloseConsole()
Output:
Igual que la entrada de FreeBASIC.

QBasic

Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
Works with: QB64
Works with: True BASIC
Translation of: FreeBASIC
DIM num AS LONG ''comment this line for True BASIC 
PRINT "First 20 Cullen numbers:"

FOR n = 1 TO 20
    LET num = n * (2 ^ n) + 1
    PRINT num;
NEXT n

PRINT
PRINT
PRINT "First 20 Woodall numbers:"

FOR n = 1 TO 20
    LET num = n * (2 ^ n) - 1
    PRINT num;
NEXT n
END
Output:
Igual que la entrada de FreeBASIC.

QB64

The QBasic solution works without any changes.

Run BASIC

Works with: BASIC256
Works with: Just BASIC
Works with: Liberty BASIC
print "First 20 Cullen numbers:"

for n = 1 to 20
	num = n * (2^n)+1
	print int(num); " ";
next

print : print
print "First 20 Woodall numbers:"

for n = 1 to 20
	num = n * (2^n)-1
	print int(num); " ";
next n
end
Output:
Same as FreeBASIC entry.

Tiny BASIC

REM Rosetta Code problem: https://rosettacode.org/wiki/Cullen_and_Woodall_numbers
REM by Jjuanhdez, 03/2023

    REM TinyBasic does not support values greater than 32767

    PRINT "First 11 Cullen numbers:"
    LET N = 0
    LET I = 1
 10 IF I = 12 THEN GOTO 20
        GOSUB 50
        LET N = (I*R) +1
        PRINT N, " "
    LET I = I+1
    GOTO 10
 20 PRINT ""
    PRINT "First 11 Woodall numbers:"
    LET I = 1
 30 IF I = 12 THEN GOTO 40
        GOSUB 50
        LET N = (I*R) -1
        PRINT N, " "
    LET I = I+1
    GOTO 30
 40 END

 50 REM Exponent calculation 
    LET A = 2
	LET B = I
    LET X = 1
    LET R = 2
 60 IF X >= B THEN RETURN
    LET T = R
    IF R < A THEN LET R = A*A
    IF T < A THEN GOTO 70
    IF R >= A THEN LET R = R*A 
 70 LET X = X+1
    GOTO 60
Output:
First 11 Cullen numbers:
3 
9 
25 
65 
161 
385 
897 
2049 
4609 
10241 
22529 

First 11 Woodall numbers:
1 
7 
23 
63 
159 
383 
895 
2047 
4607 
10239 
22527

True BASIC

Works with: QBasic
Translation of: FreeBASIC
REM DIM num AS LONG               !uncomment this line for QBasic
PRINT "First 20 Cullen numbers:"

FOR n = 1 TO 20
    LET num = n * (2 ^ n) + 1
    PRINT num;
NEXT n

PRINT 
PRINT
PRINT "First 20 Woodall numbers:"

FOR n = 1 TO 20
    LET num = n * (2 ^ n) - 1
    PRINT num;
NEXT n
END
Output:
Igual que la entrada de FreeBASIC.

MSX Basic

The Chipmunk Basic solution works without any changes.

XBasic

Works with: Windows XBasic
PROGRAM	"progname"
VERSION	"0.0000"

IMPORT "xma"

DECLARE FUNCTION Entry ()

FUNCTION Entry ()

PRINT "First 20 Cullen numbers:"

FOR n = 1 TO 20
    num! = n * POWER (2, n) + 1
    PRINT num!;
NEXT n

PRINT
PRINT
PRINT "First 20 Woodall numbers:"

FOR n = 1 TO 20
    num! = n * POWER (2, n) - 1
    PRINT num!;
NEXT n

END FUNCTION
END PROGRAM

Yabasic

print "First 20 Cullen numbers:"

for n = 1 to 20
    num = n * (2^n)+1
    print num, " ";
next

print "\n\nFirst 20 Woodall numbers:"

for n = 1 to 20
    num = n * (2^n)-1
    print num, " ";
next n
print
end
Output:
Igual que la entrada de FreeBASIC.

C++

#include <cstdint>
#include <iostream>
#include <string>

uint32_t number, power;

void number_initialise() {
	number = 0;
	power = 1;
}

enum NumberType { Cullen, Woodhall };

uint32_t next_number(const NumberType& number_type) {
	number += 1;
	power <<= 1;
	switch ( number_type ) {
		case Cullen:   return number * power + 1;
		case Woodhall: return number * power - 1;
	};
	return 0;
}

void number_sequence(const uint32_t& count, const NumberType& number_type) {
	std::string type = ( number_type == Cullen ) ? "Cullen" : "Woodhall";
	std::cout << "The first " << count << " " << type << " numbers are:" << std::endl;
	number_initialise();
	for ( uint32_t index = 1; index <= count; ++index ) {
		std::cout << next_number(number_type) << " ";
	}
	std::cout << std::endl << std::endl;
}

int main() {
	number_sequence(20, Cullen);
	number_sequence(20, Woodhall);
}
Output:
The first 20 Cullen numbers are:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 

The first 20 Woodhall numbers are:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519 

COBOL

Translation of: FreeBASIC
Works with: OpenCOBOL version 2.0
       IDENTIFICATION DIVISION.
       PROGRAM-ID. CullenWoodallNumbers.

