Concatenate two primes is also prime

From Rosetta Code
Concatenate two primes is also prime is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Find and show here when the concatenation of two primes   (p1,  p2)   shown in base ten is also prime,   where   p1,   p2  <  100.

11l

Translation of: Nim
F is_prime(a)
   I a == 2
      R 1B
   I a < 2 | a % 2 == 0
      R 0B
   L(i) (3 .. Int(sqrt(a))).step(2)
      I a % i == 0
         R 0B
   R 1B

V primes = (2..99).filter(n -> is_prime(n))

Set[Int] concatPrimes
L(p1) primes
   L(p2) primes
      V n = p2 + p1 * (I p2 < 10 {10} E 100)
      I is_prime(n)
         concatPrimes.add(n)

print(‘Found ’concatPrimes.len‘ primes which are a concatenation of two primes below 100:’)
L(n) sorted(Array(concatPrimes))
   print(‘#4’.format(n), end' I (L.index + 1) % 16 == 0 {"\n"} E ‘ ’)
Output:
Found 128 primes which are a concatenation of two primes below 100:
  23   37   53   73  113  137  173  193  197  211  223  229  233  241  271  283
 293  311  313  317  331  337  347  353  359  367  373  379  383  389  397  433
 523  541  547  571  593  613  617  673  677  719  733  743  761  773  797  977
1117 1123 1129 1153 1171 1319 1361 1367 1373 1723 1741 1747 1753 1759 1783 1789
1913 1931 1973 1979 1997 2311 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137
3167 3719 3761 3767 3779 3797 4111 4129 4153 4159 4337 4373 4397 4723 4729 4759
4783 4789 5323 5347 5923 5953 6113 6131 6143 6173 6197 6719 6737 6761 6779 7129
7159 7331 7919 7937 8311 8317 8329 8353 8389 8923 8929 8941 8971 9719 9743 9767

Action!

INCLUDE "D2:SORT.ACT" ;from the Action! Tool Kit
INCLUDE "H6:SIEVE.ACT"

PROC Main()
  DEFINE MAX="9999"
  BYTE ARRAY primes(MAX+1)
  BYTE i,j
  INT ij,count
  INT ARRAY res(130)

  Put(125) PutE() ;clear the screen
  Sieve(primes,MAX+1)
  count=0
  FOR i=2 TO 99
  DO
    IF primes(i) THEN
      FOR j=2 TO 99
      DO
        IF primes(j) THEN
          ij=i
          IF j<10 THEN
            ij==*10
          ELSE
            ij==*100
          FI
          ij==+j
          IF primes(ij) THEN
            res(count)=ij
            count==+1
          FI
        FI
      OD
    FI
  OD

  SortI(res,count,0)
  FOR i=0 TO count-1
  DO
    PrintI(res(i)) Put(32)
  OD
  PrintF("%E%EThere are %I primes",count)
RETURN
Output:

Screenshot from Atari 8-bit computer

23 37 53 73 113 137 173 193 197 211 223 229 233 241 271 283 293 311 313 313
317 317 331 337 347 353 359 367 373 373 379 383 389 397 433 523 541 547 571
593 613 617 673 677 719 733 743 761 773 797 797 977 1117 1123 1129 1153 1171
1319 1361 1367 1373 1723 1741 1747 1753 1759 1783 1789 1913 1931 1973 1979
1997 2311 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137 3167 3719 3761
3767 3779 3797 4111 4129 4153 4159 4337 4373 4397 4723 4729 4759 4783 4789
5323 5347 5923 5953 6113 6131 6143 6173 6197 6719 6737 6761 6779 7129 7159
7331 7919 7937 8311 8317 8329 8353 8389 8923 8929 8941 8971 9719 9743 9767

There are 132 primes (including these duplicates: 313 317 373 797)

Ada

with Ada.Text_Io;
with Ada.Integer_Text_Io;
with Ada.Strings.Fixed;

procedure Concat_Is_Prime is

   Columns : constant := 10;

   subtype Full_Range is Integer range 2 .. 9_999;
   subtype Low_Range  is Full_Range range Full_Range'First .. 99;

   function Concat (Left, Right : Low_Range) return Full_Range is
      use Ada.Strings;
   begin
      return Full_Range'Value (Fixed.Trim (Left'Image, Both) &
                                  Fixed.Trim (Right'Image, Both));
   end Concat;

   use Ada.Text_Io, Ada.Integer_Text_Io;

   Is_Prime        : array (Full_Range) of Boolean := (others => True);
   Is_Concat_Prime : array (Full_Range) of Boolean := (others => False);
   Count           : Natural := 0;

begin
   for A in Full_Range loop
      if Is_Prime (A) then
         for B in 2 .. Integer'Last loop
            exit when A * B not in Full_Range;
            Is_Prime (A * B) := False;
         end loop;
      end if;
   end loop;

   for P1 in Low_Range loop
      for P2 in Low_Range loop
         if
           Is_Prime (P1) and Is_Prime (P2) and Is_Prime (Concat (P1, P2))
         then
            Is_Concat_Prime (Concat (P1, P2)) := True;
         end if;
      end loop;
   end loop;

   for A in Is_Concat_Prime'Range loop
      if Is_Concat_Prime (A) then
         Put (A, Width => 6);
         Count := Count + 1;
         if Count mod Columns = 0 then
            New_Line;
         end if;
      end if;
   end loop;
   New_Line;

   Put ("There are ");
   Put (Natural'Image (Count));
   Put (" concat primes.");
   New_Line;
end Concat_Is_Prime;
Output:
    23    37    53    73   113   137   173   193   197   211
   223   229   233   241   271   283   293   311   313   317
   331   337   347   353   359   367   373   379   383   389
   397   433   523   541   547   571   593   613   617   673
   677   719   733   743   761   773   797   977  1117  1123
  1129  1153  1171  1319  1361  1367  1373  1723  1741  1747
  1753  1759  1783  1789  1913  1931  1973  1979  1997  2311
  2341  2347  2371  2383  2389  2917  2953  2971  3119  3137
  3167  3719  3761  3767  3779  3797  4111  4129  4153  4159
  4337  4373  4397  4723  4729  4759  4783  4789  5323  5347
  5923  5953  6113  6131  6143  6173  6197  6719  6737  6761
  6779  7129  7159  7331  7919  7937  8311  8317  8329  8353
  8389  8923  8929  8941  8971  9719  9743  9767
There are  128 concat primes.

ALGOL 68

BEGIN  # find primes whose decimal representation is the concatenation of 2 primes #
    INT max low prime = 99;  # for the task, only need component primes up to 99   #
    INT max prime     = max low prime * max low prime;
    # sieve the primes to max prime #
    PR read "primes.incl.a68" PR
    []BOOL prime = PRIMESIEVE max prime;
    # construct a list of the primes up to the maximum low prime to consider #
    []INT low prime = EXTRACTPRIMESUPTO max low prime FROMPRIMESIEVE prime;
    # find the primes that can be concatenated to form another prime #
    [ 1 : max prime ]BOOL concat prime; FOR i TO UPB concat prime DO concat prime[ i ] := FALSE OD;
    # note that all possible concatenated primes have at least 2 digits, so the final digit can't be 2 #
    #      ( or 5 but we don't check that here ) #
    FOR i TO UPB low prime WHILE low prime[ i ] <= max low prime DO
        INT p1 = low prime[ i ];
        FOR j FROM 2 TO UPB low prime WHILE low prime[ j ] <= max low prime DO
            INT p2 = low prime[ j ];
            INT pc = ( p1 * IF p2 < 10 THEN 10 ELSE 100 FI ) + p2;
            concat prime[ pc ] := prime[ pc ]
        OD
    OD;
    # show the concatenated primes #
    INT c count := 0;
    FOR n TO UPB concat prime DO
        IF concat prime[ n ] THEN
            print( ( whole( n, -5 ) ) );
            IF ( c count +:= 1 ) MOD 10 = 0 THEN print( ( newline ) ) FI
        FI
    OD;
    print( ( newline, newline, "Found ", whole( c count, 0 ), " concat primes", newline ) )
END
Output:
   23   37   53   73  113  137  173  193  197  211
  223  229  233  241  271  283  293  311  313  317
  331  337  347  353  359  367  373  379  383  389
  397  433  523  541  547  571  593  613  617  673
  677  719  733  743  761  773  797  977 1117 1123
 1129 1153 1171 1319 1361 1367 1373 1723 1741 1747
 1753 1759 1783 1789 1913 1931 1973 1979 1997 2311
 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137
 3167 3719 3761 3767 3779 3797 4111 4129 4153 4159
 4337 4373 4397 4723 4729 4759 4783 4789 5323 5347
 5923 5953 6113 6131 6143 6173 6197 6719 6737 6761
 6779 7129 7159 7331 7919 7937 8311 8317 8329 8353
 8389 8923 8929 8941 8971 9719 9743 9767

Found 128 concat primes

ALGOL W

The Algol W for loop allows the loop counter values to be specified as a list - as there are only 25 primes below 100, this feature is used here to save looking through the sieve for the low primes.

