Circular primes

From Rosetta Code
Task
Circular primes
You are encouraged to solve this task according to the task description, using any language you may know.
Definitions

A circular prime is a prime number with the property that the number generated at each intermediate step when cyclically permuting its (base 10) digits will also be prime.

For example: 1193 is a circular prime, since 1931, 9311 and 3119 are all also prime.

Note that a number which is a cyclic permutation of a smaller circular prime is not considered to be itself a circular prime. So 13 is a circular prime, but 31 is not.


A repunit (denoted by R) is a number whose base 10 representation contains only the digit 1.

For example: R(2) = 11 and R(5) = 11111 are repunits.


Task
  • Find the first 19 circular primes.


  • If your language has access to arbitrary precision integer arithmetic, given that they are all repunits, find the next 4 circular primes.


  • (Stretch) Determine which of the following repunits are probably circular primes: R(5003), R(9887), R(15073), R(25031), R(35317) and R(49081). The larger ones may take a long time to process so just do as many as you reasonably can.


See also

ALGOL 68

BEGIN # find circular primes - primes where all cyclic permutations  #
      # of the digits are also prime                                 #
    # genertes a sieve of circular primes, only the first            #
    # permutation of each prime is flagged as TRUE                   #
    OP   CIRCULARPRIMESIEVE = ( INT n )[]BOOL:
         BEGIN
            [ 0 : n ]BOOL prime;
            prime[ 0 ] := prime[ 1 ] := FALSE;
            prime[ 2 ] := TRUE;
            FOR i FROM 3 BY 2 TO UPB prime DO prime[ i ] := TRUE  OD;
            FOR i FROM 4 BY 2 TO UPB prime DO prime[ i ] := FALSE OD;
            FOR i FROM 3 BY 2 TO ENTIER sqrt( UPB prime ) DO
                IF prime[ i ] THEN
                    FOR s FROM i * i BY i + i TO UPB prime DO prime[ s ] := FALSE OD
                FI
            OD;
            INT first digit multiplier := 10;
            INT max with multiplier    := 99; 
            # the 1 digit primes are non-curcular, so start at 10    #
            FOR i FROM 10 TO UPB prime DO
                IF i > max with multiplier THEN
                    # starting a new power of ten                    #
                    first digit multiplier *:= 10;
                    max with multiplier    *:= 10 +:= 9
                FI;
                IF prime[ i ] THEN
                    # have a prime #
                    # cycically permute the number until we get back #
                    # to the original - flag all the permutations    #
                    # except the original as non-prime               #
                    INT permutation := i;
                    WHILE permutation :=   ( permutation OVER 10 )
                                       + ( ( permutation MOD  10 ) * first digit multiplier )
                                       ;
                          permutation /= i
                    DO
                        IF NOT prime[ permutation ] THEN
                            # the permutation is not prime           #
                            prime[ i ] := FALSE
                        ELIF permutation > i THEN
                            # haven't permutated e.g. 101 to 11      #
                            IF NOT prime[ permutation ] THEN
                                # i is not a circular prime          #
                                prime[ i ] := FALSE
                            FI;
                            prime[ permutation ] := FALSE
                        FI
                    OD
                FI
            OD;
            prime
         END # CIRCULARPRIMESIEVE # ;
    # construct a sieve of circular primes up to 999 999              #
    # only the first permutation is included                          #
    []BOOL prime = CIRCULARPRIMESIEVE 999 999;
    # print the first 19 circular primes #
    INT c count := 0;
    print( ( "First 19 circular primes: " ) );
    FOR i WHILE c count < 19 DO
        IF prime[ i ] THEN
            print( ( " ", whole( i, 0 ) ) );
            c count +:= 1
        FI
    OD;
    print( ( newline ) )
END
Output:
First 19 circular primes:  2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933

ALGOL W

begin % find circular primes - primes where all cyclic permutations  %
      % of the digits are also prime                                 %
    % sets p( 1 :: n ) to a sieve of primes up to n %
    procedure Eratosthenes ( logical array p( * ) ; integer value n ) ;
    begin
        p( 1 ) := false; p( 2 ) := true;
        for i := 3 step 2 until n do p( i ) := true;
        for i := 4 step 2 until n do p( i ) := false;
        for i := 3 step 2 until truncate( sqrt( n ) ) do begin
            integer ii; ii := i + i;
            if p( i ) then for pr := i * i step ii until n do p( pr ) := false
        end for_i ;
    end Eratosthenes ;
    % find circular primes in p in the range lo to hi, if they are circular, flag the %
    % permutations as non-prime so we do not consider them again                      %
    % non-circular primes are also flageed as non-prime                               %
    % lo must be a power of ten and hi must be at most ( lo * 10 ) - 1                %
    procedure keepCircular ( logical array p ( * ); integer value lo, hi ) ;
        for n := lo until hi do begin
            if p( n ) then begin
                % have a prime %
                integer       c, pCount;
                logical       isCircular;
                integer array permutations ( 1 :: 10 );
                c          := n;
                isCircular := true;
                pCount     := 0;
                % cyclically permute c until we get back to p or find a non-prime value for c %
                while begin
                    integer first, rest;
                    first      := c div lo;
                    rest       := c rem lo;
                    c          := ( rest * 10 ) + first;
                    isCircular := p( c );
                    c not = n and isCircular
                end do begin
                    pCount := pCount + 1;
                    permutations( pCount ) := c
                end while_have_another_prime_permutation ;
                if not isCircular
                then p( n ) := false
                else begin
                    % have a circular prime - flag the permutations as non-prime %
                    for i := 1 until pCount do p( permutations( i ) ) := false
                end if_not_isCircular__
            end if_p_n
        end keepCircular ;
    integer       cCount;
    % sieve the primes up to 999999 %
    logical array p ( 1 ::   999999 );
    Eratosthenes( p,         999999 );
    % remove non-circular primes from the sieve %
    % the single digit primes are all circular so we start at 10 %
    keepCircular( p,     10,     99 );
    keepCircular( p,    100,    999 );
    keepCircular( p,   1000,   9999 );
    keepCircular( p,  10000,  99999 );
    keepCircular( p, 100000, 200000 );
    % print the first 19 circular primes %
    cCount := 0;
    write( "First 19 circular primes: " );
    for i := 1 until 200000 do begin
        if p( i ) then begin
            writeon( i_w := 1, s_w := 1, i );
            cCount := cCount + 1;
            if cCount = 19 then goto end_circular
        end if_p_i
    end for_i ;
end_circular:
end.
Output:
First 19 circular primes: 2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933

AppleScript

on isPrime(n)
    if (n < 4) then return (n > 1)
    if ((n mod 2 is 0) or (n mod 3 is 0)) then return false
    repeat with i from 5 to (n ^ 0.5) div 1 by 6
        if ((n mod i is 0) or (n mod (i + 2) is 0)) then return false
    end repeat
    
    return true
end isPrime

on isCircularPrime(n)
    if (not isPrime(n)) then return false
    set temp to n
    set c to 0
    repeat while (temp > 9)
        set temp to temp div 10
        set c to c + 1
    end repeat
    set p to (10 ^ c) as integer
    set temp to n
    repeat c times
        set temp to temp mod p * 10 + temp div p
        if ((temp < n) or (not isPrime(temp))) then return false
    end repeat
    return true
end isCircularPrime

-- Return the first c circular primes.
-- Takes 2 as read and checks only odd numbers thereafter.
on circularPrimes(c)
    if (c < 1) then return {}
    set output to {2}
    set n to 3
    set counter to 1
    repeat until (counter = c)
        if (isCircularPrime(n)) then
            set end of output to n
            set counter to counter + 1
        end if
        set n to n + 2
    end repeat
    return output
end circularPrimes

return circularPrimes(19)
Output:
{2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933}

Arturo

perms: function [n][
    str: repeat to :string n 2
    result: new []
    lim: dec size digits n
    loop 0..lim 'd ->
        'result ++ slice str d lim+d

    return to [:integer] result
]

circulars: new []

circular?: function [x][
    if not? prime? x -> return false

    loop perms x 'y [
        if not? prime? y -> return false
        if contains? circulars y -> return false
    ]

    'circulars ++ x

    return true
]

i: 2
found: 0
while [found < 19][
    if circular? i [
        print i
        found: found + 1
    ]
    i: i + 1
]
Output:
2
3
5
7
11
13
17
37
79
113
197
199
337
1193
3779
11939
19937
193939
199933

AWK

# syntax: GAWK -f CIRCULAR_PRIMES.AWK
BEGIN {
    p = 2
    printf("first 19 circular primes:")
    for (count=0; count<19; p++) {
      if (is_circular_prime(p)) {
        printf(" %d",p)
        count++
      }
    }
    printf("\n")
    exit(0)
}
function cycle(n,  m,p) { # E.G. if n = 1234 returns 2341
    m = n
    p = 1
    while (m >= 10) {
      p *= 10
      m /= 10
    }
    return int(m+10*(n%p))
}
function is_circular_prime(p,  p2) {
    if (!is_prime(p)) {
      return(0)
    }
    p2 = cycle(p)
    while (p2 != p) {
      if (p2 < p || !is_prime(p2)) {
        return(0)
      }
      p2 = cycle(p2)
    }
    return(1)
}
function is_prime(x,  i) {
    if (x <= 1) {
      return(0)
    }
    for (i=2; i<=int(sqrt(x)); i++) {
      if (x % i == 0) {
        return(0)
      }
    }
    return(1)
}
Output:
first 19 circular primes: 2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933


BASIC

Rosetta Code problem: https://rosettacode.org/wiki/Circular_primes

by Jjuanhdez, 02/2023

BASIC256

Translation of: FreeBASIC
p = 2
dp = 1
cont = 0
print("Primeros 19 primos circulares:")
while cont < 19
	if isCircularPrime(p) then print p;" "; : cont += 1
	p += dp
	dp = 2
end while
end

function isPrime(v)
	if v < 2 then return False
	if v mod 2 = 0 then return v = 2
	if v mod 3 = 0 then return v = 3
	d = 5
	while d * d <= v
		if v mod d = 0 then return False else d += 2
	end while
	return True
end function

function isCircularPrime(p)
	n = floor(log(p)/log(10))
	m = 10^n
	q = p
	for i = 0 to n
		if (q < p or not isPrime(q)) then return false
		q = (q mod m) * 10 + floor(q / m)
	next i
	return true
end function
Output:
Same as FreeBASIC entry.


FreeBASIC

#define floor(x) ((x*2.0-0.5) Shr 1)

Function isPrime(Byval p As Integer) As Boolean
    If p < 2 Then Return False
    If p Mod 2 = 0 Then Return p = 2
    If p Mod 3 = 0 Then Return p = 3
    Dim As Integer d = 5
    While d * d <= p
        If p Mod d = 0 Then Return False Else d += 2
        If p Mod d = 0 Then Return False Else d += 4
    Wend 
    Return True
End Function

Function isCircularPrime(Byval p As Integer) As Boolean
    Dim As Integer n = floor(Log(p)/Log(10))
    Dim As Integer m = 10^n, q = p
    For i As Integer = 0 To n
        If (q < p Or Not isPrime(q)) Then Return false
        q = (q Mod m) * 10 + floor(q / m)
    Next i
    Return true
End Function

Dim As Integer p = 2, dp = 1, cont = 0
Print("Primeros 19 primos circulares:")
While cont < 19
    If isCircularPrime(p) Then Print p;" "; : cont += 1
    p += dp: dp = 2
Wend
Sleep
Output:
Primeros 19 primos circulares: 
2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933


PureBasic

Translation of: FreeBASIC
Macro floor(x)
  Round(x, #PB_Round_Down)
EndMacro

Procedure isPrime(v.i)
  If     v <= 1    : ProcedureReturn #False
  ElseIf v < 4     : ProcedureReturn #True
  ElseIf v % 2 = 0 : ProcedureReturn #False
  ElseIf v < 9     : ProcedureReturn #True
  ElseIf v % 3 = 0 : ProcedureReturn #False
  Else
    Protected r = Round(Sqr(v), #PB_Round_Down)
    Protected f = 5
    While f <= r
      If v % f = 0 Or v % (f + 2) = 0
        ProcedureReturn #False
      EndIf
      f + 6
    Wend
  EndIf
  ProcedureReturn #True
EndProcedure

Procedure isCircularPrime(p.i)
  n.i = floor(Log(p)/Log(10))
  m.i = Pow(10, n)
  q.i = p
  For i.i = 0 To n
    If q < p Or Not isPrime(q)
      ProcedureReturn #False 
    EndIf
    q = (q % m) * 10 + floor(q / m)
  Next i
  ProcedureReturn #True
EndProcedure

OpenConsole()

p.i = 2
dp.i = 1
cont.i = 0
PrintN("Primeros 19 primos circulares:")
While cont < 19
  If isCircularPrime(p) 
    Print(Str(p) + " ")
    cont + 1
  EndIf
  p + dp
  dp = 2
Wend

PrintN(#CRLF$ + "--- terminado, pulsa RETURN---"): Input()
CloseConsole()
Output:
Same as FreeBASIC entry.