       DATA DIVISION.
       WORKING-STORAGE SECTION.
       01 n   PIC 9(4) COMP-5 VALUE 1.
       01 num PIC 9(8) COMP-5.
       01 i   PIC 9(4) COMP-5 VALUE 1.

       PROCEDURE DIVISION.
       DISPLAY "First 20 Cullen numbers:".

       PERFORM VARYING i FROM 1 BY 1 UNTIL i > 20
           COMPUTE num = i * (2 ** i) + 1
           DISPLAY num WITH NO ADVANCING
           DISPLAY " " WITH NO ADVANCING
       END-PERFORM.

       DISPLAY " ".

       DISPLAY "First 20 Woodall numbers:".

       PERFORM VARYING i FROM 1 BY 1 UNTIL i > 20
           COMPUTE num = i * (2 ** i) - 1
           DISPLAY num WITH NO ADVANCING
           DISPLAY " " WITH NO ADVANCING
       END-PERFORM.

       STOP RUN.

Dart

Translation of: FreeBASIC
void main() {
  int n, num;
  print("First 20 Cullen numbers:");

  for (n = 1; n <= 20; n++) {
    num = n * (1 << n) + 1;
    print("$num ");
  }

  print("\n\nFirst 20 Woodall numbers:");

  for (n = 1; n <= 20; n++) {
    num = n * (1 << n) - 1;
    print("$num ");
  }
}

Delphi

Works with: Delphi version 6.0


uses SysUtils,StdCtrls;

procedure CullenWoodallTest(Memo: TMemo);

implementation

procedure FindCullenNumbers(Memo: TMemo);
var N,R: integer;
var S: string;
begin
S:='';
Memo.Lines.Add('First 20 Cullen Numbers:');
for N:=1 to 20 do
	begin
	R:=N * (1 shl N) + 1;
	S:=S+IntToStr(R)+' ';
	end;
Memo.Lines.Add(S);
end;


procedure FindWoodallNumbers(Memo: TMemo);
var N,R: integer;
var S: string;
begin
S:='';
Memo.Lines.Add('First 20 Woodall  Numbers:');
for N:=1 to 20 do
	begin
	R:=N * (1 shl N) - 1;
	S:=S+IntToStr(R)+' ';
	end;
Memo.Lines.Add(S);
end;


procedure CullenWoodallTest(Memo: TMemo);
begin
FindCullenNumbers(Memo);
FindWoodallNumbers(Memo);
end;
Output:
First 20 Cullen Numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 
First 20 Woodall  Numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519 

Draco

proc cullen(word n) ulong:
    ulong ln;
    ln := n;
    (ln << n) + 1
corp

proc woodall(word n) ulong:
    ulong ln;
    ln := n;
    (ln << n) - 1
corp

proc main() void:
    word n;
    for n from 1 upto 20 do
        writeln(n:2, ": ", cullen(n):10, woodall(n):10)
    od
corp
Output:
 1:          3         1
 2:          9         7
 3:         25        23
 4:         65        63
 5:        161       159
 6:        385       383
 7:        897       895
 8:       2049      2047
 9:       4609      4607
10:      10241     10239
11:      22529     22527
12:      49153     49151
13:     106497    106495
14:     229377    229375
15:     491521    491519
16:    1048577   1048575
17:    2228225   2228223
18:    4718593   4718591
19:    9961473   9961471
20:   20971521  20971519

EasyLang

for n = 1 to 20
   write n * pow 2 n + 1 & " "
.
print ""
for n = 1 to 20
   write n * pow 2 n - 1 & " "
.
print ""

F#

// Cullen and Woodall numbers. Nigel Galloway: January 14th., 2022
let Cullen,Woodall=let fG n (g:int)=(bigint g)*2I**g+n in fG 1I, fG -1I
Seq.initInfinite((+)1>>Cullen)|>Seq.take 20|>Seq.iter(printf "%A "); printfn ""
Seq.initInfinite((+)1>>Woodall)|>Seq.take 20|>Seq.iter(printf "%A "); printfn ""
Seq.initInfinite((+)1)|>Seq.filter(fun n->let mutable  n=Woodall n in Open.Numeric.Primes.MillerRabin.IsProbablePrime &n)|>Seq.take 12|>Seq.iter(printf "%A "); printfn ""
Seq.initInfinite((+)1)|>Seq.filter(fun n->let mutable  n=Cullen n in Open.Numeric.Primes.MillerRabin.IsProbablePrime &n)|>Seq.take 5|>Seq.iter(printf "%A "); printfn ""
Output:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519 
2 3 6 30 75 81 115 123 249 362 384 462 
1 141 4713 5795 6611

Factor

Works with: Factor version 0.99 2022-04-03
USING: arrays kernel math math.vectors prettyprint ranges
sequences ;

20 [1..b] [ dup 2^ * 1 + ] map dup 2 v-n 2array simple-table.
Output:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

FutureBasic

local fn CullenAndWoodall( limit as long )
  NSUInteger i, cullen, woodall
  
  printf @"%13s %9s", fn StringUTF8String( @"Cullen" ), fn StringUTF8String( @"Woodall" )
  for i = 1 to limit
    cullen  = i * ( 2^i ) + 1
    woodall = i * ( 2^i ) - 1
    printf @"%3lu %9lu %9lu", i, cullen, woodall
  next
end fn

fn CullenAndWoodall( 20 )

