# Bitmap/Bézier curves/Cubic

(Redirected from Cubic bezier curves)
Bitmap/Bézier curves/Cubic
You are encouraged to solve this task according to the task description, using any language you may know.

Using the data storage type defined on this page for raster images, and the draw_line function defined in this other one, draw a cubic bezier curve (definition on Wikipedia).

## 11l

Translation of: Python
```T Colour = BVec3

V black = Colour(0, 0, 0)
V white = Colour(255, 255, 255)

T Bitmap
Int width, height
Colour background
[[Colour]] map

F (width = 40, height = 40, background = white)
assert(width > 0 & height > 0)
.width = width
.height = height
.background = background
.map = (0 .< height).map(h -> (0 .< @width).map(w -> @@background))

F fillrect(x, y, width, height, colour = black)
assert(x >= 0 & y >= 0 & width > 0 & height > 0)
L(h) 0 .< height
L(w) 0 .< width
.map[y + h][x + w] = colour

F chardisplay()
V txt = .map.map(row -> row.map(bit -> (I bit == @@.background {‘ ’} E ‘@’)).join(‘’))
txt = txt.map(row -> ‘|’row‘|’)
txt.insert(0, ‘+’(‘-’ * .width)‘+’)
txt.append(‘+’(‘-’ * .width)‘+’)
print(reversed(txt).join("\n"))

F set(x, y, colour = black)
.map[y][x] = colour

F get(x, y)
R .map[y][x]

F line(x0, y0, x1, y1)
‘Bresenham's line algorithm’
V dx = abs(x1 - x0)
V dy = abs(y1 - y0)
V (x, y) = (x0, y0)
V sx = I x0 > x1 {-1} E 1
V sy = I y0 > y1 {-1} E 1
I dx > dy
V err = dx / 2.0
L x != x1
.set(x, y)
err -= dy
I err < 0
y += sy
err += dx
x += sx
E
V err = dy / 2.0
L y != y1
.set(x, y)
err -= dx
I err < 0
x += sx
err += dy
y += sy
.set(x, y)

F cubicbezier(x0, y0, x1, y1, x2, y2, x3, y3, n = 20)
[(Int, Int)] pts
L(i) 0 .. n
V t = Float(i) / n
V a = (1. - t) ^ 3
V b = 3. * t * (1. - t) ^ 2
V c = 3.0 * t ^ 2 * (1.0 - t)
V d = t ^ 3

V x = Int(a * x0 + b * x1 + c * x2 + d * x3)
V y = Int(a * y0 + b * y1 + c * y2 + d * y3)
pts.append((x, y))
L(i) 0 .< n
.line(pts[i][0], pts[i][1], pts[i + 1][0], pts[i + 1][1])

V bitmap = Bitmap(17, 17)
bitmap.cubicbezier(16, 1, 1, 4, 3, 16, 15, 11)
bitmap.chardisplay()```
Output:
```+-----------------+
|                 |
|                 |
|                 |
|                 |
|         @@@@    |
|      @@@    @@@ |
|     @           |
|     @           |
|     @           |
|     @           |
|      @          |
|      @          |
|       @         |
|        @        |
|         @@@@    |
|             @@@@|
|                 |
+-----------------+
```

## Action!

```INCLUDE "H6:RGBLINE.ACT" ;from task Bresenham's line algorithm
INCLUDE "H6:REALMATH.ACT"

RGB black,yellow,violet,blue

TYPE IntPoint=[INT x,y]

PROC CubicBezier(RgbImage POINTER img
IntPoint POINTER p1,p2,p3,p4 RGB POINTER col)
INT i,n=[20],prevX,prevY,nextX,nextY
REAL one,two,three,ri,rn,rt,ra,rb,rc,rd,tmp1,tmp2,tmp3
REAL x1,y1,x2,y2,x3,y3,x4,y4

IntToReal(p1.x,x1) IntToReal(p1.y,y1)
IntToReal(p2.x,x2) IntToReal(p2.y,y2)
IntToReal(p3.x,x3) IntToReal(p3.y,y3)
IntToReal(p4.x,x4) IntToReal(p4.y,y4)
IntToReal(1,one)   IntToReal(2,two)
IntToReal(3,three) IntToReal(n,rn)
FOR i=0 TO n
DO
prevX=nextX prevY=nextY

IntToReal(i,ri)
RealDiv(ri,rn,rt)        ;t=i/n

RealSub(one,rt,tmp1)     ;tmp1=1-t
RealMult(tmp1,tmp1,tmp2) ;tmp2=(1-t)^2
RealMult(tmp2,tmp1,ra)   ;a=(1-t)^3

RealMult(three,rt,tmp2)  ;tmp2=3*t
RealMult(tmp1,tmp1,tmp3) ;tmp3=(1-t)^2
RealMult(tmp2,tmp3,rb)   ;b=3*t*(1-t)^2

RealMult(three,rt,tmp2)  ;tmp2=3*t
RealMult(rt,tmp1,tmp3)   ;tmp3=t*(1-t)
RealMult(tmp2,tmp3,rc)   ;c=3*t^2*(1-t)

RealMult(rt,rt,tmp2)     ;tmp2=t^2
RealMult(tmp2,rt,rd)     ;d=t^3

RealMult(ra,x1,tmp1)     ;tmp1=a*x1
RealMult(rb,x2,tmp2)     ;tmp2=b*x2
RealMult(rc,x3,tmp1)     ;tmp1=c*x3
RealMult(rd,x4,tmp1)     ;tmp1=d*x4
nextX=Round(tmp3)

RealMult(ra,y1,tmp1)     ;tmp1=a*y1
RealMult(rb,y2,tmp2)     ;tmp2=b*y2
RealMult(rc,y3,tmp1)     ;tmp1=c*y3
RealMult(rd,y4,tmp1)     ;tmp1=d*y4
nextY=Round(tmp3)

IF i>0 THEN
RgbLine(img,prevX,prevY,nextX,nextY,col)
FI
OD
RETURN

PROC DrawImage(RgbImage POINTER img BYTE x,y)
RGB POINTER ptr
BYTE i,j

ptr=img.data
FOR j=0 TO img.h-1
DO
FOR i=0 TO img.w-1
DO
IF RgbEqual(ptr,yellow) THEN
Color=1
ELSEIF RgbEqual(ptr,violet) THEN
Color=2
ELSEIF RgbEqual(ptr,blue) THEN
Color=3
ELSE
Color=0
FI
Plot(x+i,y+j)
ptr==+RGBSIZE
OD
OD
RETURN

PROC Main()
RgbImage img
BYTE CH=\$02FC,width=[70],height=[40]
BYTE ARRAY ptr(8400)
IntPoint p1,p2,p3,p4

Graphics(7+16)
SetColor(0,13,12) ;yellow
SetColor(1,4,8)   ;violet
SetColor(2,8,6)   ;blue
SetColor(4,0,0)   ;black

RgbBlack(black)
RgbYellow(yellow)
RgbViolet(violet)
RgbBlue(blue)

InitRgbImage(img,width,height,ptr)
FillRgbImage(img,black)

p1.x=0  p1.y=3
p2.x=10 p2.y=39
p3.x=69 p3.y=31
p4.x=40 p4.y=8
RgbLine(img,p1.x,p1.y,p2.x,p2.y,blue)
RgbLine(img,p2.x,p2.y,p3.x,p3.y,blue)
RgbLine(img,p3.x,p3.y,p4.x,p4.y,blue)
CubicBezier(img,p1,p2,p3,p4,yellow)
SetRgbPixel(img,p1.x,p1.y,violet)
SetRgbPixel(img,p2.x,p2.y,violet)
SetRgbPixel(img,p3.x,p3.y,violet)
SetRgbPixel(img,p4.x,p4.y,violet)

DrawImage(img,(160-width)/2,(96-height)/2)

DO UNTIL CH#\$FF OD
CH=\$FF
RETURN```
Output:

```procedure Cubic_Bezier
(  Picture        : in out Image;
P1, P2, P3, P4 : Point;
Color          : Pixel;
N              : Positive := 20
)  is
Points : array (0..N) of Point;
begin
for I in Points'Range loop
declare
T : constant Float := Float (I) / Float (N);
A : constant Float := (1.0 - T)**3;
B : constant Float := 3.0 * T * (1.0 - T)**2;
C : constant Float := 3.0 * T**2 * (1.0 - T);
D : constant Float := T**3;
begin
Points (I).X := Positive (A * Float (P1.X) + B * Float (P2.X) + C * Float (P3.X) + D * Float (P4.X));
Points (I).Y := Positive (A * Float (P1.Y) + B * Float (P2.Y) + C * Float (P3.Y) + D * Float (P4.Y));
end;
end loop;
for I in Points'First..Points'Last - 1 loop
Line (Picture, Points (I), Points (I + 1), Color);
end loop;
end Cubic_Bezier;
```

The following test

```   X : Image (1..16, 1..16);
begin
Fill (X, White);
Cubic_Bezier (X, (16, 1), (1, 4), (3, 16), (15, 11), Black);
Print (X);
```

should produce output:

```

HH
HH  HH
H      H
H      H
H       H
H        H
H         H
H         H
H         H
H         H
H         H
H
```

## ALGOL 68

Works with: ALGOL 68 version Revision 1 - one minor extension to language used - PRAGMA READ, similar to C's #include directive.
Works with: ALGOL 68G version Any - tested with release algol68g-2.6.