begin % find primes whose decimal representation is the concatenation of 2 primes %
    integer MAX_PRIME;
    MAX_PRIME := 99 * 99;
    begin
        logical array isPrime     ( 1 :: MAX_PRIME );
        logical array concatPrime ( 1 :: MAX_PRIME );
        integer cCount;
        % sieve the primes to MAX_PRIME                                           %
        isPrime( 1 ) := false; isPrime( 2 ) := true;
        for i := 3 step 2 until MAX_PRIME do isPrime( i ) := true;
        for i := 4 step 2 until MAX_PRIME do isPrime( i ) := false;
        for i := 3 step 2 until truncate( sqrt( MAX_PRIME ) ) do begin
            integer ii; ii := i + i;
            if isPrime( i ) then for pr := i * i step ii until MAX_PRIME do isPrime( pr ) := false
        end for_i ;
        % find the concatenated primes, note their final digit can't be 2 or 5    %
        for i := 1 until MAX_PRIME do concatPrime( i ) := false;
        cCount := 0;
        for     p1 :=  2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37
                    , 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 do begin
            for p2 :=      3,      7, 11, 13, 17, 19, 23, 29, 31, 37
                    , 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 do begin
                integer pc;
                pc := ( p1 * ( if p2 < 10 then 10 else 100 ) ) + p2;
                concatPrime( pc ) := isPrime( pc )
            end for_p2
        end for_p1;
        % print the concatenated primes                                           %
        cCount := 0;
        for i := 1 until MAX_PRIME do begin
            if concatPrime( i ) then begin
                writeon( i_w := 5, s_w := 0, i );
                cCount := cCount + 1;
                if cCount rem 10 = 0 then write()
            end if_concatPrime_i
        end for_i;
        write();write( i_w := 1, s_w := 0, "Found ", cCount, " concat primes" )
    end
end.
Output:
   23   37   53   73  113  137  173  193  197  211
  223  229  233  241  271  283  293  311  313  317
  331  337  347  353  359  367  373  379  383  389
  397  433  523  541  547  571  593  613  617  673
  677  719  733  743  761  773  797  977 1117 1123
 1129 1153 1171 1319 1361 1367 1373 1723 1741 1747
 1753 1759 1783 1789 1913 1931 1973 1979 1997 2311
 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137
 3167 3719 3761 3767 3779 3797 4111 4129 4153 4159
 4337 4373 4397 4723 4729 4759 4783 4789 5323 5347
 5923 5953 6113 6131 6143 6173 6197 6719 6737 6761
 6779 7129 7159 7331 7919 7937 8311 8317 8329 8353
 8389 8923 8929 8941 8971 9719 9743 9767

Found 128 concat primes

Arturo

primesBelow100: select 1..100 => prime?
allPossibleConcats: permutate.repeat.by:2 primesBelow100

concatPrimes: allPossibleConcats | map 'x -> to :integer (to :string x\[0]) ++ (to :string x\[1])
                                 | select => prime?
                                 | sort
                                 | unique

print ["Found" size concatPrimes "concatenations of primes below 100:"]
loop split.every: 16 concatPrimes 'x ->
    print map x 's -> pad to :string s 4
Output:
Found 128 concatenations of primes below 100: 
  23   37   53   73  113  137  173  193  197  211  223  229  233  241  271  283 
 293  311  313  317  331  337  347  353  359  367  373  379  383  389  397  433 
 523  541  547  571  593  613  617  673  677  719  733  743  761  773  797  977 
1117 1123 1129 1153 1171 1319 1361 1367 1373 1723 1741 1747 1753 1759 1783 1789 
1913 1931 1973 1979 1997 2311 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137 
3167 3719 3761 3767 3779 3797 4111 4129 4153 4159 4337 4373 4397 4723 4729 4759 
4783 4789 5323 5347 5923 5953 6113 6131 6143 6173 6197 6719 6737 6761 6779 7129 
7159 7331 7919 7937 8311 8317 8329 8353 8389 8923 8929 8941 8971 9719 9743 9767

AWK

# syntax: GAWK -f CONCATENATE_TWO_PRIMES_IS_ALSO_PRIME.AWK
#
# sorting:
#   PROCINFO["sorted_in"] is used by GAWK
#   SORTTYPE is used by Thompson Automation's TAWK
#
BEGIN {
    start = 1
    stop = 99
    for (i=start; i<=stop; i++) {
      if (is_prime(i)) {
        for (j=start; j<=stop; j++) {
          if (is_prime(j)) {
            if (is_prime(i j)) {
              arr[i j] = ""
            }
          }
        }
      }
    }
    PROCINFO["sorted_in"] = "@ind_num_asc" ; SORTTYPE = 1
    for (i in arr) {
      printf("%5d%1s",i,++count%10?"":"\n")
    }
    printf("\nConcatenate two primes is also prime %d-%d: %d\n",start,stop,count)
    exit(0)
}
function is_prime(x,  i) {
    if (x <= 1) {
      return(0)
    }
    for (i=2; i<=int(sqrt(x)); i++) {
      if (x % i == 0) {
        return(0)
      }
    }
    return(1)
}
Output:
   23    37    53    73   113   137   173   193   197   211
  223   229   233   241   271   283   293   311   313   317
  331   337   347   353   359   367   373   379   383   389
  397   433   523   541   547   571   593   613   617   673
  677   719   733   743   761   773   797   977  1117  1123
 1129  1153  1171  1319  1361  1367  1373  1723  1741  1747
 1753  1759  1783  1789  1913  1931  1973  1979  1997  2311
 2341  2347  2371  2383  2389  2917  2953  2971  3119  3137
 3167  3719  3761  3767  3779  3797  4111  4129  4153  4159
 4337  4373  4397  4723  4729  4759  4783  4789  5323  5347
 5923  5953  6113  6131  6143  6173  6197  6719  6737  6761
 6779  7129  7159  7331  7919  7937  8311  8317  8329  8353
 8389  8923  8929  8941  8971  9719  9743  9767
Concatenate two primes is also prime 1-99: 128

BASIC

BASIC256

c = 0
for p1 = 2 to 99
	if not isPrime(p1) then continue for
	for p2 = 2 to 99
		if not isPrime(p2) then continue for
		cat = rjust(string(p1),2) + rjust(string(p2),2)
		if isPrime(cat) then
			c += 1
			print p1; "|"; p2; "  ";
			if c mod 10 = 0 then print
		end if
	next p2
next p1
end

function isPrime(v)
	if v < 2 then return False
	if v mod 2 = 0 then return v = 2
	if v mod 3 = 0 then return v = 3
	d = 5
	while d * d <= v
		if v mod d = 0 then return False else d += 2
	end while
	return True
end function

FreeBASIC

This solution focuses more on the primes p1, p2 than on the concatenated prime. Thus, there can be multiple solutions. For example, 373 can be formed from 37 and 3 or from 3 and 73 and will be listed twice.

#include "isprime.bas"
dim as integer p1, p2, cat, c = 0

for p1 = 2 to 99
    if not isprime(p1) then continue for
    for p2 = 2 to 99
        if not isprime(p2) then continue for
        cat = val( str(p1) + str(p2) )    ' =^..^=
        if isprime(cat) then 
            c+=1
            print using "##|##  ";p1;p2;
            if c mod 10 = 0 then print
        end if
    next p2
next p1
Output:

2| 3 2|11 2|23 2|29 2|41 2|71 2|83 3| 7 3|11 3|13 3|17 3|31 3|37 3|47 3|53 3|59 3|67 3|73 3|79 3|83 3|89 3|97 5| 3 5|23 5|41 5|47 5|71 7| 3 7|19 7|43 7|61 7|73 7|97 11| 3 11|17 11|23 11|29 11|53 11|71 13| 7 13|19 13|61 13|67 13|73 17| 3 17|23 17|41 17|47 17|53 17|59 17|83 17|89 19| 3 19| 7 19|13 19|31 19|73 19|79 19|97 23| 3 23|11 23|41 23|47 23|71 23|83 23|89 29| 3 29|17 29|53 29|71 31| 3 31| 7 31|19 31|37 31|67 37| 3 37|19 37|61 37|67 37|79 37|97 41|11 41|29 41|53 41|59 43| 3 43|37 43|73 43|97 47|23 47|29 47|59 47|83 47|89 53|23 53|47 59| 3 59|23 59|53 61| 3 61| 7 61|13 61|31 61|43 61|73 61|97 67| 3 67| 7 67|19 67|37 67|61 67|79 71|29 71|59 73| 3 73|31 79| 7 79|19 79|37 83|11 83|17 83|29 83|53 83|89 89|23 89|29 89|41 89|71 97| 7 97|19 97|43 97|67

Yabasic

c = 0
for p1 = 2 to 99
    if not isPrime(p1) then continue : fi
    for p2 = 2 to 99
        if not isPrime(p2) then continue : fi
        cat = val(str$(p1) + str$(p2))
        if isPrime(cat) then 
            c = c + 1
			a$ = str$(p1,"##")
			b$ = str$(p2,"##")
			print a$, "|", b$, "  ";
            if mod(c, 10) = 0 then print : fi
        end if
    next p2
next p1
print
end

sub isPrime(v)
    if v < 2 then return False : fi
    if mod(v, 2) = 0 then return v = 2 : fi
    if mod(v, 3) = 0 then return v = 3 : fi
    d = 5
    while d * d <= v
        if mod(v, d) = 0 then return False else d = d + 2 : fi
    wend
    return True
end sub