HandleEvents
Output:
       Cullen   Woodall
  1         3         1
  2         9         7
  3        25        23
  4        65        63
  5       161       159
  6       385       383
  7       897       895
  8      2049      2047
  9      4609      4607
 10     10241     10239
 11     22529     22527
 12     49153     49151
 13    106497    106495
 14    229377    229375
 15    491521    491519
 16   1048577   1048575
 17   2228225   2228223
 18   4718593   4718591
 19   9961473   9961471
 20  20971521  20971519


Go

package main

import (
    "fmt"
    big "github.com/ncw/gmp"
)

func cullen(n uint) *big.Int {
    one := big.NewInt(1)
    bn := big.NewInt(int64(n))
    res := new(big.Int).Lsh(one, n)
    res.Mul(res, bn)
    return res.Add(res, one)
}

func woodall(n uint) *big.Int {
    res := cullen(n)
    return res.Sub(res, big.NewInt(2))
}

func main() {
    fmt.Println("First 20 Cullen numbers (n * 2^n + 1):")
    for n := uint(1); n <= 20; n++ {
        fmt.Printf("%d ", cullen(n))
    }

    fmt.Println("\n\nFirst 20 Woodall numbers (n * 2^n - 1):")
    for n := uint(1); n <= 20; n++ {
        fmt.Printf("%d ", woodall(n))
    }

    fmt.Println("\n\nFirst 5 Cullen primes (in terms of n):")
    count := 0
    for n := uint(1); count < 5; n++ {
        cn := cullen(n)
        if cn.ProbablyPrime(15) {
            fmt.Printf("%d ", n)
            count++
        }
    }

    fmt.Println("\n\nFirst 12 Woodall primes (in terms of n):")
    count = 0
    for n := uint(1); count < 12; n++ {
        cn := woodall(n)
        if cn.ProbablyPrime(15) {
            fmt.Printf("%d ", n)
            count++
        }
    }
    fmt.Println()
}
Output:
First 20 Cullen numbers (n * 2^n + 1):
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 

First 20 Woodall numbers (n * 2^n - 1):
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519 

First 5 Cullen primes (in terms of n):
1 141 4713 5795 6611 

First 12 Woodall primes (in terms of n):
2 3 6 30 75 81 115 123 249 362 384 462 

Haskell

findCullen :: Int -> Integer
findCullen n = toInteger ( n * 2 ^ n + 1 )

cullens :: [Integer]
cullens = map findCullen [1 .. 20]

woodalls :: [Integer]
woodalls = map (\i -> i - 2 ) cullens

main :: IO ( )
main = do
   putStrLn "First 20 Cullen numbers:"
   print cullens
   putStrLn "First 20 Woodall numbers:"
   print woodalls
Output:
First 20 Cullen numbers:
[3,9,25,65,161,385,897,2049,4609,10241,22529,49153,106497,229377,491521,1048577,2228225,4718593,9961473,20971521]
First 20 Woodall numbers:
[1,7,23,63,159,383,895,2047,4607,10239,22527,49151,106495,229375,491519,1048575,2228223,4718591,9961471,20971519]

J

cullen=:  {{ y* 1+2x^y }}
woodall=: {{ y*_1+2x^y }}

Task example:

   cullen 1+i.20
3 10 27 68 165 390 903 2056 4617 10250 22539 49164 106509 229390 491535 1048592 2228241 4718610 9961491 20971540
   woodall 1+i.20
1 6 21 60 155 378 889 2040 4599 10230 22517 49140 106483 229362 491505 1048560 2228207 4718574 9961453 20971500

Java

import java.math.BigInteger;

public final  class CullenAndWoodhall {

	public static void main(String[] aArgs) {
		numberSequence(20, NumberType.Cullen);
		
		numberSequence(20, NumberType.Woodhall);
		
		primeSequence(5, NumberType.Cullen);
		
		primeSequence(12, NumberType.Woodhall);
	}

	private enum NumberType { Cullen, Woodhall }
	
	private static void numberSequence(int aCount, NumberType aNumberType) {
		System.out.println();
		System.out.println("The first " + aCount + " " + aNumberType + " numbers are:");
		numberInitialise();
		for ( int index = 1; index <= aCount; index++ ) {
			System.out.print(nextNumber(aNumberType) + " ");
		}	
		System.out.println();	
	}
	
	private static void primeSequence(int aCount, NumberType aNumberType) {
		System.out.println();
		System.out.println("The indexes of the first " + aCount + " " + aNumberType + " primes are:");
		primeInitialise();
		
		while ( count < aCount ) {			
			if ( nextNumber(aNumberType).isProbablePrime(CERTAINTY) ) {
				System.out.print(primeIndex + " ");
				count += 1;
			}
			
			primeIndex += 1; 
		}
		System.out.println();
	}
	
	private static BigInteger nextNumber(NumberType aNumberType) {
		number = number.add(BigInteger.ONE);
		power = power.shiftLeft(1);
		return switch ( aNumberType ) {
			case Cullen -> number.multiply(power).add(BigInteger.ONE);
			case Woodhall -> number.multiply(power).subtract(BigInteger.ONE);
		};
	}
	
	private static void numberInitialise() {
		number = BigInteger.ZERO;
		power = BigInteger.ONE;		
	}
	
	private static void primeInitialise() {	
		count = 0;
		primeIndex = 1;
		numberInitialise();
	}
	
	private static BigInteger number;
	private static BigInteger power;
	private static int count;
	private static int primeIndex;
	
	private static final int CERTAINTY = 20;
	