Yabasic

p = 2
dp = 1
cont = 0
print("Primeros 19 primos circulares:")
while cont < 19
	if isCircularPrime(p) then 
	    print p," "; 
		cont = cont + 1
	fi
	p = p + dp
	dp = 2
wend
end

sub isPrime(v)
    if v < 2  return False
    if mod(v, 2) = 0  return v = 2
    if mod(v, 3) = 0  return v = 3
    d = 5
    while d * d <= v
        if mod(v, d) = 0 then return False else d = d + 2 : fi
    wend
    return True
end sub

sub isCircularPrime(p)
	n = floor(log(p)/log(10))
	m = 10^n
	q = p
	for i = 0 to n
		if (q < p or not isPrime(q))  return false
		q = (mod(q, m)) * 10 + floor(q / m)
	next i
	return true
end sub
Output:
Same as FreeBASIC entry.


C

Library: GMP
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gmp.h>

bool is_prime(uint32_t n) {
    if (n == 2)
        return true;
    if (n < 2 || n % 2 == 0)
        return false;
    for (uint32_t p = 3; p * p <= n; p += 2) {
        if (n % p == 0)
            return false;
    }
    return true;
}

// e.g. returns 2341 if n = 1234
uint32_t cycle(uint32_t n) {
    uint32_t m = n, p = 1;
    while (m >= 10) {
        p *= 10;
        m /= 10;
    }
    return m + 10 * (n % p);
}

bool is_circular_prime(uint32_t p) {
    if (!is_prime(p))
        return false;
    uint32_t p2 = cycle(p);
    while (p2 != p) {
        if (p2 < p || !is_prime(p2))
            return false;
        p2 = cycle(p2);
    }
    return true;
}

void test_repunit(uint32_t digits) {
    char* str = malloc(digits + 1);
    if (str == 0) {
        fprintf(stderr, "Out of memory\n");
        exit(1);
    }
    memset(str, '1', digits);
    str[digits] = 0;
    mpz_t bignum;
    mpz_init_set_str(bignum, str, 10);
    free(str);
    if (mpz_probab_prime_p(bignum, 10))
        printf("R(%u) is probably prime.\n", digits);
    else
        printf("R(%u) is not prime.\n", digits);
    mpz_clear(bignum);
}

int main() {
    uint32_t p = 2;
    printf("First 19 circular primes:\n");
    for (int count = 0; count < 19; ++p) {
        if (is_circular_prime(p)) {
            if (count > 0)
                printf(", ");
            printf("%u", p);
            ++count;
        }
    }
    printf("\n");
    printf("Next 4 circular primes:\n");
    uint32_t repunit = 1, digits = 1;
    for (; repunit < p; ++digits)
        repunit = 10 * repunit + 1;
    mpz_t bignum;
    mpz_init_set_ui(bignum, repunit);
    for (int count = 0; count < 4; ) {
        if (mpz_probab_prime_p(bignum, 15)) {
            if (count > 0)
                printf(", ");
            printf("R(%u)", digits);
            ++count;
        }
        ++digits;
        mpz_mul_ui(bignum, bignum, 10);
        mpz_add_ui(bignum, bignum, 1);
    }
    mpz_clear(bignum);
    printf("\n");
    test_repunit(5003);
    test_repunit(9887);
    test_repunit(15073);
    test_repunit(25031);
    test_repunit(35317);
    test_repunit(49081);
    return 0;
}
Output:

With GMP 6.2.0, execution time on my system is about 13 minutes (3.2 GHz Quad-Core Intel Core i5, macOS 10.15.4).

First 19 circular primes:
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933
Next 4 circular primes:
R(19), R(23), R(317), R(1031)
R(5003) is not prime.
R(9887) is not prime.
R(15073) is not prime.
R(25031) is not prime.
R(35317) is not prime.
R(49081) is probably prime.

C++

Library: GMP
#include <cstdint>
#include <algorithm>
#include <iostream>
#include <gmpxx.h>

typedef mpz_class integer;

bool is_prime(const integer& n, int reps = 50) {
    return mpz_probab_prime_p(n.get_mpz_t(), reps);
}

bool is_circular_prime(const integer& p) {
    if (!is_prime(p))
        return false;
    std::string str = p.get_str();
    for (size_t i = 0, n = str.size(); i + 1 < n; ++i) {
        std::rotate(str.begin(), str.begin() + 1, str.end());
        integer p2(str, 10);
        if (p2 < p || !is_prime(p2))
            return false;
    }
    return true;
}

integer next_repunit(const integer& n) {
    integer p = 1;
    while (p < n)
        p = 10 * p + 1;
    return p;
}

integer repunit(int digits) {
    std::string str(digits, '1');
    integer p(str);
    return p;
}

void test_repunit(int digits) {
    if (is_prime(repunit(digits), 10))
        std::cout << "R(" << digits << ") is probably prime\n";
    else
        std::cout << "R(" << digits << ") is not prime\n";
}

int main() {
    integer p = 2;
    std::cout << "First 19 circular primes:\n";
    for (int count = 0; count < 19; ++p) {
        if (is_circular_prime(p)) {
            if (count > 0)
                std::cout << ", ";
            std::cout << p;
            ++count;
        }
    }
    std::cout << '\n';
    std::cout << "Next 4 circular primes:\n";
    p = next_repunit(p);
    std::string str = p.get_str();
    int digits = str.size();
    for (int count = 0; count < 4; ) {
        if (is_prime(p, 15)) {
            if (count > 0)
                std::cout << ", ";
            std::cout << "R(" << digits << ")";
            ++count;
        }
        p = repunit(++digits);
    }
    std::cout << '\n';
    test_repunit(5003);
    test_repunit(9887);
    test_repunit(15073);
    test_repunit(25031);
    test_repunit(35317);
    test_repunit(49081);
    return 0;
}
Output:
First 19 circular primes:
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933
Next 4 circular primes:
R(19), R(23), R(317), R(1031)
R(5003) is not prime
R(9887) is not prime
R(15073) is not prime
R(25031) is not prime
R(35317) is not prime
R(49081) is probably prime

D

Translation of: C
import std.bigint;
import std.stdio;

immutable PRIMES = [
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
    101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
    211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293,
    307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,
    401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499,
    503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
    601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
    701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
    809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
    907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997
];

bool isPrime(BigInt n) {
    if (n < 2) {
        return false;
    }

    foreach (p; PRIMES) {
        if (n == p) {
            return true;
        }
        if (n % p == 0) {
            return false;
        }
        if (p * p > n) {
            return true;
        }
    }

    for (auto m = BigInt(PRIMES[$ - 1]); m * m <= n ; m += 2) {
        if (n % m == 0) {
            return false;
        }
    }

    return true;
}

// e.g. returns 2341 if n = 1234
BigInt cycle(BigInt n) {
    BigInt m = n;
    BigInt p = 1;
    while (m >= 10) {
        p *= 10;
        m /= 10;
    }
    return m + 10 * (n % p);
}

bool isCircularPrime(BigInt p) {
    if (!isPrime(p)) {
        return false;
    }
    for (auto p2 = cycle(p); p2 != p; p2 = cycle(p2)) {
        if (p2 < p || !isPrime(p2)) {
            return false;
        }
    }
    return true;
}

BigInt repUnit(int len) {
    BigInt n = 0;
    while (len > 0) {
        n = 10 * n + 1;
        len--;
    }
    return n;
}

void main() {
    writeln("First 19 circular primes:");
    int count = 0;
    foreach (p; PRIMES) {
        if (isCircularPrime(BigInt(p))) {
            if (count > 0) {
                write(", ");
            }
            write(p);
            count++;
        }
    }
    for (auto p = BigInt(PRIMES[$ - 1]) + 2; count < 19; p += 2) {
        if (isCircularPrime(BigInt(p))) {
            if (count > 0) {
                write(", ");
            }
            write(p);
            count++;
        }
    }
    writeln;
}
Output:
First 19 circular primes:
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933


Delphi

Works with: Delphi version 6.0

Again note how the code is broken up into easy to distinguish subroutines that can be reused, as opposed to mashing everything together into a mass of code that is difficult to understand, debug or enhance.

procedure ShowCircularPrimes(Memo: TMemo);
{Show list of the first 19, cicular primes}
var I,Cnt: integer;
var S: string;



	procedure RotateStr(var S: string);
	{Rotate characters in string}
	var I: integer;
	var C: char;
	begin
	C:=S[Length(S)];
	for I:=Length(S)-1 downto 1 do S[I+1]:=S[I];
	S[1]:=C;
	end;


	function IsCircularPrime(N: integer): boolean;
	{Test if all rotations of number are prime and}
	{A rotation of the number hasn't been used before}
	var I,P: integer;
	var NS: string;
	begin
	Result:=False;
	NS:=IntToStr(N);
	for I:=1 to Length(NS)-1 do
		begin
		{Rotate string and convert to integer}
		RotateStr(NS);
		P:=StrToInt(NS);
		{Exit if number is not prime or}
		{Is prime, is less than N i.e. we've seen it before}
		if not IsPrime(P) or (P<N) then exit;
		end;
	Result:=True;
	end;

begin
S:='';
Cnt:=0;
{Look for circular primes and display 1st 19}
for I:=0 to High(I) do
 if IsPrime(I) then
 if IsCircularPrime(I) then
 	begin
	Inc(Cnt);
	S:=S+Format('%7D',[I]);
	if Cnt>=19 then break;
	If (Cnt mod 5)=0 then S:=S+CRLF;
	end;
Memo.Lines.Add(S);
Memo.Lines.Add('Count = '+IntToStr(Cnt));
end;
Output:
      2      3      5      7     11
     13     17     37     79    113
    197    199    337   1193   3779
  11939  19937 193939 199933
Count = 19
Elapsed Time: 21.234 ms.


EasyLang

Translation of: AWK
fastfunc prime n .
   if n mod 2 = 0 and n > 2
      return 0
   .
   i = 3
   sq = sqrt n
   while i <= sq
      if n mod i = 0
         return 0
      .
      i += 2
   .
   return 1
.
func cycle n .
   m = n
   p = 1
   while m >= 10
      p *= 10
      m = m div 10
   .
   return m + n mod p * 10
.
func circprime p .
   if prime p = 0
      return 0
   .
   p2 = cycle p
   while p2 <> p
      if p2 < p or prime p2 = 0
         return 0
      .
      p2 = cycle p2
   .
   return 1
.
p = 2
while count < 19
   if circprime p = 1
      print p
      count += 1
   .
   p += 1
.

F#

This task uses rUnitP and Extensible Prime Generator (F#)

// Circular primes - Nigel Galloway: September 13th., 2021
let fG n g=let rec fG y=if y=g then true else if y>g && isPrime y then fG(10*(y%n)+y/n) else false in fG(10*(g%n)+g/n)
let rec fN g l=seq{let g=[for n in g do for g in [1;3;7;9] do let g=n*10+g in yield g] in yield! g|>List.filter(fun n->isPrime n && fG l n); yield! fN g (l*10)}
let circP()=seq{yield! [2;3;5;7]; yield! fN [1;3;7;9] 10}
circP()|> Seq.take 19 |>Seq.iter(printf "%d "); printfn ""
printf "The first 5 repunit primes are "; rUnitP(10)|>Seq.take 5|>Seq.iter(fun n->printf $"R(%d{n}) "); printfn ""
Output:
2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933 
The first 5 repunit primes are R(2) R(19) R(23) R(317) R(1031)

Factor

Unfortunately Factor's miller-rabin test or bignums aren't quite up to the task of finding the next four circular prime repunits in a reasonable time. It takes ~90 seconds to check R(7)-R(1031).

