(Redirected from Common number base parsing)
You are encouraged to solve this task according to the task description, using any language you may know.

It is common to have a string containing a number written in some format, with the most common ones being decimal, hexadecimal, octal and binary. Such strings are found in many places (user interfaces, configuration files, XML data, network protocols, etc.)

This task requires parsing of such a string (which may be assumed to contain nothing else) using the language's built-in facilities if possible. Parsing of decimal strings is required, parsing of other formats is optional but should be shown (i.e., if the language can parse in base-19 then that should be illustrated).

The solutions may assume that the base of the number in the string is known. In particular, if your language has a facility to guess the base of a number by looking at a prefix (e.g. "0x" for hexadecimal) or other distinguishing syntax as it parses it, please show that.

For general number base conversion, see Non-decimal radices/Convert.

11l

Translation of: Python
```V s = β100β
L(base) 2..20
print(βString '#.' in base #. is #. in base 10β.format(s, base, Int(s, radix' base)))```
Output:
```String '100' in base 2 is 4 in base 10
String '100' in base 3 is 9 in base 10
String '100' in base 4 is 16 in base 10
String '100' in base 5 is 25 in base 10
String '100' in base 6 is 36 in base 10
String '100' in base 7 is 49 in base 10
String '100' in base 8 is 64 in base 10
String '100' in base 9 is 81 in base 10
String '100' in base 10 is 100 in base 10
String '100' in base 11 is 121 in base 10
String '100' in base 12 is 144 in base 10
String '100' in base 13 is 169 in base 10
String '100' in base 14 is 196 in base 10
String '100' in base 15 is 225 in base 10
String '100' in base 16 is 256 in base 10
String '100' in base 17 is 289 in base 10
String '100' in base 18 is 324 in base 10
String '100' in base 19 is 361 in base 10
String '100' in base 20 is 400 in base 10
```

Ada supports the input format <BASE>#<VALUE>#, for example 16#AF42# or 2#1010110# or 8#777#. This can be used for input through Ada.Text_IO.Integer_IO or for conversion through Integer'Value. More details on this format can be found here: Ada 2005 Reference Manual - 2.4.2 Based Literals.

Limited to Bases 2 to 16.

Works with Float values, too.

```with Ada.Text_IO;
procedure Numbers is
package Int_IO is new Ada.Text_IO.Integer_IO (Integer);
package Float_IO is new Ada.Text_IO.Float_IO (Float);
begin
Int_IO.Put (Integer'Value ("16#ABCF123#"));
Int_IO.Put (Integer'Value ("8#7651#"));
Int_IO.Put (Integer'Value ("2#1010011010#"));
Float_IO.Put (Float'Value ("16#F.FF#E+2"));
end Numbers;
```

Output:

```  180154659
4009
666
4.09500E+03```

Aime

```o_integer(alpha("f4240", 16));
o_byte('\n');
o_integer(alpha("224000000", 5));
o_byte('\n');
o_integer(alpha("11110100001001000000", 2));
o_byte('\n');

o_integer(alpha("03641100", 0));
o_byte('\n');
o_integer(alpha("0xf4240", 0));
o_byte('\n');```

ALGOL 68

Translation of: C
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
```main:
(
FILE fbuf; STRING sbuf;

OP FBUF = (STRING in sbuf)REF FILE: (
sbuf := in sbuf;
associate(fbuf, sbuf);
fbuf
);

BITS num;

getf(FBUF("0123459"), (\$10r7d\$, num));
printf((\$gl\$, ABS num)); # prints 123459 #

getf(FBUF("abcf123"), (\$16r7d\$, num));
printf((\$gl\$, ABS num)); # prints 180154659 #

getf(FBUF("7651"), (\$8r4d\$, num));
printf((\$gl\$, ABS num)); # prints 4009 #

getf(FBUF("1010011010"), (\$2r10d\$, num));
printf((\$gl\$, ABS num)) # prints 666 #

)```

Output:

```    +123459
+180154659
+4009
+666
```

Arturo

```print to :integer "10"      ; 10

print from.hex "10"         ; 16
print from.octal "120"      ; 80
print from.binary "10101"   ; 21
```
Output:
```10
16
80
21```

AutoHotkey

There is no built in support for generic base parsing.

BBC BASIC

```      REM VAL parses decimal strings:
PRINT VAL("0")
PRINT VAL("123456789")
PRINT VAL("-987654321")

REM EVAL can be used to parse binary and hexadecimal strings:
PRINT EVAL("%10101010")
PRINT EVAL("%1111111111")
PRINT EVAL("&ABCD")
PRINT EVAL("&FFFFFFFF")
```

Output:

```         0
123456789
-987654321
170
1023
43981
-1
```

C

In addition to strtol() described in the Number base conversion task, you could also use the `scanf` family of functions to parse un-prefixed hexadecimal, decimal, and octal numbers:

```#include <stdio.h>

int main()
{
int num;

sscanf("0123459", "%d", &num);
printf("%d\n", num); /* prints 123459 */

sscanf("abcf123", "%x", &num);
printf("%d\n", num); /* prints 180154659 */

sscanf("7651", "%o", &num);
printf("%d\n", num); /* prints 4009 */

/* binary not supported */

return 0;
}
```

The `strtol()` function can also parse prefixed hexadecimal, octal, and decimal strings based on the prefix, when passed a base of 0:

```#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

int main()
{
int num;
char *endptr;

num = strtol("123459", &endptr, 0);
assert(*endptr == '\0');
printf("%d\n", num); /* prints 123459 */

num = strtol("0xabcf123", &endptr, 0);
assert(*endptr == '\0');
printf("%d\n", num); /* prints 180154659 */

num = strtol("07651", &endptr, 0);
assert(*endptr == '\0');
printf("%d\n", num); /* prints 4009 */

/* binary not supported */

return 0;
}
```

C#

```using System;

class Program
{
static void Main()
{
var value = "100";
var fromBases = new[] { 2, 8, 10, 16 };
var toBase = 10;
foreach (var fromBase in fromBases)
{
Console.WriteLine("{0} in base {1} is {2} in base {3}",
value, fromBase, Convert.ToInt32(value, fromBase), toBase);
}
}
}
```

Output:

```100 in base 2 is 4 in base 10
100 in base 8 is 64 in base 10
100 in base 10 is 100 in base 10
100 in base 16 is 256 in base 10
```

C++

```#include <iostream>
#include <sstream>

int main()
{
int num;

std::istringstream("0123459") >> num;
std::cout << num << std::endl; // prints 123459

std::istringstream("0123459") >> std::dec >> num;
std::cout << num << std::endl; // prints 123459

std::istringstream("abcf123") >> std::hex >> num;
std::cout << num << std::endl; // prints 180154659

std::istringstream("7651") >> std::oct >> num;
std::cout << num << std::endl; // prints 4009