}
Output:

The first 20 Cullen numbers are:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 

The first 20 Woodhall numbers are:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519 

The indexes of the first 5 Cullen primes are:
1 141 4713 5794 6611

The indexes of the first 12 Woodhall primes are:
2 3 6 30 75 81 115 123 249 362 384 462 

jq

Works with jq and gojq, the C and Go implementations of jq

The algorithm for checking whether a number is prime is too slow for finding more than the first Cullen prime, or more than the first four Woodall primes.

def is_prime:
  . as $n
  | if ($n < 2)         then false
    elif ($n % 2 == 0)  then $n == 2
    elif ($n % 3 == 0)  then $n == 3
    elif ($n % 5 == 0)  then $n == 5
    elif ($n % 7 == 0)  then $n == 7
    elif ($n % 11 == 0) then $n == 11
    elif ($n % 13 == 0) then $n == 13
    elif ($n % 17 == 0) then $n == 17
    elif ($n % 19 == 0) then $n == 19
    else
      ($n | sqrt) as $rt
      | 23
      | until( . > $rt or ($n % . == 0); .+2)
      | . > $rt
    end;

def ipow($m; $n): reduce range(0;$n) as $i (1; $m * .);

def cullen: ipow(2;.) * . + 1;

def woodall: cullen - 2;

def task:
  "First 20 Cullen numbers (n * 2^n + 1):",
  (range(1; 21) | cullen),
  "\n\nFirst 20 Woodall numbers (n * 2^n - 1):",
  (range(1; 21) | woodall),

  "\n\nFirst Cullen primes (in terms of n):",
  limit(1;
    range(1; infinite)
    | select(cullen|is_prime) ),

  "\n\nFirst 4 Woodall primes (in terms of n):",
  limit(4;
    range(0; infinite)
    | select(woodall|is_prime) ) ;

task
Output:
First 20 Cullen numbers (n * 2^n + 1):
3
9
25
65
161
385
897
2049
4609
10241
22529
49153
106497
229377
491521
1048577
2228225
4718593
9961473
20971521


First 20 Woodall numbers (n * 2^n - 1):
1
7
23
63
159
383
895
2047
4607
10239
22527
49151
106495
229375
491519
1048575
2228223
4718591
9961471
20971519

First Cullen primes (in terms of n):
1


First 4 Woodall primes (in terms of n):
2
3
6
30


Julia

Translation of: Raku
using Lazy
using Primes

cullen(n, two = BigInt(2)) = n * two^n + 1
woodall(n, two = BigInt(2)) = n * two^n - 1
primecullens = @>> Lazy.range() filter(n -> isprime(cullen(n)))
primewoodalls = @>> Lazy.range() filter(n -> isprime(woodall(n)))

println("First 20 Cullen numbers: ( n × 2**n + 1)\n", [cullen(n, 2) for n in 1:20]) # A002064
println("First 20 Woodall numbers: ( n × 2**n - 1)\n", [woodall(n, 2) for n in 1:20]) # A003261
println("\nFirst 5 Cullen primes: (in terms of n)\n",  take(5, primecullens))  # A005849
println("\nFirst 12 Woodall primes: (in terms of n)\n", Int.(collect(take(12, primewoodalls)))) # A002234
Output:
First 20 Cullen numbers: ( n × 2**n + 1)
[3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521]
First 20 Woodall numbers: ( n × 2**n - 1)
[1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, 106495, 229375, 491519, 1048575, 2228223, 4718591, 9961471, 20971519]

First 5 Cullen primes: (in terms of n)
List: (1 141 4713 5795 6611)

First 12 Woodall primes: (in terms of n)
[2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462]

Lua

function T(t) return setmetatable(t, {__index=table}) end
table.range = function(t,n) local s=T{} for i=1,n do s[i]=i end return s end
table.map = function(t,f) local s=T{} for i=1,#t do s[i]=f(t[i]) end return s end

function cullen(n) return (n<<n)+1 end
print("First 20 Cullen numbers:")
print(T{}:range(20):map(cullen):concat(" "))

function woodall(n) return (n<<n)-1 end
print("First 20 Woodall numbers:")
print(T{}:range(20):map(woodall):concat(" "))
Output:
First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

Mathematica /Wolfram Language

ClearAll[CullenNumber, WoodallNumber]
SetAttributes[{CullenNumber, WoodallNumber}, Listable]
CullenNumber[n_Integer] := n 2^n + 1
WoodallNumber[n_Integer] := n 2^n - 1