Works with: Factor version 0.99 2020-03-02
USING: combinators.short-circuit formatting io kernel lists
lists.lazy math math.combinatorics math.functions math.parser
math.primes sequences sequences.extras ;

! Create an ordered infinite lazy list of circular prime
! "candidates" -- the numbers 2, 3, 5 followed by numbers
! composed of only the digits 1, 3, 7, and 9.

: candidates ( -- list )
    L{ "2" "3" "5" "7" } 2 lfrom
    [ "1379" swap selections >list ] lmap-lazy lconcat lappend ;

: circular-prime? ( str -- ? )
    all-rotations {
        [ [ infimum ] [ first = ] bi ]
        [ [ string>number prime? ] all? ]
    } 1&& ;

: circular-primes ( -- list )
    candidates [ circular-prime? ] lfilter ;

: prime-repunits ( -- list )
    7 lfrom [ 10^ 1 - 9 / prime? ] lfilter ;

"The first 19 circular primes are:" print
19 circular-primes ltake [ write bl ] leach nl nl

"The next 4 circular primes, in repunit format, are:" print
4 prime-repunits ltake [ "R(%d) " printf ] leach nl
Output:
The first 19 circular primes are:
2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933 

The next 4 circular primes, in repunit format, are:
R(19) R(23) R(317) R(1031) 

Forth

Forth only supports native sized integers, so we only implement the first part of the task.

create 235-wheel 6 c, 4 c, 2 c, 4 c, 2 c, 4 c, 6 c, 2 c,
    does> swap 7 and + c@ ;

0 1 2constant init-235    \ roll 235 wheel at position 1
: next-235   over 235-wheel + swap 1+ swap ;

\ check that n is prime excepting multiples of 2, 3, 5.
: sq  dup * ;
: wheel-prime? ( n -- f )
    >r init-235 begin
        next-235
        dup sq r@ >    if  rdrop 2drop true  exit  then
        r@ over mod 0= if  rdrop 2drop false exit  then
    again ;

: prime? ( n -- f )
    dup 2 < if drop false exit then
    dup 2 mod 0= if 2 = exit then
    dup 3 mod 0= if 3 = exit then
    dup 5 mod 0= if 5 = exit then
    wheel-prime? ;

: log10^ ( n -- 10^[log n], log n )
    dup 0<= abort" log10^: argument error."
    1 0 rot
    begin dup 9 > while
        >r  swap 10 *  swap 1+  r> 10 /
    repeat drop ;

: log10  ( n -- n )  log10^ nip ;

: rotate ( n -- n )
    dup log10^ drop /mod swap 10 * + ;

: prime-rotation? ( p0 p -- f )
    tuck <= swap prime? and ;

: circular? ( n -- f )  \ assume n is not a multiple of 2, 3, 5
    dup wheel-prime? invert
    if  drop false exit
    then dup >r true
    over log10 0 ?do
        swap rotate j over prime-rotation? rot and
    loop nip rdrop ;

: .primes
    2 . 3 . 5 .
    16 init-235  \ -- count, [n1 n2] as 2,3,5 wheel
    begin
        next-235 dup circular?
        if dup . rot 1- -rot
        then
    third 0= until 2drop drop ;

." The first 19 circular primes are:" cr .primes cr
bye
Output:
The first 19 circular primes are:
2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933 

FutureBasic

begin globals
_last1 = 7
CFTimeInterval t
byte    n(_last1 +1) //array of digits
uint64  list(20), p10 = 1
short   count, digits, first1 = _last1
n(_last1) = 2 //First number to check
end globals

local fn convertToNumber as uint64
  short  i  = first1
  uint64 nr = n(i)
  while i < _last1
    i++ : nr = nr * 10 + n(i)
  wend
end fn = nr

void local fn increment( dgt as short )
  select n(dgt)
    case 1, 7, 5 : n(dgt) += 2
    case 3    : if digits then n(dgt) = 7 else n(dgt) = 5
    case 9    :  n(dgt) = 1
      if dgt == first1 then first1-- : digits++ : p10 *= 10
      fn increment( dgt -1 )
    case else : n(dgt)++
  end select
end fn

local fn isPrime( v as uint64 ) as bool
  if v < 4           then exit fn = yes
  if v mod 3 == 0    then exit fn = no
  uint64 f = 5
  while f*f <= v
    if v mod f == 0 then exit fn = no
    f += 2
    if v mod f == 0 then exit fn = no
    f += 4
  wend
end fn = yes

void local fn circularPrimes
  uint64 num, nr
  short  r
  while ( count < 19 )
    num = fn convertToNumber
    if fn isPrime( num )
      nr = num
      for r = 1 to digits
        nr = 10 * ( nr mod p10 ) + ( nr / p10 )   //Rotate
        if nr  < num then break //Rotation of lower number
        if fn isPrime( nr ) == no then break   //Not prime
      next
      if r > digits then list( count ) = num : count++
    end if
    fn increment( _last1 )
  wend
end fn

window 1, @"Circular Primes in FutureBasic", (0, 0, 280, 320)
t = fn CACurrentMediaTime
fn circularPrimes
t = fn CACurrentMediaTime - t
for count = 0 to 18
  printf @"%22u",list(count)
next
printf @"\n  Compute time: %.3f ms", t * 1000
handleevents
Output:

File:Screenshot of Circular Primes in FutureBasic.png

Go

package main

import (
    "fmt"
    big "github.com/ncw/gmp"
    "strings"
)

// OK for 'small' numbers.
func isPrime(n int) bool {
    switch {
    case n < 2:
        return false
    case n%2 == 0:
        return n == 2
    case n%3 == 0:
        return n == 3
    default:
        d := 5
        for d*d <= n {
            if n%d == 0 {
                return false
            }
            d += 2
            if n%d == 0 {
                return false
            }
            d += 4
        }
        return true
    }
}

func repunit(n int) *big.Int {
    ones := strings.Repeat("1", n)
    b, _ := new(big.Int).SetString(ones, 10)
    return b
}

var circs = []int{}

// binary search is overkill for a small number of elements
func alreadyFound(n int) bool {
    for _, i := range circs {
        if i == n {
            return true
        }
    }
    return false
}

func isCircular(n int) bool {
    nn := n
    pow := 1 // will eventually contain 10 ^ d where d is number of digits in n
    for nn > 0 {
        pow *= 10
        nn /= 10
    }
    nn = n
    for {
        nn *= 10
        f := nn / pow // first digit
        nn += f * (1 - pow)
        if alreadyFound(nn) {
            return false
        }
        if nn == n {
            break
        }
        if !isPrime(nn) {
            return false
        }
    }
    return true
}

func main() {
    fmt.Println("The first 19 circular primes are:")
    digits := [4]int{1, 3, 7, 9}
    q := []int{1, 2, 3, 5, 7, 9}  // queue the numbers to be examined
    fq := []int{1, 2, 3, 5, 7, 9} // also queue the corresponding first digits
    count := 0
    for {
        f := q[0]   // peek first element
        fd := fq[0] // peek first digit
        if isPrime(f) && isCircular(f) {
            circs = append(circs, f)
            count++
            if count == 19 {
                break
            }
        }
        copy(q, q[1:])   // pop first element
        q = q[:len(q)-1] // reduce length by 1
        copy(fq, fq[1:]) // ditto for first digit queue
        fq = fq[:len(fq)-1]
        if f == 2 || f == 5 { // if digits > 1 can't contain a 2 or 5
            continue
        }
        // add numbers with one more digit to queue
        // only numbers whose last digit >= first digit need be added
        for _, d := range digits {
            if d >= fd {
                q = append(q, f*10+d)
                fq = append(fq, fd)
            }
        }
    }
    fmt.Println(circs)
    fmt.Println("\nThe next 4 circular primes, in repunit format, are:")
    count = 0
    var rus []string
    for i := 7; count < 4; i++ {
        if repunit(i).ProbablyPrime(10) {
            count++
            rus = append(rus, fmt.Sprintf("R(%d)", i))
        }
    }
    fmt.Println(rus)
    fmt.Println("\nThe following repunits are probably circular primes:")
    for _, i := range []int{5003, 9887, 15073, 25031, 35317, 49081} {
        fmt.Printf("R(%-5d) : %t\n", i, repunit(i).ProbablyPrime(10))
    }
}
Output:
The first 19 circular primes are:
[2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933]

The next 4 circular primes, in repunit format, are:
[R(19) R(23) R(317) R(1031)]

The following repunits are probably circular primes:
R(5003 ) : false
R(9887 ) : false
R(15073) : false
R(25031) : false
R(35317) : false
R(49081) : true

Haskell

Uses arithmoi Library: http://hackage.haskell.org/package/arithmoi-0.10.0.0

import Math.NumberTheory.Primes (Prime, unPrime, nextPrime)
import Math.NumberTheory.Primes.Testing (isPrime, millerRabinV)
import Text.Printf (printf)

rotated :: [Integer] -> [Integer]
rotated xs 
  | any (< head xs) xs = []
  | otherwise          = map asNum $ take (pred $ length xs) $ rotate xs
 where
  rotate [] = []
  rotate (d:ds) = ds <> [d] : rotate (ds <> [d])

asNum :: [Integer] -> Integer
asNum [] = 0
asNum n@(d:ds) 
 | all (==1) n = read $ concatMap show n
 | otherwise = (d * (10 ^ length ds)) + asNum ds 

digits :: Integer -> [Integer]
digits 0 = []
digits n = digits d <> [r]
 where (d, r) = n `quotRem` 10

isCircular :: Bool -> Integer -> Bool
isCircular repunit n 
  | repunit = millerRabinV 0 n
  | n < 10 = True
  | even n = False
  | null rotations = False
  | any (<n) rotations = False
  | otherwise = all isPrime rotations
 where
  rotations = rotated $ digits n

repunits :: [Integer]
repunits = go 2
 where go n = asNum (replicate n 1) : go (succ n)

asRepunit :: Int -> Integer
asRepunit n = asNum $ replicate n 1

main :: IO ()
main = do 
  printf "The first 19 circular primes are:\n%s\n\n" $ circular primes
  printf "The next 4 circular primes, in repunit format are:\n" 
  mapM_ (printf "R(%d) ") $ reps repunits
  printf "\n\nThe following repunits are probably circular primes:\n"
  mapM_ (uncurry (printf "R(%d) : %s\n") . checkReps) [5003, 9887, 15073, 25031, 35317, 49081]
 where
  primes = map unPrime [nextPrime 1..]
  circular = show . take 19 . filter (isCircular False)
  reps = map (sum . digits). tail . take 5 . filter (isCircular True)
  checkReps = (,) <$> id <*> show . isCircular True . asRepunit
Output:
The first 19 circular primes are:
[2,3,5,7,11,13,17,37,79,113,197,199,337,1193,3779,11939,19937,193939,199933]

The next 4 circular primes, in repunit format are:
R(19) R(23) R(317) R(1031) 

The following repunits are probably circular primes:
R(5003) : False
R(9887) : False
R(15073) : False
R(25031) : False
R(35317) : False
R(49081) : True
./circular_primes  277.56s user 1.82s system 97% cpu 4:47.91 total