C

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <locale.h>

bool isPrime(int n) {
    if (n < 2) return false;
    if (n%2 == 0) return n == 2;
    if (n%3 == 0) return n == 3;
    int d = 5;
    while (d*d <= n) {
        if (n%d == 0) return false;
        d += 2;
        if (n%d == 0) return false;
        d += 4;
    }
    return true;
}

int compare(const void* a, const void* b) {
    int arg1 = *(const int*)a;
    int arg2 = *(const int*)b;
    if (arg1 < arg2) return -1;
    if (arg1 > arg2) return 1;
    return 0;
}

int main() {
    int primes[30] = {2}, results[200];
    int i, j, p, q, pq, limit = 100, pc = 1, rc = 0;
    for (i = 3; i < limit; i += 2) {
        if (isPrime(i)) primes[pc++] = i;
    }
    for (i = 0; i < pc; ++i) {
        p = primes[i];
        for (j = 0; j < pc; ++j) {
            q = primes[j];
            pq = (q < 10) ? p * 10 + q : p * 100 + q;
            if (isPrime(pq)) results[rc++] = pq;
        }
    }
    qsort(results, rc, sizeof(int), compare);
    setlocale(LC_NUMERIC, "");
    printf("Two primes under 100 concatenated together to form another prime:\n");
    for (i = 0, j = 0; i < rc; ++i) {
        if (i > 0 && results[i] == results[i-1]) continue;
        printf("%'6d ", results[i]);
        if (++j % 10 == 0) printf("\n");
    }
    printf("\n\nFound %d such concatenated primes.\n", j);
    return 0;
}
Output:
Two primes under 100 concatenated together to form another prime:
    23     37     53     73    113    137    173    193    197    211 
   223    229    233    241    271    283    293    311    313    317 
   331    337    347    353    359    367    373    379    383    389 
   397    433    523    541    547    571    593    613    617    673 
   677    719    733    743    761    773    797    977  1,117  1,123 
 1,129  1,153  1,171  1,319  1,361  1,367  1,373  1,723  1,741  1,747 
 1,753  1,759  1,783  1,789  1,913  1,931  1,973  1,979  1,997  2,311 
 2,341  2,347  2,371  2,383  2,389  2,917  2,953  2,971  3,119  3,137 
 3,167  3,719  3,761  3,767  3,779  3,797  4,111  4,129  4,153  4,159 
 4,337  4,373  4,397  4,723  4,729  4,759  4,783  4,789  5,323  5,347 
 5,923  5,953  6,113  6,131  6,143  6,173  6,197  6,719  6,737  6,761 
 6,779  7,129  7,159  7,331  7,919  7,937  8,311  8,317  8,329  8,353 
 8,389  8,923  8,929  8,941  8,971  9,719  9,743  9,767 

Found 128 such concatenated primes.

C++

#include <iostream>
#include <iomanip>
#include <cmath>
#include <string>
#include <vector>
#include <algorithm>

bool isPrime( int n ) {
   if ( n == 2 ) 
      return true ;
   else {
      int limit = static_cast<int>( floor ( std::sqrt( static_cast<int>( 
                     n ) ) ) ) ;
      for ( int i = 2 ; i < limit + 1 ; i++ ) {
         if ( n % i == 0 ) 
            return false ;
      }
      return true ;
   }
}

int concatenate( int a , int b ) {
   std::string firstNum { std::to_string( a ) } ;
   std::string secondNum { std::to_string( b ) } ;
   std::string concat { firstNum + secondNum } ;
   return std::stoi( concat ) ;
}

int main( ) {
   std::vector<int> primes, concatPrimes ;
   for ( int i = 2 ; i < 100 ; i++ ) {
      if ( isPrime( i ) ) 
         primes.push_back( i ) ;
   }
   int len = primes.size( ) ;
   for ( int i = 0 ; i < len  ; i++ ) {
      for ( int j = 0 ; j < len ; j++ ) {
         int k = concatenate( primes[i] , primes[j] ) ;
         if ( isPrime( k ) ) 
            concatPrimes.push_back( k ) ;
      }
   }
   std::cout << "There are " << concatPrimes.size( ) << " concatenated " 
      << "primes , each part under 100!\n" ;
   int count = 0 ;
   std::sort( concatPrimes.begin( ) , concatPrimes.end( ) ) ;
   for ( int num : concatPrimes ) {
      std::cout << std::right << std::setw( 5 ) << num ;
      count++ ;
      if ( count == 10 ) {
         std::cout << '\n' ;
         count = 0 ;
      }
   }
   std::cout << '\n' ;
   return 0 ;
}
Output:
There are 132 concatenated primes , each part under 100!
   23   37   53   73  113  137  173  193  197  211
  223  229  233  241  271  283  293  311  313  313
  317  317  331  337  347  353  359  367  373  373
  379  383  389  397  433  523  541  547  571  593
  613  617  673  677  719  733  743  761  773  797
  797  977 1117 1123 1129 1153 1171 1319 1361 1367
 1373 1723 1741 1747 1753 1759 1783 1789 1913 1931
 1973 1979 1997 2311 2341 2347 2371 2383 2389 2917
 2953 2971 3119 3137 3167 3719 3761 3767 3779 3797
 4111 4129 4153 4159 4337 4373 4397 4723 4729 4759
 4783 4789 5323 5347 5923 5953 6113 6131 6143 6173
 6197 6719 6737 6761 6779 7129 7159 7331 7919 7937
 8311 8317 8329 8353 8389 8923 8929 8941 8971 9719
 9743 9767


Delphi

Works with: Delphi version 6.0


function Compare(P1,P2: pointer): integer;
{Compare for quick sort}
begin
Result:=Integer(P1)-Integer(P2);
end;

procedure ConcatonatePrimes(Memo: TMemo);
{Show concatonated pairs of primes that are also prime}
var List: TList;
var I,P1,P2,ConCat: integer;
var Sieve: TPrimeSieve;
const Max =100;
var S: string;

	function ConcatNums(I1,I2: integer): integer;
	begin
	Result:=StrToInt(IntToStr(I1)+IntToStr(I2));
	end;

begin
{Create sieve to for fast prime generation}
Sieve:=TPrimeSieve.Create;
try
List:=TList.Create;
try
{Sieve first 1,000 primes}
Sieve.Intialize(1000);

{Generate all combinations of primes}
{ P1 and P2, from 2 to 100}
P1:=2;
while P1<Max do
	begin
	P2:=2;
	while P2<Max do
		begin
		{Concatonates the two primes}
		ConCat:=ConcatNums(P1,P2);
		{Test if it is prime and only store unique primes}
		if IsPrime(ConCat) then
		 if List.IndexOf(Pointer(ConCat))<0 then
		  List.Add(Pointer(ConCat));
		P2:=Sieve.NextPrime(P2);
		end;
	P1:=Sieve.NextPrime(P1);
	end;
{Sort list in numerical order}
List.Sort(Compare);
{Display the result}
Memo.Lines.Add('Concatonated Primes Found: '+IntToStr(List.Count));
for I:=0 to List.Count-1 do
	begin
	S:=S+Format('%5d',[integer(List[I])]);
	if (I mod 10)=9 then S:=S+CRLF;
	end;
Memo.Lines.Add(S);
finally List.Free; end;
finally Sieve.Free; end;
end;
Output:
Concatonated Primes Found: 128
   23   37   53   73  113  137  173  193  197  211
  223  229  233  241  271  283  293  311  313  317
  331  337  347  353  359  367  373  379  383  389
  397  433  523  541  547  571  593  613  617  673
  677  719  733  743  761  773  797  977 1117 1123
 1129 1153 1171 1319 1361 1367 1373 1723 1741 1747
 1753 1759 1783 1789 1913 1931 1973 1979 1997 2311
 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137
 3167 3719 3761 3767 3779 3797 4111 4129 4153 4159
 4337 4373 4397 4723 4729 4759 4783 4789 5323 5347
 5923 5953 6113 6131 6143 6173 6197 6719 6737 6761
 6779 7129 7159 7331 7919 7937 8311 8317 8329 8353
 8389 8923 8929 8941 8971 9719 9743 9767
Elapsed Time: 3.990 ms.


EasyLang

proc sort . d[] .
   for i = 1 to len d[] - 1
      for j = i + 1 to len d[]
         if d[j] < d[i]
            swap d[j] d[i]
         .
      .
   .
.
func isprim num .
   i = 2
   while i <= sqrt num
      if num mod i = 0
         return 0
      .
      i += 1
   .
   return 1
.
for i = 2 to 99
   if isprim i = 1
      prims[] &= i
   .
.
for p1 in prims[]
   for p2 in prims[]
      h$ = p1 & p2
      h = number h$
      if isprim h = 1
         r[] &= h
      .
   .
.
sort r[]
print r[]

Factor

Works with: Factor version 0.99 2021-06-02
USING: formatting grouping io kernel math.parser math.primes
present prettyprint sequences sets sorting ;

"Concatenated-pair primes from primes < 100:" print nl
99 primes-upto [ present ] map dup [ append dec> ] cartesian-map
concat [ prime? ] filter members natural-sort [ length ] keep
8 group simple-table. "\nFound %d concatenated primes.\n" printf
Output:
Concatenated-pair primes from primes < 100:

23   37   53   73   113  137  173  193
197  211  223  229  233  241  271  283
293  311  313  317  331  337  347  353
359  367  373  379  383  389  397  433
523  541  547  571  593  613  617  673
677  719  733  743  761  773  797  977
1117 1123 1129 1153 1171 1319 1361 1367
1373 1723 1741 1747 1753 1759 1783 1789
1913 1931 1973 1979 1997 2311 2341 2347
2371 2383 2389 2917 2953 2971 3119 3137
3167 3719 3761 3767 3779 3797 4111 4129
4153 4159 4337 4373 4397 4723 4729 4759
4783 4789 5323 5347 5923 5953 6113 6131
6143 6173 6197 6719 6737 6761 6779 7129
7159 7331 7919 7937 8311 8317 8329 8353
8389 8923 8929 8941 8971 9719 9743 9767

Found 128 concatenated primes.