File: prelude/Bitmap/Bezier_curves/Cubic.a68

```# -*- coding: utf-8 -*- #

cubic bezier OF class image :=
(  REF IMAGE picture,
POINT p1, p2, p3, p4,
PIXEL color,
UNION(INT, VOID) in n
)VOID:
BEGIN
INT n = (in n|(INT n):n|20); # default 20 #
[0:n]POINT points;
FOR i FROM LWB points TO UPB points DO
REAL t = i / n,
a = (1 - t)**3,
b = 3 * t * (1 - t)**2,
c = 3 * t**2 * (1 - t),
d = t**3;
x OF points [i] := ENTIER (0.5 + a * x OF p1 + b * x OF p2 + c * x OF p3 + d * x OF p4);
y OF points [i] := ENTIER (0.5 + a * y OF p1 + b * y OF p2 + c * y OF p3 + d * y OF p4)
OD;
FOR i FROM LWB points TO UPB points - 1 DO
(line OF class image)(picture, points (i), points (i + 1), color)
OD
END # cubic bezier #;

SKIP```

File: test/Bitmap/Bezier_curves/Cubic.a68

```#!/usr/bin/a68g --script #
# -*- coding: utf-8 -*- #

PR READ "prelude/Bitmap.a68" PR; # c.f. [[rc:Bitmap]] #
PR READ "prelude/Bitmap/Bresenhams_line_algorithm.a68" PR; # c.f. [[rc:Bitmap/Bresenhams_line_algorithm]] #

# The following test #
test:(
REF IMAGE x = INIT LOC[16,16]PIXEL;
(fill OF class image)(x, (white OF class image));
(cubic bezier OF class image)(x, (16, 1), (1, 4), (3, 16), (15, 11), (black OF class image), EMPTY);
(print OF class image) (x)
)```

Output:

```ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffff000000000000ffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffff000000000000ffffffffffff000000000000ffffffffffffffffffffffffffffff
ffffffffffffffffffffffff000000ffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffffffffffffffffffffff000000ffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffffffffffffffff000000ffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffffffffff000000ffffffffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffff000000ffffffffffffffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffff000000ffffffffffffffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffff000000ffffffffffffffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffff000000ffffffffffffffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
000000ffffffffffffffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffffffffff
000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
```

## BBC BASIC

```      Width% = 200
Height% = 200

REM Set window size:
VDU 23,22,Width%;Height%;8,16,16,128

REM Draw cubic Bézier curve:
PROCbeziercubic(160,150, 10,120, 30,0, 150,50, 20, 0,0,0)
END

DEF PROCbeziercubic(x1,y1,x2,y2,x3,y3,x4,y4,n%,r%,g%,b%)
LOCAL i%, t, t1, a, b, c, d, p{()}
DIM p{(n%) x%,y%}

FOR i% = 0 TO n%
t = i% / n%
t1 = 1 - t
a = t1^3
b = 3 * t * t1^2
c = 3 * t^2 * t1
d = t^3
p{(i%)}.x% = INT(a * x1 + b * x2 + c * x3 + d * x4 + 0.5)
p{(i%)}.y% = INT(a * y1 + b * y2 + c * y3 + d * y4 + 0.5)
NEXT

FOR i% = 0 TO n%-1
PROCbresenham(p{(i%)}.x%,p{(i%)}.y%,p{(i%+1)}.x%,p{(i%+1)}.y%, \
\             r%,g%,b%)
NEXT
ENDPROC

DEF PROCbresenham(x1%,y1%,x2%,y2%,r%,g%,b%)
LOCAL dx%, dy%, sx%, sy%, e
dx% = ABS(x2% - x1%) : sx% = SGN(x2% - x1%)
dy% = ABS(y2% - y1%) : sy% = SGN(y2% - y1%)
IF dx% < dy% e = dx% / 2 ELSE e = dy% / 2
REPEAT
PROCsetpixel(x1%,y1%,r%,g%,b%)
IF x1% = x2% IF y1% = y2% EXIT REPEAT
IF dx% > dy% THEN
x1% += sx% : e -= dy% : IF e < 0 e += dx% : y1% += sy%
ELSE
y1% += sy% : e -= dx% : IF e < 0 e += dy% : x1% += sx%
ENDIF
UNTIL FALSE
ENDPROC

DEF PROCsetpixel(x%,y%,r%,g%,b%)
COLOUR 1,r%,g%,b%
GCOL 1
LINE x%*2,y%*2,x%*2,y%*2
ENDPROC
```

## C

"Interface" imglib.h.

```void cubic_bezier(
image img,
unsigned int x1, unsigned int y1,
unsigned int x2, unsigned int y2,
unsigned int x3, unsigned int y3,
unsigned int x4, unsigned int y4,
color_component r,
color_component g,
color_component b );
```
```#include <math.h>

/* number of segments for the curve */
#define N_SEG 20

#define plot(x, y) put_pixel_clip(img, x, y, r, g, b)
#define line(x0,y0,x1,y1) draw_line(img, x0,y0,x1,y1, r,g,b)

void cubic_bezier(
image img,
unsigned int x1, unsigned int y1,
unsigned int x2, unsigned int y2,
unsigned int x3, unsigned int y3,
unsigned int x4, unsigned int y4,
color_component r,
color_component g,
color_component b )
{
unsigned int i;
double pts[N_SEG+1][2];
for (i=0; i <= N_SEG; ++i)
{
double t = (double)i / (double)N_SEG;

double a = pow((1.0 - t), 3.0);
double b = 3.0 * t * pow((1.0 - t), 2.0);
double c = 3.0 * pow(t, 2.0) * (1.0 - t);
double d = pow(t, 3.0);

double x = a * x1 + b * x2 + c * x3 + d * x4;
double y = a * y1 + b * y2 + c * y3 + d * y4;
pts[i][0] = x;
pts[i][1] = y;
}

#if 0
/* draw only points */
for (i=0; i <= N_SEG; ++i)
{
plot( pts[i][0],
pts[i][1] );
}
#else
/* draw segments */
for (i=0; i < N_SEG; ++i)
{
int j = i + 1;
line( pts[i][0], pts[i][1],
pts[j][0], pts[j][1] );
}
#endif
}
#undef plot
#undef line
```

## D

This solution uses two modules, from the Grayscale image and Bresenham's line algorithm Tasks.

```import grayscale_image, bitmap_bresenhams_line_algorithm;

struct Pt { int x, y; } // Signed.

void cubicBezier(size_t nSegments=20, Color)
(Image!Color im,
in Pt p1, in Pt p2, in Pt p3, in Pt p4,
in Color color)
pure nothrow @nogc if (nSegments > 0) {
Pt[nSegments + 1] points = void;

foreach (immutable i, ref p; points) {
immutable double t = i / double(nSegments),
a = (1.0 - t) ^^ 3,
b = 3.0 * t * (1.0 - t) ^^ 2,
c = 3.0 * t ^^ 2 * (1.0 - t),
d = t ^^ 3;

alias T = typeof(Pt.x);
p = Pt(cast(T)(a * p1.x + b * p2.x + c * p3.x + d * p4.x),
cast(T)(a * p1.y + b * p2.y + c * p3.y + d * p4.y));
}

foreach (immutable i, immutable p; points[0 .. \$ - 1])
im.drawLine(p.x, p.y, points[i + 1].x, points[i + 1].y, color);
}

void main() {
auto im = new Image!Gray(17, 17);
im.clear(Gray.white);
im.cubicBezier(Pt(16, 1), Pt(1, 4), Pt(3, 16), Pt(15, 11),
Gray.black);
im.textualShow();
}
```
Output:
```.................
.............####
.........####....
........#........
.......#.........
......#..........
......#..........
.....#...........
.....#...........
.....#...........
.....#...........
......##....####.
........####.....
.................
.................
.................
.................```

## Delphi

Works with: Delphi version 6.0
```{This code would normally be stored in a separate library, but they presented here for clarity}

type T2DVector=packed record
X,Y: double;
end;

type T2DLine = packed record
P1,P2: T2DVector;
end;

type T2DVectorArray = array of T2DVector;

function MakeVector2D(const X,Y: double): T2DVector;
{Create 2D Vector from X and Y}
begin
Result.X:=X;
Result.Y:=Y;
end;

procedure DoCubicSplineLine(Steps: Integer; L1,L2: T2DLine; ClearArray: boolean; var PG: T2DVectorArray);
{Do cubic Bezier spline between L1.P1 and L2.P1  }
{L1.P1 = Point1, L1.P2 = Control1, L2.P1=Control2, L2.P2 = Point2}
var P: Integer;
var V: T2DVector;
var T: double;
var A,B,C,D,E,F,G,H : double;
begin
if ClearArray then SetLength(PG,0);
A :=  L2.P2.X - (3  * L2.P1.X) + (3  * L1.P2.X) - L1.P1.X;
B := (3  * L2.P1.X) - (6  * L1.P2.X) + (3  * L1.P1.X);
C := (3  * L1.P2.X) - (3  * L1.P1.X);
D := L1.P1.X;