J

R=: 10x #. #&1
assert 11111111111111111111111111111111x -: R 32

Filter=: (#~`)(`:6)

rotations=: (|."0 1~ i.@#)&.(10&#.inv)
assert 123 231 312 -: rotations 123

primes_less_than=: i.&.:(p:inv)
assert 2 3 5 7 11 -: primes_less_than 12


NB. circular y --> y is the order of magnitude.
circular=: monad define
 P25=: ([: -. (0 e. 1 3 7 9 e.~ 10 #.inv ])&>)Filter primes_less_than 10^y  NB. Q25 are primes with 1 3 7 9 digits
 P=: 2 5 , P25
 en=: # P
 group=: en # 0
 next=: 1
 for_i. i. # group do.
  if. 0 = i { group do.       NB. if untested
   j =: P i. rotations i { P   NB. j are the indexes of the rotated numbers in the list of primes
   if. en e. j do.             NB. if any are unfound
    j=: j -. en                 NB. prepare to mark them all as searched, and failed.
    g=: _1
   else.                       
    g=: next                    NB. mark the set as found in a new group.  Because we can.
    next=: >: next
   end.
   group=: g j} group          NB. apply the tested mark
  end.
 end.
 group </. P
)

J lends itself to investigation. Demonstrate and play with the definitions.

   circular 3  NB. the values in the long list have a composite under rotation
┌─┬─┬─┬─┬──┬─────┬─────┬──────────────────────────────────────────────────────────────────────────┬─────┬─────┬───────────┬───────────┬───────────┬───────────┐
│2│5│3│7│11│13 31│17 71│19 137 139 173 179 191 193 313 317 331 379 397 739 773 797 911 937 977 997│37 73│79 97│113 131 311│197 719 971│199 919 991│337 373 733│
└─┴─┴─┴─┴──┴─────┴─────┴──────────────────────────────────────────────────────────────────────────┴─────┴─────┴───────────┴───────────┴───────────┴───────────┘

   circular 2 NB.       VV
┌─┬─┬─┬─┬──┬─────┬─────┬──┬─────┬─────┐
│2│5│3│7│11│13 31│17 71│19│37 73│79 97│
└─┴─┴─┴─┴──┴─────┴─────┴──┴─────┴─────┘

   q: 91   NB. factor the lone entry
7 13

   RC=: circular 8

   {: RC  NB. tail
┌─────────────────────────────────────────┐
│199933 319993 331999 933199 993319 999331│
└─────────────────────────────────────────┘

   (< >./)@:(#&>) Filter circular 3   NB. remove the box containing most items
┌─┬─┬─┬─┬──┬─────┬─────┬─────┬─────┬───────────┬───────────┬───────────┬───────────┐
│2│5│3│7│11│13 31│17 71│37 73│79 97│113 131 311│197 719 971│199 919 991│337 373 733│
└─┴─┴─┴─┴──┴─────┴─────┴─────┴─────┴───────────┴───────────┴───────────┴───────────┘

   ] CPS=: {.&> (< >./)@:(#&>) Filter RC   NB. first 19 circular primes
2 5 3 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933

   # CPS   NB. yes, 19 found.
19

Brief investigation into repunits.

   Note 'The current Miller-Rabin test implemented in c is insufficient for this task'
   R=: 10x #. #&1
   (;q:@R)&> 500
|limit error
|       (;q:@R)&>500
)

   boxdraw_j_ 0
   Filter=: (#~`)(`:6)

   R=: 10x #. #&1
   (; q:@R)&> (0 ~: 3&|)Filter >: i. 26  NB. factor some repunits
┌──┬─────────────────────────────────┐
│1 │                                 │
├──┼─────────────────────────────────┤
│2 │11                               │
├──┼─────────────────────────────────┤
│4 │11 101                           │
├──┼─────────────────────────────────┤
│5 │41 271                           │
├──┼─────────────────────────────────┤
│7 │239 4649                         │
├──┼─────────────────────────────────┤
│8 │11 73 101 137                    │
├──┼─────────────────────────────────┤
│10│11 41 271 9091                   │
├──┼─────────────────────────────────┤
│11│21649 513239                     │
├──┼─────────────────────────────────┤
│13│53 79 265371653                  │
├──┼─────────────────────────────────┤
│14│11 239 4649 909091               │
├──┼─────────────────────────────────┤
│16│11 17 73 101 137 5882353         │
├──┼─────────────────────────────────┤
│17│2071723 5363222357               │
├──┼─────────────────────────────────┤
│19│1111111111111111111              │
├──┼─────────────────────────────────┤
│20│11 41 101 271 3541 9091 27961    │
├──┼─────────────────────────────────┤
│22│11 11 23 4093 8779 21649 513239  │
├──┼─────────────────────────────────┤
│23│11111111111111111111111          │
├──┼─────────────────────────────────┤
│25│41 271 21401 25601 182521213001  │
├──┼─────────────────────────────────┤
│26│11 53 79 859 265371653 1058313049│
└──┴─────────────────────────────────┘

   NB. R(2) R(19), R(23) are probably prime.

Java

import java.math.BigInteger;
import java.util.Arrays;

public class CircularPrimes {
    public static void main(String[] args) {
        System.out.println("First 19 circular primes:");
        int p = 2;
        for (int count = 0; count < 19; ++p) {
            if (isCircularPrime(p)) {
                if (count > 0)
                    System.out.print(", ");
                System.out.print(p);
                ++count;
            }
        }
        System.out.println();
        System.out.println("Next 4 circular primes:");
        int repunit = 1, digits = 1;
        for (; repunit < p; ++digits)
            repunit = 10 * repunit + 1;
        BigInteger bignum = BigInteger.valueOf(repunit);
        for (int count = 0; count < 4; ) {
            if (bignum.isProbablePrime(15)) {
                if (count > 0)
                    System.out.print(", ");
                System.out.printf("R(%d)", digits);
                ++count;
            }
            ++digits;
            bignum = bignum.multiply(BigInteger.TEN);
            bignum = bignum.add(BigInteger.ONE);
        }
        System.out.println();
        testRepunit(5003);
        testRepunit(9887);
        testRepunit(15073);
        testRepunit(25031);
    }

    private static boolean isPrime(int n) {
        if (n < 2)
            return false;
        if (n % 2 == 0)
            return n == 2;
        if (n % 3 == 0)
            return n == 3;
        for (int p = 5; p * p <= n; p += 4) {
            if (n % p == 0)
                return false;
            p += 2;
            if (n % p == 0)
                return false;
        }
        return true;
    }

    private static int cycle(int n) {
        int m = n, p = 1;
        while (m >= 10) {
            p *= 10;
            m /= 10;
        }
        return m + 10 * (n % p);
    }

    private static boolean isCircularPrime(int p) {
        if (!isPrime(p))
            return false;
        int p2 = cycle(p);
        while (p2 != p) {
            if (p2 < p || !isPrime(p2))
                return false;
            p2 = cycle(p2);
        }
        return true;
    }

    private static void testRepunit(int digits) {
        BigInteger repunit = repunit(digits);
        if (repunit.isProbablePrime(15))
            System.out.printf("R(%d) is probably prime.\n", digits);
        else
            System.out.printf("R(%d) is not prime.\n", digits);
    }

    private static BigInteger repunit(int digits) {
        char[] ch = new char[digits];
        Arrays.fill(ch, '1');
        return new BigInteger(new String(ch));
    }
}
Output:
First 19 circular primes:
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933
Next 4 circular primes:
R(19), R(23), R(317), R(1031)
R(5003) is not prime.
R(9887) is not prime.
R(15073) is not prime.
R(25031) is not prime.

jq

Works with: jq

Works with gojq, the Go implementation of jq

jq's integer-arithmetic accuracy is only sufficient for the first task; gojq has the accuracy for the second task but is not well-suited for it. Nevertheless, the code for solving both tasks is shown.

For an implementation of `is_prime` suitable for the first task, see for example Erdős-primes#jq.

def is_circular_prime:
    def circle: range(0;length) as $i | .[$i:] + .[:$i];
    tostring as $s
    | [$s|circle|tonumber] as $c
    | . == ($c|min) and all($c|unique[]; is_prime);
 
def circular_primes:
   2, (range(3; infinite; 2) | select(is_circular_prime));

# Probably only useful with unbounded-precision integer arithmetic:
def repunits:
  1 | recurse(10*. + 1);

The first task

limit(19; circular_primes)

The second task (viewed independently):

last(limit(19; circular_primes)) as $max
| limit(4; repunits | select(. > $max and is_prime))
| "R(\(tostring|length))"
Output:

For the first task:

2
3
5
7
11
13
17
37
79
113
197
199
337
1193
3779
11939
19937
193939
199933

Julia

using Lazy, Primes

function iscircularprime(n)
    !isprime(n) && return false
    dig = digits(n)
    return all(i -> (m = evalpoly(10, circshift(dig, i))) >= n && isprime(m), 1:length(dig)-1)
end

filtcircular(n, rang) = Int.(collect(take(n, filter(iscircularprime, rang))))
isprimerepunit(n) = isprime(evalpoly(BigInt(10), ones(Int, n)))
filtrep(n, rang) = collect(take(n, filter(isprimerepunit, rang)))

println("The first 19 circular primes are:\n", filtcircular(19, Lazy.range(2)))
print("\nThe next 4 circular primes, in repunit format, are: ",
    mapreduce(n -> "R($n) ", *, filtrep(4, Lazy.range(6))))

println("\n\nChecking larger repunits:")
for i in [5003, 9887, 15073, 25031, 35317, 49081]
    println("R($i) is ", isprimerepunit(i) ? "prime." : "not prime.")
end
Output:
The first 19 circular primes are:
[2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933]

The next 4 circular primes, in repunit format, are: R(19) R(23) R(317) R(1031)

Checking larger repunits:
R(5003) is not prime.
R(9887) is not prime.
R(15073) is not prime.
R(25031) is not prime.
R(35317) is not prime.
R(49081) is prime.

Kotlin

Translation of: C
import java.math.BigInteger

val SMALL_PRIMES = listOf(
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
    101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
    211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293,
    307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,
    401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499,
    503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
    601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
    701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
    809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
    907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997
)

fun isPrime(n: BigInteger): Boolean {
    if (n < 2.toBigInteger()) {
        return false
    }

    for (sp in SMALL_PRIMES) {
        val spb = sp.toBigInteger()
        if (n == spb) {
            return true
        }
        if (n % spb == BigInteger.ZERO) {
            return false
        }
        if (n < spb * spb) {
            //if (n > SMALL_PRIMES.last().toBigInteger()) {
            //    println("Next: $n")
            //}
            return true
        }
    }

    return n.isProbablePrime(10)
}

fun cycle(n: BigInteger): BigInteger {
    var m = n
    var p = 1
    while (m >= BigInteger.TEN) {
        p *= 10
        m /= BigInteger.TEN
    }
    return m + BigInteger.TEN * (n % p.toBigInteger())
}

fun isCircularPrime(p: BigInteger): Boolean {
    if (!isPrime(p)) {
        return false
    }
    var p2 = cycle(p)
    while (p2 != p) {
        if (p2 < p || !isPrime(p2)) {
            return false
        }
        p2 = cycle(p2)
    }
    return true
}

fun testRepUnit(digits: Int) {
    var repUnit = BigInteger.ONE
    var count = digits - 1
    while (count > 0) {
        repUnit = BigInteger.TEN * repUnit + BigInteger.ONE
        count--
    }
    if (isPrime(repUnit)) {
        println("R($digits) is probably prime.")
    } else {
        println("R($digits) is not prime.")
    }
}

fun main() {
    println("First 19 circular primes:")
    var p = 2
    var count = 0
    while (count < 19) {
        if (isCircularPrime(p.toBigInteger())) {
            if (count > 0) {
                print(", ")
            }
            print(p)
            count++
        }
        p++
    }
    println()

    println("Next 4 circular primes:")
    var repUnit = BigInteger.ONE
    var digits = 1
    count = 0
    while (repUnit < p.toBigInteger()) {
        repUnit = BigInteger.TEN * repUnit + BigInteger.ONE
        digits++
    }
    while (count < 4) {
        if (isPrime(repUnit)) {
            print("R($digits) ")
            count++
        }
        repUnit = BigInteger.TEN * repUnit + BigInteger.ONE
        digits++
    }
    println()

    testRepUnit(5003)
    testRepUnit(9887)
    testRepUnit(15073)
    testRepUnit(25031)
    testRepUnit(35317)
    testRepUnit(49081)
}
Output:
First 19 circular primes:
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933
Next 4 circular primes:
R(19) R(23) R(317) R(1031) 
R(5003) is not prime.
R(9887) is not prime.
R(15073) is not prime.
R(25031) is not prime.
R(35317) is not prime.