FutureBasic

local fn IsPrime( n as int ) as BOOL
  int i
  if n = 2 then return YES
  if n < 2 || n % 2 == 0 then return NO
  for i = 3 to int(n^.5) step 2
    if n % i == 0 then return NO
  next
end fn = YES


void local fn ConcatenatedPrimesArePrime( limit as int )
  int p1, p2, cat, i, c = 0
  CFMutableArrayRef mutArr = fn MutableArrayNew
  
  for p1 = 2 to limit
    if fn IsPrime( p1 ) == NO then continue
    for p2 = 2 to limit
      if fn IsPrime( p2 ) == NO then continue
      cat = fn StringIntValue( fn StringWithFormat( @"%d%d", p1, p2 ) )
      // cat = val( str$( p1 ) + str$( p2 ) )
      if ( fn IsPrime( cat ) )
        c++
        MutableArrayAddObject( mutArr, @(cat) )
      end if
    next
  next
  
  SortDescriptorRef sortAscending = fn SortDescriptorWithKey( NULL, YES )
  CFArrayRef array = fn ArraySortedArrayUsingDescriptors( mutArr, @[sortAscending] )
  
  int count = len( array )
  for i = 0 to count -1
    c++
    printf @"%4d  \b", fn StringIntValue( array[i] )
    if c mod 6 == 0 then print
  next
end fn

fn ConcatenatedPrimesArePrime( 100 )

HandleEvents
Output:
  23    37    53    73   113   137  
 173   193   197   211   223   229  
 233   241   271   283   293   311  
 313   313   317   317   331   337  
 347   353   359   367   373   373  
 379   383   389   397   433   523  
 541   547   571   593   613   617  
 673   677   719   733   743   761  
 773   797   797   977  1117  1123  
1129  1153  1171  1319  1361  1367  
1373  1723  1741  1747  1753  1759  
1783  1789  1913  1931  1973  1979  
1997  2311  2341  2347  2371  2383  
2389  2917  2953  2971  3119  3137  
3167  3719  3761  3767  3779  3797  
4111  4129  4153  4159  4337  4373  
4397  4723  4729  4759  4783  4789  
5323  5347  5923  5953  6113  6131  
6143  6173  6197  6719  6737  6761  
6779  7129  7159  7331  7919  7937  
8311  8317  8329  8353  8389  8923  
8929  8941  8971  9719  9743  9767  



Go

Library: Go-rcu
package main

import (
    "fmt"
    "rcu"
    "sort"
)

func main() {
    const LIMIT = 99
    primes := rcu.Primes(LIMIT)
    rmap := make(map[int]bool)
    for _, p := range primes {
        for _, q := range primes {
            var pq int
            if q < 10 {
                pq = p*10 + q
            } else {
                pq = p*100 + q
            }
            if rcu.IsPrime(pq) {
                rmap[pq] = true
            }
        }
    }
    results := make([]int, len(rmap))
    i := 0
    for k := range rmap {
        results[i] = k
        i++
    }
    sort.Ints(results)
    fmt.Println("Two primes under 100 concatenated together to form another prime:")
    for i, p := range results {
        fmt.Printf("%5s ", rcu.Commatize(p))
        if (i+1)%10 == 0 {
            fmt.Println()
        }
    }
    fmt.Println("\n\nFound", len(results), "such concatenated primes.")
}
Output:
Two primes under 100 concatenated together to form another prime:
   23    37    53    73   113   137   173   193   197   211 
  223   229   233   241   271   283   293   311   313   317 
  331   337   347   353   359   367   373   379   383   389 
  397   433   523   541   547   571   593   613   617   673 
  677   719   733   743   761   773   797   977 1,117 1,123 
1,129 1,153 1,171 1,319 1,361 1,367 1,373 1,723 1,741 1,747 
1,753 1,759 1,783 1,789 1,913 1,931 1,973 1,979 1,997 2,311 
2,341 2,347 2,371 2,383 2,389 2,917 2,953 2,971 3,119 3,137 
3,167 3,719 3,761 3,767 3,779 3,797 4,111 4,129 4,153 4,159 
4,337 4,373 4,397 4,723 4,729 4,759 4,783 4,789 5,323 5,347 
5,923 5,953 6,113 6,131 6,143 6,173 6,197 6,719 6,737 6,761 
6,779 7,129 7,159 7,331 7,919 7,937 8,311 8,317 8,329 8,353 
8,389 8,923 8,929 8,941 8,971 9,719 9,743 9,767 

Found 128 such concatenated primes.

Haskell

import Control.Applicative
import Data.List ( sort ) 
import Data.List.Split ( chunksOf )

isPrime :: Int -> Bool
isPrime n 
   |n == 2 = True
   |n == 1 = False
   |otherwise = null $ filter (\i -> mod n i == 0 ) [2 .. root]
   where
      root :: Int
      root = floor $ sqrt $ fromIntegral n

solution :: [Int]
solution = sort $ filter isPrime $ map read ( (++) <$> numberlist <*> numberlist ) 
 where
   numberlist :: [String]
   numberlist = map show $ filter isPrime [1 .. 99]

main :: IO ( ) 
main = do
  mapM_ print $ chunksOf 15 solution
Output:
[23,37,53,73,113,137,173,193,197,211,223,229,233,241,271]
[283,293,311,313,313,317,317,331,337,347,353,359,367,373,373]
[379,383,389,397,433,523,541,547,571,593,613,617,673,677,719]
[733,743,761,773,797,797,977,1117,1123,1129,1153,1171,1319,1361,1367]
[1373,1723,1741,1747,1753,1759,1783,1789,1913,1931,1973,1979,1997,2311,2341]
[2347,2371,2383,2389,2917,2953,2971,3119,3137,3167,3719,3761,3767,3779,3797]
[4111,4129,4153,4159,4337,4373,4397,4723,4729,4759,4783,4789,5323,5347,5923]
[5953,6113,6131,6143,6173,6197,6719,6737,6761,6779,7129,7159,7331,7919,7937]
[8311,8317,8329,8353,8389,8923,8929,8941,8971,9719,9743,9767]   

J

   concat=. (] + (* 10 ^ #@":))"1 0

   _12 ]\ /:~ (#~ 1&p:) , concat~ i.&.(p:inv) 100
  23   37   53   73  113  137  173  193  197  211  223  229
 233  241  271  283  293  311  313  313  317  317  331  337
 347  353  359  367  373  373  379  383  389  397  433  523
 541  547  571  593  613  617  673  677  719  733  743  761
 773  797  797  977 1117 1123 1129 1153 1171 1319 1361 1367
1373 1723 1741 1747 1753 1759 1783 1789 1913 1931 1973 1979
1997 2311 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137
3167 3719 3761 3767 3779 3797 4111 4129 4153 4159 4337 4373
4397 4723 4729 4759 4783 4789 5323 5347 5923 5953 6113 6131
6143 6173 6197 6719 6737 6761 6779 7129 7159 7331 7919 7937
8311 8317 8329 8353 8389 8923 8929 8941 8971 9719 9743 9767

jq

Works with: jq

Works with gojq, the Go implementation of jq

Preliminaries

def is_prime:
  . as $n
  | if ($n < 2)         then false
    elif ($n % 2 == 0)  then $n == 2
    elif ($n % 3 == 0)  then $n == 3
    elif ($n % 5 == 0)  then $n == 5
    elif ($n % 7 == 0)  then $n == 7
    elif ($n % 11 == 0) then $n == 11
    elif ($n % 13 == 0) then $n == 13
    elif ($n % 17 == 0) then $n == 17
    elif ($n % 19 == 0) then $n == 19
    else {i:23}
    | until( (.i * .i) > $n or ($n % .i == 0); .i += 2)
    | .i * .i > $n
    end;

# Emit an array of primes less than `.`
def primes:
  if . < 2 then []
  else
    [2] + [range(3; .; 2) | select(is_prime)]
  end;

# Pretty-printing
def nwise($n):
  def n: if length <= $n then . else .[0:$n] , (.[$n:] | n) end;
  n;

def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;

The task

# Emit [p1,p2] where p1 < p2 < . and the concatenation is prime
def concatenative_primes:
  primes
  | range(0;length) as $i
  | range($i+1;length) as $j
  | [.[$i], .[$j]], [.[$j], .[$i]]
  | select( map(tostring) | add | tonumber | is_prime);