E := L2.P2.Y - (3  * L2.P1.Y) + (3  * L1.P2.Y) - L1.P1.Y;
F := (3  * L2.P1.Y) - (6  * L1.P2.Y) + (3  * L1.P1.Y);
G := (3  * L1.P2.Y) - (3  * L1.P1.Y);
H := L1.P1.Y;

for P:=0 to Steps-1 do
begin
T :=P / (Steps-1);
V.X := (((A  * T) + B)  * T + C)  * T + D;
V.Y := (((E  * T) + F)  * T + G)  * T + H;
SetLength(PG,Length(PG)+1);
PG[High(PG)]:=V;
end;
end;

procedure MarkPoint(Image: TImage; P: TPoint);
begin
Image.Canvas.Pen.Width:=2;
Image.Canvas.Pen.Color:=clRed;
Image.Canvas.MoveTo(Trunc(P.X-3),Trunc(P.Y-3));
Image.Canvas.LineTo(Trunc(P.X+3),Trunc(P.Y+3));
Image.Canvas.MoveTo(Trunc(P.X+3),Trunc(P.Y-3));
Image.Canvas.LineTo(Trunc(P.X-3),Trunc(P.Y+3));
end;

procedure DrawControlPoint(Image: TImage; L: T2DLine);
var P1,P2: TPoint;
begin
Image.Canvas.Pen.Width:=1;
Image.Canvas.Pen.Color:=clBlue;
P1:=Point(Trunc(L.P1.X),Trunc(L.P1.Y));
P2:=Point(Trunc(L.P2.X),Trunc(L.P2.Y));

Image.Canvas.MoveTo(P1.X,P1.Y);
Image.Canvas.LineTo(P2.X,P2.Y);
Image.Canvas.Pen.Color:=clRed;
MarkPoint(Image,P2);
end;

procedure DrawOneSpline(Image: TImage; L1,L2: T2DLine);
var PG: T2DVectorArray;
var I: integer;
begin
DoCubicSplineLine(20,L1,L2,True,PG);
DrawControlPoint(Image,L1);
DrawControlPoint(Image,L2);

Image.Canvas.Pen.Width:=2;
Image.Canvas.Pen.Color:=clRed;
Image.Canvas.MoveTo(Trunc(PG[0].X),Trunc(PG[0].Y));
for I:=1 to High(PG) do
Image.Canvas.LineTo(Trunc(PG[I].X),Trunc(PG[I].Y));
end;

procedure ShowBezierCurve(Image: TImage);
var L1,L2: T2DLine;
begin
L1.P1:=MakeVector2D(50,50);
L1.P2:=MakeVector2D(250,50);
L2.P1:=MakeVector2D(50,250);
L2.P2:=MakeVector2D(250,250);
DrawOneSpline(Image, L1,L2);
L1.P1:=MakeVector2D(250,250);
L1.P2:=MakeVector2D(450,250);
L2.P1:=MakeVector2D(250,50);
L2.P2:=MakeVector2D(450,50);
DrawOneSpline(Image, L1,L2);

Image.Invalidate;
end;
```
Output:
```
Elapsed Time: 1.171 ms.
```

## F#

```/// Uses Vector<float> from Microsoft.FSharp.Math (in F# PowerPack)
module CubicBezier

/// Create bezier curve from p1 to p4, using the control points p2, p3
/// Returns the requested number of segments
let cubic_bezier (p1:vector) (p2:vector) (p3:vector) (p4:vector) segments =
[0 .. segments - 1]
|> List.map(fun i ->
let t = float i / float segments
let a = (1. - t) ** 3.
let b = 3. * t * ((1. - t) ** 2.)
let c = 3. * (t ** 2.) * (1. - t)
let d = t ** 3.
let x = a * p1.[0] + b * p2.[0] + c * p3.[0] + d * p4.[0]
let y = a * p1.[1] + b * p2.[1] + c * p3.[1] + d * p4.[1]
vector [x; y])
```
```// For rendering..
let drawPoints points (canvas:System.Windows.Controls.Canvas) =
Y1 = -v1.[1],
X2 = v2.[0],
Y2 = -v2.[1],
StrokeThickness = 2.)) |> ignore
let renderPoint (previous:vector) (current:vector) =
current

```

## Factor

The points should probably be in a sequence...

```USING: arrays kernel locals math math.functions
rosettacode.raster.storage sequences ;
IN: rosettacode.raster.line

! this gives a function
:: (cubic-bezier) ( P0 P1 P2 P3 -- bezier )
[ :> x
1 x - 3 ^ P0 n*v
1 x - sq 3 * x * P1 n*v
1 x - 3 * x sq * P2 n*v
x 3 ^ P3 n*v
v+ v+ v+ ] ; inline
! gives an interval of x from 0 to 1 to map the bezier function
: t-interval ( x -- interval )
[ iota ] keep 1 - [ / ] curry map ;
! turns a list of points into the list of lines between them
: points-to-lines ( seq -- seq )
dup rest [ 2array ] 2map ;
: draw-lines ( {R,G,B} points image -- )
[ [ first2 ] dip draw-line ] curry with each ;
:: bezier-lines ( {R,G,B} P0 P1 P2 P3 image -- )
! 100 is an arbitrary value.. could be given as a parameter..
100 t-interval P0 P1 P2 P3 (cubic-bezier) map
points-to-lines
{R,G,B} swap image draw-lines ;
```

## FBSL

Windows' graphics origin is located at the bottom-left corner of device bitmap.

Translation of BBC BASIC using pure FBSL's built-in graphics functions:

```#DEFINE WM_LBUTTONDOWN 513
#DEFINE WM_CLOSE 16

FBSLSETTEXT(ME, "Bezier Cubic")
FBSLSETFORMCOLOR(ME, RGB(0, 255, 255)) ' Cyan: persistent background color
FBSL.GETDC(ME) ' Use volatile FBSL.GETDC below to avoid extra assignments

RESIZE(ME, 0, 0, 235, 235)
CENTER(ME)
SHOW(ME)

DIM Height AS INTEGER
FBSL.GETCLIENTRECT(ME, 0, 0, 0, Height)

BEGIN EVENTS
SELECT CASE CBMSG
CASE WM_LBUTTONDOWN: BezierCube(160, 150, 10, 120, 30, 0, 150, 50, 20) ' Draw
CASE WM_CLOSE: FBSL.RELEASEDC(ME, FBSL.GETDC) ' Clean up
END SELECT
END EVENTS

SUB BezierCube(x1, y1, x2, y2, x3, y3, x4, y4, n)
TYPE POINTAPI
x AS INTEGER
y AS INTEGER
END TYPE

DIM t, t1, a, b, c, d, p[n] AS POINTAPI

FOR DIM i = 0 TO n
t = i / n: t1 = 1 - t
a = t1 ^ 3
b = 3 * t * t1 ^ 2
c = 3 * t ^ 2 * t1
d = t ^ 3
p[i].x = a * x1 + b * x2 + c * x3 + d * x4 + 0.5
p[i].y = Height - (a * y1 + b * y2 + c * y3 + d * y4 + 0.5)
NEXT

FOR i = 0 TO n - 1
Bresenham(p[i].x, p[i].y, p[i + 1].x, p[i + 1].y)
NEXT

SUB Bresenham(x0, y0, x1, y1)
DIM dx = ABS(x0 - x1), sx = SGN(x0 - x1)
DIM dy = ABS(y0 - y1), sy = SGN(y0 - y1)
DIM tmp, er = IIF(dx > dy, dx, -dy) / 2

WHILE NOT (x0 = x1 ANDALSO y0 = y1)
PSET(FBSL.GETDC, x0, y0, &HFF) ' Red: Windows stores colors in BGR order
tmp = er
IF tmp > -dx THEN: er = er - dy: x0 = x0 + sx: END IF
IF tmp < +dy THEN: er = er + dx: y0 = y0 + sy: END IF
WEND
END SUB
END SUB
```

Output:

## Fortran

Translation of: C

This subroutine should go inside the `RCImagePrimitive` module (see Bresenham's line algorithm)

```subroutine cubic_bezier(img, p1, p2, p3, p4, color)
type(rgbimage), intent(inout) :: img
type(point), intent(in) :: p1, p2, p3, p4
type(rgb), intent(in) :: color

integer :: i, j
real :: pts(0:N_SEG,0:1), t, a, b, c, d, x, y

do i = 0, N_SEG
t = real(i) / real(N_SEG)
a = (1.0 - t)**3.0
b = 3.0 * t * (1.0 - t)**2
c = 3.0 * (1.0 - t) * t**2
d = t**3.0
x = a * p1%x + b * p2%x + c * p3%x + d * p4%x
y = a * p1%y + b * p2%y + c * p3%y + d * p4%y
pts(i,0) = x
pts(i,1) = y
end do

do i = 0, N_SEG-1
j = i + 1
call draw_line(img, point(pts(i,0), pts(i,1)), &
point(pts(j,0), pts(j,1)), color)
end do

end subroutine cubic_bezier
```

## FreeBASIC

Translation of: BBC BASIC
```' version 01-11-2016
' compile with: fbc -s console

' translation from Bitmap/Bresenham's line algorithm C entry
Sub Br_line(x0 As Integer, y0 As Integer, x1 As Integer, y1 As Integer, _
Col As UInteger = &HFFFFFF)

Dim As Integer dx = Abs(x1 - x0), dy = Abs(y1 - y0)
Dim As Integer sx = IIf(x0 < x1, 1, -1)
Dim As Integer sy = IIf(y0 < y1, 1, -1)
Dim As Integer er = IIf(dx > dy, dx, -dy) \ 2, e2

Do
PSet(x0, y0), col
If (x0 = x1) And (y0 = y1) Then Exit Do
e2 = er
If e2 > -dx Then Er -= dy : x0 += sx
If e2 <  dy Then Er += dx : y0 += sy
Loop