Lua

-- Circular primes, in Lua, 6/22/2020 db
local function isprime(n)
  if n < 2 then return false end
  if n % 2 == 0 then return n==2 end
  if n % 3 == 0 then return n==3 end
  for f = 5, math.sqrt(n), 6 do
    if n % f == 0 or n % (f+2) == 0 then return false end
  end
  return true
end

local function iscircularprime(p)
  local n = math.floor(math.log10(p))
  local m, q = 10^n, p
  for i = 0, n do
    if (q < p or not isprime(q)) then return false end
    q = (q % m) * 10 + math.floor(q / m)
  end
  return true
end

local p, dp, list, N = 2, 1, {}, 19
while #list < N do
  if iscircularprime(p) then list[#list+1] = p end
  p, dp = p + dp, 2
end
print(table.concat(list, ", "))
Output:
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933

Mathematica / Wolfram Language

ClearAll[RepUnit, CircularPrimeQ]
RepUnit[n_] := (10^n - 1)/9
CircularPrimeQ[n_Integer] := Module[{id = IntegerDigits[n], nums, t},
  AllTrue[
   Range[Length[id]]
   ,
   Function[{z},
    t = FromDigits[RotateLeft[id, z]];
    If[t < n,
     False
     ,
     PrimeQ[t]
     ]
    ]
   ]
  ]
Select[Range[200000], CircularPrimeQ]

res = {};
Dynamic[res]
Do[
 If[CircularPrimeQ[RepUnit[n]], AppendTo[res, n]]
 ,
 {n, 1000}
 ]

Scan[Print@*PrimeQ@*RepUnit, {5003, 9887, 15073, 25031, 35317, 49081}]
Output:
{2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933}
{2, 19, 23, 317}
False
False
False
False
False
True

Nim

Translation of: Kotlin
Library: bignum
import bignum
import strformat

const SmallPrimes = [
  2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
  101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
  211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293,
  307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,
  401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499,
  503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
  601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
  701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
  809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
  907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]

let
  One = newInt(1)
  Two = newInt(2)
  Ten = newInt(10)

#---------------------------------------------------------------------------------------------------

proc isPrime(n: Int): bool =

  if n < Two: return false

  for sp in SmallPrimes:
    # let spb = newInt(sp)
    if n == sp: return true
    if (n mod sp).isZero: return false
    if n < sp * sp: return true

  result = probablyPrime(n, 25) != 0

#---------------------------------------------------------------------------------------------------

proc cycle(n: Int): Int =

  var m = n
  var p = 1
  while m >= Ten:
    p *= 10
    m = m div 10
  result = m + Ten * (n mod p)

#---------------------------------------------------------------------------------------------------

proc isCircularPrime(p: Int): bool =

  if not p.isPrime(): return false

  var p2 = cycle(p)
  while p2 != p:
    if p2 < p or not p2.isPrime():
      return false
    p2 = cycle(p2)
  result = true

#---------------------------------------------------------------------------------------------------

proc testRepunit(digits: int) =

  var repunit = One
  var count = digits - 1
  while count > 0:
    repunit = Ten * repunit + One
    dec count
  if repunit.isPrime():
    echo fmt"R({digits}) is probably prime."
  else:
    echo fmt"R({digits}) is not prime."

#---------------------------------------------------------------------------------------------------

echo "First 19 circular primes:"
var p = 2
var line = ""
var count = 0
while count < 19:
  if newInt(p).isCircularPrime():
    if count > 0: line.add(", ")
    line.add($p)
    inc count
  inc p
echo line

echo ""
echo "Next 4 circular primes:"
var repunit = One
var digits = 1
while repunit < p:
  repunit = Ten * repunit + One
  inc digits
line = ""
count = 0
while count < 4:
  if repunit.isPrime():
    if count > 0: line.add(' ')
    line.add(fmt"R({digits})")
    inc count
  repunit = Ten * repunit + One
  inc digits
echo line

echo ""
testRepUnit(5003)
testRepUnit(9887)
testRepUnit(15073)
testRepUnit(25031)
testRepUnit(35317)
testRepUnit(49081)
Output:
First 19 circular primes:
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933

Next 4 circular primes:
R(19) R(23) R(317) R(1031)

R(5003) is not prime.
R(9887) is not prime.
R(15073) is not prime.
R(25031) is not prime.
R(35317) is not prime.
R(49081) is probably prime.

Pascal

Free Pascal

Only test up to 14 digit numbers.RepUnit test with gmp is to boring.
Using a base 4 downcounter to create the numbers with more than one digit.
Changed the manner of the counter, so that it counts that there is no digit smaller than the first. 199-> 333 and not 311 so a base4 counter 1_(1,3,7,9) changed to base3 3_( 3,7,9 )->base2 7_(7,9) -> base 1 = 99....99. The main speed up is reached by testing with small primes within CycleNum.

program CircularPrimes;
//nearly the way it is done: 
//http://www.worldofnumbers.com/circular.htm
//base 4 counter to create numbers with first digit is the samallest used.
//check if numbers are tested before and reduce gmp-calls by checking with prime 3,7 

{$IFDEF FPC}
  {$MODE DELPHI}{$OPTIMIZATION ON,ALL}
  uses
    Sysutils,gmp;
{$ENDIF}
{$IFDEF Delphi}
  uses
    System.Sysutils,?gmp?;
{$ENDIF}

{$IFDEF WINDOWS}
   {$APPTYPE CONSOLE}
{$ENDIF}
const
  MAXCNTOFDIGITS = 14;
  MAXDGTVAL = 3;
  conv : array[0..MAXDGTVAL+1] of byte = (9,7,3,1,0);
type
  tDigits = array[0..23] of byte;
  tUint64 = NativeUint;
var
  mpz : mpz_t;
  digits,
  revDigits : tDigits;
  CheckNum : array[0..19] of tUint64;
  Found : array[0..23] of tUint64;
  Pot_ten,Count,CountNumCyc,CountNumPrmTst : tUint64;

procedure CheckOne(MaxIdx:integer);
var
  Num : Uint64;
  i : integer;
begin
  i:= MaxIdx;
  repeat
    inc(CountNumPrmTst);
    num := CheckNum[i];
    mpz_set_ui(mpz,Num);
    If mpz_probab_prime_p(mpz,3)=0then
      EXIT;
    dec(i);
  until i < 0;
  Found[Count] := CheckNum[0];
  inc(count);
end;

function CycleNum(MaxIdx:integer):Boolean;
//first create circular numbers to minimize prime checks
var
  cycNum,First,P10 : tUint64;
  i,j,cv : integer;
Begin
  i:= MaxIdx;
  j := 0;
  First := 0;
  repeat
    cv := conv[digits[i]];
    dec(i);
    First := First*10+cv;
    revDigits[j]:= cv;
    inc(j);
  until i < 0;
  // if num is divisible by 3 then cycle numbers also divisible by 3 same sum of digits
  IF First MOD 3 = 0 then
    EXIT(false);
  If First mod 7 = 0 then
     EXIT(false);

  //if one of the cycled number must have been tested before break
  P10 := Pot_ten;
  i := 0;
  j := 0;
  CheckNum[j] := First;
  cycNum := First;
  repeat
    inc(CountNumCyc);
    cv := revDigits[i];
    inc(j);
    cycNum := (cycNum - cv*P10)*10+cv;
    //num was checked before
    if cycNum < First then
      EXIT(false);
    if cycNum mod 7 = 0 then
      EXIT(false);
    CheckNum[j] := cycNum;
    inc(i);
  until i >= MaxIdx;
  EXIT(true);
end;

var
  T0: Int64;

  idx,MaxIDx,dgt,MinDgt : NativeInt;
begin
  T0 := GetTickCount64;
  mpz_init(mpz);

  fillchar(digits,Sizeof(digits),chr(MAXDGTVAL));
  Count :=0;
  For maxIdx := 2 to 10 do
    if maxidx in[2,3,5,7] then
    begin
      Found[Count]:= maxIdx;
      inc(count);
    end;

  Pot_ten := 10;
  maxIdx := 1;
  idx := 0;
  MinDgt := MAXDGTVAL;
  repeat
    if CycleNum(MaxIdx) then
        CheckOne(MaxIdx);
    idx := 0;
    repeat
      dgt := digits[idx]-1;
      if dgt >=0 then
        break;
      digits[idx] := MinDgt;
      inc(idx);
    until idx >MAXCNTOFDIGITS-1;

    if idx > MAXCNTOFDIGITS-1 then
      BREAK;

    if idx<=MaxIDX then
    begin
      digits[idx] := dgt;
      //change all to leading digit
      if idx=MaxIDX then
      Begin
        For MinDgt := 0 to idx do
          digits[MinDgt]:= dgt;
        minDgt := dgt;
      end;
    end
    else
    begin
      minDgt := MAXDGTVAL;
      For maxidx := 0 to idx do
        digits[MaxIdx] := MAXDGTVAL;
      Maxidx := idx;
      Pot_ten := Pot_ten*10;
      writeln(idx:7,count:7,CountNumCyc:16,CountNumPrmTst:12,GetTickCount64-T0:8);
    end;
  until false;
  writeln(idx:7,count:7,CountNumCyc:16,CountNumPrmTst:12,GetTickCount64-T0:8);
  T0 := GetTickCount64-T0;

  For idx := 0 to count-2 do
    write(Found[idx],',');
  writeln(Found[count-1]);

  writeln('It took ',T0,' ms ','to check ',MAXCNTOFDIGITS,' decimals');
  mpz_clear(mpz);
  {$IFDEF WINDOWS}
   readln;
  {$ENDIF}
end.
@ Tio.Run:
 Digits  found    cycles created  primetests  time in ms
      2      9               7          10       0
      3     13              43          38       0
      4     15             203          89       0
      5     17             879         213       0
      6     19            4209         816       1
      7     19           16595        1794       2
      8     19           67082        4666       6
      9     19          270760       13108      19
     10     19         1094177       39059      63
     11     19         4421415      118787     220
     12     19        23728859     1078484    1505
     13     19        77952009     1869814    3562
     14     19       296360934     4405393   11320
#### 14     19       754020918    28736408   26129 ##### before
2,3,5,7,11,13,17,37,79,113,197,199,337,1193,3779,11939,19937,193939,199933
It took 11320 ms to check 14 decimals

only creating numbers
     14      4               0           0     184
creating and cycling numbers testing not ( MOD 3=0 OR MoD 7 = 0)
     14      4       247209700           0    8842
that reduces the count of gmp-prime tests to 1/6 

PascalABC.NET

##
function IsPrime(n: integer): boolean;
begin
  result := false;
  for var i := 2 to n.Sqrt.Floor do
    if n mod i = 0 then
      exit;
  result := true;    
end;

function rotations(n: integer): sequence of integer;
begin
  var a := n.tostring;
  for var i := 1 to a.Length do 
    yield (a[i:] + a[:i]).ToInteger;
end;

function isCircular(n: integer): boolean;
begin
  var rot := rotations(n);
  if rot.first = rot.min then
    result := rot.All(x -> isPrime(x));
end;

(2..1000_000).Where(x -> isCircular(x)).Take(19).Println;
Output:
2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933

Perl

Translation of: Raku
Library: ntheory
use strict;
use warnings;
use feature 'say';
use List::Util 'min';
use ntheory 'is_prime';

sub rotate { my($i,@a) = @_; join '', @a[$i .. @a-1, 0 .. $i-1] }

sub isCircular {
    my ($n) = @_;
    return 0 unless is_prime($n);
    my @circular = split //, $n;
    return 0 if min(@circular) < $circular[0];
    for (1 .. scalar @circular) {
        my $r = join '', rotate($_,@circular);
        return 0 unless is_prime($r) and $r >= $n;
    }
    1
}

say "The first 19 circular primes are:";
for ( my $i = 1, my $count = 0; $count < 19; $i++ ) {
    ++$count and print "$i " if isCircular($i);
}

say "\n\nThe next 4 circular primes, in repunit format, are:";
for ( my $i = 7, my $count = 0; $count < 4; $i++ ) {
    ++$count and say "R($i)" if is_prime 1 x $i
}

say "\nRepunit testing:";

for (5003, 9887, 15073, 25031, 35317, 49081) {
    say "R($_): Prime? " . (is_prime 1 x $_ ? 'True' : 'False');
}
Output:
The first 19 circular primes are:
2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933