// binary not supported

return 0;
}
```

Common Lisp

```(parse-integer "abc" :radix 20 :junk-allowed t) ; => 4232
```

If `:radix` is omitted, it defaults to 10. If `:junk-allowed` is omitted, it defaults to `nil`, causing `#'parse-integer` to signal an error of type `parse-error` rather than just returning `nil` whenever the input string isn't a numeral possibly surrounded by whitespace.

D

Translation of: Python
```import std.stdio, std.conv;

void main() {
immutable text = "100";
foreach (base; 2 .. 21)
writefln("String '%s' in base %d is  %d in base 10" ,
text, base, to!int(text, base));
}
```
Output:
```String '100' in base 2 is  4 in base 10
String '100' in base 3 is  9 in base 10
String '100' in base 4 is  16 in base 10
String '100' in base 5 is  25 in base 10
String '100' in base 6 is  36 in base 10
String '100' in base 7 is  49 in base 10
String '100' in base 8 is  64 in base 10
String '100' in base 9 is  81 in base 10
String '100' in base 10 is  100 in base 10
String '100' in base 11 is  121 in base 10
String '100' in base 12 is  144 in base 10
String '100' in base 13 is  169 in base 10
String '100' in base 14 is  196 in base 10
String '100' in base 15 is  225 in base 10
String '100' in base 16 is  256 in base 10
String '100' in base 17 is  289 in base 10
String '100' in base 18 is  324 in base 10
String '100' in base 19 is  361 in base 10
String '100' in base 20 is  400 in base 10```

Delphi

Works with: Delphi version 6.0

Delphi has built in functions that can input numbers in decimal and hexadecimal. Here is simple subroutine that can input number in any radix from 2 to 36.

```function InputByRadix(S: string; Radix: integer): integer;
{Coverts the input string of the specified radix to an integer}
{Accepts digits in the range 0..9 and A..Z and ignores anything else}
var I,B: integer;
begin
Result:=0;
S:=UpperCase(S);
for I:=1 to Length(S) do
begin
if S[I] in ['0'..'9'] then B:=byte(S[I])-\$30
else if S[I] in ['A'..'Z'] then B:=byte(S[I])-\$41;
end;
end;

var Base,I: integer;
begin
for Base:=2 to 20 do
begin
Memo.Lines.Add(Format('String "100" in base %2D is %3D in Base 10',[Base,I]));
end;
end;
```
Output:
```String "100" in base  2 is   4 in Base 10
String "100" in base  3 is   9 in Base 10
String "100" in base  4 is  16 in Base 10
String "100" in base  5 is  25 in Base 10
String "100" in base  6 is  36 in Base 10
String "100" in base  7 is  49 in Base 10
String "100" in base  8 is  64 in Base 10
String "100" in base  9 is  81 in Base 10
String "100" in base 10 is 100 in Base 10
String "100" in base 11 is 121 in Base 10
String "100" in base 12 is 144 in Base 10
String "100" in base 13 is 169 in Base 10
String "100" in base 14 is 196 in Base 10
String "100" in base 15 is 225 in Base 10
String "100" in base 16 is 256 in Base 10
String "100" in base 17 is 289 in Base 10
String "100" in base 18 is 324 in Base 10
String "100" in base 19 is 361 in Base 10
String "100" in base 20 is 400 in Base 10
```

E

```? __makeInt("200", 16)
# value: 512

? __makeInt("200", 10)
# value: 200```

EasyLang

```repeat
s\$ = input
until s\$ = ""
a = number s\$
print a
.
#
input_data
1234
0xa0
```
Output:
```1234
160
```

Elixir

base: 2 .. 36

```iex(1)> String.to_integer("1000")
1000
iex(2)> String.to_integer("1000",2)
8
iex(3)> String.to_integer("1000",8)
512
iex(4)> String.to_integer("1000",16)
4096
iex(5)> String.to_integer("ffff",16)
65535
```

Erlang

My interpretation of the task description is that I can state that the base (here: 17) can be 2..36, without having to show one example of each.

Output:
```<12> erlang:list_to_integer("ffff", 17).
78300
```

F#

```let value = "100"
let fromBases = [ 2; 8; 10; 16 ]
let values = Seq.initInfinite (fun i -> value)
Seq.zip fromBases (Seq.zip values fromBases |> Seq.map (System.Convert.ToInt32))
|> Seq.iter (
fun (fromBase, valueFromBaseX) ->
printfn "%s in base %i is %i in base 10" value fromBase valueFromBaseX)
```
Output:
```100 in base 2 is 4 in base 10
100 in base 8 is 64 in base 10
100 in base 10 is 100 in base 10
100 in base 16 is 256 in base 10```

Factor

Bases from 2 to 16 are supported through the generic base> word (see online docs [1]) but 4 functions are defined for the most used cases:

```   ( scratchpad ) "ff" hex> . ! base 16
255
( scratchpad ) "777" oct> . ! base 8
511
( scratchpad ) "1111" bin> . ! base 2
15
( scratchpad ) "99" string>number . ! base 10
99
```

Note that these words are very simple : for example, here's oct> :

```IN: math.parser
: oct> ( str -- n/f ) 8 base> ; inline
```

Also, fractions are handled transparently :

```   ( scratchpad ) "1+F/2" hex> .
8+1/2
```

Hex floats are supported, anything else is taken as base 10 :

```   ( scratchpad ) "ff.f" hex> .
255.9375
( scratchpad ) "11.1101" bin> .
11.1101
```

Forth

Arbitrary base 2-36 parsing is supported by the same mechanism as decimal parsing: set the user variable BASE to the desired base, then scan the number. There are two convenience words for setting the base to DECIMAL or HEX.

```: parse# ( str len -- u true | false )
0. 2SWAP DUP >R >NUMBER NIP NIP
R> <> DUP 0= IF NIP THEN ;

: base# ( str len base -- u true | false )
BASE @ >R  BASE !  parse#  R> BASE ! ;
```

Fortran

Works with: Fortran version 90 and later
```program Example
implicit none

integer :: num
character(32) :: str

str = "0123459"
write(*,*) num           ! Prints 123459

str = "abcf123"
write(*,*) num           ! Prints 180154659

str = "7651"
write(*,*) num           ! Prints 4009

str = "1010011010"
write(*,*) num           ! Prints 666

end program
```

FreeBASIC

FreeBASIC has built-in string to integer conversion functions which automatically recognize numbers in hexadecimal, decimal, octal or binary format provided that they are prefixed by &H, (nothing), &O and &B respectively. Here's an example:

```' FB 1.05.0 Win64

Dim s(1 To 4) As String = {"&H1a", "26", "&O32", "&B11010"} '' 26 in various bases
For i As Integer = 1 To 4
Print s(i); Tab(9); "="; CInt(s(i))
Next

Sleep
```
Output:
```&H1a    = 26
26      = 26
&O32    = 26
&B11010 = 26
```

Free Pascal

Pascal, as defined in ISO 7185, only demands that decimal integers can be read with read/readLn. As an extension, however, the implementation of read/readLn/readStr contained in the standard RTL (run-time library) shipped with FPC (Free Pascal Compiler) supports reading integers that meet the requirements of FreePascalβs own integer literal syntax. Furthermore, 0x/0X is recognized as a hexadecimal base indicator, although in source code it would be illegal.

```program readIntegers(input, output);
var
i: aluSInt;
begin
while not EOF(input) do
begin
writeLn(i:24);
end;
end.
```

If the input is too large and cannot be stored in an integer (aluSInt), a run-time error is generated.

