I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

(Redirected from Common number base parsing)
You are encouraged to solve this task according to the task description, using any language you may know.

It is common to have a string containing a number written in some format, with the most common ones being decimal, hexadecimal, octal and binary. Such strings are found in many places (user interfaces, configuration files, XML data, network protocols, etc.)

This task requires parsing of such a string (which may be assumed to contain nothing else) using the language's built-in facilities if possible. Parsing of decimal strings is required, parsing of other formats is optional but should be shown (i.e., if the language can parse in base-19 then that should be illustrated).

The solutions may assume that the base of the number in the string is known. In particular, if your language has a facility to guess the base of a number by looking at a prefix (e.g. "0x" for hexadecimal) or other distinguishing syntax as it parses it, please show that.

For general number base conversion, see Non-decimal radices/Convert.

## 11l

Translation of: Python
`V s = ‘100’L(base) 2..20   print(‘String '#.' in base #. is #. in base 10’.format(s, base, Int(s, radix' base)))`
Output:
```String '100' in base 2 is 4 in base 10
String '100' in base 3 is 9 in base 10
String '100' in base 4 is 16 in base 10
String '100' in base 5 is 25 in base 10
String '100' in base 6 is 36 in base 10
String '100' in base 7 is 49 in base 10
String '100' in base 8 is 64 in base 10
String '100' in base 9 is 81 in base 10
String '100' in base 10 is 100 in base 10
String '100' in base 11 is 121 in base 10
String '100' in base 12 is 144 in base 10
String '100' in base 13 is 169 in base 10
String '100' in base 14 is 196 in base 10
String '100' in base 15 is 225 in base 10
String '100' in base 16 is 256 in base 10
String '100' in base 17 is 289 in base 10
String '100' in base 18 is 324 in base 10
String '100' in base 19 is 361 in base 10
String '100' in base 20 is 400 in base 10
```

Ada supports the input format <BASE>#<VALUE>#, for example 16#AF42# or 2#1010110# or 8#777#. This can be used for input through Ada.Text_IO.Integer_IO or for conversion through Integer'Value. More details on this format can be found here: Ada 2005 Reference Manual - 2.4.2 Based Literals.

Limited to Bases 2 to 16.

Works with Float values, too.

`with Ada.Text_IO;procedure Numbers is   package Int_IO is new Ada.Text_IO.Integer_IO (Integer);   package Float_IO is new Ada.Text_IO.Float_IO (Float);begin   Int_IO.Put (Integer'Value ("16#ABCF123#"));   Ada.Text_IO.New_Line;   Int_IO.Put (Integer'Value ("8#7651#"));   Ada.Text_IO.New_Line;   Int_IO.Put (Integer'Value ("2#1010011010#"));   Ada.Text_IO.New_Line;   Float_IO.Put (Float'Value ("16#F.FF#E+2"));   Ada.Text_IO.New_Line;end Numbers;`

Output:

```  180154659
4009
666
4.09500E+03```

## Aime

`o_integer(alpha("f4240", 16));o_byte('\n');o_integer(alpha("224000000", 5));o_byte('\n');o_integer(alpha("11110100001001000000", 2));o_byte('\n'); o_integer(alpha("03641100", 0));o_byte('\n');o_integer(alpha("0xf4240", 0));o_byte('\n');`

## ALGOL 68

Translation of: C
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
`main:(  FILE fbuf; STRING sbuf;    OP FBUF = (STRING in sbuf)REF FILE: (    sbuf := in sbuf;     associate(fbuf, sbuf);    fbuf  );   BITS num;   getf(FBUF("0123459"), (\$10r7d\$, num));  printf((\$gl\$, ABS num)); # prints 123459 #   getf(FBUF("abcf123"), (\$16r7d\$, num));  printf((\$gl\$, ABS num)); # prints 180154659 #   getf(FBUF("7651"), (\$8r4d\$, num));  printf((\$gl\$, ABS num)); # prints 4009 #   getf(FBUF("1010011010"), (\$2r10d\$, num));  printf((\$gl\$, ABS num)) # prints 666 # )`

Output:

```    +123459
+180154659
+4009
+666
```

## Arturo

`print to :integer "10"      ; 10 print from.hex "10"         ; 16print from.octal "120"      ; 80print from.binary "10101"   ; 21`
Output:
```10
16
80
21```

## AutoHotkey

There is no built in support for generic base parsing.

## BBC BASIC

`      REM VAL parses decimal strings:      PRINT VAL("0")      PRINT VAL("123456789")      PRINT VAL("-987654321")       REM EVAL can be used to parse binary and hexadecimal strings:      PRINT EVAL("%10101010")      PRINT EVAL("%1111111111")      PRINT EVAL("&ABCD")      PRINT EVAL("&FFFFFFFF")`

Output:

```         0
123456789
-987654321
170
1023
43981
-1
```

## C

In addition to strtol() described in the Number base conversion task, you could also use the `scanf` family of functions to parse un-prefixed hexadecimal, decimal, and octal numbers:

`#include <stdio.h> int main(){  int num;   sscanf("0123459", "%d", &num);  printf("%d\n", num); /* prints 123459 */   sscanf("abcf123", "%x", &num);  printf("%d\n", num); /* prints 180154659 */   sscanf("7651", "%o", &num);  printf("%d\n", num); /* prints 4009 */   /* binary not supported */   return 0;}`

The `strtol()` function can also parse prefixed hexadecimal, octal, and decimal strings based on the prefix, when passed a base of 0:

`#include <stdio.h>#include <stdlib.h>#include <assert.h> int main(){  int num;  char *endptr;   num = strtol("123459", &endptr, 0);  assert(*endptr == '\0');  printf("%d\n", num); /* prints 123459 */   num = strtol("0xabcf123", &endptr, 0);  assert(*endptr == '\0');  printf("%d\n", num); /* prints 180154659 */   num = strtol("07651", &endptr, 0);  assert(*endptr == '\0');  printf("%d\n", num); /* prints 4009 */   /* binary not supported */   return 0;}`