The next 4 circular primes, in repunit format, are:
R(19)
R(23)
R(317)
R(1031)

Repunit testing:
R(5003): Prime? False
R(9887): Prime? False
R(15073): Prime? False
R(25031): Prime? False
R(35317): Prime? False
R(49081): Prime? True

Phix

with javascript_semantics
function circular(integer p)
    integer len = length(sprintf("%d",p)),
            pow = power(10,len-1),
            p0 = p
    for i=1 to len-1 do
        p = pow*remainder(p,10)+floor(p/10)
        if p<p0 or not is_prime(p) then return false end if
    end for
    return true
end function
 
sequence c = {}
integer n = 1
while length(c)<19 do
    integer p = get_prime(n)
    if circular(p) then c &= p end if
    n += 1
end while
printf(1,"The first 19 circular primes are:\n%v\n\n",{c})
 
include mpfr.e
procedure repunit(mpz z, integer n)
    mpz_set_str(z,repeat('1',n))
end procedure 
 
c = {}
n = 7
mpz z = mpz_init()
while length(c)<4 do
    repunit(z,n)
    if mpz_prime(z) then
        c = append(c,sprintf("R(%d)",n))
    end if
    n += 1
end while
printf(1,"The next 4 circular primes, in repunit format, are:\n%s\n\n",{join(c)})
Output:
The first 19 circular primes are:
{2,3,5,7,11,13,17,37,79,113,197,199,337,1193,3779,11939,19937,193939,199933}

The next 4 circular primes, in repunit format, are:
R(19) R(23) R(317) R(1031)

stretch

(It is probably quite unwise to throw this in the direction of pwa/p2js, I am not even going to bother trying.)

constant t = {5003, 9887, 15073, 25031, 35317, 49081}
printf(1,"The following repunits are probably circular primes:\n")
for i=1 to length(t) do
    integer ti = t[i]
    atom t0 = time()
    repunit(z,ti)
    bool bPrime = mpz_prime(z,1)
    printf(1,"R(%d) : %t (%s)\n", {ti, bPrime, elapsed(time()-t0)})
end for
Output:

64-bit can only cope with the first five (it terminates abruptly on the sixth)
For comparison, the above Julia code (8/4/20, 64 bit) manages 1s, 5.6s, 15s, 50s, 1 min 50s (and 1 hour 45 min 40s) on the same box.
And Perl (somehow) manages 0/0/0/55s/0/21 mins 35 secs...

The following repunits are probably circular primes:
R(5003) : false (2.0s)
R(9887) : false (13.5s)
R(15073) : false (45.9s)
R(25031) : false (1 minute and 19s)
R(35317) : false (3 minutes and 04s)

32-bit is much slower and can only cope with the first four

The following repunits are probably circular primes:
R(5003) : false (10.2s)
R(9887) : false (54.9s)
R(15073) : false (2 minutes and 22s)
R(25031) : false (7 minutes and 45s)
diag looping, error code is 1, era is #00644651

PicoLisp

For small primes, I only check numbers that are made up of the digits 1, 3, 7, and 9, and I also use a small prime checker to avoid the overhead of the Miller-Rabin Primality Test. For the large repunits, one can use the code from the Miller Rabin task.

(load "plcommon/primality.l")  # see task: "Miller-Rabin Primality Test"

(de candidates (Limit)
   (let Q (0)
      (nth
         (sort
            (make
               (while Q
                  (let A (pop 'Q)
                     (when (< A Limit)
                        (link A)
                        (setq Q
                           (cons
                              (+ (* 10 A) 1)
                              (cons
                                 (+ (* 10 A) 3)
                                 (cons
                                    (+ (* 10 A) 7)
                                    (cons (+ (* 10 A) 9) Q))))))))))
         6)))

(de circular? (P0)
   (and
      (small-prime? P0)
      (fully '((P) (and (>= P P0) (small-prime? P))) (rotations P0))))

(de rotate (L)
   (let ((X . Xs) L)
      (append Xs (list X))))

(de rotations (N)
   (let L (chop N)
      (mapcar
         format
         (make
            (do (dec (length L))
               (link (setq L (rotate L))))))))

(de small-prime? (N)  # For small prime candidates only
   (if (< N 2)
      NIL
      (let W (1 2 2 . (4 2 4 2 4 6 2 6 .))
         (for (D 2  T  (+ D (pop 'W)))
            (T  (> (* D D) N)  T)
            (T  (=0 (% N D))   NIL)))))

(de repunit-primes (N)
   (let (Test 111111  Remaining N  K 6)
      (make
         (until (=0 Remaining)
            (setq Test (inc (* 10 Test)))
            (inc 'K)
            (when (prime? Test)
               (link K)
               (dec 'Remaining))))))

(setq Circular
   (conc
      (2 3 5 7)
      (filter circular? (candidates 1000000))
      (mapcar '((X) (list 'R X)) (repunit-primes 4))))

(prinl "The first few circular primes:")
(println Circular)
(bye)
Output:
The first few circular primes:
(2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933 (R 19) (R 23) (R 317) (R 1031))

Prolog

Uses a miller-rabin primality tester that I wrote which includes a trial division pass for small prime factors. One could substitute with e.g. the Miller Rabin Primaliy Test task.

The circular(P) predicate generates all circular primes; for those > 1e6, it returns it as a term r(K) for repunit K.

Also the code is smart in that it only checks primes > 9 that are composed of the digits 1, 3, 7, and 9.

?- use_module(library(primality)).

circular(N) :- member(N, [2, 3, 5, 7]).
circular(N) :-
    limit(15, (
        candidate(N),
        N > 9,
        circular_prime(N))).
circular(r(K)) :-
    between(6, inf, K),
    N is (10**K - 1) div 9,
    prime(N).

candidate(0).
candidate(N) :-
    candidate(M),
    member(D, [1, 3, 7, 9]),
    N is 10*M + D.

circular_prime(N) :-
    K is floor(log10(N)) + 1,
    circular_prime(N, N, K).
circular_prime(_, _, 0) :- !.
circular_prime(P0, P, K) :-
   P >= P0,
   prime(P),
   rotate(P, Q), succ(DecK, K),
   circular_prime(P0, Q, DecK).

rotate(N, M) :-
    D is floor(log10(N)),
    divmod(N, 10, Q, R),
    M is R*10**D + Q.

main :-
    findall(P, limit(23, circular(P)), S),
    format("The first 23 circular primes:~n~w~n", [S]),
    halt.

?- main.
Output:
The first 23 circular primes:
[2,3,5,7,11,13,17,37,79,113,197,199,337,1193,3779,11939,19937,193939,199933,r(19),r(23),r(317),r(1031)]

Python

import random

def is_Prime(n):
    """
    Miller-Rabin primality test.

    A return value of False means n is certainly not prime. A return value of
    True means n is very likely a prime.
    """
    if n!=int(n):
        return False
    n=int(n)
    #Miller-Rabin test for prime
    if n==0 or n==1 or n==4 or n==6 or n==8 or n==9:
        return False

    if n==2 or n==3 or n==5 or n==7:
        return True
    s = 0
    d = n-1
    while d%2==0:
        d>>=1
        s+=1
    assert(2**s * d == n-1)

    def trial_composite(a):
        if pow(a, d, n) == 1:
            return False
        for i in range(s):
            if pow(a, 2**i * d, n) == n-1:
                return False
        return True

    for i in range(8):#number of trials
        a = random.randrange(2, n)
        if trial_composite(a):
            return False

    return True

def isPrime(n: int) -> bool:
    '''
        https://www.geeksforgeeks.org/python-program-to-check-whether-a-number-is-prime-or-not/
    '''
    # Corner cases
    if (n <= 1) :
        return False
    if (n <= 3) :
        return True
    # This is checked so that we can skip
    # middle five numbers in below loop
    if (n % 2 == 0 or n % 3 == 0) :
        return False
    i = 5
    while(i * i <= n) :
        if (n % i == 0 or n % (i + 2) == 0) :
            return False
        i = i + 6
    return True

def rotations(n: int)-> set((int,)):
    '''
        >>> {123, 231, 312} == rotations(123)
        True
    '''
    a = str(n)
    return set(int(a[i:] + a[:i]) for i in range(len(a)))

def isCircular(n: int) -> bool:
    '''
        >>> [isCircular(n) for n in (11, 31, 47,)]
	[True, True, False]
    '''
    return all(isPrime(int(o)) for o in rotations(n))

from itertools import product

def main():
    result = [2, 3, 5, 7]
    first = '137'
    latter = '1379'
    for i in range(1, 6):
        s = set(int(''.join(a)) for a in product(first, *((latter,) * i)))
        while s:
            a = s.pop()
            b = rotations(a)
            if isCircular(a):
                result.append(min(b))
            s -= b
    result.sort()
    return result

assert [2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933] == main()


repunit = lambda n: int('1' * n)

def repmain(n: int) -> list:
    '''
        returns the first n repunit primes, probably.
    '''
    result = []
    i = 2
    while len(result) < n:
        if is_Prime(repunit(i)):
            result.append(i)
        i += 1
    return result

assert [2, 19, 23, 317, 1031] == repmain(5)

# because this Miller-Rabin test is already on rosettacode there's no good reason to test the longer repunits.

Raku

Most of the repunit testing is relatively speedy using the ntheory library. The really slow ones are R(25031), at ~42 seconds and R(49081) at 922(!!) seconds.

Library: ntheory
sub isCircular(\n) {
   return False unless n.is-prime;
   my @circular = n.comb;
   return False if @circular.min < @circular[0];
   for 1 ..^ @circular -> $i {
      return False unless .is-prime and $_ >= n given @circular.rotate($i).join;
   }
   True
}

say "The first 19 circular primes are:";
say ((2..*).hyper.grep: { isCircular $_ })[^19];

say "\nThe next 4 circular primes, in repunit format, are:";
loop ( my $i = 7, my $count = 0; $count < 4; $i++ ) {
   ++$count, say "R($i)" if (1 x $i).is-prime
}

use ntheory:from<Perl5> qw[is_prime];

say "\nRepunit testing:";

(5003, 9887, 15073, 25031, 35317, 49081).map: {
    my $now = now;
    say "R($_): Prime? ", ?is_prime("{1 x $_}"), "  {(now - $now).fmt: '%.2f'}"
}
Output:
The first 19 circular primes are:
(2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933)

The next 4 circular primes, in repunit format, are:
R(19)
R(23)
R(317)
R(1031)

Repunit testing:
R(5003): Prime? False  0.00
R(9887): Prime? False  0.01
R(15073): Prime? False  0.02
R(25031): Prime? False  41.40
R(35317): Prime? False  0.32
R(49081): Prime? True  921.73