Output:
```\$ cat << EOT | ./readIntegers
>         -0
>      &0644
>  \$cafeBabe
>      -0XfF
>     -%1010
>       1337
> EOT
0
420
3735928559
-255
-10
1337
```

Note, floating-point numbers, the data type real, can only be read in decimal notation. The minus sign β (U+2212) is not recognized.

Go

```package main

import (
"fmt"
"math/big"
"strconv"
)

func main() {
// package strconv:  the most common string to int conversion,
// base 10 only.
x, _ := strconv.Atoi("13")
fmt.Println(x)

// ParseInt handles arbitrary bases from 2 to 36, and returns
// a result of the requested size (64 bits shown here.)
// If the base argument is zero the base is determined by prefix
// as with math/big below.
x64, _ := strconv.ParseInt("3c2", 19, 64)
fmt.Println(x64)

// package fmt:  allows direct conversion from strings, standard
// input, or from an io.Reader (file, buffer, etc) to integer types
// for bases 2, 8, 10, and 16 or to any type that implements the
// fmt.Scanner interface (e.g. a big.Int).
// (Fscanf and Scanf are more common for reading from
fmt.Sscanf("1101", "%b", &x)
fmt.Println(x)

fmt.Sscanf("15", "%o", &x)
fmt.Println(x)

fmt.Sscanf("13", "%d", &x)
fmt.Println(x)

fmt.Sscanf("d", "%x", &x)
fmt.Println(x)

// package math/big:  allows conversion from string to big integer.
// any base from 2 to 36 can be specified as second parameter.
var z big.Int
z.SetString("111", 3)
fmt.Println(&z)

// if second parameter is 0, base is determined by prefix, if any
z.SetString("0b1101", 0) // 0b -> base 2
fmt.Println(&z)

z.SetString("015", 0) // 0 -> base 8
fmt.Println(&z)

z.SetString("13", 0) // no prefix -> base 10
fmt.Println(&z)

z.SetString("0xd", 0) // 0x -> base 16
fmt.Println(&z)

// As mentioned, a big.Int (or any type implementing fmt.Scanner)
// can also be use with any of the fmt scanning functions.
fmt.Sscanf("15", "%o", &z)
fmt.Println(&z)
}
```

Output is all 13s.

Haskell's read can parse strings with the same prefix used for literals in Haskell (0x or 0X for hex, 0o or 0O for octal):

```Prelude> read "123459" :: Integer
123459
180154659
4009
```

HicEst

```READ(Text="123459    ", Format="i10") dec    ! 123459
READ(Text=" abcf123  ", Format="Z10") hex    ! 180154659
READ(Text="   7651   ", Format="o10") oct    ! 4009
READ(Text=" 101011001", Format="B10.10") bin ! 345```

Icon and Unicon

Icon allows numbers to be defined as 'root' + "R" + 'number', where 'root' is a base from 2 to 36, and 'number' is a string of digits or letters, using 'A' to 'Z' as appropriate for the base; case is ignored. Strings are automatically parsed into numbers when needed, using the procedure 'integer'.

```procedure convert (str)
write (left(str, 10) || " = " || integer(str))
end

procedure main ()
convert (" 2r1001")
convert (" 8r7135")
convert ("16rABC1234")
convert ("36r1Z")

write ("2r1001" + "36r1Z") # shows type conversion, string->integer
end
```

Output:

``` 2r1001    = 9
8r7135    = 3677
16rABC1234 = 180097588
36r1Z      = 71
80
```

J

Solution 1:

```   baseN=: (, 'b'&,)&.":
```

Solution 2 (input sanitizing):

```   baseN=: 0&".@,&": 'b' , ] NB.  Use if the source of the non-decimal "numbers" is not trustworthy
```

Example:

```   16 baseN 'abcf123'
180154659
8 baseN '7651'
4009
10 baseN '123459'
123459
```

Note:

J also provides builtin support for numeric literals of an arbitrary base. The format is radixbdigits (where radix is specified in base 10). The one restriction is that you cannot use digits larger than 36 ('z'):

```   16babcf123 8b7651 10b123459
180154659 4009 123459
```

However you can use digits larger than the radix:

```   2bhelloworld
17955
```

And you can use bases where not all digits are representable:

```   1000bogus
24016030028
```

Letters used for digits have base 10 values ranging from 10 (a) to 35 (z).

Java

Works with: Java version 1.5+

You must know the base that the String is in before you scan it. Create a Scanner in the usual way, but then set its radix to that base (obviously, the default is 10):

```Scanner sc = new Scanner(System.in); //or any other InputStream or String
```

Later you can call sc.reset() or sc.useRadix(10) to undo this change.

Another option using the Integer class:

```int number = Integer.parseInt(stringNum, base);
```

The base here has the same restrictions as the Scanner example. A similar method is available in the Long class. Use no second argument for base 10.

If you have a prefixed string ("0x", "0X", or "#" for hex; "0" for octal; otherwise decimal), you can use the .decode() utility method to parse the number based on the base indicated by the prefix (note: this returns an Integer object, not a primitive int):

```Integer.decode("0xabcf123"); // hex
Integer.decode("07651");     // octal
Integer.decode("123459");    // decimal
```

Long, Short, and Byte also have a .decode() method, to decode to the appropriate number object type.

JavaScript

For base 10 and 16 ("0x"-prefixed), (but not 8), it is fastest to parse strings using the unary plus (+) operator:

```+"0123459"; // 123459
+"0xabcf123"; // 180154659

// also supports negative numbers, but not for hex:
+"-0123459"; // -123459
+"-0xabcf123"; // NaN
```

The `parseInt(string,radix)` core function is the reverse of the `number.toString(radix)` method. The following is taken from Mozilla's JavaScript 1.5 reference.

The following examples all return 15:
```parseInt(" 0xF", 16);
parseInt(" F", 16);
parseInt("17", 8);
parseInt(021, 8);
parseInt("015", 10);
parseInt(15.99, 10);
parseInt("FXX123", 16);
parseInt("1111", 2);
parseInt("15*3", 10);
parseInt("15e2", 10);
parseInt("15px", 10);
parseInt("12", 13);
```

The following examples all return NaN:

```parseInt("Hello", 8); // Not a number at all
parseInt("546", 2);   // Digits are not valid for binary representations
```

The following examples all return -15:

```parseInt("-F", 16);
parseInt("-0F", 16);
parseInt("-0XF", 16);
parseInt(-10, 16);
parseInt(-15.1, 10)
parseInt(" -17", 8);
parseInt(" -15", 10);
parseInt("-1111", 2);
parseInt("-15e1", 10);
parseInt("-12", 13);
```

The following example returns 224:

```parseInt("0e0", 16);
```

Although it is optional, most implementations interpret a numeric string beginning with a leading '0' as octal. The following may have an octal result.