[100 | concatenative_primes | join("||")]
| (nwise(10) | map(lpad(6)) | join(" "))
Output:
  2||3  2||11  2||23  2||29  2||41  2||71  2||83   5||3   3||7   7||3
 3||11  11||3  3||13  3||17  17||3  19||3  23||3  29||3  3||31  31||3
 3||37  37||3  43||3  3||47  3||53  3||59  59||3  61||3  3||67  67||3
 3||73  73||3  3||79  3||83  3||89  3||97  5||23  5||41  5||47  5||71
 13||7  7||19  19||7  31||7  7||43  7||61  61||7  67||7  7||73  79||7
 7||97  97||7 11||17 11||23 23||11 11||29 41||11 11||53 11||71 83||11
13||19 19||13 13||61 61||13 13||67 13||73 17||23 29||17 17||41 17||47
17||53 17||59 17||83 83||17 17||89 19||31 31||19 37||19 67||19 19||73
19||79 79||19 19||97 97||19 23||41 23||47 47||23 53||23 59||23 23||71
23||83 23||89 89||23 41||29 47||29 29||53 29||71 71||29 83||29 89||29
31||37 61||31 31||67 73||31 43||37 37||61 37||67 67||37 37||79 79||37
37||97 41||53 41||59 89||41 61||43 43||73 43||97 97||43 53||47 47||59
47||83 47||89 59||53 83||53 71||59 67||61 61||73 61||97 67||79 97||67

Julia

using Primes

function catprimes()
    found, pri = Int[], primes(100)
    for x in pri, y in pri
        n = x + y * (x < 10 ? 10 : 100)
        isprime(n) && push!(found, n)
    end
    return sort!(unique(found))
end

foreach(p -> print(lpad(last(p), 5), first(p) % 16 == 0 ? "\n" : ""),
    catprimes() |> enumerate)
Output:
   23   37   53   73  113  137  173  193  197  211  223  229  233  241  271  283
  293  311  313  317  331  337  347  353  359  367  373  379  383  389  397  433
  523  541  547  571  593  613  617  673  677  719  733  743  761  773  797  977
 1117 1123 1129 1153 1171 1319 1361 1367 1373 1723 1741 1747 1753 1759 1783 1789
 1913 1931 1973 1979 1997 2311 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137
 3167 3719 3761 3767 3779 3797 4111 4129 4153 4159 4337 4373 4397 4723 4729 4759
 4783 4789 5323 5347 5923 5953 6113 6131 6143 6173 6197 6719 6737 6761 6779 7129
 7159 7331 7919 7937 8311 8317 8329 8353 8389 8923 8929 8941 8971 9719 9743 9767

Mathematica /Wolfram Language

Select[Catenate /* FromDigits /@ Map[IntegerDigits, Tuples[Prime[Range[PrimePi[100]]], 2], {2}], PrimeQ] // Union
Output:
{23, 37, 53, 73, 113, 137, 173, 193, 197, 211, 223, 229, 233, 241, 271, 283, 293, 311, 313, 317, 331, 337, 347, 353, 359, 367, 373, 379, 383, 389, 397, 433, 523, 541, 547, 571, 593, 613, 617, 673, 677, 719, 733, 743, 761, 773, 797, 977, 1117, 1123, 1129, 1153, 1171, 1319, 1361, 1367, 1373, 1723, 1741, 1747, 1753, 1759, 1783, 1789, 1913, 1931, 1973, 1979, 1997, 2311, 2341, 2347, 2371, 2383, 2389, 2917, 2953, 2971, 3119, 3137, 3167, 3719, 3761, 3767, 3779, 3797, 4111, 4129, 4153, 4159, 4337, 4373, 4397, 4723, 4729, 4759, 4783, 4789, 5323, 5347, 5923, 5953, 6113, 6131, 6143, 6173, 6197, 6719, 6737, 6761, 6779, 7129, 7159, 7331, 7919, 7937, 8311, 8317, 8329, 8353, 8389, 8923, 8929, 8941, 8971, 9719, 9743, 9767}

Lua

Based on the Algol W sample.

do -- find primes whose decimal representation is the concatenation of 2 primes < 100
    local MAX_PRIME = 99 * 99
    -- returns true if n is prime, false otherwise, uses trial division
    local function isPrime ( n )
        if     n < 3      then return n == 2
        elseif n % 3 == 0 then return n == 3
        elseif n % 2 == 0 then return false
        else
            local prime = true
            local f, f2, toNext = 5, 25, 24
            while f2 <= n and prime do
                prime  = n % f ~= 0
                f      = f + 2
                f2     = toNext
                toNext = toNext + 8
            end
            return prime
        end
    end
    local concatPrime = {}
    -- tables of small primes, sp2 will be the final digits so does not include 2 or 5
    local sp1 = {  2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37
                , 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
                }
    local sp2 = {      3,      7, 11, 13, 17, 19, 23, 29, 31, 37
                , 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
                }
    -- find the concatenated primes
    for i = 1, MAX_PRIME do concatPrime[ i ] = false end
    for     _, p1 in pairs( sp1 ) do
        for _, p2 in pairs( sp2 ) do
            local pc = ( p1 * ( p2 < 10 and 10 or 100 ) ) + p2
            concatPrime[ pc ] = isPrime( pc )
        end
    end
    -- print the concatenated primes
    local cCount = 0
    for i = 1, MAX_PRIME do
        if concatPrime[ i ] then
           io.write( string.format( "%5d", i ) )
           cCount = cCount + 1
           if cCount % 10 == 0 then io.write( "\n" ) end
        end
    end
    io.write( "\n\nFound ", cCount, " concat primes" )
end
Output:
   23   37   53   73  113  137  173  193  197  211
  223  229  233  241  271  283  293  311  313  317
  331  337  347  353  359  367  373  379  383  389
  397  433  523  541  547  571  593  613  617  673
  677  719  733  743  761  773  797  977 1117 1123
 1129 1153 1171 1319 1361 1367 1373 1723 1741 1747
 1753 1759 1783 1789 1913 1931 1973 1979 1997 2311
 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137
 3167 3719 3761 3767 3779 3797 4111 4129 4153 4159
 4337 4373 4397 4723 4729 4759 4783 4789 5323 5347
 5923 5953 6113 6131 6143 6173 6197 6719 6737 6761
 6779 7129 7159 7331 7919 7937 8311 8317 8329 8353
 8389 8923 8929 8941 8971 9719 9743 9767

Found 128 concat primes

newLISP

(define (prime? n) (= 1 (length (factor (int n)))))

(set 'small-primes (filter prime? (sequence 2 99)))

(let (result '())
  (dolist (p1 small-primes)
    (dolist (p2 small-primes)
      (let (n (int (string p1 p2)))
        (if (and (prime? n) (not (member n result)))
          (push n result)))))
  (dolist (p (sort result))
    (print (format "%6d" p))
    (if (zero? (mod (+ 1 $idx) 10)) (println)))
  (println))

    23    37    53    73   113   137   173   193   197   211
   223   229   233   241   271   283   293   311   313   317
   331   337   347   353   359   367   373   379   383   389
   397   433   523   541   547   571   593   613   617   673
   677   719   733   743   761   773   797   977  1117  1123
  1129  1153  1171  1319  1361  1367  1373  1723  1741  1747
  1753  1759  1783  1789  1913  1931  1973  1979  1997  2311
  2341  2347  2371  2383  2389  2917  2953  2971  3119  3137
  3167  3719  3761  3767  3779  3797  4111  4129  4153  4159
  4337  4373  4397  4723  4729  4759  4783  4789  5323  5347
  5923  5953  6113  6131  6143  6173  6197  6719  6737  6761
  6779  7129  7159  7331  7919  7937  8311  8317  8329  8353
  8389  8923  8929  8941  8971  9719  9743  9767


Nim

import strutils, sugar

func isPrime(n: Positive): bool =
  if n == 1: return false
  if (n and 1) == 0: return n == 2
  if n mod 3 == 0: return n == 3
  var d = 5
  while d * d <= n:
    if n mod d == 0: return false
    if n mod (d + 2) == 0: return false
    inc d, 6
  result = true

# List of primes.
const Primes = collect(newSeq, for n in 2..<100: (if n.isPrime: n))

var concatPrimes: set[0..9999]    # Using a set to eliminate duplicates and avoid sort.
for p1 in Primes:
  for p2 in Primes:
    let n = p2 + p1 * (if p2 < 10: 10 else: 100)
    if n.isPrime:
      concatPrimes.incl n

echo "Found $# primes which are a concatenation of two primes below 100:".format(concatPrimes.len)
var i = 1
for n in concatPrimes:
  stdout.write ($n).align(4), if i mod 16 == 0: '\n' else: ' '
  inc i
Output:
Found 128 primes which are a concatenation of two primes below 100:
  23   37   53   73  113  137  173  193  197  211  223  229  233  241  271  283
 293  311  313  317  331  337  347  353  359  367  373  379  383  389  397  433
 523  541  547  571  593  613  617  673  677  719  733  743  761  773  797  977
1117 1123 1129 1153 1171 1319 1361 1367 1373 1723 1741 1747 1753 1759 1783 1789
1913 1931 1973 1979 1997 2311 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137
3167 3719 3761 3767 3779 3797 4111 4129 4153 4159 4337 4373 4397 4723 4729 4759
4783 4789 5323 5347 5923 5953 6113 6131 6143 6173 6197 6719 6737 6761 6779 7129
7159 7331 7919 7937 8311 8317 8329 8353 8389 8923 8929 8941 8971 9719 9743 9767