REXX

Version 1

/*REXX program finds & displays circular primes (with a title & in a horizontal format).*/
parse arg N hp .                                 /*obtain optional arguments from the CL*/
if  N=='' |  N==","  then N=        19           /* "      "         "   "   "     "    */
if hp=='' | hp==","  then hip= 1000000           /* "      "         "   "   "     "    */
call genP                                        /*gen primes up to  hp      (200,000). */
q= 024568                                        /*digs that most circular P can't have.*/
found= 0;                           $=           /*found:  circular P count; $:  a list.*/
      do j=1  until found==N;       p= @.j       /* [↓]  traipse through all the primes.*/
      if p>9 & verify(p, q, 'M')>0  then iterate /*Does J contain forbidden digs?  Skip.*/
      if \circP(p)                  then iterate /*Not circular?  Then skip this number.*/
      found= found + 1                           /*bump the  count  of circular primes. */
      $= $  p                                    /*add this prime number  ──►  $  list. */
      end   /*j*/                                /*at this point, $ has a leading blank.*/

say center(' first '       found        " circular primes ",  79, '─')
say strip($)
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
circP: procedure expose @. !.;  parse arg x 1 ox /*obtain a prime number to be examined.*/
               do length(x)-1; parse var x f 2 y /*parse  X  number, rotating the digits*/
               x= y || f                         /*construct a new possible circular P. */
               if x<ox  then return 0            /*is number < the original?  ¬ circular*/
               if \!.x  then return 0            /* "    "   not prime?       ¬ circular*/
               end   /*length(x)···*/
       return 1                                  /*passed all tests,  X is a circular P.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
genP: @.1=2; @.2=3; @.3=5; @.4=7; @.5=11; @.6=13; @.7=17; @.8=19        /*assign Ps; #Ps*/
      !.= 0; !.2=1; !.3=1; !.5=1; !.7=1; !.11=1; !.13=1; !.17=1; !.19=1 /*   " primality*/
                           #= 8;  sq.#= @.# **2  /*number of primes so far; prime square*/
       do j=@.#+4  by 2  to hip;  parse var j  ''  -1  _ /*get last decimal digit of J. */
       if     _==5  then iterate;   if j// 3==0  then iterate;   if j// 7==0  then iterate
       if j//11==0  then iterate;   if j//13==0  then iterate;   if j//17==0  then iterate
           do k=8  while sq.k<=j                 /*divide by some generated odd primes. */
           if j // @.k==0  then iterate j        /*Is J divisible by  P?  Then not prime*/
           end   /*k*/                           /* [↓]  a prime  (J)  has been found.  */
       #= #+1;   !.j= 1;   sq.#= j*j;   @.#= j   /*bump P cnt;  assign P to @.  and  !. */
       end       /*j*/;                 return
output   when using the default inputs:

───────────────────────── first  19  circular primes ──────────────────────────
2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933

Version 2

Libraries: How to use
Library: Numbers
Library: Functions
Library: Settings
Library: Abend

Primes(n) retrieves all primes below 200000 using a sieve. Prime(n) is an optimized Miller-Rabin primality test. Part 2 of the task could be completed up to the 3rd Repunit. Since primality checking becomes very slow for numbers with over 1000 digits, part 3 of the task was out of reach. However, I verified R(1031) that was left over from part 2. Remember, all this is written in REXX, without relying on external libraries.

include Settings

say version; say 'Circular primes'; say
call First19
call Next3
call HigherReps
exit

First19:
procedure expose glob. prim.
call Time('r')
numeric digits 10
say 'First 19 circular primes:'
p = Primes(200000)
do i = 1 to p
   a = prim.prime.i
   if Verify(a,'024568','m') > 0 then
      iterate i
   b = a; l = Length(b)
   do l-1
      b = Right(b,l-1)||Left(b,1)
      if b < a then
         iterate i
      if \ IsPrime(b) then
         iterate i
   end
   call Charout ,a' '
end
say
say Format(Time('e'),,3) 'seconds'
say
return

Next3:
procedure expose glob.
call Time('r')
numeric digits 320
say 'Next 3 circular primes:'
do i = 7 to 320
   r = Repunit(i)
   if IsPrime(r) then
      call charout ,'R('i') '
end
say
say Format(Time('e'),,3) 'seconds'
say
return

HigherReps:
procedure expose glob.
call Time('r')
numeric digits 1040
say 'Primality of R(1031):'
if IsPrime(Repunit(1031)) then
   say 'R(1031) is probable prime'
else
   say 'R(1031) is composite'
say Format(Time('e'),,3) 'seconds'
say
return

Repunit:
/* Repeat 1's function */
procedure expose glob.
arg x
/* Formula */
return Copies('1',x)

include Numbers
include Functions
include Abend
Output:
REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
Circular primes

First 19 circular primes:
3 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933
0.126 seconds

Next 3 circular primes:
R(19) R(23) R(317)
62.924 seconds

Primality of R(n):
R(1031) is probable prime
110.665 seconds

Ring

see "working..." + nl
see "First 19 circular numbers are:" + nl
n = 0
row = 0
Primes = []

while row < 19
      n++
      flag = 1
      nStr = string(n)
      lenStr = len(nStr)
      for m = 1 to lenStr  
          leftStr = left(nStr,m)
          rightStr = right(nStr,lenStr-m)
          strOk = rightStr + leftStr
          nOk = number(strOk)
          ind = find(Primes,nOk)
          if ind < 1 and strOk != nStr
             add(Primes,nOk)
          ok
          if not isprimeNumber(nOk) or ind > 0 
             flag = 0
             exit
          ok
       next
       if flag = 1
          row++
          see "" + n + " "
          if row%5 = 0
             see nl
          ok
       ok
end

see nl + "done..." + nl

func isPrimeNumber(num)
     if (num <= 1) return 0 ok
     if (num % 2 = 0) and (num != 2) return 0 ok
     for i = 2 to sqrt(num)
	 if (num % i = 0) return 0 ok
     next
     return 1
Output:
working...
First 19 circular numbers are:
2 3 5 7 11 
13 17 37 79 113 
197 199 337 1193 3779 
11939 19937 193939 199933 
done...

RPL

To speed up execution, we use a generator of candidate numbers made only of 1, 3, 7 and 9.

Works with: HP version 49
≪ 1 SF DUP
   DO
      →STR TAIL LASTARG HEAD + STR→
      CASE
         DUP2 > OVER 3 MOD NOT OR THEN 1 CF END
         DUP ISPRIME? NOT THEN 1 CF END
      END
   UNTIL DUP2 == 1 FC? OR END
   DROP2 1 FS?
≫ 'CIRC?' STO

≪ →STR "9731" → prev digits
  ≪ 1 SF ""     @ flag 1 set = carry
     prev SIZE 1 FOR j
        digits DUP
        prev j DUP SUB POS 1 FS? -
        IF DUP NOT THEN DROP digits SIZE ELSE 1 CF END
        DUP SUB SWAP +
     -1 STEP
     IF 1 FS? THEN digits DUP SIZE DUP SUB SWAP + END 
     STR→
≫ ≫ 'NEXT1379' STO

≪ 2 CF { 2 3 5 7 } 7 
   DO
      NEXT1379
      IF DUP CIRC? THEN 
         SWAP OVER + SWAP
         IF OVER SIZE 19 ≥ THEN 2 SF END
      END
   UNTIL 2 FS? END DROP
≫ 'TASK' STO
Output:
1: { 2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933 }

Runs in 13 minutes 10 seconds on a HP-50g.

Ruby

It takes more then 25 minutes to verify that R49081 is probably prime - omitted here.

require 'gmp'
require 'prime'
candidate_primes = Enumerator.new do |y|
  DIGS = [1,3,7,9]
  [2,3,5,7].each{|n| y << n.to_s}
  (2..).each do |size|
    DIGS.repeated_permutation(size) do |perm|
      y << perm.join if (perm == min_rotation(perm)) && GMP::Z(perm.join).probab_prime? > 0
    end
  end
end

def min_rotation(ar) = Array.new(ar.size){|n| ar.rotate(n)}.min

def circular?(num_str)
  chars = num_str.chars
  return GMP::Z(num_str).probab_prime? > 0 if chars.all?("1")
  chars.size.times.all? do 
   GMP::Z(chars.rotate!.join).probab_prime? > 0
   # chars.rotate!.join.to_i.prime?
  end
end

puts "First 19 circular primes:"
puts candidate_primes.lazy.select{|cand| circular?(cand)}.take(19).to_a.join(", "),""
puts "First 5 prime repunits:"
reps = Prime.each.lazy.select{|pr| circular?("1"*pr)}.take(5).to_a
puts  reps.map{|r| "R" + r.to_s}.join(", "), ""
[5003, 9887, 15073, 25031].each {|rep| puts "R#{rep} circular_prime ? #{circular?("1"*rep)}" }
Output:
First 19 circular primes:
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933

First 5 prime repunits:
R2, R19, R23, R317, R1031

R5003 circular_prime ? false
R9887 circular_prime ? false
R15073 circular_prime ? false
R25031 circular_prime ? false

Rust

Translation of: C
// [dependencies]
// rug = "1.8"

fn is_prime(n: u32) -> bool {
    if n < 2 {
        return false;
    }
    if n % 2 == 0 {
        return n == 2;
    }
    if n % 3 == 0 {
        return n == 3;
    }
    let mut p = 5;
    while p * p <= n {
        if n % p == 0 {
            return false;
        }
        p += 2;
        if n % p == 0 {
            return false;
        }
        p += 4;
    }
    true
}

fn cycle(n: u32) -> u32 {
    let mut m: u32 = n;
    let mut p: u32 = 1;
    while m >= 10 {
        p *= 10;
        m /= 10;
    }
    m + 10 * (n % p)
}

fn is_circular_prime(p: u32) -> bool {
    if !is_prime(p) {
        return false;
    }
    let mut p2: u32 = cycle(p);
    while p2 != p {
        if p2 < p || !is_prime(p2) {
            return false;
        }
        p2 = cycle(p2);
    }
    true
}

fn test_repunit(digits: usize) {
    use rug::{integer::IsPrime, Integer};
    let repunit = "1".repeat(digits);
    let bignum = Integer::from_str_radix(&repunit, 10).unwrap();
    if bignum.is_probably_prime(10) != IsPrime::No {
        println!("R({}) is probably prime.", digits);
    } else {
        println!("R({}) is not prime.", digits);
    }
}

fn main() {
    use rug::{integer::IsPrime, Integer};
    println!("First 19 circular primes:");
    let mut count = 0;
    let mut p: u32 = 2;
    while count < 19 {
        if is_circular_prime(p) {
            if count > 0 {
                print!(", ");
            }
            print!("{}", p);
            count += 1;
        }
        p += 1;
    }
    println!();
    println!("Next 4 circular primes:");
    let mut repunit: u32 = 1;
    let mut digits: usize = 1;
    while repunit < p {
        repunit = 10 * repunit + 1;
        digits += 1;
    }
    let mut bignum = Integer::from(repunit);
    count = 0;
    while count < 4 {
        if bignum.is_probably_prime(15) != IsPrime::No {
            if count > 0 {
                print!(", ");
            }
            print!("R({})", digits);
            count += 1;
        }
        digits += 1;
        bignum = bignum * 10 + 1;
    }
    println!();
    test_repunit(5003);
    test_repunit(9887);
    test_repunit(15073);
    test_repunit(25031);
    test_repunit(35317);
    test_repunit(49081);
}
Output:

Execution time is about 805 seconds on my system (3.2 GHz Quad-Core Intel Core i5, macOS 10.15.4).

First 19 circular primes:
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933
Next 4 circular primes:
R(19), R(23), R(317), R(1031)
R(5003) is not prime.
R(9887) is not prime.
R(15073) is not prime.
R(25031) is not prime.
R(35317) is not prime.
R(49081) is probably prime.

Scala

Translation of: Java
object CircularPrimes {
  def main(args: Array[String]): Unit = {
    println("First 19 circular primes:")
    var p = 2
    var count = 0
    while (count < 19) {
      if (isCircularPrime(p)) {
        if (count > 0) {
          print(", ")
        }
        print(p)
        count += 1
      }
      p += 1
    }
    println()

    println("Next 4 circular primes:")
    var repunit = 1
    var digits = 1
    while (repunit < p) {
      repunit = 10 * repunit + 1
      digits += 1
    }
    var bignum = BigInt.apply(repunit)
    count = 0
    while (count < 4) {
      if (bignum.isProbablePrime(15)) {
        if (count > 0) {
          print(", ")
        }
        print(s"R($digits)")
        count += 1
      }
      digits += 1
      bignum = bignum * 10
      bignum = bignum + 1
    }
    println()

    testRepunit(5003)
    testRepunit(9887)
    testRepunit(15073)
    testRepunit(25031)
  }

  def isPrime(n: Int): Boolean = {
    if (n < 2) {
      return false
    }
    if (n % 2 == 0) {
      return n == 2
    }
    if (n % 3 == 0) {
      return n == 3
    }
    var p = 5
    while (p * p <= n) {
      if (n % p == 0) {
        return false
      }
      p += 2
      if (n % p == 0) {
        return false
      }
      p += 4
    }
    true
  }

  def cycle(n: Int): Int = {
    var m = n
    var p = 1
    while (m >= 10) {
      p *= 10
      m /= 10
    }
    m + 10 * (n % p)
  }

  def isCircularPrime(p: Int): Boolean = {
    if (!isPrime(p)) {
      return false
    }
    var p2 = cycle(p)
    while (p2 != p) {
      if (p2 < p || !isPrime(p2)) {
        return false
      }
      p2 = cycle(p2)
    }
    true
  }

  def testRepunit(digits: Int): Unit = {
    val ru = repunit(digits)
    if (ru.isProbablePrime(15)) {
      println(s"R($digits) is probably prime.")
    } else {
      println(s"R($digits) is not prime.")
    }
  }

  def repunit(digits: Int): BigInt = {
    val ch = Array.fill(digits)('1')
    BigInt.apply(new String(ch))
  }
}
Output:
First 19 circular primes:
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933
Next 4 circular primes:
R(19), R(23), R(317), R(1031)
R(5003) is not prime.
R(9887) is not prime.
R(15073) is not prime.
R(25031) is not prime.