```parseInt("0e0"); // 0
parseInt("08"); // 0, '8' is not an octal digit.
```

jq

Works with: jq

Also works with gojq, the Go implementation of jq, and with fq.

Two filters are provided here for interpreting certain values as decimal numbers:

• `ibase(\$base)` interprets JSON integers and alphanumeric strings (possibly prefixed with one or more "-" signs) as numbers in the given base, and converts them to decimal integers;
• `ibase` also converts its inputs to decimal integers but recognizes the prefixes 0b 0o 0x in the conventional way.

In all cases:

• an input string can use any alphanumeric character with its conventional decimal value
• for example `"0bF" | ibase` evaluates to 15, even though "F" is not a binary digit;
• leading and trailing blanks are ignored;
• each leading "-" sign is interpreted as specifying the negative,
• for example: `"--1" | ibase` evaluates to 1;
• `"" | ibase` evaluates to null, and `"-"|ibase` raises an error;
• both filters accept certain JSON numbers in general.
```# ibase(\$base) interprets its input as a number in base \$base, and emits the
# corresponding decimal value. \$base may be any positive integer.
#
# If the input is a JSON number, and the \$base is 10, then the input is simply echoed.
# Otherwise, the input should be a JSON integer or an alphanumeric
# string optionally preceded by one or more occurrences of "-", and
# optionally surrounded by blanks.
# Examples: `"A"|base(2)` => 10
#
def ibase(\$base):
def tod: if 48 <= . and . <=  57 then . - 48  # 0-9
elif 65 <= . and . <=  90 then . - 55  # A-Z
elif 97 <= . and . <= 122 then . - 87  # a-z
else "ibase cannot handle codepoint \(.)" | error
end;
if type == "number" and \$base==10 then .
else
tostring
| sub("^  *";"") | sub("  *\$";"") | sub("^0*";"")
| if startswith("-") then -  (.[1:] | ibase(\$base))
else
reduce (tostring|explode|reverse[]) as \$point ({value: null, p: 1};
.value += (\$point|tod) * .p
| .p *= \$base)
| .value
end
end;

# infer the base from the input string as follows:
# prefix 0b for base 2, 0o for base 8, 0x for base 16,
# otherwise base 10
def ibase:
if type=="number" then .
else capture("^ *(?<signs>-*)(?<x>[^ ]*) *\$") as \$in
| \$in.x
| if . == null then null
else (if startswith("0b") then .[2:] | ibase(2)
elif startswith("0o") then .[2:] | ibase(8)
elif startswith("0x") then .[2:] | ibase(16)
else ibase(10)
end) as \$y
| if (\$in.signs | length) % 2 == 0 then \$y else - \$y end
end
end;```

Examples

If your implementation of jq does not support \$__loc__ then please adjust the def of assert accordingly.

```# Assertions:
def assert(\$x; \$y):
if (\$x == \$y) then empty
else "WARNING @ \(\$__loc__.line): \(\$x) != \(\$y)" | stderr, false
end;

def assertions:
assert(""     | ibase; null),
assert("--1"  | ibase;  1),
assert("11"   | ibase(2);  3),
assert(11     | ibase(3);  4),
assert(11     | ibase(14); 15),
assert(" 0xF" | ibase; 15),
assert(" F"   | ibase; 15),
assert("17"   | ibase(8); 15),
assert("0o17" | ibase; 15),
assert(021    | ibase(7); 15),
assert("015"  | ibase(10); 15),
assert(" 0bF "| ibase; 15),
assert("0b1111" | ibase; 15)
;

assertions```
Output:

Julia

```# Version 5.2
txt = "100"
for base = 2:21
base10 = parse(Int, txt, base)
println("String \$txt in base \$base is \$base10 in base 10")
end
```

If not specify the base it will figure out the base from the prefix:

```@show parse(Int, "123459")
@show parse(Int, "0xabcf123")
@show parse(Int, "0o7651")
@show parse(Int, "0b101011001")
```
Output:
```String 100 in base 2 is 4 in base 10
String 100 in base 3 is 9 in base 10
String 100 in base 4 is 16 in base 10
String 100 in base 5 is 25 in base 10
String 100 in base 6 is 36 in base 10
String 100 in base 7 is 49 in base 10
String 100 in base 8 is 64 in base 10
String 100 in base 9 is 81 in base 10
String 100 in base 10 is 100 in base 10
String 100 in base 11 is 121 in base 10
String 100 in base 12 is 144 in base 10
String 100 in base 13 is 169 in base 10
String 100 in base 14 is 196 in base 10
String 100 in base 15 is 225 in base 10
String 100 in base 16 is 256 in base 10
String 100 in base 17 is 289 in base 10
String 100 in base 18 is 324 in base 10
String 100 in base 19 is 361 in base 10
String 100 in base 20 is 400 in base 10
String 100 in base 21 is 441 in base 10
parse(Int,"123459") = 123459
parse(Int,"0xabcf123") = 180154659
parse(Int,"0o7651") = 4009
parse(Int,"0b101011001") = 345
```

Kotlin

```// version 1.1.2

fun main(args: Array<String>) {
val s = "100"
val bases = intArrayOf(2, 8, 10, 16, 19, 36)
for (base in bases)
println("\$s in base \${"%2d".format(base)} is \${s.toInt(base)}")
}
```
Output:
```100 in base  2 is 4
100 in base  8 is 64
100 in base 10 is 100
100 in base 16 is 256
100 in base 19 is 361
100 in base 36 is 1296
```

Lua

Lua supports bases between 2 and 36.

```print( tonumber("123") )
print( tonumber("a5b0", 16) )
print( tonumber("011101", 2) )
print( tonumber("za3r", 36) )
```

Mathematica /Wolfram Language

```19^^91g5dcg2h6da7260a9f3c4a
2^^11110001001000000
```
Output:
```123456789012345678901234567890
123456```

MATLAB / Octave

```val = sscanf('11 11 11','%d   %o  %x')
```

Output:

```val =
11
9
17```

Nanoquery

Nanoquery can convert numbers with any specified radix value from 2 to 36 using the int() function.