CullenNumber[Range[20]]
WoodallNumber[Range[20]]

cps = {};
Do[
 If[PrimeQ[CullenNumber[i]],
  AppendTo[cps, i];
  If[Length[cps] >= 5, Break[]]
  ]
 ,
 {i, 1, \[Infinity]}
 ]
cps

wps = {};
Do[
  If[PrimeQ[WoodallNumber[i]],
   AppendTo[wps, i];
   If[Length[wps] >= 12, Break[]]
   ]
  ,
  {i, 1, \[Infinity]}
  ];
wps
Output:
{3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521}
{1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, 106495, 229375, 491519, 1048575, 2228223, 4718591, 9961471, 20971519}
{1, 141, 4713, 5795, 6611}
{2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462}

Maxima

/* Functions */
cullen(n):=(n*2^n)+1$
woodall(n):=(n*2^n)-1$

/* Test cases */
makelist(cullen(i),i,20);
makelist(woodall(i),i,20);
Output:
[3,9,25,65,161,385,897,2049,4609,10241,22529,49153,106497,229377,491521,1048577,2228225,4718593,9961473,20971521]

[1,7,23,63,159,383,895,2047,4607,10239,22527,49151,106495,229375,491519,1048575,2228223,4718591,9961471,20971519]

Nim

Library: Integers
import std/strformat
import integers

iterator cullenNumbers(): (int, Integer) =
  var n = 1
  var p = newInteger(2)
  while true:
    yield (n , n * p + 1)
    inc n
    p = p shl 1

iterator woodallNumbers(): (int, Integer) =
  var n = 1
  var p = newInteger(2)
  while true:
    yield (n , n * p - 1)
    inc n
    p = p shl 1

echo "First 20 Cullen numbers:"
for (n, cn) in cullenNumbers():
  stdout.write &"{cn:>9}"
  if n mod 5 == 0: echo()
  if n == 20: break

echo "\nFirst 20 Woodall numbers:"
for (n, wn) in woodallNumbers():
  stdout.write &"{wn:>9}"
  if n mod 5 == 0: echo()
  if n == 20: break

echo "\nFirst 5 Cullen primes (in terms of n):"
var count = 0
for (n, cn) in cullenNumbers():
  if cn.isPrime:
    stdout.write ' ', n
    inc count
    if count == 5: break
echo()

echo "\nFirst 12 Woodall primes (in terms of n):"
count = 0
for (n, wn) in woodallNumbers():
  if wn.isPrime:
    stdout.write ' ', n
    inc count
    if count == 12: break
echo()
Output:
First 20 Cullen numbers:
        3        9       25       65      161
      385      897     2049     4609    10241
    22529    49153   106497   229377   491521
  1048577  2228225  4718593  9961473 20971521

First 20 Woodall numbers:
        1        7       23       63      159
      383      895     2047     4607    10239
    22527    49151   106495   229375   491519
  1048575  2228223  4718591  9961471 20971519

First 5 Cullen primes (in terms of n):
 1 141 4713 5795 6611

First 12 Woodall primes (in terms of n):
 2 3 6 30 75 81 115 123 249 362 384 462

PARI/GP

/* Define the Cullen and Woodall number functions */
cullen(n) = n * 2^n + 1;
woodall(n) = n * 2^n - 1;

{
/* Generate the first 20 Cullen and Woodall numbers */
print(vector(20, n, cullen(n)));
print(vector(20, n, woodall(n)));

/* Find the first 5 Cullen prime numbers */
cps = [];
for(i = 1, +oo,
    if(isprime(cullen(i)),
        cps = concat(cps, i);
        if(#cps >= 5, break);
    );
);
print(cps);

/* Find the first 12 Woodall prime numbers */
wps = [];
for(i = 1, +oo,
    if(isprime(woodall(i)),
        wps = concat(wps, i);
        if(#wps >= 12, break);
    );
);
print(wps);
}
Output:
[3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521]
[1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, 106495, 229375, 491519, 1048575, 2228223, 4718591, 9961471, 20971519]
[1, 141, 4713, 5795, 6611]
[2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462]

PascalABC.NET

##
function cullen(n: integer) := n * power(2bi, n) + 1;

function woodall(n: integer) := n * power(2bi, n) - 1;

(1..20).select(x -> cullen(x)).println;
(1..20).select(x -> woodall(x)).println;
Output:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

Perl

Library: ntheory
use strict;
use warnings;
use bigint;
use ntheory 'is_prime';
use constant Inf  => 1e10;

sub cullen {
    my($n,$c) = @_;
    ($n * 2**$n) + $c;
}

my($m,$n);

($m,$n) = (20,0);
print "First $m Cullen numbers:\n";
print do { $n < $m ? (++$n and cullen($_,1) . ' ') : last } for 1 .. Inf;

($m,$n) = (20,0);
print "\n\nFirst $m Woodall numbers:\n";
print do { $n < $m ? (++$n and cullen($_,-1) . ' ') : last } for 1 .. Inf;

($m,$n) = (5,0);
print "\n\nFirst $m Cullen primes: (in terms of n)\n";
print do { $n < $m ? (!!is_prime(cullen $_,1) and ++$n and "$_ ") : last } for 1 .. Inf;

($m,$n) = (12,0);
print "\n\nFirst $m Woodall primes: (in terms of n)\n";
print do { $n < $m ? (!!is_prime(cullen $_,-1) and ++$n and "$_ ") : last } for 1 .. Inf;
Output:
First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