Sidef

Translation of: Raku
func is_circular_prime(n) {
    n.is_prime || return false

    var circular = n.digits
    circular.min < circular.tail && return false

    for k in (1 ..^ circular.len) {
        with (circular.rotate(k).digits2num) {|p|
            (p.is_prime && (p >= n)) || return false
        }
    }

    return true
}

say "The first 19 circular primes are:"
say 19.by(is_circular_prime)

say "\nThe next 4 circular primes, in repunit format, are:"
{|n| (10**n - 1)/9 -> is_prob_prime }.first(4, 4..Inf).each {|n|
    say "R(#{n})"
}

say "\nRepunit testing:"
[5003, 9887, 15073, 25031, 35317, 49081].each {|n|
    var now = Time.micro
    say ("R(#{n}) -> ", is_prob_prime((10**n - 1)/9) ? 'probably prime' : 'composite',
        " (took: #{'%.3f' % Time.micro-now} sec)")
}
Output:
The first 19 circular primes are:
[2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933]

The next 4 circular primes, in repunit format, are:
R(19)
R(23)
R(317)
R(1031)

Repunit testing:
R(5003) -> composite (took: 0.024 sec)
R(9887) -> composite (took: 0.006 sec)
R(15073) -> composite (took: 0.389 sec)
R(25031) -> composite (took: 54.452 sec)
R(35317) -> composite (took: 0.875 sec)

Uiua

The built-in factorisation °/× is fast enough that it's not worth doing anything clever. Just filter a large enough range of candidates for primality, and for each generate its rotations, check it's the smallest of these and if so test whether all are prime. Filter by outcome of this test.

# Find first 19 circular primes

IsP ← =1⧻°/×
Rots ← ≡(⋕↻)+1⊙¤⇡⧻.°⋕
Circ ← ⨬(⋅0|/↧≡IsP)⊸(=⊙/↧)⟜Rots
▽⊸≡Circ▽⊸≡IsP+1⇡1e6
Output:
[2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933]

Wren

Translation of: Go
Library: Wren-math
Library: Wren-big
Library: Wren-fmt
Library: Wren-str

Wren-cli

Second part is very slow - over 37 minutes to find all four.

import "./math" for Int
import "./big" for BigInt
import "./str" for Str
 
var circs = []
 
var isCircular = Fn.new { |n|
    var nn = n
    var pow = 1 // will eventually contain 10 ^ d where d is number of digits in n
    while (nn > 0) {
        pow = pow * 10
        nn = (nn/10).floor
    }
    nn = n
    while (true) {
        nn = nn * 10
        var f = (nn/pow).floor // first digit
        nn = nn + f * (1 - pow)
        if (circs.contains(nn)) return false
        if (nn == n) break
        if (!Int.isPrime(nn)) return false
    }
    return true
}
 
var repunit = Fn.new { |n| BigInt.new(Str.repeat("1", n)) }
 
System.print("The first 19 circular primes are:")
var digits = [1, 3, 7, 9]
var q = [1, 2, 3, 5, 7, 9]  // queue the numbers to be examined
var fq = [1, 2, 3, 5, 7, 9] // also queue the corresponding first digits
var count = 0
while (true) {
    var f = q[0]   // peek first element
    var fd = fq[0] // peek first digit
    if (Int.isPrime(f) && isCircular.call(f)) {
        circs.add(f)
        count = count + 1
        if (count == 19) break
    }
    q.removeAt(0)  // pop first element
    fq.removeAt(0) // ditto for first digit queue
    if (f != 2 && f != 5) { // if digits > 1 can't contain a 2 or 5
        // add numbers with one more digit to queue
        // only numbers whose last digit >= first digit need be added
        for (d in digits) {
            if (d >= fd) {
                q.add(f*10+d)
                fq.add(fd)
            }
        }
    }
}
System.print(circs)
 
System.print("\nThe next 4 circular primes, in repunit format, are:")
count = 0
var rus = []
var primes = Int.primeSieve(10000)
for (p in primes[3..-1]) {
     if (repunit.call(p).isProbablePrime(1)) {
        rus.add("R(%(p))")
        count = count + 1
        if (count == 4) break
    }
}
System.print(rus)
Output:
The first 19 circular primes are:
[2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933]

The next 4 circular primes, in repunit format, are:
[R(19), R(23), R(317), R(1031)]


Embedded

Library: Wren-gmp

A massive speed-up, of course, when GMP is plugged in for the 'probably prime' calculations. 11 minutes 19 seconds including the stretch goal.

/* Circular_primes_embedded.wren */
 
import "./gmp" for Mpz
import "./math" for Int
import "./fmt" for Fmt
import "./str" for Str
 
var circs = []
 
var isCircular = Fn.new { |n|
    var nn = n
    var pow = 1 // will eventually contain 10 ^ d where d is number of digits in n
    while (nn > 0) {
        pow = pow * 10
        nn = (nn/10).floor
    }
    nn = n
    while (true) {
        nn = nn * 10
        var f = (nn/pow).floor // first digit
        nn = nn + f * (1 - pow)
        if (circs.contains(nn)) return false
        if (nn == n) break
        if (!Int.isPrime(nn)) return false
    }
    return true
}
 
System.print("The first 19 circular primes are:")
var digits = [1, 3, 7, 9]
var q = [1, 2, 3, 5, 7, 9]  // queue the numbers to be examined
var fq = [1, 2, 3, 5, 7, 9] // also queue the corresponding first digits
var count = 0
while (true) {
    var f = q[0]   // peek first element
    var fd = fq[0] // peek first digit
    if (Int.isPrime(f) && isCircular.call(f)) {
        circs.add(f)
        count = count + 1
        if (count == 19) break
    }
    q.removeAt(0)  // pop first element
    fq.removeAt(0) // ditto for first digit queue
    if (f != 2 && f != 5) { // if digits > 1 can't contain a 2 or 5
        // add numbers with one more digit to queue
        // only numbers whose last digit >= first digit need be added
        for (d in digits) {
            if (d >= fd) {
                q.add(f*10+d)
                fq.add(fd)
            }
        }
    }
}
System.print(circs)
 
System.print("\nThe next 4 circular primes, in repunit format, are:")
count = 0
var rus = []
var primes = Int.primeSieve(10000)
var repunit = Mpz.new()
for (p in primes[3..-1]) {
    repunit.setStr(Str.repeat("1", p), 10)
    if (repunit.probPrime(10) > 0) {
       rus.add("R(%(p))")
       count = count + 1
       if (count == 4) break
    }
}
System.print(rus)
System.print("\nThe following repunits are probably circular primes:")
for (i in [5003, 9887, 15073, 25031, 35317, 49081]) {
    repunit.setStr(Str.repeat("1", i), 10)
    Fmt.print("R($-5d) : $s", i, repunit.probPrime(15) > 0)
}


Output:
The first 19 circular primes are:
[2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933]

The next 4 circular primes, in repunit format, are:
[R(19), R(23), R(317), R(1031)]

The following repunits are probably circular primes:
R(5003 ) : false
R(9887 ) : false
R(15073) : false
R(25031) : false
R(35317) : false
R(49081) : true

XPL0

func IsPrime(N);        \Return 'true' if N > 2 is a prime number
int  N, I;
[if (N&1) = 0 \even number\ then return false;
for I:= 3 to sqrt(N) do
    [if rem(N/I) = 0 then return false;
    I:= I+1;
    ];
return true;
];

func CircPrime(N0);     \Return 'true' if N0 is a circular prime
int  N0, N, Digits, Rotation, I, R;
[N:= N0;
Digits:= 0;             \count number of digits in N
repeat  Digits:= Digits+1;
        N:= N/10;
until   N = 0;
N:= N0;
for Rotation:= 0 to Digits-1 do
    [if not IsPrime(N) then return false;
    N:= N/10;           \rotate least sig digit into high end
    R:= rem(0);
    for I:= 0 to Digits-2 do
        R:= R*10;
    N:= N+R;
    if N0 > N then      \reject N0 if it has a smaller prime rotation
        return false;
    ];
return true;
];

int Counter, N;
[IntOut(0, 2);  ChOut(0, ^ );   \show first circular prime
Counter:= 1;
N:= 3;                          \remaining primes are odd
loop    [if CircPrime(N) then
            [IntOut(0, N);  ChOut(0, ^ );
            Counter:= Counter+1;
            if Counter >= 19 then quit;
            ];
        N:= N+2;
        ];
]
Output:
2 3 5 7 11 13 17 37 79 113 197 199 337 1193 3779 11939 19937 193939 199933 

Zig

Works with: Zig version 0.11.0

Zig has large integer support, but there is not yet a prime test in the standard library. Therefore, we only find the circular primes < 1e6. As with the Prolog version, we only check numbers composed of 1, 3, 7, or 9.

const std = @import("std");
const math = std.math;
const heap = std.heap;

pub fn main() !void {
    var arena = heap.ArenaAllocator.init(heap.page_allocator);
    defer arena.deinit();

    const allocator = arena.allocator();

    var candidates = std.PriorityQueue(u32, void, u32cmp).init(allocator, {});
    defer candidates.deinit();

    const stdout = std.io.getStdOut().writer();

    try stdout.print("The circular primes are:\n", .{});
    try stdout.print("{:10}" ** 4, .{ 2, 3, 5, 7 });

    var c: u32 = 4;
    try candidates.add(0);
    while (true) {
        var n = candidates.remove();
        if (n > 1_000_000)
            break;
        if (n > 10 and circular(n)) {
            try stdout.print("{:10}", .{n});
            c += 1;
            if (c % 10 == 0)
                try stdout.print("\n", .{});
        }
        try candidates.add(10 * n + 1);
        try candidates.add(10 * n + 3);
        try candidates.add(10 * n + 7);
        try candidates.add(10 * n + 9);
    }
    try stdout.print("\n", .{});
}

fn u32cmp(_: void, a: u32, b: u32) math.Order {
    return math.order(a, b);
}

fn circular(n0: u32) bool {
    if (!isPrime(n0))
        return false
    else {
        var n = n0;
        var d: u32 = @intFromFloat(@log10(@as(f32, @floatFromInt(n))));
        return while (d > 0) : (d -= 1) {
            n = rotate(n);
            if (n < n0 or !isPrime(n))
                break false;
        } else true;
    }
}

fn rotate(n: u32) u32 {
    if (n == 0)
        return 0
    else {
        const d: u32 = @intFromFloat(@log10(@as(f32, @floatFromInt(n)))); // digit count - 1
        const m = math.pow(u32, 10, d);
        return (n % m) * 10 + n / m;
    }
}

fn isPrime(n: u32) bool {
    if (n < 2)
        return false;

    inline for ([3]u3{ 2, 3, 5 }) |p| {
        if (n % p == 0)
            return n == p;
    }

    const wheel235 = [_]u3{
        6, 4, 2, 4, 2, 4, 6, 2,
    };
    var i: u32 = 1;
    var f: u32 = 7;
    return while (f * f <= n) {
        if (n % f == 0)
            break false;
        f += wheel235[i];
        i = (i + 1) & 0x07;
    } else true;
}
Output:
The circular primes are:
         2         3         5         7        11        13        17        37        79       113
       197       199       337      1193      3779     11939     19937    193939    199933