End Sub

' Bitmap/Bézier curves/Cubic BBC BASIC entry
Sub beziercubic(x1 As Double, y1 As Double, x2 As Double, y2 As Double, _
x3 As Double, y3 As Double, x4 As Double, y4 As Double, _
n As ULong, col As UInteger = &HFFFFFF)

Type point_
x As Integer
y As Integer
End Type

Dim As ULong i
Dim As Double t, t1, a, b, c, d
Dim As point_ p(n)

For i = 0 To n
t = i / n
t1 = 1 - t
a = t1 ^ 3
b = t * t1 * t1 * 3
c = t * t * t1 * 3
d = t ^ 3
p(i).x = Int(a * x1 + b * x2  + c * x3 + d * x4 + .5)
p(i).y = Int(a * y1 + b * y2  + c * y3 + d * y4 + .5)
Next

For i = 0 To n -1
Br_line(p(i).x, p(i).y, p(i +1).x, p(i +1).y, col)
Next

End Sub

' ------=< MAIN >=------

ScreenRes 250,250,32     ' 0,0 in top left corner

beziercubic(160, 150, 10, 120, 30, 0, 150, 50, 20)

' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End```

## Go

Translation of: C
```package raster

const b3Seg = 30

func (b *Bitmap) Bézier3(x1, y1, x2, y2, x3, y3, x4, y4 int, p Pixel) {
var px, py [b3Seg + 1]int
fx1, fy1 := float64(x1), float64(y1)
fx2, fy2 := float64(x2), float64(y2)
fx3, fy3 := float64(x3), float64(y3)
fx4, fy4 := float64(x4), float64(y4)
for i := range px {
d := float64(i) / b3Seg
a := 1 - d
b, c := a * a, d * d
a, b, c, d = a*b, 3*b*d, 3*a*c, c*d
px[i] = int(a*fx1 + b*fx2 + c*fx3 + d*fx4)
py[i] = int(a*fy1 + b*fy2 + c*fy3 + d*fy4)
}
x0, y0 := px[0], py[0]
for i := 1; i <= b3Seg; i++ {
x1, y1 := px[i], py[i]
b.Line(x0, y0, x1, y1, p)
x0, y0 = x1, y1
}
}

func (b *Bitmap) Bézier3Rgb(x1, y1, x2, y2, x3, y3, x4, y4 int, c Rgb) {
b.Bézier3(x1, y1, x2, y2, x3, y3, x4, y4, c.Pixel())
}
```

Demonstration program:

```package main

import (
"fmt"
"raster"
)

func main() {
b := raster.NewBitmap(400, 300)
b.FillRgb(0xffefbf)
b.Bézier3Rgb(20, 200, 700, 50, -300, 50, 380, 150, raster.Rgb(0x3f8fef))
if err := b.WritePpmFile("bez3.ppm"); err != nil {
fmt.Println(err)
}
}
```

## J

Solution:
See the Bernstein Polynomials essay on the J Wiki.
Uses code from Basic bitmap storage, Bresenham's line algorithm and Midpoint circle algorithm.

```require 'numeric'

bik=: 2 : '((*&(u!v))@(^&u * ^&(v-u)@-.))'
basiscoeffs=: <: 4 : 'x bik y t. i.>:y'"0~ i.
linearcomb=: basiscoeffs@#@[
evalBernstein=: ([ +/ .* linearcomb) p. ]        NB. evaluate Bernstein Polynomial (general)

NB.*getBezierPoints v Returns points for bezier curve given control points (y)
NB. eg: getBezierPoints controlpoints
NB. y is: y0 x0, y1 x1, y2 x2 ...
ctrlpts=. (/: {:"1)  _2]\ y  NB. sort ctrlpts for increasing x
xvals=. ({: ,~ {. + +:@:i.@<.@-:@-~/) ({:"1) 0 _1{ctrlpts
tvals=.  ((] - {.) % ({: - {.)) xvals
xvals ,.~ ({."1 ctrlpts) evalBernstein tvals
)

NB.*drawBezier v Draws bezier curve defined by (x) on image (y)
NB. eg: (42 40 10 30 186 269 26 187;255 0 0) drawBezier myimg
NB. x is: 2-item list of boxed (controlpoints) ; (color)
drawBezier=: (1&{:: ;~ 2 ]\ [: roundint@getBezierPoints"1 (0&{::))@[ drawLines ]
```

Example usage:

```myimg=: 0 0 255 makeRGB 300 300
]randomctrlpts=: ,3 2 ?@\$ }:\$ myimg                               NB. 3 control points - quadratic
]randomctrlpts=: ,4 2 ?@\$ }:\$ myimg                               NB. 4 control points - cubic
myimg=: ((2 ,.~ _2]\randomctrlpts);255 0 255) drawCircles myimg   NB. draw control points
viewRGB (randomctrlpts; 255 255 0) drawBezier myimg               NB. display image with bezier line
```

## Java

Using the BasicBitmapStorage class from the Bitmap task to produce a runnable program.

```import java.awt.Color;
import java.awt.Graphics;
import java.awt.Image;
import java.awt.Point;
import java.awt.image.BufferedImage;
import java.awt.image.RenderedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import javax.imageio.ImageIO;

public final class BezierCubic {

public static void main(String[] args) throws IOException {
final int width = 200;
final int height = 200;
BasicBitmapStorage bitmap = new BasicBitmapStorage(width, height);
bitmap.fill(Color.YELLOW);

Point point1 = new Point(0, 150);
Point point2 = new Point(30, 50);
Point point3 = new Point(120, 130);
Point point4 = new Point(160, 30);
bitmap.cubicBezier(point1, point2, point3, point4, Color.BLACK, 20);

File bezierFile = new File("CubicBezierJava.jpg");
ImageIO.write((RenderedImage) bitmap.getImage(), "jpg", bezierFile);
}

}

final class BasicBitmapStorage {

public BasicBitmapStorage(int width, int height) {
image = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB);
}

public void fill(Color color) {
Graphics graphics = image.getGraphics();
graphics.setColor(color);
graphics.fillRect(0, 0, image.getWidth(), image.getHeight());
}

public Color getPixel(int x, int y) {
return new Color(image.getRGB(x, y));
}

public void setPixel(int x, int y, Color color) {
image.setRGB(x, y, color.getRGB());
}

public Image getImage() {
return image;
}

public void cubicBezier(
Point point1, Point point2, Point point3, Point point4, Color color, int intermediatePointCount) {

List<Point> points = new ArrayList<Point>();

for ( int i = 0; i <= intermediatePointCount; i++ ) {
final double t = (double) i / intermediatePointCount;
final double u = 1.0 - t;
final double a = u * u * u;
final double b = 3.0 * t * u * u;
final double c = 3.0 * t * t * u;
final double d = t * t * t;

final int x = (int) ( a * point1.x + b * point2.x + c * point3.x + d * point4.x );
final int y = (int) ( a * point1.y + b * point2.y + c * point3.y + d * point4.y );
setPixel(x, y, color);
}

for ( int i = 0; i < intermediatePointCount; i++ ) {
drawLine(points.get(i).x, points.get(i).y, points.get(i + 1).x, points.get(i + 1).y, color);
}
}

public void drawLine(int x0, int y0, int x1, int y1, Color color) {
final int dx = Math.abs(x1 - x0);
final int dy = Math.abs(y1 - y0);
final int xIncrement = x0 < x1 ? 1 : -1;
final int yIncrement = y0 < y1 ? 1 : -1;

int error = ( dx > dy ? dx : -dy ) / 2;

while ( x0 != x1 || y0 != y1 ) {
setPixel(x0, y0, color);
int error2 = error;

if ( error2 > -dx ) {
error -= dy;
x0 += xIncrement;
}

if ( error2 < dy ) {
error += dx;
y0 += yIncrement;
}
}
setPixel(x0, y0, color);
}

private BufferedImage image;

}
```
Output:

## JavaScript

```  function draw() {
var canvas = document.getElementById("container");
context = canvas.getContext("2d");

bezier3(20, 200, 700, 50, -300, 50, 380, 150);
//    bezier3(160, 10, 10, 40, 30, 160, 150, 110);
//    bezier3(0,149, 30,50, 120,130, 160,30, 0);
}

// http://rosettacode.org/wiki/Cubic_bezier_curves#C
function bezier3(x1, y1, x2, y2, x3, y3, x4, y4) {
var px = [], py = [];
for (var i = 0; i <= b3Seg; i++) {
var d = i / b3Seg;
var a = 1 - d;
var b = a * a;
var c = d * d;
a = a * b;
b = 3 * b * d;
c = 3 * a * c;
d = c * d;
px[i] = parseInt(a * x1 + b * x2 + c * x3 + d * x4);
py[i] = parseInt(a * y1 + b * y2 + c * y3 + d * y4);
}
var x0 = px[0];
var y0 = py[0];
for (i = 1; i <= b3Seg; i++) {
var x = px[i];
var y = py[i];
drawPolygon(context, [[x0, y0], [x, y]], "red", "red");
x0 = x;
y0 = y;
}
}
function drawPolygon(context, polygon, strokeStyle, fillStyle) {
context.strokeStyle = strokeStyle;
context.beginPath();

context.moveTo(polygon[0][0],polygon[0][1]);
for (i = 1; i < polygon.length; i++)
context.lineTo(polygon[i][0],polygon[i][1]);

context.closePath();
context.stroke();

if (fillStyle == undefined)
return;
context.fillStyle = fillStyle;
context.fill();
}
```