First 5 Cullen primes: (in terms of n)
1 141 4713 5795 6611

First 12 Woodall primes: (in terms of n)
2 3 6 30 75 81 115 123 249 362 384 462

Phix

with javascript_semantics
atom t0 = time()
include mpfr.e
 
procedure cullen(mpz r, integer n)
    mpz_ui_pow_ui(r,2,n)
    mpz_mul_si(r,r,n)
    mpz_add_si(r,r,1)
end procedure
 
procedure woodall(mpz r, integer n)
    cullen(r,n)
    mpz_sub_si(r,r,2)
end procedure

sequence c = {}, w = {}
mpz z = mpz_init()
for i=1 to 20 do
    cullen(z,i)
    c = append(c,mpz_get_str(z))
    mpz_sub_si(z,z,2)
    w = append(w,mpz_get_str(z))
end for
printf(1," Cullen[1..20]:%s\nWoodall[1..20]:%s\n",{join(c),join(w)})
 
atom t1 = time()+1
c = {}
integer n = 1
while length(c)<iff(platform()=JS?2:5) do
    cullen(z,n)
    if mpz_prime(z) then c = append(c,sprint(n)) end if
    n += 1
    if time()>t1 and platform()!=JS then
        progress("c(%d) [needs to get to 6611], %d found\r",{n,length(c)})
        t1 = time()+2
    end if
end while
if platform()!=JS then progress("") end if
printf(1,"First 5 Cullen primes (in terms of n):%s\n",{join(c)})
w = {}
n = 1
while length(w)<12 do
    woodall(z,n)
    if mpz_prime(z) then w = append(w,sprint(n)) end if
    n += 1
end while
printf(1,"First 12 Woodall primes (in terms of n):%s\n",{join(w)})
?elapsed(time()-t0)
Output:
 Cullen[1..20]:3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
Woodall[1..20]:1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
First 5 Cullen primes (in terms of n):1 141 4713 5795 6611
First 12 Woodall primes (in terms of n):2 3 6 30 75 81 115 123 249 362 384 462
"34.4s"

Note the time given is for desktop/Phix 64bit, for comparison the Julia entry took about 20s on the same box. On 32-bit it is nearly 5 times slower (2 minutes and 38s) and hence under pwa/p2js in a browser (which is inherently 32bit) it is limited to the first 2 cullen primes only, but manages that in 0.4s.

Python

print("working...")
print("First 20 Cullen numbers:")

for n in range(1,21):
    num = n*pow(2,n)+1
    print(str(num),end= " ")

print()
print("First 20 Woodall numbers:")

for n in range(1,21):
    num = n*pow(2,n)-1
    print(str(num),end=" ")

print()
print("done...")
Output:
working...
First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
done...

Bit Shift

Translation of: Quackery
def cullen(n): return((n<<n)+1)
	
def woodall(n): return((n<<n)-1)

print("First 20 Cullen numbers:")
for i in range(1,21):
	print(cullen(i),end=" ")
print()
print()
print("First 20 Woodall numbers:")
for i in range(1,21): 
	print(woodall(i),end=" ")
print()
Output:

Same as Quackery.

Quackery

  [ dup << 1+ ]  is cullen  ( n --> n )

  [ dup << 1 - ] is woodall ( n --> n )

  say "First 20 Cullen numbers:" cr
  20 times [ i^ 1+ cullen echo sp ] cr
  cr
  say "First 20 Woodall numbers:" cr
  20 times [ i^ 1+ woodall echo sp ] cr
Output:
First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519 

Raku

my @cullen  = ^∞ .map: { $_ × 1 +< $_ + 1 };
my @woodall = ^∞ .map: { $_ × 1 +< $_ - 1 };

put "First 20 Cullen numbers: ( n × 2**n + 1)\n",     @cullen[1..20]; # A002064
put "\nFirst 20 Woodall numbers: ( n × 2**n - 1)\n", @woodall[1..20]; # A003261
put "\nFirst 5 Cullen primes: (in terms of n)\n",     @cullen.grep( &is-prime, :k )[^5];  # A005849
put "\nFirst 12 Woodall primes:  (in terms of n)\n", @woodall.grep( &is-prime, :k )[^12]; # A002234
Output:
First 20 Cullen numbers: ( n × 2**n + 1)
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers: ( n × 2**n - 1)
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

First 5 Cullen primes: (in terms of n)
1 141 4713 5795 6611

First 12 Woodall primes:  (in terms of n)
2 3 6 30 75 81 115 123 249 362 384 462

Ring

load "stdlib.ring"

see "working..." + nl
see "First 20 Cullen numbers:" + nl

for n = 1 to 20
    num = n*pow(2,n)+1
    see "" + num + " "
next

see nl + nl + "First 20 Woodall numbers:" + nl

for n = 1 to 20
    num = n*pow(2,n)-1
    see "" + num + " "
next

see nl + "done..." + nl
Output:
working...
First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519 
done...