## C#

`using System; class Program{    static void Main()    {        var value = "100";        var fromBases = new[] { 2, 8, 10, 16 };        var toBase = 10;        foreach (var fromBase in fromBases)        {            Console.WriteLine("{0} in base {1} is {2} in base {3}",                value, fromBase, Convert.ToInt32(value, fromBase), toBase);        }    }}`

Output:

`100 in base 2 is 4 in base 10100 in base 8 is 64 in base 10100 in base 10 is 100 in base 10100 in base 16 is 256 in base 10`

## C++

`#include <iostream>#include <sstream> int main(){  int num;   std::istringstream("0123459") >> num;  std::cout << num << std::endl; // prints 123459   std::istringstream("0123459") >> std::dec >> num;  std::cout << num << std::endl; // prints 123459   std::istringstream("abcf123") >> std::hex >> num;  std::cout << num << std::endl; // prints 180154659   std::istringstream("7651") >> std::oct >> num;  std::cout << num << std::endl; // prints 4009   // binary not supported   return 0;}`

## Common Lisp

`(parse-integer "abc" :radix 20 :junk-allowed t) ; => 4232`

If `:radix` is omitted, it defaults to 10. If `:junk-allowed` is omitted, it defaults to `nil`, causing `#'parse-integer` to signal an error of type `parse-error` rather than just returning `nil` whenever the input string isn't a numeral possibly surrounded by whitespace.

## D

Translation of: Python
`import std.stdio, std.conv; void main() {    immutable text = "100";    foreach (base; 2 .. 21)        writefln("String '%s' in base %d is  %d in base 10" ,                 text, base, to!int(text, base));}`
Output:
```String '100' in base 2 is  4 in base 10
String '100' in base 3 is  9 in base 10
String '100' in base 4 is  16 in base 10
String '100' in base 5 is  25 in base 10
String '100' in base 6 is  36 in base 10
String '100' in base 7 is  49 in base 10
String '100' in base 8 is  64 in base 10
String '100' in base 9 is  81 in base 10
String '100' in base 10 is  100 in base 10
String '100' in base 11 is  121 in base 10
String '100' in base 12 is  144 in base 10
String '100' in base 13 is  169 in base 10
String '100' in base 14 is  196 in base 10
String '100' in base 15 is  225 in base 10
String '100' in base 16 is  256 in base 10
String '100' in base 17 is  289 in base 10
String '100' in base 18 is  324 in base 10
String '100' in base 19 is  361 in base 10
String '100' in base 20 is  400 in base 10```

## E

`? __makeInt("200", 16)# value: 512 ? __makeInt("200", 10)# value: 200`

## Elixir

base: 2 .. 36

`iex(1)> String.to_integer("1000")1000iex(2)> String.to_integer("1000",2)8iex(3)> String.to_integer("1000",8)512iex(4)> String.to_integer("1000",16)4096iex(5)> String.to_integer("ffff",16)65535`

## Erlang

My interpretation of the task description is that I can state that the base (here: 17) can be 2..36, without having to show one example of each.

Output:
```<12> erlang:list_to_integer("ffff", 17).
78300
```

## F#

`let value = "100"let fromBases = [ 2; 8; 10; 16 ]let values = Seq.initInfinite (fun i -> value)Seq.zip fromBases (Seq.zip values fromBases |> Seq.map (System.Convert.ToInt32))|> Seq.iter (    fun (fromBase, valueFromBaseX) ->        printfn "%s in base %i is %i in base 10" value fromBase valueFromBaseX)`
Output:
```100 in base 2 is 4 in base 10
100 in base 8 is 64 in base 10
100 in base 10 is 100 in base 10
100 in base 16 is 256 in base 10```

## Factor

Bases from 2 to 16 are supported through the generic base> word (see online docs ) but 4 functions are defined for the most used cases:

```   ( scratchpad ) "ff" hex> . ! base 16
255
( scratchpad ) "777" oct> . ! base 8
511
( scratchpad ) "1111" bin> . ! base 2
15
( scratchpad ) "99" string>number . ! base 10
99
```

Note that these words are very simple : for example, here's oct> :

`IN: math.parser: oct> ( str -- n/f ) 8 base> ; inline`

Also, fractions are handled transparently :

```   ( scratchpad ) "1+F/2" hex> .
8+1/2
```

Hex floats are supported, anything else is taken as base 10 :

```   ( scratchpad ) "ff.f" hex> .
255.9375
( scratchpad ) "11.1101" bin> .
11.1101
```

## Forth

Arbitrary base 2-36 parsing is supported by the same mechanism as decimal parsing: set the user variable BASE to the desired base, then scan the number. There are two convenience words for setting the base to DECIMAL or HEX.

`: parse# ( str len -- u true | false )   0. 2SWAP DUP >R >NUMBER NIP NIP    R> <> DUP 0= IF NIP THEN ; : base# ( str len base -- u true | false )  BASE @ >R  BASE !  parse#  R> BASE ! ;`

## Fortran

Works with: Fortran version 90 and later
`program Example  implicit none   integer :: num  character(32) :: str   str = "0123459"  read(str, "(i10)") num   ! Decimal  write(*,*) num           ! Prints 123459      str = "abcf123"  read(str, "(z8)") num    ! Hexadecimal  write(*,*) num           ! Prints 180154659   str = "7651"  read(str, "(o11)") num   ! Octal  write(*,*) num           ! Prints 4009   str = "1010011010"  read(str, "(b32)") num   ! Binary  write(*,*) num           ! Prints 666 end program`

## FreeBASIC

FreeBASIC has built-in string to integer conversion functions which automatically recognize numbers in hexadecimal, decimal, octal or binary format provided that they are prefixed by &H, (nothing), &O and &B respectively. Here's an example:

`' FB 1.05.0 Win64 Dim s(1 To 4) As String = {"&H1a", "26", "&O32", "&B11010"} '' 26 in various basesFor i As Integer = 1 To 4  Print s(i); Tab(9); "="; CInt(s(i))Next  Sleep`
Output:
```&H1a    = 26
26      = 26
&O32    = 26
&B11010 = 26
```

## Free Pascal

Pascal, as defined in ISO 7185, only demands that decimal integers can be read with read/readLn. As an extension, however, the implementation of read/readLn/readStr contained in the standard RTL (run-time library) shipped with FPC (Free Pascal Compiler) supports reading integers that meet the requirements of FreePascal’s own integer literal syntax. Furthermore, 0x/0X is recognized as a hexadecimal base indicator, although in source code it would be illegal.