Perl

#!/usr/bin/perl

use strict; # https://rosettacode.org/wiki/Concatenate_two_primes_is_also_prime
use warnings;
use ntheory qw( primes is_prime );
use List::Util qw( uniq );

my @primes = @{ primes(100) };
my @valid = uniq sort { $a <=> $b } grep is_prime($_),
  map { my $prefix = $_; map "$prefix$_", @primes } @primes;
print @valid . " primes found\n\n@valid\n" =~ s/.{79}\K /\n/gr;
Output:
128 primes found

23 37 53 73 113 137 173 193 197 211 223 229 233 241 271 283 293 311 313 317 331
337 347 353 359 367 373 379 383 389 397 433 523 541 547 571 593 613 617 673 677
719 733 743 761 773 797 977 1117 1123 1129 1153 1171 1319 1361 1367 1373 1723 1741
1747 1753 1759 1783 1789 1913 1931 1973 1979 1997 2311 2341 2347 2371 2383 2389
2917 2953 2971 3119 3137 3167 3719 3761 3767 3779 3797 4111 4129 4153 4159 4337
4373 4397 4723 4729 4759 4783 4789 5323 5347 5923 5953 6113 6131 6143 6173 6197
6719 6737 6761 6779 7129 7159 7331 7919 7937 8311 8317 8329 8353 8389 8923 8929
8941 8971 9719 9743 9767

Phix

with javascript_semantics
procedure main()
    sequence primes = get_primes_le(100),
             result = {}
    for p in primes do
        for q in primes do
            integer pq = p*iff(q<10?10:100)+q
            if is_prime(pq) then result &= pq end if
        end for
    end for
    result = unique(result)
    printf(1,"Found %d such primes: %v\n",{length(result),shorten(result,"",5)})
end procedure
main()
Output:
Found 128 such primes: {23,37,53,73,113,"...",8941,8971,9719,9743,9767}

PL/M

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

100H: /* FIND SOME PAIRS OF PRIMES BETWEEN 1 AND 99 SUCH THAT IF THEIR      */
      /* DIGITS ARE CONCATENATED, THE RESULT IS ALSO A PRIME                */

   /* CP/M BDOS SYSTEM CALL AND I/O ROUTINES                                */
   BDOS: PROCEDURE( FN, ARG );   DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
   PR$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C );    END;
   PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S );    END;
   PR$NL:     PROCEDURE; CALL PR$STRING( .( 0DH, 0AH, '$' ) );         END;
   PR$NUMBER: PROCEDURE( N );
      DECLARE N ADDRESS;
      DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
      V = N;
      W = LAST( N$STR );
      N$STR( W ) = '$';
      N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      DO WHILE( ( V := V / 10 ) > 0 );
         N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      END;
      CALL PR$STRING( .N$STR( W ) );
   END PR$NUMBER;

   /* TASK                                                                  */

   DECLARE FALSE           LITERALLY '0';
   DECLARE TRUE            LITERALLY '0FFH';
   DECLARE CONCAT$PRIME    LITERALLY '0FH';
   DECLARE MAX$LOW$PRIME   LITERALLY '99';
   DECLARE PRIME ( 10$000 )BYTE;    /* PRIME SIEVE. A BIT LARGER THN NEEDED */
                                    /* THE FIRST NYBBLE WILL BE SET TO 0 IF */
                                    /* IT IS A CONCATENATED PRIME           */
   /* THE SIZE OF PRIME SHOULD BE AT LEAST MAX$LOW$PRIME SQUARED            */
   /* SIEVE THE PRIMES TO MAX$PRIME                                         */
   DECLARE ( I, J, COUNT ) ADDRESS;
   PRIME( 1 ) = FALSE; PRIME( 2 ) = TRUE;
   DO I = 3 TO LAST( PRIME ) BY 2; PRIME( I ) = TRUE;  END;
   DO I = 4 TO LAST( PRIME ) BY 2; PRIME( I ) = FALSE; END;
   DO I = 3 TO MAX$LOW$PRIME + 1;
      IF PRIME( I ) THEN DO;
         DO J = I * I TO LAST( PRIME ) BY I + I; PRIME( J ) = FALSE; END;
      END;
   END;
   /* FIND THE CONCATEDNATED PRIMES                                         */
   COUNT = 0;
   DO I = 2 TO MAX$LOW$PRIME;
      IF PRIME( I ) THEN DO;
         DO J = 2 TO MAX$LOW$PRIME;
            IF PRIME( J ) THEN DO;
               DECLARE CP ADDRESS;
               IF J < 10 THEN CP = I *  10;
                         ELSE CP = I * 100;
               CP = CP + J;
               IF PRIME( I ) AND PRIME( J ) AND PRIME( CP ) THEN DO;
                  /* CP IS A CONCATENATED PRIME - FLAG PRIME( CP ) AS SUCH  */
                  PRIME( CP ) = CONCAT$PRIME;
               END;
            END;
         END;
      END;
   END; 
   /* SHOW THE CONCATENATED PRIMES                                          */
   /* SINGLE DIGIT NUMBERS CAN'T BE CONCATENATED PRIMES, START AT 10        */
   DO I = 3 TO LAST( PRIME ) BY 2;
      IF PRIME( I ) = CONCAT$PRIME THEN DO;
         /* HAVE A CONCATENATED PRIME                                       */
         CALL PR$CHAR( ' ' );
         IF I < 1000 THEN DO;
            CALL PR$CHAR( ' ' );
            IF I < 100 THEN CALL PR$CHAR( ' ' );
         END;
         CALL PR$NUMBER( I );
         IF ( COUNT := COUNT + 1 ) MOD 10 = 0 THEN CALL PR$NL;
      END;
   END;

EOF
Output:
   23   37   53   73  113  137  173  193  197  211
  223  229  233  241  271  283  293  311  313  317
  331  337  347  353  359  367  373  379  383  389
  397  433  523  541  547  571  593  613  617  673
  677  719  733  743  761  773  797  977 1117 1123
 1129 1153 1171 1319 1361 1367 1373 1723 1741 1747
 1753 1759 1783 1789 1913 1931 1973 1979 1997 2311
 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137
 3167 3719 3761 3767 3779 3797 4111 4129 4153 4159
 4337 4373 4397 4723 4729 4759 4783 4789 5323 5347
 5923 5953 6113 6131 6143 6173 6197 6719 6737 6761
 6779 7129 7159 7331 7919 7937 8311 8317 8329 8353
 8389 8923 8929 8941 8971 9719 9743 9767

Python

from itertools import takewhile

def is_prime(x):
    return x > 1 and all(x % d for d in takewhile(lambda n: n * n <= x, primes))

def init_primes(n):
    global primes
    primes = [2]
    for x in range(3, n + 1, 2):
        if is_prime(x): primes.append(x)

def concat(x, y):
    return 10 ** len(str(y)) * x + y

init_primes(99)
print(*sorted(n for x in primes for y in primes if is_prime(n := concat(x, y))))
Output:
23 37 53 73 113 137 173 193 197 211 223 229 233 241 271 283 293 311 313 313 317 317 331 337 347 353 359 367 373 373 379 383 389 397 433 523 541 547 571 593 613 617 673 677 719 733 743 761 773 797 797 977 1117 1123 1129 1153 1171 1319 1361 1367 1373 1723 1741 1747 1753 1759 1783 1789 1913 1931 1973 1979 1997 2311 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137 3167 3719 3761 3767 3779 3797 4111 4129 4153 4159 4337 4373 4397 4723 4729 4759 4783 4789 5323 5347 5923 5953 6113 6131 6143 6173 6197 6719 6737 6761 6779 7129 7159 7331 7919 7937 8311 8317 8329 8353 8389 8923 8929 8941 8971 9719 9743 9767

Quackery

isprime is defined at Primality by trial division#Quackery.