RPL

≪ DUP R→B 
   1 ROT START SL NEXT 
   1 + B→R
≫ 'CULLIN' STO

≪ CULLIN 2 - 
≫ 'WDHAL' STO 
≪ {} 1 20 FOR n n CULLIN + NEXT ≫ EVAL
≪ {} 1 20 FOR n n WDHAL + NEXT ≫ EVAL
Output:
2: { 3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 }
1: { 1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519 }

Ruby

The OpenSSL prime? methods is faster than the standard one. It still takes 1-2 minutes to calculate the first 5 Cullen primes.

require 'openssl'

cullen  = Enumerator.new{|y| (1..).each{|n| y << (n*(1<<n) + 1)} }
woodall = Enumerator.new{|y| (1..).each{|n| y << (n*(1<<n) - 1)} }
cullen_primes  = Enumerator.new{|y| (1..).each {|i|y << i if OpenSSL::BN.new(cullen.next).prime?}}
woodall_primes = Enumerator.new{|y| (1..).each{|i|y << i if OpenSSL::BN.new(woodall.next).prime?}} 

num = 20
puts "First #{num} Cullen numbers:\n#{cullen.first(num).join(" ")}"
puts "First #{num} Woodal numbers:\n#{woodall.first(num).join(" ")}"
puts "First 5 Cullen primes:\n#{cullen_primes.first(5).join(", ")}"
puts "First 12 Woodall primes:\n#{woodall_primes.first(12).join(", ")}"
Output:
First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521
First 20 Woodal numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519
First 5 Cullen primes:
1, 141, 4713, 5795, 6611
First 12 Woodall primes:
2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462

Rust

// [dependencies]
// rug = "1.15.0"

use rug::integer::IsPrime;
use rug::Integer;

fn cullen_number(n: u32) -> Integer {
    let num = Integer::from(n);
    (num << n) + 1
}

fn woodall_number(n: u32) -> Integer {
    let num = Integer::from(n);
    (num << n) - 1
}

fn main() {
    println!("First 20 Cullen numbers:");
    let cullen: Vec<String> = (1..21).map(|x| cullen_number(x).to_string()).collect();
    println!("{}", cullen.join(" "));

    println!("\nFirst 20 Woodall numbers:");
    let woodall: Vec<String> = (1..21).map(|x| woodall_number(x).to_string()).collect();
    println!("{}", woodall.join(" "));

    println!("\nFirst 5 Cullen primes in terms of n:");
    let cullen_primes: Vec<String> = (1..)
        .filter_map(|x| match cullen_number(x).is_probably_prime(25) {
            IsPrime::No => None,
            _ => Some(x.to_string()),
        })
        .take(5)
        .collect();
    println!("{}", cullen_primes.join(" "));

    println!("\nFirst 12 Woodall primes in terms of n:");
    let woodall_primes: Vec<String> = (1..)
        .filter_map(|x| match woodall_number(x).is_probably_prime(25) {
            IsPrime::No => None,
            _ => Some(x.to_string()),
        })
        .take(12)
        .collect();
    println!("{}", woodall_primes.join(" "));
}
Output:
First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

First 5 Cullen primes in terms of n:
1 141 4713 5795 6611

First 12 Woodall primes in terms of n:
2 3 6 30 75 81 115 123 249 362 384 462


Scala

Translation of: Java
import java.math.BigInteger
import scala.annotation.tailrec

object CullenAndWoodhall extends App {

  val Certainty = 20
  var number: BigInteger = _
  var power: BigInteger = _
  var count: Int = _
  var primeIndex: Int = _

  sealed trait NumberType
  case object Cullen extends NumberType
  case object Woodhall extends NumberType

  numberSequence(20, Cullen)
  numberSequence(20, Woodhall)
  primeSequence(5, Cullen)
  primeSequence(12, Woodhall)

  def numberSequence(aCount: Int, aNumberType: NumberType): Unit = {
  println(s"\nThe first $aCount $aNumberType numbers are:")
  numberInitialise()
  (1 to aCount).foreach { _ =>
    print(nextNumber(aNumberType).toString + " ")
  }
  println()
}


  def primeSequence(aCount: Int, aNumberType: NumberType): Unit = {
    println(s"\nThe indexes of the first $aCount $aNumberType primes are:")
    primeInitialise()

    @tailrec
    def findPrimes(): Unit = {
      if (count < aCount) {
        if (nextNumber(aNumberType).isProbablePrime(Certainty)) {
          print(primeIndex + " ")
          count += 1
        }
        primeIndex += 1
        findPrimes()
      }
    }

    findPrimes()
    println()
  }

  def nextNumber(aNumberType: NumberType): BigInteger = {
    number = number.add(BigInteger.ONE)
    power = power.shiftLeft(1)
    aNumberType match {
      case Cullen => number.multiply(power).add(BigInteger.ONE)
      case Woodhall => number.multiply(power).subtract(BigInteger.ONE)
    }
  }

  def numberInitialise(): Unit = {
    number = BigInteger.ZERO
    power = BigInteger.ONE
  }

  def primeInitialise(): Unit = {
    count = 0
    primeIndex = 1
    numberInitialise()
  }
}
Output:

The first 20 Cullen numbers are:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 

The first 20 Woodhall numbers are:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519 

The indexes of the first 5 Cullen primes are:
1 141 4713 5794 6611

The indexes of the first 12 Woodhall primes are:
2 3 6 30 75 81 115 123 249 362 384 462 