```println int("1234")
println int("1100", 2)
println int("abcd", 16)
println int("ghij", 22)```
Output:
```1234
12
43981
179011```

Nim

```import strutils

echo parseInt "10"       # 10

echo parseHexInt "0x10"  # 16
echo parseHexInt "10"    # 16

echo parseOctInt "0o120" # 80
echo parseOctInt "120"   # 80
```

Output:

```10
16
16
80
80```

OCaml

The `int_of_string` function can parse hexadecimal, octal, and binary numbers that have the same prefix that is used to specify OCaml constants ("0x", "0o", and "0b", respectively):

```# int_of_string "123459";;
- : int = 123459
# int_of_string "0xabcf123";;
- : int = 180154659
# int_of_string "0o7651";;
- : int = 4009
# int_of_string "0b101011001";;
- : int = 345
```

The `Int32.of_string`, `Int64.of_string`, and `Nativeint.of_string` functions also can understand the above prefixes when parsing into their appropriate types.

Starting in OCaml 4.02, the `Big_int.big_int_of_string` and `Num.num_of_string` functions also understand these prefixes.

You could also use the `Scanf` module to parse un-prefixed hexadecimal, decimal, and octal numbers (binary not supported):

```# Scanf.sscanf "123459" "%d" (fun x -> x);;
- : int = 123459
# Scanf.sscanf "abcf123" "%x" (fun x -> x);;
- : int = 180154659
# Scanf.sscanf "7651" "%o" (fun x -> x);;
- : int = 4009
```

Oz

`String.toInt` understands the usual prefixes. If a string cannot be parsed, an exception will be thrown.

```{String.toInt "42"}         %% decimal
= {String.toInt "052"}      %% octal
= {String.toInt "0b101010"} %% binary```

PARI/GP

Binary conversion is built in to PARI/GP, this script can convert from bases2-36 to bases 2-36. I've had help with this script at http:\\mersenneforums.org . The main flaw in this script I see is that it doesn't allow 36^x-1 type strings, I'll have to add that on later.

```convert(numb1,b1,b2)={
my(B=["0","1","2","3","4","5","6","7","8","9","a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"],a=0,c="");
numb1=Vec(Str(numb1));
forstep(y=#numb1,1,-1,
for(x=1,b1,
if(numb1[y]==B[x],
a=a+(x-1)*b1^(#numb1-y)
)
)
);
until(a/b2==0,
c=concat(B[a%b2+1],c);
a=a\b2
);
c
};```

Note that version 2.8.0+ supports hexadecimal (0x1ff) and binary (0b10101) inputs. Further, it can accept generic input as a vector:

Works with: PARI/GP version 2.8.0+
`fromdigits([1,15,15],16)`

See Free Pascal

Perl

The hex() function parses hexadecimal strings. The oct() function parses octal strings, as well as hexadecimal, octal, or binary strings with the appropriate prefix ("0x", "0", and "0b", respectively). There is no need to parse decimal strings because in Perl decimal strings and numbers are interchangeable.

```my \$dec = "0123459";
my \$hex_noprefix = "abcf123";
my \$hex_withprefix = "0xabcf123";
my \$oct_noprefix = "7651";
my \$oct_withprefix = "07651";
my \$bin_withprefix = "0b101011001";

print 0 + \$dec, "\n";   # => 123459
print hex(\$hex_noprefix), "\n";    # => 180154659
print hex(\$hex_withprefix), "\n";    # => 180154659
print oct(\$hex_withprefix), "\n";    # => 180154659
print oct(\$oct_noprefix), "\n";    # => 4009
print oct(\$oct_withprefix), "\n";    # => 4009
print oct(\$bin_withprefix), "\n";    # => 345
# nothing for binary without prefix
```

Phix

There are four possible approaches here:
The entry-level routine for this is to_integer().
The to_number() routine copes with larger numbers, (decimal) fractions, and exponents.
The scanf() routine uses [prefixes and] to_number() internally, but has no explicit base parameter.
The sledgehammer routines are mpz_set_str() and mpfr_set_str(), with the latter even handling non-decimal fractions.

```with javascript_semantics
?to_integer("1234")             -- 1234
?to_integer("10101010",0,2)     -- 170, 0 on failure
?to_number("FFFFFFFF","?",16)   -- 4294967295.0, "?" on failure
?scanf("#FFFFFFFF","%f")        -- {{4294967295.0}}, {} on failure
?scanf("0o377","%o")            -- {{255}}
?scanf("1234","%d")             -- {{1234}}
include mpfr.e
mpz z = mpz_init()
mpz_set_str(z,"377",8)
?mpz_get_str(z)                 -- "255"
mpfr f = mpfr_init()
mpfr_set_str(f,"110.01",2)
?mpfr_get_fixed(f)              -- "6.25" (which is correct in decimal)
```

Aside: the ".0" is a sprint() artefact, to indicate "this is not a Phix 31/63-bit integer". scanf() can return multiple sets of answers. You can of course use mpz_fits_integer() and mpz_get_integer(), mpz_fits_atom() and mpz_get_atom(), mpfr_get_si(), or mpfr_get_d() to retrieve native values from gmp - the mpfr_fits_*() routines are not yet wrapped, give me a shout if they, or a more Phix-friendly version of them, are needed.

PHP

The hexdec(), octdec(), bindec() function parses hexadecimal, octal, and binary strings, respectively. They skip any invalid characters, so a prefix will be ignored. There is no need to parse decimal strings because in PHP decimal strings and numbers are interchangeable.

```<?php
echo +"0123459", "\n"; // prints 123459
echo intval("0123459"), "\n"; // prints 123459
echo hexdec("abcf123"), "\n"; // prints 180154659
echo octdec("7651"), "\n";  // prints 4009
echo bindec("101011001"), "\n"; // prints 345
?>
```

An undocumented feature of intval() is that it can parse prefixed strings when given the base 0:

```<?php
echo intval("123459", 0), "\n"; // prints 123459
echo intval("0xabcf123", 0), "\n"; // prints 180154659
echo intval("07651", 0), "\n";  // prints 4009
?>
```

In addition, for hexadecimals, if you have a "0x"-prefixed string, you can just use it in a numeric operation, and it gets converted to the number automatically:

```<?php
echo +"0xabcf123", "\n"; // prints 180154659
# This does not work for octals, however:
echo +"07651", "\n"; // prints 7651
?>
```

PicoLisp

```(de parseNumber (S Base)
(let N 0
(for C (chop S)
(when (> (setq C (- (char C) `(char "0"))) 9)
(dec 'C 39) )
(setq N (+ C (* N Base))) )
N ) )

(println (parseNumber "91g5dcg2h6da7260a9f3c4a" 19))```

Output:

`123456789012345678901234567890`

PL/I

```declare N fixed binary;
get edit (N) (A(7)); /* decimal input of 7 columns */
put skip list (N);

declare BS bit (32);
get edit (BS) (B(32)); /* Binary input of 32 binary digits. */
put skip edit (BS) (B);```
```       23
11010101010111111110000000011101
```