  [ [] swap
    [ base share /mod
      rot join swap
      dup 0 = until ]
    drop ]                      is digits      ( n --> [ )

  [ 0 swap witheach
      [ swap 10 * + ] ]         is digits->n   ( [ --> n )

  [ behead dup dip nested rot
    witheach
      [ tuck != if
          [ dup dip
            [ nested join ] ] ]
    drop ]                      is -duplicates ( [ --> [ )

  [] dup temp put
  100 times
    [ i^ isprime if
        [ i^ digits
          nested join ] ]
  dup witheach
    [ over witheach
       [ over join
         digits->n
         dup isprime iff
           [ temp take
             join
             temp put ]
         else drop ]
       drop ]
  drop
  temp take
  sort -duplicates
  [ dup [] != while
    10 split swap
    witheach
      [ dup 1000 < if sp
        dup 100 < if sp
        echo sp ]
    cr
    again ]
  drop
Output:
  23   37   53   73  113  137  173  193  197  211 
 223  229  233  241  271  283  293  311  313  317 
 331  337  347  353  359  367  373  379  383  389 
 397  433  523  541  547  571  593  613  617  673 
 677  719  733  743  761  773  797  977 1117 1123 
1129 1153 1171 1319 1361 1367 1373 1723 1741 1747 
1753 1759 1783 1789 1913 1931 1973 1979 1997 2311 
2341 2347 2371 2383 2389 2917 2953 2971 3119 3137 
3167 3719 3761 3767 3779 3797 4111 4129 4153 4159 
4337 4373 4397 4723 4729 4759 4783 4789 5323 5347 
5923 5953 6113 6131 6143 6173 6197 6719 6737 6761 
6779 7129 7159 7331 7919 7937 8311 8317 8329 8353 
8389 8923 8929 8941 8971 9719 9743 9767 

Raku

Inefficient, but for a limit of 100, who cares?

my @p = ^1e2 .grep: *.is-prime;

say display ( @p X~ @p ).grep( *.is-prime ).unique.sort( +* ); 

sub display ($list, :$cols = 10, :$fmt = '%6d', :$title = "{+$list} matching:\n") {
    cache $list;
    $title ~ $list.batch($cols)».fmt($fmt).join: "\n"
}
Output:
128 matching:
    23     37     53     73    113    137    173    193    197    211
   223    229    233    241    271    283    293    311    313    317
   331    337    347    353    359    367    373    379    383    389
   397    433    523    541    547    571    593    613    617    673
   677    719    733    743    761    773    797    977   1117   1123
  1129   1153   1171   1319   1361   1367   1373   1723   1741   1747
  1753   1759   1783   1789   1913   1931   1973   1979   1997   2311
  2341   2347   2371   2383   2389   2917   2953   2971   3119   3137
  3167   3719   3761   3767   3779   3797   4111   4129   4153   4159
  4337   4373   4397   4723   4729   4759   4783   4789   5323   5347
  5923   5953   6113   6131   6143   6173   6197   6719   6737   6761
  6779   7129   7159   7331   7919   7937   8311   8317   8329   8353
  8389   8923   8929   8941   8971   9719   9743   9767

REXX

Version 1

/*REXX pgm finds base ten neighbor primes P1 & P2,  when concatenated,  is also a prime.*/
parse arg hip cols .                             /*obtain optional arguments from the CL*/
if  hip=='' |  hip==","  then  hip= 100          /*Not specified?  Then use the default.*/
if cols=='' | cols==","  then cols=  10          /* "      "         "   "   "     "    */
call genP                                        /*build array of semaphores for primes.*/
title= ' concatenation of two neighbor primes (P1, P2) in base ten that results in'  ,
                                    "a prime, where P1 & P2 are <"           commas(hip)
w= 10                                            /*width of a number in any column.     */
if cols>0  then say ' index │'center(title,   1 + cols*(w+1)     )
if cols>0  then say '───────┼'center(""   ,   1 + cols*(w+1), '─')
a.= 0                                            /*array of  "2cat"  primes             */
          do    j=1  for ##                      /*search through specified primes.     */
             do k=1  for ##;   cat2= @.j || @.k  /*create a concatenated prime (base 10)*/
             if !.cat2  then a.cat2= 1           /*flag it as being a  "2cat"  prime.   */
             end   /*k*/                         /* [↑]   forgoes the need for sorting. */
          end      /*j*/
found= 0;                            idx= 1      /*initialize # of primes found;  IDX.  */
$=;       do n=1  by 2  for hip**2%2             /*search for odd  "cat2"  primes.      */
          if \a.n  then iterate                  /*search through allowable primes.     */
          found= found + 1                       /*bump the number of primes found.     */
          if cols<=0            then iterate     /*Build the list  (to be shown later)? */
          c= commas(n)                           /*maybe add commas to the number.      */
          $= $  right(c, max(w, length(c) ) )    /*add a prime  ──►  $ list, allow big #*/
          if found//cols\==0    then iterate     /*have we populated a line of output?  */
          say center(idx, 7)'│' substr($, 2); $= /*display what we have so far  (cols). */
          idx= idx + cols                        /*bump the  index  count for the output*/
          end   /*n*/

if $\==''  then say center(idx, 7)"│"  substr($, 2)  /*possible display residual output.*/
if cols>0  then say '───────┴'center(""   ,   1 + cols*(w+1), '─')
say
say 'Found '      commas(found)      title
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?;  do jc=length(?)-3  to 1  by -3; ?=insert(',', ?, jc); end;  return ?
/*──────────────────────────────────────────────────────────────────────────────────────*/
genP:        @.1=2; @.2=3; @.3=5; @.4=7;  @.5=11 /*define some low primes.              */
      !.=0;  !.2=1; !.3=1; !.5=1; !.7=1;  !.11=1 /*   "     "   "    "     semaphores.  */
                           #= 5;  sq.#= @.#**2   /*the square of the highest low prime. */
        do j=@.#+2  by 2  to hip**2-1            /*find odd primes from here on.        */
        parse var  j   ''  -1  _;  if    _==5  then iterate  /*J ÷ by 5?  (right digit).*/
        if j//3==0  then iterate;  if j//7==0  then iterate  /*" "  " 3?   J ÷ by 7?    */
               do k=5  while sq.k<=j             /* [↓]  divide by the known odd primes.*/
               if j // @.k == 0  then iterate j  /*Is  J ÷ X?  Then not prime.     ___  */
               end   /*k*/                       /* [↑]  only process numbers  ≤  √ J   */
        #= #+1;    @.#= j;    sq.#= j*j;  !.j= 1 /*bump # of Ps; assign next P;  P²; P# */
        if j<hip  then ##= #                     /*find a shortcut for the 1st DO loop. */
        end          /*j*/;               return
output   when using the default inputs:
 index │   concatenation of two neighbor primes (P1, P2) in base ten that results in a prime, where P1 & P2 are < 100
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1   │         23         37         53         73        113        137        173        193        197        211
  11   │        223        229        233        241        271        283        293        311        313        317
  21   │        331        337        347        353        359        367        373        379        383        389
  31   │        397        433        523        541        547        571        593        613        617        673
  41   │        677        719        733        743        761        773        797        977      1,117      1,123
  51   │      1,129      1,153      1,171      1,319      1,361      1,367      1,373      1,723      1,741      1,747
  61   │      1,753      1,759      1,783      1,789      1,913      1,931      1,973      1,979      1,997      2,311
  71   │      2,341      2,347      2,371      2,383      2,389      2,917      2,953      2,971      3,119      3,137
  81   │      3,167      3,719      3,761      3,767      3,779      3,797      4,111      4,129      4,153      4,159
  91   │      4,337      4,373      4,397      4,723      4,729      4,759      4,783      4,789      5,323      5,347
  101  │      5,923      5,953      6,113      6,131      6,143      6,173      6,197      6,719      6,737      6,761
  111  │      6,779      7,129      7,159      7,331      7,919      7,937      8,311      8,317      8,329      8,353
  121  │      8,389      8,923      8,929      8,941      8,971      9,719      9,743      9,767
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────

Found  128  concatenation of two neighbor primes (P1, P2) in base ten that results in a prime, where P1 & P2 are < 100
0.020 seconds

Version 2

Libraries: How to use
Library: Numbers
Library: Functions

Version 1 isn't very readable. Below I show a program using standard libraries and an easy to follow program flow, and less attention to output layout. The procedure Primes() is in library Numbers.

parse version version; say version
call Time('r')
numeric digits 5
say 'Concatenated primes - Using REXX libraries'
say
/* Collect and flag all primes with 4 digits max */
p = Primes(9999)
/* Collect and flag all concatenated primes to avoid sorting */
work. = 0
i = 1; a = prim.prime.i
do while a < 100
   j = 1; b = prim.prime.j
   do while b < 100
      c = a||b
      if flag.prime.c = 1 then
         work.concat.c = 1
      j = j+1; b = prim.prime.j
   end
   i = i+1; a = prim.prime.i
end
/* Show and count results */
say 'Concatenated primes (10 per line):'
say
n = 0
do i = 1 to 9999
   if work.concat.i then do
      n = n+1
      call charout ,right(i,5)
      if n//10 = 0 then
         say
   end
end
say
say
say n 'primes found'
say Format(Time('e'),,3) 'seconds'
exit

include Numbers
include Functions
Output:
REXX-Regina_3.9.6(MT) 5.00 29 Apr 2024
Concatenated primes - Using REXX libraries

Concatenated primes (10 per line):

   23   37   53   73  113  137  173  193  197  211
  223  229  233  241  271  283  293  311  313  317
  331  337  347  353  359  367  373  379  383  389
  397  433  523  541  547  571  593  613  617  673
  677  719  733  743  761  773  797  977 1117 1123
 1129 1153 1171 1319 1361 1367 1373 1723 1741 1747
 1753 1759 1783 1789 1913 1931 1973 1979 1997 2311
 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137
 3167 3719 3761 3767 3779 3797 4111 4129 4153 4159
 4337 4373 4397 4723 4729 4759 4783 4789 5323 5347
 5923 5953 6113 6131 6143 6173 6197 6719 6737 6761
 6779 7129 7159 7331 7919 7937 8311 8317 8329 8353
 8389 8923 8929 8941 8971 9719 9743 9767