` program readIntegers(input, output);var	i: aluSInt;begin	while not EOF(input) do	begin		readLn(i);		writeLn(i:24);	end;end. `

If the input is too large and cannot be stored in an integer (aluSInt), a run-time error is generated.

Output:
```\$ cat << EOT | ./readIntegers
>         -0
>      &0644
>  \$cafeBabe
>      -0XfF
>     -%1010
>       1337
> EOT
0
420
3735928559
-255
-10
1337
```

Note, floating-point numbers, the data type real, can only be read in decimal notation. The minus sign (U+2212) is not recognized.

## Go

`package main import (    "fmt"    "math/big"    "strconv") func main() {    // package strconv:  the most common string to int conversion,    // base 10 only.    x, _ := strconv.Atoi("13")    fmt.Println(x)     // ParseInt handles arbitrary bases from 2 to 36, and returns    // a result of the requested size (64 bits shown here.)    // If the base argument is zero the base is determined by prefix    // as with math/big below.    x64, _ := strconv.ParseInt("3c2", 19, 64)    fmt.Println(x64)     // package fmt:  allows direct conversion from strings, standard    // input, or from an io.Reader (file, buffer, etc) to integer types    // for bases 2, 8, 10, and 16 or to any type that implements the    // fmt.Scanner interface (e.g. a big.Int).    // (Fscanf and Scanf are more common for reading from    // an io.Reader or stdin than Sscanf for reading from strings.)    fmt.Sscanf("1101", "%b", &x)    fmt.Println(x)     fmt.Sscanf("15", "%o", &x)    fmt.Println(x)     fmt.Sscanf("13", "%d", &x)    fmt.Println(x)     fmt.Sscanf("d", "%x", &x)    fmt.Println(x)     // package math/big:  allows conversion from string to big integer.    // any base from 2 to 36 can be specified as second parameter.    var z big.Int    z.SetString("111", 3)    fmt.Println(&z)     // if second parameter is 0, base is determined by prefix, if any    z.SetString("0b1101", 0) // 0b -> base 2    fmt.Println(&z)     z.SetString("015", 0) // 0 -> base 8    fmt.Println(&z)     z.SetString("13", 0) // no prefix -> base 10    fmt.Println(&z)     z.SetString("0xd", 0) // 0x -> base 16    fmt.Println(&z)     // As mentioned, a big.Int (or any type implementing fmt.Scanner)    // can also be use with any of the fmt scanning functions.    fmt.Sscanf("15", "%o", &z)    fmt.Println(&z)}`

Output is all 13s.

Haskell's read can parse strings with the same prefix used for literals in Haskell (0x or 0X for hex, 0o or 0O for octal):

`Prelude> read "123459" :: Integer123459Prelude> read "0xabcf123" :: Integer180154659Prelude> read "0o7651" :: Integer4009`

## HicEst

`READ(Text="123459    ", Format="i10") dec    ! 123459READ(Text=" abcf123  ", Format="Z10") hex    ! 180154659READ(Text="   7651   ", Format="o10") oct    ! 4009READ(Text=" 101011001", Format="B10.10") bin ! 345`

## Icon and Unicon

Icon allows numbers to be defined as 'root' + "R" + 'number', where 'root' is a base from 2 to 36, and 'number' is a string of digits or letters, using 'A' to 'Z' as appropriate for the base; case is ignored. Strings are automatically parsed into numbers when needed, using the procedure 'integer'.

` procedure convert (str)  write (left(str, 10) || " = " || integer(str))end procedure main ()  convert (" 2r1001")  convert (" 8r7135")  convert ("16rABC1234")  convert ("36r1Z")   write ("2r1001" + "36r1Z") # shows type conversion, string->integerend `

Output:

``` 2r1001    = 9
8r7135    = 3677
16rABC1234 = 180097588
36r1Z      = 71
80
```

## J

Solution 1:
`   baseN=: (, 'b'&,)&.":`
Solution 2 (input sanitizing):
`   baseN=: 0&"[email protected],&": 'b' , ] NB.  Use if the source of the non-decimal "numbers" is not trustworthy`
Example:
`   16 baseN 'abcf123'180154659   8 baseN '7651'4009   10 baseN '123459'123459`

Note:

J also provides builtin support for numeric literals of an arbitrary base. The format is radixbdigits (where radix is specified in base 10). The one restriction is that you cannot use digits larger than 36 ('z'):
`   16babcf123 8b7651 10b123459180154659 4009 123459`

However you can use digits larger than the radix:

`   2bhelloworld17955`

And you can use bases where not all digits are representable:

`   1000bogus24016030028`

Letters used for digits have base 10 values ranging from 10 (a) to 35 (z).

## Java

Works with: Java version 1.5+

You must know the base that the String is in before you scan it. Create a Scanner in the usual way, but then set its radix to that base (obviously, the default is 10):

`Scanner sc = new Scanner(System.in); //or any other InputStream or Stringsc.useRadix(base); //any number from Character.MIN_RADIX (2) to CHARACTER.MAX_RADIX (36)sc.nextInt(); //read in a value`

Later you can call sc.reset() or sc.useRadix(10) to undo this change.