## Julia

Works with: Julia version 0.6
```using Images

function cubicbezier!(xy::Matrix,
img::Matrix = fill(RGB(255.0, 255.0, 255.0), 17, 17),
col::ColorTypes.Color = convert(eltype(img), Gray(0.0)),
n::Int = 20)
t = collect(0:n) ./ n
M = hcat((1 .- t) .^ 3, # a
3t .* (1 .- t) .^ 2, # b
3t .^ 2 .* (1 .- t), # c
t .^ 3) # d
p = floor.(Int, M * xy)
for i in 1:n
drawline!(img, p[i, :]..., p[i+1, :]..., col)
end
return img
end

xy = [16 1; 1 4; 3 16; 15 11]
cubicbezier!(xy)
```

## Kotlin

This incorporates code from other relevant tasks in order to provide a runnable example.

```// Version 1.2.40

import java.awt.Color
import java.awt.Graphics
import java.awt.image.BufferedImage
import kotlin.math.abs
import java.io.File
import javax.imageio.ImageIO

class Point(var x: Int, var y: Int)

class BasicBitmapStorage(width: Int, height: Int) {
val image = BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR)

fun fill(c: Color) {
val g = image.graphics
g.color = c
g.fillRect(0, 0, image.width, image.height)
}

fun setPixel(x: Int, y: Int, c: Color) = image.setRGB(x, y, c.getRGB())

fun getPixel(x: Int, y: Int) = Color(image.getRGB(x, y))

fun drawLine(x0: Int, y0: Int, x1: Int, y1: Int, c: Color) {
val dx = abs(x1 - x0)
val dy = abs(y1 - y0)
val sx = if (x0 < x1) 1 else -1
val sy = if (y0 < y1) 1 else -1
var xx = x0
var yy = y0
var e1 = (if (dx > dy) dx else -dy) / 2
var e2: Int
while (true) {
setPixel(xx, yy, c)
if (xx == x1 && yy == y1) break
e2 = e1
if (e2 > -dx) { e1 -= dy; xx += sx }
if (e2 <  dy) { e1 += dx; yy += sy }
}
}

fun cubicBezier(p1: Point, p2: Point, p3: Point, p4: Point, clr: Color, n: Int) {
val pts = List(n + 1) { Point(0, 0) }
for (i in 0..n) {
val t = i.toDouble() / n
val u = 1.0 - t
val a = u * u * u
val b = 3.0 * t * u * u
val c = 3.0 * t * t * u
val d = t * t * t
pts[i].x = (a * p1.x + b * p2.x + c * p3.x + d * p4.x).toInt()
pts[i].y = (a * p1.y + b * p2.y + c * p3.y + d * p4.y).toInt()
setPixel(pts[i].x, pts[i].y, clr)
}
for (i in 0 until n) {
val j = i + 1
drawLine(pts[i].x, pts[i].y, pts[j].x, pts[j].y, clr)
}
}
}

fun main(args: Array<String>) {
val width = 200
val height = 200
val bbs = BasicBitmapStorage(width, height)
with (bbs) {
fill(Color.cyan)
val p1 = Point(0, 149)
val p2 = Point(30, 50)
val p3 = Point(120, 130)
val p4 = Point(160, 30)
cubicBezier(p1, p2, p3, p4, Color.black, 20)
val cbFile = File("cubic_bezier.jpg")
ImageIO.write(image, "jpg", cbFile)
}
}
```

## Lambdatalk

```Drawing a cubic bezier curve out of any SVG or CANVAS frame.
1) interpolating 4 points

The Bézier curve is defined as an array of 4 given points,
each defined as an array of 2 numbers.
The bezier function returns the point interpolating the 4 points.

{def bezier
{def bezier.interpol
{lambda {:a0 :a1 :a2 :a3 :t :u}
{round
{+ {* :a0 :u :u :u 1}
{* :a1 :u :u :t 3}
{* :a2 :u :t :t 3}
{* :a3 :t :t :t 1}}}}}
{lambda {:bz :t}
{A.new {bezier.interpol {A.get 0 {A.get 0 :bz}}
{A.get 0 {A.get 1 :bz}}
{A.get 0 {A.get 2 :bz}}
{A.get 0 {A.get 3 :bz}} :t {- 1 :t}}
{bezier.interpol {A.get 1 {A.get 0 :bz}}
{A.get 1 {A.get 1 :bz}}
{A.get 1 {A.get 2 :bz}}
{A.get 1 {A.get 3 :bz}} :t {- 1 :t}}} }}
-> bezier

2) plotting a dot

We don't draw in any SVG or CANVAS frame, but directly in the HTML page,
using div HTML blocks designed as colored circles.

{def dot
{lambda {:p :r :col}
{div {@ style="position:absolute;
left:  {- {A.get 0 :p} {/ :r 2}}px;
top:   {- {A.get 1 :p} {/ :r 2}}px;
width: :rpx; height: :rpx;
border: 1px solid #000;
background: :col;"}}}}
-> dot

3) defining 4 control points

{def Q0 {A.new 150 150}} -> Q0
{def Q1 {A.new 500 300}} -> Q1
{def Q2 {A.new 100 500}} -> Q2
{def Q3 {A.new 300 500}} -> Q3

4) defining 2 curves

We use the same control points but in different orders to define two curves

{def BZ1 {A.new {Q0} {Q1} {Q2} {Q3}}}
-> BZ1
{def BZ2 {A.new {Q0} {Q2} {Q1} {Q3}}}
-> BZ2

5) drawing curves and dots

We map the bezier function on a serie of values in a range [start end step]

{S.map {lambda {:t} {dot {bezier {BZ1} :t} 5 red}}
{S.serie -0.1 1.2 0.02}}
{S.map {lambda {:t} {dot {bezier {BZ2} :t} 5 blue}}
{S.serie -0.1 1.2 0.02}}

{dot {Q0} 20 cyan}
{dot {Q1} 20 cyan}
{dot {Q2} 20 cyan}
{dot {Q3} 20 cyan}

The result can be seen in http://lambdaway.free.fr/lambdawalks/?view=bezier
```

## Lua

Starting with the code from Bitmap/Bresenham's line algorithm, then extending:

```Bitmap.cubicbezier = function(self, x1, y1, x2, y2, x3, y3, x4, y4, nseg)
nseg = nseg or 10
local prevx, prevy, currx, curry
for i = 0, nseg do
local t = i / nseg
local a, b, c, d = (1-t)^3, 3*t*(1-t)^2, 3*t^2*(1-t), t^3
prevx, prevy = currx, curry
currx = math.floor(a * x1 + b * x2 + c * x3 + d * x4 + 0.5)
curry = math.floor(a * y1 + b * y2 + c * y3 + d * y4 + 0.5)
if i > 0 then
self:line(prevx, prevy, currx, curry)
end
end
end

local bitmap = Bitmap(61,21)
bitmap:clear()
bitmap:cubicbezier( 1,1, 15,41, 45,-20, 59,19 )
bitmap:render({[0x000000]='.', [0xFFFFFFFF]='X'})
```
Output:
```.............................................................
.X...........................................................
.X...........................................................
..X..........................................................
...X.........................................................
...X.....................................XXXXX...............
....X.................................XXX.....XXXX...........
....X..............................XXX............X..........
.....X...........................XX................X.........
.....X.........................XX...................X........
......X.....................XXX......................XX......
.......X..................XX..........................X......
........X...............XX.............................X.....
.........X...........XXX................................X....
..........XXXX....XXX...................................X....
..............XXXX.......................................X...
.........................................................X...
..........................................................X..
..........................................................X..
...........................................................X.
.............................................................```

## Mathematica / Wolfram Language

```points= {{0, 0}, {1, 1}, {2, -1}, {3, 0}};
Graphics[{BSplineCurve[points], Green, Line[points], Red, Point[points]}]
```

## MATLAB

Note: Store this function in a file named "bezierCubic.mat" in the @Bitmap folder for the Bitmap class defined here.

```function bezierCubic(obj,pixel_0,pixel_1,pixel_2,pixel_3,color,varargin)

if( isempty(varargin) )
resolution = 20;
else
resolution = varargin{1};
end

%Calculate time axis
time = (0:1/resolution:1)';
timeMinus = 1-time;

%The formula for the curve is expanded for clarity, the lack of
%loops is because its calculation has been vectorized
curve = (timeMinus).^3*pixel_0; %First term of polynomial
curve = curve + (3.*time.*timeMinus.^2)*pixel_1; %second term of polynomial
curve = curve + (3.*timeMinus.*time.^2)*pixel_2; %third term of polynomial
curve = curve + time.^3*pixel_3; %Fourth term of polynomial

curve = round(curve); %round each of the points to the nearest integer

%connect each of the points in the curve with a line using the
%Bresenham Line algorithm
for i = (1:length(curve)-1)
obj.bresenhamLine(curve(i,:),curve(i+1,:),color);
end

assignin('caller',inputname(1),obj); %saves the changes to the object

end
```

Sample usage: This will generate the image example for the PHP solution.

```>> img = Bitmap(200,200);
>> img.fill([255 255 255]);
>> img.bezierCubic([160 10],[10 40],[30 160],[150 110],[255 0 0],110);
>> disp(img)
```

## MiniScript

This GUI implementation is for use with Mini Micro.