PowerShell

PowerShell parses an integer prefixed with "0x" as hexadecimal. Binary and Octal conversions must use the .NET `[Convert]`. Here follows a (verbose) example:

```function Select-NumberFromString
{
[CmdletBinding(DefaultParameterSetName="Decimal")]
[OutputType([PSCustomObject])]
Param
(
[Parameter(Mandatory=\$true,
ValueFromPipeline=\$true,
ValueFromPipelineByPropertyName=\$true,
Position=0)]
[string]
\$InputObject,

[Parameter(ParameterSetName="Decimal")]
[Alias("d","Dec")]
[switch]
\$Decimal,

[Alias("h","Hex")]
[switch]

[Parameter(ParameterSetName="Octal")]
[Alias("o","Oct")]
[switch]
\$Octal,

[Parameter(ParameterSetName="Binary")]
[Alias("b","Bin")]
[switch]
\$Binary
)

Begin
{
switch (\$PSCmdlet.ParameterSetName)
{
"Decimal"     {\$base = 10; \$pattern = '[+-]?\b[0-9]+\b'; break}
"Hexadecimal" {\$base = 16; \$pattern = '\b[0-9A-F]+\b'  ; break}
"Octal"       {\$base =  8; \$pattern = '\b[0-7]+\b'     ; break}
"Binary"      {\$base =  2; \$pattern = '\b[01]+\b'      ; break}
"Default"     {\$base = 10; \$pattern = '[+-]?\b[0-9]+\b'; break}
}
}
Process
{
foreach (\$object in \$InputObject)
{
if (\$object -match \$pattern)
{
\$string = \$Matches[0]
}
else
{
\$string = \$null
}

try
{
\$value = [Convert]::ToInt32(\$string, \$base)
}
catch
{
\$value = \$null
}

[PSCustomObject]@{
Number      = \$value
String      = \$string
Base        = \$base
IsNumber    = \$value -is [int]
InputString = \$object
}

}
}
}
```

Using a pretend file:

```\$file = @'
John Doe abc1 K2hdystkrs
Jane Doe xyz2 Ew3jtdkufy
Joe Blow def3 Ouy1ttluyl
'@ -split [Environment]::NewLine

\$file | Select-NumberFromString -Hexadecimal | Format-Table
```
Output:
```Number String Base IsNumber InputString
------ ------ ---- -------- -----------
43969 abc1     16     True John Doe abc1 K2hdystkrs
16    False Jane Doe xyz2 Ew3jtdkufy
57075 def3     16     True Joe Blow def3 Ouy1ttluyl
```

PureBasic

```  ;Val() parses integer strings
; decimal numbers have no prefix, hexadecimal needs a prefix of '\$', binary needs a prefix of '%'
Val("1024102410241024")      ; => 1024102410241024
Val("\$10FFFFFFFF")           ; => 73014444031
Val("%1000")                 ; => 8
```

Python

The int function will interpret strings as numbers expressed to some base:

```>>> text = '100'
>>> for base in range(2,21):
print ("String '%s' in base %i is  %i in base 10"
% (text, base, int(text, base)))

String '100' in base 2 is  4 in base 10
String '100' in base 3 is  9 in base 10
String '100' in base 4 is  16 in base 10
String '100' in base 5 is  25 in base 10
String '100' in base 6 is  36 in base 10
String '100' in base 7 is  49 in base 10
String '100' in base 8 is  64 in base 10
String '100' in base 9 is  81 in base 10
String '100' in base 10 is  100 in base 10
String '100' in base 11 is  121 in base 10
String '100' in base 12 is  144 in base 10
String '100' in base 13 is  169 in base 10
String '100' in base 14 is  196 in base 10
String '100' in base 15 is  225 in base 10
String '100' in base 16 is  256 in base 10
String '100' in base 17 is  289 in base 10
String '100' in base 18 is  324 in base 10
String '100' in base 19 is  361 in base 10
String '100' in base 20 is  400 in base 10
```

In addition, if you give a base of 0, it will try to figure out the base from the prefix, with the same syntax as a numeric literal in Python:

Python 3.x and 2.6:

```>>> int("123459", 0)
123459
>>> int("0xabcf123", 0)
180154659
>>> int("0o7651", 0)
4009
>>> int("0b101011001", 0)
345
```

Python 2.x:

```>>> int("123459", 0)
123459
>>> int("0xabcf123", 0)
180154659
>>> int("07651", 0)
4009
```

Python 2.6 supports both the above formats, because it supports both types of literals.

Quackery

As a dialogue in the Quackery shell.

Output:
```/O> \$ "1234567890" \$->n drop  ( 'drop' because \$->n returns a number AND a success flag )
... echo cr
...
1234567890

Stack empty.

/O> 19 base put               ( parse string as base 19 )
... \$ "174B57C7" \$->n drop
... base release
... echo cr
...
1234567890

Stack empty.

/O> 36 base put               ( largest base handled by Quackery )
... \$ "KF12OI" \$->n drop
... base release
... echo cr
...
1234567890

Stack empty.```

Hexadecimal numbers can be indicated in Quackscript with the builder (compiler directive) `hex`.

```/O> hex 499602D2
...

Stack: 1234567890```

R

```# parse a string to decimal
as.numeric("20")    # 20
# parse a hex-string to decimal
as.numeric("0x20")  # 32
# parse a string to hexadecimal
as.hexmode(as.numeric("32")) # "20"
# parse a string to octal
as.octmode(as.numeric("20")) # "24"
```

Racket

```#lang racket

;; Number literals can use #x, #o, and #b for different radices
(list 123 #x7B #o173 #b1111011)
;; -> '(123 123 123 123)

;; Explicit conversion of strings can use any radix up to 16
(list (string->number     "123")
(string->number     "123" 10)
(string->number      "7B" 16)
(string->number      "83" 15)
(string->number      "96" 13)
(string->number     "173"  8)
(string->number   "11120"  3)
(string->number "1111011"  2))
;; -> '(123 123 123 123 123 123 123 123)
```

Raku

(formerly Perl 6) By default, all strings of digits are parsed as base 10 numbers, including those with a leading zero. Numbers with a prefix 0b, 0o, 0d or 0x are parsed as binary, octal, decimal or hexadecimal respectively.

```say 0b11011;  # -> 27
say 0o11011;  # -> 4617
say 0d11011;  # -> 11011
say 0x11011;  # -> 69649
```