Another option using the Integer class:

`int number = Integer.parseInt(stringNum, base);`

The base here has the same restrictions as the Scanner example. A similar method is available in the Long class. Use no second argument for base 10.

If you have a prefixed string ("0x", "0X", or "#" for hex; "0" for octal; otherwise decimal), you can use the .decode() utility method to parse the number based on the base indicated by the prefix (note: this returns an Integer object, not a primitive int):

`Integer.decode("0xabcf123"); // hexInteger.decode("07651");     // octalInteger.decode("123459");    // decimal`

Long, Short, and Byte also have a .decode() method, to decode to the appropriate number object type.

## JavaScript

For base 10 and 16 ("0x"-prefixed), (but not 8), it is fastest to parse strings using the unary plus (+) operator:

`+"0123459"; // 123459+"0xabcf123"; // 180154659 // also supports negative numbers, but not for hex:+"-0123459"; // -123459+"-0xabcf123"; // NaN`

The `parseInt(string,radix)` core function is the reverse of the `number.toString(radix)` method. The following is taken from Mozilla's JavaScript 1.5 reference.

The following examples all return 15:
`parseInt(" 0xF", 16);parseInt(" F", 16);parseInt("17", 8);parseInt(021, 8);parseInt("015", 10);parseInt(15.99, 10);parseInt("FXX123", 16);parseInt("1111", 2);parseInt("15*3", 10);parseInt("15e2", 10);parseInt("15px", 10);parseInt("12", 13);`

The following examples all return NaN:

`parseInt("Hello", 8); // Not a number at allparseInt("546", 2);   // Digits are not valid for binary representations`

The following examples all return -15:

`parseInt("-F", 16);parseInt("-0F", 16);parseInt("-0XF", 16);parseInt(-10, 16);parseInt(-15.1, 10)parseInt(" -17", 8);parseInt(" -15", 10);parseInt("-1111", 2);parseInt("-15e1", 10);parseInt("-12", 13);`

The following example returns 224:

`parseInt("0e0", 16);`

Although it is optional, most implementations interpret a numeric string beginning with a leading '0' as octal. The following may have an octal result.

`parseInt("0e0"); // 0parseInt("08"); // 0, '8' is not an octal digit.`

## Julia

`# Version 5.2txt = "100"for base = 2:21    base10 = parse(Int, txt, base)    println("String \$txt in base \$base is \$base10 in base 10")end `

If not specify the base it will figure out the base from the prefix:

` @show parse(Int, "123459")@show parse(Int, "0xabcf123")@show parse(Int, "0o7651")@show parse(Int, "0b101011001") `
Output:
```String 100 in base 2 is 4 in base 10
String 100 in base 3 is 9 in base 10
String 100 in base 4 is 16 in base 10
String 100 in base 5 is 25 in base 10
String 100 in base 6 is 36 in base 10
String 100 in base 7 is 49 in base 10
String 100 in base 8 is 64 in base 10
String 100 in base 9 is 81 in base 10
String 100 in base 10 is 100 in base 10
String 100 in base 11 is 121 in base 10
String 100 in base 12 is 144 in base 10
String 100 in base 13 is 169 in base 10
String 100 in base 14 is 196 in base 10
String 100 in base 15 is 225 in base 10
String 100 in base 16 is 256 in base 10
String 100 in base 17 is 289 in base 10
String 100 in base 18 is 324 in base 10
String 100 in base 19 is 361 in base 10
String 100 in base 20 is 400 in base 10
String 100 in base 21 is 441 in base 10
parse(Int,"123459") = 123459
parse(Int,"0xabcf123") = 180154659
parse(Int,"0o7651") = 4009
parse(Int,"0b101011001") = 345
```

## Kotlin

`// version 1.1.2 fun main(args: Array<String>) {    val s = "100"    val bases = intArrayOf(2, 8, 10, 16, 19, 36)    for (base in bases)         println("\$s in base \${"%2d".format(base)} is \${s.toInt(base)}")}`
Output:
```100 in base  2 is 4
100 in base  8 is 64
100 in base 10 is 100
100 in base 16 is 256
100 in base 19 is 361
100 in base 36 is 1296
```

## Lua

Lua supports bases between 2 and 36.

`print( tonumber("123") )print( tonumber("a5b0", 16) )print( tonumber("011101", 2) )print( tonumber("za3r", 36) )`

## Mathematica

`19^^91g5dcg2h6da7260a9f3c4a->123456789012345678901234567890 2^^11110001001000000->123456`

## MATLAB / Octave

`val = sscanf('11 11 11','%d   %o  %x')`

Output:

```val =
11
9
17```

## Nanoquery

Nanoquery can convert numbers with any specified radix value from 2 to 36 using the int() function.

`println int("1234")println int("1100", 2)println int("abcd", 16)println int("ghij", 22)`
Output:
```1234
12
43981
179011```

## Nim

`import strutils echo parseInt "10"       # 10 echo parseHexInt "0x10"  # 16echo parseHexInt "10"    # 16 echo parseOctInt "0o120" # 80echo parseOctInt "120"   # 80`