128 primes found
0.005 seconds

Ring

load "stdlib.ring"
see "working..." + nl
see "Concatenate two primes is also prime:" + nl
row = 0
prime = []

for n = 1 to 100
    for m = 1 to 100
        ps1 = string(n)
        ps2 = string(m)
        ps12 = ps1 + ps2
        ps21 = ps2 + ps1
        p1 = number(ps12)
        p2 = number(ps21)
        if isprime(n) and isprime(m)
           if isprime(p1)
              pf = find(prime,p1)
              if pf < 1
                 add(prime,p1)
              ok
           ok
           if isprime(p2)
              pf = find(prime,p2)
              if pf < 1
                 add(prime,p2)
              ok
           ok
        ok
    next
next

prime = sort(prime)
for n = 1 to len(prime)
    row++
    see "" + prime[n] + " "
    if row%10 = 0
       see nl
    ok
next

see nl + "Found " + row + " prime numbers" + nl
see "done..." + nl
Output:
working...
Concatenate two primes is also prime:
23 37 53 73 113 137 173 193 197 211 
223 229 233 241 271 283 293 311 313 317 
331 337 347 353 359 367 373 379 383 389 
397 433 523 541 547 571 593 613 617 673 
677 719 733 743 761 773 797 977 1117 1123 
1129 1153 1171 1319 1361 1367 1373 1723 1741 1747 
1753 1759 1783 1789 1913 1931 1973 1979 1997 2311 
2341 2347 2371 2383 2389 2917 2953 2971 3119 3137 
3167 3719 3761 3767 3779 3797 4111 4129 4153 4159 
4337 4373 4397 4723 4729 4759 4783 4789 5323 5347 
5923 5953 6113 6131 6143 6173 6197 6719 6737 6761 
6779 7129 7159 7331 7919 7937 8311 8317 8329 8353 
8389 8923 8929 8941 8971 9719 9743 9767 
Found 128 prime numbers
done...

RPL

Works with: HP version 49
≪ { } 2
   DO
      3
      DO
         OVER →STR OVER + STR→
         IF DUP ISPRIME? THEN
            4 ROLL SWAP 
            IF DUP2 POS NOT THEN + ELSE DROP END 
            UNROT
         ELSE DROP END
         NEXTPRIME
      UNTIL DUP 100 > END
      DROP NEXTPRIME
   UNTIL DUP 100 > END
   SORT
≫ 'P1P2' STO
Output:
1: { 23 37 53 73 113 137 173 193 197 211 223 229 233 241 271 283 293 311 313 317 331 337 347 353 359 367 373 379 383 389 397 433 523 541 547 571 593 613 617 673 677 719 733 743 761 773 797 977 1117 1123 1129 1153 1171 1319 1361 1367 1373 1723 1741 1747 1753 1759 1783 1789 1913 1931 1973 1979 1997 2311 2341 2347 2371 2383 2389 2917 2953 2971 3119 3137 3167 3719 3761 3767 3779 3797 4111 4129 4153 4159 4337 4373 4397 4723 4729 4759 4783 4789 5323 5347 5923 5953 6113 6131 6143 6173 6197 6719 6737 6761 6779 7129 7159 7331 7919 7937 8311 8317 8329 8353 8389 8923 8929 8941 8971 9719 9743 9767 }

Ruby

require "prime"

concats =  Prime.each(100).to_a.repeated_permutation(2).filter_map do |pair|
  p1p2 = pair.map(&:to_s).join.to_i
  p1p2 if p1p2.prime? 
end
concats = concats.sort.uniq

concats.each_slice(10){|slice|puts slice.map{|el| el.to_s.ljust(6)}.join }
Output:
23    37    53    73    113   137   173   193   197   211   
223   229   233   241   271   283   293   311   313   317   
331   337   347   353   359   367   373   379   383   389   
397   433   523   541   547   571   593   613   617   673   
677   719   733   743   761   773   797   977   1117  1123  
1129  1153  1171  1319  1361  1367  1373  1723  1741  1747  
1753  1759  1783  1789  1913  1931  1973  1979  1997  2311  
2341  2347  2371  2383  2389  2917  2953  2971  3119  3137  
3167  3719  3761  3767  3779  3797  4111  4129  4153  4159  
4337  4373  4397  4723  4729  4759  4783  4789  5323  5347  
5923  5953  6113  6131  6143  6173  6197  6719  6737  6761  
6779  7129  7159  7331  7919  7937  8311  8317  8329  8353  
8389  8923  8929  8941  8971  9719  9743  9767  

Sidef

var upto = 100
var arr  = upto.primes
var base = 10

arr = arr.map {|p|
    var d = p.digits(base);
    arr.map {|q| [q.digits(base)..., d...].digits2num(base) }.grep { .is_prime }
}.flat.uniq.sort

say "Concatenated primes from primes p,q <= #{upto}:"

arr.each_slice(10, {|*a|
    say a.map { '%6s' % _ }.join(' ')
})

say "\nFound #{arr.len} such concatenated primes."
Output:
Concatenated primes from primes p,q <= 100:
    23     37     53     73    113    137    173    193    197    211
   223    229    233    241    271    283    293    311    313    317
   331    337    347    353    359    367    373    379    383    389
   397    433    523    541    547    571    593    613    617    673
   677    719    733    743    761    773    797    977   1117   1123
  1129   1153   1171   1319   1361   1367   1373   1723   1741   1747
  1753   1759   1783   1789   1913   1931   1973   1979   1997   2311
  2341   2347   2371   2383   2389   2917   2953   2971   3119   3137
  3167   3719   3761   3767   3779   3797   4111   4129   4153   4159
  4337   4373   4397   4723   4729   4759   4783   4789   5323   5347
  5923   5953   6113   6131   6143   6173   6197   6719   6737   6761
  6779   7129   7159   7331   7919   7937   8311   8317   8329   8353
  8389   8923   8929   8941   8971   9719   9743   9767

Found 128 such concatenated primes.

Wren

Library: Wren-math
Library: Wren-fmt
Library: Wren-seq
import "./math" for Int
import "./fmt" for Fmt
import "./seq" for Lst

var limit = 99
var primes = Int.primeSieve(limit)
var results = []
for (p in primes) {
    for (q in primes) {
        var pq = (q < 10) ? p*10 + q : p*100 + q
        if (Int.isPrime(pq)) results.add(pq)
    }
}
results = Lst.distinct(results)
results.sort()
System.print("Two primes under 100 concatenated together to form another prime:")
Fmt.tprint("$,6d", results, 10)
System.print("\nFound %(results.count) such concatenated primes.")
Output:
Two primes under 100 concatenated together to form another prime:
    23     37     53     73    113    137    173    193    197    211
   223    229    233    241    271    283    293    311    313    317
   331    337    347    353    359    367    373    379    383    389
   397    433    523    541    547    571    593    613    617    673
   677    719    733    743    761    773    797    977  1,117  1,123
 1,129  1,153  1,171  1,319  1,361  1,367  1,373  1,723  1,741  1,747
 1,753  1,759  1,783  1,789  1,913  1,931  1,973  1,979  1,997  2,311
 2,341  2,347  2,371  2,383  2,389  2,917  2,953  2,971  3,119  3,137
 3,167  3,719  3,761  3,767  3,779  3,797  4,111  4,129  4,153  4,159
 4,337  4,373  4,397  4,723  4,729  4,759  4,783  4,789  5,323  5,347
 5,923  5,953  6,113  6,131  6,143  6,173  6,197  6,719  6,737  6,761
 6,779  7,129  7,159  7,331  7,919  7,937  8,311  8,317  8,329  8,353
 8,389  8,923  8,929  8,941  8,971  9,719  9,743  9,767

Found 128 such concatenated primes.

XPL0

func IsPrime(N);        \Return 'true' if N is a prime number
int  N, I;
[if N <= 1 then return false;
for I:= 2 to sqrt(N) do
    if rem(N/I) = 0 then return false;
return true;
];

char Set(9999+1);
int  P1, P2, P, Count;
[for P:= 0 to 9999 do Set(P):= false;
for P1:= 0 to 99 do
  if IsPrime(P1) then
    for P2:= 0 to 99 do
      if IsPrime(P2) then
        [if P2 >= 10 then
              P:= P1*100 + P2
        else  P:= P1*10 + P2;
        if IsPrime(P) then Set(P):= true;
        ];
Count:= 0;
for P:= 0 to 9999 do
    if Set(P) then
        [IntOut(0, P);
        Count:= Count+1;
        if rem(Count/10) = 0 then CrLf(0) else ChOut(0, 9\tab\);
        ];
CrLf(0);
IntOut(0, Count);
Text(0, " such concatenated primes found.
");
]
Output:
23      37      53      73      113     137     173     193     197     211
223     229     233     241     271     283     293     311     313     317
331     337     347     353     359     367     373     379     383     389
397     433     523     541     547     571     593     613     617     673
677     719     733     743     761     773     797     977     1117    1123
1129    1153    1171    1319    1361    1367    1373    1723    1741    1747
1753    1759    1783    1789    1913    1931    1973    1979    1997    2311
2341    2347    2371    2383    2389    2917    2953    2971    3119    3137
3167    3719    3761    3767    3779    3797    4111    4129    4153    4159
4337    4373    4397    4723    4729    4759    4783    4789    5323    5347
5923    5953    6113    6131    6143    6173    6197    6719    6737    6761
6779    7129    7159    7331    7919    7937    8311    8317    8329    8353
8389    8923    8929    8941    8971    9719    9743    9767    
128 such concatenated primes found.