Additionally, there are built-in adverbial prefix operators to parse strings of "digits" of radix 2 through radix 36 into decimal. They will fail with a runtime error if they are fed a digit that is not valid in that radix.

```my \$n = '11011';

say  :2(\$n); # -> 27
say  :3(\$n); # -> 112
say  :4(\$n); # -> 325
say  :5(\$n); # -> 756
say  :6(\$n); # -> 1519
say  :7(\$n); # -> 2752
say  :8(\$n); # -> 4617
say  :9(\$n); # -> 7300
say :10(\$n); # -> 11011
say :11(\$n); # -> 15984
say :12(\$n); # -> 22477
say :13(\$n); # -> 30772
say :14(\$n); # -> 41175
say :15(\$n); # -> 54016
say :16(\$n); # -> 69649
say :17(\$n); # -> 88452
say :18(\$n); # -> 110827
say :19(\$n); # -> 137200
say :20(\$n); # -> 168021
say :21(\$n); # -> 203764
say :22(\$n); # -> 244927
say :23(\$n); # -> 292032
say :24(\$n); # -> 345625
say :25(\$n); # -> 406276
say :26(\$n); # -> 474579
say :27(\$n); # -> 551152
say :28(\$n); # -> 636637
say :29(\$n); # -> 731700
say :30(\$n); # -> 837031
say :31(\$n); # -> 953344
say :32(\$n); # -> 1081377
say :33(\$n); # -> 1221892
say :34(\$n); # -> 1375675
say :35(\$n); # -> 1543536
say :36(\$n); # -> 1726309
```

REXX

```  ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β In REXX, there are no  numeric-type  variables  (integer, float, real, unsigned, β
β logical, binary, complex, double, etc),  only  character.   Everything is stored β
β as a character string.   Arithmetic is done almost exactly the way a schoolchild β
β would perform it.  Putting it simply,  to add,  align the two numbers up  (right β
β justified, with the decimal being the pivot)  and add the columns up, adding the β
β carries and honoring the signs.                                                  β
β                                                                                  β
β Multiplications and divisions are similarly performed.                           β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
```/*REXX program demonstrates REXX's ability to handle non-decimal radices*/
a=123                        /*all of these assignments are identical:  */
b='123'
c='1' || "2" || '3'
d= 1  ||  2  ||  3
e= 12        ||  3
f=120 + 3
g=substr(9912388,3,3)
h=left(123456,3)
i=right(777.123,3)
j=120 + '     3   '
k=0000000123.0000/1          /*division "normalizes the number (βββΊ 123)*/

/*parsing of a  decimal number  is no      */
/*different then parsing a character string*/
/*because decimal numbers  ARE  character  */
/*strings.    As such, numbers may have    */
/*leading and/or trailing blanks, and in   */
/*some cases, imbedded blanks (after any   */

aa=' 123 '                   /*AA's  exact value is different the  A,   */
/*but it's   numerically equal    to  A.   */
bb=123.                      /*the same can be said for the rest of 'em.*/
cc=+123
dd=' +  123'
ee=0000123
ff=1.23e+2
gg=001.23E0002
hh=1230e-1
ii=122.999999999999999999999999999999999    /*assuming NUMERIC DIGITS 9 */
jj= +++123
kk= - -123

bingoA='10101'b               /*stores a binary value. */
bingoB='10101'B               /*  B  can be uppercase. */
bingoC='1 0101'b              /*apostrophes may be used*/
bingoD="1 0101"b              /*quotes may be used.    */

hyoidF='7abc'x
/*REXX has several built-in functions     */
/*(BIFs) to handle conversions of the     */
/*above-mentioned "number" formats.       */

cyanA=d2x(a)                  /*converts a decimal string to hexadecimal*/
cyanB=d2x(5612)               /*converts a decimal string to hexadecimal*/

cyanD=b2x(101101)             /*converts a binary  string to hexadecimal*/

cyanE=b2c(101101)             /*some REXXes support this, others don't. */
cyanF=c2b('copernicium')      /*some REXXes support this, others don't. */

cyanG=c2d('nilla')            /*converts a character string to decimal. */
cyanH=d2c(251)                /*converts a decimal number to character. */

cyanI=x2d(fab)                /*converts a hexadecimal string to decimal*/
cyanJ=x2c(fab)                /*converts a hexadecimal string to chars. */
cyanK=x2b(fab)                /*converts a hexadecimal string to binary.*/

befog=d2b(144)                /*there's no decβββΊbinary,  but see below.*/
unfog=b2d(101)                /*there's no binβββΊdecimal, but see below.*/

do j=0  to 27               /*show some simple low-value conversions. */
say right(j,2) 'in decimal is' d2b(j) "in binary and" d2x(j) 'in hex.'
end   /*j*/
exit                                   /*stick a fork in it, we're done.*/
/*ββββββββββββββββββββββββββββadd these subroutines to endβofβprogram.  */
d2b: return word(strip(x2b(d2x(arg(1))),'L',0) 0,1)  /*convert decβββΊbin*/
b2d: return x2d(b2x(arg(1)))                         /*convert binβββΊdec*/
b2c: return x2c(b2x(arg(1)))                         /*convert binβββΊchr*/
c2b: return word(strip(x2b(c2x(arg(1))),'L',0) 0,1)  /*convert chrβββΊbin*/
```

Ring

```see number("0") + nl
see number("123456789") + nl
see number("-987654321") + nl```

Output:

```0
123456789
-987654321
```

RPL

Floating-point numbers can only be entered in decimal format:

```3.14
```

Unsigned integers, which must begin with `#`, can be expressed in binary, octal, decimal or hexadecimal. A final lowercase letter defines the base.

```#100111010b
#472o
#314d
#13Ah
```

Ruby

The String class has methods to coerce a string into another form:

```dec1 = "0123459"
hex2 = "abcf123"
oct3 = "7651"
bin4 = "101011001"

p dec1.to_i   # => 123459
p hex2.hex    # => 180154659
p oct3.oct    # => 4009
# nothing for binary
```

The String class has to_i(base) method ( base : 2 .. 36 ). Invalid characters past the end of a valid number are ignored. (This method never raises an exception when base is valid.)

```p dec1.to_i(10)         # => 123459
p hex2.to_i(16)         # => 180154659
p oct3.to_i(8)          # => 4009
p bin4.to_i(2)          # => 345
p "xyz9".to_i(10)       # => 0  If there is not a valid letter, 0 is returned.
```

The Integer() method can parse a string, provided the string has the right prefix:

```p ((Integer(dec1) rescue nil)) # => ArgumentError: invalid value for Integer: "0123459"
p Integer(dec1.sub(/^0+/,""))  # => 123459
p Integer("0d" + dec1)         # => 123459
p Integer("0x" + hex2)         # => 180154659
p Integer("0"  + oct3)         # => 4009
p Integer("0o" + oct3)         # => 4009
p Integer("0b" + bin4)         # => 345
```