Output:

```10
16
16
80
80```

## OCaml

The `int_of_string` function can parse hexadecimal, octal, and binary numbers that have the same prefix that is used to specify OCaml constants ("0x", "0o", and "0b", respectively):

`# int_of_string "123459";;- : int = 123459# int_of_string "0xabcf123";;- : int = 180154659# int_of_string "0o7651";;- : int = 4009# int_of_string "0b101011001";;- : int = 345`

The `Int32.of_string`, `Int64.of_string`, and `Nativeint.of_string` functions also can understand the above prefixes when parsing into their appropriate types.

Starting in OCaml 4.02, the `Big_int.big_int_of_string` and `Num.num_of_string` functions also understand these prefixes.

You could also use the `Scanf` module to parse un-prefixed hexadecimal, decimal, and octal numbers (binary not supported):

`# Scanf.sscanf "123459" "%d" (fun x -> x);;- : int = 123459# Scanf.sscanf "abcf123" "%x" (fun x -> x);;- : int = 180154659# Scanf.sscanf "7651" "%o" (fun x -> x);;- : int = 4009`

## Oz

`String.toInt` understands the usual prefixes. If a string cannot be parsed, an exception will be thrown.

`{String.toInt "42"}         %% decimal= {String.toInt "0x2a"}     %% hexadecimal= {String.toInt "052"}      %% octal= {String.toInt "0b101010"} %% binary`

## PARI/GP

Binary conversion is built in to PARI/GP, this script can convert from bases2-36 to bases 2-36. I've had help with this script at http:\\mersenneforums.org . The main flaw in this script I see is that it doesn't allow 36^x-1 type strings, I'll have to add that on later.

`convert(numb1,b1,b2)={  my(B=["0","1","2","3","4","5","6","7","8","9","a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"],a=0,c="");  numb1=Vec(Str(numb1));  forstep(y=#numb1,1,-1,    for(x=1,b1,      if(numb1[y]==B[x],        a=a+(x-1)*b1^(#numb1-y)      )    )  );  until(a/b2==0,    c=concat(B[a%b2+1],c);    a=a\b2  );  c};`

Note that version 2.8.0+ supports hexadecimal (0x1ff) and binary (0b10101) inputs. Further, it can accept generic input as a vector:

Works with: PARI/GP version 2.8.0+
`fromdigits([1,15,15],16)`

See Free Pascal

## Perl

The hex() function parses hexadecimal strings. The oct() function parses octal strings, as well as hexadecimal, octal, or binary strings with the appropriate prefix ("0x", "0", and "0b", respectively). There is no need to parse decimal strings because in Perl decimal strings and numbers are interchangeable.

`my \$dec = "0123459";my \$hex_noprefix = "abcf123";my \$hex_withprefix = "0xabcf123";my \$oct_noprefix = "7651";my \$oct_withprefix = "07651";my \$bin_withprefix = "0b101011001"; print 0 + \$dec, "\n";   # => 123459print hex(\$hex_noprefix), "\n";    # => 180154659print hex(\$hex_withprefix), "\n";    # => 180154659print oct(\$hex_withprefix), "\n";    # => 180154659print oct(\$oct_noprefix), "\n";    # => 4009print oct(\$oct_withprefix), "\n";    # => 4009print oct(\$bin_withprefix), "\n";    # => 345# nothing for binary without prefix`

## Phix

`?scanf("1234","%d")?scanf("0b10101010","%d")?scanf("#ABCD","%d")?scanf("#FFFFFFFF","%f")?scanf("0xFFFFFFFF","%f")?scanf("0o377","%o")`
Output:
```{{1234}}
{{170}}
{{43981}}
{{4294967295}}
{{4294967295}}
{{255}}
```

Note the need for %f (if you want to get an atom rather than an integer back), and double braces (it's a list of potentially several different possible result sets/interpretations), and that scanf() works best with a few literals (esp spaces but most certainly not radix prefixes) in the format string. Finally note that while you can use "#DEADBEEF" (without the quotes, ie a fairly big hex number) in a source code file, the compiler will choke on "DEADBEEF", and likewise so too will scanf(), and the only way round that is to insert the right prefix at the right place.

## PHP

The hexdec(), octdec(), bindec() function parses hexadecimal, octal, and binary strings, respectively. They skip any invalid characters, so a prefix will be ignored. There is no need to parse decimal strings because in PHP decimal strings and numbers are interchangeable.

`<?phpecho +"0123459", "\n"; // prints 123459echo intval("0123459"), "\n"; // prints 123459echo hexdec("abcf123"), "\n"; // prints 180154659echo octdec("7651"), "\n";  // prints 4009echo bindec("101011001"), "\n"; // prints 345?>`

An undocumented feature of intval() is that it can parse prefixed strings when given the base 0:

`<?phpecho intval("123459", 0), "\n"; // prints 123459echo intval("0xabcf123", 0), "\n"; // prints 180154659echo intval("07651", 0), "\n";  // prints 4009?>`

In addition, for hexadecimals, if you have a "0x"-prefixed string, you can just use it in a numeric operation, and it gets converted to the number automatically:

`<?phpecho +"0xabcf123", "\n"; // prints 180154659# This does not work for octals, however:echo +"07651", "\n"; // prints 7651?>`

## PicoLisp

`(de parseNumber (S Base)   (let N 0      (for C (chop S)         (when (> (setq C (- (char C) `(char "0"))) 9)            (dec 'C 39) )         (setq N (+ C (* N Base))) )      N ) ) (println (parseNumber "91g5dcg2h6da7260a9f3c4a" 19))`

Output:

`123456789012345678901234567890`

## PL/I

`declare N fixed binary;get edit (N) (A(7)); /* decimal input of 7 columns */put skip list (N); declare BS bit (32);get edit (BS) (B(32)); /* Binary input of 32 binary digits. */put skip edit (BS) (B);`
```       23
11010101010111111110000000011101
```

## PowerShell

PowerShell parses an integer prefixed with "0x" as hexadecimal. Binary and Octal conversions must use the .NET `[Convert]`. Here follows a (verbose) example:

` function Select-NumberFromString{    [CmdletBinding(DefaultParameterSetName="Decimal")]    [OutputType([PSCustomObject])]    Param    (        [Parameter(Mandatory=\$true,                   ValueFromPipeline=\$true,                   ValueFromPipelineByPropertyName=\$true,                   Position=0)]        [string]        \$InputObject,         [Parameter(ParameterSetName="Decimal")]        [Alias("d","Dec")]         [switch]        \$Decimal,         [Parameter(ParameterSetName="Hexadecimal")]        [Alias("h","Hex")]         [switch]        \$Hexadecimal,         [Parameter(ParameterSetName="Octal")]        [Alias("o","Oct")]         [switch]        \$Octal,         [Parameter(ParameterSetName="Binary")]        [Alias("b","Bin")]         [switch]        \$Binary    )     Begin    {        switch (\$PSCmdlet.ParameterSetName)        {            "Decimal"     {\$base = 10; \$pattern = '[+-]?\b[0-9]+\b'; break}            "Hexadecimal" {\$base = 16; \$pattern = '\b[0-9A-F]+\b'  ; break}            "Octal"       {\$base =  8; \$pattern = '\b[0-7]+\b'     ; break}            "Binary"      {\$base =  2; \$pattern = '\b+\b'      ; break}            "Default"     {\$base = 10; \$pattern = '[+-]?\b[0-9]+\b'; break}        }    }    Process    {        foreach (\$object in \$InputObject)        {            if (\$object -match \$pattern)            {                \$string = \$Matches            }            else            {                \$string = \$null            }              try            {                \$value = [Convert]::ToInt32(\$string, \$base)            }            catch            {                \$value = \$null            }             [PSCustomObject]@{                Number      = \$value                String      = \$string                Base        = \$base                IsNumber    = \$value -is [int]                InputString = \$object            }         }    }} `

Using a pretend file:

` \$file = @'John Doe abc1 K2hdystkrsJane Doe xyz2 Ew3jtdkufyJoe Blow def3 Ouy1ttluyl'@ -split [Environment]::NewLine \$file | Select-NumberFromString -Hexadecimal | Format-Table `
Output:
```Number String Base IsNumber InputString
------ ------ ---- -------- -----------
43969 abc1     16     True John Doe abc1 K2hdystkrs
16    False Jane Doe xyz2 Ew3jtdkufy
57075 def3     16     True Joe Blow def3 Ouy1ttluyl
```

## PureBasic

`  ;Val() parses integer strings  ; decimal numbers have no prefix, hexadecimal needs a prefix of '\$', binary needs a prefix of '%'  Val("1024102410241024")      ; => 1024102410241024  Val("\$10FFFFFFFF")           ; => 73014444031  Val("%1000")                 ; => 8`

## Python

The int function will interpret strings as numbers expressed to some base:

`>>> text = '100'>>> for base in range(2,21):    print ("String '%s' in base %i is  %i in base 10"            % (text, base, int(text, base)))  String '100' in base 2 is  4 in base 10String '100' in base 3 is  9 in base 10String '100' in base 4 is  16 in base 10String '100' in base 5 is  25 in base 10String '100' in base 6 is  36 in base 10String '100' in base 7 is  49 in base 10String '100' in base 8 is  64 in base 10String '100' in base 9 is  81 in base 10String '100' in base 10 is  100 in base 10String '100' in base 11 is  121 in base 10String '100' in base 12 is  144 in base 10String '100' in base 13 is  169 in base 10String '100' in base 14 is  196 in base 10String '100' in base 15 is  225 in base 10String '100' in base 16 is  256 in base 10String '100' in base 17 is  289 in base 10String '100' in base 18 is  324 in base 10String '100' in base 19 is  361 in base 10String '100' in base 20 is  400 in base 10`

In addition, if you give a base of 0, it will try to figure out the base from the prefix, with the same syntax as a numeric literal in Python:

Python 3.x and 2.6:

```>>> int("123459", 0)
123459
>>> int("0xabcf123", 0)
180154659
>>> int("0o7651", 0)
4009
>>> int("0b101011001", 0)
345
```

Python 2.x:

```>>> int("123459", 0)
123459
>>> int("0xabcf123", 0)
180154659
>>> int("07651", 0)
4009
```

Python 2.6 supports both the above formats, because it supports both types of literals.

## R

`# parse a string to decimalas.numeric("20")    # 20# parse a hex-string to decimalas.numeric("0x20")  # 32# parse a string to hexadecimalas.hexmode(as.numeric("32")) # "20"# parse a string to octalas.octmode(as.numeric("20")) # "24"`

## Racket

` #lang racket ;; Number literals can use #x, #o, and #b for different radices(list 123 #x7B #o173 #b1111011);; -> '(123 123 123 123) ;; Explicit conversion of strings can use any radix up to 16(list (string->number     "123")      (string->number     "123" 10)      (string->number      "7B" 16)      (string->number      "83" 15)      (string->number      "96" 13)      (string->number     "173"  8)      (string->number   "11120"  3)      (string->number "1111011"  2));; -> '(123 123 123 123 123 123 123 123) `

## Raku

(formerly Perl 6) By default, all strings of digits are parsed as base 10 numbers, including those with a leading zero. Numbers with a prefix 0b, 0o, 0d or 0x are parsed as binary, octal, decimal or hexadecimal respectively.

`say 0b11011;  # -> 27say 0o11011;  # -> 4617say 0d11011;  # -> 11011say 0x11011;  # -> 69649`

Additionally, there are built-in adverbial prefix operators to parse strings of "digits" of radix 2 through radix 36 into decimal. They will fail with a runtime error if they are fed a digit that is not valid in that radix.

`my \$n = '11011'; say  :2(\$n); # -> 27say  :3(\$n); # -> 112say  :4(\$n); # -> 325say  :5(\$n); # -> 756say  :6(\$n); # -> 1519say  :7(\$n); # -> 2752say  :8(\$n); # -> 4617say  :9(\$n); # -> 7300say :10(\$n); # -> 11011say :11(\$n); # -> 15984say :12(\$n); # -> 22477say :13(\$n); # -> 30772say :14(\$n); # -> 41175say :15(\$n); # -> 54016say :16(\$n); # -> 69649say :17(\$n); # -> 88452say :18(\$n); # -> 110827say :19(\$n); # -> 137200say :20(\$n); # -> 168021say :21(\$n); # -> 203764say :22(\$n); # -> 244927say :23(\$n); # -> 292032say :24(\$n); # -> 345625say :25(\$n); # -> 406276say :26(\$n); # -> 474579say :27(\$n); # -> 551152say :28(\$n); # -> 636637say :29(\$n); # -> 731700say :30(\$n); # -> 837031say :31(\$n); # -> 953344say :32(\$n); # -> 1081377say :33(\$n); # -> 1221892say :34(\$n); # -> 1375675say :35(\$n); # -> 1543536say :36(\$n); # -> 1726309`

## REXX