```Point = {"x": 0, "y":0}
Point.init = function(x, y)
p = new Point
p.x = x; p.y = y
return p
end function

drawLine = function(img, x0, y0, x1, y1, colr)
sign = function(a, b)
if a < b then return 1
return -1
end function

dx = abs(x1 - x0)
sx = sign(x0, x1)

dy = abs(y1 - y0)
sy = sign(y0, y1)

if dx > dy then
err = dx
else
err = -dy
end if
err = floor(err / 2)

while true
img.setPixel x0, y0, colr
if x0 == x1 and y0 == y1 then break
e2 = err
if e2 > -dx then
err -= dy
x0 += sx
end if
if e2 < dy then
err += dx
y0 += sy
end if
end while
end function

cubicBezier = function(img, p1, p2, p3, p4, numPoints, colr)
points = []
for i in range(0, numPoints)
t = i / numPoints
u = 1 - t
a = (1 - t)^3
b = 3 * t * (1 - t)^2
c = 3 * t^2 * (1 - t)
d = t^3

x = floor(a * p1.x + b * p2.x + c * p3.x + d * p4.x)
y = floor(a * p1.y + b * p2.y + c * p3.y + d * p4.y)
points.push(Point.init(x, y))
img.setPixel x, y, colr
end for

for i in range(1, numPoints)
drawLine img, points[i-1].x, points[i-1].y, points[i].x, points[i].y, colr
end for
end function

bezier = Image.create(480, 480)
p1 = Point.init(50, 100)
p2 = Point.init(200, 400)
p3 = Point.init(360, 0)
p4 = Point.init(300, 424)

cubicBezier bezier, p1, p2, p3, p4, 20, color.red
gfx.clear
gfx.drawImage bezier, 0, 0
```

## Nim

We use module “bitmap” for bitmap management and module “bresenham” to draw segments.

```import bitmap
import bresenham
import lenientops

proc drawCubicBezier*(
image: Image; pt1, pt2, pt3, pt4: Point; color: Color; nseg: Positive = 20) =

var points = newSeq[Point](nseg + 1)

for i in 0..nseg:
let t = i / nseg
let u = (1 - t) * (1 - t)
let a = (1 - t) * u
let b = 3 * t * u
let c = 3 * (t * t) * (1 - t)
let d = t * t * t

points[i] = (x: (a * pt1.x + b * pt2.x + c * pt3.x + d * pt4.x).toInt,
y: (a * pt1.y + b * pt2.y + c * pt3.y + d * pt4.y).toInt)

for i in 1..points.high:
image.drawLine(points[i - 1], points[i], color)

#———————————————————————————————————————————————————————————————————————————————————————————————————

when isMainModule:
var img = newImage(16, 16)
img.fill(White)
img.drawCubicBezier((0, 15), (3, 0), (15, 2), (10, 14), Black)
img.print
```
Output:
```................
................
................
................
.......HH.......
.....HH..HH.....
....H......H....
....H......H....
...H.......H....
..H........H....
.H.........H....
.H.........H....
.H.........H....
.H.........H....
H.........H.....
H...............```

## OCaml

```let cubic_bezier ~img ~color
~p1:(_x1, _y1)
~p2:(_x2, _y2)
~p3:(_x3, _y3)
~p4:(_x4, _y4) =
let x1, y1, x2, y2, x3, y3, x4, y4 =
(float _x1, float _y1,
float _x2, float _y2,
float _x3, float _y3,
float _x4, float _y4)
in
let bz t =
let a = (1.0 -. t) ** 3.0
and b = 3.0 *. t *. ((1.0 -. t) ** 2.0)
and c = 3.0 *. (t ** 2.0) *. (1.0 -. t)
and d = t ** 3.0
in
let x = a *. x1 +. b *. x2 +. c *. x3 +. d *. x4
and y = a *. y1 +. b *. y2 +. c *. y3 +. d *. y4
in
(int_of_float x, int_of_float y)
in
let rec loop _t acc =
if _t > 20 then acc else
begin
let t = (float _t) /. 20.0 in
let x, y = bz t in
loop (succ _t) ((x,y)::acc)
end
in
let pts = loop 0 [] in

(*
(* draw only points *)
List.iter (fun (x, y) -> put_pixel img color x y) pts;
*)

(* draw segments *)
let line = draw_line ~img ~color in
let by_pair li f =
ignore (List.fold_left (fun prev x -> f prev x; x) (List.hd li) (List.tl li))
in
by_pair pts (fun p0 p1 -> line ~p0 ~p1);
;;
```

## Phix

Output similar to Mathematica
Requires new_image() from Bitmap, bresLine() from Bresenham's_line_algorithm, write_ppm() from Write_a_PPM_file.
Results may be verified with demo\rosetta\viewppm.exw

```-- demo\rosetta\Bitmap_BezierCubic.exw  (runnable version)
include ppm.e   -- black, green, red, white, new_image(), write_ppm(), bresLine()  -- (covers above requirements)

function cubic_bezier(sequence img, atom x1, y1, x2, y2, x3, y3, x4, y4, integer colour, segments)
sequence pts = repeat(0,segments*2)
for i=0 to segments*2-1 by 2 do
atom t = i/segments,
t1 = 1-t,
a = power(t1,3),
b = 3*t*power(t1,2),
c = 3*power(t,2)*t1,
d = power(t,3)
pts[i+1] = floor(a*x1+b*x2+c*x3+d*x4)
pts[i+2] = floor(a*y1+b*y2+c*y3+d*y4)
end for
for i=1 to segments*2-2 by 2 do
img = bresLine(img, pts[i], pts[i+1], pts[i+2], pts[i+3], colour)
end for
return img
end function

sequence img = new_image(300,200,black)
img = cubic_bezier(img, 0,100, 100,0, 200,200, 300,100, white, 40)
img = bresLine(img,0,100,100,0,green)
img = bresLine(img,100,0,200,200,green)
img = bresLine(img,200,200,300,100,green)
img[1][100] = red
img[100][1] = red
img[200][200] = red
img[300][100] = red
write_ppm("Bezier.ppm",img)
```

## PHP

Translation of: Python
Works with: PHP version 4.3.0
Library: GD

Outputs image to the right directly to browser or stdout.

```<?

\$image = imagecreate(200, 200);
// The first allocated color will be the background color:
imagecolorallocate(\$image, 255, 255, 255);
\$color = imagecolorallocate(\$image, 255, 0, 0);
cubicbezier(\$image, \$color, 160, 10, 10, 40, 30, 160, 150, 110);
imagepng(\$image);

function cubicbezier(\$img, \$col, \$x0, \$y0, \$x1, \$y1, \$x2, \$y2, \$x3, \$y3, \$n = 20) {
\$pts = array();

for(\$i = 0; \$i <= \$n; \$i++) {
\$t = \$i / \$n;
\$t1 = 1 - \$t;
\$a = pow(\$t1, 3);
\$b = 3 * \$t * pow(\$t1, 2);
\$c = 3 * pow(\$t, 2) * \$t1;
\$d = pow(\$t, 3);

\$x = round(\$a * \$x0 + \$b * \$x1 + \$c * \$x2 + \$d * \$x3);
\$y = round(\$a * \$y0 + \$b * \$y1 + \$c * \$y2 + \$d * \$y3);
\$pts[\$i] = array(\$x, \$y);
}

for(\$i = 0; \$i < \$n; \$i++) {
imageline(\$img, \$pts[\$i][0], \$pts[\$i][1], \$pts[\$i+1][0], \$pts[\$i+1][1], \$col);
}
}
```

## PicoLisp

This uses the 'brez' line drawing function from Bitmap/Bresenham's line algorithm#PicoLisp.

```(scl 6)

(de cubicBezier (Img N X1 Y1 X2 Y2 X3 Y3 X4 Y4)
(let (R (* N N N)  X X1  Y Y1  DX 0  DY 0)
(for I N
(let
(J (- N I)
A (*/ 1.0 J J J R)
B (*/ 3.0 I J J R)
C (*/ 3.0 I I J R)
D (*/ 1.0 I I I R) )
(brez Img
X
Y
(setq DX
(-
(+ (*/ A X1 1.0) (*/ B X2 1.0) (*/ C X3 1.0) (*/ D X4 1.0))
X ) )
(setq DY
(-
(+ (*/ A Y1 1.0) (*/ B Y2 1.0) (*/ C Y3 1.0) (*/ D Y4 1.0))
Y ) ) )
(inc 'X DX)
(inc 'Y DY) ) ) ) )```

Test:

```(let Img (make (do 200 (link (need 300 0))))       # Create image 300 x 200
(cubicBezier Img 24 20 120 540 33 -225 33 285 100)
(out "img.pbm"                                  # Write to bitmap file
(prinl "P1")
(prinl 300 " " 200)
(mapc prinl Img) ) )

(call 'display "img.pbm")```

## Processing

```noFill();
bezier(85, 20, 10, 10, 90, 90, 15, 80);
/*
bezier(x1, y1, x2, y2, x3, y3, x4, y4)
Can also be drawn in 3D.
bezier(x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4)
*/
```

A working sketch with movable anchor and control points.