Sidef

func cullen(n)  { n * (1 << n) + 1 }
func woodall(n) { n * (1 << n) - 1 }

say "First 20 Cullen numbers:"
say cullen.map(1..20).join(' ')

say "\nFirst 20 Woodall numbers:"
say woodall.map(1..20).join(' ')

say "\nFirst 5 Cullen primes: (in terms of n)"
say 5.by { cullen(_).is_prime }.join(' ')

say "\nFirst 12 Woodall primes: (in terms of n)"
say 12.by { woodall(_).is_prime }.join(' ')
Output:
First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519

First 5 Cullen primes: (in terms of n)
1 141 4713 5795 6611

First 12 Woodall primes: (in terms of n)
2 3 6 30 75 81 115 123 249 362 384 462

Verilog

module main;
  integer n, num;
  
  initial begin
      $display("First 20 Cullen numbers:");
      for(n = 1; n <= 20; n=n+1) 
      begin
        num = n * (2 ** n) + 1;
        $write(num, "  ");
      end
      $display("");
      $display("First 20 Woodall numbers:");
      for(n = 1; n <= 20; n=n+1) 
      begin
        num = n * (2 ** n) - 1;
        $write(num, "  ");
      end
      $finish ;
    end
endmodule


Wren

CLI

Library: Wren-big

Cullen primes limited to first 2 as very slow after that.

import "./big" for BigInt

var cullen = Fn.new { |n| (BigInt.one << n) * n + 1 }

var woodall = Fn.new { |n| cullen.call(n) - 2 }

System.print("First 20 Cullen numbers (n * 2^n + 1):")
for (n in 1..20) System.write("%(cullen.call(n)) ")

System.print("\n\nFirst 20 Woodall numbers (n * 2^n - 1):")
for (n in 1..20) System.write("%(woodall.call(n)) ")

System.print("\n\nFirst 2 Cullen primes (in terms of n):")
var count = 0
var n = 1
while (count < 2) {
    var cn = cullen.call(n)
    if (cn.isProbablePrime(5)){
        System.write("%(n) ")
        count = count + 1
    }
    n = n + 1
}

System.print("\n\nFirst 12 Woodall primes (in terms of n):")
count = 0
n = 1
while (count < 12) {
    var wn = woodall.call(n)
    if (wn.isProbablePrime(5)){
        System.write("%(n) ")
        count = count + 1
    }
    n = n + 1
}
System.print()
Output:
First 20 Cullen numbers (n * 2^n + 1):
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 

First 20 Woodall numbers (n * 2^n - 1):
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519 

First 2 Cullen primes (in terms of n):
1 141 

First 12 Woodall primes (in terms of n):
2 3 6 30 75 81 115 123 249 362 384 462 


Embedded

Library: Wren-gmp

Cullen primes still slow to emerge, just over 10 seconds overall.

/* Cullen_and_woodall_numbers_2.wren */

import "./gmp" for Mpz

var cullen = Fn.new { |n| (Mpz.one << n) * n + 1 }

var woodall = Fn.new { |n| cullen.call(n) - 2 }

System.print("First 20 Cullen numbers (n * 2^n + 1):")
for (n in 1..20) System.write("%(cullen.call(n)) ")

System.print("\n\nFirst 20 Woodall numbers (n * 2^n - 1):")
for (n in 1..20) System.write("%(woodall.call(n)) ")

System.print("\n\nFirst 5 Cullen primes (in terms of n):")
var count = 0
var n = 1
while (count < 5) {
    var cn = cullen.call(n)
    if (cn.probPrime(15) > 0){
        System.write("%(n) ")
        count = count + 1
    }
    n = n + 1
}

System.print("\n\nFirst 12 Woodall primes (in terms of n):")
count = 0
n = 1
while (count < 12) {
    var wn = woodall.call(n)
    if (wn.probPrime(15) > 0){
        System.write("%(n) ")
        count = count + 1
    }
    n = n + 1
}
System.print()
Output:
First 20 Cullen numbers (n * 2^n + 1):
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 

First 20 Woodall numbers (n * 2^n - 1):
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519 

First 5 Cullen primes (in terms of n):
1 141 4713 5795 6611 

First 12 Woodall primes (in terms of n):
2 3 6 30 75 81 115 123 249 362 384 462 

XPL0

Translation of: 11l
func Cullen(N);
int  N;
return N<<N + 1;

func Woodall(N);
int  N;
return N<<N - 1;

int  I;
[Text(0, "First 20 Cullen numbers:^m^j");
for I:= 1 to 20 do
    [IntOut(0, Cullen(I));  ChOut(0, ^ )];
CrLf(0);
CrLf(0);
Text(0, "First 20 Woodall numbers:^m^j");
for I:= 1 to 20 do
    [IntOut(0, Woodall(I));  ChOut(0, ^ )];
CrLf(0);
]
Output:
First 20 Cullen numbers:
3 9 25 65 161 385 897 2049 4609 10241 22529 49153 106497 229377 491521 1048577 2228225 4718593 9961473 20971521 

First 20 Woodall numbers:
1 7 23 63 159 383 895 2047 4607 10239 22527 49151 106495 229375 491519 1048575 2228223 4718591 9961471 20971519