So can the `.to_i(0)` method, which never raises an exception:

```p dec1.to_i(0)      # => 5349 (which is 12345 in octal, the 9 is discarded)
p ("0d" + dec1).to_i(0)        # => 123459
p ("0x" + hex2).to_i(0)        # => 180154659
p ("0"  + oct3).to_i(0)        # => 4009
p ("0o" + oct3).to_i(0)        # => 4009
p ("0b" + bin4).to_i(0)        # => 345
```

And then there's the poorly documented Scanf module in the Ruby stdlib, that seems to wrap the matched value in an array:

```require 'scanf'
p dec1.scanf("%d")  # => [123459]
p hex2.scanf("%x")  # => [180154659]
p oct3.scanf("%o")  # => [4009]
# no scanf specifier for binary numbers.
```

Rust

```fn main() {
println!(
"Parse from plain decimal: {}",
"123".parse::<u32>().unwrap()
);

println!(
"Parse with a given radix (2-36 supported): {}",
);
}
```

Scala

```object Main extends App {

val (s, bases) = ("100", Seq(2, 8, 10, 16, 19, 36))
bases.foreach(base => println(f"String \$s in base \$base%2d is \$BigInt(s, base)%5d"))
}
```

Scheme

```> (string->number "abcf123" 16) ; hex
180154659
> (string->number "123459" 10) ; decimal, the "10" is optional
123459
> (string->number "7651" 8) ; octal
4009
> (string->number "101011001" 2) ; binary
345
```

Seed7

The function integer(str, radix) converts a numeric string, with a specified radix, to an integer.

```\$ include "seed7_05.s7i";

const proc: main is func
begin
writeln(integer("0123459", 10));
writeln(integer("abcf123", 16));
writeln(integer("7651", 8));
writeln(integer("1010011010", 2));
writeln(integer("tplig0", 32));
writeln(integer("gc0uy9", 36));
end func;```
Output:
```123459
180154659
4009
666
1000000000
987654321
```

Sidef

```var dec            = '0123459';
var hex_noprefix   = 'abcf123';
var hex_withprefix = '0xabcf123';
var oct_noprefix   = '7651';
var oct_withprefix = '07651';
var bin_noprefix   = '101011001';
var bin_withprefix = '0b101011001';

say dec.num;                    # => 123459
say hex_noprefix.hex;           # => 180154659
say hex_withprefix.hex;         # => 180154659
say oct_noprefix.oct;           # => 4009
say oct_withprefix.oct;         # => 4009
say bin_noprefix.bin;           # => 345
say bin_withprefix.bin;         # => 345
```

SparForte

As a structured script.

```#!/usr/local/bin/spar
@( description, "This task requires parsing of such a string (which may" )
@( description, "be assumed to contain nothing else) using the" )
@( description, "language's built-in facilities if possible. Parsing of" )
@( description, "decimal strings is required, parsing of other formats" )
@( description, "is optional but should be shown (i.e., if the language" )
@( description, "can parse in base-19 then that should be illustrated)." )
@( category, "tutorials" )
@( author, "Ken O. Burtch" )

pragma software_model( nonstandard );
pragma restriction( no_external_commands );

begin
? numerics.value( "16#ABCF123#" );
? numerics.value( "8#7651#" );
? numerics.value( "2#1010011010#" );
? numerics.value( "16#F.FF#E+2" );
```

Standard ML

```- Int.fromString "0123459";
val it = SOME 123459 : int option
- StringCvt.scanString (Int.scan StringCvt.HEX) "0xabcf123";
val it = SOME 180154659 : int option
- StringCvt.scanString (Int.scan StringCvt.HEX) "abcf123";
val it = SOME 180154659 : int option
- StringCvt.scanString (Int.scan StringCvt.OCT) "7651";
val it = SOME 4009 : int option
- StringCvt.scanString (Int.scan StringCvt.BIN) "101011001";
val it = SOME 345 : int option
```

Tcl

```package require Tcl 8.6;  # For easy scanning of binary

# The strings to parse
set dec1 "0123459"
set hex2 "abcf123"
set oct3 "7651"
set bin4 "101011001"

# Parse the numbers
scan \$dec1 "%d" v1
scan \$hex2 "%x" v2
scan \$oct3 "%o" v3
scan \$bin4 "%b" v4; # Only 8.6-specific operation; others work in all versions

# Print out what happened
puts "\$dec1->\$v1 \$hex2->\$v2 \$oct3->\$v3 \$bin4->\$v4"
```

This produces this output:

`0123459->123459 abcf123->180154659 7651->4009 101011001->345`

For a general parser up to base 36, a little function can be written:

```proc scanbase {str base} {
set res 0
set digits {0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z}
foreach char [split [string tolower \$str] ""] {
set value [lsearch [lrange \$digits 0 [expr {\$base - 1}]] \$char]
if {\$value < 0} {error "bad digit \$char"}
set res [expr {\$res*\$base + \$value}]
}
return \$res
}
```

Example:

```% scanbase 255 19
822
% scanbase \$dec1 8

Wren

Library: Wren-fmt
```import "./fmt" for Conv, Fmt

var tests = [ ["0b1110", 2], ["112", 3], ["0o16", 8], ["14", 10], ["0xe", 16], ["e", 19] ]
for (test in tests) {
Fmt.print("\$6s in base \$-2d = \$s", test[0], test[1], Conv.atoi(test[0], test[1]))
}
```
Output:
```0b1110 in base 2  = 14
112 in base 3  = 14
0o16 in base 8  = 14
14 in base 10 = 14
0xe in base 16 = 14
e in base 19 = 14
```

XPL0

```include c:\cxpl\codes;
int  N;  real R;
[Text(8, "123_456");
N:= IntIn(8);
IntOut(0, N);  CrLf(0);
Text(8, "ABcd12");
N:= HexIn(8);
HexOut(0, N);  CrLf(0);
Text(8, "-3.14159e3");
R:= RlIn(8);
RlOut(0, R);  CrLf(0);
]```
Output:
```123456
00ABCD12
-3141.59000
```

zkl

The compiler knows numbers like 0x123, 0b1|101, 0d1_000 but the number conversion functions don't.

```fcn b2b(base){
ns:=[20..30].pump(List,T("toString",base));
ns.println();
ns.pump(List,T("toInt",base)).println("\n")
}
b2b(2); b2b(10); b2b(16); b2b(19);```

Print 20 .. 30 in binary, decimal, hex & base 19 (or any base 2 .. 32) and parse them to decimal:

Output:
```L("10100","10101","10110","10111","11000","11001","11010","11011","11100","11101","11110")
L(20,21,22,23,24,25,26,27,28,29,30)

L("20","21","22","23","24","25","26","27","28","29","30")
L(20,21,22,23,24,25,26,27,28,29,30)

L("14","15","16","17","18","19","1a","1b","1c","1d","1e")
L(20,21,22,23,24,25,26,27,28,29,30)

L("11","12","13","14","15","16","17","18","19","1a","1b")
L(20,21,22,23,24,25,26,27,28,29,30)
```