It can be run on line :
here.

```float[] x = new float[4];
float[] y = new float[4];
boolean[] permitDrag = new boolean[4];

void setup() {
size(300, 300);
smooth();
//  startpoint coordinates
x[0] = x[1] =  50;
y[0] = 50;
y[1] = y[2] = 150;
x[2] = x[3] = 250;
y[3] = 250;

}

void draw() {
background(255);
noFill();
stroke(0, 0, 255);
bezier(x[1], y[1], x[0], y[0], x[3], y[3], x[2], y[2]);
// the bezier handles
strokeWeight(1);
stroke(100);
line(x[0], y[0], x[1], y[1]);
line(x[2], y[2], x[3], y[3]);
// the anchor and control points
stroke(0);
fill(0);
for (int i = 0; i< 4; i++) {
if (i == 0 || i == 3) {
fill(255, 100, 10);
rectMode(CENTER);
rect(x[i], y[i], 5, 5);
} else {
fill(0);
ellipse(x[i], y[i], 5, 5);
}
}

// permit dragging
for (int i = 0; i < 4; i++) {
if (permitDrag[i]) {
x[i] = mouseX;
y[i] = mouseY;
}
}
}

void mouseReleased () {
for (int i = 0; i < 4; i++) {
permitDrag[i] = false;
}
}

void mousePressed () {
for (int i = 0; i < 4; i++) {
if (mouseX >= x[i]-5 && mouseX <= x[i]+10 && mouseY >= y[i]-5 && mouseY <= y[i]+10) {
permitDrag[i] = true;
}
}
}

// hand curser when dragging over points
void mouseMoved () {
cursor(ARROW);
for (int i = 0; i < 4; i++) {
if (mouseX >= x[i]-5 && mouseX <= x[i]+10 && mouseY >= y[i]-5 && mouseY <= y[i]+10) {
cursor(HAND);
}
}
}
```

## PureBasic

```Procedure cubic_bezier(img, p1x, p1y, p2x, p2y, p3x, p3y, p4x, p4y, Color, n_seg)
Protected i
Protected.f t, t1, a, b, c, d
Dim pts.POINT(n_seg)

For i = 0 To n_seg
t = i / n_seg
t1 = 1.0 - t
a = Pow(t1, 3)
b = 3.0 * t * Pow(t1, 2)
c = 3.0 * Pow(t, 2) * t1
d = Pow(t, 3)
pts(i)\x = a * p1x + b * p2x + c * p3x + d * p4x
pts(i)\y = a * p1y + b * p2y + c * p3y + d * p4y
Next

StartDrawing(ImageOutput(img))
FrontColor(Color)
For i = 0 To n_seg - 1
BresenhamLine(pts(i)\x, pts(i)\y, pts(i + 1)\x, pts(i + 1)\y) ;this calls the implementation of a draw_line routine
Next
StopDrawing()
EndProcedure

Define w, h, img
w = 200: h = 200: img = 1
CreateImage(img, w, h) ;img is internal id of the image

OpenWindow(0, 0, 0, w, h,"Bezier curve, cubic", #PB_Window_SystemMenu)
cubic_bezier(1, 160,10, 10,40, 30,160, 150,110, RGB(255, 255, 255), 20)
ImageGadget(0, 0, 0, w, h, ImageID(1))

Define event
Repeat
event = WaitWindowEvent()
Until event = #PB_Event_CloseWindow```

## Python

Works with: Python version 3.1

Extending the example given here and using the algorithm from the C solution above:

```def cubicbezier(self, x0, y0, x1, y1, x2, y2, x3, y3, n=20):
pts = []
for i in range(n+1):
t = i / n
a = (1. - t)**3
b = 3. * t * (1. - t)**2
c = 3.0 * t**2 * (1.0 - t)
d = t**3

x = int(a * x0 + b * x1 + c * x2 + d * x3)
y = int(a * y0 + b * y1 + c * y2 + d * y3)
pts.append( (x, y) )
for i in range(n):
self.line(pts[i][0], pts[i][1], pts[i+1][0], pts[i+1][1])
Bitmap.cubicbezier = cubicbezier

bitmap = Bitmap(17,17)
bitmap.cubicbezier(16,1, 1,4, 3,16, 15,11)
bitmap.chardisplay()

'''
The origin, 0,0; is the lower left, with x increasing to the right,
and Y increasing upwards.

The chardisplay above produces the following output :
+-----------------+
|                 |
|                 |
|                 |
|                 |
|         @@@@    |
|      @@@    @@@ |
|     @           |
|     @           |
|     @           |
|     @           |
|      @          |
|      @          |
|       @         |
|        @        |
|         @@@@    |
|             @@@@|
|                 |
+-----------------+
'''
```

## R

```# x, y: the x and y coordinates of the hull points
# n: the number of points in the curve.
bezierCurve <- function(x, y, n=10)
{
outx <- NULL
outy <- NULL

i <- 1
for (t in seq(0, 1, length.out=n))
{
b <- bez(x, y, t)
outx[i] <- b\$x
outy[i] <- b\$y

i <- i+1
}

return (list(x=outx, y=outy))
}

bez <- function(x, y, t)
{
outx <- 0
outy <- 0
n <- length(x)-1
for (i in 0:n)
{
outx <- outx + choose(n, i)*((1-t)^(n-i))*t^i*x[i+1]
outy <- outy + choose(n, i)*((1-t)^(n-i))*t^i*y[i+1]
}

return (list(x=outx, y=outy))
}

# Example usage
x <- c(4,6,4,5,6,7)
y <- 1:6
plot(x, y, "o", pch=20)
points(bezierCurve(x,y,20), type="l", col="red")
```

## Racket

```#lang racket
(require racket/draw)

(define (draw-line dc p q)
(match* (p q) [((list x y) (list s t)) (send dc draw-line x y s t)]))

(define (draw-lines dc ps)
(void
(for/fold ([p0 (first ps)]) ([p (rest ps)])
(draw-line dc p0 p)
p)))

(define (int t p q)
(define ((int1 t) x0 x1) (+ (* (- 1 t) x0) (* t x1)))
(map (int1 t) p q))

(define (bezier-points p0 p1 p2 p3)
(for/list ([t (in-range 0.0 1.0 (/ 1.0 20))])
(int t (int t p0 p1) (int t p2 p3))))

(define bm (make-object bitmap% 17 17))
(define dc (new bitmap-dc% [bitmap bm]))
(send dc set-smoothing 'unsmoothed)
(send dc set-pen "red" 1 'solid)
(draw-lines dc (bezier-points '(16 1) '(1 4) '(3 16) '(15 11)))
bm
```

## Raku

(formerly Perl 6)

Works with: Rakudo version 2017.09

Uses pieces from Bitmap, and Bresenham's line algorithm tasks. They are included here to make a complete, runnable program.

```class Pixel { has UInt (\$.R, \$.G, \$.B) }
class Bitmap {
has UInt (\$.width, \$.height);
has Pixel @!data;

method fill(Pixel \$p) {
@!data = \$p.clone xx (\$!width*\$!height)
}
method pixel(
\$i where ^\$!width,
\$j where ^\$!height
--> Pixel
) is rw { @!data[\$i + \$j * \$!width] }

method set-pixel (\$i, \$j, Pixel \$p) {
self.pixel(\$i, \$j) = \$p.clone;
}
method get-pixel (\$i, \$j) returns Pixel {
self.pixel(\$i, \$j);
}

method line((\$x0 is copy, \$y0 is copy), (\$x1 is copy, \$y1 is copy), \$pix) {
my \$steep = abs(\$y1 - \$y0) > abs(\$x1 - \$x0);
if \$steep {
(\$x0, \$y0) = (\$y0, \$x0);
(\$x1, \$y1) = (\$y1, \$x1);
}
if \$x0 > \$x1 {
(\$x0, \$x1) = (\$x1, \$x0);
(\$y0, \$y1) = (\$y1, \$y0);
}
my \$Δx = \$x1 - \$x0;
my \$Δy = abs(\$y1 - \$y0);
my \$error = 0;
my \$Δerror = \$Δy / \$Δx;
my \$y-step = \$y0 < \$y1 ?? 1 !! -1;
my \$y = \$y0;
for \$x0 .. \$x1 -> \$x {
if \$steep {
self.set-pixel(\$y, \$x, \$pix);
} else {
self.set-pixel(\$x, \$y, \$pix);
}
\$error += \$Δerror;
if \$error >= 0.5 {
\$y += \$y-step;
\$error -= 1.0;
}
}
}

method dot ((\$px, \$py), \$pix, \$radius = 2) {
self.set-pixel(\$x, \$y, \$pix) if ( \$px - \$x + (\$py - \$y) * i ).abs <= \$radius;
}
}
}

method cubic ( (\$x1, \$y1), (\$x2, \$y2), (\$x3, \$y3), (\$x4, \$y4), \$pix, \$segments = 30 ) {
my @line-segments = map -> \$t {
my \a = (1-\$t)³;
my \b = \$t  * (1-\$t)² * 3;
my \c = \$t² * (1-\$t)  * 3;
my \d = \$t³;
(a*\$x1 + b*\$x2 + c*\$x3 + d*\$x4).round(1),(a*\$y1 + b*\$y2 + c*\$y3 + d*\$y4).round(1)
}, (0, 1/\$segments, 2/\$segments ... 1);
for @line-segments.rotor(2=>-1) -> (\$p1, \$p2) { self.line( \$p1, \$p2, \$pix) };
}

method data { @!data }
}

role PPM {
method P6 returns Blob {
"P6\n{self.width} {self.height}\n255\n".encode('ascii')
~ Blob.new: flat map { .R, .G, .B }, self.data
}
}

sub color( \$r, \$g, \$b) { Pixel.new(R => \$r, G => \$g, B => \$b) }

my Bitmap \$b = Bitmap.new( width => 600, height => 400) but PPM;

\$b.fill( color(2,2,2) );

my @points = (85,390), (5,5), (580,370), (270,10);

my %seen;
my \$c = 0;
for @points.permutations -> @this {
%seen{@this.reverse.join.Str}++;
next if %seen{@this.join.Str};
\$b.cubic( |@this, color(255-\$c,127,\$c+=22) );
}