```  ╔══════════════════════════════════════════════════════════════════════════════════╗
║ In REXX, there are no  numeric-type  variables  (integer, float, real, unsigned, ║
║ logical, binary, complex, double, etc),  only  character.   Everything is stored ║
║ as a character string.   Arithmetic is done almost exactly the way a schoolchild ║
║ would perform it.  Putting it simply,  to add,  align the two numbers up  (right ║
║ justified, with the decimal being the pivot)  and add the columns up, adding the ║
║ carries and honoring the signs.                                                  ║
║                                                                                  ║
║ Multiplications and divisions are similarly performed.                           ║
╚══════════════════════════════════════════════════════════════════════════════════╝
```
`/*REXX program demonstrates REXX's ability to handle non-decimal radices*/a=123                        /*all of these assignments are identical:  */b='123'                 c='1' || "2" || '3'd= 1  ||  2  ||  3e= 12        ||  3f=120 + 3g=substr(9912388,3,3)h=left(123456,3)i=right(777.123,3)j=120 + '     3   'k=0000000123.0000/1          /*division "normalizes the number (──► 123)*/                              /*parsing of a  decimal number  is no      */                             /*different then parsing a character string*/                             /*because decimal numbers  ARE  character  */                             /*strings.    As such, numbers may have    */                             /*leading and/or trailing blanks, and in   */                             /*some cases, imbedded blanks (after any   */                             /*leading sign).                           */ aa=' 123 '                   /*AA's  exact value is different the  A,   */                             /*but it's   numerically equal    to  A.   */bb=123.                      /*the same can be said for the rest of 'em.*/cc=+123dd=' +  123'ee=0000123ff=1.23e+2gg=001.23E0002hh=1230e-1ii=122.999999999999999999999999999999999    /*assuming NUMERIC DIGITS 9 */jj= +++123kk= - -123 bingoA='10101'b               /*stores a binary value. */bingoB='10101'B               /*  B  can be uppercase. */bingoC='1 0101'b              /*apostrophes may be used*/bingoD="1 0101"b              /*quotes may be used.    */ hyoidA='deadbeaf'x            /*stores a hexadecimal value.*/hyoidB="deadbeaf"XhyoidC='dead beaf'XhyoidD='de ad be af'XhyoidE='dead be af'XhyoidF='7abc'x                              /*REXX has several built-in functions     */                              /*(BIFs) to handle conversions of the     */                              /*above-mentioned "number" formats.       */ cyanA=d2x(a)                  /*converts a decimal string to hexadecimal*/cyanB=d2x(5612)               /*converts a decimal string to hexadecimal*/ cyanD=b2x(101101)             /*converts a binary  string to hexadecimal*/ cyanE=b2c(101101)             /*some REXXes support this, others don't. */cyanF=c2b('copernicium')      /*some REXXes support this, others don't. */ cyanG=c2d('nilla')            /*converts a character string to decimal. */cyanH=d2c(251)                /*converts a decimal number to character. */ cyanI=x2d(fab)                /*converts a hexadecimal string to decimal*/cyanJ=x2c(fab)                /*converts a hexadecimal string to chars. */cyanK=x2b(fab)                /*converts a hexadecimal string to binary.*/ befog=d2b(144)                /*there's no dec──►binary,  but see below.*/unfog=b2d(101)                /*there's no bin──►decimal, but see below.*/   do j=0  to 27               /*show some simple low-value conversions. */  say right(j,2) 'in decimal is' d2b(j) "in binary and" d2x(j) 'in hex.'  end   /*j*/exit                                   /*stick a fork in it, we're done.*//*────────────────────────────add these subroutines to end─of─program.  */d2b: return word(strip(x2b(d2x(arg(1))),'L',0) 0,1)  /*convert dec──►bin*/b2d: return x2d(b2x(arg(1)))                         /*convert bin──►dec*/b2c: return x2c(b2x(arg(1)))                         /*convert bin──►chr*/c2b: return word(strip(x2b(c2x(arg(1))),'L',0) 0,1)  /*convert chr──►bin*/`

## Ring

` see number("0") + nlsee number("123456789") + nlsee number("-987654321") + nl `

Output:

```0
123456789
-987654321
```

## Ruby

The String class has methods to coerce a string into another form:

`dec1 = "0123459"hex2 = "abcf123"oct3 = "7651"bin4 = "101011001" p dec1.to_i   # => 123459p hex2.hex    # => 180154659p oct3.oct    # => 4009# nothing for binary`

The String class has to_i(base) method ( base : 2 .. 36 ). Invalid characters past the end of a valid number are ignored. (This method never raises an exception when base is valid.)

`p dec1.to_i(10)         # => 123459p hex2.to_i(16)         # => 180154659p oct3.to_i(8)          # => 4009p bin4.to_i(2)          # => 345p "xyz9".to_i(10)       # => 0  If there is not a valid letter, 0 is returned.`

The Integer() method can parse a string, provided the string has the right prefix:

`p ((Integer(dec1) rescue nil)) # => ArgumentError: invalid value for Integer: "0123459"p Integer(dec1.sub(/^0+/,""))  # => 123459p Integer("0d" + dec1)         # => 123459p Integer("0x" + hex2)         # => 180154659p Integer("0"  + oct3)         # => 4009p Integer("0o" + oct3)         # => 4009p Integer("0b" + bin4)         # => 345`

So can the `.to_i(0)` method, which never raises an exception:

`p dec1.to_i(0)      # => 5349 (which is 12345 in octal, the 9 is discarded)p ("0d" + dec1).to_i(0)        # => 123459p ("0x" + hex2).to_i(0)        # => 180154659p ("0"  + oct3).to_i(0)        # => 4009p ("0o" + oct3).to_i(0)        # => 4009p ("0b" + bin4).to_i(0)        # => 345`

And then there's the poorly documented Scanf module in the Ruby stdlib, that seems to wrap the matched value in an array:

`require 'scanf'p dec1.scanf("%d")  # => p hex2.scanf("%x")  # => p oct3.scanf("%o")  # => # no scanf specifier for binary numbers.`

## Rust

`fn main() {    println!(        "Parse from plain decimal: {}",        "123".parse::<u32>().unwrap()    );     println!(        "Parse with a given radix (2-36 supported): {}",        u32::from_str_radix("deadbeef", 16).unwrap()    );}`

## Scala

`object Main extends App {   val (s, bases) = ("100", Seq(2, 8, 10, 16, 19, 36))  bases.foreach(base => println(f"String \$s in base \$base%2d is \$BigInt(s, base)%5d"))}`

## Scheme

`> (string->number "abcf123" 16) ; hex180154659> (string->number "123459" 10) ; decimal, the "10" is optional123459> (string->number "7651" 8) ; octal4009> (string->number "101011001" 2) ; binary345`

## Seed7

The function integer(str, radix) converts a numeric string, with a specified radix, to an integer.

`\$ include "seed7_05.s7i"; const proc: main is func  begin    writeln(integer("0123459", 10));    writeln(integer("abcf123", 16));    writeln(integer("7651", 8));    writeln(integer("1010011010", 2));    writeln(integer("tplig0", 32));    writeln(integer("gc0uy9", 36));  end func;`
Output:
```123459
180154659
4009
666
1000000000
987654321
```

## Sidef

`var dec            = '0123459';var hex_noprefix   = 'abcf123';var hex_withprefix = '0xabcf123';var oct_noprefix   = '7651';var oct_withprefix = '07651';var bin_noprefix   = '101011001';var bin_withprefix = '0b101011001'; say dec.num;                    # => 123459say hex_noprefix.hex;           # => 180154659say hex_withprefix.hex;         # => 180154659say oct_noprefix.oct;           # => 4009say oct_withprefix.oct;         # => 4009say bin_noprefix.bin;           # => 345say bin_withprefix.bin;         # => 345`

## Standard ML

`- Int.fromString "0123459";val it = SOME 123459 : int option- StringCvt.scanString (Int.scan StringCvt.HEX) "0xabcf123";val it = SOME 180154659 : int option- StringCvt.scanString (Int.scan StringCvt.HEX) "abcf123";val it = SOME 180154659 : int option- StringCvt.scanString (Int.scan StringCvt.OCT) "7651";val it = SOME 4009 : int option- StringCvt.scanString (Int.scan StringCvt.BIN) "101011001";val it = SOME 345 : int option`

## Tcl

`package require Tcl 8.6;  # For easy scanning of binary # The strings to parseset dec1 "0123459"set hex2 "abcf123"set oct3 "7651"set bin4 "101011001" # Parse the numbersscan \$dec1 "%d" v1scan \$hex2 "%x" v2scan \$oct3 "%o" v3scan \$bin4 "%b" v4; # Only 8.6-specific operation; others work in all versions # Print out what happenedputs "\$dec1->\$v1 \$hex2->\$v2 \$oct3->\$v3 \$bin4->\$v4"`

This produces this output:

`0123459->123459 abcf123->180154659 7651->4009 101011001->345`

For a general parser up to base 36, a little function can be written:

`proc scanbase {str base} {   set res 0   set digits {0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z}   foreach char [split [string tolower \$str] ""] {      set value [lsearch [lrange \$digits 0 [expr {\$base - 1}]] \$char]      if {\$value < 0} {error "bad digit \$char"}      set res [expr {\$res*\$base + \$value}]   }   return \$res}`

Example:

```% scanbase 255 19
822
% scanbase \$dec1 8

## Wren

Library: Wren-fmt
`import "/fmt" for Conv, Fmt var tests = [ ["0b1110", 2], ["112", 3], ["0o16", 8], ["14", 10], ["0xe", 16], ["e", 19] ]for (test in tests) {    System.print("%(Fmt.s(6, test)) in base %(Fmt.d(-2, test)) = %(Conv.atoi(test, test))")} `
Output:
```0b1110 in base 2  = 14
112 in base 3  = 14
0o16 in base 8  = 14
14 in base 10 = 14
0xe in base 16 = 14
e in base 19 = 14
```

## XPL0

`include c:\cxpl\codes;int  N;  real R;[Text(8, "123_456");N:= IntIn(8);IntOut(0, N);  CrLf(0);Text(8, "ABcd12");N:= HexIn(8);HexOut(0, N);  CrLf(0);Text(8, "-3.14159e3");R:= RlIn(8);RlOut(0, R);  CrLf(0);]`
Output:
```123456
00ABCD12
-3141.59000
```

## zkl

The compiler knows numbers like 0x123, 0b1|101, 0d1_000 but the number conversion functions don't.

`fcn b2b(base){   ns:=[20..30].pump(List,T("toString",base));   ns.println();   ns.pump(List,T("toInt",base)).println("\n")}b2b(2); b2b(10); b2b(16); b2b(19);`

Print 20 .. 30 in binary, decimal, hex & base 19 (or any base 2 .. 32) and parse them to decimal:

Output:
```L("10100","10101","10110","10111","11000","11001","11010","11011","11100","11101","11110")
L(20,21,22,23,24,25,26,27,28,29,30)

L("20","21","22","23","24","25","26","27","28","29","30")
L(20,21,22,23,24,25,26,27,28,29,30)

L("14","15","16","17","18","19","1a","1b","1c","1d","1e")
L(20,21,22,23,24,25,26,27,28,29,30)

L("11","12","13","14","15","16","17","18","19","1a","1b")
L(20,21,22,23,24,25,26,27,28,29,30)
```