@points.map: { \$b.dot( \$_, color(255,0,0), 3 )}

\$*OUT.write: \$b.P6;
```

See example image here, (converted to a .png as .ppm format is not widely supported).

## Ruby

Translation of: Tcl

Requires code from the Bitmap and Bitmap/Bresenham's line algorithm#Ruby Bresenham's line algorithm tasks

```class Pixmap
def draw_bezier_curve(points, colour)
# ensure the points are increasing along the x-axis
points = points.sort_by {|p| [p.x, p.y]}
xmin = points[0].x
xmax = points[-1].x
increment = 2
prev = points[0]
((xmin + increment) .. xmax).step(increment) do |x|
t = 1.0 * (x - xmin) / (xmax - xmin)
p = Pixel[x, bezier(t, points).round]
draw_line(prev, p, colour)
prev = p
end
end
end

# the generalized n-degree Bezier summation
def bezier(t, points)
n = points.length - 1
points.each_with_index.inject(0.0) do |sum, (point, i)|
sum += n.choose(i) * (1-t)**(n - i) * t**i * point.y
end
end

class Fixnum
def choose(k)
self.factorial / (k.factorial * (self - k).factorial)
end
def factorial
(2 .. self).reduce(1, :*)
end
end

bitmap = Pixmap.new(400, 400)
points = [
Pixel[40,100], Pixel[100,350], Pixel[150,50],
Pixel[150,150], Pixel[350,250], Pixel[250,250]
]
points.each {|p| bitmap.draw_circle(p, 3, RGBColour::RED)}
bitmap.draw_bezier_curve(points, RGBColour::BLUE)
```

## Tcl

Library: Tk

This solution can be applied to any number of points. Uses code from Basic bitmap storage (newImage, fill), Bresenham's line algorithm (drawLine), and Midpoint circle algorithm (drawCircle)

```package require Tcl 8.5
package require Tk

proc drawBezier {img colour args} {
# ensure the points are increasing along the x-axis
set points [lsort -real -index 0 \$args]

set xmin [x [lindex \$points 0]]
set xmax [x [lindex \$points end]]
set prev [lindex \$points 0]
set increment 2
for {set x [expr {\$xmin + \$increment}]} {\$x <= \$xmax} {incr x \$increment} {
set t [expr {1.0 * (\$x - \$xmin) / (\$xmax - \$xmin)}]
set this [list \$x [::tcl::mathfunc::round [bezier \$t \$points]]]
drawLine \$img \$colour \$prev \$this
set prev \$this
}
}

# the generalized n-degree Bezier summation
proc bezier {t points} {
set n [expr {[llength \$points] - 1}]
for {set i 0; set sum 0.0} {\$i <= \$n} {incr i} {
set sum [expr {\$sum + [C \$n \$i] * (1-\$t)**(\$n - \$i) * \$t**\$i * [y [lindex \$points \$i]]}]
}
return \$sum
}

proc C {n i} {expr {[ifact \$n] / ([ifact \$i] * [ifact [expr {\$n - \$i}]])}}
proc ifact n {
for {set i \$n; set sum 1} {\$i >= 2} {incr i -1} {
set sum [expr {\$sum * \$i}]
}
return \$sum
}

proc x p {lindex \$p 0}
proc y p {lindex \$p 1}

proc newbezier {n w} {
set size 400
set bezier [newImage \$size \$size]
fill \$bezier white
for {set i 1} {\$i <= \$n} {incr i} {
set point [list [expr {int(\$size*rand())}] [expr {int(\$size*rand())}]]
lappend points \$point
drawCircle \$bezier red \$point 3
}
puts \$points

drawBezier \$bezier blue {*}\$points

\$w configure -image \$bezier
}

set degree 4 ;# cubic bezier -- for quadratic, use 3
label .img
button .new -command [list newbezier \$degree .img] -text New
button .exit -command exit -text Exit
pack .new .img .exit -side top
```

Results in:

## TI-89 BASIC

Note: This example does not use a user-defined image type, since that would be particularly impractical, but rather draws on the calculator's graph screen, which has essentially the same operations as an implementation of Basic bitmap storage would, except for being black-and-white.
```Define cubic(p1,p2,p3,p4,segs) = Prgm
Local i,t,u,prev,pt
0 → pt
For i,1,segs+1
(i-1.0)/segs → t   © Decimal to avoid slow exact arithetic
(1-t) → u
pt → prev
u^3*p1 + 3t*u^2*p2 + 3t^2*u*p3 + t^3*p4 → pt
If i>1 Then
PxlLine floor(prev[1,1]), floor(prev[1,2]), floor(pt[1,1]), floor(pt[1,2])
EndIf
EndFor
EndPrgm```

## Wren

Library: DOME

Requires version 1.3.0 of DOME or later.

```import "graphics" for Canvas, ImageData, Color, Point
import "dome" for Window

class Game {
static bmpCreate(name, w, h) { ImageData.create(name, w, h) }

static bmpFill(name, col) {
var image = ImageData[name]
for (x in 0...image.width) {
for (y in 0...image.height) image.pset(x, y, col)
}
}

static bmpPset(name, x, y, col) { ImageData[name].pset(x, y, col) }

static bmpPget(name, x, y) { ImageData[name].pget(x, y) }

static bmpLine(name, x0, y0, x1, y1, col) {
var dx = (x1 - x0).abs
var dy = (y1 - y0).abs
var sx = (x0 < x1) ? 1 : -1
var sy = (y0 < y1) ? 1 : -1
var err = ((dx > dy ? dx : - dy) / 2).floor
while (true) {
bmpPset(name, x0, y0, col)
if (x0 == x1 && y0 == y1) break
var e2 = err
if (e2 > -dx) {
err = err - dy
x0 = x0 + sx
}
if (e2 < dy) {
err = err + dx
y0 = y0 + sy
}
}
}

static bmpCubicBezier(name, p1, p2, p3, p4, col, n) {
var pts = List.filled(n+1, null)
for (i in 0..n) {
var t = i / n
var u = 1 - t
var a = u * u * u
var b = 3 * t * u * u
var c = 3 * t * t * u
var d = t * t * t
var px = (a * p1.x + b * p2.x + c * p3.x + d * p4.x).truncate
var py = (a * p1.y + b * p2.y + c * p3.y + d * p4.y).truncate
pts[i] = Point.new(px, py, col)
}
for (i in 0...n) {
var j = i + 1
bmpLine(name, pts[i].x, pts[i].y, pts[j].x, pts[j].y, col)
}
}

static init() {
Window.title = "Cubic Bézier curve"
var size = 200
Window.resize(size, size)
Canvas.resize(size, size)
var name = "cubic"
var bmp = bmpCreate(name, size, size)
bmpFill(name, Color.white)
var p1 = Point.new(160,  10)
var p2 = Point.new( 10,  40)
var p3 = Point.new( 30, 160)
var p4 = Point.new(150, 110)
bmpCubicBezier(name, p1, p2, p3, p4, Color.darkblue, 20)
bmp.draw(0, 0)
}

static update() {}

static draw(alpha) {}
}
```

## XPL0

```include c:\cxpl\codes;          \intrinsic 'code' declarations

proc Bezier(P0, P1, P2, P3);    \Draw cubic Bezier curve
real P0, P1, P2, P3;
def  Segments = 8;
int  I;
real S1, T, T2, T3, U, U2, U3, B, C, X, Y;
[Move(fix(P0(0)), fix(P0(1)));
S1:= 1./float(Segments);
T:= 0.;
for I:= 1 to Segments-1 do
[T:= T+S1;
T2:= T*T;
T3:= T2*T;
U:= 1.-T;
U2:= U*U;
U3:= U2*U;
B:= 3.*T*U2;
C:= 3.*T2*U;
X:= U3*P0(0) + B*P1(0) + C*P2(0) + T3*P3(0);
Y:= U3*P0(1) + B*P1(1) + C*P2(1) + T3*P3(1);
Line(fix(X), fix(Y), \$00FFFF);          \cyan line segments
];
Line(fix(P3(0)), fix(P3(1)), \$00FFFF);
Point(fix(P0(0)), fix(P0(1)), \$FF0000);         \red control points
Point(fix(P1(0)), fix(P1(1)), \$FF0000);
Point(fix(P2(0)), fix(P2(1)), \$FF0000);
Point(fix(P3(0)), fix(P3(1)), \$FF0000);
];

[SetVid(\$112);          \set 640x480x24 video graphics
Bezier([0., 0.], [30., 100.], [120., 20.], [160., 120.]);
if ChIn(1) then [];     \wait for keystroke
SetVid(3);              \restore normal text display
]```

## zkl

Image cribbed from XPL0

Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl

Add this to the PPM class:

```   fcn cBezier(p0x,p0y, p1x,p1y, p2x,p2y, p3x,p3y, rgb, numPts=500){
numPts.pump(Void,'wrap(t){ // B(t)
t=t.toFloat()/numPts; t1:=(1.0 - t);
a:=t1*t1*t1; b:=t*t1*t1*3; c:=t1*t*t*3; d:=t*t*t;
x:=a*p0x + b*p1x + c*p2x + d*p3x + 0.5;
y:=a*p0y + b*p1y + c*p2y + d*p3y + 0.5;
__sSet(rgb,x,y);
});
}```

Doesn't use line segments, they don't seem like an improvement.

```bitmap:=PPM(200,150,0xff|ff|ff);
bitmap.cBezier(0,149, 30,50, 120,130, 160,30, 0);
bitmap.write(File("foo.ppm","wb"));```